US20050261766A1 - Method for reconstructing a ligament - Google Patents

Method for reconstructing a ligament Download PDF

Info

Publication number
US20050261766A1
US20050261766A1 US11/121,159 US12115905A US2005261766A1 US 20050261766 A1 US20050261766 A1 US 20050261766A1 US 12115905 A US12115905 A US 12115905A US 2005261766 A1 US2005261766 A1 US 2005261766A1
Authority
US
United States
Prior art keywords
bone tunnel
flexible member
tunnel
graft ligament
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/121,159
Inventor
Alan Chervitz
T. Fallin
Daniel Justin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/121,159 priority Critical patent/US20050261766A1/en
Publication of US20050261766A1 publication Critical patent/US20050261766A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0805Implements for inserting tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1714Guides or aligning means for drills, mills, pins or wires for applying tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1764Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0817Structure of the anchor
    • A61F2002/0841Longitudinal channel for insertion tool running through the whole tendon anchor, e.g. for accommodating bone drill, guidewire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0847Mode of fixation of anchor to tendon or ligament
    • A61F2002/0852Fixation of a loop or U-turn, e.g. eyelets, anchor having multiple holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0876Position of anchor in respect to the bone
    • A61F2002/0882Anchor in or on top of a bone tunnel, i.e. a hole running through the entire bone

Definitions

  • This invention relates to medical devices and procedures in general, and more particularly to medical devices and procedures for reconstructing a ligament.
  • a ligament is a piece of fibrous tissue which connects one bone to another.
  • Ligaments are frequently damaged (e.g., detached or torn or ruptured, etc.) as the result of injury and/or accident.
  • a damaged ligament can impede proper motion of a joint and cause significant pain.
  • ACL anterior cruciate ligament
  • ACL replacement procedures involve drilling a bone tunnel 20 through tibia 10 and up into femur 15 .
  • a graft ligament 25 consisting of a harvested or artificial ligament or tendon(s) is passed through the tibial portion 30 of tunnel 20 (sometimes referred to as “the tibial tunnel”), across the interior of the joint, and up into the femoral portion 35 of tunnel 20 (sometimes referred to as “the femoral tunnel”).
  • a distal portion of graft ligament 25 is secured in femoral tunnel 35
  • a proximal portion of graft ligament 25 is secured in tibial tunnel 30 .
  • graft ligament 25 may be positioned in tunnel 20 and secured in position.
  • the bone tunnel 20 is formed by drilling through tibia 10 and up into femur 15 , whereby to form tibial tunnel 30 and femoral tunnel 35 . Then a transverse bone tunnel 40 is formed in femur 15 so that transverse bone tunnel 40 intersects femoral tunnel 35 . Bone tunnel 20 bifurcates transverse bone tunnel 40 into two tunnel portions, a first transverse bone tunnel portion 45 and a second transverse bone tunnel portion 50 .
  • a flexible member 55 is used to draw graft ligament 25 up into place.
  • this is done by threading flexible member 55 through transverse bone tunnel 40 .
  • a crochet-hook device (not shown in FIG. 3 ) is passed up tibial tunnel 30 , across the interior of the knee joint, and up femoral tunnel 35 .
  • the crochet-hook device is used to hook flexible member 55 at the intersection of bone tunnel 20 and transverse bone tunnel 40 .
  • the crochet-hook device is used to pull flexible member 55 down femoral tunnel 35 , across the interior of the knee joint, down tibial tunnel 30 , and out the front side of tibia 10 .
  • graft ligament 25 is looped over flexible member 55 ( FIG. 3 ).
  • One or both free ends of flexible member 55 is/are then pulled away from femur 15 , whereby to pull flexible member 55 , and hence the looped graft ligament 25 , up tibial tunnel 30 , across the interior of the knee joint, and then up into femoral tunnel 35 ( FIG. 4 ).
  • the graft ligament may be retained in that position by passing a cannulated crosspin 60 over flexible member 55 into transverse bone tunnel 40 so that the crosspin extends under graft ligament 25 and supports the looped graft ligament within femoral tunnel 35 . Then flexible member 55 is withdrawn from the surgical site.
  • flexible member 55 must first be drawn down femoral tunnel 35 , across the interior of the knee joint, and then down tibial tunnel 30 in order to pick up graft ligament 25 ; and then later, flexible member 55 must be drawn back up tibial tunnel 30 , across the interior of the knee joint, and then back up femoral tunnel 35 in order to carry graft ligament 25 into position. These actions cause flexible member 55 to engage the bone which is located at the intersection of femoral tunnel 35 and transverse bone tunnel 40 , i.e., to engage the bone edges 65 ( FIG. 5 ).
  • This engagement between flexible member 55 and bone edges 65 can cause bone edges 65 to be eroded.
  • This erosion can be particularly significant where substantial forces are required to draw flexible member 55 out of bone tunnel 20 (e.g., where a metallic flexible member 55 is used); or when substantial forces are required to draw flexible member 55 and graft ligament 25 up bone tunnel 25 (e.g., where graft ligament 25 makes a tight engagement with the walls of bone tunnel 20 ).
  • an object of the present invention is to provide an improved method for reconstructing a ligament.
  • Another object of the present invention is to provide an improved method for reconstructing a ligament which substantially avoids the problems associated with the prior art.
  • the invention comprises a method for securing a graft ligament in a bone tunnel, the method comprising the steps of: (1) forming a first bone tunnel in a bone, and forming a second bone tunnel in the same bone, the second bone tunnel being transverse to, and intersecting, the first bone tunnel; (2) positioning a flexible member in the second transverse bone tunnel so that the flexible member extends across the first bone tunnel, and positioning the graft ligament in the first bone tunnel, independently of the flexible member, so that the graft ligament is looped over the flexible member; and (3) positioning a crosspin over the flexible member and in the second transverse bone tunnel so that the graft ligament is looped over, and may be supported by, the crosspin.
  • FIG. 1 is a schematic side view of a knee joint, showing an ACL extending between the top of the tibia and the bottom of the femur;
  • FIG. 2 is a schematic side view of the same knee joint, except showing portions of an ACL reconstruction
  • FIGS. 3-6 are schematic front views of a knee joint, illustrating various aspects of a prior art procedure for positioning a graft ligament in a bone tunnel and securing it in position;
  • FIGS. 7-14 are schematic front views of a knee joint, illustrating a novel procedure for positioning a graft ligament in a bone tunnel and securing it in position.
  • the present invention comprises a novel method for reconstructing a ligament.
  • the bone tunnel 20 is formed by drilling through tibia 10 and up into femur 15 , whereby to form tibial tunnel 30 and femoral tunnel 35 . Then the transverse bone tunnel 40 is formed in femur 15 so that transverse bone tunnel 40 intersects femoral tunnel 35 . Bone tunnel 20 bifurcates transverse bone tunnel 40 into two tunnel portions, a first transverse bone tunnel portion 45 and a second transverse bone tunnel portion 50 .
  • a flexible member 55 is passed across transverse bone tunnel 40 . This may be done by attaching a distal end 70 of flexible member 55 to the proximal end 75 of a transverse drill pin 80 , and then drawing flexible member 55 through transverse bone tunnel 40 in the manner shown in FIGS. 7 and 8 .
  • a crochet-hook member 85 ( FIG. 9 ) is passed up tibial tunnel 30 , across the interior of the knee joint, and then up femoral tunnel 35 so as to hook flexible member 55 and draw it down femoral tunnel 35 , across the interior of the knee joint, down tibial tunnel 30 and then out the bottom of tibial tunnel 30 . See FIG. 9 .
  • the end of flexible member 55 extending out of tibial tunnel 30 is set aside for future use. See FIG. 10 .
  • a second drill pin 95 is passed up tibial tunnel 30 , across the interior of the knee joint, up femoral tunnel 35 , and then drilled out the top of femur 15 .
  • graft ligament 25 is looped through a loop 100 of flexible material, and loop 100 is connected to the proximal end 105 of second drill pin 95 .
  • drill pin 95 is passed through the top of femur 15 so as to draw graft ligament 25 up tibial tunnel 30 , across the interior of the knee joint, and up femoral tunnel 35 .
  • Second drill pin 95 may then be removed, with loop 100 holding graft ligament 25 in position within femoral tunnel 35 and tibial tunnel 30 . See FIG. 11 .
  • flexible member 55 is then used as a guide to pass a crosspin 60 through transverse bone tunnel 40 and, in the process, beneath looped graft ligament 25 , whereby to support graft ligament 25 within bone tunnel 20 .
  • Loop 100 may thereafter be removed from graft ligament 25 , and flexible member 55 removed from transverse bone tunnel 40 .
  • the proximal end of the graft ligament may thereafter be secured to tibia 10 in ways well known in the art so as to complete the ligament repair procedure.
  • flexible member 55 is used solely as a guide for crosspin 60 , and is not used to lift graft ligament 25 within bone tunnel 20 , flexible member 55 does not need to be strong enough to lift the graft ligament up the bone tunnel.
  • flexible member 55 can be formed out of a wider range of materials and can have a smaller diameter, which in turn permits the cannulation in crosspin 60 to be smaller, which in turn permits the construction of a stronger crosspin.

Abstract

A method for reconstructing a ligament. In one form of the invention, there is disclosed a method for securing a graft ligament in a bone tunnel, the method comprising the steps of: (1) forming a first bone tunnel in a bone, and forming a second bone tunnel in the same bone, the second bone tunnel being transverse to, and intersecting, the first bone tunnel; (2) positioning a flexible member in the second transverse bone tunnel so that the flexible member extends across the first bone tunnel, and positioning the graft ligament in the first bone tunnel, independently of the flexible member, so that the graft ligament is looped over the flexible member; and (3) positioning a crosspin over the flexible member and in the second transverse bone tunnel so that the graft ligament is looped over, and may be supported by, the crosspin.

Description

    REFERENCE TO PENDING PRIOR PATENT APPLICATION
  • This patent application claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 60/146,253, filed Jul. 29, 1999 by Alan Chervitz et al. for METHOD TO DELIVERING AN ACL GRAFT IN THE KNEE, which patent application is hereby incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to medical devices and procedures in general, and more particularly to medical devices and procedures for reconstructing a ligament.
  • BACKGROUND OF THE INVENTION
  • A ligament is a piece of fibrous tissue which connects one bone to another.
  • Ligaments are frequently damaged (e.g., detached or torn or ruptured, etc.) as the result of injury and/or accident. A damaged ligament can impede proper motion of a joint and cause significant pain.
  • Various procedures have been developed to repair or replace a damaged ligament. The specific procedures used depend on the particular ligament which is to be restored and on the extent of the damage.
  • One ligament which is frequently damaged as the result of injury and/or accident is the anterior cruciate ligament (ACL). Looking now at FIG. 1, the ACL 5 extends between the top of the tibia 10 and the bottom of the femur 15. A damaged ACL can cause instability of the knee joint and cause substantial pain and arthritis.
  • Numerous procedures have been developed to restore the ACL through a graft ligament replacement. In general, and looking now at FIG. 2, these ACL replacement procedures involve drilling a bone tunnel 20 through tibia 10 and up into femur 15. Then a graft ligament 25, consisting of a harvested or artificial ligament or tendon(s), is passed through the tibial portion 30 of tunnel 20 (sometimes referred to as “the tibial tunnel”), across the interior of the joint, and up into the femoral portion 35 of tunnel 20 (sometimes referred to as “the femoral tunnel”). Then a distal portion of graft ligament 25 is secured in femoral tunnel 35, and a proximal portion of graft ligament 25 is secured in tibial tunnel 30.
  • There are numerous ways in which graft ligament 25 may be positioned in tunnel 20 and secured in position.
  • One such way is disclosed in U.S. Pat. No. 5,918,604, issued Jul. 6, 1999 to Whelan for METHOD OF LOADING TENDONS INTO THE KNEE. According to this patent, the ligament may be towed up tibial tunnel 30 and femoral tunnel 35 and then secured in femoral tunnel 35 with a crosspin.
  • More particularly, and looking now at FIG. 3, the bone tunnel 20 is formed by drilling through tibia 10 and up into femur 15, whereby to form tibial tunnel 30 and femoral tunnel 35. Then a transverse bone tunnel 40 is formed in femur 15 so that transverse bone tunnel 40 intersects femoral tunnel 35. Bone tunnel 20 bifurcates transverse bone tunnel 40 into two tunnel portions, a first transverse bone tunnel portion 45 and a second transverse bone tunnel portion 50.
  • After transverse bone tunnel 40 has been formed, a flexible member 55 is used to draw graft ligament 25 up into place.
  • More particularly, according to the aforementioned U.S. Pat. No. 5,918,604, this is done by threading flexible member 55 through transverse bone tunnel 40. Then a crochet-hook device (not shown in FIG. 3) is passed up tibial tunnel 30, across the interior of the knee joint, and up femoral tunnel 35. The crochet-hook device is used to hook flexible member 55 at the intersection of bone tunnel 20 and transverse bone tunnel 40. Then the crochet-hook device is used to pull flexible member 55 down femoral tunnel 35, across the interior of the knee joint, down tibial tunnel 30, and out the front side of tibia 10. Next, graft ligament 25 is looped over flexible member 55 (FIG. 3). One or both free ends of flexible member 55 is/are then pulled away from femur 15, whereby to pull flexible member 55, and hence the looped graft ligament 25, up tibial tunnel 30, across the interior of the knee joint, and then up into femoral tunnel 35 (FIG. 4).
  • Once flexible member 55 and graft ligament 25 have assumed the position shown in FIG. 4, the graft ligament may be retained in that position by passing a cannulated crosspin 60 over flexible member 55 into transverse bone tunnel 40 so that the crosspin extends under graft ligament 25 and supports the looped graft ligament within femoral tunnel 35. Then flexible member 55 is withdrawn from the surgical site.
  • Unfortunately, the method taught in U.S. Pat. No. 5,918,604 suffers from a number of drawbacks.
  • For one thing, use of this method can result in erosion of the patient's bone. More particularly, and looking now at FIG. 5, flexible member 55 must first be drawn down femoral tunnel 35, across the interior of the knee joint, and then down tibial tunnel 30 in order to pick up graft ligament 25; and then later, flexible member 55 must be drawn back up tibial tunnel 30, across the interior of the knee joint, and then back up femoral tunnel 35 in order to carry graft ligament 25 into position. These actions cause flexible member 55 to engage the bone which is located at the intersection of femoral tunnel 35 and transverse bone tunnel 40, i.e., to engage the bone edges 65 (FIG. 5). This engagement between flexible member 55 and bone edges 65 can cause bone edges 65 to be eroded. This erosion can be particularly significant where substantial forces are required to draw flexible member 55 out of bone tunnel 20 (e.g., where a metallic flexible member 55 is used); or when substantial forces are required to draw flexible member 55 and graft ligament 25 up bone tunnel 25 (e.g., where graft ligament 25 makes a tight engagement with the walls of bone tunnel 20).
  • For another thing, the method taught in U.S. Pat. No. 5,918,604 can be tedious to practice. More particularly, when flexible member 55 and ligament graft 25 are in the position shown in FIG. 5, flexible member 55 will form the angle θ; however, when flexible member 55 and ligament graft 25 are in the position shown in FIG. 6, flexible member 55 will form a different angle θ. In this respect it will be appreciated that it will be considerably more difficult to pull graft ligament 25 upwards as the angle θ increases from the position shown in FIG. 5 to the position shown in FIG. 6.
  • OBJECTS OF THE INVENTION
  • As a result, an object of the present invention is to provide an improved method for reconstructing a ligament.
  • And another object of the present invention is to provide an improved method for reconstructing a ligament which substantially avoids the problems associated with the prior art.
  • SUMMARY OF THE INVENTION
  • These and other objects of the present invention are addressed by a novel method for reconstructing a ligament.
  • In one preferred form of the invention, the invention comprises a method for securing a graft ligament in a bone tunnel, the method comprising the steps of: (1) forming a first bone tunnel in a bone, and forming a second bone tunnel in the same bone, the second bone tunnel being transverse to, and intersecting, the first bone tunnel; (2) positioning a flexible member in the second transverse bone tunnel so that the flexible member extends across the first bone tunnel, and positioning the graft ligament in the first bone tunnel, independently of the flexible member, so that the graft ligament is looped over the flexible member; and (3) positioning a crosspin over the flexible member and in the second transverse bone tunnel so that the graft ligament is looped over, and may be supported by, the crosspin.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:
  • FIG. 1 is a schematic side view of a knee joint, showing an ACL extending between the top of the tibia and the bottom of the femur;
  • FIG. 2 is a schematic side view of the same knee joint, except showing portions of an ACL reconstruction;
  • FIGS. 3-6 are schematic front views of a knee joint, illustrating various aspects of a prior art procedure for positioning a graft ligament in a bone tunnel and securing it in position; and
  • FIGS. 7-14 are schematic front views of a knee joint, illustrating a novel procedure for positioning a graft ligament in a bone tunnel and securing it in position.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention comprises a novel method for reconstructing a ligament.
  • More particularly, and looking now at FIG. 7, the bone tunnel 20 is formed by drilling through tibia 10 and up into femur 15, whereby to form tibial tunnel 30 and femoral tunnel 35. Then the transverse bone tunnel 40 is formed in femur 15 so that transverse bone tunnel 40 intersects femoral tunnel 35. Bone tunnel 20 bifurcates transverse bone tunnel 40 into two tunnel portions, a first transverse bone tunnel portion 45 and a second transverse bone tunnel portion 50.
  • After transverse bone tunnel 40 has been formed, a flexible member 55 is passed across transverse bone tunnel 40. This may be done by attaching a distal end 70 of flexible member 55 to the proximal end 75 of a transverse drill pin 80, and then drawing flexible member 55 through transverse bone tunnel 40 in the manner shown in FIGS. 7 and 8.
  • Next, a crochet-hook member 85 (FIG. 9) is passed up tibial tunnel 30, across the interior of the knee joint, and then up femoral tunnel 35 so as to hook flexible member 55 and draw it down femoral tunnel 35, across the interior of the knee joint, down tibial tunnel 30 and then out the bottom of tibial tunnel 30. See FIG. 9.
  • The end of flexible member 55 extending out of tibial tunnel 30, shown generally at 90, is set aside for future use. See FIG. 10.
  • Next, and still looking now at FIG. 10, a second drill pin 95 is passed up tibial tunnel 30, across the interior of the knee joint, up femoral tunnel 35, and then drilled out the top of femur 15. Then graft ligament 25 is looped through a loop 100 of flexible material, and loop 100 is connected to the proximal end 105 of second drill pin 95. Then drill pin 95 is passed through the top of femur 15 so as to draw graft ligament 25 up tibial tunnel 30, across the interior of the knee joint, and up femoral tunnel 35. Second drill pin 95 may then be removed, with loop 100 holding graft ligament 25 in position within femoral tunnel 35 and tibial tunnel 30. See FIG. 11.
  • After graft ligament 25 has been positioned in the manner shown in FIG. 11, the end of flexible member 55 that extends out of tibial tunnel 30, shown generally at 90, is placed between the graft ligament strands. See FIG. 11. Then one or both of the free ends of flexible member 55 is/are pulled away from femur 15, in the manner shown in FIG. 12, whereby to pull flexible member 55 up tibial tunnel 30, across the interior of the knee joint, and up femoral tunnel 35 so as to achieve the position shown in FIGS. 12 and 13. In this respect it should be appreciated that while flexible member 55 is being drawn up tibial tunnel 30, across the interior of the knee joint, and up femoral tunnel 35, graft ligament 25 is being supported within bone tunnel 20 by loop 100. As a result, flexible member 55 may be drawn readily upward, with minimal erosion of bone edges 65 (FIGS. 12 and 13).
  • Looking next at FIG. 14, flexible member 55 is then used as a guide to pass a crosspin 60 through transverse bone tunnel 40 and, in the process, beneath looped graft ligament 25, whereby to support graft ligament 25 within bone tunnel 20. Loop 100 may thereafter be removed from graft ligament 25, and flexible member 55 removed from transverse bone tunnel 40. The proximal end of the graft ligament may thereafter be secured to tibia 10 in ways well known in the art so as to complete the ligament repair procedure.
  • ADVANTAGES OF THE INVENTION
  • Numerous advantages are achieved by using the present invention.
  • For one thing, since graft ligament 25 is pulled into bone tunnel 20 by the loop 100 moving along the line of bone tunnel 20, optimal force can be applied to lifting the graft ligament into position without damaging tunnel edges 65.
  • In addition, since flexible member 55 is used solely as a guide for crosspin 60, and is not used to lift graft ligament 25 within bone tunnel 20, flexible member 55 does not need to be strong enough to lift the graft ligament up the bone tunnel. As a result, flexible member 55 can be formed out of a wider range of materials and can have a smaller diameter, which in turn permits the cannulation in crosspin 60 to be smaller, which in turn permits the construction of a stronger crosspin.
  • Still other advantages of the present invention will be apparent to those skilled in the art.
  • Modifications
  • It is to be understood that the present invention is by no means limited to the particular constructions and method steps disclosed above and/or shown in the drawings, but also comprises any modifications or equivalents within the scope of the claims.

Claims (4)

1. A method for securing a graft ligament in a bone tunnel, said method comprising the steps of:
(1) forming a first bone tunnel in a bone, and forming a second bone tunnel in the same bone, said second bone tunnel being transverse to, and intersecting, said first bone tunnel;
(2) positioning a flexible member in said second transverse bone tunnel so that said flexible member extends across said first bone tunnel, and positioning said graft ligament in said first bone tunnel, independently of said flexible member, so that said graft ligament is looped over said flexible member; and
(3) positioning a crosspin over said flexible member and in said second transverse bone tunnel so that said graft ligament is looped over, and may be supported by, said crosspin.
2. A method according to claim 1 wherein said step of positioning said graft ligament in said first bone tunnel, independently of said flexible member, comprises the sub-steps of:
(i) pulling a loop of said flexible member out of said first bone tunnel;
(b) pulling a loop of said graft ligament into said first bone tunnel so that said loop of graft ligament extends past the intersection of said second transverse bone tunnel with said first bone tunnel;
(c) positioning said loop of said flexible member within said loop of graft ligament; and
(d) pulling said flexible member straight so as to eliminate said loop of said flexible member.
3. A method according to claim 2 wherein said sub-step of pulling said loop of said graft ligament into said first bone tunnel comprises the sub-sub-steps of:
(i) attaching said loop of said graft ligament to a pulling member; and
(ii) passing said pulling member out the far said of said first bone tunnel.
4. A method for securing a graft ligament in a bone tunnel, said method comprising the steps of:
(1) forming a first bone tunnel in a bone, and forming a second bone tunnel in the same bone, said second bone tunnel being transverse to, and intersecting, said first bone tunnel;
(2) positioning a flexible member in said second transverse bone tunnel so that said flexible member extends across said first bone tunnel;
(3) pulling a loop of said flexible member out of said first bone tunnel;
(4) pulling a loop of said graft ligament into said first bone tunnel so that said loop of graft ligament extends past the intersection of said second transverse bone tunnel with said first bone tunnel;
(5) positioning said loop of said flexible member within said loop of graft ligament;
(6) pulling said flexible member straight so as to eliminate said loop of said flexible member; and
(7) positioning a crosspin over said flexible member and in said second transverse bone tunnel so that said graft ligament is looped over, and may be supported by, said crosspin.
US11/121,159 1999-07-29 2005-05-03 Method for reconstructing a ligament Abandoned US20050261766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/121,159 US20050261766A1 (en) 1999-07-29 2005-05-03 Method for reconstructing a ligament

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14625399P 1999-07-29 1999-07-29
US09/626,506 US6499486B1 (en) 1999-07-29 2000-07-27 Method for reconstructing a ligament
US10/335,550 US6886569B2 (en) 1999-07-29 2002-12-31 Method for reconstructing a ligament
US11/121,159 US20050261766A1 (en) 1999-07-29 2005-05-03 Method for reconstructing a ligament

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/335,550 Continuation US6886569B2 (en) 1999-07-29 2002-12-31 Method for reconstructing a ligament

Publications (1)

Publication Number Publication Date
US20050261766A1 true US20050261766A1 (en) 2005-11-24

Family

ID=26843714

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/626,506 Expired - Lifetime US6499486B1 (en) 1999-07-29 2000-07-27 Method for reconstructing a ligament
US10/335,550 Expired - Lifetime US6886569B2 (en) 1999-07-29 2002-12-31 Method for reconstructing a ligament
US11/121,159 Abandoned US20050261766A1 (en) 1999-07-29 2005-05-03 Method for reconstructing a ligament

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/626,506 Expired - Lifetime US6499486B1 (en) 1999-07-29 2000-07-27 Method for reconstructing a ligament
US10/335,550 Expired - Lifetime US6886569B2 (en) 1999-07-29 2002-12-31 Method for reconstructing a ligament

Country Status (1)

Country Link
US (3) US6499486B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100217315A1 (en) * 2009-02-19 2010-08-26 Jolly Jacob A Drill pin for suture passing
US20100256677A1 (en) * 2009-03-31 2010-10-07 Arthrex, Inc. Integrated adjustable button-suture-graft construct with two fixation devices
US8460379B2 (en) 2009-03-31 2013-06-11 Arthrex, Inc. Adjustable suture button construct and methods of tissue reconstruction
US8591578B2 (en) 2010-11-17 2013-11-26 Arthrex, Inc. Adjustable suture-button constructs for ligament reconstruction
US8628573B2 (en) 2009-03-31 2014-01-14 Arthrex, Inc. Adjustable suture-button construct for knotless stabilization of cranial cruciate deficient ligament stifle
US9107653B2 (en) 2011-09-22 2015-08-18 Arthrex, Inc. Tensionable knotless anchors with splice and methods of tissue repair
US9179950B2 (en) 2010-11-17 2015-11-10 Arthrex, Inc. Adjustable suture-button construct for ankle syndesmosis repair
US9265600B2 (en) 2013-02-27 2016-02-23 Orthopediatrics Corp. Graft fixation
US9301745B2 (en) 2011-07-21 2016-04-05 Arthrex, Inc. Knotless suture constructs
US9332979B2 (en) 2011-07-22 2016-05-10 Arthrex, Inc. Tensionable knotless acromioclavicular repairs and constructs
US9615821B2 (en) 2011-12-09 2017-04-11 Arthrex, Inc. Tensionable knotless anchor systems and methods of tissue repair
US9737292B2 (en) 2012-06-22 2017-08-22 Arthrex, Inc. Knotless suture anchors and methods of tissue repair
US10206670B2 (en) 2002-06-20 2019-02-19 Arthrex, Inc. Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder
US10245016B2 (en) 2011-10-12 2019-04-02 Arthrex, Inc. Adjustable self-locking loop constructs for tissue repairs and reconstructions
US10265060B2 (en) 2015-08-20 2019-04-23 Arthrex, Inc. Tensionable constructs with multi-limb locking mechanism through single splice and methods of tissue repair
US10335136B2 (en) 2015-08-20 2019-07-02 Arthrex, Inc. Tensionable constructs with multi-limb locking mechanism through single splice and methods of tissue repair

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752830B1 (en) * 1999-07-20 2004-06-22 Ethicon, Inc. Apparatus and method for reconstructing a ligament
US6179840B1 (en) 1999-07-23 2001-01-30 Ethicon, Inc. Graft fixation device and method
US20020095157A1 (en) 1999-07-23 2002-07-18 Bowman Steven M. Graft fixation device combination
US6499486B1 (en) * 1999-07-29 2002-12-31 Ethicon, Inc. Method for reconstructing a ligament
DE60032152T2 (en) * 1999-08-10 2007-09-27 Ethicon, Inc. DEVICE FOR RESTORING A LIGAMENT
US6878166B2 (en) 2000-08-28 2005-04-12 Ron Clark Method and implant for securing ligament replacement into the knee
US7530999B2 (en) * 2000-08-28 2009-05-12 Biomet Sports Medicine, Llc Method and implant for securing ligament replacement into the knee
CA2365376C (en) 2000-12-21 2006-03-28 Ethicon, Inc. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US7195642B2 (en) 2001-03-13 2007-03-27 Mckernan Daniel J Method and apparatus for fixing a graft in a bone tunnel
GB0208667D0 (en) * 2002-04-16 2002-05-29 Atlantech Medical Devices Ltd A transverse suspension device
US7338492B2 (en) * 2002-05-15 2008-03-04 Linvatec Corporation Cross-pin graft fixation, instruments, and methods
US20040078090A1 (en) 2002-10-18 2004-04-22 Francois Binette Biocompatible scaffolds with tissue fragments
US7824701B2 (en) 2002-10-18 2010-11-02 Ethicon, Inc. Biocompatible scaffold for ligament or tendon repair
US8197837B2 (en) 2003-03-07 2012-06-12 Depuy Mitek, Inc. Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
US7032599B2 (en) * 2003-05-15 2006-04-25 Mitek Surgical Products Div. Of Ethicon, Inc. Method of replacing an anterior cruciate ligament in the knee
US8226715B2 (en) 2003-06-30 2012-07-24 Depuy Mitek, Inc. Scaffold for connective tissue repair
US10583220B2 (en) 2003-08-11 2020-03-10 DePuy Synthes Products, Inc. Method and apparatus for resurfacing an articular surface
US7896917B2 (en) 2003-10-15 2011-03-01 Biomet Sports Medicine, Llc Method and apparatus for graft fixation
US20050107867A1 (en) * 2003-11-17 2005-05-19 Taheri Syde A. Temporary absorbable venous occlusive stent and superficial vein treatment method
US7316822B2 (en) 2003-11-26 2008-01-08 Ethicon, Inc. Conformable tissue repair implant capable of injection delivery
US7901461B2 (en) * 2003-12-05 2011-03-08 Ethicon, Inc. Viable tissue repair implants and methods of use
US7901404B2 (en) 2004-01-16 2011-03-08 Arthrocare Corporation Bone harvesting device and method
GR20040100020A (en) * 2004-01-20 2005-09-27 Ηρακλης Ιωαννη Πατσοπουλος System of tools for the arthroscopic reconstruction of both segements of the cruciate ligament
US11395865B2 (en) 2004-02-09 2022-07-26 DePuy Synthes Products, Inc. Scaffolds with viable tissue
US7608092B1 (en) 2004-02-20 2009-10-27 Biomet Sports Medicince, LLC Method and apparatus for performing meniscus repair
US8088128B2 (en) * 2004-03-25 2012-01-03 Depuy Mitek, Inc. Implantable cross-pin for anterior cruciate ligament repair
US8221780B2 (en) * 2004-04-20 2012-07-17 Depuy Mitek, Inc. Nonwoven tissue scaffold
US8137686B2 (en) * 2004-04-20 2012-03-20 Depuy Mitek, Inc. Nonwoven tissue scaffold
US8109965B2 (en) 2004-06-09 2012-02-07 Biomet Sports Medicine, LLP Method and apparatus for soft tissue fixation
US7819898B2 (en) 2004-06-09 2010-10-26 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US7500983B1 (en) 2004-06-09 2009-03-10 Biomet Sports Medicine, Llc Apparatus for soft tissue attachment
US7695503B1 (en) * 2004-06-09 2010-04-13 Biomet Sports Medicine, Llc Method and apparatus for soft tissue attachment
US8002778B1 (en) * 2004-06-28 2011-08-23 Biomet Sports Medicine, Llc Crosspin and method for inserting the same during soft ligament repair
US20060079904A1 (en) * 2004-10-13 2006-04-13 Raymond Thal Multirow knotless suture anchor assembly
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US20060189993A1 (en) 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US7527648B2 (en) * 2004-12-21 2009-05-05 Mitek Surgical Products Div Of Ethicon, Inc. Method of replacing an anterior cruciate ligament in the knee
US7458975B2 (en) * 2004-12-21 2008-12-02 Johnson & Johnson Method of replacing an anterior cruciate ligament in the knee
US7972354B2 (en) 2005-01-25 2011-07-05 Tyco Healthcare Group Lp Method and apparatus for impeding migration of an implanted occlusive structure
US7771441B2 (en) * 2005-04-20 2010-08-10 Arthroscopic Innovations Llc Method and apparatus for providing suture in a passageway
US7842042B2 (en) 2005-05-16 2010-11-30 Arthrocare Corporation Convergent tunnel guide apparatus and method
US20070005067A1 (en) * 2005-06-21 2007-01-04 Brian Dross Arthoscopic method and apparatus for tissue attachment to bone
GB0513686D0 (en) * 2005-07-04 2005-08-10 Finsbury Dev Ltd Prosthesis
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US7828820B2 (en) 2006-03-21 2010-11-09 Biomet Sports Medicine, Llc Method and apparatuses for securing suture
US9017361B2 (en) 2006-04-20 2015-04-28 Covidien Lp Occlusive implant and methods for hollow anatomical structure
WO2008030668A2 (en) * 2006-07-26 2008-03-13 Lambert Systems, L.L.C. Biocompatible anchoring device for a soft tissue graft, method of making and method of using
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US7942914B2 (en) 2006-10-17 2011-05-17 Arthroscopic Innovations Llc Method and apparatus for surgical repair
US7686838B2 (en) 2006-11-09 2010-03-30 Arthrocare Corporation External bullet anchor apparatus and method for use in surgical repair of ligament or tendon
WO2008091690A1 (en) 2007-01-25 2008-07-31 Arthrex, Inc. Drill pin for fixation of ligaments using button/loop construct
US8147546B2 (en) 2007-03-13 2012-04-03 Biomet Sports Medicine, Llc Method and apparatus for graft fixation
US20100049199A1 (en) * 2008-02-21 2010-02-25 Tyco Healthcare Group Lp Tibial guide for acl repair having moveable distal features
US8298239B2 (en) * 2008-02-21 2012-10-30 Tyco Healthcare Group Lp Tibial guide for ACL repair having interchangeable and/or rotatable outrigger
US20100049198A1 (en) * 2008-02-21 2010-02-25 Tyco Healthcare Group Lp Tibial guide for acl repair having off-axis guide wire arrangement
US8323289B2 (en) * 2008-02-21 2012-12-04 Covidien Lp Tibial guide for ACL repair having left/right docking configuration
AU2009200864A1 (en) * 2008-02-29 2009-09-17 Robert J. Medoff Method and apparatus for articular scapholunate reconstruction
US20100049258A1 (en) * 2008-08-19 2010-02-25 Dougherty Christopher P Single tunnel double bundle posterior cruciate ligament reconstruction
US8551123B2 (en) * 2008-11-13 2013-10-08 Rajiv D. Pandya Device for the intraosteal seizing of sutures
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US8449612B2 (en) 2009-11-16 2013-05-28 Arthrocare Corporation Graft pulley and methods of use
EP2571548B1 (en) * 2010-05-17 2018-04-18 MiMedx Group, Inc. Compressible tubes for placing implants and related medical kits and methods of using same
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
US10022174B2 (en) * 2012-06-04 2018-07-17 Depuy Mitek, Llc Methods and devices for surgical guide pin placement
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
AU2015337845B2 (en) * 2014-10-29 2019-08-15 Jonathan Peter CABOT An arrangement and method used in the preparation of the proximal surface of the tibia for the tibial component of a prosthetic knee joint
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US9974534B2 (en) 2015-03-31 2018-05-22 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US10064633B2 (en) 2016-02-19 2018-09-04 Rajiv D. Pandya System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions
US9925010B2 (en) 2016-02-19 2018-03-27 Rajiv D. Pandya System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions
US11419684B2 (en) 2016-02-19 2022-08-23 Rajiv D. Pandya System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions
US11376079B2 (en) 2016-02-19 2022-07-05 Rajiv D. Pandya System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions
CN105919631B (en) * 2016-06-13 2018-06-19 赵春霞 A kind of medical instrument rebuild for plantar ligaments and application method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139520A (en) * 1990-01-31 1992-08-18 American Cyanamid Company Method for acl reconstruction
US5266075A (en) * 1992-10-05 1993-11-30 Roy Clark Tendon threader for endosteal ligament mounting
US5431651A (en) * 1993-02-08 1995-07-11 Goble; E. Marlowe Cross pin and set screw femoral and tibial fixation method
US5601562A (en) * 1995-02-14 1997-02-11 Arthrex, Inc. Forked insertion tool and metnod of arthroscopic surgery using the same
US5918604A (en) * 1997-02-12 1999-07-06 Arthrex, Inc. Method of loading tendons into the knee
US6499486B1 (en) * 1999-07-29 2002-12-31 Ethicon, Inc. Method for reconstructing a ligament
US6610064B1 (en) * 1999-08-10 2003-08-26 Ethicon, Inc. Apparatus and method for reconstructing a ligament
US6752830B1 (en) * 1999-07-20 2004-06-22 Ethicon, Inc. Apparatus and method for reconstructing a ligament
US6808528B2 (en) * 2000-02-23 2004-10-26 Ethicon, Inc. Apparatus and method for securing a graft ligament in a bone tunnel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2303853C (en) * 1997-09-24 2007-01-30 Depuy Orthopaedics, Inc. Acl fixation pin and method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139520A (en) * 1990-01-31 1992-08-18 American Cyanamid Company Method for acl reconstruction
US5266075A (en) * 1992-10-05 1993-11-30 Roy Clark Tendon threader for endosteal ligament mounting
US5393302A (en) * 1992-10-05 1995-02-28 Clark; Ron Process for endosteal ligament mounting
US5431651A (en) * 1993-02-08 1995-07-11 Goble; E. Marlowe Cross pin and set screw femoral and tibial fixation method
US5601562A (en) * 1995-02-14 1997-02-11 Arthrex, Inc. Forked insertion tool and metnod of arthroscopic surgery using the same
US5918604A (en) * 1997-02-12 1999-07-06 Arthrex, Inc. Method of loading tendons into the knee
US6752830B1 (en) * 1999-07-20 2004-06-22 Ethicon, Inc. Apparatus and method for reconstructing a ligament
US6499486B1 (en) * 1999-07-29 2002-12-31 Ethicon, Inc. Method for reconstructing a ligament
US6610064B1 (en) * 1999-08-10 2003-08-26 Ethicon, Inc. Apparatus and method for reconstructing a ligament
US6808528B2 (en) * 2000-02-23 2004-10-26 Ethicon, Inc. Apparatus and method for securing a graft ligament in a bone tunnel

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10390816B2 (en) 2002-06-20 2019-08-27 Arthrex, Inc. Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder
US10736622B2 (en) 2002-06-20 2020-08-11 Arthrex, Inc. Apparatuses and method for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder
US10918375B2 (en) 2002-06-20 2021-02-16 Arthrex, Inc. Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder
US10695049B2 (en) 2002-06-20 2020-06-30 Arthrex, Inc. Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder
US10206670B2 (en) 2002-06-20 2019-02-19 Arthrex, Inc. Apparatuses and methods for fixation of ankle syndesmosis or acromioclavicular joint dislocations of the shoulder
US9138223B2 (en) * 2009-02-19 2015-09-22 Arthrex, Inc. Drill pin for suture passing
US20100217315A1 (en) * 2009-02-19 2010-08-26 Jolly Jacob A Drill pin for suture passing
US8439976B2 (en) * 2009-03-31 2013-05-14 Arthrex, Inc. Integrated adjustable button-suture-graft construct with two fixation devices
US11259912B2 (en) 2009-03-31 2022-03-01 Arthrex, Inc. Adjustable suture button construct
US20100256677A1 (en) * 2009-03-31 2010-10-07 Arthrex, Inc. Integrated adjustable button-suture-graft construct with two fixation devices
US8460379B2 (en) 2009-03-31 2013-06-11 Arthrex, Inc. Adjustable suture button construct and methods of tissue reconstruction
US8628573B2 (en) 2009-03-31 2014-01-14 Arthrex, Inc. Adjustable suture-button construct for knotless stabilization of cranial cruciate deficient ligament stifle
US10076407B2 (en) 2009-03-31 2018-09-18 Arthrex, Inc. Adjustable suture button construct
US9421086B2 (en) 2009-03-31 2016-08-23 Arthrex, Inc. Adjustable suture-button construct for knotless stabilization of cranial cruciate deficient ligament stifle
US10285801B2 (en) 2009-03-31 2019-05-14 Arthrex, Inc. Adjustable suture-button construct for knotless stabilization of cranial cruciate deficient ligament stifle
US10238484B2 (en) 2009-03-31 2019-03-26 Arthrex, Inc. Adjustable suture button construct
US9687338B2 (en) 2009-03-31 2017-06-27 Arthrex, Inc. Adjustable suture button construct
US11284990B2 (en) 2009-03-31 2022-03-29 Arthrex, Inc. Adjustable suture button construct
US9204960B2 (en) 2010-11-17 2015-12-08 Arthrex, Inc. Adjustable suture-button constructs for ligament reconstruction
US10864028B2 (en) 2010-11-17 2020-12-15 Arthrex, Inc. Adjustable suture-button construct for ankle syndesmosis repair
US11701103B2 (en) 2010-11-17 2023-07-18 Arthrex, Inc. Adjustable suture-button construct for ankle syndesmosis repair
US9642610B2 (en) 2010-11-17 2017-05-09 Arthrex, Inc. Adjustable suture-button constructs for ligament reconstruction
US8591578B2 (en) 2010-11-17 2013-11-26 Arthrex, Inc. Adjustable suture-button constructs for ligament reconstruction
US10251686B2 (en) 2010-11-17 2019-04-09 Arthrex, Inc. Adjustable suture-button construct for ankle syndesmosis repair
US11129654B2 (en) 2010-11-17 2021-09-28 Arthrex, Inc. Adjustable suture-button construct for ankle syndesmosis repair
US9179950B2 (en) 2010-11-17 2015-11-10 Arthrex, Inc. Adjustable suture-button construct for ankle syndesmosis repair
US9301745B2 (en) 2011-07-21 2016-04-05 Arthrex, Inc. Knotless suture constructs
US9332979B2 (en) 2011-07-22 2016-05-10 Arthrex, Inc. Tensionable knotless acromioclavicular repairs and constructs
US9855029B2 (en) 2011-09-22 2018-01-02 Arthrex, Inc. Method of tissue repair using a tensionable knotless anchor with splice
US9107653B2 (en) 2011-09-22 2015-08-18 Arthrex, Inc. Tensionable knotless anchors with splice and methods of tissue repair
US11109853B2 (en) 2011-10-12 2021-09-07 Arthrex, Inc. Adjustable self-locking loop constructs for tissue repairs and reconstructions
US10245016B2 (en) 2011-10-12 2019-04-02 Arthrex, Inc. Adjustable self-locking loop constructs for tissue repairs and reconstructions
US9615821B2 (en) 2011-12-09 2017-04-11 Arthrex, Inc. Tensionable knotless anchor systems and methods of tissue repair
USRE47811E1 (en) 2012-06-22 2020-01-14 Arthrex, Inc. Knotless suture anchors and methods of tissue repair
US9737292B2 (en) 2012-06-22 2017-08-22 Arthrex, Inc. Knotless suture anchors and methods of tissue repair
US9265600B2 (en) 2013-02-27 2016-02-23 Orthopediatrics Corp. Graft fixation
US10335136B2 (en) 2015-08-20 2019-07-02 Arthrex, Inc. Tensionable constructs with multi-limb locking mechanism through single splice and methods of tissue repair
US10265060B2 (en) 2015-08-20 2019-04-23 Arthrex, Inc. Tensionable constructs with multi-limb locking mechanism through single splice and methods of tissue repair

Also Published As

Publication number Publication date
US6886569B2 (en) 2005-05-03
US6499486B1 (en) 2002-12-31
US20030167090A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
US6499486B1 (en) Method for reconstructing a ligament
US6610064B1 (en) Apparatus and method for reconstructing a ligament
US6808528B2 (en) Apparatus and method for securing a graft ligament in a bone tunnel
US7025786B2 (en) Apparatus and method for reconstructing a ligament
US7066956B2 (en) Transverse fixation technique for ACL reconstruction using bone-tendon-bone graft
US9907646B2 (en) Femoral fixation
US20030176919A1 (en) Transverse fixation technique for ACL reconstruction using bone-tendon-bone graft with loop at end
JP5166395B2 (en) Implanting the graft
US6994725B1 (en) Method and apparatus for reconstructing a ligament
US7591850B2 (en) Surgical methods for anchoring and implanting tissues
US7063724B2 (en) Apparatus and method for reconstructing a ligament
AU2004201994B2 (en) Tissue fixation device
EP1180351B1 (en) Apparatus for reconstructing a ligament
EP1769750A1 (en) Apparatus for reconstructing a ligament
AU2002301618B2 (en) Transverse fixation technique for acl reconstruction using bone-tendon-bone graft

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION