US20050244929A1 - Expression of functional antibody fragments - Google Patents

Expression of functional antibody fragments Download PDF

Info

Publication number
US20050244929A1
US20050244929A1 US11/173,653 US17365305A US2005244929A1 US 20050244929 A1 US20050244929 A1 US 20050244929A1 US 17365305 A US17365305 A US 17365305A US 2005244929 A1 US2005244929 A1 US 2005244929A1
Authority
US
United States
Prior art keywords
fab
antibody
polypeptide
fragments
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/173,653
Inventor
Paul Carter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to US11/173,653 priority Critical patent/US20050244929A1/en
Publication of US20050244929A1 publication Critical patent/US20050244929A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/034Fusion polypeptide containing a localisation/targetting motif containing a motif for targeting to the periplasmic space of Gram negative bacteria as a soluble protein, i.e. signal sequence should be cleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/972Modified antibody, e.g. hybrid, bifunctional

Abstract

Methods for the high yield production of antibody Fv-containing polypeptides, especially Fab′ and F(ab′)2 antibody fragments are provided. Expression of heavy and light chain Fv in a microbial secretory system is followed by recovery of Fv from the periplasm under conditions that maintain a cysteine residue as a free thiol. The free thiol is reacted with free thiol of an antibody fragment of the same or differing specificity, or with agents such as diagnostic labels or therapeutic moieties. The products offer advantages of homogeneity and purity not available through the use of known methods for preparing such derivatives.

Description

    FIELD OF THE INVENTION
  • This invention relates to the production of functional antibody fragments in a microbial host.
  • BACKGROUND OF THE INVENTION
  • Naturally occurring antibodies (immunoglobulins) comprise two heavy chains linked together by disulfide bonds and two light chains, each light chain being linked to one of the heavy chains by disulfide bonds. Each chain has an N-terminal variable domain (VH or VL) and a constant domain at its C-terminus; the constant domain of the light chain is aligned with and disulfide bonded to the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain. The heavy chain constant region includes (in the N- to C-terminal direction) the C H1 and hinge regions. The light chain also contains a hinge domain. Particular amino acid residues are believed to form an interface between and disulfide bond the light and heavy chain variable domains, see e.g. Chothia et al., J. Mol. Biol. 186:651-663 (1985); Novotny and Haber, Proc. Natl. Acad. Sci. USA 82:4592-4596 (1985); Padlan et al., Mol. Immunol., 23(9): 951-960 (1986); and S. Miller, J. Mol. Biol., 216: 965-973 (1990).
  • The constant domains are not involved directly in binding the antibody to an antigen, but are involved in various effector functions, such as participation of the antibody in antibody-dependent cellular cytotoxicity and complement dependent cytotoxicity. The variable domains of each pair of light and heavy chains are involved directly in binding the antibody to the antigen. The domains of natural light and heavy chains have the same general structure, the so-called immunoglobulin fold, and each domain comprises four framework (FR) regions, whose sequences are somewhat conserved, connected by three hyper-variable or complementarity determining regions (CDRs) (see Kabat, E. A. et al., Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., (1987)). The four framework regions largely adopt a β-sheet conformation and the CDRs form loops connecting, and in some cases forming part of, the β-sheet structure. The CDRs in each chain are held in close proximity by the framework regions and, with the CDRs from the other chain, contribute to the formation of the antigen binding site.
  • Antibodies can be divided into a variety of antigen-binding fragments. The FV fragment is a heterodimer containing only the variable domains of the heavy chain and the light chain. The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab′ fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain C H1 domain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments which are between hinge cysteines.
  • Recombinant production of antibodies and antibody fragments facilitates the engineering of antibodies with enhanced antigen binding affinities, modified immunogenicity, and also of bifunctional antibodies. The first expression systems reported with which functional antibodies could obtained were for mammalian cells. The U.S. patent of Cabilly et al., U.S. Pat. No. 4,816,567, for example, teaches a method of co-expressing at least the variable region sequences of light and heavy chains in host cells. Other researchers in the field have reported baculovirus expression systems (Haseman et al, Proc. Natl. Acad. Sci. USA 87:3942-3946 (1990), yeast systems (Horwitz et al., Proc. Natl. Acad. Sci. USA, 85:8678-8682 (1988), combinatorial libraries in phage lambda (Huse et al., Science 246:1275-1281 (1989), and work with filamentous phage (McCafferty et al., Nature 348:552-554 (1990).
  • The production of antibodies and antibody fragments in bacterial systems have been pursued by workers in the field, particularly in E. coli expression systems. There are several advantages to E. coli expression systems, including a well-studied and convenient gene technology which permits constructs to be made easily and directly expressed, and the relatively convenient and economical large-scale production of product made possible by the fast growth of E. coli and its comparatively simple fermentation. The large-scale production of functional antibody fragments in E. coli would be valuable for research as well as commercial applications.
  • The expression of antibody genes in bacteria was reported by Cabilly et al., Proc. Natl. Acad. Sci. USA 81:3273-3277 (1984), Boss et al., Nucleic Acids Res. 12:3791-3806 (1984); these reports show cytoplasmic expression and rather variable yields were reported. Zemel-Dreasen et al., Gene 315-322 (1984) report the secretion and processing of an immunoglobulin light chain in E. coli. Plückthun et al., Cold Spring Harbor Symposia on Quantitative Biology, Volume LII, pages 105-112 (1987, Cold Spring Harbor Laboratory) disclose expression of a cytoplasmic hybrid protein, a potentially exportable hybrid protein, and expression and periplasmic transport of VL, VH, VLCL, and VHCH chains as fusions with an alkaline phosphatase or β-lactamase signal sequences. Skerra and Plückthun, Science 240:1038-1041 (1988) report the periplasmic secretion and correct folding in vivo of the variable domains of an antibody to the E. coli periplasm; a similar strategy and results were reported by Better et al., Science 240:1041-1043 (1988) for expression of a murine Fab fragment.
  • Bird et al., Nature 332:323-327 (1988) report the linkage of the light and heavy chain fragment of the Fv region via an amino acid sequence, and production of the complex as a single polypeptide in E. coli; see also Ladner et al., U.S. Pat. No. 4,946,778. Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988) report similar work. Ward et al., Nature 341:544-546 (1989) report the production in and secretion of “single-domain” antibodies (isolated heavy chain variable domains) from E. coli. Condra et al., Journal of Biological Chemistry, 265(4):2292-2295 (1990) disclose the expression of cDNAs encoding antibody light and heavy chains in E. coli and their renaturation into Fab fragments. Better and Horwitz, Methods in Enzymology, 178:476-496 (1989), describe the expression, and secretion of functional Fab fragments from E. coli and Saccharomyces cerevisiae.
  • Plückthun and Skerra describe techniques for the expression of functional antibody Fv and Fab fragments in E. coli in Methods In Enzymology 178:497-515 (1989). According to their strategy, in the cytoplasm, the precursor proteins for VL and VH, each fused to a bacterial signal sequence, are synthesized in reduced form. After translocation through the inner membrane into the periplasm, the signal sequences are cleaved, the domains fold and assemble, and the disulfide bonds form. They teach that expression of the Fab fragment according to their strategy is analogous. Similar expression strategies are found elsewhere in the literature. See also Plückthun, Biotechnology, 9:545-551 (1991) for a review of E. coli expression of antibody fragments.
  • Cabilly (Gene, 85:553-557 [1989]) teaches that, in E. coli cells growing at reduced temperatures (21° C. or 30° C., rather than at 37° C.), a single expression plasmid coding for kappa-chains and truncated heavy chains (Fd fragments) gives rise to high yields of functional Fab fragments. Cabilly discusses that the Fab fragments seem to exist in the E. coli cytoplasm as non-covalently linked dimers, but that soluble Fab fragments isolated from E. coli appear as covalent dimers, formed by air oxidation following cell rupture.
  • It is known in the literature that in the presence of low concentrations of a mild reductant such as cysteamine the bivalent F(ab′)2 antibody fragment dissociates into two Fab′ fragments. This dissociation is reversible by mild oxidation. The production of Fab and F(ab′)2 antibody fragments has also been shown by partial reduction and limited proteolysis of intact antibodies, see e.g. Parham, in Cellular Immunology (E. M. Weir, Ed., Blackwell Scientific, CA) 4th edition, vol. 1 chapter 14 (1983), however with these methods it is difficult to control the precise nature and proportions of the antibody fragment recovered. Bivalent antibodies are those which contain at least two epitopic combining sites (which sites may be on the same or different antigens).
  • Bispecific antibodies are bivalent antibodies capable of binding two epitopes not shared by a single antigen. Bispecific monoclonal antibodies (BsMAbs) with dual specificities for tumor-associated antigens on tumor cells and for surface markers in immune effector cells have been described (see, e.g. Liu et al., Proc. Natl. Acad. Sci. USA 82:8648 (1985); Perez et al., Nature 316:354 (1985)). These BsMAbs have been shown to be effective in directing and triggering effector cells to kill tumor cell targets (Fanger et al., Immunol. Today 12:51 (1991)). One approach to the production of BsMabs involves the fusion of two monoclonal antibody-producing hybridomas to form quadromas (hybrid hybridomas) which secrete BsMab in addition to undesirable chain combinations including parental MAbs (Milstein, C. and Cuello, A. C., Nature, 305:537 [1983]) However, for production of bispecific humanized antibodies and antibody fragments, other techniques would be preferred.
  • Nisonoff and Mandy (Nature 4826:355-359 (1962)) describe the digestion of rabbit antibodies and subsequent recombination of the antibody fragments; they disclose that antibody molecules of dual specificity can be obtained by combining univalent fragments of pepsin-treated antibodies of different specificities. See also Hammerling et al., Journal of Experimental Medicine 128:1461-1469 (1968); Parham, Human Immunology 12:213-331 (1985); Raso and Griffin, Cancer Research 41:2073-2076 (1981); and Paulus (U.S. Pat. No. 4,444,878).
  • Another approach utilizes directed chemical coupling of bispecific Fab′ fragments from two different MAbs to assemble a BsMAb, in this case a F(ab′)2, with the desired specificities (See e.g., Nolan et al., Biochimica et Biophysica Acta 1040:1 (1990). See also R. A. Maurer's Ph.D. Thesis, Harvard University (1978), and Brennan et al., Science 229:81-83 (1985) for chemistries for the directed coupling of dithionitrobenzoate derivatives of Fab′ fragments. Brennan et al. also teach the use of use sodium arsenite to cross-link two proximate cysteines, however this reaction involves highly toxic compounds. (Glennie et al., J. Biol. Chem., 141(10): 3662-3670 [1985] and J. Immunol., 139:2367-2375 [1975]) teach the preparation of bispecific F(ab′)2 antibody fragments containing thioether linkages. These chemistries would also be applicable for the coupling of identical Fab′ fragments.
  • Lyons et al., Protein Engineering 3(8)703-708 (1990) teach the introduction of a cysteine into an antibody (there the C H1 domain of a heavy chain) and the site-specific attachment of effector or reporter molecules through the introduced cysteine.
  • Despite the advances in E. coli expression of functional antibody fragments shown in the literature, there remains a need for efficient and economical techniques for the production of bivalent antibodies, particularly F(ab′)2 molecules, and for methods which permit the tailoring of bivalent and bispecific F(ab′)2 molecules. It would be desirable to produce stable Fab′-SH polypeptides which may be conveniently coupled in vitro to form bivalent Fv or F(ab′)2 molecules.
  • It is therefore an object of this invention to provide methods for the preparation of polypeptides comprising Fv domains, particularly Fab′, Fab′-SH and F(ab′)2 antibody fragments, in or derived from bacterial cell culture in high yield.
  • It is a further object of this invention to provide methods for the efficient preparation of homogenous bivalent and bispecific F(ab′)2 antibody fragments.
  • It is another object of this invention to provide Fab′ antibody fragments having at least one hinge region cysteine present as a free thiol (Fab′-SH). It is a related object to obviate the inherent problems in generating Fab′-SH from intact antibodies: differences in susceptibility to proteolysis and non-specific cleavage, low yield, as well as partial reduction which is not completely selective for the hinge disulfide bond(s). It is another object of the present invention to prevent intra-hinge disulfide bond formation without resorting to the use of highly toxic arsenite to chelate vicinal thiols, or other inefficient and undesirable methods.
  • Other objects, features, and characteristics of the present invention will become apparent upon consideration of the following description and the appended claims.
  • SUMMARY OF THE INVENTION
  • The principal embodiments of this invention are based on the surprising identification of cysteinyl free thiol in cysteinyl residues located outside of the light-heavy chain interface of recombinant microbial periplasmic antibody fragments, and the surprising discovery that Fv variants can be produced which contain only a single cysteinyl residue in the free thiol form. This facilitates the preparation of homogeneous recombinant F(ab′)2 and other Fv-containing bivalent polypeptides. Accordingly, in one embodiment this invention comprises expressing and secreting into the periplasm of a recombinant microbial cell culture a Fv polypeptide containing an immunoglobulin heavy chain Fv region and an immunoglobulin light chain Fv region, said light or heavy chain also comprising an unpaired cysteinyl residue as a free thiol, and recovering said polypeptide under conditions that substantially maintain said cysteinyl residue as the free thiol.
  • It will be understood that either of the Fv light or heavy chains optionally is fused to a polypeptide sequence which contains one or more cysteinyl residues, provided that at least one of such cysteinyl residues located in the domain C-terminal to either of the light or heavy chain Fv is present as the free thiol in the periplasm. Suitable polypeptide sequences include but are not limited to sequences derived from immunoglobulins, carrier proteins, receptors, growth factors, nutrient substances, cellular adhesive molecules, tissue-specific adhesion factors, enzymes, toxins and the like. Typically, an unpaired cysteinyl residue is substituted at the C-terminus of either the light or the heavy chain Fv domain or at the C-terminus of the light chain or heavy chain CH1 domain. The fused polypeptide sequence may comprise only the cysteinyl residue, or the cysteinyl residue can be present in a polypeptide fused to the C-terminus of (1) one of the Fv domains, (2) the light chain constant region or (3) the CH1 domain of a heavy chain. In the latter instance, the Fv-CH1 domain is fused to a hinge region bearing a single free thiol cysteinyl residue, and preferably a hinge region amino acid sequence variant containing only a single cysteinyl residue. However, any other sequence containing a single free thiol cysteinyl residue is useful in place of the immunoglobulin hinge region.
  • In other embodiments, the Fv-CH1 domain is fused to a hinge region bearing more than one, typically two or three, free thiol residues, preferably a hinge region amino acid sequence variant containing two or more cysteinyl residues. For example, Fab′-SH amino acid sequence variants which have been modified to contain three cysteinyl residues may be produced recombinantly in a suitable host cell, for example CHO cells or E. coli, and are conveniently coupled in vivo by the host cell to form F(ab′)2 with three disulfide bonds connecting the heavy chains.
  • More particularly, the objects of this invention are accomplished by a method for the production of a Fab′ antibody polypeptide having at least one hinge region cysteine present as a free thiol (Fab′-SH), comprising the steps of:
      • a. expressing nucleic acid encoding an immunoglobulin presequence comprising Fab′ in a microbial host cell culture transformed with a vector comprising said nucleic acid operably linked to control sequences recognized by the host cell transformed with the vector, under conditions suitable for the secretion of Fab′ to the periplasmic space of the host cell and formation of Fab′-SH; and
      • b. recovering Fab′-(SH)n from said host cell, where n is greater than or equal to one.
  • Additional embodiments of the method of this invention comprise the subsequent recovery (including purification) of the Fab′-SH under conditions suitable for maintaining the hinge cysteinyl thiol(s) in protonated form. In certain embodiments, a metal ion chelating agent and/or a protease inhibitor is present during the culturing of the transformed cell or in the recovery of the Fab′-SH.
  • Optionally, the Fab′-SH is released from the host by freeze-thawing the host cell, subjecting it to osmotic shock, preparing a cell paste and purifying the Fab′-SH from the cell paste. Optionally, release of Fab′-SH from the host cell is facilitated by enzymatic digestion of the cell e.g., using lysozyme or physical disruption, e.g., by sonication or by use of a French press.
  • The Fv or polypeptide fused to the Fv (typically the hinge sequence) is modified in certain embodiments so that only one cysteinyl residue is present which, in the periplasm, exhibits free thiol. Thus, for example, the Fab amino acid sequence is modified by deleting or substituting all of the hinge sequence cysteinyl residues C-terminal to the first cysteine. Similarly, to obtain embodiments where, for example, three cysteinyl residues are to be present as the free thiol form, all of the hinge sequence cysteinyl residues C-terminal to the third cysteine are modified by deletion or substitution.
  • This invention also provides Fv, Fab′, Fab′-SH and F(ab′)2 polypeptides which do not have a disulfide bond between the light and heavy chains. These polypeptides are referred to herein as “linkless”. For example, the amino acid sequence of the polypeptide is modified by substituting or deleting one or, preferably, both of the two cysteines which form the inter-chain (heavy-light) disulfide bond. Typically, these cysteines are replaced with serines, although it is within the scope hereof to covalently modify one or both of the cysteine side chain so as to be incapable of forming a disulfide bond. In certain embodiments, there is a very strong interaction between the light and heavy chains such that eliminating the interchain disulfide does not result undesirable levels of dissociation between the light and heavy chains. The linkless Fab′-SH polypeptides advantageously allow homogeneous F(ab′)2 to be prepared by chemical coupling.
  • In another aspect, a method for the preparation of a polypeptide comprising F(ab′)2 comprises the steps of:
      • a. expressing nucleic acid encoding an immunoglobulin presequence comprising a first Fab′ in a microbial host cell culture transformed with a vector comprising the nucleic acid operably linked to control sequences recognized by the host cell transformed with the vector, under conditions suitable for the secretion of said first Fab′ to the periplasmic space of the host cell and formation of Fab′-SH, said first Fab′ being capable of binding a first epitope;
      • b. expressing nucleic acid encoding an immunoglobulin presequence comprising a second Fab′ in a microbial host cell culture transformed with a vector comprising the nucleic acid operably linked to control sequences recognized by the host cell transformed with the vector, under conditions suitable for the secretion of said second Fab′ to the periplasmic space of the host cell and formation of Fab′-SH, said second Fab′ being capable of binding a second epitope;
      • c. recovering said first and second Fab′-SH from said host cells; and
      • d. forming covalent bonds between the free thiol cysteinyl residues of said first and second Fab′-SH to form bivalent F(ab′)2.
  • In embodiments of the invention, efficient directed disulfide bond formation occurs in vitro, utilizing directed covalent coupling methods known in the art whereby bispecific bivalent antibodies are produced. In particularly preferred embodiments, the disulfide bond formation between the first and second Fab′-SH comprises the following steps:
      • a. reacting the first Fab′-SH with (i) 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) to form a thionitrobenzoate derivative Fab′-TNB or (ii) a bifunctional maleimide;
      • b. directly coupling said first Fab′-TNB or maleimidated Fab′ to the second Fab′-SH to form a F(ab′)2; and
      • c. recovering said F(ab′)2.
  • Novel F(ab′)2 compositions are provided by the methods of this invention. Such compositions are
      • a. essentially free of F(ab′)2 Fv regions containing cysteinyl residues with derivatized sulfhydryl groups, except for any native disulfide bond found in the native Fv regions,
      • b. entirely free of F(ab′)2 having hinge region intrachain disulfide bonds,
      • c. entirely free of contaminating arsenite, and
      • d. entirely homogenous as to the heavy chain C-terminal amino acid residue.
  • In another embodiment, high level expression of immunoglobulins or fragments thereof in recombinant microbes is achieved by a method comprising culturing a host cell transformed with nucleic acid encoding an immunoglobulin polypeptide under the transcriptional control of an inducible promoter/operator system whereby expression of the polypeptide is repressed prior to induction sufficient to permit post-induction polypeptide levels in the cell culture of greater than about 1 gram of polypeptide per liter of cell culture. Typically, this is accomplished by using a powerful promoter such as phoA in a low copy number vector or in a host engineered to express levels of repressor sufficient to fully occupy all phoA operator sites and fully repress the operon.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the plasmid pA19 as used for the co-secretion of huMAb4D5-8 κ light chain and heavy chain Fd′ fragment from E. coli. The Fab′ expression unit is dicistronic with both chains under the transcriptional control of the PhoA promoter (C. N. Chang et al., Gene 44: 121 (1986)) which is inducible by phosphate starvation. The humanized variable domains (huVL and huvH, P. Carter et al., Proc. Natl. Acad. Sci. U.S.A., 89(10):4285-9 (1992)) are precisely fused on their 5′ ends to a gene segment encoding the heat stable enterotoxin II (stII) signal sequence (R. N. Picken et al., Infect. Immun. 42: 269 (1983)) and on their 3′ side to human κ1 (CL, W. Palm and N. Hilschmann, Z. Physiol. Chem. 356: 167 (1975)) and IgG1 (C H1, J. W. Ellison et al., Nucleic Acids Res. 10: 4071 (1982)) constant domains respectively. The coding regions are separated by 83 base pairs and each is preceded by a ribosomal binding site (Picken et al., supra) to enable efficient initiation of translation. The Fab′ expression unit was cloned into the Eco RI site of pBR322 (F. Bolivar et al., Gene 2: 95 (1977)) previously modified by removal of the Sal I and Sph I sites without changing the amino acid sequence of the tetracycline resistance gene product. Construction of different Fab′ variants was facilitated by installing unique Sal I and Sph I sites towards the end of the C H1 gene and immediately preceding the bacteriophage λ t0 transcriptional terminator (S. Scholtissek, et al., Nucleic Acids Res. 15: 3185 (1987)).
  • FIG. 2 shows the purification of the Fab, Fab′ and F(ab′)2 (Cys Ala Ala variant) fragments of huMAb4D5-8. Proteins were analyzed by SDS-PAGE on a 4 to 20% gel under non-reducing conditions with Coomassie brilliant blue (R250). Samples shown are protein molecular weight markers (lane 1), Fab (lane 2); Fab′-SH before (lane 3) and after (lane 4) a mock coupling reaction; Fab′-TNB before (lane 5) and after (lane 6) a mock coupling reaction; Fab′-SH coupled with Fab′-TNB (lane 7), F(ab′)2 purified by gel filtration (lane 8) and F(ab′)2 derived from limited pepsin digestion (E. Lamoyi, et al., Methods Enzymol. 121: 652 (1986)) of full length huMAb4D5-8 expressed in mammalian cells (P. Carter et al., Proc. Natl. Acad. Sci. U.S.A. (1992) supra (lane 9). Antibody fragments (2 μg per sample) were reacted with 4 mM iodoacetamide prior to electrophoresis. The huMAb4D5-8 Fab fragment was purified from fermentation supernatants by centrifugation to remove cell debris, DEAE sepharose ion exchange chromatography and then affinity purified using protein A CL 4B or protein G sepharose. HuMAb4D5-8 Fab′-SH was purified by thawing 15 g cell paste in the presence of 21 ml of 100 mM sodium acetate (pH 3.5), 10 mM EDTA, 0.2 mM PMSF, 5 μM pepstatin, 5 μM leupeptin, 2.4 mM benzamidine. Cell debris was removed by centrifugation (40,000 g, 10 min, 4° C.). The resultant supernatant (pH 5.0) was passed over DEAE sepharose and loaded on to a 2 ml protein G sepharose column. Protein eluted with 100 mM sodium acetate (pH 3.5), 10 mM EDTA was adjusted to pH 4.0 in the presence of 1.5M (NH4)2SO4 and loaded on to 2 ml phenyl Toyopearl column. Fab′-SH was eluted with 20 mM sodium acetate (pH 4.0), 0.8 M (NH4)2SO4, 10 mM EDTA, reduced in volume by ultrafiltration (Centriprep-10, Amicon) and buffer exchanged into 10 mM sodium acetate (pH 5.0), 10 mM EDTA by G25 gel filtration. The Fab thionitrobenzoate derivative was prepared in a similar manner except that the DEAE flow through was adjusted to 5 mM DTNB and pH 7.5. The total concentration of huMAb4D5-8 Fab and Fab′ variants was determined from the measured absorbance at 280 nm and the extinction coefficient determined by amino acid composition analysis (ε0.1%=1.56). The free thiol content of huMAb4D5-8 Fab′-SH was determined by analysis with DTNB as described (T. E. Creighton, Protein Structure, a Practical Approach (IRL Press, Oxford, UK, 1990), p. 157), whereas the TNB content of huMAb4D5-8 Fab′-TNB was determined by the yield upon reduction with dithiothreitol. Equimolar quantities of huMAb4D5-8 Fab′-TNB (by TNB content) and Fab′-SH (by -SH content) were coupled at a combined concentration of ≧1.4 mg/ml in the presence of 100 mM tris-HCl (pH 7.5) and 10 mM EDTA for 1 hour at 37° C. HuMAb4D5-8 F(ab′)2 was isolated from the coupling reaction by S100-HR gel filtration (Pharmacia) in the presence of phosphate-buffered saline. The F(ab′)2 samples were passed through a sterile 0.2 μm filter and stored either at 4° C. or flash frozen in liquid nitrogen and stored at −70° C.
  • DETAILED DESCRIPTION OF THE INVENTION Definitions
  • In general, the following words or phrases have the indicated definitions when used in the description, examples, and claims:
  • The term Fv is defined to be a covalently or noncovalently-associated heavy and light chain heterodimer which does not contain constant domains.
  • The term Fab′ is defined herein as a polypeptide comprising a heterodimer of the variable domain and the first constant domain of an antibody heavy chain, plus the variable domain and constant domain of an antibody light chain, plus at least one additional amino acid residue at the carboxy terminus of the heavy chain C H1 domain including one or more cysteine residues. F(ab′)2 antibody fragments are pairs of Fab′ antibody fragments which are linked by a covalent bond(s).
  • The Fab′ heavy chain may include a hinge region. This may be any desired hinge amino acid sequence. Alternatively the hinge may be entirely omitted in favor of one or more cysteine residues or, preferably a short (about 1-10 residues) cysteine-containing polypeptide. In certain applications, a common naturally occurring antibody hinge sequence (cysteine followed by two prolines and then another cysteine) is used; this sequence is found in the hinge of human IgG1 molecules (E. A. Kabat, et al., Sequences of Proteins of Immunological Interest 3rd edition (National Institutes of Health, Bethesda, Md., 1987)). In other embodiments, the hinge region is selected from another desired antibody class or isotype. In certain preferred embodiments of this invention, the C-terminus of the C H1 of Fab′ is fused to the sequence Cys X X. X preferably is Ala, although it may be any other residue such as Arg, Asp, or Pro. One or both X amino acid residues may be deleted.
  • The “hinge region” is the amino acid sequence located between C H1 and C H2 in native immunoglobulins or any sequence variant thereof. In the case of the humanized 4D5 antibody described infra, the hinge region is located between residues 224 (asp in . . . Cys Asp Lys . . . ) and 233 (Pro in . . . Cys Pro Ala). Analogous regions of other immunoglobulins will be employed, although it will be understood that the size and sequence of the hinge region may vary widely. For example, the hinge region of a human IgG1 is only about 10 residues, whereas that of human IgG3 is about 60 residues.
  • The term Fv-SH or Fab′-SH is defined herein as a Fv or Fab′ polypeptide having at least one cysteinyl free thiol. Preferably the free thiol is in the hinge region, with the light and heavy chain cysteine residues that ordinarily participate in inter-chain bonding being present in their native form. In the most preferred embodiments of this invention, the Fab′-SH polypeptide composition is free of heterogenous proteolytic degradation fragments. In certain embodiments, the Fab′-SH polypeptide is also substantially (greater than about 90 mole percent) free of Fab′ fragments wherein heavy and light chains have been reduced or otherwise derivatized so as not to be present in their native state, e.g. by the formation of aberrant disulfides or sulfhydryl addition products. In alternative embodiments, the Fab′-SH has heavy and light chains which are not covalently coupled.
  • A humanized antibody for the purposes herein is an immunoglobulin amino acid sequence variant or fragment thereof which is capable of binding to a predetermined antigen and which comprises a FR region having substantially the amino acid sequence of a human immunoglobulin and a CDR having substantially the amino acid sequence of a non-human immunoglobulin or a sequence engineered to bind to a preselected antigen.
  • The term “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, and transcriptional terminators. Particularly preferred are highly regulated inducible promoters that suppress Fab′ polypeptide synthesis at levels below growth-inhibitory amounts while the cell culture is growing and maturing, for example, during the log phase.
  • Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in same reading frame. However enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, then synthetic oligonucleotide adaptors or linkers are used in accord with conventional practice.
  • An “exogenous” element is defined herein to mean a nucleic acid sequence that is foreign to the cell, or homologous to the cell but in a position within the host cell nucleic acid in which the element is ordinarily not found.
  • As used herein, the expressions “cell” and “cell culture” are used interchangeably and all such designations include progeny. Thus, the words “transformants” and “transformed cells” include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Different designations are will be clear from the contextually clear.
  • “Plasmids” are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are commercially available, are publicly available on an unrestricted basis, or can be constructed from such available plasmids in accord with published procedures. In addition, other equivalent plasmids are known in the art and will be apparent to the ordinary artisan.
  • “Recovery” or “isolation” of a given fragment of DNA from a restriction digest means separation of the digest on polyacrylamide or agarose gel by electrophoresis, identification of the fragment of interest by comparison of its mobility versus that of marker DNA fragments of known molecular weight, removal of the gel section containing the desired fragment, and separation of the gel from DNA. This procedure is known generally. For example, see Lawn et al., Nucleic Acids Res., 9: 6103-6114 (1981), and Goeddel et al., Nucleic Acids Res. 8:4057 (1980).
  • “Preparation” of DNA from cells means isolating the plasmid DNA from a culture of the host cells. Commonly used methods for DNA preparation are the large and small scale plasmid preparations described in sections 1.25-1.33 of Sambrook et al., (Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory Press, 1989). DNA preparations are purified by methods well known in the art (see section 1.40 of Sambrook et al., supra).
  • Suitable Methods for Practicing the Invention
  • Typically a cultured microbial host cell is transformed with a vector comprising Fab′-encoding nucleic acid (i.e., nucleic acid encoding heavy chain Fd fragment and light chain) operably linked to control sequences recognized by the host cell transformed with the vector (hereafter, “Fab” will be referred to as a specific embodiment, but it will be understood that any Fv-containing antibody fragments or fusion/sequence derivative thereof can be used provided that a cysteine residue capable of forming a periplasmic free thiol is present in the Fv region or sequence fused thereto). The cells are cultured under conditions suitable for the secretion of Fab′ into the periplasmic space of the host cell and formation of the free thiol. In general, a dicistronic operon is used to direct the co-expression of corresponding light and heavy chain fragments. Alternatively, separate chains are expressed from separate promoters on the same or different plasmids. Secondly, the Fab chains are preceded by signal sequences to direct secretion into the periplasmic space, where it is believed that the redox environment favors disulfide bond formation for assembly of the light and heavy chain fragments but not disulfide bond formation between hinge cysteine residues. In particularly preferred embodiments, the expression control sequence is the E. coli phoA promoter (C. N. Chang et al., Gene 44: 121 (1986)) inducible by phosphate starvation and the signal sequence is the heat-stable enterotoxin II signal sequence (R. N. Picken et al, Infect. Immun. 42: 269 (1983)).
  • It is currently preferred that the antibody fragments be expressed in bacterial cells grown at high cell density in a fermentor. Suitable fermentation conditions are described in the Example below.
  • The polypeptides containing free thiol are recovered from the fermentation media and/or recovered from freeze-thawed cells (typically by osmotic shock) and subsequently purified. Recovery (including purification) is most successful if the Fab′-SH is maintained in the protonated form. Other conditions for maintaining the protonated form include the use of organic solvents or other agents for shifting the pKa of dissociation of -SH. This is conveniently accomplished at acid pH, i.e., preferably 2 or more pH units below the pKa of the hinge or unpaired cysteinyl thiol. Alternatively, the Fab′-SH is reacted with a protective group such as TNB or p-methoxybenzyl in order to maintain the Fab′ in a homogenous state suitable for further reaction. In yet another alternative, pyridine disulfide is added to the Fab′-SH to form a mixed disulfide; this stabilizes the free sulfhydryl until it is deprotected for coupling or other processing. In still another alternative embodiment, the free sulfhydryl is not protected but is reduced prior to coupling or further processing. Suitable protecting groups, known in the art, are described in E. Gross & J. Meiemhofer, The Peptides: Analysis, Structure, Biology Vol 3: Protection of Functional Groups in Peptide Synthesis (Academic Press, New York, 1981).
  • Affinity purification, such as on streptococcal protein G sepharose or staphylococcal protein A at acidic pH (typically, about pH 4 to pH 6, preferably about pH 5.0) is preferred. Alternatively, two-phase liquid extraction may be used. Small amounts of contaminating proteolytic fragments are readily removed by hydrophobic interaction chromatography, using, for example, silica gel and/or alkyl or aryl-substituted chromatography resins such as phenyl Toyopearl. It is preferred that a cocktail of protease inhibitors be used (such as phenylmethylsulfonyl fluoride (PMSF), leupeptin, pepstatin and/or benzamidine) to inactivate or inhibit host proteases, and to include a metal ion chelating agent such as EDTA in the culture and recovery procedures. The chelating agent is selected and included in an amount to prevent metal ion catalysis of disulfide bond formation.
  • In certain embodiments, Fab′-(SH)n (where n is equal to or greater than one) form F(ab′)2 in vivo during recombinant production. In these embodiments, the Fab′-(SH) amino acid sequence has been modified to contain preferably more than one cysteinyl residue. For example, F(ab′)2 having three disulfide bonds between heavy chains are recovered directly from an E. coli cell paste, following the culture in E. coli of Fab′-SH3.
  • In other embodiments, F(ab′)2 is prepared from purified Fab′-(SH)n (where n is equal to or greater than one) by in vitro chemical coupling using cross-linking agents or adventitious oxidants such as dissolved oxygen. In the latter instance, purified Fab′ will form F(ab′)2 due simply to air oxidation. In addition, bispecific F(ab′)2 is produced by the use of Fab′-SH derivatives which direct the coupling of discrete Fab′ and prevent the formation of bivalent monospecific F(ab′)2. One suitable chemistry for mono- or bi-specific F(ab′)2 is that of Brennan et al., supra. A Fab′-TNB derivative is prepared in a similar manner to Fab′-SH, except that Fab′-SH released from freeze-thawed cells by osmotic shock is adjusted to about pH 7.5 in the presence of excess DTNB. Equimolar quantities of Fab′-SH and Fab′-TNB are coupled together efficiently to form the F(ab′)2 fragment by a disulfide exchange reaction in the presence of EDTA.
  • The linkless Fv, Fab′, Fab′-SH and F(ab′)2 polypeptides of this invention do not have a disulfide bond between the light and heavy chains. Typically, the polypeptide is modified as the result of direct expression of a modified polypeptide, or by chemical or enzymatic means. Typical amino acid sequence modifications of the polypeptide involve substituting or deleting one or, preferably, both of the two cysteines which form the inter-chain (heavy-light) disulfide bond. Typically, these cysteines are replaced with serines, although it is within the scope hereof to covalently modify one or both of the cysteine side chain so as to be incapable of forming a disulfide bond.
  • One or both of the cysteines may be modified with fatty acids or other chemical groups and rendered incapable of forming a disulfide bond by a variety of known methods, including but not limited to the following methods: (1) covalent modification using dehydrating or activating agents such as N,N′-dicyclohexylcarbodiimide (DCC) or ethyoxy-ethoxycarbonyl-dihydroquinoline (EEDQ); (2) acylation, using ketenes, anhydrides, isothiocyanates, or beta-lactones; (3) carbamoylation using cyanates; (4) hemimercaptal or hemimercaptol formation using aldehydes and some keto acids; (5) alkylation and arylation, by addition to activated double bonds (using N-ethylmaleimide), by reactions with quinones, by reaction with haloacids and their amides (using iodoacetic acid, or alpha-bromo-hexadecanoic acid), by methylation reactions (such as with dimethylsulfate), by sulfoalkylation, by arylation (with nitrobenzene compounds), or by reaction with diazo compounds; (6) reaction with metal ions such as silver and organic mercury compounds such as mercuric chloride; (7) reaction with arsenic compounds; (8) reaction with sulfites; (9) oxidation reactions; and (10) reaction with sulfenyl halides to form mixed disulfides.
  • The polypeptide may be modified within a host cell, or as a post-translational modification to the recombinantly produced polypeptide. It is currently preferred that any post-translational modifications take place within 24, and preferably within a few hours of recovery from a host cell or microorganism.
  • Methods for detecting the presence of modifications to the cysteines of the polypeptides of this invention lung surfactant protein are commonly known, such as through the analysis of the mass spectra of a sample of the polypeptide. Alternatively, thin layer chromatography (TLC) is performed on a sample. While this approach to peptide analysis is common in the field, see e.g. Stuart and Young, Solid Phase Peptide Synthesis, pp 103-107, and 118-122, (Pierce Chem. Co., 2d. ed., 1984).
  • In certain embodiments, there is a very strong interaction between the light and heavy chains such that eliminating the interchain disulfide does not result undesirable levels of dissociation between the light and heavy chains. The linkless Fab′-SH polypeptides advantageously allow homogeneous F(ab′)2 to be prepared by chemical coupling.
  • The Fab sequences of this invention are obtained from conventional sources of antibodies. Polyclonal antibodies to an antigen generally are raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the antigen and an adjuvant. It may be useful to conjugate the antigen or a fragment containing the target antigen amino acid sequence to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl2, or R1N═C═NR, where R and R1 are different alkyl groups.
  • The route and schedule of immunization of the animal or cultured antibody-producing cells therefrom are generally in keeping with established and conventional techniques for antibody stimulation and production. While mice are frequently employed as the test model, it is contemplated that any mammalian subject or antibody-producing cells obtained therefrom can be employed.
  • After immunization, monoclonal antibodies are prepared by recovering immune lymphoid cells—typically spleen cells or lymphocytes from lymph node tissue—from immunized animals and immortalizing the cells in conventional fashion, e.g. by fusion with myeloma cells or by Epstein-Barr (EB)-virus transformation and screening for clones expressing the desired antibody. The hybridoma technique described originally by Köhler, G. and Milstein, C., Nature 256: 52-53 (1975) has been widely applied to produce hybrid cell lines that secrete high levels of monoclonal antibodies against many specific antigens. Hybridomas secreting the desired antibody are identified by conventional methods. Routine methods are then employed to obtain DNA from hybridomas that encode the heavy and light chains of the selected antibody. Alternatively, one extracts antibody-specific messenger RNAs from B-cells of an immunized animal, reverse transcribes these into complementary DNA (cDNA), and amplifies the cDNA by PCR or by cloning it in a bacterial expression system. Another technique suitable for obtaining source heavy and light chain sequences uses a bacteriophage lambda vector system (which contains a leader sequence that secretes the expressed Fab protein into the periplasmic space) together with the generation and screening of great numbers of functional antibody fragments for those which demonstrate the desired activity. This system is commercially available.
  • Amino Acid Sequence Variants
  • This invention also encompasses amino acid sequence variants of the native Fab polypeptide sequences. These variants are prepared by introducing appropriate nucleotide changes into the DNA encoding the Fab or by in vitro synthesis of the desired Fab. Such variants include, for example, humanized variants of non-human antibodies, as well as deletions from, or insertions or substitutions of, residues within particular amino acid sequences. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processing of the target polypeptide, such as changing the number or position of glycosylation sites, introducing a membrane anchoring sequence into the constant domain or modifying the leader sequence of the native Fab.
  • In designing amino acid sequence variants of target polypeptides, the location of the mutation site and the nature of the mutation will depend on the target polypeptide characteristic(s) to be modified. The sites for mutation can be modified individually or in series, e.g., by (1) substituting first with conservative amino acid choices and then with more radical selections depending upon the results achieved, (2) deleting the target residue, or (3) inserting residues of the same or a different class adjacent to the located site, or combinations of options 1-3.
  • A useful method for identification of certain residues or regions of the target polypeptide that are preferred locations for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells (Science, 244: 1081-1085 [1989]), and Duncan, A. R. and Winter, G. (Nature, 322: 738-740 [1988]). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the surrounding aqueous environment in or outside the cell. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to optimize the performance of a mutation at a given site, Ala scanning or random mutagenesis may be conducted at the target codon or region and the expressed target polypeptide variants are screened for the optimal combination of desired activity.
  • There are two principal variables in the construction of amino acid sequence variants: the location of the mutation site and the nature of the mutation. In general, the location and nature of the mutation chosen will depend upon the target polypeptide characteristic to be modified.
  • Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions (i.e., insertions within the target polypeptide sequence) may range generally from about 1 to 10 residues, more preferably 1 to 5, most preferably 1 to 3. Examples of terminal insertions include fusion of a heterologous N-terminal signal sequence to the N-terminus of the Fv polypeptide to facilitate the secretion of the mature Fv polypeptide from recombinant host cells. Such signal sequences generally will be obtained from, and thus homologous to, the intended host cell species. Suitable sequences for E. coli include STII or Ipp.
  • Other insertional variants of the target polypeptide include the fusion to the N- or C-terminus of the target polypeptide of immunogenic polypeptides, e.g., bacterial polypeptides such as beta-lactamase or an enzyme encoded by the E. coli trp locus, or yeast protein, and C-terminal fusions with proteins having a long half-life such as immunoglobulin constant regions (or other immunoglobulin regions), albumin, or ferritin, as described in WO 89/02922 published 6 Apr. 1989. Additional suitable polypeptide sequences include but are not limited to sequences derived from immunoglobulins, carrier proteins, receptors, growth factors, nutrient substances, cellular adhesive molecules, tissue-specific adhesion factors, enzymes, toxins and the like. These examples will be in addition to insertions of cysteine or cysteine-containing polypeptides such as hinge regions which provide free thiol cysteinyl.
  • Another group of variants are amino acid substitution variants. These variants have at least one amino acid residue in the immunoglobulin polypeptide removed and a different residue inserted in its place. The sites of greatest interest for substitutional mutagenesis include the CDRs, FR and hinge regions. They include substitutions of cysteine for other residue and insertions which are substantially different in terms of side-chain bulk, charge, and/or hydrophobicity. Other sites for substitution are described infra, considering the effect of the substitution of the antigen binding, affinity and other characteristics of a particular target antibody.
  • Fab itself is a deletional variant of intact immunoglobulin in which the heavy chain constant domain downstream from C H1 is deleted. Further, in preferred embodiments the C H1 domain is followed C-terminally by a cysteine-containing sequence such as Cys Ala Ala, or sequences having more than one Cys.
  • DNA encoding Fab amino acid sequence variants is prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the target polypeptide or by total gene synthesis. These techniques may utilize target polypeptide nucleic acid (DNA or RNA), or nucleic acid complementary to the target polypeptide nucleic acid. Oligonucleotide-mediated mutagenesis is a preferred method for preparing substitution, deletion, and insertion variants of target polypeptide DNA.
  • PCR mutagenesis is also suitable for making amino acid variants of the Fab polypeptide. While the following discussion refers to DNA, it is understood that the technique also finds application with RNA. The PCR technique generally refers to the following procedure (see Erlich, supra, the chapter by R. Higuchi, p. 61-70): When small amounts of template DNA are used as starting material in PCR, primers that differ slightly in sequence from the corresponding region in a template DNA can be used to generate relatively large quantities of a specific DNA fragment that differs from the template sequence only at the positions where the primers differ from the template. For introduction of a mutation into a plasmid DNA, one of the primers is designed to overlap the position of the mutation and to contain the mutation; the sequence of the other primer must be identical to a stretch of sequence of the opposite strand of the plasmid, but this sequence can be located anywhere along the plasmid DNA. It is preferred, however, that the sequence of the second primer is located within 200 nucleotides from that of the first, such that in the end the entire amplified region of DNA bounded by the primers can be easily sequenced. PCR amplification using a primer pair like the one just described results in a population of DNA fragments that differ at the position of the mutation specified by the primer, and possibly at other positions, as template copying is somewhat error-prone.
  • If the ratio of template to product material is extremely low, the vast majority of product DNA fragments incorporate the desired mutation(s). This product material is used to replace the corresponding region in the plasmid that served as PCR template using standard DNA technology. Mutations at separate positions can be introduced simultaneously by either using a mutant second primer, or performing a second PCR with different mutant primers and ligating the two resulting PCR fragments simultaneously to the vector fragment in a three (or more)-part ligation.
  • Another method for preparing variants, cassette mutagenesis, is based on the technique described by Wells et al. (Gene, 34: 315 [1985]). The starting material is the plasmid (or other vector) comprising the Fab DNA to be mutated. The codon(s) in the Fab polypeptide DNA to be mutated are identified. There must be a unique restriction endonuclease site on each side of the identified mutation site(s). If no such restriction sites exist, they may be generated using the above-described oligonucleotide-mediated mutagenesis method to introduce them at appropriate locations in the Fab polypeptide DNA. After the restriction sites have been introduced into the plasmid, the plasmid is cut at these sites to linearize it. A double-stranded oligonucleotide encoding the sequence of the DNA between the restriction sites but containing the desired mutation(s) is synthesized using standard procedures. The two strands are synthesized separately and then hybridized together using standard techniques. This double-stranded oligonucleotide is referred to as the cassette. This cassette is designed to have 3′ and 5′ ends that are compatible with the ends of the linearized plasmid, such that it can be directly ligated to the plasmid. This plasmid now contains the mutated Fab polypeptide DNA sequence.
  • Insertion of DNA into a Vector
  • The cDNA or genomic DNA encoding the Fab polypeptide is inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Many vectors are available, and selection of the appropriate vector will depend on 1) whether it is to be used for DNA amplification or for expression of the encoded protein, 2) the size of the DNA to be inserted into the vector, and 3) the host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the host cell for which it is compatible. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, a promoter, and a transcription termination sequence.
  • (a) Signal Sequence Component
  • In general, the signal sequence may be a component of the vector, or it may be a part of the target polypeptide DNA that is inserted into the vector. Included within the scope of this invention are Fab polypeptides with any native signal sequence deleted and replaced with a heterologous signal sequence. The heterologous signal sequence selected should be one that is recognized and processed (i.e. cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the native Fab polypeptide signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders.
  • (b) Origin of Replication Component
  • Expression and cloning vectors may, but need not, contain a nucleic acid sequence that enables the Fab nucleic acid to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of microbes. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria.
  • DNA may also be replicated by insertion into the host genome. This is readily accomplished using Bacillus species as hosts, for example, by including in the vector a DNA sequence that is complementary to a sequence found in Bacillus genomic DNA. Transfection of Bacillus with this vector results in homologous recombination with the genome and insertion of the target polypeptide DNA. However, the recovery of genomic DNA encoding the target polypeptide is more complex than that of an exogenously replicated vector because restriction enzyme digestion is required to excise the target polypeptide DNA. Similarly, DNA also can be inserted into the genome of vertebrate and mammalian cells by conventional methods.
  • (c) Selection Gene Component
  • Expression and cloning vectors should contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g. ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g. the gene encoding D-alanine racemase for Bacilli.
  • One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene express a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin (Southern et al., J. Molec. Appl. Genet., 1: 327 [1982]), mycophenolic acid (Mulligan et al., Science, 209: 1422 [1980]) or hygromycin (Sugden et al., Mol. Cell. Biol., 5: 410-413 [1985]). The three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenolic acid), or hygromycin, respectively.
  • (d) Promoter Component
  • Expression and cloning vectors will usually contain a promoter that is recognized by the host organism and is operably linked to the Fab polypeptide nucleic acid. Promoters are untranslated sequences located upstream (5′) to the start codon of a the Fab structural gene (generally within about 100 to 1000 bp) that control its transcription and translation. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g. the presence or absence of a nutrient or a change in temperature.
  • Inducible promoters under high regulation are preferred for the microbial expression of Fv-containing polypeptides. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to DNA encoding the Fab polypeptide by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector. Both the native Fab polypeptide promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of the Fab polypeptide DNA. However, heterologous promoters are preferred, as they generally permit greater transcription and higher yields of expressed target polypeptide as compared to the native target polypeptide promoter.
  • Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems (Chang et al., Nature, 275: 615 [1978]; and Goeddel et al., Nature, 281: 544 [1979]), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8: 4057 [1980] and EP 36,776) and hybrid promoters such as the tac promoter (deBoer et al., Proc. Natl. Acad. Sci. USA, 80: 21-25 [1983]). However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a skilled worker operably to ligate them to DNA encoding the target polypeptide (Siebenlist et al., Cell, 20: 269 [1980]) using linkers or adaptors to supply any required restriction sites. Promoters for use in bacterial systems also generally will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the target polypeptide.
  • Construction of suitable vectors containing one or more of the above listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and religated in the form desired to generate the plasmids required.
  • Selection and Transformation of Host Cells
  • Suitable host cells for expressing Fab are microbial cells such as yeast, fungi, and prokaryotes. Suitable prokaryotes include eubacteria, such as Gram-negative or Gram-positive organisms, for example, E. coli, Bacilli such as B. subtilis, Pseudomonas species such as P. aeruginosa, Salmonella typhimurium, or Serratia marcescans. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), E. coli RV308 (ATCC 31,608) and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. Preferably the host cell should secrete minimal amounts of proteolytic enzymes, and additional protease inhibitors may desirably be incorporated in the cell culture.
  • Host cells are transfected and preferably transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • Culturing the Host Cells
  • Cells used to produce the Fab polypeptide of this invention are cultured in suitable media as described generally in Sambrook et al., (Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory Press, 1989). Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • It is currently preferred that the bacterial host cells be cultured at temperatures from 37° C. to 29° C., although temperatures as low as 20° C. may be suitable. Optimal temperatures will depend on the host cells, the Fab sequence and other parameters. 37° C. is generally preferred.
  • Purification of Fab Polypeptides
  • Soluble polypeptides are recovered from recombinant cell culture to obtain preparations that are substantially homogeneous as to Fab. As a first step, the culture medium or periplasmic preparation is centrifuged to remove particulate cell debris. Periplasmic preparations are obtained in conventional fashion, e.g. by freeze-thaw or osmotic shock methods. The membrane and soluble protein fractions are then separated. The Fab polypeptide is then purified from the soluble protein fraction. The following procedures are exemplary of suitable purification procedures: fractionation on immunoaffinity or ion-exchange columns; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A or protein G affinity matrix (e.g. Sepharose) columns; and hydrophobic interaction chromatography.
  • Fab polypeptide variants in which residues have been deleted, inserted or substituted are recovered in the same fashion, taking account of any substantial changes in properties occasioned by the variation. For example, preparation of a Fab polypeptide fusion with another protein or polypeptide, e.g. a bacterial or viral antigen, facilitates purification since an immunoaffinity column containing antibody to the antigen is used to adsorb the fusion. Immunoaffinity columns such as a rabbit polyclonal anti-target polypeptide column can be employed to absorb the target polypeptide variant by binding it to at least one remaining immune epitope. A protease inhibitor also is useful to inhibit proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants.
  • Utility of the Fab-Containing Polypeptides
  • The antibody fragments of this invention are useful in diagnostic assays for antigen in specific cells, fluids or tissues, for immunoaffinity purification of the antigens and for therapies which are based on antigen antagonism.
  • Analytical methods for the antigen bound by the Fab polypeptide are conventional and may use a label bound to the Fab. The label used with the Fab polypeptide is any detectable functionality that does not interfere with its binding to Fab. Numerous labels are known, including the radioisotopes 32P, 32S, 14C, 125I, 3H, and 131I, fluorophores such as rare earth chelates or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, luceriferases, e.g., firefly luciferase and bacterial luciferase (U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, horseradish peroxidase (HRP), alkaline phosphatase, β-galactosidase, glucoamylase, lysozyme, saccharide oxidases, e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase, heterocyclic oxidases such as uricase and xanthine oxidase, lactoperoxidase, biotin/avidin, spin labels, bacteriophage labels, stable free radicals, imaging radionuclides (such as Technetium) and the like.
  • Conventional methods are available to bind these labels covalently to proteins or polypeptides. For instance, coupling agents such as dialdehydes, carbodiimides, dimaleimides, bis-imidates, bis-diazotized benzidine, and the like may be used to tag the antibodies with the above-described fluorescent, chemiluminescent, and enzyme labels. See, for example, U.S. Pat. No. 3,940,475 (fluorimetry) and U.S. Pat. No. 3,645,090 (enzymes); Hunter et al., Nature, 144: 945 (1962); David et al., Biochemistry, 13: 1014-1021 (1974); Pain et al., J. Immunol. Methods, 40: 219-230 (1981); and Nygren, J. Histochem, and Cytochem., 30: 407-412 (1982). Preferred labels herein are enzymes such as horseradish peroxidase and alkaline phosphatase. The conjugation of such label, including the enzymes, to the Fab-containing polypeptide is a standard manipulative procedure for one of ordinary skill in immunoassay techniques. See, for example, O'Sullivan et al., “Methods for the Preparation of Enzyme-antibody Conjugates for Use in Enzyme Immunoassay,” in Methods in Enzymology, ed. J. J. Langone and H. Van Vunakis, Vol. 73 (Academic Press, New York, N.Y., 1981), pp. 147-166. Such bonding methods are suitable for use with the Fab polypeptides of this invention.
  • The Fab-containing polypeptides also may comprise an immunotoxin. For example, the Fab heavy chain is optionally conjugated to a cytotoxin such as ricin for use in AIDS therapy. Alternatively, the toxin may be a cytotoxic drug or an enzymatically active toxin of bacterial, fungal, plant or animal origin, or an enzymatically active fragment of such a toxin. Enzymatically active toxins and fragments thereof include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. In another embodiment, the antibodies are conjugated to nonpeptidyl drugs such as cis-platin or 5FU. Conjugates of the monoclonal antibody and such cytotoxic moieties are made using a variety of bifunctional protein coupling agents. Examples of such reagents are SPDP, IT, bifunctional derivatives of imidoesters such as dimethyl adipimidate HCl, active esters such as disuccinimidyl suberate, aldehydes such as glutaraldehyde, bis-azido compounds such as bis (p-azidobenzoyl) hexanediamine, bis-diazonium derivatives such as bis-(p-diazoniumbenzoyl)- -ethylenediamine, diisocyanates such as tolylene 2,6-diisocyanate and bis-active fluorine compounds such as 1,5-difluoro-2,4-dinitrobenzene. The lysing portion of a toxin may be joined to the Fab antibody fragment.
  • Immunotoxins can be made in a variety of ways, as discussed herein. Commonly known crosslinking reagents can be used to yield stable conjugates.
  • When used in vivo for therapy, the Fab-containing fragments of the subject invention are administered to the patient in therapeutically effective amounts (i.e. amounts that have desired therapeutic effect) in the same fashion as intact immunoglobulins. The products prepared in accord with the methods of this invention offer the advantage of substantial molecular homogeneity and are devoid of toxic contaminants heretofore used in preparing F(ab′)2.
  • The antibody compositions used in therapy are formulated and dosages established in a fashion consistent with good medical practice taking into account the disorder to be treated, the condition of the individual patient, the site of delivery of the composition, the method of administration and other factors known to practitioners. The antibody compositions are prepared for administration according to the description of preparation of polypeptides for administration, infra.
  • EXAMPLE Expression of Active Fab, Fab′, and F(ab′)2, Antibody Fragments
  • Overexpression of the HER2 proto-oncogene product (p185HER2) has been associated with a variety of aggressive human malignancies. An Escherichia coli expression system has been developed that secretes functional Fab and Fab′ fragments of a humanized antibody, huMAb4D5-8, at titers of about 1 to in excess of about 2 grams per liter as judged by binding to antigen, p185HER2. The Fab′ fragment was recovered with the single hinge region cysteine present mainly as the free thiol (up to about 90 mole %) permitting efficient directed disulfide bond formation in vitro to form the bivalent F(ab′)2 antibody fragment. This molecule is indistinguishable from F(ab′)2 derived from proteolysis of intact antibody in antigen binding affinity and in anti-proliferative activity against the human breast tumor cell line, SK-BR-3, which over-expresses p185HER2, but unlike the proteolytic product, the F(ab′)2 here is C-terminally homogenous. This invention facilitates the construction of monospecific and bispecific F(ab′)2 antibody fragments, including naturally derived or humanized antibody fragments for research and therapeutic purposes. This invention is particularly applicable for developing antibody fragments capable of directing diagnostic or therapeutic moieties to target antigens such as tumor foci characterized by overexpression of the HER2 proto-oncogene.
  • The murine monoclonal antibody known as muMAb4D5 (Fendly, B. M. et al., Cancer Res. 50:1550-1558 (1990)) is directed against the extracellular domain (ECD) of p185HER2. The muMAb4D5 and its uses are described in copending PCT application WO 89/06692 published 27 Jul. 1989. This murine antibody was deposited with the ATCC and designated ATCC CRL 10463. In this description, the terms muMAb4D5, chMAb4D5 and huMAb4D5 represent murine, chimerized and humanized versions of the monoclonal antibody 4D5, respectively.
  • muMAb4D5 has potential for clinical intervention in that it specifically inhibits the growth of human tumor cell lines overexpressing p185HER2 (2, 3) and is rapidly internalized by target cells (data not shown). Amplification and/or overexpression of HER2 is associated with multiple human malignancies and appears to be integrally involved in progression of 25-30% of primary human breast and ovarian cancers (5). The muMAb4D5 molecule was previously “humanized” (6) in an attempt to improve its clinical efficacy by reducing immunogenicity and allowing it to support human effector functions. The humanized antibody, huMAb4D5-8, contains essentially only the antigen binding loops from the murine parent antibody together with human variable region framework residues and constant domains. This humanized antibody has 3-fold higher affinity for p185HER2 ECD than the murine parent, comparable anti-proliferative activity against p185HER2 overexpressing tumor cells and supports antibody-dependent cellular cytotoxicity.
  • It was desired to enlarge the repertoire of anti-p185HER2 antibody reagents to include the Fab and F(ab′)2 antibody fragments of huMAb4D5-8. The smaller size of these fragments compared to the intact antibody is likely to enhance their specific localization to solid tumors by improving tumor penetration and promoting more rapid removal from serum (reviewed in ref. 8). huMAb4D5-8 Fab and F(ab′)2, fragments were obtained by direct recombinant expression to facilitate engineering of these fragments. Furthermore this strategy provided more homogeneous preparations of antibody fragments than could be obtained by limited proteolysis and partial reduction of intact antibodies (reviewed in ref. 9). Functional Fv and Fab fragments had been secreted from E. coli (10).
  • The strategy here for the E. coli secretion of antibody fragments (FIG. 1) shares two basic similarities with the work of others (10). Firstly a dicistronic operon is used to direct the co-expression of corresponding light and heavy chain fragments. Secondly the antibody chains are preceded by bacterial signal sequences to direct secretion into the periplasmic space of E. coli where the redox environment favors disulfide bond formation and the light and heavy chain fragments may assemble. The system here differs from earlier strategies in three basic ways. Firstly the transcription unit utilizes the a highly regulated promoter, the E. coli PhoA promoter (11) inducible by phosphate starvation, and heat-stable enterotoxin II signal sequence (12). Secondly, the gene segment for the light chain precedes that for the heavy chain Fd fragment (VH and C H1 domains). Thirdly, in order to express the Fab′ fragment of huMAb4D5-8 the C H1 gene segment was extended to encode part of the cysteine-containing antibody hinge region. The sequence Cysteine followed by two Prolines and another Cysteine (CPC terminus) was initially chosen since it is found in the hinge region of human IgG1 molecules (17) including the full length version of huMAb4D5-8 (6). The construction of additional Fab′ variants by cassette mutagenesis (18) of the pBR322-based expression vector was facilitated by installing unique Sal I and Sph I restriction sites towards the end of the C H1 gene segment and immediately 3′ to the stop codon, respectively.
  • The huMAb4D5-8 Fab fragment was expressed in a phage resistant derivative of E. coli RV308 (19) grown at high cell density in a fermentor (20). The titer of functional huMAb4D5-8 Fab in fermentation media is routinely 1 to 2 grams per liter as judged by p185HER2 ECD binding ELISA (6). Modest amounts of huMAb4D5-8 Fab (usually <200 mg/l) are found associated with the cell paste and may be released by osmotic shock. The consensus framework region of the huMAb4D5-8 Fab fragment was found to bind tightly to both staphylococcal protein A and to streptococcal protein G, allowing their use for affinity purification. Very similar estimates of titers are obtained for culture media or cell paste samples after affinity purification on protein A prior to antigen-binding ELISA. Similar expression titers of p185HER2 ECD binding activity have been obtained for the huMAb4D5-8 Fab variant (cysteine, two prolines and another cysteine) and the additional Fab′ variant described below.
  • Formation of F(ab′)2 molecules requires chance encounters of Fab′ hinge cysteinyl thiols to form disulfide bonds without the assistance of extensive interactions between C H3 domains possible in the case of intact antibodies. Thus high level expression of Fab′ in the periplasmic space of E. coli was anticipated to drive formation of F(ab′)2 in vivo. In fact <10% of the Fab′ molecule having the CPC terminus (isolated from either media or cell paste) were recovered as the bivalent form as judged by SDS-PAGE analysis after protein A purification. High resolution mass spectrometry and other studies suggested that substantial formation of an intramolecular disulfide bond between the two hinge cysteine residues had occurred. This possibility was precluded by the construction of an additional Fab′ variant with a single hinge cysteine residue having the C-terminal sequence, Cys Ala Ala. Negligible quantities of F(ab′)2 are formed when this Fab′ variant is secreted from E. coli and DTNB analysis does not detect free thiol.
  • The Fab′ molecules are recovered under conditions that maintain the hinge cysteine present as the free thiol and then readily and efficiently formed into F(ab′)2 by directed coupling in vitro. For example, Brennan et al. (23) reacted a Fab′ free thiol (Fab′-SH) with DTNB to form the thionitrobenzoate derivative (Fab′-TNB) which was then coupled to a second Fab′(Fab′-SH) to form the bispecific F(ab′)2. The following strategy allows the routine purification of intact functional huMAb4D5-8 Fab′ Cys Ala Ala variant with 75-90% of the molecules containing a free hinge thiol as judged by DTNB analysis (FIG. 2): firstly, growth conditions were judiciously modified (20) to target secretion of Fab′ to the periplasmic space of E. coli rather than into the culture media where the Fab′ hinge thiol was found to be quantitatively and covalently blocked. Secondly, the Fab′ fragment was isolated from the cell paste and affinity purified on protein G sepharose at low pH (pH 5.0) to maintain the cysteinyl thiol in the less reactive protonated form. Thirdly, EDTA was added to chelate metal ions capable of catalyzing disulfide bond formation and to inactivate metallo proteases. Finally a cocktail of additional protease inhibitors (phenylmethylsulfonyl fluoride (PMSF), leupeptin, pepstatin and benzamidine) virtually eliminated proteolysis of Fab′ by E. coli proteases during the purification. Small amounts of contaminating proteolytic fragments in Fab′ preparations were readily removed by hydrophobic interaction chromatography. The Fab′-TNB derivative was prepared in a similar manner except that Fab′-SH released from freeze-thawed cells by osmotic shock was adjusted to neutral pH in the presence of excess DTNB.
  • Equimolar quantities of Fab′-SH and Fab-TNB were coupled together to efficiently form the F(ab′)2 antibody fragment by a disulfide exchange reaction (FIG. 2). The coupling reaction was followed by monitoring the increase in absorbance at 412 nm upon release of the thionitrobenzoate anion and found to reach completion after 30 to 60 min at 37° C. No free thiol was detected in the reaction mix after coupling and the amount of remaining Fab′ is consistent with that amount of unreactive material in the Fab′-SH and Fab′-TNB preparations. F(ab′)2 was separated from Fab′ by gel filtration on a S100-HR sizing column. Only trace quantities of huMAb4D5-8 F(ab′)2 are were formed in mock coupling reactions containing either Fab′-SH or Fab′-TNB alone, as anticipated (23).
  • The physical and chemical integrity of purified huMAb4D5-8 Fab and F(ab′)2 was evaluated by SDS-PAGE (FIG. 2), analysis of the amino terminal sequence, amino acid composition plus free thiol content, and by circular dichroism. Purified huMAb4D5-8 Fab (Mr=47.7 kdal) and F(ab′)2 (Mr=96.0 kdal) fragments analyzed by SDS-PAGE under non-reducing conditions each gave a single major band of the expected mobility. After SDS-PAGE under reducing conditions both Fab and F(ab′)2 antibody fragments gave a doublet of bands of similar intensities as expected from release of stoichiometric quantity of free light chain (23.4 kdal) and heavy chain Fd (24.3 kdal) or Fd′ (24.6 kdal) fragments (not shown). Amino terminal sequence analysis (8 cycles) of Fab and F(ab′)2 antibody fragments gave the expected mixed sequence from a stoichiometric 1:1 mixture of light and heavy chains (VL/VH: Asp/Glu, Ile/Val, Gln/Gln, Met/Leu, Thr/Val, Gln/Glu, Ser/Ser, and Pro/Gly with no evidence of additional sequences. No free thiol was detected in either Fab or F(ab′)2 preparations by DTNB analysis as expected. Amino acid analysis (27) of acid hydrolysed Fab or F(ab′)2 was in excellent agreement with the expected composition (6). The circular dichroism spectrum of the Fab fragment is characteristic of an immunoglobulin fold.
  • The function of huMAb4D5-8 Fab and F(ab′)2 antibody fragments was investigated by measuring the binding affinity for the p185HER2 ECD and by investigating their effect upon the proliferation of the p185HER2 overexpressing human breast carcinoma line, SK-BR-3 (Table 1).
    TABLE 1
    Analysis of huMAb4D5-8 fragments by p185HER2 ECD binding affinity
    and anti-proliferative activity with breast carcinoma, SK-BR-3 cells.
    huMAb4D5-8 variant Source Kd · pM Relative cell proliferation
    Fab E. coli 570 91
    F(ab′)2 E. coli 290 53
    F(ab′)2 293 cells 300 50

    *Kd values for the p185HER2 ECD were determined as previously described (5) and the standard error of the estimates are ≦ ± 10%.

    Proliferation of SK-BR-3 cells incubated for 96 hr with huMAb4D5 variants shown as a percentage of the untreated control as described (5). Data represent the maximal anti-proliferative effect for each variant calculated as the mean of triplicate determinations at a fragment concentration of 10 μg/ml. Data are all taken from the same experiment and the estimated standard error ≦ ± 15%.

    Cys Ala Ala variant.

    The binding affinity of huMAb4D5-8 F(ab′)2 antibody fragment for p185HER2 ECD is identical to that of the corresponding fragment derived from limited proteolysis of whole antibody expressed in mammalian cells. The bivalent F(ab′)2 antibody fragment derived from E. coli has identical anti-proliferative activity with SK-BR-3 cells to both the intact bivalent huMAb4D5-8 parent antibody derived from 293 cells (6) and the F(ab′)2 antibody fragment derived from limited pepsin digestion of intact antibody. In contrast, the monovalent Fab molecule does not significantly affect the growth of SK-BR-3 cells. This suggests that the crosslinking of p185HER2 on the surface of cells may be required for inhibiting their proliferation. It appears exceedingly unlikely that the 2-fold weaker antigen binding affinity of the Fab compared to the F(ab′)2 could account for the lack of anti-proliferative activity of the Fab at concentrations up to several hundred fold above the Kd. Furthermore, it is possible to block the anti-proliferative activity of the bivalent parent antibody, muMAb4D5, with a monovalent huMAb4D4 Fab fragment.
  • In this example, the expression titer of functional Fab fragments was increased compared to the reports in the literature for E. coli, from about 1000-fold to 1 to 2 grams per liter. Additionally, Fab′ molecules were recovered. This enhanced expression is very likely due only in part to the higher cell densities (10 to 20-fold) and more precisely controlled environment of the fermentor than the simple shake flask, the very tight control of pre-induction expression and the characteristics of the humanized variable domain sequence employed. The titer of Fab′ obtained here using the phoA promoter are surprisingly high and may result from a combination of the use of this powerful promoter in a low copy number (pBR322-based) vector. Thus the repressor is not titered to less effective levels. The cells also could be transformed to make surplus repressor. What is important is that the promoter be inactive prior to induction. It is possible that vector design and the high thermal stability of the Fab fragment (Tm>80° C.) also may be important. This system should greatly facilitate clinical or biophysical studies requiring large quantities of antibody fragments.
  • Similar high expression levels have been observed for several additional variants of huMAb4D5-8 Fab which contain one or more amino acid changes in the antigen binding loops or nearby framework residues (6). Two alternative antigen-binding specificities have been recruited into huMAb4D5-8 Fab′ by judicious replacement of antigen binding residues and found to give high expression titers. This is consistent with the notion that the framework of a polypeptide comprising substantially huMAb4D5-8 Fab′ might be generically useful for highly expressed humanized Fab′ molecules.
  • The huMAb4D5-8 Fab′ Cys Ala Ala shows very little tendency to form F(ab′)2 in vivo despite the apparently quantitative formation of intra-domain disulfides in the variable regions. However, in vitro F(ab′)2 forms readily by air oxidation of Fab′-SH at pH 7.5 in the absence of EDTA at concentrations that are at least 10-fold lower than are found in vivo.
  • Without committing to any particular mechanism, it is believed that the redox potential of the periplasmic space of E. coli is sufficiently oxidizing to allow formation of the intra-domain disulfide bonds but not the inter-heavy chain disulfide which is presumably thermodynamically less favorable. Nevertheless, recovery of functional Fab′ fragments secreted into the periplasmic space of E. coli with the unpaired hinge cysteine mainly as the free thiol provides the essential starting material for directed coupling (23, 32, 33). We have additionally exploited the free thiol for immobilization of the huMAb4D5-8 Fab′ fragment on an activated thiol support as previously described (34), enabling the p185HER2 ECD to be affinity purified from solution. The free hinge thiol has also been used for attachment of fluorescent probes for fluorescence-activated cell sorting. It is also within the scope of this invention to use the free cysteinyl thiol for the site-directed attachment of radionuclides for imaging or therapy. This would offer the advantage over conventional labelling strategies of a defined stoichiometry and attachment site without the risk of compromising antigen binding affinity.
  • BIBLIOGRAPHY
    • 1. B. M. Fendly et al., Cancer Res. 50: 1550 (1990).
    • 2. R. M. Hudziak et al., Molec. Cell. Biol. 9: 1165 (1989).
    • 3. R. Lupu et al., Science 249: 1552 (1990).
    • 5. D. J. Slamon et al., Science 235: 177 (1987); D. J. Slamon et al., Science 244: 707 (1989).
    • 6. P. Carter et al., Proc. Natl. Acad. Sci. U.S.A. 89(10):4285-9 (1992).
    • 7. P. T. Jones et al., Nature 321: 522 (1986); L. Riechmann et al., Nature 332: 323 (1988); M. Verhoeyen et al., Science 239: 1534 (1988).
    • 8. R. D. Blumenthal et al., Adv. Drug Del. Rev. 4: 279 (1990).
    • 9. P. Parham in Cellular Immunology (E. M. Weir, Ed., Blackwell Scientific, CA) 4th edition, vol 1 chapter 14 (1983).
    • 10. A. Skerra and A. Plückthun, Science 240: 1038 (1988); M. Better et al., ibid p. 1041.
    • 11. C. N. Chang et al., Gene 44: 121 (1986).
    • 12. R. N. Picken et al., Infect. Immun. 42: 269 (1983).
    • 13. W. Palm and N. Hilschmann, Z. Physiol. Chem. 356: 167 (1975).
    • 14. J. W. Ellison et al., Nucleic Acids Res. 10: 4071 (1982).
    • 15. F. Bolivar et al., Gene 2: 95 (1977).
    • 16. S. Scholtissek, et al., Nucleic Acids Res. 15: 3185 (1987)
    • 17. E. A. Kabat, et al., Sequences of Proteins of Immunological Interest 3rd edition (National Institutes of Health, Bethesda, Md., 1987).
    • 18. J. A. Wells et al., Gene 34: 315 (1985).
    • 19. R. A. Maurer, Ph.D. thesis, Harvard University (1978).
    • 20. The huMAb4D5-8 Fab′ fragment was expressed in E. coli strain 25F2 derived from the strain RV308 (ref. 22, ATCC#31608) by inactivating the tonA gene. Cells were grown for 32-40 hours in an aerated 10 liter fermentor at 37° C. at a low agitation rate (650 rpm, KIa ˜600 mmol l−1hr−1atm−1) in a medium that initially contained 12 g l−1 digested casein, 17 mM glucose, 2.4 mM isoleucine hydrochloride, 47 mM (NH4)2SO4, 10 mM NaH2PO4, 18 mM K2HPO4, 4.1 mM trisodium citrate, 12 mM MgSO4, 125 μM FeCl3 and 20 μM each of ZnSO4, MnSO4, CuSO4, CoCl2, H3BO3 and NaMoO4) plus 12 mg l−1 tetracycline and received automated feeds of ammonia to maintain the pH at 7.0 and also glucose to maintain a slight excess or avoid anaerobisis depending upon cell density of 80 to 100 OD550. The cell density at harvest is usually 120 to 150 OD550.
    • 21. G. L. Ellman, Arch. Biochem. Biophys. 82: 70 (1959).
    • 23. M. Brennan et al., Science 229: 81 (1985).
    • 24. E. Lamoyi, et al., Methods Enzymol. 121: 652 (1986).
    • 25. T. E. Creighton, Protein Structure, a Practical Approach (IRL Press, Oxford, UK, 1990), p. 157.
    • 26. P. Matsudaira, J. Biol. Chem. 262: 10035 (1987)
    • 27. S. Moore and W. H. Stein, Methods Enzymol. 6: 819 (1963)
    • 32. M. J. Glennie et al., J. Immunol. 139: 2367 (1987); M. J. Glennie et al., J. Immunol. 141: 3662 (1988).
    • 33. T. Nitta et al., J. Immunol. 19: 1437 (1989). T. Nitta et al., Lancet 335: 368 (1990).
    • 34. P. Carter and J. A. Wells, Science 237: 394 (1987).

Claims (3)

1-21. (canceled)
22. A method for high yield production of an immunoglobulin polypeptide comprising culturing a host cell transformed with nucleic acid encoding an immunoglobulin polypeptide under the transcriptional control of an inducible promoter/operator system wherein the promoter/operator system is subsequently induced, thereby resulting in polypeptide levels in the cell culture of greater than about 1 gram of polypeptide per liter of cell culture.
23-24. (canceled)
US11/173,653 1991-09-19 2005-07-01 Expression of functional antibody fragments Abandoned US20050244929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/173,653 US20050244929A1 (en) 1991-09-19 2005-07-01 Expression of functional antibody fragments

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US76229291A 1991-09-19 1991-09-19
PCT/US1992/007986 WO1993006217A1 (en) 1991-09-19 1992-09-18 EXPRESSION IN E. COLI OF ANTIBODY FRAGMENTS HAVING AT LEAST A CYSTEINE PRESENT AS A FREE THIOL, USE FOR THE PRODUCTION OF BIFUNCTIONAL F(ab')2 ANTIBODIES
US08/199,268 US7018809B1 (en) 1991-09-19 1992-09-18 Expression of functional antibody fragments
US11/173,653 US20050244929A1 (en) 1991-09-19 2005-07-01 Expression of functional antibody fragments

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US08/199,268 Continuation US7018809B1 (en) 1991-09-19 1992-09-18 Expression of functional antibody fragments
PCT/US1992/007986 Continuation WO1993006217A1 (en) 1991-09-19 1992-09-18 EXPRESSION IN E. COLI OF ANTIBODY FRAGMENTS HAVING AT LEAST A CYSTEINE PRESENT AS A FREE THIOL, USE FOR THE PRODUCTION OF BIFUNCTIONAL F(ab')2 ANTIBODIES

Publications (1)

Publication Number Publication Date
US20050244929A1 true US20050244929A1 (en) 2005-11-03

Family

ID=25064638

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/199,268 Expired - Lifetime US7018809B1 (en) 1991-09-19 1992-09-18 Expression of functional antibody fragments
US08/433,781 Expired - Lifetime US5648237A (en) 1991-09-19 1995-05-03 Expression of functional antibody fragments
US11/173,653 Abandoned US20050244929A1 (en) 1991-09-19 2005-07-01 Expression of functional antibody fragments
US11/944,406 Abandoned US20080124765A1 (en) 1991-09-19 2007-11-21 Expression of functional antibody fragments

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/199,268 Expired - Lifetime US7018809B1 (en) 1991-09-19 1992-09-18 Expression of functional antibody fragments
US08/433,781 Expired - Lifetime US5648237A (en) 1991-09-19 1995-05-03 Expression of functional antibody fragments

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/944,406 Abandoned US20080124765A1 (en) 1991-09-19 2007-11-21 Expression of functional antibody fragments

Country Status (5)

Country Link
US (4) US7018809B1 (en)
EP (2) EP0861893A3 (en)
JP (4) JP3951062B2 (en)
CA (1) CA2116774C (en)
WO (1) WO1993006217A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070166753A1 (en) * 2000-05-19 2007-07-19 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to a her2 antibody cancer therapy
KR100951325B1 (en) * 2002-08-06 2010-04-08 에보니크 옥세노 게엠베하 Oligomerization of isobutene in n-butenic hydrocarbon streams
US8163287B2 (en) 2005-07-22 2012-04-24 Genentech, Inc. Combination therapy of her expressing tumors
WO2013055874A2 (en) 2011-10-14 2013-04-18 Genentech, Inc. Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
US8691232B2 (en) 2005-02-23 2014-04-08 Genentech, Inc. Extending time to disease progression or survival in cancer patients
US8940302B2 (en) 2007-03-02 2015-01-27 Genentech, Inc. Predicting response to a HER inhibitor
US9017671B2 (en) 2004-10-20 2015-04-28 Genentech, Inc. Method of treating cancer with a pharmaceutical formulation comprising a HER2 antibody
WO2015164665A1 (en) 2014-04-25 2015-10-29 Genentech, Inc. Methods of treating early breast cancer with trastuzumab-mcc-dm1 and pertuzumab
US9181346B2 (en) 2008-01-30 2015-11-10 Genentech, Inc. Composition comprising antibody that binds to domain II of HER2 and acidic variants thereof
US9283273B2 (en) 1995-07-27 2016-03-15 Genentech, Inc. Protein formulation
WO2016196373A2 (en) 2015-05-30 2016-12-08 Genentech, Inc. Methods of treating her2-positive metastatic breast cancer
WO2017064716A1 (en) * 2015-10-13 2017-04-20 Rappaport Family Institute For Research Heparanase-neutralizing monoclonal antibodies
WO2017087280A1 (en) 2015-11-16 2017-05-26 Genentech, Inc. Methods of treating her2-positive cancer
US9815904B2 (en) 2013-04-16 2017-11-14 Genetech, Inc. Pertuzumab variants and evaluation thereof
WO2018085513A1 (en) 2016-11-04 2018-05-11 Genentech, Inc. Treatment of her2-positive breast cancer
WO2018125589A1 (en) 2016-12-28 2018-07-05 Genentech, Inc. Treatment of advanced her2 expressing cancer
WO2018136412A2 (en) 2017-01-17 2018-07-26 Genentech, Inc. Subcutaneous her2 antibody formulations
WO2018160654A2 (en) 2017-03-02 2018-09-07 Genentech, Inc. Adjuvant treatment of her2-positive breast cancer
WO2018200505A1 (en) 2017-04-24 2018-11-01 Genentech, Inc. Erbb2/her2 mutations in the transmbrane or juxtamembrane domain
US10689457B2 (en) 2008-06-16 2020-06-23 Genentech, Inc. Treatment of metastatic breast cancer

Families Citing this family (932)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5576195A (en) * 1985-11-01 1996-11-19 Xoma Corporation Vectors with pectate lyase signal sequence
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US7018809B1 (en) 1991-09-19 2006-03-28 Genentech, Inc. Expression of functional antibody fragments
AU675929B2 (en) 1992-02-06 1997-02-27 Curis, Inc. Biosynthetic binding protein for cancer marker
US7754211B2 (en) * 1992-04-10 2010-07-13 Research Development Foundation Immunotoxins directed against c-erbB-2(HER-2/neu) related surface antigens
US5747654A (en) * 1993-06-14 1998-05-05 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
US5641870A (en) * 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
DE19513676A1 (en) 1995-04-11 1996-10-17 Behringwerke Ag Cytoplasmic expression of antibodies, antibody fragments and antibody fragment fusion molecules in E. coli
EP0861091B1 (en) * 1995-10-13 2003-08-20 THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by the Secretary of the Department of Health and Human Services Immunotoxin containing a disulfide-stabilized antibody fragment
US5851800A (en) * 1996-05-14 1998-12-22 Pharmacia & Upjohn Ab Process for producing a protein
DE19650316A1 (en) * 1996-12-04 1998-06-10 Basf Ag Process for modifying the flow resistance of diaphragms
US6306393B1 (en) * 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
DE69830901T2 (en) 1997-05-02 2006-05-24 Genentech Inc., San Francisco A method for producing multispecific antibodies having heteromultimeric and common components
US7951917B1 (en) 1997-05-02 2011-05-31 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
US20020062010A1 (en) 1997-05-02 2002-05-23 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
US7153943B2 (en) 1997-07-14 2006-12-26 Bolder Biotechnology, Inc. Derivatives of growth hormone and related proteins, and methods of use thereof
US7495087B2 (en) 1997-07-14 2009-02-24 Bolder Biotechnology, Inc. Cysteine muteins in the C-D loop of human interleukin-11
US6753165B1 (en) 1999-01-14 2004-06-22 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
NZ502375A (en) 1997-07-14 2001-11-30 Bolder Biotechnology Inc The addition of non-natural cysteine derivatives to cause the protein to act as antagonists of the GH family
US7270809B2 (en) 1997-07-14 2007-09-18 Bolder Biotechnology, Inc. Cysteine variants of alpha interferon-2
US20080076706A1 (en) 1997-07-14 2008-03-27 Bolder Biotechnology, Inc. Derivatives of Growth Hormone and Related Proteins, and Methods of Use Thereof
US6555661B1 (en) 1997-08-25 2003-04-29 Anthony R. Torres Simple, environmentally benign, method for purifying protein A
GB9722131D0 (en) * 1997-10-20 1997-12-17 Medical Res Council Method
EP1049787B1 (en) * 1998-01-23 2004-11-24 Vlaams Interuniversitair Instituut voor Biotechnologie Multipurpose antibody derivatives
CA2321161C (en) 1998-02-24 2011-12-20 Andrew D. Weinberg Compositions containing an ox-40 receptor binding agent or a nucleic acid encoding the same and methods for enhancing antigen-specific immune response
CZ121599A3 (en) 1998-04-09 1999-10-13 Aventis Pharma Deutschland Gmbh Single-chain molecule binding several antigens, process of its preparation and medicament in which the molecule is comprised
EP1308455B9 (en) * 1998-05-06 2006-06-14 Genentech, Inc. A composition comprising anti-HER2 antibodies
ATE321066T1 (en) 1998-05-06 2006-04-15 Genentech Inc ANTI-HER2 ANTIBODY COMPOSITION
WO2000024769A2 (en) 1998-10-28 2000-05-04 Genentech, Inc. Process for recovering heterologous polypeptide from bacterial refractile particles
US8288126B2 (en) 1999-01-14 2012-10-16 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
CN1210400C (en) * 1999-01-14 2005-07-13 博尔德生物技术公司 Methods for making proteins containing free cysteine residues
AU781175B2 (en) * 1999-04-09 2005-05-12 Intercell Usa, Inc. Recombinant toxin A/toxin B vaccine against Clostridium Difficile
US6949245B1 (en) * 1999-06-25 2005-09-27 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US20030086924A1 (en) * 1999-06-25 2003-05-08 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US20040013667A1 (en) * 1999-06-25 2004-01-22 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US6824780B1 (en) * 1999-10-29 2004-11-30 Genentech, Inc. Anti-tumor antibody compositions and methods of use
US7097840B2 (en) 2000-03-16 2006-08-29 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
AU2001259271A1 (en) * 2000-04-28 2001-11-12 Millennium Pharmaceuticals, Inc. 14094, a novel human trypsin family member and uses thereof
US7083945B1 (en) 2000-10-27 2006-08-01 The Board Of Regents Of The University Of Texas System Isolation of binding proteins with high affinity to ligands
US7094571B2 (en) * 2000-10-27 2006-08-22 The Board Of Regents Of The University Of Texas System Combinatorial protein library screening by periplasmic expression
MXPA03004324A (en) 2000-11-20 2004-01-26 Cargill Inc 3-hydroxypropionic acid and other organic compounds.
EP1360313A4 (en) * 2000-11-22 2004-08-04 Cargill Inc Carotenoid biosynthesis
US6979556B2 (en) * 2000-12-14 2005-12-27 Genentech, Inc. Separate-cistron contructs for secretion of aglycosylated antibodies from prokaryotes
EP1992643A3 (en) 2001-06-20 2008-12-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
ATE382053T1 (en) * 2001-08-27 2008-01-15 Genentech Inc SYSTEM FOR ANTIBODIES EXPRESSION AND SYNTHESIS
WO2003024392A2 (en) 2001-09-18 2003-03-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2003088808A2 (en) 2002-04-16 2003-10-30 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
GB0129105D0 (en) * 2001-12-05 2002-01-23 Celltech R&D Ltd Expression control using variable intergenic sequences
ES2307807T3 (en) 2001-12-17 2008-12-01 Crucell Holland B.V. FRAGMENT PRODUCTION F (AB ') 2 IN MAMMER CELLS.
EP1575571A4 (en) 2002-01-02 2008-06-25 Genentech Inc Compositions and methods for the diagnosis and treatment of tumor
US20040009498A1 (en) * 2002-01-14 2004-01-15 Diversa Corporation Chimeric antigen binding molecules and methods for making and using them
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US20070148171A1 (en) * 2002-09-27 2007-06-28 Xencor, Inc. Optimized anti-CD30 antibodies
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US7662925B2 (en) * 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
US9770517B2 (en) 2002-03-01 2017-09-26 Immunomedics, Inc. Anti-Trop-2 antibody-drug conjugates and uses thereof
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20080254027A1 (en) * 2002-03-01 2008-10-16 Bernett Matthew J Optimized CD5 antibodies and methods of using the same
RS92604A (en) 2002-04-23 2007-09-21 Cargill Incorporated, Polypeptides and biosynthetic pathways
JP2005528905A (en) * 2002-06-07 2005-09-29 ジェネンテック・インコーポレーテッド Compositions and methods for tumor diagnosis and treatment
US7611866B2 (en) * 2002-07-15 2009-11-03 Board Of Regents, The University Of Texas System Selection of bacterial inner-membrane anchor polypeptides
CA2499081A1 (en) * 2002-09-16 2004-04-22 Elusys Therapeutics, Inc. Bispecific molecule comprising an anti-cr1 antibody cross-linked to an antigen-binding antibody fragment
US20060235208A1 (en) * 2002-09-27 2006-10-19 Xencor, Inc. Fc variants with optimized properties
US7427468B2 (en) 2002-10-01 2008-09-23 Functional Genetics, Inc. Anti-TSG101 antibodies and their uses for treatment of viral infections
US7608429B2 (en) 2002-10-31 2009-10-27 Genentech, Inc. Methods and compositions for increasing antibody production
US8420086B2 (en) 2002-12-13 2013-04-16 Immunomedics, Inc. Camptothecin conjugates of anti-CD22 antibodies for treatment of B cell diseases
DE60332957D1 (en) 2002-12-16 2010-07-22 Genentech Inc IMMUNOGLOBULIN VARIANTS AND ITS USES
CA2513113A1 (en) * 2003-01-23 2004-08-05 Genentech, Inc. Methods for producing humanized antibodies and improving yield of antibodies or antigen binding fragments in cell culture
US8388955B2 (en) * 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20070275460A1 (en) * 2003-03-03 2007-11-29 Xencor.Inc. Fc Variants With Optimized Fc Receptor Binding Properties
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
JP4884224B2 (en) 2003-05-09 2012-02-29 ディアデクサス インコーポレーテッド Ovr110 antibody compositions and methods of use
US8088387B2 (en) 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
WO2005003169A2 (en) 2003-07-01 2005-01-13 Celltech R & D Limited Modified antibody fab fragments
US7538010B2 (en) * 2003-07-24 2009-05-26 S.O.I.Tec Silicon On Insulator Technologies Method of fabricating an epitaxially grown layer
KR20060069825A (en) * 2003-08-01 2006-06-22 제넨테크, 인크. Antibody cdr polypeptide sequences with restricted diversity
JP5544063B2 (en) * 2003-08-13 2014-07-09 サンド・アクチエンゲゼルシヤフト Expression vectors, transformed host cells and fermentation methods for the production of recombinant polypeptides
ES2391457T3 (en) * 2003-08-13 2012-11-26 Sandoz Ag Procedure for purification of recombinant polypeptides
GB0319601D0 (en) * 2003-08-20 2003-09-24 Sandoz Ag Production process
AU2004273791A1 (en) * 2003-09-05 2005-03-31 Genentech, Inc. Antibodies with altered effector functions
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
US8101720B2 (en) * 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
KR100570422B1 (en) * 2003-10-16 2006-04-11 한미약품 주식회사 Expression vector for secreting an antibody fragment using e. coli signal peptide and method for the mass production of antibody fragment using same
RU2006117353A (en) 2003-10-21 2007-12-27 Карджилл, Инкорпорейтед (Us) OBTAINING MONATINE AND MONATINE'S PREDATORS
EP1689432B1 (en) 2003-11-17 2009-12-30 Genentech, Inc. Compositions and methods for the treatment of tumor of hematopoietic origin
PT1718677E (en) * 2003-12-19 2012-07-18 Genentech Inc Monovalent antibody fragments useful as therapeutics
WO2005077981A2 (en) * 2003-12-22 2005-08-25 Xencor, Inc. Fc POLYPEPTIDES WITH NOVEL Fc LIGAND BINDING SITES
AU2005235991A1 (en) * 2004-03-18 2005-11-03 Board Of Regents, The University Of Texas System Combinatorial protein library screening by periplasmic expression
EP2053062A1 (en) * 2004-03-24 2009-04-29 Xencor, Inc. Immunoglobin variants outside the Fc region
MXPA06011199A (en) * 2004-03-31 2007-04-16 Genentech Inc Humanized anti-tgf-beta antibodies.
EP1735000A2 (en) * 2004-04-16 2006-12-27 Genentech, Inc. Method for augmenting b cell depletion
US20150017671A1 (en) 2004-04-16 2015-01-15 Yaping Shou Methods for detecting lp-pla2 activity and inhibition of lp-pla2 activity
US20150010550A1 (en) 2004-07-15 2015-01-08 Xencor, Inc. OPTIMIZED Fc VARIANTS
WO2007013872A2 (en) * 2004-07-22 2007-02-01 The Board Of Trustees Of The University Of Illinois Sensors employing single-walled carbon nanotubes
EP1786831A4 (en) 2004-07-30 2008-01-23 Cargill Inc Alanine 2, 3 aminomutases
SI1773885T1 (en) * 2004-08-05 2010-08-31 Genentech Inc Humanized anti-cmet antagonists
CA2577082A1 (en) * 2004-09-02 2006-03-16 Genentech, Inc. Heteromultimeric molecules
RS57636B1 (en) 2004-09-03 2018-11-30 Genentech Inc Humanized anti-beta7 antagonists and uses therefor
US20060074225A1 (en) * 2004-09-14 2006-04-06 Xencor, Inc. Monomeric immunoglobulin Fc domains
US7572771B1 (en) 2004-10-15 2009-08-11 The United States Of America As Represented By The Departments Of Health And Human Services Multi-domain amphipathic helical peptides and methods of their use
EP1814918A1 (en) * 2004-10-29 2007-08-08 Elusys Therapeutics, Inc. Use of cr1-binding molecules in clearance and induction of immune responses
CN102746404B (en) 2004-11-12 2016-01-20 赞科股份有限公司 To FcRn in conjunction with reformed Fc variant
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US20070135620A1 (en) * 2004-11-12 2007-06-14 Xencor, Inc. Fc variants with altered binding to FcRn
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
GB0425534D0 (en) * 2004-11-19 2004-12-22 Celltech R&D Ltd Process for obtaining antibodies
GB0425537D0 (en) * 2004-11-19 2004-12-22 Celltech R&D Ltd Process for obtaining antibodies
US7964195B2 (en) 2005-01-07 2011-06-21 Diadexus, Inc. Ovr110 antibody compositions and methods of use
WO2006076594A2 (en) * 2005-01-12 2006-07-20 Xencor, Inc. Antibodies and fc fusion proteins with altered immunogenicity
EP3698807A1 (en) 2005-01-21 2020-08-26 Genentech, Inc. Fixed dosing of her antibodies
CA2595395A1 (en) * 2005-02-09 2006-08-17 Genentech, Inc. Inhibiting her2 shedding with matrix metalloprotease antagonists
US9707302B2 (en) 2013-07-23 2017-07-18 Immunomedics, Inc. Combining anti-HLA-DR or anti-Trop-2 antibodies with microtubule inhibitors, PARP inhibitors, bruton kinase inhibitors or phosphoinositide 3-kinase inhibitors significantly improves therapeutic outcome in cancer
US10058621B2 (en) 2015-06-25 2018-08-28 Immunomedics, Inc. Combination therapy with anti-HLA-DR antibodies and kinase inhibitors in hematopoietic cancers
WO2006096861A2 (en) * 2005-03-08 2006-09-14 Genentech, Inc. METHODS FOR IDENTIFYING TUMORS RESPONSIVE TO TREATMENT WITH HER DIMERIZATION INHIBITORS (HDIs)
JP2006316040A (en) 2005-05-13 2006-11-24 Genentech Inc Herceptin(r) adjuvant treatment
WO2007094842A2 (en) * 2005-12-02 2007-08-23 Genentech, Inc. Binding polypeptides and uses thereof
US20090220564A1 (en) * 2005-08-19 2009-09-03 Baumbach William R Methods of treating and preventing acute myocardial infarction
EP1931709B1 (en) * 2005-10-03 2016-12-07 Xencor, Inc. Fc variants with optimized fc receptor binding properties
US7422899B2 (en) * 2005-10-05 2008-09-09 Biogen Idec Ma Inc. Antibodies to the human prolactin receptor
CA2625998C (en) 2005-10-06 2015-12-01 Xencor, Inc. Optimized anti-cd30 antibodies
ES2577292T3 (en) 2005-11-07 2016-07-14 Genentech, Inc. Binding polypeptides with diversified VH / VL hypervariable sequences and consensus
US20070161089A1 (en) * 2005-11-08 2007-07-12 Genentech, Inc. Method of Producing Pan-Specific Antibodies
CN105859886A (en) 2005-12-02 2016-08-17 健泰科生物技术公司 Compositions and methods associated with antibodies that bind to IL-22 and IL-22R
US7763245B2 (en) 2005-12-15 2010-07-27 Genentech, Inc. Methods and compositions for targeting polyubiquitin
RU2450020C2 (en) 2006-01-05 2012-05-10 Дженентек, Инк. ANTI-EphB4 ANTIBODIES AND METHODS OF USING SAID ANTIBODIES
DE102006004871A1 (en) * 2006-02-02 2007-08-09 Wacker Chemie Ag Microbial strain useful for producing recombinant proteins comprises a gene coding for a recombinant protein and a gene that codes for a host protein and is mutated to reduce expression of the host protein
AR059851A1 (en) 2006-03-16 2008-04-30 Genentech Inc ANTIBODIES OF EGFL7 AND METHODS OF USE
EP2614839A3 (en) 2006-04-05 2015-01-28 Genentech, Inc. Method for using BOC/CDO to modulate hedgehog signaling
AR060978A1 (en) 2006-05-30 2008-07-23 Genentech Inc ANTIBODIES AND IMMUNOCATE PLAYERS AND THEIR USES
US20080199398A1 (en) * 2006-06-16 2008-08-21 Brewer H Bryan Novel Peptides That Promote Lipid Efflux
US20080206142A1 (en) * 2006-06-16 2008-08-28 Lipid Sciences, Inc. Novel Peptides That Promote Lipid Efflux
US20080227686A1 (en) * 2006-06-16 2008-09-18 Lipid Sciences, Inc. Novel Peptides that Promote Lipid Efflux
DK2383297T5 (en) 2006-08-14 2022-07-04 Xencor Inc Optimized antibodies directed against CD19
WO2008036688A2 (en) 2006-09-18 2008-03-27 Xencor, Inc. Optimized antibodies that target hm1.24
EP1903115B1 (en) * 2006-09-22 2011-03-09 Wacker Chemie AG Process for the fermentative production of antibodies
WO2008039843A2 (en) * 2006-09-26 2008-04-03 Lipid Sciences, Inc. Novel peptides that promote lipid efflux
MX2009003774A (en) 2006-10-12 2009-04-22 Genentech Inc Antibodies to lymphotoxin-alpha.
SI2502938T1 (en) 2006-10-27 2015-05-29 Genentech, Inc. Antibodies and immunoconjugates and uses therefor
EP2094282A4 (en) * 2006-11-15 2010-05-05 Functional Genetics Inc Anti-tsg101 antibodies and their uses for treatment of viral infections
JP5391073B2 (en) 2006-11-27 2014-01-15 ディアデクサス インコーポレーテッド Ovr110 antibody compositions and methods of use
EP2125013A4 (en) * 2007-01-26 2010-04-07 Bioinvent Int Ab Dll4 signaling inhibitors and uses thereof
CA2676766A1 (en) 2007-02-09 2008-08-21 Genentech, Inc. Anti-robo4 antibodies and uses therefor
US7875431B2 (en) 2007-02-22 2011-01-25 Genentech, Inc. Methods for detecting inflammatory bowel disease
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
WO2008131242A1 (en) * 2007-04-18 2008-10-30 Zymogenetics, Inc. Single chain fc, methods of making and methods of treatment
US20100113355A1 (en) 2007-04-27 2010-05-06 Naresh Chennamsetty Novel antibody molecules and nucleic acids binding to fungal stress protein hsp90
WO2008154249A2 (en) * 2007-06-08 2008-12-18 Genentech, Inc. Gene expression markers of tumor resistance to her2 inhibitor treatment
US9551033B2 (en) * 2007-06-08 2017-01-24 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
US7580304B2 (en) * 2007-06-15 2009-08-25 United Memories, Inc. Multiple bus charge sharing
TW200918089A (en) 2007-07-16 2009-05-01 Genentech Inc Humanized anti-CD79b antibodies and immunoconjugates and methods of use
JP5469600B2 (en) 2007-07-16 2014-04-16 ジェネンテック, インコーポレイテッド Anti-CD79b antibody and immunoconjugate and method of use thereof
CL2008002886A1 (en) 2007-09-26 2009-12-04 Chugai Pharmaceutical Co Ltd Constant region of a human antibody; anti-interleukin-6 (yl-6) receptor antibody and pharmaceutical composition comprising it.
RS53850B2 (en) 2007-10-30 2018-07-31 Genentech Inc Antibody purification by cation exchange chromatography
SI2514436T1 (en) 2007-11-07 2018-04-30 Genentech, Inc. Il-22 for use in treating microbial disorders
KR20100097691A (en) 2007-11-12 2010-09-03 테라클론 사이언시스, 아이엔씨. Compositions and methods for the therapy and diagnosis of influenza
US20110033476A1 (en) * 2007-11-12 2011-02-10 Theraclone Sciences Inc. Compositions and methods for the therapy and diagnosis of influenza
AR069501A1 (en) 2007-11-30 2010-01-27 Genentech Inc ANTI-VEGF ANTIBODIES (VASCULAR ENDOTELIAL GROWTH FACTOR)
US20090162359A1 (en) * 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US8242247B2 (en) * 2007-12-21 2012-08-14 Hoffmann-La Roche Inc. Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
SI2808343T1 (en) 2007-12-26 2019-10-30 Xencor Inc Fc variants with altered binding to FcRn
CA2709399C (en) 2007-12-28 2021-01-19 Genentech, Inc. Anti-hedgehog antibodies
SI2657253T1 (en) 2008-01-31 2017-10-30 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
TW200942552A (en) * 2008-03-06 2009-10-16 Genentech Inc Combination therapy with c-Met and HER antagonists
AU2009223688B2 (en) 2008-03-10 2014-12-11 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of cytomegalovirus infections
EP2631302A3 (en) * 2008-03-31 2014-01-08 Genentech, Inc. Compositions and methods for treating and diagnosing asthma
CR20170001A (en) 2008-04-28 2017-08-10 Genentech Inc ANTI FACTOR D HUMANIZED ANTIBODIES
JP5986745B2 (en) 2008-07-15 2016-09-06 アカデミア シニカAcademia Sinica Glycan arrays on PTFE-like aluminum-coated glass slides and related methods
US8268314B2 (en) 2008-10-08 2012-09-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
SI2376535T1 (en) 2008-12-09 2017-07-31 F. Hoffmann-La Roche Ag Anti-pd-l1 antibodies and their use to enhance t-cell function
KR20110101212A (en) 2008-12-17 2011-09-15 제넨테크, 인크. Hepatitis c virus combination therapy
WO2010078376A2 (en) 2008-12-30 2010-07-08 Ventana Medical Systems, Inc. Fc-specific polymer-conjugated antibodies and their diagnostic use
CN104877026B (en) 2009-03-10 2019-10-25 比奥根Ma公司 Anti- BCMA antibody
SI3260136T1 (en) 2009-03-17 2021-05-31 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv) -neutralizing antibodies
ES2572728T3 (en) 2009-03-20 2016-06-02 F. Hoffmann-La Roche Ag Bispecific anti-HER antibodies
CA2754163C (en) 2009-03-25 2019-04-09 Genentech, Inc. Anti-fgfr3 antibodies and methods using same
AU2010236787A1 (en) 2009-04-01 2011-11-10 Genentech, Inc. Anti-FcRH5 antibodies and immunoconjugates and methods of use
CA2756244A1 (en) 2009-04-02 2010-10-07 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
EP2417156B1 (en) 2009-04-07 2015-02-11 Roche Glycart AG Trivalent, bispecific antibodies
WO2010118243A2 (en) 2009-04-08 2010-10-14 Genentech, Inc. Use of il-27 antagonists to treat lupus
CA2759506A1 (en) * 2009-04-23 2010-10-28 Theraclone Sciences, Inc. Granulocyte-macrophage colony-stimulating factor (gm-csf) neutralizing antibodies
AU2010249787A1 (en) 2009-05-20 2011-12-22 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
JP5705836B2 (en) 2009-05-29 2015-04-22 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Modulators for HER2 signaling in gastric cancer patients expressing HER2
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
RU2733466C2 (en) 2009-07-28 2020-10-01 Шайр Хьюман Дженетик Терапиз Compositions and methods for treating gaucher disease
BR112012002460A2 (en) 2009-08-04 2016-11-08 Hoffmann La Roche beta cell marker antibody
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
US9321823B2 (en) 2009-09-02 2016-04-26 Genentech, Inc. Mutant smoothened and methods of using the same
RU2015153109A (en) 2009-09-16 2019-01-15 Дженентек, Инк. SUPERSPIRAL AND / OR BINDING PROTEIN COMPLEXES AND THEIR APPLICATIONS
JP5889794B2 (en) 2009-10-19 2016-03-22 ジェネンテック, インコーポレイテッド Regulation of hepatocyte growth factor activator
US20110206704A1 (en) * 2009-10-19 2011-08-25 Genentech, Inc. Methods and compositions for modulating hepatocyte growth factor activator
NZ599337A (en) 2009-10-22 2013-05-31 Genentech Inc Anti-hepsin antibodies and methods using same
BR112012009409A2 (en) 2009-10-22 2017-02-21 Genentech Inc method of identifying an inhibitory substance, antagonist molecule, isolated nucleic acid, vector, host cell, method of making the molecule, composition, article of manufacture, method of inhibiting a biological activity, method of treating a pathological condition, method for detect msp in a sample and method to detect hepsin in a sample
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
RU2585488C2 (en) 2009-11-05 2016-05-27 Дженентек, Инк. Methods and composition for secretion of heterologous polypeptides
EP2504361A1 (en) 2009-11-26 2012-10-03 F. Hoffmann-La Roche AG Marker protein for type 2 diabetes
AR079217A1 (en) 2009-11-30 2012-01-04 Genentech Inc COMPOSITIONS AND METHODS FOR DIAGNOSIS AND TUMOR TREATMENT
WO2011066511A1 (en) 2009-11-30 2011-06-03 The U.S.A., As Represented By The Secretary Department Of Health And Human Services Synthetic apoa-1 mimetic amphipathic peptides and methods of use thereof
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
TWI505836B (en) 2009-12-11 2015-11-01 Genentech Inc Anti-vegf-c antibodies and methods using same
KR101989628B1 (en) 2009-12-21 2019-06-14 제넨테크, 인크. Antibody formulation
SI2516465T1 (en) 2009-12-23 2016-08-31 F. Hoffmann-La Roche Ag Anti-bv8 antibodies and uses thereof
US8362210B2 (en) 2010-01-19 2013-01-29 Xencor, Inc. Antibody variants with enhanced complement activity
JP5981853B2 (en) 2010-02-18 2016-08-31 ジェネンテック, インコーポレイテッド Neuregulin antagonists and their use in the treatment of cancer
MX2012009215A (en) 2010-02-23 2012-11-23 Genentech Inc Compositions and methods for the diagnosis and treatment of tumor.
WO2011106634A2 (en) 2010-02-26 2011-09-01 Life Technologies Corporation Modified proteins and methods of making and using same
NZ602040A (en) 2010-03-24 2014-12-24 Genentech Inc Anti-lrp6 antibodies
AR080794A1 (en) 2010-03-26 2012-05-09 Hoffmann La Roche BIVING SPECIFIC ANTIBODIES ANTI-VEGF / ANTI-ANG-2
TW201138821A (en) 2010-03-26 2011-11-16 Roche Glycart Ag Bispecific antibodies
WO2011130332A1 (en) 2010-04-12 2011-10-20 Academia Sinica Glycan arrays for high throughput screening of viruses
WO2011133931A1 (en) 2010-04-22 2011-10-27 Genentech, Inc. Use of il-27 antagonists for treating inflammatory bowel disease
ES2617777T5 (en) 2010-04-23 2022-10-13 Hoffmann La Roche Production of heteromultimeric proteins
MA34291B1 (en) 2010-05-03 2013-06-01 Genentech Inc COMPOSITIONS AND METHODS FOR DIAGNOSING AND TREATING A TUMOR
CA2835489C (en) 2010-05-10 2018-03-06 Chi-Huey Wong Zanamivir phosphonate congeners with anti-influenza activity and determining oseltamivir susceptibility of influenza viruses
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
BR112012029866A2 (en) 2010-06-03 2017-03-07 Genentech Inc method for determining the presence of a steap-1 protein
RU2577986C2 (en) 2010-06-18 2016-03-20 Дженентек, Инк. Antibodies against axl and their application
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
NZ605449A (en) 2010-07-09 2015-03-27 Genentech Inc Anti-neuropilin antibodies and methods of use
AR082163A1 (en) 2010-07-15 2012-11-14 Hoffmann La Roche SPECIFICALLY BINDING ANTIBODIES OF THE HUMAN TSLPR AND METHODS OF USING THEMSELVES
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
CA2805564A1 (en) 2010-08-05 2012-02-09 Stefan Jenewein Anti-mhc antibody anti-viral cytokine fusion protein
JP2013540701A (en) 2010-08-12 2013-11-07 セラクローン サイエンシーズ, インコーポレイテッド Anti-hemagglutinin antibody composition and method of use thereof
SG187746A1 (en) 2010-08-13 2013-03-28 Roche Glycart Ag Anti-fap antibodies and methods of use
BR112013002444A2 (en) 2010-08-13 2016-05-24 Roche Glycart Ag isolated antibody, polynucleotide and polypeptide, composition, vector, host cell, antibody conjugate, pharmaceutical formulation, use of the antibody, methods of producing an antibody, treating an individual, inducing cell lysis of a tumor cell and diagnosing a disease in an individual
WO2012025530A1 (en) 2010-08-24 2012-03-01 F. Hoffmann-La Roche Ag Bispecific antibodies comprising a disulfide stabilized - fv fragment
CA2805054A1 (en) 2010-08-25 2012-03-01 F. Hoffmann-La Roche Ag Antibodies against il-18r1 and uses thereof
PT3556396T (en) 2010-08-31 2022-07-04 Scripps Research Inst Human immunodeficiency virus (hiv)-neutralizing antibodies
WO2012047968A2 (en) 2010-10-05 2012-04-12 Genentech, Inc. Mutant smoothened and methods of using the same
JP6014596B2 (en) * 2010-11-09 2016-10-25 メディミューン,エルエルシー Antibody scaffold for homogeneous conjugation
WO2012064836A1 (en) 2010-11-10 2012-05-18 Genentech, Inc. Methods and compositions for neural disease immunotherapy
EP2643353A1 (en) 2010-11-24 2013-10-02 Novartis AG Multispecific molecules
AU2011343570B2 (en) 2010-12-16 2016-11-03 Genentech, Inc. Diagnosis and treatments relating to TH2 inhibition
MX345519B (en) 2010-12-20 2017-02-01 Genentech Inc Anti-mesothelin antibodies and immunoconjugates.
MA34818B1 (en) 2010-12-22 2014-01-02 Genentech Inc ANTI-PCSK9 ANTIBODIES AND METHODS OF USE
SG191153A1 (en) 2010-12-23 2013-07-31 Hoffmann La Roche Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
WO2012092539A2 (en) 2010-12-31 2012-07-05 Takeda Pharmaceutical Company Limited Antibodies to dll4 and uses thereof
EP2661282A1 (en) 2011-01-03 2013-11-13 F.Hoffmann-La Roche Ag A pharmaceutical composition of a complex of an anti-dig antibody and digoxigenin that is conjugated to a peptide
US10689447B2 (en) 2011-02-04 2020-06-23 Genentech, Inc. Fc variants and methods for their production
CA2825064C (en) 2011-02-04 2022-08-30 Genentech, Inc. Fc variants and methods for their production
AU2012217867A1 (en) 2011-02-14 2013-09-05 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
CN103403025B (en) 2011-02-28 2016-10-12 弗·哈夫曼-拉罗切有限公司 Monovalent antigen binding protein
ES2549638T3 (en) 2011-02-28 2015-10-30 F. Hoffmann-La Roche Ag Antigen binding proteins
EP2685968A1 (en) 2011-03-15 2014-01-22 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
PT2691417T (en) 2011-03-29 2018-10-31 Roche Glycart Ag Antibody fc variants
JP2014516511A (en) 2011-04-07 2014-07-17 ジェネンテック, インコーポレイテッド Anti-FGFR4 antibody and method of use
JP2014514313A (en) 2011-04-20 2014-06-19 ロシュ グリクアート アクチェンゲゼルシャフト Methods and constructs for pH-dependent passage of the blood brain barrier
WO2012146630A1 (en) 2011-04-29 2012-11-01 F. Hoffmann-La Roche Ag N-terminal acylated polypeptides, methods for their production and uses thereof
JP5987053B2 (en) 2011-05-12 2016-09-06 ジェネンテック, インコーポレイテッド Multiple reaction monitoring LC-MS / MS method for detecting therapeutic antibodies in animal samples using framework signature peptides
WO2012158704A1 (en) 2011-05-16 2012-11-22 Genentech, Inc. Fgfr1 agonists and methods of use
AR086924A1 (en) 2011-06-15 2014-01-29 Hoffmann La Roche HUMAN EPO ANTI-RECEIVER ANTIBODIES AND THE METHODS FOR USE
KR20140041549A (en) 2011-06-15 2014-04-04 에프. 호프만-라 로슈 아게 Antibody binding to abca1 polypeptide
SG195077A1 (en) 2011-06-22 2013-12-30 Hoffmann La Roche Removal of target cells by circulating virus-specific cytotoxic t-cells using mhc class i comprising complexes
WO2013003680A1 (en) 2011-06-30 2013-01-03 Genentech, Inc. Anti-c-met antibody formulations
JP2013040160A (en) 2011-07-01 2013-02-28 Genentech Inc Use of anti-cd83 agonist antibody for treating autoimmune disease
WO2013019722A1 (en) 2011-08-01 2013-02-07 Massachusetts Institute Of Technology Photoluminescent nanostructure-based sensors
MX2014001766A (en) 2011-08-17 2014-05-01 Genentech Inc Neuregulin antibodies and uses thereof.
US9309306B2 (en) 2011-08-23 2016-04-12 Roche Glycart Ag Anti-MCSP antibodies
US8822651B2 (en) 2011-08-30 2014-09-02 Theraclone Sciences, Inc. Human rhinovirus (HRV) antibodies
KR20140068062A (en) 2011-09-15 2014-06-05 제넨테크, 인크. Methods of promoting differentiation
MX2014002996A (en) 2011-09-23 2014-05-28 Roche Glycart Ag Bispecific anti-egfr/anti igf-1r antibodies.
EP3418306B1 (en) 2011-10-11 2023-12-06 F. Hoffmann-La Roche AG Improved assembly of bispecific antibodies
KR102102862B1 (en) 2011-10-14 2020-04-22 제넨테크, 인크. ANTI-HtrA1 ANTIBODIES AND METHODS OF USE
KR20140084164A (en) 2011-10-15 2014-07-04 제넨테크, 인크. Scd1 antagonists for treating cancer
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
WO2013063229A1 (en) 2011-10-25 2013-05-02 The Regents Of The University Of Michigan Her2 targeting agent treatment in non-her2-amplified cancers having her2 expressing cancer stem cells
BR112014010009A2 (en) 2011-10-26 2017-04-25 Univ California "cd44-binding antibody, its production methods and uses in the treatment or prevention of hematologic malignancy or chronic lymphocytic leukemia, antibody targeting method, detection kit, as well as pharmaceutical composition, nucleic acid molecule and expression vector"
AU2012328980A1 (en) 2011-10-28 2014-04-24 Genentech, Inc. Therapeutic combinations and methods of treating melanoma
MX363226B (en) 2011-10-31 2019-03-15 Genentech Inc Antibody formulations.
BR112014012005A2 (en) 2011-11-21 2017-12-19 Genentech Inc compositions, methods, pharmaceutical formulation and article
SG11201402711SA (en) 2011-11-29 2014-06-27 Genentech Inc Compositions and methods for prostate cancer analysis
CA2857114A1 (en) 2011-11-30 2013-06-06 Genentech, Inc. Erbb3 mutations in cancer
BR112014013205A2 (en) 2011-12-01 2020-10-27 Protevobio, Inc. fusion protein, its use and production method, pharmaceutical composition, nucleic acid, and kit
US9757458B2 (en) 2011-12-05 2017-09-12 Immunomedics, Inc. Crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in hematopoietic cancer cells
CA2853138A1 (en) 2011-12-05 2013-06-13 Immunomedics, Inc. Therapeutic use of anti-cd22 antibodies for inducing trogocytosis
EP2788024A1 (en) 2011-12-06 2014-10-15 F.Hoffmann-La Roche Ag Antibody formulation
WO2013083810A1 (en) 2011-12-09 2013-06-13 F. Hoffmann-La Roche Ag Identification of non-responders to her2 inhibitors
KR20140107295A (en) 2011-12-22 2014-09-04 에프. 호프만-라 로슈 아게 Full length antibody display system for eukaryotic cells and its use
PL2794651T3 (en) 2011-12-22 2022-12-27 F.Hoffmann-La Roche Ag Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides
KR102280111B1 (en) 2011-12-22 2021-07-21 에프. 호프만-라 로슈 아게 Expression vector organization, novel production cell generation methods and their use for the recombinant production of polypeptides
WO2013091903A1 (en) 2011-12-22 2013-06-27 Novo Nordisk A/S Anti-crac channel antibodies
AR089434A1 (en) 2011-12-23 2014-08-20 Genentech Inc PROCEDURE TO PREPARE FORMULATIONS WITH HIGH CONCENTRATION OF PROTEINS
WO2013106489A1 (en) 2012-01-09 2013-07-18 The Scripps Research Institute Humanized antibodies with ultralong cdr3s
WO2013106485A2 (en) 2012-01-09 2013-07-18 The Scripps Research Institute Ultralong complementarity determining regions and uses thereof
CN104168920A (en) 2012-01-18 2014-11-26 霍夫曼-拉罗奇有限公司 Methods of using FGF19 modulators
JP6242813B2 (en) 2012-01-18 2017-12-06 ジェネンテック, インコーポレイテッド Anti-LRP5 antibody and method of use
WO2013116287A1 (en) 2012-01-31 2013-08-08 Genentech, Inc. Anti-ig-e m1' antibodies and methods using same
KR20140127854A (en) 2012-02-10 2014-11-04 제넨테크, 인크. Single-chain antibodies and other heteromultimers
BR112014019741A2 (en) 2012-02-11 2020-12-22 Genentech, Inc USES OF AN ANTAGONIST OF THE WNT VIA, USE OF ANTI-CANCER THERAPY, METHOD OF IDENTIFICATION OF AN INDIVIDUAL WITH CANCER, METHODS FOR PREVENTING, METHOD OF INHIBITION OF A CANCER CELL PROLIFERATION, USE OF AN ANGONIST ANTAGONIST TRANSLOCATION OF ISOLATED R-SPONDINA
JP6152120B2 (en) 2012-02-15 2017-06-21 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Affinity chromatography based on Fc receptors
WO2013131866A1 (en) 2012-03-08 2013-09-12 F. Hoffmann-La Roche Ag Abeta antibody formulation
JP2015514710A (en) 2012-03-27 2015-05-21 ジェネンテック, インコーポレイテッド Diagnosis and treatment of HER3 inhibitors
BR112014024023A2 (en) 2012-03-28 2017-07-18 Genentech Inc anti-hcmv idiotypic antibodies and their uses
AR090549A1 (en) 2012-03-30 2014-11-19 Genentech Inc ANTI-LGR5 AND IMMUNOCATE PLAYERS
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
CN104245937B (en) 2012-04-17 2021-09-21 弗·哈夫曼-拉罗切有限公司 Methods of expressing polypeptides using modified nucleic acids
RU2014148162A (en) 2012-05-01 2016-06-20 Дженентек, Инк. ANTI-PMEL17 ANTIBODIES AND THEIR IMMUNO CONJUGATES
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
WO2013177470A1 (en) 2012-05-23 2013-11-28 Genentech, Inc. Selection method for therapeutic agents
CN104603149B (en) 2012-05-24 2017-06-30 万机集团有限公司 The composition related to prevention and treatment rabies infection and method
CN104364266A (en) 2012-06-15 2015-02-18 霍夫曼-拉罗奇有限公司 Anti-PCSK9 antibodies, formulations, dosing, and methods of use
WO2013192131A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Incretin receptor ligand polypeptide fc-region fusion polypeptides and conjugates with altered fc-effector function
BR112014029888A2 (en) 2012-06-27 2020-05-12 Hoffmann La Roche METHODS OF PRODUCTION OF AN ANTIBODY, DETERMINATION OF A COMBINATION OF BINDING SITES AND TREATMENT OF AN INDIVIDUAL WITH CANCER, PHARMACEUTICAL FORMULATION, ANTIBODY AND USE OF AN ANTIBODY
RU2015100656A (en) 2012-06-27 2016-08-20 Ф. Хоффманн-Ля Рош Аг METHOD FOR PRODUCING ANTIBODY FC-FRAGMENT CONNECTING, INCLUDING AT LEAST ONE CONNECTING GROUP, WHICH SPECIALLY RELATED TO THE TARGET, AND THEIR APPLICATION
WO2014001324A1 (en) 2012-06-27 2014-01-03 Hoffmann-La Roche Ag Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
ES2604012T3 (en) 2012-07-04 2017-03-02 F. Hoffmann-La Roche Ag Covalently bound antigen-antibody conjugates
CA2872192A1 (en) 2012-07-04 2014-01-09 F. Hoffmann-La Roche Ag Anti-biotin antibodies and methods of use
MX353951B (en) 2012-07-04 2018-02-07 Hoffmann La Roche Anti-theophylline antibodies and methods of use.
CN110042114A (en) 2012-07-05 2019-07-23 弗·哈夫曼-拉罗切有限公司 Expression and excretory system
SG11201500087VA (en) 2012-07-09 2015-02-27 Genentech Inc Immunoconjugates comprising anti-cd22 antibodies
SG11201500096YA (en) 2012-07-09 2015-02-27 Genentech Inc Immunoconjugates comprising anti - cd79b antibodies
TW201408698A (en) 2012-07-09 2014-03-01 Genentech Inc Anti-CD79b antibodies and immunoconjugates
CA2874904A1 (en) 2012-07-09 2014-01-16 Genentech, Inc. Immunoconjugates comprising anti-cd22 antibodies
HUE056217T2 (en) 2012-07-13 2022-02-28 Roche Glycart Ag Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases
BR112015002263A2 (en) 2012-08-02 2017-12-12 Hoffmann La Roche fusion polypeptide, dimeric fusion polypeptide, method for producing a soluble fc receptor, use of an immobilized fusion polypeptide and pharmaceutical composition
AU2013306098A1 (en) 2012-08-18 2015-02-12 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
WO2014031762A1 (en) 2012-08-21 2014-02-27 Academia Sinica Benzocyclooctyne compounds and uses thereof
WO2014041072A1 (en) 2012-09-14 2014-03-20 F. Hoffmann-La Roche Ag Method for the production and selection of molecules comprising at least two different entities and uses thereof
EP2898086B1 (en) 2012-09-19 2018-11-14 F.Hoffmann-La Roche Ag Methods and compositions for preventing norleucine misincorporation into proteins
CA2884431A1 (en) 2012-11-08 2014-05-15 F. Hoffmann-La Roche Ag Her3 antigen binding proteins binding to the beta-hairpin of her3
WO2014078268A2 (en) 2012-11-13 2014-05-22 Genentech, Inc. Anti-hemagglutinin antibodies and methods of use
MX363188B (en) 2012-11-30 2019-03-13 Hoffmann La Roche Identification of patients in need of pd-l1 inhibitor cotherapy.
US9353150B2 (en) 2012-12-04 2016-05-31 Massachusetts Institute Of Technology Substituted pyrazino[1′,2′:1 ,5]pyrrolo[2,3-b]-indole-1,4-diones for cancer treatment
US10137196B2 (en) 2012-12-13 2018-11-27 Immunomedics, Inc. Dosages of immunoconjugates of antibodies and SN-38 for improved efficacy and decreased toxicity
US9931417B2 (en) 2012-12-13 2018-04-03 Immunomedics, Inc. Antibody-SN-38 immunoconjugates with a CL2A linker
US9492566B2 (en) 2012-12-13 2016-11-15 Immunomedics, Inc. Antibody-drug conjugates and uses thereof
US9107960B2 (en) 2012-12-13 2015-08-18 Immunimedics, Inc. Antibody-SN-38 immunoconjugates with a CL2A linker
US10744129B2 (en) 2012-12-13 2020-08-18 Immunomedics, Inc. Therapy of small-cell lung cancer (SCLC) with a topoisomerase-I inhibiting antibody-drug conjugate (ADC) targeting Trop-2
HRP20220399T1 (en) 2012-12-13 2022-05-13 Immunomedics, Inc. Dosages of immunoconjugates of antibodies and sn-38 for improved efficacy and decreased toxicity
US10413539B2 (en) 2012-12-13 2019-09-17 Immunomedics, Inc. Therapy for metastatic urothelial cancer with the antibody-drug conjugate, sacituzumab govitecan (IMMU-132)
US10206918B2 (en) 2012-12-13 2019-02-19 Immunomedics, Inc. Efficacy of anti-HLA-DR antiboddy drug conjugate IMMU-140 (hL243-CL2A-SN-38) in HLA-DR positive cancers
JP6475167B2 (en) 2012-12-21 2019-02-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Multifunctional protein containing disulfide-linked multivalent MHC class I
WO2014107739A1 (en) 2013-01-07 2014-07-10 Eleven Biotherapeutics, Inc. Antibodies against pcsk9
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
CN105143271A (en) 2013-02-08 2015-12-09 Irm责任有限公司 Specific sites for modifying antibodies to make immunoconjugates
CA2896259A1 (en) 2013-02-26 2014-09-04 Roche Glycart Ag Anti-mcsp antibodies
CN110075293A (en) 2013-03-13 2019-08-02 霍夫曼-拉罗奇有限公司 Aoxidize reduced preparaton
US10653779B2 (en) 2013-03-13 2020-05-19 Genentech, Inc. Formulations with reduced oxidation
HUE049707T2 (en) 2013-03-13 2020-11-30 Hoffmann La Roche Formulations with reduced oxidation
AR095398A1 (en) 2013-03-13 2015-10-14 Genentech Inc FORMULATIONS WITH REDUCED OXIDATION
BR112015022210A8 (en) 2013-03-13 2018-01-23 Genentech Inc antibody formulations
EP2968540A2 (en) 2013-03-14 2016-01-20 Genentech, Inc. Combinations of a mek inhibitor compound with an her3/egfr inhibitor compound and methods of use
WO2014159835A1 (en) 2013-03-14 2014-10-02 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
JP6527132B2 (en) 2013-03-15 2019-06-05 ジェネンテック, インコーポレイテッド Compositions and methods for diagnosis and treatment of liver cancer
US20140283157A1 (en) 2013-03-15 2014-09-18 Diadexus, Inc. Lipoprotein-associated phospholipase a2 antibody compositions and methods of use
US9441035B2 (en) 2013-03-15 2016-09-13 Genentech, Inc. Cell culture media and methods of antibody production
BR112015021521A2 (en) 2013-03-15 2017-10-10 Genentech Inc anti-crth2 antibodies and methods for their use
MX2015012872A (en) 2013-03-15 2016-02-03 Ac Immune Sa Anti-tau antibodies and methods of use.
WO2014145098A1 (en) 2013-03-15 2014-09-18 Genentech, Inc. Cell culture compositions with antioxidants and methods for polypeptide production
TR201809571T4 (en) 2013-03-15 2018-07-23 Hoffmann La Roche IL-22 polypeptides and IL-22 fc fusion proteins and methods of use.
WO2014169076A1 (en) 2013-04-09 2014-10-16 Annexon,,Inc. Methods of treatment for neuromyelitis optica
EP2992012B1 (en) 2013-04-29 2019-07-17 F.Hoffmann-La Roche Ag Human fcrn-binding modified antibodies and methods of use
CN105164158A (en) 2013-04-29 2015-12-16 豪夫迈·罗氏有限公司 Fcrn-binding abolished ANTI-IGF-1R antibodies and their use in the treatment of vascular eye diseases
RU2687043C2 (en) 2013-04-29 2019-05-06 Ф. Хоффманн-Ля Рош Аг Fc-RECEPTOR BINDING MODIFIED ASYMMETRIC ANTIBODIES AND METHODS OF USE
EP2999716A2 (en) 2013-05-20 2016-03-30 F. Hoffmann-La Roche AG Anti-transferrin receptor antibodies and methods of use
US10086054B2 (en) 2013-06-26 2018-10-02 Academia Sinica RM2 antigens and use thereof
EP3013347B1 (en) 2013-06-27 2019-12-11 Academia Sinica Glycan conjugates and use thereof
JP6462680B2 (en) 2013-07-09 2019-01-30 アネクソン,インコーポレーテッド Anti-complement factor C1q antibody and use thereof
WO2015006686A1 (en) 2013-07-12 2015-01-15 Genentech, Inc. Elucidation of ion exchange chromatography input optimization
EP3022224A2 (en) 2013-07-18 2016-05-25 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
CN105814074B (en) 2013-07-18 2020-04-21 图鲁斯生物科学有限责任公司 Humanized antibodies with ultralong complementarity determining regions
US11253606B2 (en) 2013-07-23 2022-02-22 Immunomedics, Inc. Combining anti-HLA-DR or anti-Trop-2 antibodies with microtubule inhibitors, PARP inhibitors, Bruton kinase inhibitors or phosphoinositide 3-kinase inhibitors significantly improves therapeutic outcome in cancer
EP2832854A1 (en) 2013-08-02 2015-02-04 F. Hoffmann-La Roche AG Method for improving the recombinant expression of a polypeptide by C-terminal fusion to human neprilysin
MX2016001862A (en) 2013-08-12 2016-08-03 Genentech Inc 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment.
EP3892294A1 (en) 2013-08-28 2021-10-13 AbbVie Stemcentrx LLC Site-specific antibody conjugation methods and compositions
CN105682666B (en) 2013-09-06 2021-06-01 中央研究院 Activation of human iNKT cells using glycolipids
CN105518027A (en) 2013-09-17 2016-04-20 豪夫迈·罗氏有限公司 Methods of using anti-LGR5 antibodies
EP3049437A1 (en) 2013-09-27 2016-08-03 F. Hoffmann-La Roche AG Thermus thermophilus slyd fkbp domain specific antibodies
SG11201602283UA (en) 2013-09-27 2016-04-28 Genentech Inc Anti-pdl1 antibody formulations
MX2016004579A (en) 2013-10-10 2016-12-09 Beth Israel Deaconess Medical Ct Inc Tm4sf1 binding proteins and methods of using same.
MX2016003593A (en) 2013-10-11 2016-06-02 Hoffmann La Roche Multispecific domain exchanged common variable light chain antibodies.
KR20160068855A (en) 2013-10-11 2016-06-15 제넨테크, 인크. Nsp4 inhibitors and methods of use
MX2016004802A (en) 2013-10-18 2016-07-18 Genentech Inc Anti-rsp02 and/or anti-rsp03 antibodies and their uses.
RU2016119425A (en) 2013-10-23 2017-11-28 Дженентек, Инк. METHODS FOR DIAGNOSIS AND TREATMENT OF EOSINOPHILIC DISEASES
RU2016122041A (en) 2013-11-06 2017-12-11 ЭББВИ СТЕМСЕНТРКС ЭлЭлСи NEW ANTI-CLAUDIN ANTIBODIES AND WAYS OF THEIR APPLICATION
WO2015073721A1 (en) 2013-11-13 2015-05-21 Zymeworks Inc. Monovalent antigen binding constructs targeting egfr and/or her2 and uses thereof
AU2014351996B2 (en) 2013-11-21 2020-01-02 F. Hoffmann-La Roche Ag Anti-alpha-synuclein antibodies and methods of use
MX2016006572A (en) 2013-11-27 2016-12-09 Zymeworks Inc Bispecific antigen-binding constructs targeting her2.
CN113861293A (en) 2013-12-09 2021-12-31 爱乐科斯公司 anti-Siglec-8 antibodies and methods of use thereof
CA2932476A1 (en) 2013-12-12 2015-06-18 Stemcentrx, Inc. Novel anti-dpep3 antibodies and methods of use
MA39095A1 (en) 2013-12-13 2018-08-31 Genentech Inc Anti-cd33 antibodies and immunoconjugates
JP6980384B2 (en) 2013-12-16 2021-12-15 ジェネンテック, インコーポレイテッド 1- (Chloromethyl) -2,3-dihydro-1H-benzo [E] indole dimer antibody-drug conjugate compound, and methods of use and treatment
EP3083692B1 (en) 2013-12-17 2020-02-19 F.Hoffmann-La Roche Ag Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
WO2015095410A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
CA2934028A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
US10137170B2 (en) 2013-12-20 2018-11-27 Indiana University Research And Technology Corporation Lipidated incretin receptor ligand human immunoglobulin Fc-region fusion polypeptides
PL3083680T3 (en) 2013-12-20 2020-06-29 F. Hoffmann-La Roche Ag Humanized anti-tau(ps422) antibodies and methods of use
TWI728373B (en) 2013-12-23 2021-05-21 美商建南德克公司 Antibodies and methods of use
EP3089996B1 (en) 2014-01-03 2021-07-28 F. Hoffmann-La Roche AG Bispecific anti-hapten/anti-blood brain barrier receptor antibodies, complexes thereof and their use as blood brain barrier shuttles
JP6521464B2 (en) 2014-01-03 2019-05-29 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Covalently linked polypeptide toxin-antibody conjugates
BR112016012666A2 (en) 2014-01-03 2017-09-26 Hoffmann La Roche conjugate, antibodies, pharmaceutical formulation and uses of conjugate
EP3092251B1 (en) 2014-01-06 2021-01-20 F. Hoffmann-La Roche AG Monovalent blood brain barrier shuttle modules
WO2015107026A1 (en) 2014-01-15 2015-07-23 F. Hoffmann-La Roche Ag Fc-region variants with modified fcrn- and maintained protein a-binding properties
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
US9982041B2 (en) 2014-01-16 2018-05-29 Academia Sinica Compositions and methods for treatment and detection of cancers
WO2016114819A1 (en) 2015-01-16 2016-07-21 Academia Sinica Compositions and methods for treatment and detection of cancers
WO2015112909A1 (en) 2014-01-24 2015-07-30 Genentech, Inc. Methods of using anti-steap1 antibodies and immunoconjugates
WO2015116902A1 (en) 2014-01-31 2015-08-06 Genentech, Inc. G-protein coupled receptors in hedgehog signaling
WO2015120075A2 (en) 2014-02-04 2015-08-13 Genentech, Inc. Mutant smoothened and methods of using the same
EP3718563A1 (en) 2014-02-08 2020-10-07 F. Hoffmann-La Roche AG Methods of treating alzheimer's disease
TW202239429A (en) 2014-02-08 2022-10-16 美商建南德克公司 Methods of treating alzheimer’s disease
AU2015217271B2 (en) 2014-02-12 2018-10-25 Genentech, Inc. Anti-Jagged1 antibodies and methods of use
BR112016018980A2 (en) 2014-02-21 2017-10-10 Genentech Inc method of treating a disorder, multispecific antibody, isolated nucleic acid, host cell, methods of producing an antibody, producing an antibody half or multispecific antibody, and producing a multispecific, immunoconjugate antibody and pharmaceutical formulation
JP2017514143A (en) 2014-02-21 2017-06-01 アッヴィ・ステムセントルクス・エル・エル・シー Anti-DLL3 antibodies and drug conjugates for use in melanoma
JP6825909B2 (en) 2014-02-28 2021-02-03 アラコス インコーポレイテッド Methods and Compositions for Treating SIGLEC-8 Related Diseases
MA39746A (en) 2014-03-14 2021-04-28 Hoffmann La Roche HETEROLOGICAL POLYPEPTIDE SECRETION COMPOSITIONS AND ASSOCIATED PROCESSES
WO2015140591A1 (en) 2014-03-21 2015-09-24 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
BR112016021383A2 (en) 2014-03-24 2017-10-03 Genentech Inc METHOD TO IDENTIFY A PATIENT WITH CANCER WHO IS LIKE OR LESS LIKELY TO RESPOND TO TREATMENT WITH A CMET ANTAGONIST, METHOD TO IDENTIFY A PATIENT WITH PREVIOUSLY TREATED CANCER, METHOD TO DETERMINE THE EXPRESSION OF THE HGF BIOMARKER, ANTI-C-MET ANTAGONIST AND ITS USE, DIAGNOSTIC KIT AND ITS PREPARATION METHOD
TWI687428B (en) 2014-03-27 2020-03-11 中央研究院 Reactive labelling compounds and uses thereof
EP3632934A1 (en) 2014-03-31 2020-04-08 F. Hoffmann-La Roche AG Anti-ox40 antibodies and methods of use
WO2015153514A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
KR102376287B1 (en) 2014-04-02 2022-03-17 에프. 호프만-라 로슈 아게 Method for detecting multispecific antibody light chain mispairing
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
MX2016015162A (en) 2014-05-22 2017-03-03 Genentech Inc Anti-gpc3 antibodies and immunoconjugates.
CN106661622B (en) 2014-05-23 2020-08-21 豪夫迈·罗氏有限公司 MIT biomarkers and methods of using the same
EP3149161B1 (en) 2014-05-27 2021-07-28 Academia Sinica Fucosidase from bacteroides and methods using the same
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
AU2015267045B2 (en) 2014-05-27 2021-02-25 Academia Sinica Anti-HER2 glycoantibodies and uses thereof
CN106573971A (en) 2014-05-27 2017-04-19 中央研究院 Anti-CD20 glycoantibodies and uses thereof
TWI732738B (en) 2014-05-28 2021-07-11 中央研究院 Anti-tnf-alpha glycoantibodies and uses thereof
JP2017526618A (en) 2014-06-11 2017-09-14 ジェネンテック, インコーポレイテッド Anti-LgR5 antibody and use thereof
US20170131287A1 (en) 2014-06-13 2017-05-11 Massachusetts Institute Of Technology Saccharide responsive optical nanosensors
AR100978A1 (en) 2014-06-26 2016-11-16 Hoffmann La Roche ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME
KR20170026362A (en) 2014-06-26 2017-03-08 에프. 호프만-라 로슈 아게 Anti-brdu antibodies and methods of use
LT3167065T (en) 2014-07-09 2020-07-27 Lupin Limited Dual cistronic bacterial expression system
EP3166974A1 (en) 2014-07-11 2017-05-17 Genentech, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
EP3166627A1 (en) 2014-07-11 2017-05-17 Genentech, Inc. Notch pathway inhibition
JP6669749B2 (en) 2014-08-08 2020-03-18 アレクトル エルエルシー Anti-TREM2 antibody and method of using the same
JP2017525370A (en) 2014-08-21 2017-09-07 ザ ジェネラル ホスピタル コーポレイション Tumor necrosis factor superfamily and TNF-like ligand muteins and methods of preparing and using tumor necrosis factor superfamily and TNF-like ligand muteins
TW201617368A (en) 2014-09-05 2016-05-16 史坦森特瑞斯公司 Novel anti-MFI2 antibodies and methods of use
WO2016040369A2 (en) 2014-09-08 2016-03-17 Academia Sinica HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS
EP3191134B1 (en) 2014-09-12 2019-11-20 Genentech, Inc. Anthracycline disulfide intermediates, antibody-drug conjugates and methods
US9751946B2 (en) 2014-09-12 2017-09-05 Genentech, Inc. Anti-CLL-1 antibodies and immunoconjugates
EP3191518B1 (en) 2014-09-12 2020-01-15 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
EA201790545A1 (en) 2014-09-12 2017-07-31 Дженентек, Инк. ANTIBODIES AND IMMUNOCONJUGATES AGAINST HER2
BR112017004393A2 (en) 2014-09-15 2018-02-27 Genentech Inc antibody formulations
JP6730261B2 (en) 2014-09-17 2020-07-29 ジェネンテック, インコーポレイテッド Immune complex containing anti-HER2 antibody
PL3262071T3 (en) 2014-09-23 2020-08-10 F. Hoffmann-La Roche Ag Method of using anti-cd79b immunoconjugates
WO2016061389A2 (en) 2014-10-16 2016-04-21 Genentech, Inc. Anti-alpha-synuclein antibodies and methods of use
CA2966523A1 (en) 2014-11-03 2016-05-12 Genentech, Inc. Assays for detecting t cell immune subsets and methods of use thereof
CN114381521A (en) 2014-11-03 2022-04-22 豪夫迈·罗氏有限公司 Methods and biomarkers for efficacy prediction and assessment of OX40 agonist treatment
RU2020141422A (en) 2014-11-05 2021-01-13 Дженентек, Инк. METHODS FOR OBTAINING TWO-STRAIN PROTEINS IN BACTERIA
KR102626877B1 (en) 2014-11-05 2024-01-19 애넥슨, 인코포레이티드 Humanized Anti-Complement Factor C1Q Antibodies and Uses Thereof
CA2966558C (en) 2014-11-05 2024-03-12 Genentech, Inc. Methods of producing two chain proteins in bacteria
CA2961439A1 (en) 2014-11-05 2016-05-12 Genentech, Inc. Anti-fgfr2/3 antibodies and methods using same
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
AR102522A1 (en) 2014-11-06 2017-03-08 Hoffmann La Roche FC REGION VARIATIONS WITH MODIFIED PROPERTIES OF UNION TO FCRN AND PROTEIN A
CA2960797A1 (en) 2014-11-06 2016-05-12 F. Hoffmann-La Roche Ag Fc-region variants with modified fcrn-binding and methods of use
EP3552488A1 (en) 2014-11-10 2019-10-16 F. Hoffmann-La Roche AG Animal model for nephropathy and agents for treating the same
CR20170240A (en) 2014-11-10 2018-04-03 Genentech Inc ANTI-INTERLEUCINA-33 ANTIBODIES AND THEIR USES
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2016081639A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Antibodies against bace1 and use thereof for neural disease immunotherapy
US11008403B2 (en) 2014-11-19 2021-05-18 Genentech, Inc. Anti-transferrin receptor / anti-BACE1 multispecific antibodies and methods of use
US10508151B2 (en) 2014-11-19 2019-12-17 Genentech, Inc. Anti-transferrin receptor antibodies and methods of use
RU2017123283A (en) 2014-12-01 2019-01-09 Пфенекс Инк. MERGANIZING PARTNERS FOR PEPTIDES
EP3227332B1 (en) 2014-12-03 2019-11-06 F.Hoffmann-La Roche Ag Multispecific antibodies
US9975949B2 (en) 2014-12-05 2018-05-22 Genentech, Inc. Anti-CD79b antibodies and methods of use
RU2017120039A (en) 2014-12-10 2019-01-10 Дженентек, Инк. ANTIBODIES TO HEMATOENCEPHALIC BARRIER RECEPTORS AND METHODS OF APPLICATION
MX2017007503A (en) 2014-12-17 2017-10-04 Hoffmann La Roche Novel methods for enzyme mediated polypeptide conjugation using sortase.
BR112017011170A2 (en) 2014-12-18 2018-02-27 Hoffmann La Roche method for determining the complement-dependent cytotoxicity of a composition
RU2746356C2 (en) 2014-12-19 2021-04-12 Чугаи Сейяку Кабусики Кайся C5 antibodies and their application methods
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
WO2016117346A1 (en) 2015-01-22 2016-07-28 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
EP3248005B1 (en) 2015-01-24 2020-12-09 Academia Sinica Novel glycan conjugates and methods of use thereof
WO2016118961A1 (en) 2015-01-24 2016-07-28 Academia Sinica Cancer markers and methods of use thereof
AU2016211176B2 (en) 2015-01-30 2021-01-28 Academia Sinica; Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US10330683B2 (en) 2015-02-04 2019-06-25 Genentech, Inc. Mutant smoothened and methods of using the same
KR20170110129A (en) 2015-02-05 2017-10-10 추가이 세이야쿠 가부시키가이샤 Antibodies comprising ionic concentration dependent antigen binding domains, Fc region variants, antibodies that bind to IL-8, and their use
EP3636749B1 (en) 2015-03-06 2022-04-27 F. Hoffmann-La Roche AG Ultrapurified dsbc and methods of making and using the same
MX2017011486A (en) 2015-03-16 2018-06-15 Genentech Inc Methods of detecting and quantifying il-13 and uses in diagnosing and treating th2-associated diseases.
EP3280441B1 (en) 2015-04-07 2021-09-29 Alector LLC Anti-sortilin antibodies and methods of use thereof
CN107709364A (en) 2015-04-07 2018-02-16 豪夫迈·罗氏有限公司 Antigen binding complex and application method with agonist activity
CA2982657A1 (en) 2015-04-17 2016-10-20 Elsalys Biotech Anti-tyro3 antibodies and uses thereof
CN108064343B (en) 2015-04-21 2021-07-09 基因泰克公司 Compositions and methods for prostate cancer analysis
EP3286224A4 (en) 2015-04-22 2018-11-14 Immunomedics, Inc. Isolation, detection, diagnosis and/or characterization of circulating trop-2-positive cancer cells
JP7044553B2 (en) 2015-04-24 2022-03-30 ジェネンテック, インコーポレイテッド How to identify bacteria containing bound polypeptides
JP2018520642A (en) 2015-05-01 2018-08-02 ジェネンテック, インコーポレイテッド Mask anti-CD3 antibody and method of use thereof
EP4238994A3 (en) 2015-05-11 2024-02-07 F. Hoffmann-La Roche AG Compositions and methods of treating lupus nephritis
WO2016191750A1 (en) 2015-05-28 2016-12-01 Genentech, Inc. Cell-based assay for detecting anti-cd3 homodimers
EP3302563A1 (en) 2015-05-29 2018-04-11 H. Hoffnabb-La Roche Ag Humanized anti-ebola virus glycoprotein antibodies and methods of use
WO2016196381A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Pd-l1 promoter methylation in cancer
CN107810012A (en) 2015-06-02 2018-03-16 豪夫迈·罗氏有限公司 Use the composition and method of the anti-Antybody therapy sacred diseases of IL 34
CN107849124B (en) 2015-06-05 2021-09-24 基因泰克公司 anti-TAU antibodies and methods of use
CA2988420A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
EP3303399A1 (en) 2015-06-08 2018-04-11 H. Hoffnabb-La Roche Ag Methods of treating cancer using anti-ox40 antibodies
JP7376977B2 (en) 2015-06-12 2023-11-09 アレクトル エルエルシー Anti-CD33 antibody and method of use thereof
EP3307779A2 (en) 2015-06-12 2018-04-18 Alector LLC Anti-cd33 antibodies and methods of use thereof
JP2018524295A (en) 2015-06-15 2018-08-30 ジェネンテック, インコーポレイテッド Antibodies and immune complexes
WO2016204966A1 (en) 2015-06-16 2016-12-22 Genentech, Inc. Anti-cd3 antibodies and methods of use
CN107847568B (en) 2015-06-16 2022-12-20 豪夫迈·罗氏有限公司 anti-CLL-1 antibodies and methods of use
TWI731861B (en) 2015-06-16 2021-07-01 美商建南德克公司 HUMANIZED AND AFFINITY MATURED ANTIBODIES TO FcRH5 AND METHODS OF USE
MX2017016353A (en) 2015-06-17 2018-05-02 Genentech Inc Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes.
JP2018524312A (en) 2015-06-17 2018-08-30 ジェネンテック, インコーポレイテッド Anti-HER2 antibody and method of use
JP6846362B2 (en) 2015-06-17 2021-03-24 アラコス インコーポレイテッド Methods and Compositions for Treating Fibrous Diseases
DK3313879T3 (en) 2015-06-24 2022-03-14 Hoffmann La Roche Anti-transferrin receptor antibodies with adapted affinity
EP3313877B1 (en) 2015-06-24 2020-06-03 H. Hoffnabb-La Roche Ag Humanized anti-tau(ps422) antibodies and methods of use
US10195175B2 (en) 2015-06-25 2019-02-05 Immunomedics, Inc. Synergistic effect of anti-Trop-2 antibody-drug conjugate in combination therapy for triple-negative breast cancer when used with microtubule inhibitors or PARP inhibitors
ES2898065T3 (en) 2015-06-29 2022-03-03 Ventana Med Syst Inc Materials and Procedures for Performing Histochemical Assays for Human Proepiregulin and Amphiregulin
JP2018520153A (en) 2015-06-29 2018-07-26 ジェネンテック, インコーポレイテッド Type II anti-CD20 antibody for use in organ transplantation
DK3124976T3 (en) 2015-07-28 2018-12-10 Hoffmann La Roche IMPROVED BACTERIAL ENDOTOXIN TEST FOR THE DETERMINATION OF ENDOTOXINES
TWI797060B (en) 2015-08-04 2023-04-01 美商再生元醫藥公司 Taurine supplemented cell culture medium and methods of use
EA034582B1 (en) 2015-08-07 2020-02-21 АЭлЭкс ОНКОЛОДЖИ ИНК. Sirp-alpha variant constructs and use thereof
PE20180778A1 (en) 2015-08-07 2018-05-07 Alexo Therapeutics Inc CONSTRUCTIONS WITH A SIRP-ALPHA DOMAIN OR ITS VARIANTS
CN105384825B (en) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 A kind of bispecific chimeric antigen receptor and its application based on single domain antibody
CN107849121B (en) * 2015-08-12 2021-11-09 辉瑞公司 Blocked and unblocked antibody cysteines and their use in antibody-drug conjugation
CA2996059A1 (en) 2015-08-28 2017-03-09 Alector Llc Anti-siglec-7 antibodies and methods of use thereof
EP3341415B1 (en) 2015-08-28 2021-03-24 H. Hoffnabb-La Roche Ag Anti-hypusine antibodies and uses thereof
WO2017041027A1 (en) 2015-09-04 2017-03-09 Obi Pharma, Inc. Glycan arrays and method of use
CR20180217A (en) 2015-09-18 2018-05-03 Chugai Pharmaceutical Co Ltd ANTIBODIES THAT JOIN INTERLEUCINE 8 (IL-8) AND ITS USES
CA2999369C (en) 2015-09-22 2023-11-07 Spring Bioscience Corporation Anti-ox40 antibodies and diagnostic uses thereof
WO2017053807A2 (en) 2015-09-23 2017-03-30 Genentech, Inc. Optimized variants of anti-vegf antibodies
WO2017053906A1 (en) 2015-09-24 2017-03-30 Abvitro Llc Hiv antibody compositions and methods of use
EP3353291B1 (en) 2015-09-25 2021-06-09 F. Hoffmann-La Roche AG Novel soluble sortase a
CN108026560A (en) 2015-09-25 2018-05-11 豪夫迈·罗氏有限公司 Reacted in eutectic solvent using the acid amides that turns of sorting enzyme
JP6895953B2 (en) 2015-09-25 2021-06-30 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method for making thioester using sortase A
JP6861702B2 (en) 2015-09-25 2021-04-21 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Recombinant immunoglobulin heavy chains containing sortase-conjugated loops and their conjugates
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
CN114014936A (en) 2015-10-02 2022-02-08 豪夫迈·罗氏有限公司 Bispecific anti-human CD 20/human transferrin receptor antibodies and methods of use
KR102146319B1 (en) 2015-10-02 2020-08-25 에프. 호프만-라 로슈 아게 Bispecific antibodies specific for PD1 and TIM3
AR106189A1 (en) 2015-10-02 2017-12-20 Hoffmann La Roche BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE
AU2016329251B2 (en) 2015-10-02 2023-02-02 F. Hoffmann-La Roche Ag Anti-PD1 antibodies and methods of use
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
CN117069841A (en) 2015-10-06 2023-11-17 艾利妥 anti-TREM 2 antibodies and methods of use thereof
MA45326A (en) 2015-10-20 2018-08-29 Genentech Inc CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
US10604577B2 (en) 2015-10-22 2020-03-31 Allakos Inc. Methods and compositions for treating systemic mastocytosis
CN114891102A (en) 2015-10-29 2022-08-12 豪夫迈·罗氏有限公司 Anti-variant Fc region antibodies and methods of use
JP7060502B2 (en) 2015-10-29 2022-04-26 アレクトル エルエルシー Anti-Sigma-9 antibody and its usage
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
HUE054093T2 (en) 2015-10-30 2021-08-30 Hoffmann La Roche Anti-htra1 antibodies and methods of use thereof
ES2904553T3 (en) 2015-10-30 2022-04-05 Hoffmann La Roche Hinge Modified Antibody Fragments and Preparation Procedures
EP3368074A2 (en) 2015-10-30 2018-09-05 Hoffmann-La Roche AG Anti-factor d antibodies and conjugates
JP6998869B2 (en) 2015-11-08 2022-02-04 ジェネンテック, インコーポレイテッド Screening method for multispecific antibody
PL3390442T3 (en) 2015-12-18 2024-03-18 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
CN108430455A (en) 2015-12-30 2018-08-21 豪夫迈·罗氏有限公司 Tryptophan derivative is used for the purposes of protein preparaton
EP3397287A1 (en) 2015-12-30 2018-11-07 Genentech, Inc. Formulations with reduced degradation of polysorbate
MX2018008347A (en) 2016-01-08 2018-12-06 Hoffmann La Roche Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies.
WO2017127764A1 (en) 2016-01-20 2017-07-27 Genentech, Inc. High dose treatments for alzheimer's disease
CN109073635A (en) 2016-01-25 2018-12-21 豪夫迈·罗氏有限公司 Method for measuring T cell dependence bispecific antibody
JP6883590B2 (en) 2016-01-29 2021-06-09 ソレント・セラピューティクス・インコーポレイテッドSorrento Therapeutics, Inc. Antigen-binding protein that binds to PD-L1
CA3019952A1 (en) 2016-02-04 2017-08-10 Curis, Inc. Mutant smoothened and methods of using the same
CA3011372A1 (en) 2016-02-10 2017-08-17 Immunomedics, Inc. Combination of abcg2 inhibitors with sacituzumab govitecan (immu-132) overcomes resistance to sn-38 in trop-2 expressing cancers
US11472877B2 (en) 2016-03-04 2022-10-18 Alector Llc Anti-TREM1 antibodies and methods of use thereof
JP7157981B2 (en) 2016-03-07 2022-10-21 チャールストンファーマ, エルエルシー anti-nucleolin antibody
TW201808978A (en) 2016-03-08 2018-03-16 中央研究院 Methods for modular synthesis of N-glycans and arrays thereof
TW202248213A (en) 2016-03-15 2022-12-16 日商中外製藥股份有限公司 Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
JP6943872B2 (en) 2016-03-25 2021-10-06 ジェネンテック, インコーポレイテッド Multiple whole antibody and antibody complex drug quantification assay
US10980894B2 (en) 2016-03-29 2021-04-20 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
KR20180121786A (en) 2016-03-29 2018-11-08 오비아이 파머 인코퍼레이티드 Antibodies, pharmaceutical compositions and methods
JP6727325B2 (en) 2016-03-30 2020-07-22 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Improved sortase
WO2017180864A1 (en) 2016-04-14 2017-10-19 Genentech, Inc. Anti-rspo3 antibodies and methods of use
KR20230110820A (en) 2016-04-22 2023-07-25 오비아이 파머 인코퍼레이티드 Cancer immunotherapy by immune activation or immune modulation via globo series antigens
WO2017189279A1 (en) 2016-04-27 2017-11-02 Immunomedics, Inc. Efficacy of anti-trop-2-sn-38 antibody drug conjugates for therapy of tumors relapsed/refractory to checkpoint inhibitors
UA123323C2 (en) 2016-05-02 2021-03-17 Ф. Хоффманн-Ля Рош Аг The contorsbody - a single chain target binder
EP3454863A1 (en) 2016-05-10 2019-03-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Combinations therapies for the treatment of cancer
US10918627B2 (en) 2016-05-11 2021-02-16 Massachusetts Institute Of Technology Convergent and enantioselective total synthesis of Communesin analogs
EP3455252B1 (en) 2016-05-11 2022-02-23 F. Hoffmann-La Roche AG Modified anti-tenascin antibodies and methods of use
JP7359547B2 (en) 2016-05-17 2023-10-11 ジェネンテック, インコーポレイテッド Stromal gene signatures for diagnosis and use in immunotherapy
WO2017201449A1 (en) 2016-05-20 2017-11-23 Genentech, Inc. Protac antibody conjugates and methods of use
JP7022080B2 (en) 2016-05-27 2022-02-17 ジェネンテック, インコーポレイテッド Biochemical analytical methods for the characterization of site-specific antibody-drug conjugates
CN109311964B (en) 2016-06-06 2022-11-04 豪夫迈·罗氏有限公司 Fusion proteins with increased ocular retention for ophthalmology
EP3464280B1 (en) 2016-06-06 2021-10-06 F. Hoffmann-La Roche AG Silvestrol antibody-drug conjugates and methods of use
CN109563124A (en) 2016-06-17 2019-04-02 豪夫迈·罗氏有限公司 The purifying of multi-specificity antibody
CN109563160B (en) 2016-06-24 2023-02-28 豪夫迈·罗氏有限公司 Anti-polyubiquitin multispecific antibodies
WO2018007314A1 (en) 2016-07-04 2018-01-11 F. Hoffmann-La Roche Ag Novel antibody format
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
CN110072545A (en) 2016-07-27 2019-07-30 台湾浩鼎生技股份有限公司 Immunogenicity/therapeutic glycan pool object and application thereof
KR102528998B1 (en) 2016-07-29 2023-05-03 오비아이 파머 인코퍼레이티드 Human Antibodies, Pharmaceutical Compositions and Methods
RU2019104730A (en) 2016-07-29 2020-08-28 Чугаи Сейяку Кабусики Кайся BISPECIFIC ANTIBODY WITH INCREASED ACTIVITY, ALTERNATIVE FUNCTION OF COFACTOR FVIII
EP3494139B1 (en) 2016-08-05 2022-01-12 F. Hoffmann-La Roche AG Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
CN116251182A (en) 2016-08-05 2023-06-13 中外制药株式会社 Compositions for preventing or treating IL-8 related diseases
JP7250674B2 (en) 2016-08-08 2023-04-03 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト CANCER TREATMENT AND DIAGNOSTIC METHOD
WO2018035025A1 (en) 2016-08-15 2018-02-22 Genentech, Inc. Chromatography method for quantifying a non-ionic surfactant in a composition comprising the non-ionic surfactant and a polypeptide
JP7213549B2 (en) 2016-08-22 2023-01-27 シーエイチオー ファーマ インコーポレイテッド Antibodies, Binding Fragments, and Methods of Use
EP3510046A4 (en) 2016-09-07 2020-05-06 The Regents of the University of California Antibodies to oxidation-specific epitopes
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
CN109689682B (en) 2016-09-19 2022-11-29 豪夫迈·罗氏有限公司 Complement factor-based affinity chromatography
KR102557643B1 (en) 2016-09-23 2023-07-20 제넨테크, 인크. Use of IL-13 antagonists to treat atopic dermatitis
CN110139674B (en) 2016-10-05 2023-05-16 豪夫迈·罗氏有限公司 Method for preparing antibody drug conjugates
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
EP3532496A1 (en) 2016-10-28 2019-09-04 Banyan Biomarkers, Inc. Antibodies to ubiquitin c-terminal hydrolase l1 (uch-l1) and glial fibrillary acidic protein (gfap) and related methods
EP3532091A2 (en) 2016-10-29 2019-09-04 H. Hoffnabb-La Roche Ag Anti-mic antibidies and methods of use
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 Anti-hla-g antibodies and use thereof
JP2019535731A (en) 2016-11-21 2019-12-12 オービーアイ ファーマ,インコーポレイテッド Conjugated biological molecules, pharmaceutical compositions and methods
AU2017361887B2 (en) 2016-11-21 2019-08-15 Cureab Gmbh Anti-GP73 antibodies and immunoconjugates
CR20230163A (en) 2016-12-07 2023-07-06 Genentech Inc Anti-tau antibodies and methods of use
AU2017373884A1 (en) 2016-12-07 2019-05-30 Ac Immune Sa Anti-tau antibodies and methods of their use
JP6931058B2 (en) 2016-12-21 2021-09-01 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Reuse of enzymes in in vitro glycan engineering of antibodies
IL267352B2 (en) 2016-12-21 2023-10-01 Hoffmann La Roche Method for in vitro glycoengineering of antibodies
MX2019006266A (en) 2016-12-21 2019-08-21 Hoffmann La Roche In vitro glycoengineering of antibodies.
CN108239150A (en) 2016-12-24 2018-07-03 信达生物制药(苏州)有限公司 Anti- PCSK9 antibody and application thereof
MX2019008348A (en) 2017-01-18 2019-10-21 Genentech Inc Idiotypic antibodies against anti-pd-l1 antibodies and uses thereof.
AR110873A1 (en) 2017-02-10 2019-05-08 Genentech Inc ANTIBODIES AGAINST TRIPTASE, COMPOSITIONS OF THESE AND USES OF THESE
WO2018152496A1 (en) 2017-02-17 2018-08-23 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Compositions and methods for the diagnosis and treatment of zika virus infection
SG11201908127WA (en) 2017-03-10 2019-10-30 Hoffmann La Roche Method for producing multispecific antibodies
SG10202107829YA (en) 2017-03-22 2021-08-30 Genentech Inc Hydrogel cross-linked hyaluronic acid prodrug compositions and methods
MX2019011141A (en) 2017-03-22 2019-11-05 Genentech Inc Optimized antibody compositions for treatment of ocular disorders.
CN108623686A (en) 2017-03-25 2018-10-09 信达生物制药(苏州)有限公司 Anti- OX40 antibody and application thereof
WO2018183041A1 (en) 2017-03-27 2018-10-04 Immunomedics, Inc. Treatment of trop-2 expressing triple negative breast cancer with sacituzumab govitecan and a rad51 inhibitor
TW202400231A (en) 2017-03-28 2024-01-01 美商建南德克公司 Methods of treating neurodegenerative diseases
EP3606964A4 (en) 2017-04-03 2020-12-09 Immunomedics, Inc. Subcutaneous administration of antibody-drug conjugates for cancer therapy
MX2019011916A (en) 2017-04-05 2020-01-09 Hoffmann La Roche Anti-lag3 antibodies.
KR102346336B1 (en) 2017-04-05 2022-01-04 에프. 호프만-라 로슈 아게 Bispecific antibodies that specifically bind to PD1 and LAG3
EP3615569A1 (en) 2017-04-25 2020-03-04 The U.S.A. As Represented By The Secretary, Department Of Health And Human Services Antibodies and methods for the diagnosis and treatment of epstein barr virus infection
US20220135670A1 (en) 2017-04-27 2022-05-05 Tesaro, Inc. Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof
MX2019013137A (en) 2017-05-05 2020-07-14 Allakos Inc Methods and compositions for treating allergic ocular diseases.
US11932650B2 (en) 2017-05-11 2024-03-19 Massachusetts Institute Of Technology Potent agelastatin derivatives as modulators for cancer invasion and metastasis
CN111094335B (en) 2017-05-15 2022-08-23 罗切斯特大学 Broadly neutralizing anti-influenza monoclonal antibodies and uses thereof
US11359014B2 (en) 2017-05-16 2022-06-14 Alector Llc Anti-siglec-5 antibodies and methods of use thereof
CN111094334A (en) 2017-07-19 2020-05-01 美国卫生与公众服务部 Antibodies and methods for diagnosis and treatment of hepatitis B virus infection
ES2952982T3 (en) 2017-08-03 2023-11-07 Alector Llc Anti-TREM2 antibodies and methods of their use
CN117700548A (en) 2017-08-03 2024-03-15 艾利妥 anti-CD 33 antibodies and methods of use thereof
WO2019033043A2 (en) 2017-08-11 2019-02-14 Genentech, Inc. Anti-cd8 antibodies and uses thereof
BR112020003622A2 (en) 2017-08-21 2020-09-01 Adagene Inc. antibody heavy chain, antibody, libraries, kit, method of preparing a library, method of producing an antibody library, phage, method of generating a bispecific antibody and bispecific antibody
AU2017428934B2 (en) 2017-08-21 2023-07-20 Adagene Inc. Dynamic human antibody light chain libraries
CN111511762A (en) 2017-08-21 2020-08-07 天演药业公司 anti-CD137 molecules and uses thereof
CN109422811A (en) 2017-08-29 2019-03-05 信达生物制药(苏州)有限公司 Anti-cd 47 antibody and application thereof
PE20212205A1 (en) 2017-09-08 2021-11-18 Maverick Therapeutics Inc RESTRICTED CONDITIONALLY ACTIVATED BINDING PROTEINS
CN111315773A (en) 2017-09-08 2020-06-19 马弗里克治疗公司 Conditionally active binding moieties comprising an Fc region
MX2020002710A (en) 2017-09-29 2020-07-20 Chugai Pharmaceutical Co Ltd Multispecific antigen-binding molecule having blood coagulation factor viii (fviii) cofactor function-substituting activity, and pharmaceutical formulation containing said molecule as active ingredient.
CN111372950A (en) 2017-10-12 2020-07-03 免疫苏醒公司 VEGFR-antibody light chain fusion proteins
US10640508B2 (en) 2017-10-13 2020-05-05 Massachusetts Institute Of Technology Diazene directed modular synthesis of compounds with quaternary carbon centers
EP3700567A4 (en) 2017-10-26 2021-09-29 The Regents of The University of California Inhibition of oxidation-specific epitopes to treat ischemic reperfusion injury
CA3078676A1 (en) 2017-10-30 2019-05-09 F. Hoffmann-La Roche Ag Method for in vivo generation of multispecific antibodies from monospecific antibodies
EP3704150A1 (en) 2017-11-01 2020-09-09 F. Hoffmann-La Roche AG The compbody - a multivalent target binder
PL3704146T3 (en) 2017-11-01 2022-03-07 F. Hoffmann-La Roche Ag Trifab-contorsbody
WO2019094595A2 (en) 2017-11-09 2019-05-16 Pinteon Therapeutics Inc. Methods and compositions for the generation and use of humanized conformation-specific phosphorylated tau antibodies
EP3717517A1 (en) 2017-11-30 2020-10-07 H. Hoffnabb-La Roche Ag Anti-pd-l1 antibodies and methods of using the same for detection of pd-l1
WO2019129136A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-pd-l1 antibody and uses thereof
WO2019129137A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-lag-3 antibody and uses thereof
CN115925943A (en) 2017-12-27 2023-04-07 信达生物制药(苏州)有限公司 Anti-PD-L1 antibodies and uses thereof
KR20200104333A (en) 2017-12-28 2020-09-03 난징 레전드 바이오테크 씨오., 엘티디. Single-domain antibodies to TIGIT and variants thereof
US11440957B2 (en) 2017-12-29 2022-09-13 Alector Llc Anti-TMEM106B antibodies and methods of use thereof
CN111479588A (en) 2017-12-29 2020-07-31 豪夫迈·罗氏有限公司 Methods for improving VEGF receptor blocking selectivity of anti-VEGF antibodies
EP3735422A1 (en) 2018-01-05 2020-11-11 AC Immune SA Misfolded tdp-43 binding molecules
US11713353B2 (en) 2018-01-15 2023-08-01 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against PD-1
EP3740505A1 (en) 2018-01-16 2020-11-25 Lakepharma Inc. Bispecific antibody that binds cd3 and another target
MA51676A (en) 2018-01-26 2021-05-05 Hoffmann La Roche IL-22 FC FUSION PROTEINS AND METHODS OF USE
PT3743088T (en) 2018-01-26 2022-12-05 Hoffmann La Roche Compositions and methods of use
US11472874B2 (en) 2018-01-31 2022-10-18 Alector Llc Anti-MS4A4A antibodies and methods of use thereof
CN116041516A (en) 2018-02-01 2023-05-02 信达生物制药(苏州)有限公司 Fully human anti-B Cell Maturation Antigen (BCMA) single-chain antibody and application thereof
WO2019148444A1 (en) 2018-02-02 2019-08-08 Adagene Inc. Anti-ctla4 antibodies and methods of making and using the same
WO2019148445A1 (en) 2018-02-02 2019-08-08 Adagene Inc. Precision/context-dependent activatable antibodies, and methods of making and using the same
AU2019218959A1 (en) 2018-02-08 2020-09-03 Genentech, Inc. Bispecific antigen-binding molecules and methods of use
CN111757894A (en) 2018-02-14 2020-10-09 Abba 疗法股份公司 Anti-human PD-L2 antibody
MX2020008502A (en) 2018-02-21 2020-09-25 Genentech Inc DOSING FOR TREATMENT WITH IL-22 Fc FUSION PROTEINS.
WO2019165434A1 (en) 2018-02-26 2019-08-29 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
EP3533460A1 (en) 2018-03-02 2019-09-04 Diaccurate Therapeutic anti-spla2-gib antibodies and the uses thereof
EP3533459A1 (en) 2018-03-02 2019-09-04 Diaccurate Anti-pla2-gib antibodies and the uses thereof
CA3096764A1 (en) 2018-03-05 2019-09-12 Etablissement Francais Du Sang Recombinant single chain immunoglobulins
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
CA3093729A1 (en) 2018-03-15 2019-09-19 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to zika virus and methods of use
EP3774917A4 (en) 2018-03-30 2022-01-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies against lag-3 and uses thereof
WO2019192432A1 (en) 2018-04-02 2019-10-10 上海博威生物医药有限公司 Lymphocyte activation gene-3 (lag-3) binding antibody and use thereof
TW202011029A (en) 2018-04-04 2020-03-16 美商建南德克公司 Methods for detecting and quantifying FGF21
AR114789A1 (en) 2018-04-18 2020-10-14 Hoffmann La Roche ANTI-HLA-G ANTIBODIES AND THE USE OF THEM
AR115052A1 (en) 2018-04-18 2020-11-25 Hoffmann La Roche MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM
FR3080621B1 (en) 2018-04-26 2022-12-09 Univ Limoges NEW CLASS OF RECOMBINANT G-TYPE IMMUNOGLOBULIN: IGG5, ENCODED BY THE HUMAN HEAVY CHAIN GAMMA PSEUDO-GENE
WO2019213416A1 (en) 2018-05-02 2019-11-07 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis, prevention, and treatment of epstein barr virus infection
CA3096703A1 (en) 2018-05-03 2019-11-07 University Of Rochester Anti-influenza neuraminidase monoclonal antibodies and uses thereof
ES2955511T3 (en) 2018-05-14 2023-12-04 Werewolf Therapeutics Inc Activatable interleukin 2 polypeptides and methods of use thereof
JP2021524756A (en) 2018-05-14 2021-09-16 ウェアウルフ セラピューティクス, インコーポレイテッド Activateable cytokine polypeptides and how to use them
CA3098710A1 (en) 2018-05-25 2019-11-28 Alector Llc Anti-sirpa antibodies and methods of use thereof
WO2019235426A1 (en) 2018-06-04 2019-12-12 中外製薬株式会社 Antigen-binding molecule showing changed half-life in cytoplasm
WO2019235581A1 (en) 2018-06-06 2019-12-12 国立大学法人大阪大学 METHOD FOR TREATING AND/OR PREVENTING Regnase-1-RELATED DISEASE
WO2019236965A1 (en) 2018-06-08 2019-12-12 Alector Llc Anti-siglec-7 antibodies and methods of use thereof
WO2019244107A1 (en) 2018-06-21 2019-12-26 Daiichi Sankyo Company, Limited Compositions including cd3 antigen binding fragments and uses thereof
WO2019246557A1 (en) 2018-06-23 2019-12-26 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
US11203645B2 (en) 2018-06-27 2021-12-21 Obi Pharma, Inc. Glycosynthase variants for glycoprotein engineering and methods of use
CN112384532A (en) 2018-06-29 2021-02-19 艾利妥 anti-SIRP-beta 1 antibodies and methods of use thereof
CA3060547A1 (en) 2018-07-13 2020-01-13 Alector Llc Anti-sortilin antibodies and methods of use thereof
AU2019306543A1 (en) 2018-07-17 2021-01-28 Humabs Biomed Sa Antibodies against campylobacter species
AU2019306628A1 (en) 2018-07-20 2021-02-11 Surface Oncology, Inc. Anti-CD112R compositions and methods
SG11202100746WA (en) 2018-07-25 2021-03-30 Innovent Biologics Suzhou Co Ltd Anti-tigit antibody and use thereof
WO2020023920A1 (en) 2018-07-27 2020-01-30 Alector Llc Anti-siglec-5 antibodies and methods of use thereof
WO2020027330A1 (en) 2018-08-03 2020-02-06 中外製薬株式会社 Antigen-binding molecule containing two antigen-binding domains that are linked to each other
BR112021002130A2 (en) 2018-08-08 2021-05-04 Genentech, Inc. liquid formulation, article of manufacture or kit and method for reducing oxidation of a polypeptide
WO2020032230A1 (en) 2018-08-10 2020-02-13 中外製薬株式会社 Anti-cd137 antigen-binding molecule and utilization thereof
EP3843851A1 (en) 2018-08-31 2021-07-07 Alector LLC Anti-cd33 antibodies and methods of use thereof
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
EP4249917A3 (en) 2018-09-21 2023-11-08 F. Hoffmann-La Roche AG Diagnostic methods for triple-negative breast cancer
JP2022502088A (en) 2018-09-27 2022-01-11 エクシリオ デベロップメント, インコーポレイテッド Masked cytokine polypeptide
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
SG11202103124WA (en) 2018-10-23 2021-04-29 Glycardial Diagnostics S L Antibodies specific for glycosylated apoj and uses thereof
JP2022505450A (en) 2018-10-24 2022-01-14 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Conjugated chemical decomposition inducers and usage
JP2022512863A (en) 2018-11-02 2022-02-07 アネクソン,インコーポレーテッド Compositions and Methods for Treating Brain Injuries
AU2019375413A1 (en) 2018-11-05 2021-05-27 Genentech, Inc. Methods of producing two chain proteins in prokaryotic host cells
KR20210096559A (en) 2018-11-27 2021-08-05 이노벤트 바이오로직스 (쑤저우) 컴퍼니, 리미티드 Anti-IL-23p19 antibodies and uses thereof
MX2021006573A (en) 2018-12-06 2021-07-15 Genentech Inc Combination therapy of diffuse large b-cell lymphoma comprising an anti-cd79b immunoconjugates, an alkylating agent and an anti-cd20 antibody.
CN113227119A (en) 2018-12-10 2021-08-06 基因泰克公司 Photocrosslinked peptides for site-specific conjugation to Fc-containing proteins
WO2020132091A2 (en) 2018-12-19 2020-06-25 Humabs Biomed Sa Antibodies that neutralize hepatitis b virus and uses thereof
EP3898667A2 (en) 2018-12-20 2021-10-27 F. Hoffmann-La Roche AG Modified antibody fcs and methods of use
AU2019406712A1 (en) 2018-12-21 2021-06-17 F. Hoffmann-La Roche Ag Antibody that binds to VEGF and IL-1beta and methods of use
EP3902833A2 (en) 2018-12-26 2021-11-03 City of Hope Activatable masked anti-ctla4 binding proteins
CN113272327A (en) 2018-12-30 2021-08-17 豪夫迈·罗氏有限公司 Anti-rabbit CD19 antibodies and methods of use thereof
US11352445B2 (en) 2018-12-31 2022-06-07 Jecho Laboratories Inc. Method for preparing recombinant protein from bacterium and composition containing the same
WO2020154405A2 (en) 2019-01-22 2020-07-30 Genentech, Inc. Immunoglobulin a antibodies and methods of production and use
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
CN113710706A (en) 2019-02-27 2021-11-26 豪夫迈·罗氏有限公司 Administration for anti-TIGIT antibody and anti-CD 20 antibody or anti-CD 38 antibody treatment
US20220144949A1 (en) 2019-03-05 2022-05-12 Takeda Pharmaceutical Limited Company CONDITIONALLY ACTIVATED BINDING PROTEINS CONTAINING Fc REGIONS AND MOIETIES TARGETING TUMOR ANTIGENS
JP2022524338A (en) 2019-03-05 2022-05-02 武田薬品工業株式会社 Restrained and conditionally activated binding protein
MX2021010565A (en) 2019-03-08 2021-10-13 Genentech Inc Methods for detecting and quantifying membrane-associated proteins on extracellular vesicles.
US20220153875A1 (en) 2019-03-19 2022-05-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing antigen-binding domain of which binding activity to antigen is changed depending on mta, and library for obtaining said antigen-binding domain
WO2020214963A1 (en) 2019-04-18 2020-10-22 Genentech, Inc. Antibody potency assay
CN114364703A (en) 2019-04-19 2022-04-15 豪夫迈·罗氏有限公司 Anti-merk antibodies and methods of use thereof
TW202106876A (en) 2019-04-19 2021-02-16 日商中外製藥股份有限公司 Chimeric receptor recognizing modification site of antibody
MX2021012961A (en) 2019-04-24 2021-11-25 Heidelberg Pharma Res Gmbh Amatoxin antibody-drug conjugates and uses thereof.
BR112021020843A2 (en) 2019-04-25 2022-02-01 Hoffmann La Roche Set of heterodimeric precursor polypeptides, heterodimeric polypeptides, methods for generating a heterodimeric polypeptide and for identifying a multispecific heterodimeric polypeptide, multispecific heterodimeric polypeptide, first and second heterodimeric precursor polypeptides
EP3959237A1 (en) 2019-04-25 2022-03-02 F. Hoffmann-La Roche AG Therapeutic multispecific polypeptides activated by polypeptide chain exchange
EP3959238A1 (en) 2019-04-25 2022-03-02 F. Hoffmann-La Roche AG Activatable therapeutic multispecific polypeptides with extended half-life
JP2022536602A (en) 2019-05-14 2022-08-18 ジェネンテック, インコーポレイテッド Methods of using anti-CD79B immunoconjugates to treat follicular lymphoma
JP2022532217A (en) 2019-05-14 2022-07-13 ウェアウルフ セラピューティクス, インコーポレイテッド Separation part and how to use it
SG11202112453TA (en) 2019-05-23 2021-12-30 Ac Immune Sa Anti-tdp-43 binding molecules and uses thereof
WO2020243338A1 (en) 2019-05-31 2020-12-03 ALX Oncology Inc. Methods of treating cancer with sirp alpha fc fusion in combination with an immune checkpoint inhibitor
WO2020247054A1 (en) 2019-06-05 2020-12-10 Massachusetts Institute Of Technology Compounds, conjugates, and compositions of epipolythiodiketopiperazines and polythiodiketopiperazines and uses thereof
US20200392229A1 (en) 2019-06-11 2020-12-17 Alector Llc Methods of use of anti-sortilin antibodies
CN113950485A (en) 2019-07-10 2022-01-18 中外制药株式会社 Claudin-6 binding molecules and uses thereof
AR119382A1 (en) 2019-07-12 2021-12-15 Hoffmann La Roche PRE-TARGETING ANTIBODIES AND METHODS OF USE
JPWO2021010326A1 (en) 2019-07-12 2021-01-21
CA3145885A1 (en) 2019-07-31 2021-02-04 Jeonghoon Sun Anti-ms4a4a antibodies and methods of use thereof
TWI780464B (en) 2019-08-06 2022-10-11 香港商新旭生技股份有限公司 Antibodies that bind to pathological tau species and uses thereof
EP3786180A1 (en) 2019-08-27 2021-03-03 Diaccurate Antibodies and the uses thereof
EP4021578A1 (en) 2019-08-29 2022-07-06 VIR Biotechnology, Inc. Antibody compositions and methods for treating hepatitis b virus infection
AU2020335922A1 (en) 2019-08-29 2022-03-24 Vir Biotechnology, Inc. Compositions and methods for treatment of influenza A infection
MX2022002738A (en) 2019-09-04 2022-06-27 Genentech Inc Cd8 binding agents and uses thereof.
KR20220062304A (en) 2019-09-12 2022-05-16 제넨테크, 인크. Compositions and methods for treating lupus nephritis
US20210130492A1 (en) 2019-09-18 2021-05-06 Genentech, Inc. Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use
US11918649B2 (en) 2019-09-18 2024-03-05 Molecular Templates, Inc. PD-L1-binding molecules comprising Shiga toxin a subunit scaffolds
CA3150726A1 (en) 2019-09-20 2021-03-25 Jing Guo Anti-alpha-synuclein antibodies and methods of use thereof
CR20220127A (en) 2019-09-27 2022-05-27 Genentech Inc Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
CN114829401A (en) 2019-09-27 2022-07-29 南京金斯瑞生物科技有限公司 anti-VHH domain antibodies and uses thereof
WO2021059075A1 (en) 2019-09-27 2021-04-01 Janssen Biotech, Inc. Anti-ceacam antibodies and uses thereof
JP7413519B2 (en) 2019-10-18 2024-01-15 ジェネンテック, インコーポレイテッド Methods of using anti-CD79B immunoconjugates to treat diffuse large B-cell lymphoma
AU2020371784A1 (en) 2019-10-24 2022-06-02 Minotaur Therapeutics, Inc. Chimeric cytokine modified antibodies and methods of use thereof
US20220389103A1 (en) 2019-11-06 2022-12-08 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
CN112778413B (en) 2019-11-11 2023-09-22 珠海泰诺麦博制药股份有限公司 Antibodies against varicella zoster virus
MX2022005317A (en) 2019-11-15 2022-05-26 Hoffmann La Roche Prevention of visible particle formation in aqueous protein solutions.
CN115003699A (en) 2019-12-05 2022-09-02 艾利妥 Methods of use of anti-TREM 2 antibodies
AU2020403021A1 (en) 2019-12-12 2022-06-23 Alector Llc Methods of use of anti-CD33 antibodies
PE20221511A1 (en) 2019-12-13 2022-10-04 Genentech Inc ANTI-LY6G6D ANTIBODIES AND METHODS OF USE
BR112022011570A2 (en) 2019-12-13 2022-12-13 Alector Llc ANTI-MERTK ANTIBODIES AND METHODS OF THEIR USE
CA3164818A1 (en) 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
KR20220118527A (en) 2019-12-23 2022-08-25 제넨테크, 인크. Apolipoprotein L1-specific antibodies and methods of use
US20230058982A1 (en) 2019-12-27 2023-02-23 Chugai Seiyaku Kabushiki Kaisha Anti-ctla-4 antibody and use thereof
CN110818795B (en) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 anti-TIGIT antibodies and methods of use
BR112022013993A2 (en) 2020-01-15 2022-10-11 Trutino Biosciences Inc Cytokine prodrugs comprising a cleavable ligand
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
CN115768800A (en) 2020-01-31 2023-03-07 克利夫兰诊所基金会 Anti-mullerian hormone receptor 2 antibodies and methods of use
BR112022015374A2 (en) 2020-02-03 2022-10-11 Vir Biotechnology Inc ANTIBODIES AGAINST SARS-COV-2 AND METHODS OF USE THEREOF
CN115427453A (en) 2020-02-10 2022-12-02 上海诗健生物科技有限公司 CLDN18.2 antibodies and uses thereof
EP4105238A4 (en) 2020-02-10 2024-03-27 Shanghai Escugen Biotechnology Co Ltd Claudin 18.2 antibody and use thereof
TW202144395A (en) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 Anti-CD137 antigen-binding molecule for use in cancer treatment
WO2021173565A1 (en) 2020-02-24 2021-09-02 Alector Llc Methods of use of anti-trem2 antibodies
HUE062777T2 (en) 2020-02-26 2023-12-28 Vir Biotechnology Inc Antibodies against sars-cov-2
WO2021183849A1 (en) 2020-03-13 2021-09-16 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
EP4121163A1 (en) 2020-03-19 2023-01-25 Genentech, Inc. Isoform-selective anti-tgf-beta antibodies and methods of use
CA3169967A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Tie2-binding agents and methods of use
CN115397850A (en) 2020-03-30 2022-11-25 豪夫迈·罗氏有限公司 Antibodies that bind to VEGF and PDGF-B and methods of use thereof
EP4126937A1 (en) 2020-03-31 2023-02-08 Alector LLC Anti-mertk antibodies and methods of use thereof
JP2023519776A (en) 2020-03-31 2023-05-15 中外製薬株式会社 Methods for Producing Multispecific Antigen-Binding Molecules
CA3170570A1 (en) 2020-04-01 2021-10-07 James J. KOBIE Monoclonal antibodies against the hemagglutinin (ha) and neuraminidase (na) of influenza h3n2 viruses
CN115380210A (en) 2020-04-02 2022-11-22 中外制药株式会社 Method for analyzing impurity molecules in composition containing multispecific antigen-binding molecules
CA3172451A1 (en) 2020-04-03 2021-10-07 Robert Paul Methods of use of anti-trem2 antibodies
WO2021203053A1 (en) 2020-04-03 2021-10-07 Vir Biotechnology, Inc. Immunotherapy targeting a conserved region in sars coronaviruses
WO2021207662A1 (en) 2020-04-10 2021-10-14 Genentech, Inc. Use of il-22fc for the treatment or prevention of pneumonia, acute respiratory distress syndrome, or cytokine release syndrome
BR112022020706A2 (en) 2020-04-14 2022-11-29 Vir Biotechnology Inc ANTIBODIES AGAINST SARS-COV-2 AND METHODS OF THEIR USE
CN117003868B (en) 2020-04-17 2024-04-16 珠海泰诺麦博制药股份有限公司 Antibodies against human nerve growth factor
MX2022013173A (en) 2020-04-24 2022-11-30 Hoffmann La Roche Enzyme and pathway modulation with sulfhydryl compounds and their derivatives.
TW202206111A (en) 2020-04-24 2022-02-16 美商建南德克公司 Methods of using anti-cd79b immunoconjugates
US20230167198A1 (en) 2020-04-27 2023-06-01 The Regents Of The University Of California Isoform-independent antibodies to lipoprotein(a)
US11634477B2 (en) 2020-04-28 2023-04-25 The Rockefeller University Neutralizing anti-SARS-CoV-2 antibodies and methods of use thereof
AU2021263767A1 (en) 2020-04-30 2022-09-08 Genentech, Inc. KRas specific antibodies and uses thereof
TW202200212A (en) 2020-05-03 2022-01-01 中國大陸商聯寧(蘇州)生物製藥有限公司 Antibody-drug conjugates comprising an anti-trop-2 antibody
JP2023525039A (en) 2020-05-08 2023-06-14 ヴィア・バイオテクノロジー・インコーポレイテッド Antibodies against SARS-COV-2
JP2023520249A (en) 2020-05-15 2023-05-16 エフ. ホフマン-ラ ロシュ アーゲー Method for preventing visible particle formation in parenteral protein solutions
JP2023525898A (en) 2020-05-19 2023-06-19 エフ. ホフマン-ラ ロシュ アーゲー Use of Chelating Agents to Prevent Formation of Visible Particles in Parenteral Protein Solutions
WO2021247925A1 (en) 2020-06-03 2021-12-09 Vir Biotechnology, Inc. Structure-guided immunotherapy against sars-cov-2
US20230340081A1 (en) 2020-06-08 2023-10-26 Hoffmann-La Roche Inc. Anti-hbv antibodies and methods of use
EP4165077A1 (en) 2020-06-12 2023-04-19 VIR Biotechnology, Inc. Antibody therapies for sars-cov-2 infection
KR20230025691A (en) 2020-06-16 2023-02-22 제넨테크, 인크. Methods and compositions for treating triple negative breast cancer
EP4168118A1 (en) 2020-06-18 2023-04-26 Genentech, Inc. Treatment with anti-tigit antibodies and pd-1 axis binding antagonists
CA3182458A1 (en) 2020-06-24 2021-12-30 Laura ROSEN Engineered hepatitis b virus neutralizing antibodies and uses thereof
WO2022008468A1 (en) 2020-07-07 2022-01-13 F. Hoffmann-La Roche Ag Alternative surfactants as stabilizers for therapeutic protein formulations
CR20230076A (en) 2020-07-10 2023-03-13 Hoffmann La Roche Antibodies which bind to cancer cells and target radionuclides to said cells
CA3188134A1 (en) 2020-07-14 2022-01-20 F. Hoffmann-La Roche Ag Assays for fixed dose combinations
EP3939999A1 (en) 2020-07-14 2022-01-19 Fundación del Sector Público Estatal Centro Nacional de Investigaciones Oncológicas Carlos III (F.S.P. CNIO) Interleukin 11 receptor alpha subunit (il11ra) neutralizing antibodies and uses thereof
AU2021308653A1 (en) 2020-07-17 2023-02-16 Genentech, Inc. Anti-Notch2 antibodies and methods of use
BR112023001143A2 (en) 2020-07-21 2023-02-14 Genentech Inc CONJUGATE, COMPOUND, PHARMACEUTICAL COMPOSITION, METHODS TO TREAT A DISEASE AND REDUCE THE LEVEL OF A TARGET BRM PROTEIN IN AN INDIVIDUAL
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
IL300133A (en) 2020-07-31 2023-03-01 Genentech Inc Anti-integrin beta7 antibody formulations and devices
CA3188426A1 (en) 2020-08-07 2022-02-10 Yichin Liu Flt3 ligand fusion proteins and methods of use
TW202221026A (en) 2020-08-14 2022-06-01 瑞士商Ac 免疫有限公司 Humanized anti-TDP-43 binding molecules and uses thereof
EP4204448A2 (en) 2020-08-27 2023-07-05 cureab GmbH Anti-golph2 antibodies for macrophage and dendritic cell differentiation
KR20230061458A (en) 2020-09-04 2023-05-08 에프. 호프만-라 로슈 아게 Antibodies that bind to VEGF-A and ANG2 and methods of use
WO2022066965A2 (en) 2020-09-24 2022-03-31 Fred Hutchinson Cancer Research Center Immunotherapy targeting sox2 antigens
WO2022066973A1 (en) 2020-09-24 2022-03-31 Fred Hutchinson Cancer Research Center Immunotherapy targeting pbk or oip5 antigens
EP4217385A2 (en) 2020-09-28 2023-08-02 VIR Biotechnology, Inc. Antibodies against sars-cov-2
CN116406291A (en) 2020-10-05 2023-07-07 基因泰克公司 Administration of treatment with anti-FCRH 5/anti-CD 3 bispecific antibodies
WO2022082201A1 (en) 2020-10-16 2022-04-21 Genentech, Inc. Anti-cleaved icaspase substrate antibodies and methods of use
EP4232475A1 (en) 2020-10-20 2023-08-30 Kantonsspital St. Gallen Antibodies or antigen-binding fragments specifically binding to gremlin-1 and uses thereof
TW202233671A (en) 2020-10-20 2022-09-01 美商建南德克公司 Peg-conjugated anti-mertk antibodies and methods of use
JP2023548064A (en) 2020-11-04 2023-11-15 ジェネンテック, インコーポレイテッド Administration for treatment with anti-CD20/anti-CD3 bispecific antibody and anti-CD79B antibody drug conjugate
US20220162329A1 (en) 2020-11-04 2022-05-26 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
EP4240766A2 (en) 2020-11-04 2023-09-13 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
AR123997A1 (en) 2020-11-04 2023-02-01 Univ Rockefeller NEUTRALIZING ANTIBODIES AGAINST SARS-CoV-2
JP2023551668A (en) 2020-11-23 2023-12-12 ヴィア・バイオテクノロジー・インコーポレイテッド Broadly neutralizing antibody against influenza neuraminidase
WO2022109317A1 (en) 2020-11-23 2022-05-27 Vir Biotechnology, Inc. Anti-influenza antibodies and combinations thereof
WO2022109291A1 (en) 2020-11-23 2022-05-27 Vir Biotechnology, Inc. Antibodies against influenza a viruses
WO2022115486A1 (en) 2020-11-25 2022-06-02 Vir Biotechnology, Inc. Antibodies that bind to multiple betacoronaviruses
AU2021392039A1 (en) 2020-12-02 2023-06-29 Alector Llc Methods of use of anti-sortilin antibodies
EP4256336A1 (en) 2020-12-06 2023-10-11 ALX Oncology Inc. Multimers for reducing the interference of drugs that bind cd47 in serological assays
BR112023008265A2 (en) 2020-12-07 2024-02-06 UCB Biopharma SRL ANTIBODIES AGAINST INTERLEUKIN-22
MX2023006650A (en) 2020-12-07 2023-06-21 UCB Biopharma SRL Multi-specific antibodies and antibody combinations.
EP4259655A1 (en) 2020-12-08 2023-10-18 VIR Biotechnology, Inc. Antibodies and methods for treatment of influenza a infection
KR20230120665A (en) 2020-12-17 2023-08-17 에프. 호프만-라 로슈 아게 Anti-HLA-G Antibodies and Uses Thereof
CA3203257A1 (en) 2020-12-23 2022-06-30 Li Li Anti-b7-h3 antibody and uses thereof
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
MX2023007846A (en) 2021-01-06 2023-07-07 F Hoffmann La Roche Ag Combination therapy employing a pd1-lag3 bispecific antibody and a cd20 t cell bispecific antibody.
AU2022207615A1 (en) 2021-01-12 2023-07-13 F. Hoffmann-La Roche Ag Split antibodies which bind to cancer cells and target radionuclides to said cells
US20240115721A1 (en) 2021-01-13 2024-04-11 Memorial Sloan Kettering Cancer Center Anti-dll3 antibody-drug conjugate
KR20230146521A (en) 2021-01-13 2023-10-19 메모리얼 슬로안 케터링 캔서 센터 Antibody-pyrrolobenzodiazepine derivative conjugate
US20220227844A1 (en) 2021-01-15 2022-07-21 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies
KR20230148169A (en) 2021-01-22 2023-10-24 엘피스 바이오파마슈티컬즈 Anti-PD-L1 monoclonal antibody and interleukin-15 (IL-15), interleukin-15 receptor 15 alpha or fusion protein with interleukin-2
WO2022159842A1 (en) 2021-01-25 2022-07-28 Vir Biotechnology, Inc. Antibody combination therapies for sars-cov-2 infection
JP2024504167A (en) 2021-01-26 2024-01-30 ヴィア・バイオテクノロジー・インコーポレイテッド Antibody compositions and methods for treating hepatitis B virus infection
WO2022162587A1 (en) 2021-01-27 2022-08-04 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
CN117120084A (en) 2021-01-28 2023-11-24 维肯芬特有限责任公司 Methods and means for modulating B cell mediated immune responses
KR20230147099A (en) 2021-01-28 2023-10-20 백신벤트 게엠베하 METHOD AND MEANS FOR MODULATING B-CELL MEDIATED IMMUNE RESPONSES
WO2022162203A1 (en) 2021-01-28 2022-08-04 Vaccinvent Gmbh Method and means for modulating b-cell mediated immune responses
JP2024509695A (en) 2021-02-03 2024-03-05 ジェネンテック, インコーポレイテッド Multispecific binding proteolysis platform and methods of use
JP2024505987A (en) 2021-02-04 2024-02-08 イノベント バイオロジクス(スーチョウ)カンパニー,リミティド Anti-TNFR2 antibodies and their uses
WO2022169274A2 (en) 2021-02-04 2022-08-11 주식회사 지뉴브 Anti-pd-1 antibody and use thereof
CN117136197A (en) 2021-02-09 2023-11-28 胡默波斯生物医学公司 Antibodies against respiratory syncytial virus, human metapneumovirus and mouse pneumovirus and methods of use thereof
EP4301781A1 (en) 2021-03-01 2024-01-10 Xilio Development, Inc. Combination of masked ctla4 and pd1/pdl1 antibodies for treating cancer
TW202317612A (en) 2021-03-01 2023-05-01 美商艾希利歐發展股份有限公司 Combination of ctla4 and pd1/pdl1 antibodies for treating cancer
JP2024509169A (en) 2021-03-03 2024-02-29 ソレント・セラピューティクス・インコーポレイテッド Antibody-drug conjugates including anti-BCMA antibodies
IL305758A (en) 2021-03-10 2023-11-01 Immunowake Inc Immunomodulatory molecules and uses thereof
AR125074A1 (en) 2021-03-12 2023-06-07 Genentech Inc ANTI-KLK7 ANTIBODIES, ANTI-KLK5 ANTIBODIES, ANTI-KLK5/KLK7 MULTI-SPECIFIC ANTIBODIES AND METHODS OF USE
IL305283A (en) 2021-03-15 2023-10-01 Genentech Inc Compositions and methods of treating lupus nephritis
EP4308242A1 (en) 2021-03-17 2024-01-24 Molecular Templates, Inc. Pd-l1 binding proteins comprising shiga toxin a subunit scaffolds and cd8+ t cell antigens
WO2022197947A1 (en) 2021-03-18 2022-09-22 Alector Llc Anti-tmem106b antibodies and methods of use thereof
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
WO2022204202A1 (en) 2021-03-23 2022-09-29 Vir Biotechnology, Inc. Antibodies that bind to multiple sarbecoviruses
EP4314063A1 (en) 2021-03-23 2024-02-07 Alector LLC Anti-tmem106b antibodies for treating and preventing coronavirus infections
EP4067376A1 (en) 2021-03-30 2022-10-05 Diaccurate Anti-pla2g1b monoclonal antibodies and uses thereof
AR125344A1 (en) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd ANTI-C1S ANTIBODY
WO2022232321A1 (en) 2021-04-28 2022-11-03 Minotaur Therapeutics, Inc. Humanized chimeric bovine antibodies and methods of use
EP4330282A1 (en) 2021-04-30 2024-03-06 F. Hoffmann-La Roche AG Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
AU2022268545A1 (en) 2021-05-03 2023-11-02 UCB Biopharma SRL Antibodies
WO2022235867A2 (en) 2021-05-06 2022-11-10 The Rockefeller University Neutralizing anti-sars- cov-2 antibodies and methods of use thereof
IL308351A (en) 2021-05-12 2024-01-01 Genentech Inc Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
BR112023023777A2 (en) 2021-05-14 2024-01-30 Genentech Inc ISOLATED ANTIBODIES, PHARMACEUTICAL COMPOSITION, ISOLATED NUCLEIC ACID, ISOLATED VECTOR, ISOLATED HOST CELL, METHOD FOR PRODUCING AN ANTIBODY, METHOD FOR TREATING A CONDITION ASSOCIATED WITH LOSS OF TREM2 FUNCTION, METHOD FOR REDUCING STREM2 LEVELS AND USE OF AN ANTIBODY
BR112023024494A2 (en) 2021-05-24 2024-02-06 Humabs Biomed Sa ENGINEERED POLYPEPTIDES
TW202307006A (en) 2021-06-03 2023-02-16 美商表面腫瘤學公司 Methods of treating cancer with an anti-cd39 antibody and pembrolizumab
TW202306994A (en) 2021-06-04 2023-02-16 日商中外製藥股份有限公司 Anti-ddr2 antibodies and uses thereof
WO2022266223A1 (en) 2021-06-16 2022-12-22 Alector Llc Bispecific anti-mertk and anti-pdl1 antibodies and methods of use thereof
EP4355783A1 (en) 2021-06-16 2024-04-24 Alector LLC Monovalent anti-mertk antibodies and methods of use thereof
WO2022263638A1 (en) 2021-06-17 2022-12-22 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
EP4355771A1 (en) 2021-06-17 2024-04-24 Genentech, Inc. Anti-ubiquitination antibodies and methods of use
CA3221735A1 (en) 2021-06-18 2022-12-22 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
JP7472405B2 (en) 2021-06-25 2024-04-22 中外製薬株式会社 Anti-CTLA-4 antibody
WO2022270612A1 (en) 2021-06-25 2022-12-29 中外製薬株式会社 Use of anti-ctla-4 antibody
TW202306985A (en) 2021-07-12 2023-02-16 美商建南德克公司 Structures for reducing antibody-lipase binding
TW202309097A (en) 2021-07-14 2023-03-01 美商建南德克公司 Anti-c-c motif chemokine receptor 8 (ccr8) antibodies and methods of use
AU2022314797A1 (en) 2021-07-21 2024-02-22 Trutino Biosciences Inc. Linker polypeptides
WO2023001884A1 (en) 2021-07-22 2023-01-26 F. Hoffmann-La Roche Ag Heterodimeric fc domain antibodies
WO2023004386A1 (en) 2021-07-22 2023-01-26 Genentech, Inc. Brain targeting compositions and methods of use thereof
WO2023012147A1 (en) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use
CN117677639A (en) 2021-08-18 2024-03-08 菲利普莫里斯生产公司 Antibodies and antigen binding fragments thereof
GB202111905D0 (en) 2021-08-19 2021-10-06 UCB Biopharma SRL Antibodies
CN117858905A (en) 2021-08-19 2024-04-09 豪夫迈·罗氏有限公司 Multivalent anti-variant FC region antibodies and methods of use
WO2023028591A1 (en) 2021-08-27 2023-03-02 Genentech, Inc. Methods of treating tau pathologies
TW202315895A (en) 2021-08-27 2023-04-16 瑞士商休曼生物醫藥股份公司 Engineered compositions
TW202325727A (en) 2021-08-30 2023-07-01 美商建南德克公司 Anti-polyubiquitin multispecific antibodies
CA3230613A1 (en) 2021-09-01 2023-03-09 Daren J. AUSTIN Antibody therapies for sars-cov-2 infection in pediatric subjects
WO2023034871A1 (en) 2021-09-01 2023-03-09 Vir Biotechnology, Inc. High concentration antibody therapies for sars-cov-2 infection
WO2023036815A1 (en) 2021-09-07 2023-03-16 Etablissement Francais Du Sang Targeted regulation of platelet and megakaryocyte activation by heteroreceptor co-clustering
WO2023039442A1 (en) 2021-09-08 2023-03-16 Vir Biotechnology, Inc. Broadly neutralizing antibody combination therapies for sars-cov-2 infection
TW202321308A (en) 2021-09-30 2023-06-01 美商建南德克公司 Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023069919A1 (en) 2021-10-19 2023-04-27 Alector Llc Anti-cd300lb antibodies and methods of use thereof
WO2023081818A1 (en) 2021-11-05 2023-05-11 American Diagnostics & Therapy, Llc (Adxrx) Monoclonal antibodies against carcinoembryonic antigens, and their uses
WO2023081898A1 (en) 2021-11-08 2023-05-11 Alector Llc Soluble cd33 as a biomarker for anti-cd33 efficacy
WO2023086807A1 (en) 2021-11-10 2023-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
AR127692A1 (en) 2021-11-16 2024-02-21 Ac Immune Sa ANTI-ASC ANTIBODIES FOR USE IN ANTI-INFLAMMATORY TREATMENTS
TW202337494A (en) 2021-11-16 2023-10-01 美商建南德克公司 Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab
WO2023092090A1 (en) 2021-11-18 2023-05-25 Matrivax, Inc. Immunogenic fusion protein compositions and methods of use thereof
WO2023131901A1 (en) 2022-01-07 2023-07-13 Johnson & Johnson Enterprise Innovation Inc. Materials and methods of il-1beta binding proteins
US20230322958A1 (en) 2022-01-19 2023-10-12 Genentech, Inc. Anti-Notch2 Antibodies and Conjugates and Methods of Use
WO2023147399A1 (en) 2022-01-27 2023-08-03 The Rockefeller University Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof
TW202342519A (en) 2022-02-16 2023-11-01 瑞士商Ac 免疫有限公司 Humanized anti-tdp-43 binding molecules and uses thereof
WO2023164516A1 (en) 2022-02-23 2023-08-31 Alector Llc Methods of use of anti-trem2 antibodies
EP4238988A1 (en) 2022-03-01 2023-09-06 Consejo Superior De Investigaciones Científicas Antibodies against sars-cov-2 and uses thereof
TW202346365A (en) 2022-03-23 2023-12-01 瑞士商赫孚孟拉羅股份公司 Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023194565A1 (en) 2022-04-08 2023-10-12 Ac Immune Sa Anti-tdp-43 binding molecules
WO2023201256A1 (en) 2022-04-12 2023-10-19 Vir Biotechnology, Inc. High dose antibody therapies for sars-cov-2 infection
US20230406930A1 (en) 2022-04-13 2023-12-21 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
US11958906B2 (en) 2022-04-13 2024-04-16 Genentech, Inc. Pharmaceutical compositions of mosunetuzumab and methods of use
WO2023198727A1 (en) 2022-04-13 2023-10-19 F. Hoffmann-La Roche Ag Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use
WO2023203177A1 (en) 2022-04-20 2023-10-26 Kantonsspital St. Gallen Antibodies or antigen-binding fragments pan-specifically binding to gremlin-1 and gremlin-2 and uses thereof
WO2023215737A1 (en) 2022-05-03 2023-11-09 Genentech, Inc. Anti-ly6e antibodies, immunoconjugates, and uses thereof
WO2023213969A1 (en) 2022-05-05 2023-11-09 Juno Therapeutics Gmbh Viral-binding protein and related reagents, articles, and methods of use
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023217933A1 (en) 2022-05-11 2023-11-16 F. Hoffmann-La Roche Ag Antibody that binds to vegf-a and il6 and methods of use
WO2023230445A2 (en) 2022-05-23 2023-11-30 Humabs Biomed Sa Broadly neutralizing antibodies against influenza neuraminidase
WO2023230448A1 (en) 2022-05-23 2023-11-30 Vir Biotechnology, Inc. Combination immunotherapy for influenza
WO2023230439A1 (en) 2022-05-23 2023-11-30 Vir Biotechnology, Inc. Fc-engineered hepatitis b virus neutralizing antibodies and uses thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023237706A2 (en) 2022-06-08 2023-12-14 Institute For Research In Biomedicine (Irb) Cross-specific antibodies, uses and methods for discovery thereof
WO2023245078A1 (en) 2022-06-15 2023-12-21 Humabs Biomed Sa Anti-parvovirus antibodies and uses thereof
WO2023245105A1 (en) 2022-06-17 2023-12-21 Genentech, Inc. Use of kosmotropes to enhance yield of an affinity chromatography purification step
WO2024006472A1 (en) 2022-06-30 2024-01-04 Vir Biotechnology, Inc. Antibodies that bind to multiple sarbecoviruses
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020564A1 (en) 2022-07-22 2024-01-25 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
WO2024026411A1 (en) 2022-07-27 2024-02-01 Humabs Biomed Sa Broadly neutralizing antibodies against rsv and mpv paramyxoviruses
WO2024026447A1 (en) 2022-07-29 2024-02-01 Alector Llc Anti-gpnmb antibodies and methods of use thereof
WO2024052922A1 (en) 2022-09-11 2024-03-14 Yeda Research And Development Co. Ltd. Anti-klk4 antibodies and uses thereof
WO2024068996A1 (en) 2022-09-30 2024-04-04 Centre Hospitalier Universitaire Vaudois (C.H.U.V.) Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection
WO2024077239A1 (en) 2022-10-07 2024-04-11 Genentech, Inc. Methods of treating cancer with anti-c-c motif chemokine receptor 8 (ccr8) antibodies
WO2024079074A1 (en) 2022-10-10 2024-04-18 Universite D'aix Marseille ANTI-sCD146 ANTIBODIES AND USES THEREOF

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444878A (en) * 1981-12-21 1984-04-24 Boston Biomedical Research Institute, Inc. Bispecific antibody determinants
US4480228A (en) * 1982-10-15 1984-10-30 General Electric Company Selective volume method for performing localized NMR spectroscopy
US4506223A (en) * 1982-11-22 1985-03-19 General Electric Company Method for performing two-dimensional and three-dimensional chemical shift imaging
US4509015A (en) * 1981-09-21 1985-04-02 Ordidge Roger J Nuclear magnetic resonance methods
US4642334A (en) * 1982-03-15 1987-02-10 Dnax Research Institute Of Molecular And Cellular Biology, Inc. Hybrid DNA prepared binding composition
US4682106A (en) * 1985-03-21 1987-07-21 General Electric Company Methods of, and apparatus for, proton decoupling in nuclear magnetic resonance spectroscopy
US4703270A (en) * 1986-04-18 1987-10-27 The University Of British Columbia Zero quantum NMR imaging and spectroscopy in a low homogeneity magnetic field
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5081417A (en) * 1989-08-04 1992-01-14 U.S. Philips Corporation 2-quantum selective mr sequence for selectively determining a nuclear magnetisation distribution of a metabolite
US5219966A (en) * 1988-05-20 1993-06-15 Monsanto Company Norbornene dicarboximide polymers
US5274119A (en) * 1988-07-01 1993-12-28 The Dow Chemical Company Vicinal diols
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US5648237A (en) * 1991-09-19 1997-07-15 Genentech, Inc. Expression of functional antibody fragments
US5657758A (en) * 1994-04-08 1997-08-19 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Method and system for multidimensional localization and for rapid magnetic resonance spectroscopic imaging
US5709208A (en) * 1994-04-08 1998-01-20 The United States Of America As Represented By The Department Of Health And Human Services Method and system for multidimensional localization and for rapid magnetic resonance spectroscopic imaging
US5710027A (en) * 1993-05-26 1998-01-20 Boehringer Ingelheim International Gmbh Process and vector for expressing alpha-interferon in E. coli
US20040095140A1 (en) * 2002-07-26 2004-05-20 Szyperski Thomas A. Phase sensitively-detected reduced dimensionality nuclear magnetic resonance spectroscopy for rapid chemical shift assignment and secondary structure determination of proteins
US6831459B2 (en) * 2002-07-11 2004-12-14 The Research Foundation Of State University Of New York Method of using G-matrix Fourier transformation nuclear magnetic resonance (GFT NMR) spectroscopy for rapid chemical shift assignment and secondary structure determination of proteins

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136907A3 (en) 1983-10-03 1986-12-30 Genentech, Inc. A xenogeneic expression control system, a method of using it, expression vectors containing it, cells transformed thereby and heterologous proteins produced therefrom
GB8720833D0 (en) 1987-09-04 1987-10-14 Celltech Ltd Recombinant dna product
DE3744595A1 (en) 1987-12-31 1989-07-13 Andreas Dr Plueckthun METHOD FOR THE GENETIC ENGINEERING OF ANTIBODY
WO1989006692A1 (en) 1988-01-12 1989-07-27 Genentech, Inc. Method of treating tumor cells by inhibiting growth factor receptor function
DE68921364T2 (en) 1988-04-16 1995-06-29 Celltech Ltd Process for the production of proteins using recombinant DNA.
DE3920358A1 (en) * 1989-06-22 1991-01-17 Behringwerke Ag BISPECIFIC AND OLIGO-SPECIFIC, MONO- AND OLIGOVALENT ANTI-BODY CONSTRUCTS, THEIR PRODUCTION AND USE
EP0459577A3 (en) 1990-06-01 1992-08-05 Merck & Co. Inc. Microbially expressed portions of a monoclonal antibody block rhinovirus attachment to cell receptors
GB9014932D0 (en) 1990-07-05 1990-08-22 Celltech Ltd Recombinant dna product and method
WO1992010209A1 (en) 1990-12-04 1992-06-25 The Wistar Institute Of Anatomy And Biology Bifunctional antibodies and method of preparing same
AU2238292A (en) 1991-06-14 1993-01-12 Xoma Corporation Microbially-produced antibody fragments and their conjugates
AU3236793A (en) 1991-12-12 1993-07-19 Berlex Laboratories, Inc. Recombinant and chimeric antibodies to c-erbB-2

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509015A (en) * 1981-09-21 1985-04-02 Ordidge Roger J Nuclear magnetic resonance methods
US4444878A (en) * 1981-12-21 1984-04-24 Boston Biomedical Research Institute, Inc. Bispecific antibody determinants
US4642334A (en) * 1982-03-15 1987-02-10 Dnax Research Institute Of Molecular And Cellular Biology, Inc. Hybrid DNA prepared binding composition
US4480228A (en) * 1982-10-15 1984-10-30 General Electric Company Selective volume method for performing localized NMR spectroscopy
US4506223A (en) * 1982-11-22 1985-03-19 General Electric Company Method for performing two-dimensional and three-dimensional chemical shift imaging
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4682106A (en) * 1985-03-21 1987-07-21 General Electric Company Methods of, and apparatus for, proton decoupling in nuclear magnetic resonance spectroscopy
US5698417A (en) * 1985-11-01 1997-12-16 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US5698435A (en) * 1985-11-01 1997-12-16 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US4703270A (en) * 1986-04-18 1987-10-27 The University Of British Columbia Zero quantum NMR imaging and spectroscopy in a low homogeneity magnetic field
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5219966A (en) * 1988-05-20 1993-06-15 Monsanto Company Norbornene dicarboximide polymers
US5274119A (en) * 1988-07-01 1993-12-28 The Dow Chemical Company Vicinal diols
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5081417A (en) * 1989-08-04 1992-01-14 U.S. Philips Corporation 2-quantum selective mr sequence for selectively determining a nuclear magnetisation distribution of a metabolite
US5648237A (en) * 1991-09-19 1997-07-15 Genentech, Inc. Expression of functional antibody fragments
US7018809B1 (en) * 1991-09-19 2006-03-28 Genentech, Inc. Expression of functional antibody fragments
US5710027A (en) * 1993-05-26 1998-01-20 Boehringer Ingelheim International Gmbh Process and vector for expressing alpha-interferon in E. coli
US5657758A (en) * 1994-04-08 1997-08-19 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Method and system for multidimensional localization and for rapid magnetic resonance spectroscopic imaging
US5709208A (en) * 1994-04-08 1998-01-20 The United States Of America As Represented By The Department Of Health And Human Services Method and system for multidimensional localization and for rapid magnetic resonance spectroscopic imaging
US5879299A (en) * 1994-04-08 1999-03-09 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Method and system for multidimensional localization and for rapid magnetic resonance spectroscopic imaging
US6831459B2 (en) * 2002-07-11 2004-12-14 The Research Foundation Of State University Of New York Method of using G-matrix Fourier transformation nuclear magnetic resonance (GFT NMR) spectroscopy for rapid chemical shift assignment and secondary structure determination of proteins
US20040095140A1 (en) * 2002-07-26 2004-05-20 Szyperski Thomas A. Phase sensitively-detected reduced dimensionality nuclear magnetic resonance spectroscopy for rapid chemical shift assignment and secondary structure determination of proteins

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283273B2 (en) 1995-07-27 2016-03-15 Genentech, Inc. Protein formulation
US20070166753A1 (en) * 2000-05-19 2007-07-19 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to a her2 antibody cancer therapy
US8076066B2 (en) 2000-05-19 2011-12-13 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to a HER2 antibody cancer therapy
US8440402B2 (en) 2000-05-19 2013-05-14 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to a HER2 antibody cancer therapy
KR100951325B1 (en) * 2002-08-06 2010-04-08 에보니크 옥세노 게엠베하 Oligomerization of isobutene in n-butenic hydrocarbon streams
US9017671B2 (en) 2004-10-20 2015-04-28 Genentech, Inc. Method of treating cancer with a pharmaceutical formulation comprising a HER2 antibody
US8691232B2 (en) 2005-02-23 2014-04-08 Genentech, Inc. Extending time to disease progression or survival in cancer patients
US8163287B2 (en) 2005-07-22 2012-04-24 Genentech, Inc. Combination therapy of her expressing tumors
US8940302B2 (en) 2007-03-02 2015-01-27 Genentech, Inc. Predicting response to a HER inhibitor
US11414498B2 (en) 2008-01-30 2022-08-16 Genentech, Inc. Composition comprising antibody that binds to domain II of HER2 and acidic variants thereof
US11597776B2 (en) 2008-01-30 2023-03-07 Genentech, Inc. Composition comprising antibody that binds to domain II of HER2 and acidic variants thereof
US9181346B2 (en) 2008-01-30 2015-11-10 Genentech, Inc. Composition comprising antibody that binds to domain II of HER2 and acidic variants thereof
US11655305B2 (en) 2008-06-16 2023-05-23 Genentech, Inc. Treatment of metastatic breast cancer
US10689457B2 (en) 2008-06-16 2020-06-23 Genentech, Inc. Treatment of metastatic breast cancer
EP4241849A2 (en) 2011-10-14 2023-09-13 F. Hoffmann-La Roche AG Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
EP4234033A2 (en) 2011-10-14 2023-08-30 F. Hoffmann-La Roche AG Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
EP4234034A2 (en) 2011-10-14 2023-08-30 F. Hoffmann-La Roche AG Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
WO2013055874A2 (en) 2011-10-14 2013-04-18 Genentech, Inc. Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
EP3598981A2 (en) 2011-10-14 2020-01-29 F. Hoffmann-La Roche AG Uses for and article of manufacture including her2 dimerization inhibitor pertuzumab
US9815904B2 (en) 2013-04-16 2017-11-14 Genetech, Inc. Pertuzumab variants and evaluation thereof
US9969811B2 (en) 2013-04-16 2018-05-15 Genentech, Inc. Pertuzumab variants and evaluation thereof
WO2015164665A1 (en) 2014-04-25 2015-10-29 Genentech, Inc. Methods of treating early breast cancer with trastuzumab-mcc-dm1 and pertuzumab
WO2016196373A2 (en) 2015-05-30 2016-12-08 Genentech, Inc. Methods of treating her2-positive metastatic breast cancer
US11406715B2 (en) 2015-05-30 2022-08-09 Genentech, Inc. Methods of treating HER2-positive metastatic breast cancer
US11161912B2 (en) 2015-10-13 2021-11-02 Technion Research & Development Foundation Limited Heparanase-neutralizing monoclonal antibodies
WO2017064716A1 (en) * 2015-10-13 2017-04-20 Rappaport Family Institute For Research Heparanase-neutralizing monoclonal antibodies
WO2017087280A1 (en) 2015-11-16 2017-05-26 Genentech, Inc. Methods of treating her2-positive cancer
WO2018085513A1 (en) 2016-11-04 2018-05-11 Genentech, Inc. Treatment of her2-positive breast cancer
WO2018125589A1 (en) 2016-12-28 2018-07-05 Genentech, Inc. Treatment of advanced her2 expressing cancer
EP3868404A1 (en) 2017-01-17 2021-08-25 F. Hoffmann-La Roche AG Subcutaneous her2 antibody formulations
US10849849B2 (en) 2017-01-17 2020-12-01 Genentech Inc. Subcutaneous HER2 antibody formulations
WO2018136412A2 (en) 2017-01-17 2018-07-26 Genentech, Inc. Subcutaneous her2 antibody formulations
US11654105B2 (en) 2017-01-17 2023-05-23 Genentech, Inc. Subcutaneous HER2 antibody formulations
US11077189B2 (en) 2017-03-02 2021-08-03 Genentech Inc. Adjuvant treatment of HER2-positive breast cancer
WO2018160654A2 (en) 2017-03-02 2018-09-07 Genentech, Inc. Adjuvant treatment of her2-positive breast cancer
US11638756B2 (en) 2017-03-02 2023-05-02 Genentech, Inc. Adjuvant treatment of HER2-positive breast cancer
WO2018200505A1 (en) 2017-04-24 2018-11-01 Genentech, Inc. Erbb2/her2 mutations in the transmbrane or juxtamembrane domain

Also Published As

Publication number Publication date
US20080124765A1 (en) 2008-05-29
JP3951062B2 (en) 2007-08-01
EP0861893A3 (en) 1999-11-10
CA2116774C (en) 2003-11-11
US5648237A (en) 1997-07-15
US7018809B1 (en) 2006-03-28
EP0861893A2 (en) 1998-09-02
JP2006001943A (en) 2006-01-05
JPH06510904A (en) 1994-12-08
JP2004337179A (en) 2004-12-02
WO1993006217A1 (en) 1993-04-01
JP2004041240A (en) 2004-02-12
CA2116774A1 (en) 1993-04-01
EP0604580A1 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US7018809B1 (en) Expression of functional antibody fragments
Carter et al. High level Escherichia coli expression and production of a bivalent humanized antibody fragment
US5132405A (en) Biosynthetic antibody binding sites
US5091513A (en) Biosynthetic antibody binding sites
US6207804B1 (en) Genetically engineered antibody analogues and fusion proteins thereof
US6342587B1 (en) A33 antigen specific immunoglobulin products and uses thereof
JP3081641B2 (en) Preparation of antibodies
Thommesen et al. Lysine 322 in the human IgG3 CH2 domain is crucial for antibody dependent complement activation
RU2112037C1 (en) Hybrid monoclonal antibody interacting with human t-helper cell cd4-antigen and a method of its preparing
JP6173690B2 (en) Methods and compositions for secretion of heterologous polypeptides
AU662311B2 (en) Recombinant antibodies specific for a growth factor receptor
US6485943B2 (en) Method for altering antibody light chain interactions
US20020076406A1 (en) Multivalent target binding protein
WO1993021319A1 (en) HUMANIZED C-erbB-2 SPECIFIC ANTIBODIES
US20020037558A1 (en) E.coli produced immunoglobulin constructs
JPH02501190A (en) Recombinant DNA products and methods
US6346249B1 (en) Methods for reducing the effects of cancers that express A33 antigen using A33 antigen specific immunoglobulin products
KR20170139131A (en) Protein purification method
JP2011514161A (en) Immunoglobulin composition and method for producing the same
EP2504359A2 (en) Monospecific polypeptide reagents
Bandtlow et al. The Escherichia Coli‐Derived Fab Fragment of the IgM/κ Antibody IN‐1 Recognizes and Neutralizes Myelin‐Associated Inhibitors of Neurite Growth
EP1233790A2 (en) A33 antigen specific immunoglobulin products in cancer therapy
Alfthan et al. Efficient secretion of murine Fab fragments by Escherichia coli is determined by the first constant domain of the heavy chain
JPH07203974A (en) Gene fragment of antibody recognizing cancer-specific mucin
He et al. Characterization of a progesterone-binding, three-domain antibody fragment (VH/K) expressed in Escherichia coli.

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION