US20050255075A1 - Cosmetic or pharmaceutical compositions comprising modified polyorganosiloxanes - Google Patents

Cosmetic or pharmaceutical compositions comprising modified polyorganosiloxanes Download PDF

Info

Publication number
US20050255075A1
US20050255075A1 US11/082,448 US8244805A US2005255075A1 US 20050255075 A1 US20050255075 A1 US 20050255075A1 US 8244805 A US8244805 A US 8244805A US 2005255075 A1 US2005255075 A1 US 2005255075A1
Authority
US
United States
Prior art keywords
cosmetic
pharmaceutical composition
composition
substituted
hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/082,448
Inventor
Markus Meder
Peter Klug
Torsten Henning
Waltraud Simsch
Sabine Haala
Carsten Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant GmbH filed Critical Clariant GmbH
Publication of US20050255075A1 publication Critical patent/US20050255075A1/en
Assigned to CLARIANT GMBH reassignment CLARIANT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HENNING, TORSTEN, KLUG, PETER, SIMSCH, WALTRAUD, HAALA, SABINE, MEDER, MARKUS, MUELLER, CARSTEN
Assigned to CLARIANT PRODUKTE (DEUTSCHLAND) GMBH reassignment CLARIANT PRODUKTE (DEUTSCHLAND) GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CLARIANT GMBH
Priority to US13/933,847 priority Critical patent/US9237999B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/004Preparations used to protect coloured hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring

Definitions

  • the invention relates to cosmetic or pharmaceutical compositions comprising aminopolyorganosiloxanes which are substituted by alkyl polyglycol ether groups.
  • aminosiloxanes with primary and secondary nitrogen groups and sometimes present reactive silanol groups are incorporated into hair shampoo formulations as conditioning agents. These products are not water-soluble and can only be incorporated in the presence of interface-active substances.
  • the aminosiloxanes can additionally be substituted by polyoxyalkylene groups, as described in U.S. Pat. No. 5,075,403. It is disadvantageous that these have high viscosity and can only be handled in dilution, during use remain for the greatest part in the aqueous phase and do not attach to the hair in the desired manner.
  • WO 02/092666 claims aminopolyorganosiloxanes and their use for the softening finishing of textile fiber materials.
  • the object of the present invention was to prepare compositions for cosmetic or pharmaceutical products which are water-soluble, emulsifiable, compatible with additives and auxiliaries customary in cosmetic compositions, can be incorporated easily into formulations, produce the clearest possible appearance and exhibit a softening effect. Moreover, the compositions are to have good substantivity and bring about an improvement in the color absorption behavior and an increase in the color stability and shape retention for tinted or colored hair.
  • substituted aminopolyorganosiloxanes comprising substituted amino groups which are bonded to the silicon atoms of the polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)-alkylene bridges, in which the amino groups present in the aminopolyorganosiloxanes are substituted at least partially by a radical of the formula ( ⁇ ), T-CH 2 —CHOH—CH 2 — ( ⁇ ), in which T is the radical of a surfactant monoalcohol polyglycol ether with emulsifier character, in the average ratio of at least 1.5 radicals of the formula ( ⁇ ) per Si-bonded amino group or amino-mono- or -oligo(alkylenamino)alkyl group, and present amino groups are, if appropriate, acylated and/or alkylated and/or benzylated and/or protonated at least partially to give amide groups, exhibit
  • the present invention therefore provides cosmetic or pharmaceutical compositions, in particular for the care of the hair and of the skin, comprising one or more substituted aminopolyorganosiloxanes (S H ) with substituted amino groups which are bonded to silicon atoms of the polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)alkylene bridges, where the amino groups present in the aminopolyorganosiloxanes (S H ) are substituted at least partially by a radical of the formula ( ⁇ ) T-CH 2 —CHOH—CH 2 — ( ⁇ ), in which T is the radical of a surfactant monoalcohol polyglycol ether with emulsifier character, the amino groups present in the aminopolyorganosiloxanes (S H ) are substituted in the average ratio of at least 1.5 radicals of the formula (O) per Si-bonded aminoalkyl group or amino-mono- or -oligo-(alkylenamino)-al
  • the color absorption behavior of hair colorants can be improved by aminopolyorganosiloxanes (S H ).
  • S H aminopolyorganosiloxanes
  • a volumizing and shine-imparting effect of the aminopolyorganosiloxanes (S H ) is also significant.
  • the good solubility in water, but also the good compatibility with hydrophobic components, good dissolving, dispersing and emulsifying power, the favorable viscosity behavior coupled with low viscosity and good incorporability in highly concentrated form, and a clear appearance of the aminopolyorganosiloxanes (S H ) used according to the invention is advantageous.
  • Aminopolyorganosiloxanes are characterized by good skin sensory properties and exhibit good spreadability, and an excellent gliding and carrier effect. Moreover, they are insensitive toward heat, UV radiation and IR radiation. They are thus valuable constituents of haircare and hair-cleansing compositions, hair colorants, skincare and skin-cleansing compositions, sunscreen compositions, deodorants, antiperspirants and decorative cosmetics.
  • compositions according to the invention may, for example, be aqueous, aqueous-alcoholic, aqueous-surface-active or alcoholic compositions, or compositions based on oil, inclusive compositions based on oil in anhydrous form, or emulsions, suspensions or dispersions.
  • the cosmetic or pharmaceutical compositions are in aqueous, aqueous-alcoholic, alcoholic or aqueous-surface-active form or represent compositions based on oil, in particular anhydrous compositions based on oil, or are in the form of emulsion, suspension or dispersion and, more particularly, in the form of fluids, foams, sprays, gels, mousse, lotions, creams or powders.
  • the cosmetic or pharmaceutical compositions are cosmetic or pharmaceutical formulations.
  • substituted aminopolyorganosiloxanes (S H ) used in the cosmetic and pharmaceutical compositions according to the invention can be prepared as described in WO 02/092666 by introducing the radicals ( ⁇ ) and optionally one or more of the other substituents into corresponding starting aminopolyorganosiloxanes (S) which comprise primary and/or secondary amino groups which are bonded to silicon atoms of the polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)alkylene bridges.
  • the starting aminopolyorganosiloxanes (S) are reacted with at least one alcohol polyglycol ether monoglycidyl ether (H) and optionally subsequently acylated and/or alkylated and/or benzylated and/or protonated.
  • the alcohol polyglycol ether monoglycidyl ethers (H) are generally glycidyl ethers of alcohol polyglycol ethers and can be synthesized by the following formula in which T is the radical of the corresponding surfactant alcohol polyglycol ether T-H, in particular as can be prepared by glycidyl ether formation of a corresponding surfactant alcohol polyglycol ether T-H.
  • the surface-active alcohol polyglycol ethers T-H may be any corresponding surfactants, e.g. in which the alcohol radical originates from an aromatic, alkylaromatic or preferably aliphatic alcohol having at least 8 carbon atoms, preferably having 8 to 24 carbon atoms, and the polyglycol radical is a polyalkylene glycol radical in which alkylene comprises 2 to 4 carbon atoms and at least some of the alkylene glycol units are ethylene glycol units. They advantageously have predominantly hydrophilic character and are preferably those in which the number of ethylenoxy units constitutes on average at least half of the alkylenoxy units present in T-H.
  • the alcohol polyglycol ethers T-H are those of the following average formula R 1 O—X q —OH (II), in which
  • R 1 is aliphatic, it is preferably saturated; R 1 O— in this case is preferably the radical of a primary, saturated, aliphatic alcohol or of a primary alkanol which advantageously comprises 9 to 18, preferably 11 to 16, carbon atoms.
  • the corresponding aliphatic alcohol R 1 OH may be a linear fatty alcohol, e.g. lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol or behenyl alcohol or else a synthetic alcohol (e.g. from the oxo synthesis or from the Ziegler synthesis), which may be linear or branched, e.g. nonanol, isononanol, decanol, isodecanol, undecanol, tridecanol, isotridecanol or isohexadecanol.
  • the number q of the alkylenoxy units positioned on this alcohol to form the alcohol polyglycol ether, in particular of the formula II, is advantageously in the range from 4 to 30, preferably 4 to 20.80% of the q alkylenoxy units are advantageously ethylenoxy units, and preferably 100% of the alkylenoxy units are ethylenoxy units.
  • the number of ethylenoxy units in T-H is advantageously 4 to 30, preferably 4 to 18, particularly preferably 5 to 12.
  • the surfactants T-H, in particular of the formula (II) are advantageously those whose HLB is greater than 7, and is advantageously in the range from 7 to 17, preferably 8 to 16.5, particularly preferably 9 to 16.
  • the primary and/or secondary amino groups in the aminopolysiloxanes (S) to be reacted with (H) are in particular part of the Si-bonded aminoalky groups or amino-mono- or -oligo(alkylenamino)alkyl groups and may be those as customarily exist in otherwise further unmodified aminopolysiloxanes and can form by using corresponding monomers in the preparation of the particular aminopolysiloxanes.
  • Their alkyl and alkylene groups are advantageously those with 2 to 4 carbon atoms and may be linear or, if they contain 3 or 4 carbon atoms, also branched.
  • the aminoalkyl groups bonded to Si comprise 3 or 4 carbon atoms in the alkyl radical; the alkylene groups joining two amino groups preferably comprise 2 or 3 carbon atoms.
  • the primary amino groups and the optionally present secondary amino groups in (S) are constituents of aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups of the formula H 2 N—(Y 2 —NH) p —Y 1 — ( ⁇ ) in which
  • Y 1 is advantageously 2-methyl-1,3-propylene or preferably 1,3-propylene; Y 2 is in particular 1,2 or 1,3-propylene or is preferably ethylene; p is advantageously 0 or 1, preferably 1.
  • radicals of the formula ( ⁇ ) are those of the formula in which r is 0 or 1, particularly preferably of the formula
  • the index r is particularly preferably 0.
  • the particular radicals ( ⁇ ) or are introduced into the aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups, in particular into those of the formula ( ⁇ ).
  • the primary amino group reacts first, so that a first radical ( ⁇ ) replaces a hydrogen atom of the primary amino group, and further radicals ( ⁇ ) replace hydrogen atoms of the present secondary amino groups in random distribution.
  • still acylatable amino groups can be acylated and/or any alkylatable amino groups present are alkylated and/or benzylated.
  • acyl radicals are introduced, advantageously those having 2 to 4 carbon atoms, e.g. acetyl, propionyl or butyryl, of which acetyl is particularly preferred.
  • alkylation and/or benzylation likewise preferably low molecular weight alkyl radicals can be introduced, advantageously alkyl radicals with 1-4 carbon atoms, preferably ethyl or methyl, or benzyl radicals.
  • the reaction of (S) with (H) is advantageously carried out by reacting virtually all of the primary amino groups of (S) with (H) such that they are at least monosubstituted. Of the secondary amino groups which then remain, at least enough hydrogen atoms are replaced by a radical ( ⁇ ) for the required degree of substitution of, on average, at least 1.5, primarily at least 1.8, preferably at least 2, radicals of the formula ( ⁇ ) per Si-bonded aminoalkyl group or amino-mono- or -oligo(alkylenamino)alkyl group to be achieved.
  • a radical ( ⁇ ) for the required degree of substitution of, on average, at least 1.5, primarily at least 1.8, preferably at least 2, radicals of the formula ( ⁇ ) per Si-bonded aminoalkyl group or amino-mono- or -oligo(alkylenamino)alkyl group to be achieved.
  • the substituted aminopolyorganosiloxane (S H ) has a ( ⁇ ) degree of substitution of all of the amino groups in the range from 40 to 100%, preferably in the range from 50 to 100% and particularly preferably in the range from 60 to 100%, or all of the amino groups of the substituted aminopolyorganosiloxane (S H ) are substituted by radicals of the formula ( ⁇ ) in an amount of from 40 to 100%, preferably 50 to 100% and particularly preferably 60 to 100%.
  • the reactive hydrogen atoms of the basic amino groups which remain after the reaction of (S) with (H) can optionally be replaced at least partially (e.g. 5 to 100%, in particular 10 to 90%) by means of acylation with acyl radicals of aliphatic monocarboxylic acids, preferably those with 2-4 carbon atoms, or be replaced by means of alkylation and/or benzylation with methyl or ethyl or benzyl.
  • the alkylation and/or benzylation can optionally lead to corresponding secondary or tertiary amino groups or as far as the quaternary ammonium stage.
  • Basic amino groups which are not quaternized may optionally be protonated.
  • the preferred groups originating from the Si-bonded aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups, in particular from the Si-bonded groups ( ⁇ ), reacted with (H) and optionally acylated and/or optionally further alkylated and/or benzylated may be represented by the following average formula in which
  • Preferred groups originating from the groups of the formula ( ⁇ ′) or ( ⁇ ′′) can be represented by the following average formulae where preferably at least one R 2 and R 4 is also a radical of the formula ( ⁇ ′).
  • substituted derivatives prepared from the Si-bonded aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups in particular of the formula ( ⁇ ) by the above-described reaction, in particular of the formula ( ⁇ ), comprise the respective substituents in a distribution corresponding to the preparation.
  • the preferred groups ( ⁇ ′′) originating from the radicals of the formula ( ⁇ ′′) can principally be represented by the following formulae: in which
  • those which predominate accordingly comprise (p+2) radicals of the formula ( ⁇ ), preferably ( ⁇ ′), among those of the above formulae ( ⁇ 1 ) to ( ⁇ 9 ) plus those of the formula ( ⁇ 9 ), and can be accompanied by correspondingly smaller amounts of ones substituted to a lesser degree by ( ⁇ ) or ( ⁇ ′), particularly those of the formulae ( ⁇ 5 ) and/or ( ⁇ 8 ).
  • radicals of the formula H 2 N—Y 1 — ( ⁇ ′′′) are advantageously reacted to exhaustion or almost to exhaustion with (H) so that those disubstituted with radicals ( ⁇ ) or ( ⁇ ′) predominate, or in the preferred ones originating from ( ⁇ ′′′′), primarily the radicals of the formula predominate, and in the product comparatively smaller fractions of ones monosubstituted by radicals of the formula ( ⁇ ) or ( ⁇ ′) may optionally be present, in particular in the preferred ones originating from ( ⁇ ′′′′), mainly the radicals of the formula
  • Suitable starting polysiloxanes are any amino-substituted polysiloxanes which comprise corresponding Si-bonded aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups.
  • any corresponding aminopolysiloxanes with polycationic or polybasic character are generally suitable, essentially those which are constructed from repeat dimethylsiloxy units and aminosiloxy units. They can have a linear structure or else a branched and/or crosslinked structure (e.g. branched or crosslinked one or more times).
  • the end groups can comprise a reactive substituent, in particular e.g. hydroxy or alkoxy, or may also be blocked; e.g. with trimethylsiloxy.
  • the end groups can also comprise the abovementioned aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups.
  • aminopolysiloxanes (S) are constructed from repeat units of the following formulae:
  • the end groups preferably correspond to the formulae: in which R 7 is methyl, hydroxyl, methoxy or ethoxy.
  • (S) can also comprise Si-branched units of the formula in which Z is an Si-bonded (poly)siloxane or silyl radical which comprises one or more groups of the formula ( ⁇ 1 ), ( ⁇ 2 ), ( ⁇ 3 ) and/or ( ⁇ 4 ) and optionally further such Si branches and/or crosslinks (e.g. branched and/or crosslinked one or more times).
  • Z is an Si-bonded (poly)siloxane or silyl radical which comprises one or more groups of the formula ( ⁇ 1 ), ( ⁇ 2 ), ( ⁇ 3 ) and/or ( ⁇ 4 ) and optionally further such Si branches and/or crosslinks (e.g. branched and/or crosslinked one or more times).
  • the aminopolyorganosiloxanes (S) can be characterized by per se customary typical characteristic values, e.g. by their average molecular weight and the content of amine nitrogen, and also by their viscosity.
  • the average molecular weight and the content of amine nitrogen in the aminopolyorganosiloxanes (S) can vary within wide ranges with those having a low amine number being primarily suitable for the purposes of the invention, particularly those with an amine number ⁇ 3.
  • the aminopolysiloxanes (S) advantageously have a viscosity in the range 500-30 000, primarily 200-20 000, preferably 300-3000 cP (Brookfield rotary viscometer RV, spindle No. 5, 20° C.).
  • the amine number of (S) is advantageously in the range from 0.05 to 3, preferably 0.1 to 2, particularly preferably 0.15 to 1.
  • the aminopolysiloxanes (S) consisting of the abovementioned units can be represented in particular by the following average generic formula: in which W 1 and W 2 are in each case a group of the formula ( ⁇ 3 ) or ( ⁇ 4 ), the molecule has at least one group of the formula ( ⁇ ) or ( ⁇ 1 ), ( ⁇ 3 ) and/or ( ⁇ 5 ) and the indices x, y and z are chosen such that the polymer has the values given above for amine number, viscosity and molecular weight.
  • the above formula (III) serves to illustrate the monomer units present and their number, but not their distribution or position within the polymer molecule].
  • the ratio of the number of dimethylsiloxy units to the number of aminoalkylsiloxy units and/or amino-mono- or -oligo(alkylenamino)alkylsiloxy units, in particular of the formula is advantageously in the range from 3/1 to 600/1, preferably 10/1 to 200/1.
  • the silanes containing amino groups are preferably copolymerized with ⁇ , ⁇ -dihydroxypolydimethylsiloxane, advantageously having an average molecular weight ⁇ overscore (M) ⁇ W in the range from 500 to 10 000, preferably 1000 to 7000, or with cyclic siloxanes, e.g.
  • Suitable silanes are primarily trimethoxy- or -ethoxysilanes or dimethoxy- or -ethoxymethylsilanes aminoalkyl-substituted or amino-mono- or -oligo(alkylenamino)alkyl-substituted at Si, in which the Si-bonded aminoalkyl group or amino-mono- or -oligo(alkylenamino)alkyl group corresponds primarily to the formula ( ⁇ ), preferably ( ⁇ ′), particularly ( ⁇ ′′).
  • the amino group-containing units in the molecule e.g. in the molecule of the formula (III)—can be randomly distributed or be terminal or be grouped as in block polymers or else collect toward the extremities of the linear chains.
  • polysiloxanes (S H ) used according to the invention in cosmetic and pharmaceutical compositions, preference is given to those polysiloxanes (S) which have an optionally branched, predominantly linear structure of the polysiloxane basic law in which the units of the formula ( ⁇ 2 ) predominate besides units of the formula ( ⁇ 1 ).
  • polysiloxanes in which the Si-bonded aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups present, in particular the groups of the formula ( ⁇ ) or ( ⁇ ′) or ( ⁇ ′′), are correspondingly substituted on the nitrogen by introducing the radicals ( ⁇ ) or ( ⁇ ′) and optionally further substituents, as described in WO 02/092666.
  • the polysiloxanes comprise in particular repeat units of formulae and ( ⁇ 2 ), and terminal oxygen-bonded silyl groups of the formula ( ⁇ 3 ) and/or and, if the starting polysiloxanes (S) comprise branches, in particular as in the formula ( ⁇ 5 ), also correspondingly branched groups, in particular those of the formula in which Z 1 is an Si-bonded (poly)siloxane or silyl radical which comprises one or more of the groups of the formula ( ⁇ 2 ), ( ⁇ 4 ), ( ⁇ 7 ) and/or ( ⁇ 8 ) and optionally further such Si branches,
  • the average molecular weight of the substituted aminopolyorganosiloxanes (S H ) used according to the invention in cosmetic and pharmaceutical compositions can vary within a wide range, e.g. depending on the starting materials, quantitative ratios of the reagents and the reaction conditions chosen, in particular polymerization and substitution conditions, e.g. in the range from 15 000 to 2 000 000, advantageously from 30 000 to 1 750 000, preferably from 50 000 to 1 500 000.
  • aminopolyorganosiloxanes (S H ) used according to the invention in cosmetic or pharmaceutical compositions have marked hydrophilicity which can be modified through the incorporation of corresponding groups and substituents. Moreover, the above-described aminopolyorganosiloxanes (S H ) have a self-emulsifying effect and are compatible with lipophilic components and oils.
  • compositions according to the invention are fluids, gels, oils, foams, sprays, lotions, cream gels, creams and powders.
  • the emulsions may either be water-in-oil emulsions or oil-in-water emulsions, microemulsions, nanoemulsions and multiple emulsions.
  • the emulsions can be prepared in a known manner, i.e. for example by cold, hot, hot/cold or PIT emulsification.
  • hair-treatment compositions preferably shampoos, hair conditioners, hair treatments, styling compositions, hair rinses, volume spray, styling fluid, hair foam, hair gel, setting composition, hairspray, mousse, hair oils and end fluids.
  • Aminopolyorganosiloxanes (S H ) improve the color absorption behavior of hair colorants and are thus valuable constituents in hair tints and colorants. At the same time, being color protection additives, they additionally improve the durability of hair tints or permanent hair colorants.
  • the invention thus also provides the use of a cosmetic or pharmaceutical composition according to the invention for the protection and retention of the color in colored keratin fibers, preferably in colored human hair.
  • the composition according to the invention comprises for this use from 0.01 to 10% by weight, based on the finished composition, of substituted aminopolyorganosiloxane (S H ).
  • the cosmetic or pharmaceutical compositions are rinse-off products, in particular shower baths, shower gels or foam baths.
  • the cosmetic or pharmaceutical compositions are leave-on products, in particular day creams, night creams, care creams, nutrient creams, body lotions, ointments or lipcare compositions.
  • leave-on products are decorative cosmetics, in particular make-ups, eyeshadows, lipsticks or mascara.
  • the cosmetic and pharmaceutical compositions are sunscreen compositions. These comprise one or more UV filters.
  • the cosmetic and pharmaceutical compositions are deodorants and antiperspirants, in particular in the form of sprays, sticks, gels or lotions.
  • the cosmetic and pharmaceutical compositions are surfactant-free compositions, in particular surfactant-free solid compositions or surfactant-free emulsions.
  • the cosmetic or pharmaceutical compositions are additives for permanent waving compositions, in particular conditioners.
  • aqueous-based or aqueous-alcoholic-based cosmetic or pharmaceutical compositions according to the invention comprise aminopolyorganosiloxanes (S H ) preferably in the amounts by weight of from 0.01 to 30%, particularly preferably from 0.2 to 10%, especially preferably from 0.5 to 2%, based on the finished compositions.
  • S H aminopolyorganosiloxanes
  • compositions according to the invention in anhydrous form based on oils comprise aminopolyorganosiloxanes (S H ) preferably in the amounts by weight of from 0.01 to 80%, particularly preferably from 0.05 to 60%, especially preferably from 0.1 to 50%, based on the finished compositions.
  • S H aminopolyorganosiloxanes
  • compositions according to the invention in the form of an emulsion comprise substituted aminopolyorganosiloxanes (S H ) preferably in amounts by weight of from 0.01 to 30%, particularly preferably from 0.05 to 10% and especially preferably from 0.1 to 5%, based on the finished composition.
  • S H substituted aminopolyorganosiloxanes
  • compositions according to the invention are oil-in-water emulsions with a water fraction of from 5 to 95% by weight, preferably 15 to 75% by weight, particularly preferably 25 to 85% by weight.
  • compositions according to the invention are water-in-oil emulsions with an oil fraction of from 5 to 95% by weight, preferably 15 to 75% by weight, particularly preferably 25 to 65% by weight.
  • compositions according to the invention on an aqueous-alcoholic or alcoholic basis, all mono- or polyhydric alcohols are suitable.
  • alcohols having 1 to 4 carbon atoms such as ethanol, propanol, isopropanol, n-butanol, isobutanol, t-butanol or glycerol, and alkylene glycols, in particular propylene glycol, butylene glycol or hexylene glycol, and mixtures of said alcohols.
  • Further preferred alcohols are polyethylene glycols with a relative molecular mass below 2000. In particular, a use of polyethylene glycol with a relative molecular mass between 200 and 600 and of polyethylene glycol with a relative molecular mass between 400 and 600 is preferred.
  • the oil-based compositions according to the invention can preferably comprise: hydrocarbon oils with linear or branched, saturated or unsaturated C 7 -C 40 -carbon chains, for example dodecane, isododecane, cholesterol, hydrogenated polyisobutylenes, docosanes, hexadecane, isohexadecane, paraffins and isoparaffins, but also triglycerides of animal and vegetable origin, for example beef tallow, pig fat, goose grease, perhydrosqualene, lanolin, sunflower oil, maize oil, soya oil, rice oil, jojoba oil, babusscu oil, pumpkin oil, grapeseed oil, sesame oil, walnut oil, apricot oil, macadamia oil, avocado oil, sweet almond oil, lady's smock oil, castor oil, olive oil, peanut oil, rapeseed oil and coconut oil and synthetic oils, such as purcellin oil, linear and/or branched fatty alcohols
  • the carboxylic acids can comprise linear or branched alkyl groups or aromatic groups.
  • the silicone oils available are preferably dimethylpolysiloxanes and cyclomethicones, polydialkylsiloxanes R 3 SiO(R 2 SiO) x SiR 3 , where R is methyl or ethyl, particularly preferably methyl, and x is a number from 2 to 500, for example the dimethicones available under the trade names VICASIL (General Electric Company), DOW CORNING 200, DOW CORNING 225, DOW CORNING 200 (Dow Corning Corporation), trimethylsiloxysilicates [(CH 2 ) 3 SiO) 1/2 ] x [SiO 2 ] y , where x is a number from 1 to 500 and y is a number from 1 to 500, dimethiconols R 3 SiO[R 2 SiO] x SiR 2 OH and HOR 2 SiO[R 2 SiO] x SiR 2 OH, where R is methyl or ethyl and x is a number up to 500, poly
  • the hair colorants and tints according to the invention preferably comprise direct dyes and/or oxidation dye precursors in the customary pH ranges.
  • Suitable direct dyes are preferably nitroaniline derivatives, such as 1-[(2-hydroxyethyl)amino]-2-nitrobenzene (Velsol® Yellow 2), 4-hydroxypropylamino-3-nitrophenol (Velsol® Red BN), 3-nitro-p-hydroxyethylaminophenol (Velsol® Red 54), 4-hydroxyethylamino-3-nitroaniline (Velsol® Red 3), N,N′-bis(hydroxyethyl)-2-nitro-p-phenylenediamine (Velsol® Violet BS), N,N′,N′-tris(hydroxyethyl)-2-nitro-p-phenylenediamine (Velsol® Blue 2), 4-(2′-hydroxyethyl)amino-3-nitrotoluene, 4-(2′-hydroxyethyl)
  • azodyes such as, for example, Acid Brown 4 (C.I. 14805), anthraquinone dyes such as, for example, Disperse Blue 23 (C.I. 61545), Disperse Violet 4 (C.I. 61105), 1,4,5,8-tetraminoanthraquinone and 1,4-diaminoanthraquinone and further direct dyes.
  • Acid Brown 4 C.I. 14805
  • anthraquinone dyes such as, for example, Disperse Blue 23 (C.I. 61545), Disperse Violet 4 (C.I. 61105), 1,4,5,8-tetraminoanthraquinone and 1,4-diaminoanthraquinone and further direct dyes.
  • Oxidation dye precursors which are available are preferably p-phenylenediamines and p-aminophenols and derivatives thereof, such as, for example, p-tolylenediamine, p-phenylenediamine, p-aminophenol, which are combined with so-called modifiers or couplers, such as, for example, m-phenylenediamine, resorcinol, m-aminophenol and derivatives thereof for the purpose of nuancing the coloration.
  • modifiers or couplers such as, for example, m-phenylenediamine, resorcinol, m-aminophenol and derivatives thereof for the purpose of nuancing the coloration.
  • Suitable oxidizing agents for developing the hair colorations are preferably hydrogen peroxide and its addition compounds.
  • compositions according to the invention can comprise the carriers customary in cosmetic systems, in particular benzyl alcohol, vanillin (4-hydroxy-3-methoxybenzaldehyde), isovanillin, p-hydroxyanisol, 3-hydroxy-4-methoxybenzaldehyde, 2-phenoxyethanol, salicylaldehyde, 3,5-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, 4-hydroxyphenylacetamide, methyl p-hydroxybenzoate, p-hydroxybenzaldehyde, m-cresol, hydroquinone monomethyl ether, o-fluorophenol, m-fluorophenol, p-fluorophenol, 2-(2′-hydroxyphenoxy)ethanol, 3,4-methylenedioxyphenol, resorcinol monomethyl ether, 3,4-dimethoxyphenol, 3-trifluoromethylphenol, resorcinol monoacetate, ethylvanillin, 2-thiophenethanol
  • the hair colorants according to the invention can advantageously comprise pearlescence-imparting compounds, for example fatty acid monoalkanolamides, fatty acid dialkanolamides, monoesters or diesters of alkylene glycol, in particular ethylene glycol and/or propylene glycol or oligomers thereof with higher fatty acids, e.g. palmitic acid, stearic acid or behenic acid, or mixtures thereof, monoesters or diesters of alkylene glycols with fatty acids, fatty acids and metal salts thereof, monoesters or polyesters of glycerol with carboxylic acids and ketosulfones of various types, preferably ethylene glycol distearate and polyethylene glycol distearate with about 3 glycol units.
  • pearlescence-imparting compounds for example fatty acid monoalkanolamides, fatty acid dialkanolamides, monoesters or diesters of alkylene glycol, in particular ethylene glycol and/or propylene glycol or oli
  • the hair-treatment compositions according to the invention preferably comprise 0.1 to 15% by weight, particularly preferably 1 to 10% by weight, of pearlescence-imparting compounds.
  • Glitter and shine effects of the compositions according to the invention can be produced preferably by adding mica, colored polyacrylic esters and mica, mica-iron oxide, mica-titanium oxide and through pigments.
  • Suitable pigments are metal oxides, for example iron oxides, titanium oxide, ultramarine blue, and pigments modified with cationic coating shells, as described in WO 00/12053 and EP 504 066.
  • the cosmetic compositions according to the invention can comprise surfactants, emulsifiers, cationic polymers, thickeners, film formers, antimicrobial active ingredients, astringents, antioxidants, UV light protection filters, pigments/micropigments, gelling agents, and further additives customary in cosmetics, such as, for example, superfatting agents, moisturizing agents, silicones, stabilizers, conditioning agents, glyceryl, preservatives, pearlizing agents, dyes, fragrance and perfume oils, solvents, hydrotropes, opacifiers, fatty alcohols, substances with a keratolytic and keratoplastic effect, antidandruff agents, biogenic active ingredients (local anesthetics, antibiotics, antiphlogistics, antiallergics, corticosteroids, sebostatics), vitamins, Bisabolol®, Allantoin®, Phytantriol®, Panthenol®, AHA acids, plant extracts, for example alo
  • Anionic washing-active substances which may be mentioned are preferably: C 10 -C 20 -alkyl and alkylene carboxylates, alkyl ether carboxylates, fatty alcohol sulfates, fatty alcohol ether sulfates, alkylamide sulfates and sulfonates, fatty acid alkylamide polyglycol ether sulfates, alkanesulfates, alkanesulfonates, and hydroxyalkanesulfonates, olefinsulfonates, acylesters of isothionates, ⁇ -sulfo fatty acid esters, alkylbenzenesulfonates, alkylphenol glycol ether sulfonates, sulfosuccinates, sulfosuccinic monoesters and diesters, fatty alcohol ether phosphates, protein-fatty acid condensation products, alkyl monoglyceride sulfates and sulfon
  • the weight fraction of the anionic surfactants is preferably 1 to 30% by weight, particularly preferably 5 to 25% by weight, especially preferably 10 to 22% by weight, based on the finished compositions.
  • Suitable cationic surfactants are, for example, quaternary ammonium salts, such as di(C 10 -C 24 -alkyl)dimethylammonium chloride or bromide, preferably di(C 12 -C 18 -alkyl)dimethylammonium chloride or bromide; C 10 -C 24 -alkyldimethylethylammonium chloride or bromide C 10 -C 24 alkyltrimethylammonium chloride or bromide, preferably cetyltrimethylammonium chloride or bromide and C 20 -C 22 -alkyltrimethylammonium chloride or bromide; C 10 -C 24 -alkyldimethylbenzylammonium chloride or bromide, preferably C 12 -C 18 -alkyldimethylbenzylammonium chloride; N-(C 10 -C 18 -alkyl)pyridinium chloride or bromide, preferably N-(C 12
  • the weight fraction of the cationic surfactants is preferably 0.1 to 10% by weight, particularly preferably 0.2 to 7% by weight, especially particularly preferably 0.5 to 5% by weight, based on the finished composition.
  • Suitable nonionic surfactants which can be used as washing-active substances are preferably fatty alcohol ethoxylates (alkylpolyethylene glycols); alkylphenol polyethylene glycols; alkyl mercaptan polyethylene glycols; fatty amine ethoxylates (alkylaminopolyethylene glycols); fatty acid ethoxylates (acyl polyethylene glycols); polypropylene glycol ethoxylates (Pluronics®); fatty acid amide polyethylene glycols; N-alkyl-, N-alkoxypolyhydroxy fatty acid amide, in particular fatty acid N-methylglucamides, sucrose esters; polyglycol ethers, alkyl polyglycosides, phosphoric esters (mono-, di- and triphosphoric esters ethoxylated and nonethoxylated).
  • fatty alcohol ethoxylates alkylpolyethylene glycols
  • alkylphenol polyethylene glycols
  • the weight fraction of the nonionic surfactants in the compositions according to the invention is preferably in the range from 1 to 20% by weight, particularly preferably 2 to 10% by weight, especially preferably 3 to 7% by weight, based on the finished composition.
  • amphoteric surfactants are: N-(C 12 -C 18 -alkyl)- ⁇ -aminopropionates and N-(C 12 -C 18 -alkyl)- ⁇ -iminodipropionates as alkali metal and mono-, di- and trialkylammonium salts; N-acylaminoalkyl-N,N-dimethylacetobetaine, preferably N—(C 8 -C 18 -acyl)aminopropyl-N,N-dimethylacetobetaine; C 12 -C 18 -alkyldimethylsulfopropylbetaine; amphoteric surfactants based on imidazoline (trade name: Miranol®, Steinapon®), preferably the sodium salt of 1-( ⁇ -carboxymethyloxyethyl)-1-(carboxymethyl)-2-laurylimidazolinium; amine oxides, e.g. C 12 -C 18 -alkyl
  • the weight fraction of the amphoteric surfactants is preferably 0.5 to 20% by weight, particularly preferably 1 to 10% by weight, based on the finished composition.
  • foam-boosting cosurfactants from the group consisting of alkylbetaines, alkylamidobetaines, aminopropionates, aminoglycinates, imidazoliniumbetaines and sulfobetaines, amine oxides and fatty acid alkanolamides or polyhydroxyamides can be used in the compositions according to the invention.
  • Preferred surfactants in the compositions according to the invention are alkyl ether sulfates, alkylsulfates, in particular laurylsulfate, alkylbetaines, in particular cocoamidopropylbetaine, amphoacetates, acylglutamates, in particular sodium cocoylglutamate, alkyl ether sulfosuccinates, in particular disodium laureth sulfosuccinate and coconut fatty acid diethanolamide.
  • the total amount of the surfactants used in the compositions according to the invention is preferably 1 to 70% by weight, particularly preferably 10 to 40% by weight, especially preferably 12 to 35% by weight, based on the finished composition.
  • compositions according to the invention in the form of emulsions can be produced without further emulsifier or else comprise one or more emulsifiers.
  • emulsifiers can be chosen from the group of nonionic, anionic, cationic or amphoteric emulsifiers.
  • Suitable nonionogenic coemulsifiers are preferably addition products of from 0 to 30 mol of ethylene oxide and/or 0 to 5 mol of propylene oxide onto linear fatty alcohols having 8 to 22 carbon atoms, onto fatty acids having 12 to 22 carbon atoms, only alkylphenols having 8 to 15 carbon atoms in the alkyl group and onto sorbitan or sorbitol esters; (C 12 -C 18 ) fatty acid monoesters and diesters of addition products of from 0 to 30 mol of ethylene oxide onto glycerol; glycerol monoesters and diesters and sorbitan monoesters and diesters of saturated and unsaturated fatty acids having 6 to 22 carbon atoms and optionally ethylene oxide addition products thereof; addition products of from 15 to 60 mol of ethylene oxide onto castor oil and/or hydrogenated castor oil; polyol and, in particular, polyglycerol, esters, such as, for example, polyglycerol polyric
  • Suitable ionogenic coemulsifiers are, for example, anionic emulsifiers, such as mono-, di- or triphosphoric esters, soaps (e.g. sodium stearate), fatty alcohol sulfates, but also cationic emulsifiers, such as mono-, di- and trialkylquats and polymeric derivatives thereof.
  • Available amphoteric emulsifiers are preferably alkylaminoalkylcarboxylic acids, betaines, sulfobetaines and imidazoline derivatives.
  • Fatty alcohol ethoxylates are preferably chosen from the group of ethoxylated stearyl alcohols, cetyl alcohols, cetylstearyl alcohols, in particular polyethylene glycol(13)stearyl ether, polyethylene glycol(14)stearyl ether, polyethylene glycol(15)stearyl ether, polyethylene glycol(16)stearyl ether, polyethylene glycol(17)stearyl ether, polyethylene glycol(18)stearyl ether, polyethylene glycol(19)stearyl ether, polyethylene glycol(20)stearyl ether, polyethylene glycol(12)isostearyl ether, polyethylene glycol(13)isostearyl ether, polyethylene glycol(14)isostearyl ether, polyethylene glycol(15)isostearyl ether, polyethylene glycol(16)isostearyl ether, polyethylene glycol(17)isostearyl ether, polyethylene glycol(18)isostearyl
  • An advantageous alkyl ether sulfate is sodium laureth-14 sulfate, and an advantageous ethoxylated cholesterol derivative is polyethylene glycol(30)cholesteryl ether. Preference is likewise given to polyethylene glycol(25)soyasterol.
  • Ethoxylated triglycerides which can be used advantageously are polyethylene glycol(60) evening primrose glycerides.
  • polyethylene glycol glycerol fatty acid esters from the group consisting of polyethylene glycol(20)glyceryl laurate, polyethylene glycol(6)glyceryl caprate, polyethylene glycol(20)glyceryl oleate, polyethylene glycol(20)glyceryl isostearate and polyethylene glycol(18)glyceryl oleate/cocoate.
  • polyethylene glycol(20)sorbitan monolaurate, polyethylene glycol(20)sorbitan monostearate, polyethylene glycol(20)sorbitan monoisostearate, polyethylene glycol(20)sorbitan monopalmitate, polyethylene glycol(20)sorbitan monooleate are particularly suitable.
  • W/O emulsifiers which can be used are the following: fatty alcohols having 8 to 30 carbon atoms, monoglycerol esters of saturated and/or unsaturated, branched and/or unbranched alkanecarboxylic acids with a chain length of from 8 to 24, in particular 12 to 18, carbon atoms, diglycerol esters of saturated and/or unsaturated, branched and/or unbranched alkanecarboxylic acids with a chain length of from 8 to 24, in particular 12 to 18, carbon atoms, monoglycerol ethers of saturated and/or unsaturated, branched and/or unbranched alcohols with a chain length of from 8 to 24, in particular 12 to 18, carbon atoms, diglycerol ethers of saturated and/or unsaturated, branched and/or unbranched alcohols with a chain length of from 8 to 24, in particular 12 to 18, carbon atoms, propylene glycol esters of saturated and/or unsaturated, branched and/or unbranche
  • W/O emulsifiers are glyceryl monostearate, glyceryl monoisostearate, glyceryl monomyristate, glyceryl monooleate, glyceryl monolaurate, glyceryl monocaprylate, glyceryl monocaprate, diglyceryl monostearate, diglyceryl monoisostearate, propylene glycol monostearate, propylene glycol monoisostearate, propylene glycol monocaprylate, propylene glycol monolaurate, sorbitan monoisostearate, sorbitan monolaurate, sorbitan monocaprylate, sorbitan monoisooleate, sucrose distearate, cetyl alcohol, stearyl alcohol, arachidyl alcohol, behenyl alcohol, isobehenyl alcohol, selachyl alcohol, chimyl alcohol or polyethylene glycol(2)stearyl ether.
  • the weight fraction of the emulsifier or emulsifiers present in the compositions according to the invention, in addition to the aminopolyorganosiloxane (S H ) is preferably 0.1 to 20% by weight, particularly preferably 0.5 to 15% by weight, especially preferably 1 to 10% by weight, based on the finished composition.
  • Suitable cationic polymers are preferably the compounds known under the INCI name “Polyquaternium”, in particular Polyquaternium-31, Polyquaternium-16, Polyquaternium-24, Polyquaternium-7, Polyquaternium-22, Polyquaternium-39, Polyquaternium-28, Polyquaternium-2, Polyquaternium-10, Polyquaternium-11, Polyquaternium-37&mineral oil&PPG trideceth (®Salcare SC95), PVP dimethylaminoethyl methacrylate copolymer, guar hydroxypropyltriammonium chlorides, and calcium alginate and ammonium alginate.
  • Polyquaternium in particular Polyquaternium-31, Polyquaternium-16, Polyquaternium-24, Polyquaternium-7, Polyquaternium-22, Polyquaternium-39, Polyquaternium-28, Polyquaternium-2, Polyquaternium-10, Polyquaternium-11, Polyquaternium-37&mineral oil&PPG trideceth (®S
  • cationic cellulose derivatives may preferably be used: cationic cellulose derivatives; cationic starch; copolymers of diallylammonium salts and acrylamides; quaternized vinylpyrrolidone/vinylimidazole polymers; condensation products of polyglycols and amines; quaternized collagen polypeptides; quaternized wheat polypeptides; polyethyleneimines; cationic silicone polymers, such as, for example, amidomethicones; copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine; polyaminopolyamide and cationic chitin derivatives, such as, for example, chitosan.
  • the weight fraction of cationic polymers in the compositions according to the invention can preferably be in the range from 0.1 to 10% by weight, particularly preferably in the range from 0.2 to 5% by weight, especially preferably in the range from 0.5 to 2.5% by weight.
  • the desired viscosity of the compositions can be adjusted by adding thickeners.
  • thickeners preferably cellulose ethers and other cellulose derivatives (e.g. carboxymethylcellulose, hydroxyethylcellulose), gelatin, starch and starch derivatives, sodium alginates, fatty acid polyethylene glycol esters, agar agar, traganth or dextrin derivatives, in particular dextrin esters.
  • the synthetic polymers used are various materials, preferably polyvinyl alcohols, polyacrylamides, polyvinylamides, polysulfonic acids, in particular copolymers based on ammonium salts of acrylamidoalkylsulfonic acids and cyclic N-vinylcarboxamides or cyclic and linear N-vinylcarboxamides and also hydrophobically modified acrylamidoalkylsulfonic acid copolymers, polyacrylic acid, polyacrylic acid derivatives, polyacrylic esters, polyvinylpyrrolidone, polyvinyl methyl ether, polyethylene oxides, copolymers of maleic anhydride and vinyl methyl ether, and various mixtures and copolymers of the abovementioned compounds, including their various salts and esters. These polymers can, if desired, be crosslinked or uncrosslinked.
  • Thickeners which are particularly suitable especially for oil-based compositions are dextrin esters, for example dextrin palmitate, but also fatty acid soaps, fatty alcohols and silicone waxes, for example alkylmethicones, SilCare® 41 M40, SilCare® 41 M50, SilCare® 41 M65, SilCare® 41 M70 or SilCare® 41 M80.
  • preferred film formers are salts of phenylbenzimidazolesulfonic acid, water-soluble polyurethanes, for example C 10 -polycarbamylpolyglyceryl esters, polyvinyl alcohol, polyvinylpyrrolidone copolymers, for example vinylpyrrolidone/vinyl acetate copolymer, water-soluble acrylic acid polymers/copolymers or esters or salts thereof, for example partial ester copolymers of acrylic/methacrylic acid and polyethylene glycol ethers of fatty alcohols, such as acrylate/steareth-20 methacrylate copolymer, water-soluble cellulose, for example hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, water-soluble quaterniums, polyquaterniums, carboxyvinyl polymers, such as carbomers and salts thereof, polysaccharides, for example polydextrose and glucan, vinyl acetate/croton
  • suitable antimicrobial active ingredients are cetyltrimethylammonium chloride, cetylpyridinium chloride, benzethonium chloride, diisobutylethoxyethyldimethylbenzylammonium chloride, sodium N-laurylsarcosinate, sodium N-palmethylsarcosinate, lauroylsarcosine, N-myristoylglycine, potassium N-laurylsarcosine, trimethylammonium chloride, sodium aluminum chlorohydroxylactate, triethyl citrate, tricetylmethylammonium chloride, 2,4,4′-trichloro-2′-hydroxydiphenyl ether (triclosan), phenoxyethanol, 1,5-pentanediol, 1,6-hexanediol, 3,4,4′-trichlorocarbanilide (triclocarban), diaminoalkylamide, for example L-lysinehexadecylamide, citrate heavy
  • compositions according to the invention comprise the antimicrobial agents preferably in amounts up to 50% by weight, particularly preferably in amounts of from 0.01 to 10% by weight, particularly preferably in amounts of from 0.1 to 10% by weight.
  • Preferred astringents are oxides, preferably magnesium oxide, aluminum oxide, titanium dioxide, zirconium dioxide and zinc oxide, oxide hydrates, preferably aluminum oxide hydrate (boehmite) and hydroxides, preferably of calcium, magnesium, aluminum, titanium, zirconium or zinc.
  • compositions according to the invention comprise the astringent active ingredients preferably in amounts of from 0 to 50% by weight, particularly preferably in amounts of from 0.01 to 10% by weight and especially preferably in amounts of from 0.1 to 10% by weight.
  • compositions according to the invention comprise one or more antioxidants.
  • antioxidants which can be used are all antioxidants which are customary or suitable for cosmetic and/or pharmaceutical application.
  • the antioxidants are advantageously chosen from the group consisting of amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and derivatives thereof, imidazoles (e.g. urocanic acid) and derivatives thereof, peptides such as D,L-camosine, D-camosine, L-carnosine and derivatives thereof (e.g. anserine), carotenoids, carotenes (e.g. ⁇ -carotene, ⁇ -carotene, lycopene) and derivatives thereof, chlorogenic acid and derivatives thereof, lipoic acid and derivatives thereof (e.g.
  • amino acids e.g. glycine, histidine, tyrosine, tryptophan
  • imidazoles e.g. urocanic acid
  • peptides such as D,L-camosine, D-camosine, L-carnosine and derivatives thereof (e.g. anserine)
  • thiols e.g. thioredoxin, glutathione, cysteine, cystine, cystamine and the glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters thereof
  • salts thereof dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and derivatives thereof (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts), and sulfoximine compounds (e.g.
  • buthionine sulfoximines in very low tolerated doses (e.g. pmol/kg)
  • very low tolerated doses e.g. pmol/kg
  • metal chelating agents e.g. ⁇ -hydroxyfatty acids, palmitic acid, phytic acid, lactoferrine
  • ⁇ -hydroxy acids e.g.
  • citric acid citric acid, lactic acid, malic acid
  • humic acid bile acid, bile extracts, bilirubin, biliverdin, EDTA, EGTA and derivatives thereof
  • unsaturated fatty acids and derivatives thereof e.g. ⁇ -linolenic acid, linoleic acid, oleic acid
  • folic acid and derivatives thereof ubiquinone and ubiquinol and derivatives thereof
  • vitamin C and derivatives e.g. ascorbyl palmitate, Mg ascorbyl phosphate, ascorbyl acetate
  • tocopherols and derivatives e.g. vitamin E acetate
  • vitamin A and derivatives e.g.
  • vitamin A palmitate coniferyl benzoate of benzoin resin, rutinic acid and derivatives thereof, ⁇ -glycosylrutin, ferulic acid, furfurylideneglucitol, carnosine, butylhydroxytoluene, butylhydroxyanisole, nordihydroguaiacic acid, nordihydroguaiaretic acid, trihydroxybutyrophenone, uric acid and derivatives thereof, mannose and derivatives thereof, zinc and derivatives thereof (e.g. ZnO, ZnSO 4 ), selenium and derivatives thereof (e.g. selenomethionine), stilbenes and derivatives thereof (e.g.
  • stilbene oxide trans-stilbene oxide
  • superoxide dismutase and the derivatives (salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids) of these specified substances which are suitable according to the invention.
  • water-soluble antioxidants can be used particularly advantageously.
  • the antioxidants can protect the skin and the hair against oxidative stress.
  • Preferred antioxidants here are vitamin E and derivatives thereof, and vitamin A and derivatives thereof.
  • the amount of antioxidants (one or more compounds) in the compositions according to the invention is preferably 0.001 to 30% by weight, particularly preferably 0.05 to 20% by weight, in particular 1 to 10% by weight, based on the total weight of the compositions.
  • vitamin E and/or derivatives thereof are the antioxidant or the antioxidants, it is advantageous to choose their particular concentrations from the range from 0.001 to 10% by weight, based on the total weight of the compositions.
  • the cosmetic or pharmaceutical compositions comprise antioxidants chosen from superoxide dismutase, tocopherol (vitamin E) and ascorbic acid (vitamin C).
  • Suitable UV filters are preferably 4-aminobenzoic acid; 3-(4′-trimethylammonium)benzylideneboran-2-one methylsulfate; 3,3,5-trimethyl cyclohexylsalicylate; 2-hydroxy-4-methoxybenzophenone; 2-phenylbenzimidazole-5-sulfonic acid and its potassium, sodium and triethanolamine salts; 3,3′-(1,4-phenylenedimethine)bis(7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1-methanesulfonic acid and its salts; 1-(4-tertbutylphenyl)-3-(4-methoxyphenyl)propane-1,3-dione, 3-(4′-sulfo)-benzylidenebornan-2-one and its salts; 2-ethylhexyl 2-cyano-3,3-diphenylacrylate; polymers of N-[2(and 4)-
  • Pigments/micropigments which may be used are preferably microfine titanium dioxide, mica-titanium dioxide, iron oxides, mica-iron oxide, zinc oxide, silicon oxides, ultramarine blue, chromium oxides.
  • Suitable gelling agents are all surface-active substances which, dissolved in the liquid phase, form a network structure and thus consolidate the liquid phase. Suitable gelling agents are specified, for example, in WO 98/58625.
  • Preferred gelling agents are metal salts of fatty acids, preferably with 12 to 22 carbon atoms, for example sodium stearate, sodium palmitate, sodium laurate, sodium arachidate, sodium behenate, potassium stearate, potassium palmitate, sodium myristate, aluminum monostearate, hydroxyfatty acids, for example 12-hydroxystearic acid, 16-hydroxyhexadecanoyl acid; fatty acid amides; fatty acid alkanolamides; dibenzalsorbitol and alcoholic polyamides and polyacrylamides or mixtures thereof.
  • compositions according to the invention comprise 0.01 to 20% by weight, particularly preferably 0.1 to 10% by weight, especially preferably 1 to 8% by weight and very particularly preferably 3 to 7% by weight, of gelling agents.
  • Further additives may be silicone compounds, preferably dimethylpolysiloxane, methylphenylpolysiloxanes, cyclic silicones, and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine- and/or alkyl-modified silicone compounds, for example alkylsilicones.
  • compositions according to the invention can comprise the abovementioned silicone compounds preferably in the amounts by weight of from 0.1 to 20% by weight, particularly preferably 0.2 to 15% by weight, especially preferably 0.5 to 10% by weight, based on the finished compositions.
  • Suitable carrier materials are preferably vegetable oils, natural and hydrogenated oils, waxes, fats, water, alcohols, polyols, glycerol, glycerides, liquid paraffins, liquid fatty alcohols, sterol, polyethylene glycols, cellulose and cellulose derivatives.
  • Fungicidal active ingredients which may be used are preferably ketoconazole, oxiconazole, terbinafin, bifonazole, butoconazole, cloconazole, clotrimazole, econazole, enilconazole, fenticonazole, isoconazole, miconazole, sulconazole, tioconazole fluconazole, itraconazole, terconazole and naftifine, Zn pyrethione and octopirox in the amounts by weight of from 0.05 to 5% by weight, preferably 0.1 to 3% by weight, particularly preferably 0.2 to 2% by weight, based on the finished compositions.
  • compositions according to the invention can advantageously be mixed with conventional ceramides, pseudoceramides, fatty acid N-alkylpolyhydroxyalkylamides, cholesterol, cholesterol fatty acid esters, fatty acids, triglycerides, cerebrosides, phospholipids and similar substances.
  • the pearlescence-imparting component is particularly preferably ethylene glycol distearate and polyethylene glycol distearate with 3 glycol units.
  • the moisturizing substances available are preferably isopropyl palmitate, glycerol and/or sorbitol, which are preferably used in the amounts by weight of from 0.1 to 50%.
  • Superfatting agents which may be used are preferably lanolin and lecithin, nonethoxylated and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, mono-, di- and triglycerides and/or fatty acid alkanolamides.
  • Suitable preservatives are preferably phenoxyethanol, parabens, pentanediol or sorbic acid. They are preferably used in the amounts by weight of from 0.001 to 5% by weight, particularly preferably from 0.01 to 3% by weight, especially preferably from 0.1 to 2% by weight, based on the finished compositions.
  • Dyes which can be used are the substances approved and suitable for cosmetic and pharmaceutical purposes.
  • Fragrance and/or perfume oils which may be used are individual odorant compounds, e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Odorant compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenylglycinate, allyl cyclohexylpropionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the ionones, alpha-isomethylionone and methyl cedryl ketone
  • the alcohols include anethole, citronellol, eugenol, geraniol, linaloyl, phenylethyl alcohol and terpineol
  • the hydrocarbons include primarily the terpenes and balsams. Preference is given to using mixtures of different odorants which together produce a pleasant scent note.
  • Perfume oils can also comprise natural odorant mixtures, as are accessible from vegetable or animal sources, e.g. pine, citrus, jasmine, lily, rose or ylang ylang oil.
  • Essential oils of lower volatility, which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, camomile oil, clove oil, melissa oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and ladanum oil.
  • the acids or alkali for adjusting the pH which are used are preferably mineral acids, for example HCl, inorganic bases, for example NaOH, KOH and organic acids, preferably citric acid.
  • compositions are preferably adjusted to a pH in the range from 2 to 12, preferably pH 3 to 8.
  • the cosmetic and pharmaceutical compositions according to the invention can be prepared using the substituted aminopolyorganosiloxanes (S H ).
  • the present invention therefore also provides the use of one or more substituted aminopolyorganosiloxanes (S H ) for preparing a cosmetic or pharmaceutical composition.
  • a concentrate comprising 70 to 99.99% by weight, particularly preferably 70 to 99% by weight and especially preferably 75 to 95% by weight of one or more substituted aminopolyorganosiloxanes (S H ), based on the finished concentrate, is used for preparing the cosmetic or pharmaceutical compositions according to the invention.
  • S H substituted aminopolyorganosiloxanes
  • Standardized, blonde-bleached hair tresses were colored using a standard commercial permanent hair color (viva pure red, fiery red) under standard conditions.
  • the tress A was then washed with ether sulfate:betaine (3:1, 12% Al), and the tress B was washed with ether sulfate:betaine (3:1, 12% Al)+SilCare® Silicone SEA (1% Al) 4 times in each case.
  • the tress A is set at standard (O).
  • An improvement compared with the standard is evaluated with + or ++ (very good), and a deterioration with ⁇ or ⁇ .
  • the hair tresses treated with SilCare® Silicone SEA have significantly lower bleeding of the hair color according to the visual and sensory test (increased color intensity, higher color brilliance) and additionally display a significantly improved shine and a better feel.
  • Preparation method I Melting of A at 80° C. II Heating of B to 80° C. III Stirring of II into I IV Stirring until a temperature of 35° C. is reached V Addition of C to IV at 35° C.
  • Preparation method I Melting of A at about 75° C. II Heating of B to about 75° C. III Addition of II to I with stirring and further stirring until 30° C. IV Addition of C to III at 30° C. V Adjustment to pH 4.0 with citric acid
  • Aristoflex ® (Clariant) Ammonium acryloyldimethyltaurate/ AVC NVP copolymer (NVP: N-vinylpyrrolidone)
  • Aristoflex ® (Clariant) Ammonium acryloyldimethyltaurate/ HMB beheneth-25 methacrylate polymer
  • Aristoflex ® (Clariant) Polypropylene terephthalate PEA 70 Cetiol ® V (Cognis) Decyl oleate Diaformer Z-751 Lauryl/stearyl acrylate, ethyleneamine oxide, methacrylate copolymer Emulsogen ® (Clariant) PEG-40 hydrogenated castor oil HCO 040 Extrapon Water/ethoxydiglycol/propylene avocado glycol/butylene glycol/persea special gratissima extract Genagen ® CAB (Clariant) Cocoamidopropylbetaine Genagen ® KB (Cl
  • Genapol ® Ceteareth-50 T 500 P Glucamat PEG-120 methylglusose dioleate DOE-120 Hostacerin ® (Clariant) Polyglyceryl-2 sesquiisostearate DGI Hostapon ® (Clariant) Sodium cocoylglutamate KCG Locron ® L (Clariant) Aluminum chlorohydrate Lunacera ® M (H.B.

Abstract

Cosmetic or pharmaceutical compositions comprising one or more substituted aminopolyorganosiloxanes (SH) with substituted amino groups which are bonded to silicon atoms of the polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)alkylene bridges, where the amino groups present in the aminopolyorganosiloxanes (SH) are substituted at least partially by a radical of the formula (ε)
T-CH2—CHOH—CH2—  (ε), in which T is the radical of a surfactant monoalcohol polyglycol ether with emulsifier character,
  • the amino groups present in the aminopolyorganosiloxanes (SH) are substituted in the average ratio of at least 1.5 radicals of the formula (ε) per Si-bonded aminoalkyl group or amino-mono- or -oligo-(alkylenamino)-alkyl group, and present amino groups are, if appropriate, acylated and/or alkylated and/or benzylated and/or protonated at least partially to give amide groups, are described.

Description

  • The invention relates to cosmetic or pharmaceutical compositions comprising aminopolyorganosiloxanes which are substituted by alkyl polyglycol ether groups.
  • It is known that aminosiloxanes with primary and secondary nitrogen groups and sometimes present reactive silanol groups are incorporated into hair shampoo formulations as conditioning agents. These products are not water-soluble and can only be incorporated in the presence of interface-active substances. In order to improve the solubility in water, the aminosiloxanes can additionally be substituted by polyoxyalkylene groups, as described in U.S. Pat. No. 5,075,403. It is disadvantageous that these have high viscosity and can only be handled in dilution, during use remain for the greatest part in the aqueous phase and do not attach to the hair in the desired manner. WO 02/092666 claims aminopolyorganosiloxanes and their use for the softening finishing of textile fiber materials.
  • The object of the present invention was to prepare compositions for cosmetic or pharmaceutical products which are water-soluble, emulsifiable, compatible with additives and auxiliaries customary in cosmetic compositions, can be incorporated easily into formulations, produce the clearest possible appearance and exhibit a softening effect. Moreover, the compositions are to have good substantivity and bring about an improvement in the color absorption behavior and an increase in the color stability and shape retention for tinted or colored hair.
  • Surprisingly, it has been found that substituted aminopolyorganosiloxanes (SH) comprising substituted amino groups which are bonded to the silicon atoms of the polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)-alkylene bridges, in which the amino groups present in the aminopolyorganosiloxanes are substituted at least partially by a radical of the formula (ε),
    T-CH2—CHOH—CH2—  (ε),
    in which T is the radical of a surfactant monoalcohol polyglycol ether with emulsifier character, in the average ratio of at least 1.5 radicals of the formula (ε) per Si-bonded amino group or amino-mono- or -oligo(alkylenamino)alkyl group, and present amino groups are, if appropriate, acylated and/or alkylated and/or benzylated and/or protonated at least partially to give amide groups, exhibit excellent substantivity, and good conditioning and color-retaining to color-intensifying effects, in particular toward hair.
  • The present invention therefore provides cosmetic or pharmaceutical compositions, in particular for the care of the hair and of the skin, comprising one or more substituted aminopolyorganosiloxanes (SH) with substituted amino groups which are bonded to silicon atoms of the polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)alkylene bridges, where the amino groups present in the aminopolyorganosiloxanes (SH) are substituted at least partially by a radical of the formula (ε)
    T-CH2—CHOH—CH2—  (ε),
    in which T is the radical of a surfactant monoalcohol polyglycol ether with emulsifier character, the amino groups present in the aminopolyorganosiloxanes (SH) are substituted in the average ratio of at least 1.5 radicals of the formula (O) per Si-bonded aminoalkyl group or amino-mono- or -oligo-(alkylenamino)-alkyl group, and present amino groups are, optionally, at least partially, acylated to give amide groups and/or alkylated and/or benzylated and/or protonated.
  • The color absorption behavior of hair colorants can be improved by aminopolyorganosiloxanes (SH). In hairstyling compositions, a volumizing and shine-imparting effect of the aminopolyorganosiloxanes (SH) is also significant. Furthermore, the good solubility in water, but also the good compatibility with hydrophobic components, good dissolving, dispersing and emulsifying power, the favorable viscosity behavior coupled with low viscosity and good incorporability in highly concentrated form, and a clear appearance of the aminopolyorganosiloxanes (SH) used according to the invention is advantageous. Aminopolyorganosiloxanes (SH) are characterized by good skin sensory properties and exhibit good spreadability, and an excellent gliding and carrier effect. Moreover, they are insensitive toward heat, UV radiation and IR radiation. They are thus valuable constituents of haircare and hair-cleansing compositions, hair colorants, skincare and skin-cleansing compositions, sunscreen compositions, deodorants, antiperspirants and decorative cosmetics.
  • The compositions according to the invention may, for example, be aqueous, aqueous-alcoholic, aqueous-surface-active or alcoholic compositions, or compositions based on oil, inclusive compositions based on oil in anhydrous form, or emulsions, suspensions or dispersions.
  • In a preferred embodiment of the invention, the cosmetic or pharmaceutical compositions are in aqueous, aqueous-alcoholic, alcoholic or aqueous-surface-active form or represent compositions based on oil, in particular anhydrous compositions based on oil, or are in the form of emulsion, suspension or dispersion and, more particularly, in the form of fluids, foams, sprays, gels, mousse, lotions, creams or powders.
  • Using the aminopolyorganosiloxanes (SH) it is possible to prepare clear, viscous, aqueous, aqueous-alcoholic, aqueous-surface-active compositions, alcoholic compositions and also compositions based on oil with a very esthetic appearance.
  • In a further preferred embodiment of the invention, the cosmetic or pharmaceutical compositions are cosmetic or pharmaceutical formulations.
  • The substituted aminopolyorganosiloxanes (SH) used in the cosmetic and pharmaceutical compositions according to the invention can be prepared as described in WO 02/092666 by introducing the radicals (ε) and optionally one or more of the other substituents into corresponding starting aminopolyorganosiloxanes (S) which comprise primary and/or secondary amino groups which are bonded to silicon atoms of the polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)alkylene bridges. In the process, the starting aminopolyorganosiloxanes (S) are reacted with at least one alcohol polyglycol ether monoglycidyl ether (H) and optionally subsequently acylated and/or alkylated and/or benzylated and/or protonated.
  • The alcohol polyglycol ether monoglycidyl ethers (H) are generally glycidyl ethers of alcohol polyglycol ethers and can be synthesized by the following formula
    Figure US20050255075A1-20051117-C00001

    in which T is the radical of the corresponding surfactant alcohol polyglycol ether T-H, in particular as can be prepared by glycidyl ether formation of a corresponding surfactant alcohol polyglycol ether T-H.
  • The surface-active alcohol polyglycol ethers T-H may be any corresponding surfactants, e.g. in which the alcohol radical originates from an aromatic, alkylaromatic or preferably aliphatic alcohol having at least 8 carbon atoms, preferably having 8 to 24 carbon atoms, and the polyglycol radical is a polyalkylene glycol radical in which alkylene comprises 2 to 4 carbon atoms and at least some of the alkylene glycol units are ethylene glycol units. They advantageously have predominantly hydrophilic character and are preferably those in which the number of ethylenoxy units constitutes on average at least half of the alkylenoxy units present in T-H. Preferably, the alcohol polyglycol ethers T-H are those of the following average formula
    R1
    Figure US20050255075A1-20051117-Parenopenst
    O—X
    Figure US20050255075A1-20051117-Parenclosest
    q—OH  (II),
    in which
    • R1 is a hydrocarbon radical having 8 to 24 carbon atoms,
    • X is C2-4-alkylene and
    • q is 4 to 50,
      where at least 50% of the q alkylene groups have the meaning of X. The hydrocarbon radicals R1 may be any radicals as otherwise customarily exist in nonionogenic surfactants. They are advantageously alkylaromatic or aliphatic and comprise advantageously 8 to 22, preferably 9 to 18, particularly preferably 11 to 16, carbon atoms.
  • If R1 is aliphatic, it is preferably saturated; R1O— in this case is preferably the radical of a primary, saturated, aliphatic alcohol or of a primary alkanol which advantageously comprises 9 to 18, preferably 11 to 16, carbon atoms. The corresponding aliphatic alcohol R1OH may be a linear fatty alcohol, e.g. lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol or behenyl alcohol or else a synthetic alcohol (e.g. from the oxo synthesis or from the Ziegler synthesis), which may be linear or branched, e.g. nonanol, isononanol, decanol, isodecanol, undecanol, tridecanol, isotridecanol or isohexadecanol.
  • The number q of the alkylenoxy units positioned on this alcohol to form the alcohol polyglycol ether, in particular of the formula II, is advantageously in the range from 4 to 30, preferably 4 to 20.80% of the q alkylenoxy units are advantageously ethylenoxy units, and preferably 100% of the alkylenoxy units are ethylenoxy units.
  • The number of ethylenoxy units in T-H is advantageously 4 to 30, preferably 4 to 18, particularly preferably 5 to 12.
  • The surfactants T-H, in particular of the formula (II) are advantageously those whose HLB is greater than 7, and is advantageously in the range from 7 to 17, preferably 8 to 16.5, particularly preferably 9 to 16.
  • The primary and/or secondary amino groups in the aminopolysiloxanes (S) to be reacted with (H) are in particular part of the Si-bonded aminoalky groups or amino-mono- or -oligo(alkylenamino)alkyl groups and may be those as customarily exist in otherwise further unmodified aminopolysiloxanes and can form by using corresponding monomers in the preparation of the particular aminopolysiloxanes. Their alkyl and alkylene groups are advantageously those with 2 to 4 carbon atoms and may be linear or, if they contain 3 or 4 carbon atoms, also branched. Preferably, the aminoalkyl groups bonded to Si comprise 3 or 4 carbon atoms in the alkyl radical; the alkylene groups joining two amino groups preferably comprise 2 or 3 carbon atoms. Predominantly, the primary amino groups and the optionally present secondary amino groups in (S) are constituents of aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups of the formula
    H2N—(Y2—NH)p—Y1—  (α)
    in which
    • Y1 is 1,2 or 1,3-propylene or 2-methyl-1,3-propylene,
    • Y2 is ethylene or propylene and
    • p is 0, 1 or 2
      bonded to silicon atoms of the polysiloxane basic structure.
  • Y1 is advantageously 2-methyl-1,3-propylene or preferably 1,3-propylene; Y2 is in particular 1,2 or 1,3-propylene or is preferably ethylene; p is advantageously 0 or 1, preferably 1.
  • Preferably, the radicals of the formula (α) are those of the formula
    Figure US20050255075A1-20051117-C00002

    in which r is 0 or 1,
    particularly preferably of the formula
    Figure US20050255075A1-20051117-C00003
  • The index r is particularly preferably 0.
  • As a result of the reaction with (H), the particular radicals (ε) or
    Figure US20050255075A1-20051117-C00004

    are introduced into the aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups, in particular into those of the formula (α). In the process, the primary amino group reacts first, so that a first radical (ε) replaces a hydrogen atom of the primary amino group, and further radicals (ε) replace hydrogen atoms of the present secondary amino groups in random distribution. If desired, still acylatable amino groups can be acylated and/or any alkylatable amino groups present are alkylated and/or benzylated.
  • As a result of the acylation, preferably low molecular weight acyl radicals are introduced, advantageously those having 2 to 4 carbon atoms, e.g. acetyl, propionyl or butyryl, of which acetyl is particularly preferred. As a result of the alkylation and/or benzylation, likewise preferably low molecular weight alkyl radicals can be introduced, advantageously alkyl radicals with 1-4 carbon atoms, preferably ethyl or methyl, or benzyl radicals.
  • The reaction of (S) with (H) is advantageously carried out by reacting virtually all of the primary amino groups of (S) with (H) such that they are at least monosubstituted. Of the secondary amino groups which then remain, at least enough hydrogen atoms are replaced by a radical (ε) for the required degree of substitution of, on average, at least 1.5, primarily at least 1.8, preferably at least 2, radicals of the formula (ε) per Si-bonded aminoalkyl group or amino-mono- or -oligo(alkylenamino)alkyl group to be achieved. The fraction of secondary amino groups which are reacted with (H) can vary depending on the number of secondary amino groups in this Si-bonded group, in particular according to the meaning of p in the radical of the formula (α) or (α′). If p=0, this fraction is in particular at least half, or 50 to 100%, of the secondary amino groups, advantageously 80 to 100%, preferably 95 to 100% thereof; if p=1, at least one quarter, in particular 25 to 100% of the secondary amino groups, advantageously 50 to 100%, preferably 80 to 100% thereof; if p=2, at least one sixth, in particular 16.7 to 100% of the secondary amino groups, advantageously 40 to 100%, preferably 60 to 100% thereof.
  • The reaction of (S) with (H) can be carried out, for example if p is ≧1 advantageously up to a degree of substitution in the range from 40 to 100%, preferably 45 to 100%, particularly 50 to 100%, if p=0 advantageously up to a degree of substitution in the range from 75 to 100%, preferably 80 to 100%, particularly 90 to 100% [based on the reactive hydrogen atoms of the basic amino groups in (S)].
  • In a further preferred embodiment of the invention, the substituted aminopolyorganosiloxane (SH) has a (ε) degree of substitution of all of the amino groups in the range from 40 to 100%, preferably in the range from 50 to 100% and particularly preferably in the range from 60 to 100%, or all of the amino groups of the substituted aminopolyorganosiloxane (SH) are substituted by radicals of the formula (ε) in an amount of from 40 to 100%, preferably 50 to 100% and particularly preferably 60 to 100%.
  • The reactive hydrogen atoms of the basic amino groups which remain after the reaction of (S) with (H) can optionally be replaced at least partially (e.g. 5 to 100%, in particular 10 to 90%) by means of acylation with acyl radicals of aliphatic monocarboxylic acids, preferably those with 2-4 carbon atoms, or be replaced by means of alkylation and/or benzylation with methyl or ethyl or benzyl. Depending on the amino groups present and the alkylating and/or benzylating agents used, the alkylation and/or benzylation can optionally lead to corresponding secondary or tertiary amino groups or as far as the quaternary ammonium stage. Basic amino groups which are not quaternized may optionally be protonated.
  • The preferred groups originating from the Si-bonded aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups, in particular from the Si-bonded groups (α), reacted with (H) and optionally acylated and/or optionally further alkylated and/or benzylated may be represented by the following average formula
    Figure US20050255075A1-20051117-C00005

    in which
    • m is 0 or 1,
    • n is 0 or 1,
    • R2 is hydrogen, C1-2-alkyl, benzyl, or a radical of the formula (ε′) or,
    • if m=0, also a radical of the formula R6—CO—,
    • R3 is hydrogen or, if R2 is C1-2-alkyl, benzyl or a radical of the formula (ε′), also C1-2-alkyl or benzyl,
    • R4 is hydrogen, C1-2-alkyl, benzyl, a radical of the formula (ε′) or,
    • if n=0, also a radical of the formula R6—CO—,
    • R5 is hydrogen or, if R4 is C1-2-alkyl or a radical of the formula (ε′), also C1-2-alkyl or benzyl,
    • R6 is C1-3-alkyl
      and Ais a monovalent anion,
      with the provisos that
      at least 50% of the q alkylene groups in the meaning of X are ethylene and the radicals of the formula (β) comprise on average at least 1.5 radicals of the formula (ε′) per radical of the formula (β).
  • Preferred groups originating from the groups of the formula (α′) or (α″) can be represented by the following average formulae
    Figure US20050255075A1-20051117-C00006

    where preferably at least one R2 and R4 is also a radical of the formula (ε′).
  • Of these, preference is also given to the nonquaternized derivatives, particularly those of the formula
    Figure US20050255075A1-20051117-C00007

    and protonated derivatives thereof.
  • The substituted derivatives prepared from the Si-bonded aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups in particular of the formula (α) by the above-described reaction, in particular of the formula (β), comprise the respective substituents in a distribution corresponding to the preparation. For example, the preferred groups (β″) originating from the radicals of the formula (α″) can principally be represented by the following formulae:
    Figure US20050255075A1-20051117-C00008
    Figure US20050255075A1-20051117-C00009

    in which
    • R2′ is hydrogen, methyl, ethyl or benzyl,
    • R4′ is hydrogen, methyl, ethyl or benzyl and
    • R6 is methyl or ethyl.
  • In the aminopolysiloxanes (S) reacted to exhaustion or virtually to exhaustion with (H), those which predominate accordingly comprise (p+2) radicals of the formula (ε), preferably (ε′), among those of the above formulae (β1) to (β9) plus those of the formula (β9), and can be accompanied by correspondingly smaller amounts of ones substituted to a lesser degree by (ε) or (ε′), particularly those of the formulae (β5) and/or (β8).
  • In those reacted to a lower degree of conversion with (H), e.g. in those in which 50 to 75% of the replaceable nitrogen-bonded hydrogen atoms of (α), particularly in which p is 1 or 2, preferably of (α′) or (α″), are replaced by radicals of the formula (ε) or (ε′), and the ones remaining are optionally acylated and/or alkylated and/or benzylated, those which predominate accordingly comprise 2 to (p+1) radicals of the formula (ε), preferably (ε′), among those of the above formulae (β1) to (β9) thus those of the formulae (β5), (β6), (β7) and/or (β8), besides smaller fractions of (β9) and/or (β1), (β2), (β3) and/or (β4).
  • Those originating from Si-bonded aminoalkyl radicals, particularly from the radicals of the formula
    H2N—Y1—  (α′″)
    in particular
    Figure US20050255075A1-20051117-C00010

    are advantageously reacted to exhaustion or almost to exhaustion with (H) so that those disubstituted with radicals (ε) or (ε′) predominate, or in the preferred ones originating from (α″″), primarily the radicals of the formula
    Figure US20050255075A1-20051117-C00011

    predominate, and in the product comparatively smaller fractions of ones monosubstituted by radicals of the formula (ε) or (ε′) may optionally be present, in particular in the preferred ones originating from (α″″), mainly the radicals of the formula
    Figure US20050255075A1-20051117-C00012
  • Suitable starting polysiloxanes (S) are any amino-substituted polysiloxanes which comprise corresponding Si-bonded aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups. In general, any corresponding aminopolysiloxanes with polycationic or polybasic character are generally suitable, essentially those which are constructed from repeat dimethylsiloxy units and aminosiloxy units. They can have a linear structure or else a branched and/or crosslinked structure (e.g. branched or crosslinked one or more times). The end groups can comprise a reactive substituent, in particular e.g. hydroxy or alkoxy, or may also be blocked; e.g. with trimethylsiloxy. According to a further variant, the end groups can also comprise the abovementioned aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups.
  • Preferably, the aminopolysiloxanes (S) are constructed from repeat units of the following formulae:
    Figure US20050255075A1-20051117-C00013
  • The end groups preferably correspond to the formulae:
    Figure US20050255075A1-20051117-C00014

    in which R7 is methyl, hydroxyl, methoxy or ethoxy.
  • If appropriate, (S) can also comprise Si-branched units of the formula
    Figure US20050255075A1-20051117-C00015

    in which Z is an Si-bonded (poly)siloxane or silyl radical which comprises one or more groups of the formula (γ1), (γ2), (γ3) and/or (γ4) and optionally further such Si branches and/or crosslinks (e.g. branched and/or crosslinked one or more times).
  • The aminopolyorganosiloxanes (S) can be characterized by per se customary typical characteristic values, e.g. by their average molecular weight and the content of amine nitrogen, and also by their viscosity. The average molecular weight and the content of amine nitrogen in the aminopolyorganosiloxanes (S) can vary within wide ranges with those having a low amine number being primarily suitable for the purposes of the invention, particularly those with an amine number ≦3.
  • The aminopolysiloxanes (S) advantageously have a viscosity in the range 500-30 000, primarily 200-20 000, preferably 300-3000 cP (Brookfield rotary viscometer RV, spindle No. 5, 20° C.). The amine number of (S) is advantageously in the range from 0.05 to 3, preferably 0.1 to 2, particularly preferably 0.15 to 1.
  • Schematically, the aminopolysiloxanes (S) consisting of the abovementioned units can be represented in particular by the following average generic formula:
    Figure US20050255075A1-20051117-C00016

    in which W1 and W2 are in each case a group of the formula (γ3) or (γ4), the molecule has at least one group of the formula (α) or (γ1), (γ3) and/or (γ5) and the indices x, y and z are chosen such that the polymer has the values given above for amine number, viscosity and molecular weight. [The above formula (III) serves to illustrate the monomer units present and their number, but not their distribution or position within the polymer molecule]. The ratio of the number of dimethylsiloxy units to the number of aminoalkylsiloxy units and/or amino-mono- or -oligo(alkylenamino)alkylsiloxy units, in particular of the formula
    Figure US20050255075A1-20051117-C00017

    is advantageously in the range from 3/1 to 600/1, preferably 10/1 to 200/1. For the copolymerization, the silanes containing amino groups are preferably copolymerized with α,ω-dihydroxypolydimethylsiloxane, advantageously having an average molecular weight {overscore (M)}W in the range from 500 to 10 000, preferably 1000 to 7000, or with cyclic siloxanes, e.g. hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane and technical-grade mixtures of two or more thereof. Suitable silanes are primarily trimethoxy- or -ethoxysilanes or dimethoxy- or -ethoxymethylsilanes aminoalkyl-substituted or amino-mono- or -oligo(alkylenamino)alkyl-substituted at Si, in which the Si-bonded aminoalkyl group or amino-mono- or -oligo(alkylenamino)alkyl group corresponds primarily to the formula (α), preferably (α′), particularly (α″).
  • If an amino group-containing trimethoxysilane is used for introducing the units of the formula (γ1), then, depending on the reaction conditions, the methoxy group can be hydrolyzed to the hydroxyl group or at this point branching of the copolymer can take place, as shown by formula (γ5).
  • Depending on the preparation conditions chosen, the amino group-containing units in the molecule—e.g. in the molecule of the formula (III)—can be randomly distributed or be terminal or be grouped as in block polymers or else collect toward the extremities of the linear chains.
  • For the preparation of the polysiloxanes (SH) used according to the invention in cosmetic and pharmaceutical compositions, preference is given to those polysiloxanes (S) which have an optionally branched, predominantly linear structure of the polysiloxane basic law in which the units of the formula (γ2) predominate besides units of the formula (γ1).
  • Preference is given to polysiloxanes in which the Si-bonded aminoalkyl groups or amino-mono- or -oligo(alkylenamino)alkyl groups present, in particular the groups of the formula (α) or (α′) or (α″), are correspondingly substituted on the nitrogen by introducing the radicals (ε) or (ε′) and optionally further substituents, as described in WO 02/092666. The polysiloxanes comprise in particular repeat units of formulae
    Figure US20050255075A1-20051117-C00018

    and (γ2), and terminal oxygen-bonded silyl groups of the formula (γ3) and/or
    Figure US20050255075A1-20051117-C00019

    and, if the starting polysiloxanes (S) comprise branches, in particular as in the formula (γ5), also correspondingly branched groups, in particular those of the formula
    Figure US20050255075A1-20051117-C00020

    in which Z1 is an Si-bonded (poly)siloxane or silyl radical which comprises one or more of the groups of the formula (γ2), (γ4), (γ7) and/or (γ8) and optionally further such Si branches,
    • with the condition that in the molecule on average at least 1.5, advantageously at least 1.8, preferably at least two, radicals of the formula (ε′) per overall present Si-bonded aminoalkyl- or amino-mono- or -oligo(alkylenamino)alkyl group of the formulae (β) are present. If, in the above-described polysiloxanes in the radicals of the formula (β), m and/or n are at least partly equal to 0 and the corresponding substituent R2 or R4 is not an acyl radical R6—CO—, these radicals and the polysiloxanes can, if desired, be protonated.
  • The average molecular weight of the substituted aminopolyorganosiloxanes (SH) used according to the invention in cosmetic and pharmaceutical compositions can vary within a wide range, e.g. depending on the starting materials, quantitative ratios of the reagents and the reaction conditions chosen, in particular polymerization and substitution conditions, e.g. in the range from 15 000 to 2 000 000, advantageously from 30 000 to 1 750 000, preferably from 50 000 to 1 500 000. The nitrogen content of (SH)— in particular amino groups originating from the amino groups in (S) by reaction with (H) and optionally further substitution to substituted amino and/or ammonium groups and optionally amide groups and also including, if appropriate, remaining unreacted amino groups—is preferably low and is advantageously in the range from 0.03 to 4.2% by weight, advantageously in the range from 0.1 to 2.8% by weight and preferably in the range from 0.16 to 1.4% by weight.
  • The aminopolyorganosiloxanes (SH) used according to the invention in cosmetic or pharmaceutical compositions have marked hydrophilicity which can be modified through the incorporation of corresponding groups and substituents. Moreover, the above-described aminopolyorganosiloxanes (SH) have a self-emulsifying effect and are compatible with lipophilic components and oils.
  • Preferred embodiments of the compositions according to the invention are fluids, gels, oils, foams, sprays, lotions, cream gels, creams and powders.
  • The emulsions may either be water-in-oil emulsions or oil-in-water emulsions, microemulsions, nanoemulsions and multiple emulsions. The emulsions can be prepared in a known manner, i.e. for example by cold, hot, hot/cold or PIT emulsification.
  • Good substantivity, conditioning effect, and shine-imparting and volumizing effects of the above-described aminopolyorganosiloxanes (SH) are utilized according to the invention for producing hair-treatment compositions, preferably shampoos, hair conditioners, hair treatments, styling compositions, hair rinses, volume spray, styling fluid, hair foam, hair gel, setting composition, hairspray, mousse, hair oils and end fluids.
  • Aminopolyorganosiloxanes (SH) improve the color absorption behavior of hair colorants and are thus valuable constituents in hair tints and colorants. At the same time, being color protection additives, they additionally improve the durability of hair tints or permanent hair colorants.
  • The invention thus also provides the use of a cosmetic or pharmaceutical composition according to the invention for the protection and retention of the color in colored keratin fibers, preferably in colored human hair. Preferably, the composition according to the invention comprises for this use from 0.01 to 10% by weight, based on the finished composition, of substituted aminopolyorganosiloxane (SH).
  • Conditioning effects and good skin sensory properties of skincare compositions and skin-cleansing compositions are achieved by the above-described aminopolyorganosiloxanes (SH).
  • In a further preferred embodiment of the invention, the cosmetic or pharmaceutical compositions are rinse-off products, in particular shower baths, shower gels or foam baths.
  • In a further preferred embodiment of the invention, the cosmetic or pharmaceutical compositions are leave-on products, in particular day creams, night creams, care creams, nutrient creams, body lotions, ointments or lipcare compositions.
  • Further preferred leave-on products are decorative cosmetics, in particular make-ups, eyeshadows, lipsticks or mascara.
  • In a further preferred embodiment of the invention, the cosmetic and pharmaceutical compositions are sunscreen compositions. These comprise one or more UV filters.
  • In a further preferred embodiment of the invention, the cosmetic and pharmaceutical compositions are deodorants and antiperspirants, in particular in the form of sprays, sticks, gels or lotions.
  • In a further preferred embodiment of the invention, the cosmetic and pharmaceutical compositions are surfactant-free compositions, in particular surfactant-free solid compositions or surfactant-free emulsions.
  • In a further preferred embodiment of the invention, the cosmetic or pharmaceutical compositions are additives for permanent waving compositions, in particular conditioners.
  • The aqueous-based or aqueous-alcoholic-based cosmetic or pharmaceutical compositions according to the invention comprise aminopolyorganosiloxanes (SH) preferably in the amounts by weight of from 0.01 to 30%, particularly preferably from 0.2 to 10%, especially preferably from 0.5 to 2%, based on the finished compositions.
  • The cosmetic or pharmaceutical compositions according to the invention in anhydrous form based on oils comprise aminopolyorganosiloxanes (SH) preferably in the amounts by weight of from 0.01 to 80%, particularly preferably from 0.05 to 60%, especially preferably from 0.1 to 50%, based on the finished compositions.
  • The cosmetic or pharmaceutical compositions according to the invention in the form of an emulsion comprise substituted aminopolyorganosiloxanes (SH) preferably in amounts by weight of from 0.01 to 30%, particularly preferably from 0.05 to 10% and especially preferably from 0.1 to 5%, based on the finished composition.
  • In a further preferred embodiment, the compositions according to the invention are oil-in-water emulsions with a water fraction of from 5 to 95% by weight, preferably 15 to 75% by weight, particularly preferably 25 to 85% by weight.
  • In a further preferred embodiment, the compositions according to the invention are water-in-oil emulsions with an oil fraction of from 5 to 95% by weight, preferably 15 to 75% by weight, particularly preferably 25 to 65% by weight.
  • For the compositions according to the invention on an aqueous-alcoholic or alcoholic basis, all mono- or polyhydric alcohols are suitable. Preference is given to alcohols having 1 to 4 carbon atoms, such as ethanol, propanol, isopropanol, n-butanol, isobutanol, t-butanol or glycerol, and alkylene glycols, in particular propylene glycol, butylene glycol or hexylene glycol, and mixtures of said alcohols. Further preferred alcohols are polyethylene glycols with a relative molecular mass below 2000. In particular, a use of polyethylene glycol with a relative molecular mass between 200 and 600 and of polyethylene glycol with a relative molecular mass between 400 and 600 is preferred.
  • The oil-based compositions according to the invention can preferably comprise: hydrocarbon oils with linear or branched, saturated or unsaturated C7-C40-carbon chains, for example dodecane, isododecane, cholesterol, hydrogenated polyisobutylenes, docosanes, hexadecane, isohexadecane, paraffins and isoparaffins, but also triglycerides of animal and vegetable origin, for example beef tallow, pig fat, goose grease, perhydrosqualene, lanolin, sunflower oil, maize oil, soya oil, rice oil, jojoba oil, babusscu oil, pumpkin oil, grapeseed oil, sesame oil, walnut oil, apricot oil, macadamia oil, avocado oil, sweet almond oil, lady's smock oil, castor oil, olive oil, peanut oil, rapeseed oil and coconut oil and synthetic oils, such as purcellin oil, linear and/or branched fatty alcohols and fatty acid esters, preferably Guerbet alcohols having 6 to 18, preferably 8 to 10, carbon atoms; esters of linear (C6-C13)-fatty acids with linear (C6-C20)-fatty alcohols; esters of branched (C6-C13)-carboxylic acids with linear (C6-C20)-fatty alcohols, esters of linear (C6-C18)-fatty acids with branched alcohols, in particular 2-ethylhexanol; esters of linear and/or branched fatty acids with polyhydric alcohols (such as e.g. dimerdiol or trimerdiol) and/or Guerbet alcohols; alcohol esters of C1-C10-carboxylic acids or C2-C30-dicarboxylic acids, esters, such as dioctyl adipate, diisopropyl dimer dilineolate; propylene glycols/dicaprylate or waxes, such as beeswax, paraffin wax or microcrystalline waxes, optionally in combination with hydrophilic waxes, such as, for example, cetylstearyl alcohol; fluorinated and perfluorinated oils; monoglycerides of C1-C30-carboxylic acids, diglycerides of C1-C30-carboxylic acids, triglycerides of C1-C30-carboxylic acids, for example triglycerides of caprylic/capric acids, ethylene glycol monoesters of C1-C30-carboxylic acids, ethylene glycol diesters of C1-C30-carboxylic acids, propylene glycol monoesters of C1-C30-carboxylic acids, propylene glycol diesters of C1-C30-carboxylic acids, and propoxylated and ethoxylated derivatives of the abovementioned classes of compound. The carboxylic acids can comprise linear or branched alkyl groups or aromatic groups. By way of example, mention may be made of diisopropyl sebacate, diisopropyl adipate, isopropyl myristate, isopropyl palmitate, myristyl propionate, ethylene glycol distearate, 2-ethylhexyl palmitate, isodecyl neopentanoate, di-2-ethylhexyl maleate, cetyl palmitate, myristyl myristate, stearyl stearate, cetyl stearate, behenyl behenate, dioctyl maleate, dioctyl sebacate, cetyl octanoate, diisopropyl dilinoleate, caprylic/capryl triglyceride, PEG-6 caprylic/capryl triglyceride, PEG-8 caprylic/capryl triglyceride, cetyl ricinoleate, cholesterol hydroxystearate, cholesterol isostearate, C1-C30-monoesters and polyesters of glycerol, for example glyceryl tribehenate, glyceryl stearate, glyceryl palmitate, glyceryl distearate, glyceryl dipalmitate, C1-C30-carboxylic monoesters and polyesters of sugars, for example glucose tetraoleate, glucose tetraesters of soya oil fatty acid, mannose tetraesters of soya oil fatty acid, galactose tetraesters of oleic acid, arabinose tetraesters of linoleic acid, xylose tetralinoleate, galactose pentaoleate, sorbitol tetraoleate, sorbitol hexaesters of unsaturated soya oil fatty acid, xylitol pentaoleate, sucrose tetraoleate, sucrose pentaoleate, sucrose hexaoleate, sucrose heptaoleate, sucrose oleate.
  • The silicone oils available are preferably dimethylpolysiloxanes and cyclomethicones, polydialkylsiloxanes R3SiO(R2SiO)xSiR3, where R is methyl or ethyl, particularly preferably methyl, and x is a number from 2 to 500, for example the dimethicones available under the trade names VICASIL (General Electric Company), DOW CORNING 200, DOW CORNING 225, DOW CORNING 200 (Dow Corning Corporation), trimethylsiloxysilicates [(CH2)3SiO)1/2]x[SiO2]y, where x is a number from 1 to 500 and y is a number from 1 to 500, dimethiconols R3SiO[R2SiO]xSiR2OH and HOR2SiO[R2SiO]xSiR2OH, where R is methyl or ethyl and x is a number up to 500, polyalkylarylsiloxanes, for example the polymethylphenylsiloxanes available under the trade names SF 1075 METHYLPHENYL FLUID (General Electric Company) and 556 COSMETIC GRADE PHENYL TRIMETHICONE FLUID (Dow Corning Corporation), polydiarylsiloxanes, silicone resins, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine- and/or alkyl-modified silicone compounds, and polyether siloxane copolymers.
  • The hair colorants and tints according to the invention preferably comprise direct dyes and/or oxidation dye precursors in the customary pH ranges. Suitable direct dyes are preferably nitroaniline derivatives, such as 1-[(2-hydroxyethyl)amino]-2-nitrobenzene (Velsol® Yellow 2), 4-hydroxypropylamino-3-nitrophenol (Velsol® Red BN), 3-nitro-p-hydroxyethylaminophenol (Velsol® Red 54), 4-hydroxyethylamino-3-nitroaniline (Velsol® Red 3), N,N′-bis(hydroxyethyl)-2-nitro-p-phenylenediamine (Velsol® Violet BS), N,N′,N′-tris(hydroxyethyl)-2-nitro-p-phenylenediamine (Velsol® Blue 2), 4-(2′-hydroxyethyl)amino-3-nitrotoluene, 4-(2′-hydroxyethyl)amino-3-nitrobenzyl alcohol, 4-(2′-hydroxyethyl)amino-3-nitro-1-trifluoromethylbenzene, 4-(2′,3′-dihydroxypropyl)amino-3-nitrochlorobenzene, 4-(2′-hydroxyethyl)amino-3-nitrobromobenzene and 4-(2′,3′-dihydroxypropyl)amino-3-nitrobromobenzene, nitrobenzene derivatives, for example 2-amino-4-nitrophenol, picramic acid, 1-[(2′-hydroxyethyl)amino]-2-amino-4-nitrobenzene, 2-nitro-4-[(2′-hydroxyethyl)amino]aniline, 4-bis[(2′-hydroxyethyl)amino]-1-methylamino-2-nitrobenzene, 2,5-bis[(2′-hydroxyethyl)amino]nitrobenzene, 2-(2′-hydroxyethyl)amino-4,6-dinitrophenol, 1-amino-4-(2′,3′-dihydroxypropyl)amino-2-nitro-5-chlorobenzene, but also triphenylmethane dyes such as, for example, Basic Violet 1 (C.I. 42535), azodyes, such as, for example, Acid Brown 4 (C.I. 14805), anthraquinone dyes such as, for example, Disperse Blue 23 (C.I. 61545), Disperse Violet 4 (C.I. 61105), 1,4,5,8-tetraminoanthraquinone and 1,4-diaminoanthraquinone and further direct dyes.
  • Oxidation dye precursors which are available are preferably p-phenylenediamines and p-aminophenols and derivatives thereof, such as, for example, p-tolylenediamine, p-phenylenediamine, p-aminophenol, which are combined with so-called modifiers or couplers, such as, for example, m-phenylenediamine, resorcinol, m-aminophenol and derivatives thereof for the purpose of nuancing the coloration.
  • Suitable oxidizing agents for developing the hair colorations are preferably hydrogen peroxide and its addition compounds.
  • To increase the color intensity, the compositions according to the invention can comprise the carriers customary in cosmetic systems, in particular benzyl alcohol, vanillin (4-hydroxy-3-methoxybenzaldehyde), isovanillin, p-hydroxyanisol, 3-hydroxy-4-methoxybenzaldehyde, 2-phenoxyethanol, salicylaldehyde, 3,5-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, 4-hydroxyphenylacetamide, methyl p-hydroxybenzoate, p-hydroxybenzaldehyde, m-cresol, hydroquinone monomethyl ether, o-fluorophenol, m-fluorophenol, p-fluorophenol, 2-(2′-hydroxyphenoxy)ethanol, 3,4-methylenedioxyphenol, resorcinol monomethyl ether, 3,4-dimethoxyphenol, 3-trifluoromethylphenol, resorcinol monoacetate, ethylvanillin, 2-thiophenethanol, butyl lactate and butyl glycolate. Of particular advantage with a synergistic effect are compositions according to the invention comprising phenoxyethanol and/or benzyl alcohol.
  • The hair colorants according to the invention can advantageously comprise pearlescence-imparting compounds, for example fatty acid monoalkanolamides, fatty acid dialkanolamides, monoesters or diesters of alkylene glycol, in particular ethylene glycol and/or propylene glycol or oligomers thereof with higher fatty acids, e.g. palmitic acid, stearic acid or behenic acid, or mixtures thereof, monoesters or diesters of alkylene glycols with fatty acids, fatty acids and metal salts thereof, monoesters or polyesters of glycerol with carboxylic acids and ketosulfones of various types, preferably ethylene glycol distearate and polyethylene glycol distearate with about 3 glycol units.
  • The hair-treatment compositions according to the invention preferably comprise 0.1 to 15% by weight, particularly preferably 1 to 10% by weight, of pearlescence-imparting compounds.
  • Glitter and shine effects of the compositions according to the invention can be produced preferably by adding mica, colored polyacrylic esters and mica, mica-iron oxide, mica-titanium oxide and through pigments. Suitable pigments are metal oxides, for example iron oxides, titanium oxide, ultramarine blue, and pigments modified with cationic coating shells, as described in WO 00/12053 and EP 504 066.
  • As further auxiliaries and additives, the cosmetic compositions according to the invention can comprise surfactants, emulsifiers, cationic polymers, thickeners, film formers, antimicrobial active ingredients, astringents, antioxidants, UV light protection filters, pigments/micropigments, gelling agents, and further additives customary in cosmetics, such as, for example, superfatting agents, moisturizing agents, silicones, stabilizers, conditioning agents, glyceryl, preservatives, pearlizing agents, dyes, fragrance and perfume oils, solvents, hydrotropes, opacifiers, fatty alcohols, substances with a keratolytic and keratoplastic effect, antidandruff agents, biogenic active ingredients (local anesthetics, antibiotics, antiphlogistics, antiallergics, corticosteroids, sebostatics), vitamins, Bisabolol®, Allantoin®, Phytantriol®, Panthenol®, AHA acids, plant extracts, for example aloe vera and proteins.
  • Anionic washing-active substances which may be mentioned are preferably: C10-C20-alkyl and alkylene carboxylates, alkyl ether carboxylates, fatty alcohol sulfates, fatty alcohol ether sulfates, alkylamide sulfates and sulfonates, fatty acid alkylamide polyglycol ether sulfates, alkanesulfates, alkanesulfonates, and hydroxyalkanesulfonates, olefinsulfonates, acylesters of isothionates, α-sulfo fatty acid esters, alkylbenzenesulfonates, alkylphenol glycol ether sulfonates, sulfosuccinates, sulfosuccinic monoesters and diesters, fatty alcohol ether phosphates, protein-fatty acid condensation products, alkyl monoglyceride sulfates and sulfonates, alkyl glyceride ether sulfonates, fatty acid methyl taurides, fatty acid sarcosinates, sulforicinoleates, amphoacetates or amphoglycinates, acylglutamates. These compounds and their mixtures are used in the form of their water-soluble or water-dispersible salts, for example the sodium, potassium, magnesium, ammonium, mono-, di- and triethanolammonium and analogous alkylammonium salts.
  • The weight fraction of the anionic surfactants is preferably 1 to 30% by weight, particularly preferably 5 to 25% by weight, especially preferably 10 to 22% by weight, based on the finished compositions.
  • Suitable cationic surfactants are, for example, quaternary ammonium salts, such as di(C10-C24-alkyl)dimethylammonium chloride or bromide, preferably di(C12-C18-alkyl)dimethylammonium chloride or bromide; C10-C24-alkyldimethylethylammonium chloride or bromide C10-C24 alkyltrimethylammonium chloride or bromide, preferably cetyltrimethylammonium chloride or bromide and C20-C22-alkyltrimethylammonium chloride or bromide; C10-C24-alkyldimethylbenzylammonium chloride or bromide, preferably C12-C18-alkyldimethylbenzylammonium chloride; N-(C10-C18-alkyl)pyridinium chloride or bromide, preferably N-(C12-C16-alkyl)pyridinium chloride or bromide; N-(C10-C18-alkyl)isoquinolinium chloride, bromide or monoalkylsulfate; N-(C12-C18-alkyl)polyoylaminoformylmethyl)pyridinium chloride; N-(C12-C18-alkyl)-N-methylmorpholinium chloride, bromide or monoalkylsulfate; N-(C12-C18-alkyl)-N-ethylmorpholinium chloride, bromide or monoalkylsulfate; C16-C18-alkylpentaoxyethylammonium chloride; diisobutylphenoxyethoxyethyldimethylbenzylammonium chloride; salts of N,N-diethylaminoethylstearylamide and -oleylamide with hydrochloric acid, acetic acid, lactic acid, citric acid, phosphoric acid; N-acylaminoethyl, N,N-diethyl-N-methylammonium chloride, bromide or monoalkylsulfate and N-acylaminoethyl-N,N-diethyl-N-benzylammonium chloride, bromide or monoalkylsulfate, where acyl is preferably stearyl or oleyl.
  • The weight fraction of the cationic surfactants is preferably 0.1 to 10% by weight, particularly preferably 0.2 to 7% by weight, especially particularly preferably 0.5 to 5% by weight, based on the finished composition.
  • Suitable nonionic surfactants which can be used as washing-active substances are preferably fatty alcohol ethoxylates (alkylpolyethylene glycols); alkylphenol polyethylene glycols; alkyl mercaptan polyethylene glycols; fatty amine ethoxylates (alkylaminopolyethylene glycols); fatty acid ethoxylates (acyl polyethylene glycols); polypropylene glycol ethoxylates (Pluronics®); fatty acid amide polyethylene glycols; N-alkyl-, N-alkoxypolyhydroxy fatty acid amide, in particular fatty acid N-methylglucamides, sucrose esters; polyglycol ethers, alkyl polyglycosides, phosphoric esters (mono-, di- and triphosphoric esters ethoxylated and nonethoxylated).
  • The weight fraction of the nonionic surfactants in the compositions according to the invention (e.g. in the case of rinse-off products) is preferably in the range from 1 to 20% by weight, particularly preferably 2 to 10% by weight, especially preferably 3 to 7% by weight, based on the finished composition.
  • Preferred amphoteric surfactants are: N-(C12-C18-alkyl)-β-aminopropionates and N-(C12-C18-alkyl)-β-iminodipropionates as alkali metal and mono-, di- and trialkylammonium salts; N-acylaminoalkyl-N,N-dimethylacetobetaine, preferably N—(C8-C18-acyl)aminopropyl-N,N-dimethylacetobetaine; C12-C18-alkyldimethylsulfopropylbetaine; amphoteric surfactants based on imidazoline (trade name: Miranol®, Steinapon®), preferably the sodium salt of 1-(β-carboxymethyloxyethyl)-1-(carboxymethyl)-2-laurylimidazolinium; amine oxides, e.g. C12-C18-alkyldimethylamine oxide, fatty acid amidoalkyldimethylamine oxide.
  • The weight fraction of the amphoteric surfactants is preferably 0.5 to 20% by weight, particularly preferably 1 to 10% by weight, based on the finished composition.
  • Furthermore, foam-boosting cosurfactants from the group consisting of alkylbetaines, alkylamidobetaines, aminopropionates, aminoglycinates, imidazoliniumbetaines and sulfobetaines, amine oxides and fatty acid alkanolamides or polyhydroxyamides can be used in the compositions according to the invention.
  • Preferred surfactants in the compositions according to the invention are alkyl ether sulfates, alkylsulfates, in particular laurylsulfate, alkylbetaines, in particular cocoamidopropylbetaine, amphoacetates, acylglutamates, in particular sodium cocoylglutamate, alkyl ether sulfosuccinates, in particular disodium laureth sulfosuccinate and coconut fatty acid diethanolamide.
  • The total amount of the surfactants used in the compositions according to the invention is preferably 1 to 70% by weight, particularly preferably 10 to 40% by weight, especially preferably 12 to 35% by weight, based on the finished composition.
  • Compositions according to the invention in the form of emulsions can be produced without further emulsifier or else comprise one or more emulsifiers. These emulsifiers can be chosen from the group of nonionic, anionic, cationic or amphoteric emulsifiers.
  • Suitable nonionogenic coemulsifiers are preferably addition products of from 0 to 30 mol of ethylene oxide and/or 0 to 5 mol of propylene oxide onto linear fatty alcohols having 8 to 22 carbon atoms, onto fatty acids having 12 to 22 carbon atoms, only alkylphenols having 8 to 15 carbon atoms in the alkyl group and onto sorbitan or sorbitol esters; (C12-C18) fatty acid monoesters and diesters of addition products of from 0 to 30 mol of ethylene oxide onto glycerol; glycerol monoesters and diesters and sorbitan monoesters and diesters of saturated and unsaturated fatty acids having 6 to 22 carbon atoms and optionally ethylene oxide addition products thereof; addition products of from 15 to 60 mol of ethylene oxide onto castor oil and/or hydrogenated castor oil; polyol and, in particular, polyglycerol, esters, such as, for example, polyglycerol polyricinoleate and polyglycerol poly-12-hydroxystearate. Likewise preferably suitable are ethoxylated fatty amines, fatty acid amides, fatty acid alkanolamides and mixtures of compounds of two or more of these classes of substance.
  • Suitable ionogenic coemulsifiers are, for example, anionic emulsifiers, such as mono-, di- or triphosphoric esters, soaps (e.g. sodium stearate), fatty alcohol sulfates, but also cationic emulsifiers, such as mono-, di- and trialkylquats and polymeric derivatives thereof.
  • Available amphoteric emulsifiers are preferably alkylaminoalkylcarboxylic acids, betaines, sulfobetaines and imidazoline derivatives.
  • It is also possible to use naturally occurring emulsifiers, of these preference being given to beeswax, wool wax, lecithin and sterols.
  • Fatty alcohol ethoxylates are preferably chosen from the group of ethoxylated stearyl alcohols, cetyl alcohols, cetylstearyl alcohols, in particular polyethylene glycol(13)stearyl ether, polyethylene glycol(14)stearyl ether, polyethylene glycol(15)stearyl ether, polyethylene glycol(16)stearyl ether, polyethylene glycol(17)stearyl ether, polyethylene glycol(18)stearyl ether, polyethylene glycol(19)stearyl ether, polyethylene glycol(20)stearyl ether, polyethylene glycol(12)isostearyl ether, polyethylene glycol(13)isostearyl ether, polyethylene glycol(14)isostearyl ether, polyethylene glycol(15)isostearyl ether, polyethylene glycol(16)isostearyl ether, polyethylene glycol(17)isostearyl ether, polyethylene glycol(18)isostearyl ether, polyethylene glycol(19)isostearyl ether, polyethylene glycol(20)isostearyl ether, polyethylene glycol(13)cetyl ether, polyethylene glycol(14)cetyl ether, polyethylene glycol(15)cetyl ether, polyethylene glycol(16)cetyl ether, polyethylene glycol(17)cetyl ether, polyethylene glycol(18)cetyl ether, polyethylene glycol(19)cetyl ether, polyethylene glycol(20)cetyl ether, polyethylene glycol(13)isocetyl ether, polyethylene glycol(14)isocetyl ether, polyethylene glycol(15)isocetyl ether, polyethylene glycol(16)isocetyl ether, polyethylene glycol(17)isocetyl ether, polyethylene glycol(18)isocetyl ether, polyethylene glycol(19)isocetyl ether, polyethylene glycol(20)isocetyl ether, polyethylene glycol(12)oleyl ether, polyethylene glycol(13)oleyl ether, polyethylene glycol(14)oleyl ether, polyethylene glycol(15)oleyl ether, polyethylene glycol(12)lauryl ether, polyethylene glycol(12)isolauryl ether, polyethylene glycol(13)cetylstearyl ether, polyethylene glycol(14)cetylstearyl ether, polyethylene glycol(15)cetylstearyl ether, polyethylene glycol(16)cetylstearyl ether, polyethylene glycol(17)cetylstearyl ether, polyethylene glycol(18)cetylstearyl ether, polyethylene glycol(19)cetylstearyl ether, polyethylene glycol(20)cetylstearyl ether, polyethylene glycol(20)stearate, polyethylene glycol(21)stearate, polyethylene glycol(22)stearate, polyethylene glycol(23)stearate, polyethylene glycol(24)stearate, polyethylene glycol(25)stearate, polyethylene glycol(12)isostearate, polyethylene glycol(13)isostearate, polyethylene glycol(14)isostearate, polyethylene glycol(15)isostearate, polyethylene glycol(16)isostearate, polyethylene glycol(17)isostearate, polyethylene glycol(18)isostearate, polyethylene glycol(19)isostearate, polyethylene glycol(20)isostearate, polyethylene glycol(21)isostearate, polyethylene glycol(22)isostearate, polyethylene glycol(23)isostearate, polyethylene glycol(24)isostearate, polyethylene glycol(25)isostearate, polyethylene glycol(12)oleate, polyethylene glycol(13)oleate, polyethylene glycol(14)oleate, polyethylene glycol(15)oleate, polyethylene glycol(16)oleate, polyethylene glycol(17)oleate, polyethylene glycol(18)oleate, polyethylene glycol(19)oleate, polyethylene glycol(20)oleate.
  • As ethoxylated alkyl ether carboxylic acid or salts thereof it is advantageously possible to use sodium laureth 11-carboxylate.
  • An advantageous alkyl ether sulfate is sodium laureth-14 sulfate, and an advantageous ethoxylated cholesterol derivative is polyethylene glycol(30)cholesteryl ether. Preference is likewise given to polyethylene glycol(25)soyasterol.
  • Ethoxylated triglycerides which can be used advantageously are polyethylene glycol(60) evening primrose glycerides.
  • It is also advantageous to choose the polyethylene glycol glycerol fatty acid esters from the group consisting of polyethylene glycol(20)glyceryl laurate, polyethylene glycol(6)glyceryl caprate, polyethylene glycol(20)glyceryl oleate, polyethylene glycol(20)glyceryl isostearate and polyethylene glycol(18)glyceryl oleate/cocoate.
  • Among the sorbitan esters, polyethylene glycol(20)sorbitan monolaurate, polyethylene glycol(20)sorbitan monostearate, polyethylene glycol(20)sorbitan monoisostearate, polyethylene glycol(20)sorbitan monopalmitate, polyethylene glycol(20)sorbitan monooleate are particularly suitable.
  • Advantageous W/O emulsifiers which can be used are the following: fatty alcohols having 8 to 30 carbon atoms, monoglycerol esters of saturated and/or unsaturated, branched and/or unbranched alkanecarboxylic acids with a chain length of from 8 to 24, in particular 12 to 18, carbon atoms, diglycerol esters of saturated and/or unsaturated, branched and/or unbranched alkanecarboxylic acids with a chain length of from 8 to 24, in particular 12 to 18, carbon atoms, monoglycerol ethers of saturated and/or unsaturated, branched and/or unbranched alcohols with a chain length of from 8 to 24, in particular 12 to 18, carbon atoms, diglycerol ethers of saturated and/or unsaturated, branched and/or unbranched alcohols with a chain length of from 8 to 24, in particular 12 to 18, carbon atoms, propylene glycol esters of saturated and/or unsaturated, branched and/or unbranched alkanecarboxylic acids of chain length from 8 to 24, in particular 12 to 18, carbon atoms, and sorbitan esters of saturated and/or unsaturated, branched and/or unbranched alkanecarboxylic acids with a chain length of from 8 to 24, in particular 12 to 18, carbon atoms.
  • Particularly advantageous W/O emulsifiers are glyceryl monostearate, glyceryl monoisostearate, glyceryl monomyristate, glyceryl monooleate, glyceryl monolaurate, glyceryl monocaprylate, glyceryl monocaprate, diglyceryl monostearate, diglyceryl monoisostearate, propylene glycol monostearate, propylene glycol monoisostearate, propylene glycol monocaprylate, propylene glycol monolaurate, sorbitan monoisostearate, sorbitan monolaurate, sorbitan monocaprylate, sorbitan monoisooleate, sucrose distearate, cetyl alcohol, stearyl alcohol, arachidyl alcohol, behenyl alcohol, isobehenyl alcohol, selachyl alcohol, chimyl alcohol or polyethylene glycol(2)stearyl ether.
  • The weight fraction of the emulsifier or emulsifiers present in the compositions according to the invention, in addition to the aminopolyorganosiloxane (SH) is preferably 0.1 to 20% by weight, particularly preferably 0.5 to 15% by weight, especially preferably 1 to 10% by weight, based on the finished composition.
  • Suitable cationic polymers are preferably the compounds known under the INCI name “Polyquaternium”, in particular Polyquaternium-31, Polyquaternium-16, Polyquaternium-24, Polyquaternium-7, Polyquaternium-22, Polyquaternium-39, Polyquaternium-28, Polyquaternium-2, Polyquaternium-10, Polyquaternium-11, Polyquaternium-37&mineral oil&PPG trideceth (®Salcare SC95), PVP dimethylaminoethyl methacrylate copolymer, guar hydroxypropyltriammonium chlorides, and calcium alginate and ammonium alginate.
  • Furthermore, the following may preferably be used: cationic cellulose derivatives; cationic starch; copolymers of diallylammonium salts and acrylamides; quaternized vinylpyrrolidone/vinylimidazole polymers; condensation products of polyglycols and amines; quaternized collagen polypeptides; quaternized wheat polypeptides; polyethyleneimines; cationic silicone polymers, such as, for example, amidomethicones; copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine; polyaminopolyamide and cationic chitin derivatives, such as, for example, chitosan.
  • The weight fraction of cationic polymers in the compositions according to the invention can preferably be in the range from 0.1 to 10% by weight, particularly preferably in the range from 0.2 to 5% by weight, especially preferably in the range from 0.5 to 2.5% by weight.
  • The desired viscosity of the compositions can be adjusted by adding thickeners. Of suitability are preferably cellulose ethers and other cellulose derivatives (e.g. carboxymethylcellulose, hydroxyethylcellulose), gelatin, starch and starch derivatives, sodium alginates, fatty acid polyethylene glycol esters, agar agar, traganth or dextrin derivatives, in particular dextrin esters.
  • The synthetic polymers used are various materials, preferably polyvinyl alcohols, polyacrylamides, polyvinylamides, polysulfonic acids, in particular copolymers based on ammonium salts of acrylamidoalkylsulfonic acids and cyclic N-vinylcarboxamides or cyclic and linear N-vinylcarboxamides and also hydrophobically modified acrylamidoalkylsulfonic acid copolymers, polyacrylic acid, polyacrylic acid derivatives, polyacrylic esters, polyvinylpyrrolidone, polyvinyl methyl ether, polyethylene oxides, copolymers of maleic anhydride and vinyl methyl ether, and various mixtures and copolymers of the abovementioned compounds, including their various salts and esters. These polymers can, if desired, be crosslinked or uncrosslinked.
  • Thickeners which are particularly suitable especially for oil-based compositions are dextrin esters, for example dextrin palmitate, but also fatty acid soaps, fatty alcohols and silicone waxes, for example alkylmethicones, SilCare® 41 M40, SilCare® 41 M50, SilCare® 41 M65, SilCare® 41 M70 or SilCare® 41 M80.
  • Depending on the intended use, preferred film formers are salts of phenylbenzimidazolesulfonic acid, water-soluble polyurethanes, for example C10-polycarbamylpolyglyceryl esters, polyvinyl alcohol, polyvinylpyrrolidone copolymers, for example vinylpyrrolidone/vinyl acetate copolymer, water-soluble acrylic acid polymers/copolymers or esters or salts thereof, for example partial ester copolymers of acrylic/methacrylic acid and polyethylene glycol ethers of fatty alcohols, such as acrylate/steareth-20 methacrylate copolymer, water-soluble cellulose, for example hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, water-soluble quaterniums, polyquaterniums, carboxyvinyl polymers, such as carbomers and salts thereof, polysaccharides, for example polydextrose and glucan, vinyl acetate/crotonate, available for example under the trade name Aristoflex® A 60 (Clariant), and polymeric amine oxides, for example representatives available under the trade names Diaformer Z-711, 712, 731, 751.
  • Preferably suitable antimicrobial active ingredients are cetyltrimethylammonium chloride, cetylpyridinium chloride, benzethonium chloride, diisobutylethoxyethyldimethylbenzylammonium chloride, sodium N-laurylsarcosinate, sodium N-palmethylsarcosinate, lauroylsarcosine, N-myristoylglycine, potassium N-laurylsarcosine, trimethylammonium chloride, sodium aluminum chlorohydroxylactate, triethyl citrate, tricetylmethylammonium chloride, 2,4,4′-trichloro-2′-hydroxydiphenyl ether (triclosan), phenoxyethanol, 1,5-pentanediol, 1,6-hexanediol, 3,4,4′-trichlorocarbanilide (triclocarban), diaminoalkylamide, for example L-lysinehexadecylamide, citrate heavy metal salts, salicylates, piroctose, in particular zinc salts, pyrithiones and heavy metal salts thereof, in particular zinc pyrithione, zinc phenol sulfate, farnesol and combinations of these active substances.
  • The compositions according to the invention comprise the antimicrobial agents preferably in amounts up to 50% by weight, particularly preferably in amounts of from 0.01 to 10% by weight, particularly preferably in amounts of from 0.1 to 10% by weight.
  • Preferred astringents are oxides, preferably magnesium oxide, aluminum oxide, titanium dioxide, zirconium dioxide and zinc oxide, oxide hydrates, preferably aluminum oxide hydrate (boehmite) and hydroxides, preferably of calcium, magnesium, aluminum, titanium, zirconium or zinc.
  • The compositions according to the invention comprise the astringent active ingredients preferably in amounts of from 0 to 50% by weight, particularly preferably in amounts of from 0.01 to 10% by weight and especially preferably in amounts of from 0.1 to 10% by weight.
  • Advantageous compositions according to the invention comprise one or more antioxidants. Favorable, but nevertheless optional, antioxidants which can be used are all antioxidants which are customary or suitable for cosmetic and/or pharmaceutical application.
  • The antioxidants are advantageously chosen from the group consisting of amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and derivatives thereof, imidazoles (e.g. urocanic acid) and derivatives thereof, peptides such as D,L-camosine, D-camosine, L-carnosine and derivatives thereof (e.g. anserine), carotenoids, carotenes (e.g. α-carotene, β-carotene, lycopene) and derivatives thereof, chlorogenic acid and derivatives thereof, lipoic acid and derivatives thereof (e.g. dihydrolipoic acid), aurothioglucose, propylthiouracil and other thiols (e.g. thioredoxin, glutathione, cysteine, cystine, cystamine and the glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, γ-linoleyl, cholesteryl and glyceryl esters thereof) and salts thereof, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and derivatives thereof (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts), and sulfoximine compounds (e.g. buthionine sulfoximines, homocysteine sulfoximine, buthionine sulfones, penta-, hexa-, heptathionine sulfoximine) in very low tolerated doses (e.g. pmol/kg), and also (metal) chelating agents (e.g. α-hydroxyfatty acids, palmitic acid, phytic acid, lactoferrine), α-hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, bilirubin, biliverdin, EDTA, EGTA and derivatives thereof, unsaturated fatty acids and derivatives thereof (e.g. γ-linolenic acid, linoleic acid, oleic acid), folic acid and derivatives thereof, ubiquinone and ubiquinol and derivatives thereof, vitamin C and derivatives (e.g. ascorbyl palmitate, Mg ascorbyl phosphate, ascorbyl acetate), tocopherols and derivatives (e.g. vitamin E acetate), vitamin A and derivatives (e.g. vitamin A palmitate), and coniferyl benzoate of benzoin resin, rutinic acid and derivatives thereof, α-glycosylrutin, ferulic acid, furfurylideneglucitol, carnosine, butylhydroxytoluene, butylhydroxyanisole, nordihydroguaiacic acid, nordihydroguaiaretic acid, trihydroxybutyrophenone, uric acid and derivatives thereof, mannose and derivatives thereof, zinc and derivatives thereof (e.g. ZnO, ZnSO4), selenium and derivatives thereof (e.g. selenomethionine), stilbenes and derivatives thereof (e.g. stilbene oxide, trans-stilbene oxide), superoxide dismutase and the derivatives (salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids) of these specified substances which are suitable according to the invention.
  • For the purposes of the present invention, water-soluble antioxidants can be used particularly advantageously.
  • The antioxidants can protect the skin and the hair against oxidative stress. Preferred antioxidants here are vitamin E and derivatives thereof, and vitamin A and derivatives thereof.
  • The amount of antioxidants (one or more compounds) in the compositions according to the invention is preferably 0.001 to 30% by weight, particularly preferably 0.05 to 20% by weight, in particular 1 to 10% by weight, based on the total weight of the compositions.
  • If vitamin E and/or derivatives thereof are the antioxidant or the antioxidants, it is advantageous to choose their particular concentrations from the range from 0.001 to 10% by weight, based on the total weight of the compositions.
  • In a particularly preferred embodiment of the invention, the cosmetic or pharmaceutical compositions comprise antioxidants chosen from superoxide dismutase, tocopherol (vitamin E) and ascorbic acid (vitamin C).
  • Suitable UV filters are preferably 4-aminobenzoic acid; 3-(4′-trimethylammonium)benzylideneboran-2-one methylsulfate; 3,3,5-trimethyl cyclohexylsalicylate; 2-hydroxy-4-methoxybenzophenone; 2-phenylbenzimidazole-5-sulfonic acid and its potassium, sodium and triethanolamine salts; 3,3′-(1,4-phenylenedimethine)bis(7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1-methanesulfonic acid and its salts; 1-(4-tertbutylphenyl)-3-(4-methoxyphenyl)propane-1,3-dione, 3-(4′-sulfo)-benzylidenebornan-2-one and its salts; 2-ethylhexyl 2-cyano-3,3-diphenylacrylate; polymers of N-[2(and 4)-(2-oxoborn-3-ylidenemethyl)benzyl]acrylamide; 2-ethylhexyl 4-methoxycinnamate; ethoxylated ethyl 4-aminobenzoate; isoamyl 4-methoxycinnamate; 2,4,6-tris[p-(2-ethylhexyloxycarbonyl)anilino]-1,3,5-triazine; 2-(2H-benzotriazol-2-yl)-4-methyl-6-(2-methyl-3-(1,3,3,3-tetramethyl-1-(trimethylsilyloxy)-disiloxanyl)propyl)phenol; bis(2-ethylhexyl)4,4′-[(6-[4-((1,1-dimethylethyl)aminocarbonyl)phenylamino]-1,3,5-triazin-2,4-yl)diimino]bisbenzoate; 3-(4′-methylbenzylidene)-D,L-camphor; 3-benzylidenecamphor; 2-ethylhexyl salicylate; 2-ethylhexyl 4-dimethylaminobenzoate; hydroxy-4-methoxybenzophenone-5-sulfonic acid (sulisobenzonum) and the sodium salt; and/or 4-isopropylbenzyl salicylate.
  • Pigments/micropigments which may be used are preferably microfine titanium dioxide, mica-titanium dioxide, iron oxides, mica-iron oxide, zinc oxide, silicon oxides, ultramarine blue, chromium oxides.
  • Suitable gelling agents are all surface-active substances which, dissolved in the liquid phase, form a network structure and thus consolidate the liquid phase. Suitable gelling agents are specified, for example, in WO 98/58625.
  • Preferred gelling agents are metal salts of fatty acids, preferably with 12 to 22 carbon atoms, for example sodium stearate, sodium palmitate, sodium laurate, sodium arachidate, sodium behenate, potassium stearate, potassium palmitate, sodium myristate, aluminum monostearate, hydroxyfatty acids, for example 12-hydroxystearic acid, 16-hydroxyhexadecanoyl acid; fatty acid amides; fatty acid alkanolamides; dibenzalsorbitol and alcoholic polyamides and polyacrylamides or mixtures thereof.
  • Preferably, the compositions according to the invention comprise 0.01 to 20% by weight, particularly preferably 0.1 to 10% by weight, especially preferably 1 to 8% by weight and very particularly preferably 3 to 7% by weight, of gelling agents.
  • Further additives may be silicone compounds, preferably dimethylpolysiloxane, methylphenylpolysiloxanes, cyclic silicones, and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine- and/or alkyl-modified silicone compounds, for example alkylsilicones. SilCare® Silicone 41 M10, SilCare® Silicone 41 M15, SilCare® Silicone 41 M20, SilCare® Silicone 41 M30 (Clariant), alkyltrimethicones SilCare® 31 M30, SilCare® 31 M40, SilCare® 31 M 50, SilCare® 31 M 60 (Clariant), phenyltrimethicones SilCare® 15M30, SilCare® 15M40, SilCare® 15M50, SilCare® 5M60 (Clariant), polyalkylarylsiloxanes and polyethersiloxane copolymers.
  • The compositions according to the invention can comprise the abovementioned silicone compounds preferably in the amounts by weight of from 0.1 to 20% by weight, particularly preferably 0.2 to 15% by weight, especially preferably 0.5 to 10% by weight, based on the finished compositions.
  • Suitable carrier materials are preferably vegetable oils, natural and hydrogenated oils, waxes, fats, water, alcohols, polyols, glycerol, glycerides, liquid paraffins, liquid fatty alcohols, sterol, polyethylene glycols, cellulose and cellulose derivatives.
  • Fungicidal active ingredients which may be used are preferably ketoconazole, oxiconazole, terbinafin, bifonazole, butoconazole, cloconazole, clotrimazole, econazole, enilconazole, fenticonazole, isoconazole, miconazole, sulconazole, tioconazole fluconazole, itraconazole, terconazole and naftifine, Zn pyrethione and octopirox in the amounts by weight of from 0.05 to 5% by weight, preferably 0.1 to 3% by weight, particularly preferably 0.2 to 2% by weight, based on the finished compositions.
  • The compositions according to the invention can advantageously be mixed with conventional ceramides, pseudoceramides, fatty acid N-alkylpolyhydroxyalkylamides, cholesterol, cholesterol fatty acid esters, fatty acids, triglycerides, cerebrosides, phospholipids and similar substances.
  • As pearlescence-imparting compounds, preference is given to fatty acid monoalkanolamides, fatty acid dialkanolamides, monoesters or diesters of alkylene glycol, in particular of ethylene glycol and/or propylene glycol or oligomers thereof with higher fatty acids, e.g. palmitic acid, stearic acid or behenic acid or mixtures thereof, monoesters or diesters of alkylene glycols with fatty acids, fatty acids and metal salts thereof, monoesters or polyesters of glycerol with carboxylic acids and ketosulfones of various types. In the compositions according to the invention, the pearlescence-imparting component is particularly preferably ethylene glycol distearate and polyethylene glycol distearate with 3 glycol units.
  • The moisturizing substances available are preferably isopropyl palmitate, glycerol and/or sorbitol, which are preferably used in the amounts by weight of from 0.1 to 50%.
  • Superfatting agents which may be used are preferably lanolin and lecithin, nonethoxylated and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, mono-, di- and triglycerides and/or fatty acid alkanolamides.
  • Suitable preservatives are preferably phenoxyethanol, parabens, pentanediol or sorbic acid. They are preferably used in the amounts by weight of from 0.001 to 5% by weight, particularly preferably from 0.01 to 3% by weight, especially preferably from 0.1 to 2% by weight, based on the finished compositions.
  • Dyes which can be used are the substances approved and suitable for cosmetic and pharmaceutical purposes.
  • Fragrance and/or perfume oils which may be used are individual odorant compounds, e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Odorant compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenylglycinate, allyl cyclohexylpropionate, styrallyl propionate and benzyl salicylate. The ethers include, for example, benzyl ethyl ether, and the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, and the ketones include, for example, the ionones, alpha-isomethylionone and methyl cedryl ketone, and the alcohols include anethole, citronellol, eugenol, geraniol, linaloyl, phenylethyl alcohol and terpineol, and the hydrocarbons include primarily the terpenes and balsams. Preference is given to using mixtures of different odorants which together produce a pleasant scent note.
  • Perfume oils can also comprise natural odorant mixtures, as are accessible from vegetable or animal sources, e.g. pine, citrus, jasmine, lily, rose or ylang ylang oil. Essential oils of lower volatility, which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, camomile oil, clove oil, melissa oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and ladanum oil.
  • The acids or alkali for adjusting the pH which are used are preferably mineral acids, for example HCl, inorganic bases, for example NaOH, KOH and organic acids, preferably citric acid.
  • The compositions are preferably adjusted to a pH in the range from 2 to 12, preferably pH 3 to 8.
  • The cosmetic and pharmaceutical compositions according to the invention can be prepared using the substituted aminopolyorganosiloxanes (SH).
  • The present invention therefore also provides the use of one or more substituted aminopolyorganosiloxanes (SH) for preparing a cosmetic or pharmaceutical composition.
  • In a further preferred embodiment of the invention, a concentrate comprising 70 to 99.99% by weight, particularly preferably 70 to 99% by weight and especially preferably 75 to 95% by weight of one or more substituted aminopolyorganosiloxanes (SH), based on the finished concentrate, is used for preparing the cosmetic or pharmaceutical compositions according to the invention.
  • The examples and applications below are intended to illustrate the invention in more detail without, however, limiting it thereto (all of the percentages given are percentages by weight).
  • EXAMPLE 1 Preparation of SilCare® Silicone SEA
  • 951.76 parts of octamethylcyclotetrasiloxane and 38.31 parts of [N-(2-aminoethyl)-3-aminopropyl]methyldimethoxysilane are admixed with 0.95 parts of tetrabutylammonium hydroxide (40% strength methanolic solution) and heated at 70° C. under a gentle stream of nitrogen over the course of 90 minutes. After 2 hours at 70° C., the system is evacuated to a residual pressure of 50 mbar and then heated to 110° C. at a constant residual pressure. After one hour at 110° C. and 50 mbar, the mixture is cooled to room temperature under reduced pressure. Excess octamethylcyclotetrasiloxane is distilled off, and about 965.00 parts of aminomodified polydimethylsiloxane (S) with an amine number of about 0.385 are obtained.
  • 193.00 parts of (S) are mixed, with stirring and under nitrogen, with 87.00 parts of alkyl polyglycol glycidyl ether (H), heated to 150° C. and stirred for about 8 hours at 150° C. until the conversion of (H) is complete. The reaction product is cooled and isolated. This gives 280.00 parts of silicone oil (SH).
  • 280.00 parts of silicone oil (SH) are mixed, at room temperature, with 28.00 parts of tridecanol poly-9,5-glycol ether and 14 parts of water. This gives 322.00 parts of SilCare® Silicone SEA in the form of a transparent, viscous liquid which can easily be diluted further with water and has a pH of about 9.0.
  • EXAMPLE 2 Color Protection Application Example
  • Standardized, blonde-bleached hair tresses were colored using a standard commercial permanent hair color (viva pure red, fiery red) under standard conditions. The tress A was then washed with ether sulfate:betaine (3:1, 12% Al), and the tress B was washed with ether sulfate:betaine (3:1, 12% Al)+SilCare® Silicone SEA (1% Al) 4 times in each case. In the panel comprising 10 people, the tress A is set at standard (O). An improvement compared with the standard is evaluated with + or ++ (very good), and a deterioration with − or −−.
  • The parameters of color intensity, color brilliance, shine, feel and electrostatic charging after the four washing operations are listed below (average from all of the test persons).
    Electrostatic
    Color intensity Color brilliance Shine Feel charging
    Tress A 0 0 0 0 0
    (standard)
    Tress B + ++ ++ + 0

    Result:
  • The hair tresses treated with SilCare® Silicone SEA have significantly lower bleeding of the hair color according to the visual and sensory test (increased color intensity, higher color brilliance) and additionally display a significantly improved shine and a better feel.
  • EXAMPLE 3 W/O Cream
  • A Hostacerin ® DGI Clariant 4.00%
    Beeswax 2.00%
    Lunacera ® M 3.00%
    Magnesium stearate 1.00%
    Mineral oil, low viscosity 5.00%
    Vaseline 10.00%
    Cetiol ® V 5.00
    SilCare ® Silicone SEA 1.00%
    B 1,2-Propylene glycol 3.00%
    Water ad 100%
    Preservative q.s.
    C Fragrance 0.40%
  • Preparation method:
    I Melting of A at 80° C.
    II Heating of B to 80° C.
    III Stirring of II into I
    IV Stirring until a temperature of 35° C. is reached
    V Addition of C to IV at 35° C.
  • EXAMPLE 4 O/W Cream
  • A Hostacerin ® DGI Clariant 2.00%
    Isopropyl palmitate 4.00%
    Octyldodecanol 4.00%
    NIPAGUARD ® PDU Clariant q.s.
    SilCare ® Silicone SEA Clariant 1.00%
    B ARISTOFLEX ® AVC Clariant 1.20%
    C Hostapon ® KCG Clariant 0.80%
    Water ad 100%
    D Fragrance 0.40%
  • Preparation method:
    I Stirring of B into A
    II Stirring of D into I
    III Homogenization
  • EXAMPLE 5 Moisture Cream Gel
  • A Mineral oil, low viscosity 7.00%
    SilCare ® 15 M50 Clariant 5.00%
    B Aristoflex ® AVC Clariant 1.00%
    C Water ad 100%
    Glycerol 8.00%
    SilCare ® Silicone SEA Clariant 1.00%
    Preservative q.s.
    D Fragrance 0.30%
  • Preparation method:
    I Mixing of A and B
    II Stirring of C into I, then addition of D
    III Homogenization
  • EXAMPLE 6 Skincare Oil
  • A SilCare ® Silicone 31M50 Clariant 40.00%
    SilCare ® Silicone 41M15 Clariant 20.00%
    Cyprylic/Capric Triglyceride 38.60%
    SilCare ® Silicone SEA Clariant 1.00%
    SilCare ® Silicone 1M75 Clariant 0.40%

    Preparation Method:
    • I Mixing of components A
    EXAMPLE 7 Cream Rinse
  • A Hostacerin ® DGI Clariant 1.50%
    Cetyl alcohol 3.00%
    B Genamin ® CTAC Clariant 3.30%
    Water ad 100%
    Preservative q.s.
    C Fragrance 0.30%
    SilCare ® Silicone SEA Clariant 1.00%
  • Preparation method:
    I Melting of A at about 75° C.
    II Heating of B to about 75° C.
    III Addition of II to I with stirring and further stirring
    until 30° C.
    IV Addition of C to III at 30° C.
    V Adjustment to pH 4.0 with citric acid
  • EXAMPLE 8 Hair Shampoo
  • A Genapol ® LRO liquid Clariant 31.10%
    Fragrance 0.30%
    B Water ad 100%
    SilCare ® Silicone SEA Clariant 1.00%
    Genagen ® CAB Clariant 12.00%
    Fragrance q.s.
    Preservative q.s.
    C NaCl 6.00%
  • Preparation method:
    I Mixing of components A
    II Successive addition of the components B to I
    III Adjustment of the pH
    IV Adjustment of the viscosity using C
  • EXAMPLE 9 Shampoo with Color Protection for Colored Hair
  • A Glucamat DOE-120 2.00%
    Emulsogen ® HCO 040 Clariant 2.00%
    B Water ad 100%
    C Genapol ® LRO liquid Clariant 22.22% 
    Genagen ® KB Clariant 13.33% 
    Genamin ® KSL Clariant 3.33%
    Aristoflex ® PEA 70 Clariant 2.86%
    Sandopan ® DTC, acid Clariant 2.20%
    NIGAGUARD ® DCB Clariant 0.10%
    SilCare ® Silicone SEA Clariant 0.50%
    Dye q.s.
    Fragrance 0.20%
    D NaOH
  • Preparation method:
    I Stirring of components A into B and heating to about 60° C.
    and with stirring Cooling to room temperature
    II Successive stirring of components C into I
    III Stirring until the formulation appears clear
    IV Adjustment to pH 5.5 with D
  • EXAMPLE 10 Tinting Shampoo
  • A Genagen ® KB Clariant 7.00%
    Velsol semipermanent dye Clariant 0.50%
    B Genapol ® T 500 P Ciariant 0.50%
    Water ad 100%
    C Genapol ® LRO liquid Clariant 30.00% 
    Genagen ® LAA Clariant 3.00%
    Genamin ® CTAC Clariant 1.00%
    SilCare ® Silicone SEA Clariant 0.50%
    Tetrasodium EDTA 0.10%
    NIGAGUARD ® DMDMH Clariant 0.30%
    Genapol ® PDB Clariant 3.00%
    Potassium phosphate 1.50%
    D Citric acid
  • Preparation method:
    I Dissolution of the components with stirring
    II Mixing of components B and heating until the solution is clear
    III Cooling of B to about 35° C. and subsequent
    addition of the components C to II
    IV Stirring of I into III
    V Adjustment to pH 5.5 with D
  • EXAMPLE 11 Hair Gel
  • A Aristoflex ® AVC Clariant 1.40%
    Water ad 100%
    B Diaformer Z-751 3.00%
    Alcohol denat. 30.00% 
    Genapol ® C100 Clariant 0.40%
    Fragrance 0.20%
    C Dye q.s.
    Phenonip ® Clariant 0.50%
    D SilCare ® Silicone SEA Clariant 0.50%
  • Preparation method:
    I Dissolution of components A
    II Mixing of components B
    III Addition of II to I with stirring
    IV Addition of C to III
    V Addition of D to IV
  • EXAMPLE 12 Hair Ends Care
  • A Water 50.0%
    B Tylose ® H 100000 G4 1.00%
    C Water ad 100%
    D Genamin ® PDAC Clariant 2.50%
    Glycerol 2.00%
    SilCare ® Silicone SEA Clariant 1.00%
    E Citric acid q.s.
  • Preparation method:
    I Swell B in A
    II Successive dissolution of the individual components of D in C
    III Addition of II to I
    IV Adjustment of the pH with E
  • EXAMPLE 13 Antiperspirant
  • A Locron ® L Clariant 10.00% 
    Ethanol 50.00% 
    Farnesol 0.50%
    Fragrance 0.20%
    Water ad 100%
    Extrapon Avocado special 0.50%
    SilCare ® Silicone SEA Clariant 1.00%

    Preparation Method:
    Mixing of Components A
  • EXAMPLE 14 Deodorant
  • A Octopirox ® Clariant 0.30%
    B Ethanol Clariant 70.00%
    C Perfume 0.50%
    Softigen ® 767 0.50%
    D Allantoin Clariant 0.10%
    SilCare ® Silicone SEA Clariant 1.00%
    E Water ad 100%
    F Citric acid q.s.
  • Preparation method:
    I Mixing of A and B
    II Addition of C to I
    III Dissolution of D in warm E, addition of II
    IV Adjustment of the pH with F
  • EXAMPLE 15 Antiacne Gel
  • A Octopirox ® Clariant 0.10%
    B Ethanol Clariant 25.00%
    Propylene glycol 20.00%
    C Perfume 0.20%
    NIPAGUARD ® CMB Clariant 0.10%
    D Aristoflex ® HMB Clariant 1.30%
    E Allantoin Clariant 0.10%
    SilCare ® Silicone SEA Clariant 1.00%
    F Water ad 100%
  • Preparation method:
    I Dissolution of A in B
    II Addition of C to I
    III Stirring of D into II
    IV Dissolution of E in heated water
    V Addition of IV to III with stirring
  • Chemical Name of the Commercial Products Used
    Aristoflex ® (Clariant) Ammonium acryloyldimethyltaurate/
    AVC NVP copolymer
    (NVP: N-vinylpyrrolidone)
    Aristoflex ® (Clariant) Ammonium acryloyldimethyltaurate/
    HMB beheneth-25 methacrylate polymer
    Aristoflex ® (Clariant) Polypropylene terephthalate
    PEA 70
    Cetiol ® V (Cognis) Decyl oleate
    Diaformer Z-751 Lauryl/stearyl acrylate,
    ethyleneamine oxide, methacrylate
    copolymer
    Emulsogen ® (Clariant) PEG-40 hydrogenated castor oil
    HCO 040
    Extrapon Water/ethoxydiglycol/propylene
    Avocado glycol/butylene glycol/persea
    special gratissima extract
    Genagen ® CAB (Clariant) Cocoamidopropylbetaine
    Genagen ® KB (Clariant) Cocobetaine
    Genagen ® LAA (Clariant) Sodium lauroamphoacetate
    Genamin ® (Clariant) Cetrimonium chloride
    CTAC
    Genamin ® (Clariant) PEG-5 stearylammonium lactate
    KSL
    Genamin ® (Clariant) Polyquaternium-6
    PDAC
    Genapol ® (Clariant) Coceth-10
    C100
    Genapol ® (Clariant) Glycol distearate/laureth-4/
    PDB cocoamidopropylbetaine
    Genapol ® (Clariant) Sodium laureth sulfate
    LRO fl.
    Genapol ® (Clariant) Ceteareth-50
    T 500 P
    Glucamat PEG-120 methylglusose dioleate
    DOE-120
    Hostacerin ® (Clariant) Polyglyceryl-2 sesquiisostearate
    DGI
    Hostapon ® (Clariant) Sodium cocoylglutamate
    KCG
    Locron ® L (Clariant) Aluminum chlorohydrate
    Lunacera ® M (H.B. Fuller) Microcrystalline wax
    NIPAGUARD ® (Clariant) Triethylene glycol/benzyl alcohol/
    CMB propylene glycol/
    chloromethylisothiazolinone/
    methylisothiazolinone
    NIPAGUARD (Clariant) Phenoxyethanol, methyldibromo-
    DCB glutaronitrile
    NIGAGUARD ® (Clariant) DMDM hydantoin
    DMDMH
    NIPAGUARD ® (Clariant) Propylene glycol/diazolidinyl urea/
    PDU methylparaben/propylparaben
    Octopirox ® (Clariant) Piroctone olamine
    Phenonip ® (Clariant) Phenoxyethanol/methyl-/ethyl-/
    butyl-/propyl-/isobutylparaben
    Sandopan ® (Clariant) Trideceth-7 carboxylic acid
    DTC, Säure
    SilCare ® 1M75 (Clariant) Retinoxytrimethylsilane
    SilCare ® 15M50 (Clariant) Phenyltrimethicone
    SilCare ® 31M50 (Clariant) Caprylyltrimethicone
    SilCare ® 41M15 (Clariant) Caprylylmethicone
    SilCare ® (Clariant) Example 1
    Silicone SEA
    Softigen ® 767 (Sasol) PEG-6 caprylic/capric glyceride
    Tylose ® H Hydroxyethylcellulose
    100000 G4

Claims (34)

1. A cosmetic or pharmaceutical composition comprising one or more substituted aminopolyorganosiloxanes (SH) with substituted amino groups which are bonded to silicon atoms of a polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)alkylene bridges, where the amino groups present in the aminopolyorganosiloxanes (SH) are substituted at least partially by a radical of the formula (ε)

T-CH2—CHOH—CH2—  (ε),
in which T is the radical of a surfactant monoalcohol polyglycol ether with emulsifier character,
the amino groups present in the aminopolyorganosiloxanes (SH) being substituted in the average ratio of at least 1.5 radicals of the formula (ε) per Si-bonded aminoalkyl group or amino-mono- or -oligo-(alkylenamino)-alkyl group and mixtures thereof.
2. The cosmetic or pharmaceutical composition as claimed in claim 1, wherein the substituted aminopolyorganosiloxane (SH) has a nitrogen content in the range from 0.03 to 4.2% by weight.
3. The cosmetic or pharmaceutical composition as claimed in claim 1, wherein all of the amino groups of the substituted aminopolyorganosiloxane (SH) are 40 to 100% substituted by radicals of the formula (ε).
4. The cosmetic or pharmaceutical composition of claim 1, wherein the substituted aminopolyorganosiloxane (SH) has been obtained by reaction of aminopolyorganosiloxane (s) which comprises primary and/or secondary amino groups which are bonded to silicon atoms of the polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)alkylene bridges, with at least one alcohol polyglycol ether monoglycidyl ether (H) and, optionally, a subsequent step selected from the group consisting of acylation, alkylation, benzylation, protonation, and mixtures thereof.
5. The cosmetic or pharmaceutical composition as claimed in claim 4, wherein the aminopolyorganosiloxane (S) has an amine number in the range from 0.05 to 3.
6. The cosmetic or pharmaceutical composition of claim 1, wherein the substituted aminopolyorganosiloxane (SH) has an average molecular weight in the range from 15 000 to 2 000 000.
7. A hair-treatment composition comprising the cosmetic or pharmaceutical composition of claim 1.
8. A hair tint or hair colorant composition comprising the cosmetic or pharmaceutical composition of claim 1.
9. A rinse-off product comprising the cosmetic or pharmaceutical composition of claim 1.
10. A leave-on product comprising the cosmetic or pharmaceutical composition of claim 1.
11. A decorative cosmetic comprising the cosmetic or pharmaceutical composition of claim 1.
12. A sunscreen composition comprising the cosmetic or pharmaceutical composition of claim 1.
13. A deodorant or antiperspirant comprising the cosmetic or pharmaceutical composition of claim 1.
14. A surfactant-free composition, comprising the cosmetic or pharmaceutical composition of claim 1.
15. An additive for permanent waving compositions, comprising the cosmetic or pharmaceutical composition of claim 1.
16. An aqueous or an aqueous-alcoholic composition comprising from 0.01 to 30 weight percent of the cosmetic or pharmaceutical composition of claim 1, based on the aqueous or an aqueous-alcoholic composition.
17. An anhydrous composition based on oil comprising from 0.01 to 80% by weight of the cosmetic or pharmaceutical composition of claim 1, based on the anhydrous composition.
18. An emulsion comprising from 0.01 to 30% by weight of the cosmetic or pharmaceutical composition of claim 1, based on the emulsion.
19. A method for protecting and preserving color in colored keratin fibers, said method comprising contacting said colored keratin fibers with a treatment composition comprising the cosmetic or pharmaceutical composition of claim 1.
20. The method of claim 19, wherein the treatment composition comprises from 0.01 to 10% by weight of the cosmetic or pharmaceutical composition of claim 1, based on the treatment composition.
21. A method for the preparation of a cosmetic or pharmaceutical composition, said method comprising combining with the cosmetic or pharmaceutical composition one or more substituted aminopolyorganosiloxanes (SH) with substituted amino groups which are bonded to silicon atoms of the polysiloxane basic structure via alkylene bridges or mono- or oligo(alkylenamino)alkylene bridges, where amino groups present in the aminopolyorganosiloxanes (SH) are substituted at least partially by a radical of the formula (ε)

T-CH2—CHOH—CH2—  (ε),
in which T is the radical of a surfactant monoalcohol polyglycol ether with emulsifier character,
the amino groups present in the aminopolyorganosiloxanes (SH) being substituted in the average ratio of at least 1.5 radicals of the formula (ε) per Si-bonded aminoalkyl group or amino-mono- or -oligo-(alkylenamino)-alkyl group and mixtures thereof.
22. The method of claim 19, wherein the colored keratin fibers are colored human hair.
23. A cosmetic concentrate comprising from 70 to 99.99 by weight of the cosmetic or pharmaceutical composition of claim 1.
24. The cosmetic or pharmaceutical composition of claim 1, wherein the amino groups are at least partially reacted in a step selected from the group consisting of acylation to give amide groups, alkylation, benzylation, protonation and combinations thereof.
25. The hair-treatment composition of claim 7, wherein the hair treatment composition is in a form selected from the group consisting of a shampoo, a hair conditioner, a hair treatment, a styling composition, a hair rinse, a volume spray, a styling fluid, a hair foam, a hair gel, a setting composition, a hair spray, a mousse, a hair oil, and an ends fluid.
26. The rinse-off product of claim 9, wherein the rinse-off product is in the form of a shower bath, shower gel or a foam bath
27. The leave-on product of claim 10, wherein the leave-on product is in the form of a day cream, night cream, care cream, nutrient cream, body lotion, ointment or a lipcare composition
28. The decorative product of claim 11, wherein the decorative product is in the form of a make-up, an eyeshadow, a lipstick or a mascara.
29. The deodorant or antiperspirant of claim 13, wherein the deodorant or antiperspirant is in the form of in the form of a spray, stick, gel or a lotion.
30. The surfactant-free composition of claim 14, wherein the surfactant-free composition is in the form of a surfactant-free solid composition or a surfactant-free emulsion.
31. The additive for permanent waving compositions of claim 15, wherein the additive is in the form of a conditioner.
32. An aqueous or an aqueous-alcoholic composition, comprising the cosmetic or pharmaceutical composition of claim 1.
33. An emulsion comprising the cosmetic or pharmaceutical composition of claim 1.
34. The method of claim 21, further comprising at least partially reacting the amino groups present in a step selected from the group consisting of acylation, alkylation, benzylation, protonation, and combinations thereof.
US11/082,448 2004-03-20 2005-03-17 Cosmetic or pharmaceutical compositions comprising modified polyorganosiloxanes Abandoned US20050255075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/933,847 US9237999B2 (en) 2004-03-20 2013-07-02 Cosmetic or pharmaceutical composition comprising modified polyorganosiloxanes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004013795.1 2004-03-20
DE200410013795 DE102004013795A1 (en) 2004-03-20 2004-03-20 Cosmetic or pharmaceutical agents such as hair treatment compositions and deodorants contain aminopolyorganosiloxanes with amino groups substituted by the residue of a surfactive monoalcoholpolyglycolether

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/933,847 Division US9237999B2 (en) 2004-03-20 2013-07-02 Cosmetic or pharmaceutical composition comprising modified polyorganosiloxanes

Publications (1)

Publication Number Publication Date
US20050255075A1 true US20050255075A1 (en) 2005-11-17

Family

ID=33039436

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/082,448 Abandoned US20050255075A1 (en) 2004-03-20 2005-03-17 Cosmetic or pharmaceutical compositions comprising modified polyorganosiloxanes
US13/933,847 Expired - Fee Related US9237999B2 (en) 2004-03-20 2013-07-02 Cosmetic or pharmaceutical composition comprising modified polyorganosiloxanes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/933,847 Expired - Fee Related US9237999B2 (en) 2004-03-20 2013-07-02 Cosmetic or pharmaceutical composition comprising modified polyorganosiloxanes

Country Status (4)

Country Link
US (2) US20050255075A1 (en)
EP (1) EP1576945B1 (en)
JP (1) JP5357375B2 (en)
DE (1) DE102004013795A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040236055A1 (en) * 2001-05-15 2004-11-25 Bernard Danner Modified polyorganosiloxanes, aqueous emulsions thereof, their production and their use
US20070031361A1 (en) * 2005-06-08 2007-02-08 Hans-Friedrich Herrmann Cosmetic, pharmaceutical and dermatological preparations comprising homopolymer and/or copolymer waxes of the monomers ethylene and/or propylene
US20070041930A1 (en) * 2005-08-20 2007-02-22 Clariant Produkte (Deutschland) Gmbh) Use of quaternary polysiloxanes in cleaning and care compositions
US20070122372A1 (en) * 2004-10-04 2007-05-31 Bernard Danner Amino-functional silicone waxes
US20080014166A1 (en) * 2006-07-14 2008-01-17 Clariant International, Ltd. Cosmetic or pharmaceutical compositions comprising modified polyorganosiloxanes
US20080097070A1 (en) * 2006-10-19 2008-04-24 L'oreal Aqueous polyamine-containing systems for water-insoluble materials
WO2009024582A1 (en) * 2007-08-20 2009-02-26 Sofralab Product for preserving the organoleptic properties of fermented or not fermented biological liquids of vegetable origin, in particular fermenting worts or wines, formulations, and protocol for using formulations in beverages
US20090246236A1 (en) * 2008-02-25 2009-10-01 David Johnathan Kitko Hair Care Compositions Comprising Sucrose Polyesters
US20110045039A1 (en) * 2009-08-20 2011-02-24 Jorge Max Sunkel Hair Care Compositions Comprising First and Second Sucrose Polyesters
US20110104085A1 (en) * 2008-06-13 2011-05-05 Clariant Finance (Bvi) Limited Cosmetic Or Pharmaceutical Compositions Comprising Modified Polysiloxanes With At Least One Carbamate Group
WO2011123727A3 (en) * 2010-04-01 2011-11-24 The Procter & Gamble Company Organosilicones
WO2012069331A1 (en) * 2010-11-26 2012-05-31 L'oreal Method for shaving the skin using amphiphilic aminopolyorganosiloxanes; soap-based compositions comprising them
US20120201771A1 (en) * 2009-10-15 2012-08-09 Zahava Shalom Facial antiperspirant moisturizing composition and method of preparing same
CN101433505B (en) * 2008-12-08 2012-08-22 广东名臣有限公司 Hair care composition
CN103432023A (en) * 2013-08-30 2013-12-11 广州丹奇日用化工厂有限公司 Hair conditioner containing rice oil
WO2014044602A2 (en) * 2012-09-18 2014-03-27 Henkel Ag & Co. Kgaa Composition for treating keratinous fibres, comprising specific aminosilicones, acids and direct dyes
WO2013127614A3 (en) * 2012-03-01 2014-05-30 Henkel Ag & Co. Kgaa Hair-care product having selected aromatic substances and selected amodimethicones
CN112955118A (en) * 2018-10-31 2021-06-11 汉高股份有限及两合公司 Bis (triethoxysilylpropyl) amine in combination with a polyvalent metal cation
US11529303B2 (en) 2018-12-18 2022-12-20 Henkel Ag & Co. Kgaa Method for dyeing keratinous material, containing dye and an acidic post-treatment agent
WO2023192727A1 (en) * 2022-03-29 2023-10-05 Dow Silicones Corporation Preparation of an amino-functional polyorganosiloxane emulsion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127283B2 (en) * 2007-04-10 2013-01-23 株式会社アリミノ Acid hair dye
DE102018222022A1 (en) * 2018-12-18 2020-06-18 Henkel Ag & Co. Kgaa Process for coloring keratinous material with coloring agent and acidic aftertreatment agent
CN116194073A (en) 2020-07-21 2023-05-30 化美有限责任公司 Diester cosmetic formulations and uses thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533714A (en) * 1982-11-10 1985-08-06 L'oreal Polyquaternary polysiloxane polymers
US4680366A (en) * 1985-06-20 1987-07-14 Shin-Etsu Chemical Co., Ltd. Fabric-finishing agent containing a novel organopolysiloxane
US4833225A (en) * 1987-02-18 1989-05-23 Th. Goldschdidt AG Polyquaternary polysiloxane polymers, their synthesis and use in cosmetic preparations
US4891166A (en) * 1987-06-06 1990-01-02 Th. Goldschmidt Ag Diquaternary polysiloxanes, their synthesis and use in cosmetic preparations
US5025076A (en) * 1988-02-27 1991-06-18 Shin-Etsu Chemical Co., Ltd. Silicone-based fabric finishing agent
US5075403A (en) * 1989-06-22 1991-12-24 Rhone-Poulenc Chimie Amino/polyoxyalkylenated polydioganosiloxanes
US6132739A (en) * 1998-09-01 2000-10-17 Amway Corporation Makeup compositions and methods of making same
WO2004091559A2 (en) * 2003-04-14 2004-10-28 The Procter & Gamble Company Anhydrous, transfer-resistant cosmetic lip compositions
US20040236055A1 (en) * 2001-05-15 2004-11-25 Bernard Danner Modified polyorganosiloxanes, aqueous emulsions thereof, their production and their use
US20050169878A1 (en) * 2002-03-21 2005-08-04 Elder Stewart T. Polysiloxane compositions

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673838B1 (en) 1991-03-14 1995-03-03 Oreal COSMETIC COMPOSITIONS CONTAINING A DISPERSION OF SOLID PARTICLES WITH A SURFACE COATED WITH A CATIONIC POLYMER.
JPH09194335A (en) * 1996-01-17 1997-07-29 Shin Etsu Chem Co Ltd Hair cosmetic
US6352699B1 (en) * 1997-04-04 2002-03-05 L'oreal Cosmetic or dermatological composition forming, on a keratin substrate, a film in cross-linked hybrid material
JPH1112152A (en) * 1997-06-19 1999-01-19 Toshiba Silicone Co Ltd Cosmetic
CN1261265A (en) 1997-06-23 2000-07-26 普罗克特和甘保尔公司 Gel deodorant compositions having reduced skin irritation
DE19817776A1 (en) 1998-04-21 1999-10-28 Wacker Chemie Gmbh New linear amino-functional polydialkylsiloxane-polyether block copolymers
GB0202631D0 (en) * 2002-02-05 2002-03-20 Dow Corning Hair care compositions containing polysiloxanes
US6699463B2 (en) * 2002-04-10 2004-03-02 Em Industries Photostable cationic organic sunscreen compounds with antioxidant properties and compositions obtained therefrom
EP1512391B1 (en) * 2002-06-13 2011-11-02 Kao Corporation Cosmetic hair preparation
BRPI0415126A (en) 2003-10-07 2006-11-28 Clariant Finance Bvi Ltd multiple quaternary polysiloxanes
DE102005039511A1 (en) 2005-08-20 2007-02-22 Clariant Produkte (Deutschland) Gmbh Use of quaternary polysiloxanes in cleaning and care products
US20080014166A1 (en) 2006-07-14 2008-01-17 Clariant International, Ltd. Cosmetic or pharmaceutical compositions comprising modified polyorganosiloxanes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533714A (en) * 1982-11-10 1985-08-06 L'oreal Polyquaternary polysiloxane polymers
US4587321A (en) * 1982-11-10 1986-05-06 L'oreal Polyquaternary polysiloxane polymers
US4680366A (en) * 1985-06-20 1987-07-14 Shin-Etsu Chemical Co., Ltd. Fabric-finishing agent containing a novel organopolysiloxane
US4833225A (en) * 1987-02-18 1989-05-23 Th. Goldschdidt AG Polyquaternary polysiloxane polymers, their synthesis and use in cosmetic preparations
US4891166A (en) * 1987-06-06 1990-01-02 Th. Goldschmidt Ag Diquaternary polysiloxanes, their synthesis and use in cosmetic preparations
US5025076A (en) * 1988-02-27 1991-06-18 Shin-Etsu Chemical Co., Ltd. Silicone-based fabric finishing agent
US5075403A (en) * 1989-06-22 1991-12-24 Rhone-Poulenc Chimie Amino/polyoxyalkylenated polydioganosiloxanes
US6132739A (en) * 1998-09-01 2000-10-17 Amway Corporation Makeup compositions and methods of making same
US20040236055A1 (en) * 2001-05-15 2004-11-25 Bernard Danner Modified polyorganosiloxanes, aqueous emulsions thereof, their production and their use
US20050169878A1 (en) * 2002-03-21 2005-08-04 Elder Stewart T. Polysiloxane compositions
WO2004091559A2 (en) * 2003-04-14 2004-10-28 The Procter & Gamble Company Anhydrous, transfer-resistant cosmetic lip compositions

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040236055A1 (en) * 2001-05-15 2004-11-25 Bernard Danner Modified polyorganosiloxanes, aqueous emulsions thereof, their production and their use
US7652120B2 (en) 2001-05-15 2010-01-26 Clariant Finance (Bvi) Limited Modified polyorganosiloxanes, aqueous emulsions thereof, their production and their use
US7511165B2 (en) 2004-10-04 2009-03-31 Clariant Finance (Bvi) Limited Amino-functional silicone waxes
US20070122372A1 (en) * 2004-10-04 2007-05-31 Bernard Danner Amino-functional silicone waxes
US20070031361A1 (en) * 2005-06-08 2007-02-08 Hans-Friedrich Herrmann Cosmetic, pharmaceutical and dermatological preparations comprising homopolymer and/or copolymer waxes of the monomers ethylene and/or propylene
US20070041930A1 (en) * 2005-08-20 2007-02-22 Clariant Produkte (Deutschland) Gmbh) Use of quaternary polysiloxanes in cleaning and care compositions
US20080014166A1 (en) * 2006-07-14 2008-01-17 Clariant International, Ltd. Cosmetic or pharmaceutical compositions comprising modified polyorganosiloxanes
US20080097070A1 (en) * 2006-10-19 2008-04-24 L'oreal Aqueous polyamine-containing systems for water-insoluble materials
FR2920156A1 (en) * 2007-08-20 2009-02-27 Basf Ag PRODUCT FOR PRESERVING THE ORGANOLEPTIC PROPERTIES OF BIOLOGICAL LIQUIDS OF PLANT ORIGIN, FERMENTED OR NOT, AND IN PARTICULAR FERMENTATION MOUTS AND WINES, FORMULATIONS AND THEIR USE IN BEVERAGES
WO2009024582A1 (en) * 2007-08-20 2009-02-26 Sofralab Product for preserving the organoleptic properties of fermented or not fermented biological liquids of vegetable origin, in particular fermenting worts or wines, formulations, and protocol for using formulations in beverages
US20090246236A1 (en) * 2008-02-25 2009-10-01 David Johnathan Kitko Hair Care Compositions Comprising Sucrose Polyesters
US8936796B2 (en) 2008-02-25 2015-01-20 The Procter & Gamble Company Hair care compositions comprising sucrose polyesters
US8936798B2 (en) 2008-02-25 2015-01-20 The Procter & Gamble Company Hair care compositions comprising sucrose polyesters
US20110104085A1 (en) * 2008-06-13 2011-05-05 Clariant Finance (Bvi) Limited Cosmetic Or Pharmaceutical Compositions Comprising Modified Polysiloxanes With At Least One Carbamate Group
CN101433505B (en) * 2008-12-08 2012-08-22 广东名臣有限公司 Hair care composition
US20110045039A1 (en) * 2009-08-20 2011-02-24 Jorge Max Sunkel Hair Care Compositions Comprising First and Second Sucrose Polyesters
US9079046B2 (en) * 2009-10-15 2015-07-14 Zahava Shalom Facial antiperspirant moisturizing composition and method of preparing same
US20120201771A1 (en) * 2009-10-15 2012-08-09 Zahava Shalom Facial antiperspirant moisturizing composition and method of preparing same
US8440174B2 (en) 2010-04-01 2013-05-14 The Procter & Gamble Company Compositions comprising surfactants and alkyloxy-modified silicone
WO2011123727A3 (en) * 2010-04-01 2011-11-24 The Procter & Gamble Company Organosilicones
US9650593B2 (en) 2010-04-01 2017-05-16 The Procter & Gamble Company Organosilicones
US8586015B2 (en) 2010-04-01 2013-11-19 The Procter & Gamble Company Compositions comprising surfactants and glycerol-modified silicones
US9212338B2 (en) 2010-04-01 2015-12-15 The Procter & Gamble Company Organosilicones
US8940284B2 (en) 2010-04-01 2015-01-27 The Procter & Gamble Company Organosilicones
RU2557239C2 (en) * 2010-04-01 2015-07-20 Дзе Проктер Энд Гэмбл Компани Organosilicones
FR2967909A1 (en) * 2010-11-26 2012-06-01 Oreal METHOD OF SKIN SHAVING USING AMPHIPHILIC AMINOPOLYORGANOSILOXANES; SOAP COMPOSITIONS CONTAINING SAME
WO2012069331A1 (en) * 2010-11-26 2012-05-31 L'oreal Method for shaving the skin using amphiphilic aminopolyorganosiloxanes; soap-based compositions comprising them
WO2013127614A3 (en) * 2012-03-01 2014-05-30 Henkel Ag & Co. Kgaa Hair-care product having selected aromatic substances and selected amodimethicones
US9504639B2 (en) 2012-09-18 2016-11-29 Henkel Ag & Co. Kgaa Composition for treating keratinous fibres, comprising specific aminosilicones, acids and direct dyes
WO2014044602A3 (en) * 2012-09-18 2014-10-23 Henkel Ag & Co. Kgaa Composition for treating keratinous fibres, comprising specific aminosilicones, acids and direct dyes
WO2014044602A2 (en) * 2012-09-18 2014-03-27 Henkel Ag & Co. Kgaa Composition for treating keratinous fibres, comprising specific aminosilicones, acids and direct dyes
CN103432023B (en) * 2013-08-30 2015-04-15 广州丹奇日用化工厂有限公司 Hair conditioner containing rice oil
CN103432023A (en) * 2013-08-30 2013-12-11 广州丹奇日用化工厂有限公司 Hair conditioner containing rice oil
CN112955118A (en) * 2018-10-31 2021-06-11 汉高股份有限及两合公司 Bis (triethoxysilylpropyl) amine in combination with a polyvalent metal cation
US11529303B2 (en) 2018-12-18 2022-12-20 Henkel Ag & Co. Kgaa Method for dyeing keratinous material, containing dye and an acidic post-treatment agent
WO2023192727A1 (en) * 2022-03-29 2023-10-05 Dow Silicones Corporation Preparation of an amino-functional polyorganosiloxane emulsion

Also Published As

Publication number Publication date
EP1576945A1 (en) 2005-09-21
US9237999B2 (en) 2016-01-19
EP1576945B1 (en) 2012-12-19
DE102004013795A1 (en) 2004-10-28
JP2005263805A (en) 2005-09-29
US20130344021A1 (en) 2013-12-26
JP5357375B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
US9237999B2 (en) Cosmetic or pharmaceutical composition comprising modified polyorganosiloxanes
EP1972330B1 (en) Cosmetic or pharmaceutical compositions comprising modified polysiloxanes with at least one carbamate group
US20070041930A1 (en) Use of quaternary polysiloxanes in cleaning and care compositions
AU2017101716A4 (en) Use of a bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
US20080014166A1 (en) Cosmetic or pharmaceutical compositions comprising modified polyorganosiloxanes
US11542343B2 (en) Water-soluble and/or water-swellable hybrid polymer
US8841400B2 (en) Use of organomodified siloxanes branched in the silicone part for producing cosmetic or pharmaceutical compositions
DE602004011856T2 (en) cosmetics
AU2006207974B2 (en) Personal care composition containing hydrophobically modified polymers
US20050025736A1 (en) Hair and skin altering and protecting compositions
US11339241B2 (en) Water-soluble and/or water-swellable hybrid polymer
US8241618B2 (en) Process for producing a hydrophobically modified polymer for use with personal care compositions
US20200017618A1 (en) Water-soluble and/or water-swellable hybrid polymer
JP2006137757A (en) Cosmetic, drug, and dermal agent each containing copolymer wax
KR20030094346A (en) Cosmetic composition containing dispersion polymers
WO2009007339A2 (en) Cosmetic medium based on vinylimidazole polymers
WO2009015857A2 (en) Aqueous compositions containing alkoxylated phosphoric acid triesters
US20030082128A1 (en) Homogeneous mixtures of silicone oils and organic oils
KR101310591B1 (en) Polyorganosiloxane with a piperidine function, devoid of toxicity upon contact with the skin, and use thereof in cosmetic compositions
US9283165B2 (en) Cosmetic composition
DE102004054849B4 (en) Cosmetic, pharmaceutical and dermatological preparations containing copolymer waxes
JP2008019259A (en) Cosmetic composition or medicinal composition including modified polyorganosiloxane
DE102005008442A1 (en) Cosmetic, pharmaceutical or dermatological preparation, useful as decorative agents, comprises copolymer waxes comprising alkyl structural units; and optionally acid structural units and e.g. styrol and alpha-methylstyrol

Legal Events

Date Code Title Description
AS Assignment

Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:CLARIANT GMBH;REEL/FRAME:030744/0614

Effective date: 20051128

Owner name: CLARIANT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEDER, MARKUS;KLUG, PETER;HENNING, TORSTEN;AND OTHERS;SIGNING DATES FROM 20050330 TO 20050405;REEL/FRAME:030720/0705

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION