US20050236591A1 - Optical transducer for detecting liquid level - Google Patents

Optical transducer for detecting liquid level Download PDF

Info

Publication number
US20050236591A1
US20050236591A1 US10/829,772 US82977204A US2005236591A1 US 20050236591 A1 US20050236591 A1 US 20050236591A1 US 82977204 A US82977204 A US 82977204A US 2005236591 A1 US2005236591 A1 US 2005236591A1
Authority
US
United States
Prior art keywords
optical
optical probe
probe
liquid
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/829,772
Other versions
US7259383B2 (en
Inventor
Alvin Wirthlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/829,772 priority Critical patent/US7259383B2/en
Priority to US10/924,395 priority patent/US7109512B2/en
Priority to PCT/US2005/013791 priority patent/WO2005106382A2/en
Publication of US20050236591A1 publication Critical patent/US20050236591A1/en
Application granted granted Critical
Publication of US7259383B2 publication Critical patent/US7259383B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
    • G01F23/2925Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms using electrical detecting means

Definitions

  • This invention relates to optical transducers, and more particularly to optical transducers for detecting liquid level and the like.
  • FIGS. 1A-1C schematically depict a prior art optical transducer 10 for determining liquid level in tanks, vessels or the like.
  • the transducer 10 includes an optical body 12 with a conical tip 14 at one end thereof, and a light source 16 and photosensor 18 at an opposite end thereof.
  • light from the light source 16 is normally projected through the optical body 12 where it is internally reflected at a conical measuring surface 20 of the conical tip 14 and returns to the photosensor 18 , as represented by arrow 22 .
  • the conical tip 14 is submerged in liquid, as represented by dashed line 24 in FIG. 1B , the light is refracted out of the conical tip 14 and into the liquid (arrow 26 ).
  • the amount of light at the photosensor 18 is thus significantly diminished.
  • the presence or absence of liquid on the transducer 10 and thus the level of liquid in a tank, vessel or the like can be ascertained.
  • liquid level transducers of above-described type can produce erroneous signals.
  • FIG. 1C when the liquid 24 descends to a level below the transducer 10 , one or more liquid droplets 28 may form on the conical measuring surface 20 due to the surface tension of the liquid and the surface energy of the surface 20 . Consequently, light is refracted out of the conical tip 14 and into the droplet(s) 28 , as shown by arrow 26 , to thereby give a false liquid level indication. This phenomena can occur whether the transducer 10 is in the horizontal position as shown, or in the vertical position.
  • an optical probe for a liquid level transducer comprises an elongate, transparent body having a central axis, a first end for receiving radiant energy from a light source and a second end adapted for exposure to a liquid to be measured.
  • the second end has first and second measurement surfaces that intersect at a transverse edge.
  • the transverse edge extends at an acute angle with respect to the central axis to thereby form a probe tip. In this manner, liquid droplets that may be present on the probe are directed along the transverse edge toward the probe tip for expulsion therefrom.
  • an optical transducer for determining the presence or absence of liquid in a reservoir comprises a housing with a hollow interior and an optical probe that extends through the housing.
  • the optical probe has a central axis, a proximal end positioned in the hollow interior and a distal end positioned outside of the housing.
  • the distal end has first and second measurement surfaces that intersect at a transverse edge.
  • the transverse edge extends at an acute angle with respect to the central axis.
  • a light source is arranged for projecting radiant energy into the optical probe toward the distal end.
  • a photosensor is arranged for detecting radiant energy reflected from the distal end to thereby detect the presence and absence of liquid on the optical probe.
  • an optical transducer for determining the presence or absence of liquid in a reservoir comprises a housing with a hollow interior and a mounting section with external threads for engagement with internal threads of a reservoir.
  • the optical transducer also comprises an optical probe that extends through the housing with a proximal end of the optical probe being positioned in the hollow interior above the mounting section and a distal end of the optical probe being positioned outside of the housing below the mounting section.
  • a light source is positioned in the hollow interior above the proximal end for projecting radiant energy into the optical probe toward the distal end.
  • a photosensor is also positioned in the hollow interior above the proximal end for detecting radiant energy reflected from the distal end to thereby detect the presence and absence of liquid on the optical probe. In this manner, heat transfer between liquid in the reservoir and the light source and photosensor is minimized.
  • FIG. 1A is a schematic view of a prior art optical liquid level transducer in a first operating condition
  • FIG. 1B is a view similar to FIG. 1 of the prior art optical liquid level transducer in a second operating condition
  • FIG. 1C is a view similar to FIG. 1 of the prior art optical liquid level transducer in a failure condition
  • FIG. 2 is a side elevational view of an optical liquid level transducer in accordance with the invention.
  • FIG. 3 is a top plan view of the optical liquid level transducer of FIG. 2 ;
  • FIG. 4 is a sectional view of the optical liquid level transducer taken along line 4 - 4 of FIG. 2 ;
  • FIG. 5 is a sectional view of the optical liquid level transducer taken along line 5 - 5 of FIG. 4 ;
  • FIG. 6 is an end view of the optical liquid level transducer as seen in the direction of line 6 - 6 of FIG. 4 , in accordance with a further embodiment of the invention.
  • the optical transducer 100 preferably includes a housing 102 , an optical probe 104 extending from a distal end 106 of the housing 102 , and a wiring harness 108 extending from an opposite proximal end 110 of the housing.
  • the housing 102 is preferably constructed of a metal material, such as brass.
  • the housing 102 includes a mounting section 112 with external threads 114 for engagement with internal threads 116 of a reservoir housing 118 , which may be in the form of a tank, vessel, container or the like.
  • the housing 102 also preferably includes a securing section 120 with generally flat, external faces 122 for engagement by a wrench or the like (not shown) for installing and removing the optical liquid level transducer 100 with respect to the reservoir housing 118 in a well-known manner.
  • the housing 102 can be constructed of other materials such as plastic or ceramic.
  • the particular configuration of the housing 102 will largely depend on the mounting arrangement of the reservoir housing 118 . Accordingly, the external threads 114 and external faces 122 may be eliminated and other mounting means may be provided.
  • the securing section 120 has a wall 126 with the external faces 122 formed thereon and a generally cylindrical interior cavity 124 delimited by an interior surface 128 of the wall.
  • one or more of the external faces 122 may be provided with cooling grooves 125 and/or fins 127 ( FIG. 6 ) extending generally parallel with a longitudinal axis 178 of the housing.
  • the grooves and/or fins increase the outer surface area of the housing 102 so that heat within the housing 102 can be more efficiently transferred to the outside environment. In this manner, the electronics and other components located within the housing may have lower temperature requirements. It will be understood that the grooves and/or fins have any orientation with respect to the central axis 178 .
  • An annular step 130 is formed in the interior surface 128 for supporting a circuit board 132 within the cavity 124 .
  • An end cap 134 has an annular side wall portion 136 and a plate or disk portion 138 connected to the side wall portion.
  • the annular side wall portion 136 is preferably in sealing engagement with the interior surface 128 of the wall 126 .
  • An end 140 of the annular side wall portion 136 opposite the disk portion 138 abuts the circuit board 132 and holds it in place against the annular step 130 .
  • An annular flange 142 of the wall 126 can be pressed, rolled or otherwise deformed over the plate portion 138 to hold the end cap and circuit board in the interior cavity 124 . It will be understood that other means for holding the components together can be employed, such as adhesive, welding, heat staking, and so on.
  • a strain relief device 148 may be mounted in the opening 146 with the wires 144 extending therethrough in a well known manner.
  • the wires, strain relief device and/or end cap may be replaced with a male or female plug portion with electrical connectors (not shown) for mating with a female or male plug portion (not shown), respectively, of the vehicle or system on which the liquid level transducer 100 is to be installed.
  • the mounting section 112 has a central bore 150 that, before installation of the optical probe 104 , intersects the interior cavity 124 .
  • the optical probe 104 extends through the central bore 140 and is preferably sealingly connected to the mounting section 112 at the distal end 106 of the housing 102 through an epoxy adhesive layer 152 or the like to prevent liquid from entering the bore 140 and interior cavity 124 .
  • other means for connecting and/or sealing the optical probe to the housing can be used, such as press-fitting the probe in the housing, insert or injection molding the probe directly to the housing, using one or more O-rings between the probe and housing, ultrasonically welding the probe to the housing, using other types of adhesives and sealants, and so on.
  • the optical probe 104 is preferably in the form of a transparent body of generally elongate cylindrical shape with a proximal end 160 and a distal measurement end 162 .
  • the optical probe 104 can have other cross dimensional shapes, such as oval, square, triangular, and so on.
  • transparent refers to a material condition that ranges from optically clear to opaque for various wavelengths of radiant energy.
  • some materials that allow transmission of a substantial amount of radiant energy in the visible light region of the electromagnetic spectrum may not allow significant transmission of radiant energy in the infrared or other regions. Accordingly, a suitable transparent material would allow the transmission of a measurable amount of radiant energy of a selected wave length through the probe 104 .
  • the probe 104 can be constructed of glass material such as borosilicate or quartz; Teflon® material such as PTFE, FEP, ETFE; plastic material such as acrylic, nylon, polysulfone, polyetherimide, silicon, polyurethane, polycarbonate, and so on.
  • glass material such as borosilicate or quartz
  • Teflon® material such as PTFE, FEP, ETFE
  • plastic material such as acrylic, nylon, polysulfone, polyetherimide, silicon, polyurethane, polycarbonate, and so on.
  • the proximal end 160 of the optical probe 104 preferably abuts or is at least closely adjacent to a light source 164 and photosensor 166 mounted on the circuit board 132 .
  • the light source 164 is preferably of the LED type, and both the light source and photosensor can be surface-mount devices with recessed light emitting and light detecting areas 168 and 170 , respectively, to both efficiently couple the devices to the optical probe 104 and prevent the direct transmission of stray light from the light source to the photosensor.
  • a suitable light source may be a high brightness surface-mount LED, such as Vishay TLM 33 series or TSMS3700.
  • a suitable photosensor may be a surface-mount phototransistor, such as Vishay TEMT3700.
  • a suitable combination light source/photosensor may alternatively be used.
  • One such combination is a reflective object sensor, such as QRD1114 provided by Fairchild Semiconductor.
  • the reflective object sensor includes an integrated infrared LED emitter and a phototransistor in a single package.
  • the reflective object sensor abuts the proximal end 160 or is at least closely adjacent thereto.
  • light sources can be used, such as, without limitation, incandescent bulbs, laser diodes, or any other source that emits radiant energy in one or more of the visible, ultra-violet, or infra-red spectrums.
  • photosensors can be used, such as, without limitation, photocells, photodiodes, and photoconductors.
  • a single integrated unit such as a proximity sensor having both the light source and the photosensor may be used.
  • the position of the light source and photosensor may be reversed or located at other positions on the proximal end 160 of the optical probe 104 .
  • the light source and photosensor may be remotely located from the proximal end of the optical probe and positioned for emitting light into the optical probe and receiving light therefrom, respectively, through intermediate members such as fiber optics, transparent rods, or other suitable light guides.
  • the distal measurement end 162 of the optical probe 104 has a first measurement surface 172 and a second measurement surface 174 .
  • the first and second measurement surfaces intersect at a transverse edge 176 .
  • each measurement surface 172 , 174 forms an acute angle A with respect to the central axis 178 , as shown in FIG. 3 .
  • the edge 176 preferably forms an acute angle B with respect to the central axis 178 , as shown in FIG. 2 .
  • the edge 176 together with the outer surface 180 of the probe form a pointed probe apex or tip 182 .
  • angles A and B are each approximately 45 degrees.
  • angles A and B can vary over a wide range depending on the type of light source used and/or the liquid(s) to be measured. It will be further understood that the probe tip 182 need not be pointed. In addition, more than one edge 176 can be provided with more than two intersecting measurement surfaces.
  • annular gap 184 is formed in the interior cavity 124 between the housing 102 and the probe 104 .
  • the annular gap 184 surrounds the probe 104 and serves as an insulative barrier between the housing and proximal end 160 of the probe. Accordingly, heat transfer between the wall 126 of the housing 102 and the probe 104 occurs by convection through the gap 184 rather than by conduction to thereby limit the temperature of the proximal end 160 of the probe.
  • the temperature of the proximal end 160 can also be controlled through heat conduction with the reservoir housing 118 . As shown in FIG.
  • the reservoir housing 118 may serve as a heat sink to draw heat away from the optical probe 104 and the mounting section 112 through conductive heat transfer.
  • the annular gap 184 and/or a portion of the interior cavity 124 below the circuit board 132 may be filled with insulative material (not shown).
  • the optical probe 104 In the absence of liquid, as shown in FIG. 4 , light entering the optical probe 104 from the light source 164 is reflected off the measurement surfaces 172 , 174 and back into the probe, as represented by arrow 186 , so that the photosensor 166 can detect at least a portion of the light emitted by the light source 164 .
  • the shape of the optical probe 104 encourages any liquid droplet(s) 188 (shown in phantom line in FIG. 2 ) that may initially be on the measurement surfaces 172 , 174 to be expelled from the optical probe 104 .
  • the relatively narrow areas at the edge 176 and tip 182 discourage the adhesion of droplets due to the relatively small surface energy at these locations.
  • the droplets will tend to slide under gravity along the edge 176 toward the probe tip 182 where it is expelled from the optical probe 104 .
  • at least a substantial area of the measurement surfaces are clear of the droplets, whether the probe is in the horizontal or vertical position.
  • any liquid that may otherwise remain on the measurement surfaces is at least substantially reduced to thereby give greater measurement reliability over prior art optical liquid level detectors.
  • a low surface energy film such as NovecTM provided by 3M or other fluorinated polymer or low surface energy material, can be applied at least to the measurement faces 172 , 174 of the probe, and preferably to the entire probe surface that will be exposed to liquid.
  • Another suitable film is a silicone hardcoat, such as PHC587 provided by GE Silicones. The film should have a lower index of refraction than the material of the probe 104 so that in the absence of liquid, light from the light source 164 is reflected back into the probe material.
  • an optical probe 104 constructed of polysulfone has a refractive index of approximately 1.63.
  • a NovecTM film covering the polysulfone probe has a refractive index of approximately 1.38, while a silicone hardcoat has a refractive index of approximately 1.42.
  • the light from the light source will be refracted out of the optical probe 104 to thereby create a signal change that can be used to trigger a visual or audio indicator to alert an operator that the liquid level in the reservoir 118 is at a predetermined level.
  • the abrupt signal change can be used to automatically start and/or stop operation of a pump or the like (not shown) to fill the reservoir with liquid to a predetermined level.
  • two of the optical transducers 100 can be used in conjunction with other circuitry to automatically start and stop operation of a pump at the low level and high level, respectively.

Abstract

An optical transducer for determining the presence or absence of liquid or the like in a reservoir includes a housing with a hollow interior and an optical probe that extends through the housing. The optical probe has a central axis, a proximal end positioned in the hollow interior and a distal end positioned outside of the housing. The distal end has first and second measurement surfaces that intersect at a transverse edge. The transverse edge extends at an acute angle with respect to the central axis. A light source is arranged for projecting radiant energy into the optical probe toward the distal end. A photosensor is arranged for detecting radiant energy reflected from the distal end to thereby detect the presence and absence of liquid on the optical probe.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to optical transducers, and more particularly to optical transducers for detecting liquid level and the like.
  • FIGS. 1A-1C schematically depict a prior art optical transducer 10 for determining liquid level in tanks, vessels or the like. As shown, the transducer 10 includes an optical body 12 with a conical tip 14 at one end thereof, and a light source 16 and photosensor 18 at an opposite end thereof. In the absence of liquid as shown in FIG. 1A, light from the light source 16 is normally projected through the optical body 12 where it is internally reflected at a conical measuring surface 20 of the conical tip 14 and returns to the photosensor 18, as represented by arrow 22. When the conical tip 14 is submerged in liquid, as represented by dashed line 24 in FIG. 1B, the light is refracted out of the conical tip 14 and into the liquid (arrow 26). The amount of light at the photosensor 18 is thus significantly diminished. The presence or absence of liquid on the transducer 10, and thus the level of liquid in a tank, vessel or the like can be ascertained.
  • However, it has been found that liquid level transducers of above-described type can produce erroneous signals. As shown in FIG. 1C, when the liquid 24 descends to a level below the transducer 10, one or more liquid droplets 28 may form on the conical measuring surface 20 due to the surface tension of the liquid and the surface energy of the surface 20. Consequently, light is refracted out of the conical tip 14 and into the droplet(s) 28, as shown by arrow 26, to thereby give a false liquid level indication. This phenomena can occur whether the transducer 10 is in the horizontal position as shown, or in the vertical position.
  • In addition to the above, it has previously been difficult to construct a compact optical transducer that is capable of operating through a wide temperature range due to the relative proximity of the light source and photosensor to the liquid being measured.
  • BRIEF SUMMARY OF THE INVENTION
  • According to one aspect of the invention, an optical probe for a liquid level transducer comprises an elongate, transparent body having a central axis, a first end for receiving radiant energy from a light source and a second end adapted for exposure to a liquid to be measured. The second end has first and second measurement surfaces that intersect at a transverse edge. The transverse edge extends at an acute angle with respect to the central axis to thereby form a probe tip. In this manner, liquid droplets that may be present on the probe are directed along the transverse edge toward the probe tip for expulsion therefrom.
  • According to a further aspect of the invention, an optical transducer for determining the presence or absence of liquid in a reservoir comprises a housing with a hollow interior and an optical probe that extends through the housing. The optical probe has a central axis, a proximal end positioned in the hollow interior and a distal end positioned outside of the housing. The distal end has first and second measurement surfaces that intersect at a transverse edge. The transverse edge extends at an acute angle with respect to the central axis. A light source is arranged for projecting radiant energy into the optical probe toward the distal end. A photosensor is arranged for detecting radiant energy reflected from the distal end to thereby detect the presence and absence of liquid on the optical probe.
  • According to yet a further aspect of the invention, an optical transducer for determining the presence or absence of liquid in a reservoir comprises a housing with a hollow interior and a mounting section with external threads for engagement with internal threads of a reservoir. The optical transducer also comprises an optical probe that extends through the housing with a proximal end of the optical probe being positioned in the hollow interior above the mounting section and a distal end of the optical probe being positioned outside of the housing below the mounting section. It will be understood that terms of position and/or orientation as may be used throughout the specification and claims, such as “above” and “below” refer to relative, rather than absolute positions and/or orientations. A light source is positioned in the hollow interior above the proximal end for projecting radiant energy into the optical probe toward the distal end. A photosensor is also positioned in the hollow interior above the proximal end for detecting radiant energy reflected from the distal end to thereby detect the presence and absence of liquid on the optical probe. In this manner, heat transfer between liquid in the reservoir and the light source and photosensor is minimized.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing summary as well as the following detailed description of the preferred embodiments of the present invention will be best understood when considered in conjunction with the accompanying drawings, wherein like designations denote like elements throughout the drawings, and wherein:
  • FIG. 1A is a schematic view of a prior art optical liquid level transducer in a first operating condition;
  • FIG. 1B is a view similar to FIG. 1 of the prior art optical liquid level transducer in a second operating condition;
  • FIG. 1C is a view similar to FIG. 1 of the prior art optical liquid level transducer in a failure condition;
  • FIG. 2 is a side elevational view of an optical liquid level transducer in accordance with the invention;
  • FIG. 3 is a top plan view of the optical liquid level transducer of FIG. 2;
  • FIG. 4 is a sectional view of the optical liquid level transducer taken along line 4-4 of FIG. 2;
  • FIG. 5 is a sectional view of the optical liquid level transducer taken along line 5-5 of FIG. 4; and
  • FIG. 6 is an end view of the optical liquid level transducer as seen in the direction of line 6-6 of FIG. 4, in accordance with a further embodiment of the invention.
  • It is noted that the drawings are intended to depict only typical embodiments of the invention and therefore should not be considered as limiting the scope thereof. It is further noted that the drawings may not be necessarily to scale. The invention will now be described in greater detail with reference to the accompanying drawings.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to the drawings and to FIGS. 2 and 3 in particular, an optical liquid level transducer 100 in accordance with the present invention is illustrated. The optical transducer 100 preferably includes a housing 102, an optical probe 104 extending from a distal end 106 of the housing 102, and a wiring harness 108 extending from an opposite proximal end 110 of the housing.
  • With additional reference to FIGS. 4 and 5-6, the housing 102 is preferably constructed of a metal material, such as brass. The housing 102 includes a mounting section 112 with external threads 114 for engagement with internal threads 116 of a reservoir housing 118, which may be in the form of a tank, vessel, container or the like. The housing 102 also preferably includes a securing section 120 with generally flat, external faces 122 for engagement by a wrench or the like (not shown) for installing and removing the optical liquid level transducer 100 with respect to the reservoir housing 118 in a well-known manner. It will be understood that the housing 102 can be constructed of other materials such as plastic or ceramic. The particular configuration of the housing 102 will largely depend on the mounting arrangement of the reservoir housing 118. Accordingly, the external threads 114 and external faces 122 may be eliminated and other mounting means may be provided. The securing section 120 has a wall 126 with the external faces 122 formed thereon and a generally cylindrical interior cavity 124 delimited by an interior surface 128 of the wall.
  • In accordance with a further embodiment of the invention as shown in FIG. 6, one or more of the external faces 122 may be provided with cooling grooves 125 and/or fins 127 (FIG. 6) extending generally parallel with a longitudinal axis 178 of the housing. The grooves and/or fins increase the outer surface area of the housing 102 so that heat within the housing 102 can be more efficiently transferred to the outside environment. In this manner, the electronics and other components located within the housing may have lower temperature requirements. It will be understood that the grooves and/or fins have any orientation with respect to the central axis 178.
  • An annular step 130 is formed in the interior surface 128 for supporting a circuit board 132 within the cavity 124. An end cap 134 has an annular side wall portion 136 and a plate or disk portion 138 connected to the side wall portion. The annular side wall portion 136 is preferably in sealing engagement with the interior surface 128 of the wall 126. An end 140 of the annular side wall portion 136 opposite the disk portion 138 abuts the circuit board 132 and holds it in place against the annular step 130. An annular flange 142 of the wall 126 can be pressed, rolled or otherwise deformed over the plate portion 138 to hold the end cap and circuit board in the interior cavity 124. It will be understood that other means for holding the components together can be employed, such as adhesive, welding, heat staking, and so on.
  • Electrical wires 144 from the circuit board 132 exit the housing 102 through a central opening 146 formed in the plate portion 138. A strain relief device 148 may be mounted in the opening 146 with the wires 144 extending therethrough in a well known manner.
  • In accordance with a further embodiment of the invention, the wires, strain relief device and/or end cap may be replaced with a male or female plug portion with electrical connectors (not shown) for mating with a female or male plug portion (not shown), respectively, of the vehicle or system on which the liquid level transducer 100 is to be installed.
  • The mounting section 112 has a central bore 150 that, before installation of the optical probe 104, intersects the interior cavity 124. The optical probe 104 extends through the central bore 140 and is preferably sealingly connected to the mounting section 112 at the distal end 106 of the housing 102 through an epoxy adhesive layer 152 or the like to prevent liquid from entering the bore 140 and interior cavity 124. It will be understood that other means for connecting and/or sealing the optical probe to the housing can be used, such as press-fitting the probe in the housing, insert or injection molding the probe directly to the housing, using one or more O-rings between the probe and housing, ultrasonically welding the probe to the housing, using other types of adhesives and sealants, and so on.
  • The optical probe 104 is preferably in the form of a transparent body of generally elongate cylindrical shape with a proximal end 160 and a distal measurement end 162. However, it will be understood that the optical probe 104 can have other cross dimensional shapes, such as oval, square, triangular, and so on.
  • It will be understood that the term “transparent” as used herein refers to a material condition that ranges from optically clear to opaque for various wavelengths of radiant energy. By way of example, some materials that allow transmission of a substantial amount of radiant energy in the visible light region of the electromagnetic spectrum may not allow significant transmission of radiant energy in the infrared or other regions. Accordingly, a suitable transparent material would allow the transmission of a measurable amount of radiant energy of a selected wave length through the probe 104. By way of example, the probe 104 can be constructed of glass material such as borosilicate or quartz; Teflon® material such as PTFE, FEP, ETFE; plastic material such as acrylic, nylon, polysulfone, polyetherimide, silicon, polyurethane, polycarbonate, and so on. However, it will be understood that the present invention is not limited to the particular materials described.
  • The proximal end 160 of the optical probe 104 preferably abuts or is at least closely adjacent to a light source 164 and photosensor 166 mounted on the circuit board 132.
  • The light source 164 is preferably of the LED type, and both the light source and photosensor can be surface-mount devices with recessed light emitting and light detecting areas 168 and 170, respectively, to both efficiently couple the devices to the optical probe 104 and prevent the direct transmission of stray light from the light source to the photosensor. By way of example, a suitable light source may be a high brightness surface-mount LED, such as Vishay TLM 33 series or TSMS3700. Likewise, a suitable photosensor may be a surface-mount phototransistor, such as Vishay TEMT3700.
  • A suitable combination light source/photosensor may alternatively be used. One such combination is a reflective object sensor, such as QRD1114 provided by Fairchild Semiconductor. The reflective object sensor includes an integrated infrared LED emitter and a phototransistor in a single package. Preferably, the reflective object sensor abuts the proximal end 160 or is at least closely adjacent thereto.
  • It will be understood that other light sources can be used, such as, without limitation, incandescent bulbs, laser diodes, or any other source that emits radiant energy in one or more of the visible, ultra-violet, or infra-red spectrums. It will be further understood that other photosensors can be used, such as, without limitation, photocells, photodiodes, and photoconductors. In accordance with yet a further embodiment of the invention, a single integrated unit such as a proximity sensor having both the light source and the photosensor may be used.
  • It will be further understood that the position of the light source and photosensor may be reversed or located at other positions on the proximal end 160 of the optical probe 104. In addition, the light source and photosensor may be remotely located from the proximal end of the optical probe and positioned for emitting light into the optical probe and receiving light therefrom, respectively, through intermediate members such as fiber optics, transparent rods, or other suitable light guides.
  • The distal measurement end 162 of the optical probe 104 has a first measurement surface 172 and a second measurement surface 174. The first and second measurement surfaces intersect at a transverse edge 176. Preferably, each measurement surface 172, 174 forms an acute angle A with respect to the central axis 178, as shown in FIG. 3. In addition, the edge 176 preferably forms an acute angle B with respect to the central axis 178, as shown in FIG. 2. The edge 176 together with the outer surface 180 of the probe form a pointed probe apex or tip 182. Preferably, angles A and B are each approximately 45 degrees. It will be understood, however, that angles A and B can vary over a wide range depending on the type of light source used and/or the liquid(s) to be measured. It will be further understood that the probe tip 182 need not be pointed. In addition, more than one edge 176 can be provided with more than two intersecting measurement surfaces.
  • As best shown in FIGS. 4 and 5, with the optical probe 104 installed in the housing 102, an annular gap 184 is formed in the interior cavity 124 between the housing 102 and the probe 104. The annular gap 184 surrounds the probe 104 and serves as an insulative barrier between the housing and proximal end 160 of the probe. Accordingly, heat transfer between the wall 126 of the housing 102 and the probe 104 occurs by convection through the gap 184 rather than by conduction to thereby limit the temperature of the proximal end 160 of the probe. The temperature of the proximal end 160 can also be controlled through heat conduction with the reservoir housing 118. As shown in FIG. 4, the reservoir housing 118 may serve as a heat sink to draw heat away from the optical probe 104 and the mounting section 112 through conductive heat transfer. If desired, the annular gap 184 and/or a portion of the interior cavity 124 below the circuit board 132 may be filled with insulative material (not shown).
  • In the absence of liquid, as shown in FIG. 4, light entering the optical probe 104 from the light source 164 is reflected off the measurement surfaces 172, 174 and back into the probe, as represented by arrow 186, so that the photosensor 166 can detect at least a portion of the light emitted by the light source 164. The shape of the optical probe 104 encourages any liquid droplet(s) 188 (shown in phantom line in FIG. 2) that may initially be on the measurement surfaces 172, 174 to be expelled from the optical probe 104. The relatively narrow areas at the edge 176 and tip 182 discourage the adhesion of droplets due to the relatively small surface energy at these locations. Accordingly, the droplets will tend to slide under gravity along the edge 176 toward the probe tip 182 where it is expelled from the optical probe 104. In this manner, at least a substantial area of the measurement surfaces are clear of the droplets, whether the probe is in the horizontal or vertical position. Thus, any liquid that may otherwise remain on the measurement surfaces is at least substantially reduced to thereby give greater measurement reliability over prior art optical liquid level detectors.
  • In order to further reduce the surface energy of the optical probe 104 and repel liquids, a low surface energy film such as Novec™ provided by 3M or other fluorinated polymer or low surface energy material, can be applied at least to the measurement faces 172, 174 of the probe, and preferably to the entire probe surface that will be exposed to liquid. Another suitable film is a silicone hardcoat, such as PHC587 provided by GE Silicones. The film should have a lower index of refraction than the material of the probe 104 so that in the absence of liquid, light from the light source 164 is reflected back into the probe material. By way of example, an optical probe 104 constructed of polysulfone has a refractive index of approximately 1.63. A Novec™ film covering the polysulfone probe has a refractive index of approximately 1.38, while a silicone hardcoat has a refractive index of approximately 1.42. With such an arrangement, it has been found that the voltage differential of the probe between a dry condition and an immersed condition in water is significantly enhanced. It will be understood that a wide range of materials can be used for both the probe tip and the film.
  • In the presence of liquid, the light from the light source will be refracted out of the optical probe 104 to thereby create a signal change that can be used to trigger a visual or audio indicator to alert an operator that the liquid level in the reservoir 118 is at a predetermined level. Alternatively, the abrupt signal change can be used to automatically start and/or stop operation of a pump or the like (not shown) to fill the reservoir with liquid to a predetermined level.
  • Where it is desirous to continuously monitor the high and low level of liquid in a reservoir for automatically filling the reservoir to a predetermined level, two of the optical transducers 100 can be used in conjunction with other circuitry to automatically start and stop operation of a pump at the low level and high level, respectively.
  • It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. Although the present invention has been described in conjunction with detecting the presence or absence of a liquid material, it will be understood that the term “liquid” can refer to any material (whether fluent or solid) that, when in contact with the optical probe, causes a measurable change in light intensity as detected by the photosensor. It will be understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.

Claims (25)

1. An optical probe for a liquid level transducer, the optical probe comprising:
an elongate, transparent body having a central axis, a first end for receiving radiant energy from a light source and a second end adapted for exposure to a liquid to be measured;
the second end having first and second measurement surfaces that intersect at a transverse edge; the transverse edge extending at an acute angle with respect to the central axis;
whereby liquid droplets that may be present on the probe are directed along the transverse edge toward the probe tip for expulsion therefrom.
2. An optical probe according to claim 1, wherein a distal portion of the transverse edge defines a probe tip that is offset from the central axis.
3. An optical probe according to claim 2, wherein the probe tip is formed at an intersection of the transverse edge and an outer surface of the transparent body.
4. An optical probe according to claim 3, wherein the transparent body is cylindrical in shape.
5. An optical probe according to claim 4, wherein the probe tip is pointed.
6. An optical probe according to claim 1, wherein the transparent body has a first surface energy, and further comprising a film that covers at least a portion of the transparent body, the film having a second surface energy that is lower than the first surface energy to thereby encourage expulsion of liquid droplets from the transparent body.
7. An optical probe according to claim 6, wherein a refractive index of the probe body is greater than a refractive index of the film to thereby enhance detection of the presence and absence of liquid on the optical probe.
8. An optical probe according to claim 1, wherein the transparent body has a first refractive index, and further comprising a film that covers at least a portion of the transparent body, the film having a second refractive index that is lower than the first refractive index to thereby enhance detection of the presence and absence of liquid on the optical probe.
9. An optical transducer for determining the presence or absence of liquid in a reservoir, comprising:
a housing having a hollow interior;
an optical probe extending through the housing, the optical probe having a central axis, a proximal end positioned in the hollow interior and a distal end positioned outside of the housing, the distal end having first and second measurement surfaces that intersect at a transverse edge, the transverse edge extending at an acute angle with respect to the central axis;
a light source arranged for projecting radiant energy into the optical probe toward the distal end; and
a photosensor arranged for detecting radiant energy reflected from the distal end to thereby detect the presence and absence of liquid on the optical probe.
10. An optical transducer according to claim 9, wherein a distal portion of the transverse edge defines a probe tip that is offset from the central axis.
11. An optical transducer according to claim 10, wherein the probe tip is formed at an intersection of the transverse edge and an outer surface of the optical probe.
12. An optical transducer according to claim 11, wherein the optical probe is cylindrical in shape.
13. An optical transducer according to claim 12, wherein the probe tip is pointed.
14. An optical transducer according to claim 9, wherein the optical probe has a first surface energy, and further comprising a film that covers at least a portion of the optical probe, the film having a second surface energy that is lower than the first surface energy to thereby encourage expulsion of liquid droplets from the optical probe.
15. An optical transducer according to claim 14, wherein a refractive index of the optical probe is greater than a refractive index of the film to thereby enhance detection of the presence and absence of liquid on the optical probe.
16. An optical transducer according to claim 9, wherein the optical probe has a first refractive index, and further comprising a film that covers at least a portion of the optical probe, the film having a second refractive index that is lower than the first refractive index to thereby enhance detection of the presence and absence of liquid on the optical probe.
17. An optical transducer according to claim 9, wherein the housing comprises a mounting section with external threads for engagement with internal threads of a reservoir, and further wherein the light source and photosensor are located in the hollow interior above the mounting section to thereby minimize heat transfer between liquid being detected in the reservoir and the light source and photosensor.
18. An optical transducer according to claim 17, wherein the first and second measurement surfaces are located below the mounting section.
19. An optical transducer according to claim 18, wherein the light source and photosensor are flush with the proximal end of the optical probe.
20. An optical transducer for determining the presence or absence of liquid in a reservoir, the optical transducer comprising:
a housing having a hollow interior and a mounting section for connection to a reservoir;
an optical probe extending through the housing with a proximal end of the optical probe being positioned in the hollow interior above the mounting section and a distal end of the optical probe being positioned outside of the housing below the mounting section;
a light source positioned in the hollow interior above the proximal end for projecting radiant energy into the optical probe toward the distal end; and
a photosensor positioned in the hollow interior above the proximal end for detecting radiant energy reflected from the distal end to thereby detect the presence and absence of liquid on the optical probe.
21. An optical transducer according to claim 20, wherein an inner surface of the housing above the mounting section and an outer surface of the optical probe form a continuous gap to thereby minimize heat transfer between the housing and the proximal end of the optical probe.
22. An optical transducer according to claim 20, wherein the distal end of the optical probe comprises first and second measurement surfaces that intersect at a transverse edge, the transverse edge extending at an acute angle with respect to the central axis.
23. An optical transducer according to claim 22, wherein a distal portion of the transverse edge defines a probe tip that is offset from the central axis.
24. An optical transducer according to claim 23, wherein the probe tip is formed at an intersection of the transverse edge and an outer surface of the optical probe.
25. An optical transducer according to claim 20, wherein the mounting section has external threads for engagement with internal threads of the reservoir.
US10/829,772 2004-04-22 2004-04-22 Optical transducer for detecting liquid level Expired - Fee Related US7259383B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/829,772 US7259383B2 (en) 2004-04-22 2004-04-22 Optical transducer for detecting liquid level
US10/924,395 US7109512B2 (en) 2004-04-22 2004-08-23 Optical transducer for detecting liquid level and electrical circuit therefor
PCT/US2005/013791 WO2005106382A2 (en) 2004-04-22 2005-04-21 Optical transducer for detecting liquid level and electronic circuit therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/829,772 US7259383B2 (en) 2004-04-22 2004-04-22 Optical transducer for detecting liquid level

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/924,395 Continuation-In-Part US7109512B2 (en) 2004-04-22 2004-08-23 Optical transducer for detecting liquid level and electrical circuit therefor

Publications (2)

Publication Number Publication Date
US20050236591A1 true US20050236591A1 (en) 2005-10-27
US7259383B2 US7259383B2 (en) 2007-08-21

Family

ID=35135518

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/829,772 Expired - Fee Related US7259383B2 (en) 2004-04-22 2004-04-22 Optical transducer for detecting liquid level

Country Status (1)

Country Link
US (1) US7259383B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080152958A1 (en) * 2006-12-22 2008-06-26 Mclean Gerard F State of charge indicator and methods related thereto
US20090007705A1 (en) * 2006-12-22 2009-01-08 Mclean Gerard F Sensing device and methods related thereto
WO2012099984A1 (en) * 2011-01-18 2012-07-26 Innerspace, Inc. Stylet that senses csf
US8297937B2 (en) 2006-06-12 2012-10-30 Stak Enterprises, Inc. Pump control apparatus, system and method
US8656793B2 (en) 2006-12-22 2014-02-25 Societe Bic State of charge indicator and methods related thereto
JP2017067519A (en) * 2015-09-29 2017-04-06 東京エレクトロン株式会社 Sensor and vaporizer
US9645004B2 (en) 2014-11-19 2017-05-09 The Boeing Company Optical impedance modulation for fuel quantity measurement comprising a fiber encased by a tube having a longitudinal slot with a lens
US10175087B2 (en) 2017-02-09 2019-01-08 The Boeing Company Fuel level sensor having dual fluorescent plastic optical fibers
US10352755B2 (en) 2017-04-17 2019-07-16 The Boeing Company Passive differential liquid level sensor using optical fibers
US10371559B2 (en) 2017-04-17 2019-08-06 The Boeing Company Differential spectral liquid level sensor
WO2020104167A1 (en) * 2018-11-21 2020-05-28 Endress+Hauser SE+Co. KG Measuring probe for determining or monitoring a physical or chemical process variable of a medium
US10935413B2 (en) 2019-04-10 2021-03-02 The Boeing Company Non-contact time-of-flight fuel level sensor using plastic optical fiber
US11781896B2 (en) * 2020-01-31 2023-10-10 Eaton Intelligent Power Limited Electro-optic sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362432B2 (en) * 2009-02-06 2013-01-29 Hydro-Photon, Inc. Optical liquid sensor
JP5455454B2 (en) * 2009-06-08 2014-03-26 矢崎総業株式会社 Temperature sensor with simple fixing function and air duct for battery pack ventilation
JP6091500B2 (en) 2011-06-07 2017-03-08 メジャメント スペシャリティーズ, インコーポレイテッド Photodetection device for fluid detection and method therefor
US9068875B1 (en) * 2011-06-26 2015-06-30 Alvin R. Wirthlin Optical liquid level transducer
ITTO20120598A1 (en) * 2012-07-06 2014-01-07 Illinois Tool Works HEATING DEVICE FOR HOUSEHOLD APPLIANCES WITH OPTICAL LIQUID LEVEL SENSOR

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883971A (en) * 1929-08-10 1932-10-25 Constant J Kryzanowsky Signaling device
US3068697A (en) * 1960-09-26 1962-12-18 Bendix Corp Level gages
US3338457A (en) * 1965-12-23 1967-08-29 Tygenhof Charles Automobile radiator cap
US3442127A (en) * 1966-08-29 1969-05-06 Edgar B Nichols Liquid level indicator
US3448616A (en) * 1967-06-29 1969-06-10 Sinclair Research Inc Liquid level detector
US3528291A (en) * 1969-04-25 1970-09-15 Illinois Tool Works Liquid level indicator
US3535934A (en) * 1969-02-10 1970-10-27 Illinois Tool Works Liquid level indicator
US3796098A (en) * 1972-04-19 1974-03-12 F Trayer Liquid level gauge
US3834235A (en) * 1971-12-17 1974-09-10 M Bouton Liquid and solid sensing device
US4132899A (en) * 1975-07-23 1979-01-02 Sharp Kabushiki Kaisha Liquid-level detector
US4242590A (en) * 1977-04-18 1980-12-30 Siemens Aktiengesellschaft Liquid level detector with hysteresis means
US4246489A (en) * 1979-04-16 1981-01-20 Tokyo Shibaura Electric Co., Ltd. Liquid level detector for detecting a liquid level when reaching a prescribed height
US4354180A (en) * 1980-12-19 1982-10-12 Genelco, Inc. Electro-optical liquid level sensor
US4606226A (en) * 1984-07-19 1986-08-19 Eotec Corporation Liquid level sensor
US4713552A (en) * 1983-04-22 1987-12-15 Electricite De France (Service National) Optical probe
US4764671A (en) * 1986-10-03 1988-08-16 Kollmorgen Corporation Fiber optic fluid sensor using coated sensor tip
US4809551A (en) * 1982-04-08 1989-03-07 S.T. Dupont Device for detecting the liquid level in a tank, particularly a lighter tank and tank provided with such device
US4840137A (en) * 1987-07-01 1989-06-20 Casco Products Corporation Liquid level gauging apparatus
US4961069A (en) * 1988-12-07 1990-10-02 Aeroquip Corporation Dual optical level monitor
US4962395A (en) * 1987-12-11 1990-10-09 Honeywell Control Systems Limited Liquid level sensor with wide temperature range capacity
US5029471A (en) * 1990-10-23 1991-07-09 Watkins Johnson Company Liquid level sensor assembly
US5278426A (en) * 1993-01-21 1994-01-11 Barbier William J Optical liquid level sensor for pressurized systems utilizing prismatic element
US5279157A (en) * 1992-08-03 1994-01-18 Casco Products Corporation Liquid level monitor
US5534708A (en) * 1993-12-15 1996-07-09 Simmonds Precision Products Inc. Optical fuel/air/water sensor and detector circuit
US6348521B1 (en) * 1996-10-29 2002-02-19 Degussa-Huels Aktiengesellschaft Stable and high solids aqueous dispersions of blocked polyisocyanates
US6448573B1 (en) * 1996-02-09 2002-09-10 Scully Signal Company Fluoropolymer fluid overfill probe with infrared optical signal
US6447573B1 (en) * 1997-03-19 2002-09-10 Trico Manufacturing Company Apparatus and method for lubricant condition control and monitoring
US7142306B2 (en) * 2001-01-23 2006-11-28 Schlumberger Technology Corporation Optical probes and probe systems for monitoring fluid flow in a well

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648521A (en) 1968-10-23 1972-03-14 Pasquale J Amendolia Light indicator

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883971A (en) * 1929-08-10 1932-10-25 Constant J Kryzanowsky Signaling device
US3068697A (en) * 1960-09-26 1962-12-18 Bendix Corp Level gages
US3338457A (en) * 1965-12-23 1967-08-29 Tygenhof Charles Automobile radiator cap
US3442127A (en) * 1966-08-29 1969-05-06 Edgar B Nichols Liquid level indicator
US3448616A (en) * 1967-06-29 1969-06-10 Sinclair Research Inc Liquid level detector
US3535934A (en) * 1969-02-10 1970-10-27 Illinois Tool Works Liquid level indicator
US3528291A (en) * 1969-04-25 1970-09-15 Illinois Tool Works Liquid level indicator
US3834235A (en) * 1971-12-17 1974-09-10 M Bouton Liquid and solid sensing device
US3796098A (en) * 1972-04-19 1974-03-12 F Trayer Liquid level gauge
US4132899A (en) * 1975-07-23 1979-01-02 Sharp Kabushiki Kaisha Liquid-level detector
US4242590A (en) * 1977-04-18 1980-12-30 Siemens Aktiengesellschaft Liquid level detector with hysteresis means
US4246489A (en) * 1979-04-16 1981-01-20 Tokyo Shibaura Electric Co., Ltd. Liquid level detector for detecting a liquid level when reaching a prescribed height
US4354180A (en) * 1980-12-19 1982-10-12 Genelco, Inc. Electro-optical liquid level sensor
US4809551A (en) * 1982-04-08 1989-03-07 S.T. Dupont Device for detecting the liquid level in a tank, particularly a lighter tank and tank provided with such device
US4713552A (en) * 1983-04-22 1987-12-15 Electricite De France (Service National) Optical probe
US4606226A (en) * 1984-07-19 1986-08-19 Eotec Corporation Liquid level sensor
US4764671A (en) * 1986-10-03 1988-08-16 Kollmorgen Corporation Fiber optic fluid sensor using coated sensor tip
US4840137A (en) * 1987-07-01 1989-06-20 Casco Products Corporation Liquid level gauging apparatus
US4962395A (en) * 1987-12-11 1990-10-09 Honeywell Control Systems Limited Liquid level sensor with wide temperature range capacity
US4961069A (en) * 1988-12-07 1990-10-02 Aeroquip Corporation Dual optical level monitor
US5029471A (en) * 1990-10-23 1991-07-09 Watkins Johnson Company Liquid level sensor assembly
US5279157A (en) * 1992-08-03 1994-01-18 Casco Products Corporation Liquid level monitor
US5278426A (en) * 1993-01-21 1994-01-11 Barbier William J Optical liquid level sensor for pressurized systems utilizing prismatic element
US5534708A (en) * 1993-12-15 1996-07-09 Simmonds Precision Products Inc. Optical fuel/air/water sensor and detector circuit
US6448573B1 (en) * 1996-02-09 2002-09-10 Scully Signal Company Fluoropolymer fluid overfill probe with infrared optical signal
US6555837B2 (en) * 1996-02-09 2003-04-29 Scully Signal Company Fluoropolymer fluid overfill probe
US6348521B1 (en) * 1996-10-29 2002-02-19 Degussa-Huels Aktiengesellschaft Stable and high solids aqueous dispersions of blocked polyisocyanates
US6447573B1 (en) * 1997-03-19 2002-09-10 Trico Manufacturing Company Apparatus and method for lubricant condition control and monitoring
US7142306B2 (en) * 2001-01-23 2006-11-28 Schlumberger Technology Corporation Optical probes and probe systems for monitoring fluid flow in a well

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8297937B2 (en) 2006-06-12 2012-10-30 Stak Enterprises, Inc. Pump control apparatus, system and method
US20080152958A1 (en) * 2006-12-22 2008-06-26 Mclean Gerard F State of charge indicator and methods related thereto
US20090007705A1 (en) * 2006-12-22 2009-01-08 Mclean Gerard F Sensing device and methods related thereto
US8166833B2 (en) 2006-12-22 2012-05-01 Socíété BIC State of charge indicator and methods related thereto
US8286464B2 (en) * 2006-12-22 2012-10-16 Societe Bic Sensing device and methods related thereto
US8656793B2 (en) 2006-12-22 2014-02-25 Societe Bic State of charge indicator and methods related thereto
WO2012099984A1 (en) * 2011-01-18 2012-07-26 Innerspace, Inc. Stylet that senses csf
US9645004B2 (en) 2014-11-19 2017-05-09 The Boeing Company Optical impedance modulation for fuel quantity measurement comprising a fiber encased by a tube having a longitudinal slot with a lens
JP2017067519A (en) * 2015-09-29 2017-04-06 東京エレクトロン株式会社 Sensor and vaporizer
US10175087B2 (en) 2017-02-09 2019-01-08 The Boeing Company Fuel level sensor having dual fluorescent plastic optical fibers
US10451469B2 (en) 2017-02-09 2019-10-22 The Boeing Company Fuel level sensor having dual fluorescent plastic optical fibers
US10352755B2 (en) 2017-04-17 2019-07-16 The Boeing Company Passive differential liquid level sensor using optical fibers
US10371559B2 (en) 2017-04-17 2019-08-06 The Boeing Company Differential spectral liquid level sensor
US10845231B2 (en) 2017-04-17 2020-11-24 The Boeing Company Differential spectral liquid level sensor
WO2020104167A1 (en) * 2018-11-21 2020-05-28 Endress+Hauser SE+Co. KG Measuring probe for determining or monitoring a physical or chemical process variable of a medium
US10935413B2 (en) 2019-04-10 2021-03-02 The Boeing Company Non-contact time-of-flight fuel level sensor using plastic optical fiber
US11781896B2 (en) * 2020-01-31 2023-10-10 Eaton Intelligent Power Limited Electro-optic sensor

Also Published As

Publication number Publication date
US7259383B2 (en) 2007-08-21

Similar Documents

Publication Publication Date Title
US7259383B2 (en) Optical transducer for detecting liquid level
WO2005106382A2 (en) Optical transducer for detecting liquid level and electronic circuit therefor
US7161165B2 (en) Optical transducer for continuously determining liquid level
US7199388B2 (en) Liquid level detecting device
US4440022A (en) Liquid-level detection
US7142299B2 (en) Turbidity sensor
US6333512B1 (en) Optical gauge for determining the level of a medium in a container
US6448573B1 (en) Fluoropolymer fluid overfill probe with infrared optical signal
US7247837B2 (en) Optical moisture sensor and method of making the same
US8901479B2 (en) Sensor assembly for fluid detection and discrimination
US9316524B2 (en) Visual indicator with sensor
US6664558B1 (en) Non-prismatic optical liquid level sensing assembly
CA2309101C (en) Liquid level gauge
EP0981730B1 (en) Liquid level sensor for use in a hot, pressurized liquid
EP2951542B1 (en) Optical liquid level detection sensor and liquid overfill prevention system comprising such sensor
JP2012093232A (en) Photosensor and level sensor
JP5904578B2 (en) Optical liquid leak detection apparatus and method
US20030019292A1 (en) Aircraft fuel level gauge
KR102409282B1 (en) Sensor device for detecting liquid level and manufacturing method thereof
RU220978U1 (en) Optical sensor for overfill prevention control for tank cars and semi-trailers
GB2107463A (en) Liquid level detection
JPH076729U (en) Liquid detector
JP2001194209A (en) Level gage
JPH10153472A (en) Liquid level detecting element
JP2005274453A (en) Container for liquid, and liquid detector

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20110821