US20060005736A1 - Hybrid energy off highway vehicle electric power management system and method - Google Patents

Hybrid energy off highway vehicle electric power management system and method Download PDF

Info

Publication number
US20060005736A1
US20060005736A1 US11/180,345 US18034505A US2006005736A1 US 20060005736 A1 US20060005736 A1 US 20060005736A1 US 18034505 A US18034505 A US 18034505A US 2006005736 A1 US2006005736 A1 US 2006005736A1
Authority
US
United States
Prior art keywords
train
ohv
power
energy
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/180,345
Inventor
Ajith Kumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/033,172 external-priority patent/US6615118B2/en
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/180,345 priority Critical patent/US20060005736A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUMAR, AJITH KUTTANNAIR
Publication of US20060005736A1 publication Critical patent/US20060005736A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates generally to energy management systems and methods for use in connection with a large, Off Highway Vehicle such as a railway locomotive, mining truck or excavator.
  • the invention relates to a system and method for managing the storage and transfer of electrical energy, such as dynamic braking energy or excess prime mover power, produced by Off Highway Vehicles driven by electric traction motors.
  • FIG. 1A is a block diagram of an exemplary prior art Off Highway Vehicle.
  • FIG. 1A generally reflects a typical prior art diesel-electric Off Highway Vehicle.
  • Off Highway Vehicles include locomotives and mining trucks and excavators, where mining trucks and excavators range from 100-ton capacity to 400-ton capacity, but may be smaller or larger.
  • Off Highway Vehicles typically have a power weight ratio of less than 10 h.p. per ton with a ratio of 5 h.p. per ton being common.
  • Off Highway Vehicles typically also utilize dynamic or electric braking. This is in contrast to a vehicle such as a passenger bus that has a ratio of 15 h.p. per ton or more and utilizes mechanical or resistive braking.
  • the Off Highway Vehicle 100 includes a diesel primary power source 102 driving an alternator/rectifier 104 .
  • the alternator/rectifier 104 provides DC electric power to an inverter 106 that converts the AC electric power to a form suitable for use by a traction motor 108 .
  • One common Off Highway Vehicle configuration includes one inverter/traction motor per wheel 109 , with two wheels 109 comprising the equivalent of an axle (not shown). Such a configuration results in one or two inverters per Off Highway Vehicle.
  • FIG. 1A illustrates a single inverter 106 and a single traction motor 108 for convenience.
  • large excavation dump trucks may employ motorized wheels such as the GEB23TM AC motorized wheel employing the GE150ACTM drive system (both of which are available from the assignee of the present system).
  • an inverter converts DC power to AC power.
  • a rectifier converts AC power to DC power.
  • the term “converter” is also sometimes used to refer to inverters and rectifiers.
  • the electrical power supplied in this manner may be referred to as prime mover power (or primary electric power) and the alternator/rectifier 104 may be referred to as a source of prime mover power.
  • the AC electric power from the alternator is first rectified (converted to DC).
  • the rectified AC is thereafter inverted (e.g., using power electronics such as Insulated Gate Bipolar Transistors (IGBTs) or thyristors operating as pulse width modulators) to provide a suitable form of AC power for the respective traction motor 108 .
  • IGBTs Insulated Gate Bipolar Transistors
  • thyristors operating as pulse width modulators
  • the traction motors 108 also provide a braking force for controlling speed or for slowing Off Highway Vehicle 100 .
  • This is commonly referred to as dynamic braking, and is generally understood in the art.
  • a traction motor 108 when a traction motor 108 is not needed to provide motivating force, it can be reconfigured (via power switching devices) so that the motor operates as an electric power generator. So configured, the traction motor 108 generates electric energy which has the effect of slowing the Off Highway Vehicle.
  • the energy generated in the dynamic braking mode is typically transferred to resistance grids 110 mounted on the vehicle housing.
  • the dynamic braking energy is converted to heat and dissipated from the system.
  • Such electric energy generated in the dynamic braking mode is typically wasted.
  • FIG. 1A generally illustrates an AC hybrid vehicle with a plurality of traction motors; a single inverter is depicted for convenience.
  • FIG. 1B is an electrical schematic of a typical prior art Off Highway Vehicle 100 . It is generally known in the art to employ a single electrical energy source 102 , however, two or more electrical energy sources may be employed. In the case of a single electrical energy source, a diesel engine 102 coupled to an alternator 104 provides the primary source power 104 . In the case where two or more electrical energy sources 102 are provided, a first system comprises the prime mover power system that provides power to the traction motors 108 . A second system (not shown) provides power for so-called auxiliary electrical systems (or simply auxiliaries). Such an auxiliary system may be derived as an output of the alternator, from the DC output, or from a separate alternator driven by the primary power source. For example, in FIG.
  • a diesel engine 102 drives the prime mover power source 104 (e.g., an alternator and rectifier), as well as any auxiliary alternators (not illustrated) used to power various auxiliary electrical subsystems such as, for example, lighting, air conditioning/heating, blower drives, radiator fan drives, control battery chargers, field exciters, power steering, pumps, and the like.
  • the auxiliary power system may also receive power from a separate axle driven generator.
  • Auxiliary power may also be derived from the traction alternator of prime mover power source 104 .
  • the output of prime mover power source 104 is connected to a DC bus 122 that supplies DC power to the traction motor subsystems 124 A- 124 B.
  • the DC bus 122 may also be referred to as a traction bus 122 because it carries the power used by the traction motor subsystems.
  • a typical prior art diesel-electric Off Highway Vehicle includes two traction motors 108 , one per each wheel 109 , wherein the two wheels 109 operate as an axle assembly, or axle-equivalent.
  • a system may be also be configured to include a single traction motor per axle or configured to include four traction motors, one per each wheel 109 of a two axle-equivalent four-wheel vehicle. In FIG.
  • a typical prior art dynamic braking grid subsystem 110 includes a plurality of contactors (e.g., DB 1 -DB 5 ) for switching a plurality of power resistive elements between the positive and negative rails of the DC bus 122 .
  • Each vertical grouping of resistors may be referred to as a string.
  • One or more power grid cooling blowers e.g., BL 1 and BL 2
  • BL 1 and BL 2 are normally used to remove heat generated in a string due to dynamic braking.
  • these contactors DB 1 -DB 5
  • these contactors can be replaced by solid-state switches like GTO/IGBTs and can be modulated (like a chopper) to control the effective dynamic brake resistance.
  • the invention is an energy management method for use with a hybrid energy off highway vehicle system.
  • the off highway vehicle system includes a vehicle having a primary energy source and a power converter driven by the primary energy source to provide primary electric power.
  • a traction bus is coupled to the power converter and carries the primary electric power.
  • a traction drive is connected to the traction bus and has a motoring mode in which the traction drive is responsive to the primary electric power for propelling the off highway vehicle and a dynamic braking mode of operation wherein said traction drive generates dynamic braking electrical energy.
  • the energy management method includes determining a power storage parameter and determining a power transfer parameter.
  • the method further includes storing electrical energy available from the traction bus in an energy storage device connected to the traction bus as a function of the determined power storage parameter; and providing secondary electric power to the traction bus from the electrical energy stored in the energy storage device as a function of the determined power transfer parameter.
  • the traction drive is responsive to the secondary electric power for propelling the off highway vehicle.
  • the energy management system determines a power storage parameter and a power transfer parameter whereby the energy management system controls the capture of electrical energy by the energy storage system as a function of the power storage parameter and controls the transfer of the portion of the captured electrical energy to the traction motor system as a function of the power transfer parameter.
  • a traction motor system receives the primary electric power and selectively propels the off highway vehicle in response to the received primary electric power.
  • the traction motor system has a dynamic braking mode of operation generating dynamic braking electrical power.
  • An energy storage system selectively stores a portion of the dynamic braking electrical power generated by the traction motor system in the dynamic braking mode and selectively supplies secondary electric power derived from the portion of the dynamic braking electrical power stored therein to the traction motor system that is responsive to the secondary electric power.
  • the energy management system comprises an energy management processor that determines a power storage parameter and a power transfer parameter.
  • the energy management processor controls the storage of dynamic braking electrical power by the energy storage system as a function of the power storage parameter.
  • the energy management processor controls the supply of secondary electric power from the energy storage system to the traction motor system as a function of the power transfer parameter.
  • FIG. 1A is a block diagram of a prior art Off Highway Vehicle.
  • FIG. 1B is an electrical schematic of a prior art AC diesel-electric Off Highway Vehicle.
  • FIG. 2 is a block diagram of one embodiment of hybrid energy Off Highway Vehicle system.
  • FIG. 3 is a block diagram of one embodiment of hybrid energy Off Highway Vehicle system configured with a fuel cell and a load vehicle.
  • FIG. 4 is a block diagram illustrating one embodiment of an energy storage and generation system suitable for use in connection with hybrid energy Off Highway Vehicle system.
  • FIG. 5A is a block diagram illustrating an energy storage and generation system suitable for use in a hybrid energy Off Highway Vehicle system, including an energy management system for controlling the storage and regeneration of energy.
  • FIG. 5B is a block diagram illustrating the interaction between components of the energy management system, power sources and power loads.
  • FIGS. 6A-6D are timing diagrams that illustrate one embodiment of an energy management system for controlling the storage and regeneration of energy, including dynamic braking energy.
  • FIGS. 7A-7D are timing diagrams that illustrate another embodiment energy management system for controlling the storage and regeneration of energy, including dynamic braking energy.
  • FIGS. 8A-8E are timing diagrams that illustrate another embodiment energy management system for controlling the storage and regeneration of energy, including dynamic braking energy.
  • FIGS. 9A-9G are electrical schematics illustrating several embodiments of an electrical system suitable for use in connection with a hybrid energy vehicle.
  • FIGS. 10A-10C are electrical schematics illustrating additional embodiments of an electrical system suitable for use in connection with a hybrid energy vehicle.
  • FIG. 12 is a flow chart that illustrates one method of operating a hybrid energy Off Highway Vehicle system.
  • FIG. 2 is a block diagram of one embodiment of a hybrid energy Off Highway Vehicle system 200 .
  • the hybrid energy Off Highway Vehicle system preferably captures and regenerates at least a portion of the dynamic braking electric energy generated when the vehicle traction motors operate in a dynamic braking mode.
  • the Off Highway Vehicle system includes an Off Highway Vehicle 200 having a primary energy source 104 .
  • a power converter is driven by the primary energy source 102 and provides primary electric power.
  • a traction bus 122 is coupled to the power converter and carries the primary electric power.
  • a traction drive 108 is coupled to the traction bus 122 .
  • the traction drive 108 constitutes a vehicle propulsion system mechanically coupled to the wheels 109 of the vehicle 200 and has a motoring mode in which the traction drive is responsive to the primary electric power for propelling the Off Highway Vehicle 200 , in which the traction drive 108 acts as a power load in the motoring mode.
  • the traction drive 108 has a dynamic braking mode of operation wherein the traction drive generates dynamic braking electrical energy and thus acts as a power generator or source in the braking mode.
  • An energy management system 206 comprises an energy management processor (not shown). The energy management system 206 determines a power storage parameter and a power transfer parameter.
  • An energy capture and storage system 204 is responsive to the energy management system 206 . The energy capture and storage system 204 selectively stores electrical energy as a function of the power storage parameter and thus acts as a power load during power storage. The energy capture and storage system 204 selectively supplies secondary electric power from the electrical energy stored therein as a function of the power transfer parameter and thus acts as power generator or source during power discharge when it converts stored mechanical or chemical energy into electrical power.
  • the energy capture and storage system 204 selectively receives electrical power generated during the dynamic braking mode of operation and stores it for later regeneration and use.
  • energy capture and storage system 204 can also be constructed and arranged to receive and store power from other sources. For example, excess prime mover power from primary energy source 104 can be transferred and stored.
  • excess power from one of the Off Highway Vehicles can be transferred and stored in energy capture and storage system 204 .
  • a separate primary energy source 102 e.g., diesel generator, fuel cell, trolley line, etc.
  • a charging voltage e.g., a constant charging voltage
  • an optional off-vehicle charging source 220 e.g., energy capture and storage system 204 can be charged by external charging generator or source 220 such as a battery charger.
  • the hybrid vehicle 200 may also be operated so that at the completion of a leg of its travel path, energy will remain stored in the energy storage system 204 and thus be available for transfer to a suitable external power load 224 such as other vehicles (e.g., pushers to help propel another train), or to an external energy system (not shown), such as an electric grid via electrical interface connection to the vehicle's electrical system, a third rail or an overhead power line.
  • a suitable external power load 224 such as other vehicles (e.g., pushers to help propel another train), or to an external energy system (not shown), such as an electric grid via electrical interface connection to the vehicle's electrical system, a third rail or an overhead power line.
  • the energy capture and storage system 204 preferably includes at least one of the following storage subsystems for storing the electrical energy generated during the dynamic braking mode: a battery subsystem, a flywheel subsystem, an ultra-capacitor subsystem, and a fuel cell fuel generator (not shown).
  • Other storage subsystems are possible.
  • Ultra-capacitors are available from Maxwell Technologies. These storage subsystems may be used separately or in combination. When used in combination, these storage subsystems can provide synergistic benefits not realized with the use of a single energy storage subsystem.
  • a flywheel subsystem typically stores energy relatively fast but may be relatively limited in its total energy storage capacity.
  • a battery subsystem on the other hand, often stores energy relatively slowly but can be constructed to provide a relatively large total storage capacity.
  • a flywheel subsystem may be combined with a battery subsystem wherein the flywheel subsystem captures the dynamic braking energy that cannot be timely captured by the battery subsystem.
  • the energy thus stored in the flywheel subsystem may be thereafter used to charge the battery.
  • the overall capture and storage capabilities are preferably extended beyond the limits of either a flywheel subsystem or a battery subsystem operating alone.
  • Such synergies can be extended to combinations of other storage subsystems, such as a battery and ultra-capacitor in combination where the ultra-capacitor supplies the peak demand needs.
  • the energy capture and storage system 204 may include an electrolysis system that generates hydrogen from the fuel cell wastewater. The stored hydrogen is provided to the fuel cell as an energy source for providing primary or secondary power.
  • a plurality of flywheels is preferably arranged to limit or eliminate the gyroscopic effect each flywheel might otherwise have on the Off Highway Vehicle and load vehicles.
  • the plurality of flywheels may be arranged on a six-axis basis to greatly reduce or eliminate gyroscopic effects. It should be understood, however, that reference herein to a flywheel embraces a single flywheel or a plurality of flywheels.
  • energy capture and storage system 204 not only captures and stores electric energy generated in the dynamic braking mode of the Off Highway Vehicle, it also supplies the stored energy to assist the Off Highway Vehicle effort (i.e., to supplement and/or replace primary energy source power).
  • each Off Highway Vehicle 200 may operate separately from other Off Highway Vehicles. However, two or more Off Highway Vehicles could operate in tandem where they are mechanically and/or electrically coupled to operate together.
  • another optional arrangement includes an Off Highway Vehicle that is mechanically coupled to a load vehicle. While FIG. 2 illustrates a single Off Highway Vehicle, FIG. 3 illustrates an Off Highway Vehicle 200 operating in a tandem arrangement with optional load vehicle 300 .
  • Load vehicle 300 may be a passive vehicle that is pulled or pushed by the Off Highway Vehicle 200 or optionally may include a plurality of load vehicle traction motors 308 that provide tractive effort to load vehicle wheels 318 .
  • the electrical power stored in energy capture and storage 204 may be selectively supplied (e.g., via tandem traction bus 314 ) to the load vehicle traction motors 308 via load vehicle traction bus 312 .
  • load vehicle traction motors 308 augment the tractive power provided by Off Highway Vehicle traction motors 108 .
  • efficiency considerations may suggest that load vehicle traction motors 308 also augment Off Highway Vehicle traction motors 108 .
  • energy capture and storage system 204 drives load vehicle traction motors 308 , additional circuitry will likely be required.
  • energy capture and storage system 204 comprises a battery storing and providing a DC voltage
  • one or more inverter drives 106 may be used to convert the DC voltage to a form suitable for use by the load vehicle traction motors 308 .
  • Such drives are preferably operationally similar to those associated with the Off Highway Vehicle.
  • such stored energy may also be used to augment the electrical power supplied to Off Highway Vehicle traction motors 108 (e.g., via line 212 ).
  • the Off Highway Vehicle itself may be configured, either during manufacturing or as part of a retrofit program, to capture, store, and regenerate excess electrical energy, such as dynamic braking energy, excess primary energy source power or excess trolley line power.
  • an energy capture and storage subsystem 306 may be located on some or all of the load vehicles attached to the Off Highway Vehicle.
  • FIG. 3 illustrates a load vehicle 300 equipped with a load vehicle energy capture and storage system 306 which receives load vehicle dynamic braking power from load vehicle traction motor 308 via bus 312 during dynamic braking.
  • load vehicle 300 may optionally include separate traction motors 308 .
  • the load vehicle energy capture and storage subsystem 306 can include one or more of the subsystems previously described.
  • the load vehicle 300 and the Off Highway Vehicle 200 are preferably mechanically coupled via mechanical linkage 316 and electrically coupled via tandem traction bus 314 such that dynamic braking energy from the Off Highway Vehicle traction motors 108 and/or from optional load vehicle traction motors 308 is stored in energy capture and storage system 206 on board the Off Highway Vehicle and/or is stored in load vehicle capture and storage system 306 on the load vehicle 300 .
  • the stored energy in the energy capture and storage system in one or the other or both the Off Highway Vehicle 200 and the load vehicle 300 is selectively used to propel Off Highway Vehicle traction motors 108 and/or optional load vehicle traction motors 308 .
  • the Off Highway Vehicle primary power source 102 produces more power than required for motoring, the excess prime mover power can be stored in energy capture and storage 204 and or load vehicle energy capture and storage 306 for later use.
  • load vehicle 300 is not electrically coupled to the Off Highway Vehicle (other than for standard control signals)
  • the optional traction motors 308 on the load vehicle 300 can also be used in an autonomous fashion to provide dynamic braking energy to be stored in energy capture and storage 306 for later use.
  • load vehicle 202 can be coupled to a wide variety of Off Highway Vehicles.
  • load vehicle traction motors 308 operate in a dynamic braking mode, various reasons may counsel against storing the dynamic braking energy in energy capture and storage 204 and/or 306 (e.g., the storage may be full). Thus, it is preferable that some or all of the dynamic braking energy generated by the load vehicle traction motors 308 be dissipated by grids 310 associated with load vehicle 300 , or transferred to Off Highway Vehicle 200 to be dissipated by grids 110 (e.g., via tandem traction bus 316 ).
  • load vehicle energy capture and storage system 306 may be charged from an external charging source 326 when such a charging source is available.
  • the Off Highway Vehicle system 200 is configured in tandem including an Off Highway Vehicle 200 and a load vehicle 300 . Tractive power for the Off Highway Vehicle 200 is supplied by a plurality of Off Highway Vehicle traction motors 108 .
  • the Off Highway Vehicle 200 has four wheels 109 , each pair corresponds to an axle pair as depicted as an optional embodiment of FIG. 3 as 109 A and 109 B.
  • Each wheel 109 A and 109 B includes a separate Off Highway Vehicle traction motor 108 A and 108 B, and each traction motor 108 A and 108 B is an AC traction motor.
  • each of the two rear wheels 109 A has a separate Off Highway Vehicle traction motor 108 A and operates as pair of wheels 109 A on a common axle, or axle-equivalent (illustrated as a single wheel 109 A in FIG. 3 ).
  • the wheels 109 A may or may not be actually connected by a common axle, as such an axle-equivalent.
  • each wheel 109 is mount by a separate half-axle.
  • the Off Highway Vehicle 200 includes a primary energy source 102 that drives an electrical power system.
  • the primary energy source is a diesel engine drives an alternator/rectifier 104 that comprises a source of prime mover electrical power (sometimes referred to as traction power or primary power).
  • the Off Highway Vehicle 200 may utilize a trolley line (not shown) as the primary energy source, or as a secondary energy source that supplements the primary energy source when the Off Highway Vehicle is traversing an inclined travel path, e.g., trolley assist.
  • a trolley line not shown
  • secondary energy source that supplements the primary energy source when the Off Highway Vehicle is traversing an inclined travel path, e.g., trolley assist.
  • Off Highway Vehicle traction motors 108 propel the Off Highway Vehicle in response to the prime mover electrical power.
  • Each of the plurality of Off Highway Vehicle traction motors 108 is preferably operable in at least two operating modes, a motoring mode and a dynamic braking mode.
  • the Off Highway Vehicle traction motors 108 receive electrical power (e.g., prime mover electrical power via inverters) to propel the Off Highway Vehicle 200 .
  • the traction motors 108 when operating in the dynamic braking mode, generate electricity.
  • load vehicle 300 is constructed and arranged to selectively capture and store a portion of the electricity generated by the traction motors 308 and/or 108 during dynamic braking operations. This is accomplished by energy capture and storage system 204 and/or 306 .
  • the captured and stored electricity is selectively used to provide a secondary source of electric power.
  • This secondary source of electric power may be used to selectively supplement or replace the prime mover electrical power (e.g., to help drive one or more Off Highway Vehicle traction motors 108 ) and/or to drive one or more load vehicle traction motors 308 .
  • load vehicle traction motors 308 and Off Highway Vehicle traction motors 108 cooperate to propel the tandem Off Highway Vehicle 200 and load vehicle 300 .
  • load vehicle energy capture and storage 306 can store dynamic braking energy without any electrical power transfer connection with the primary Off Highway Vehicle.
  • energy capture and storage 306 can be charged without an electrical coupling such as tandem traction bus 314 .
  • This is accomplished by operating the Off Highway Vehicle primary power source 320 to provide motoring power to Off Highway Vehicle traction motors 308 while operating load vehicle 300 in a dynamic braking mode.
  • the Off Highway Vehicle primary power source 102 may be operated at a relatively high power setting while load vehicle traction motors 308 are configured for dynamic braking. Energy from the dynamic braking process can be used to charge energy capture and storage 306 . Thereafter, the stored energy can be used to power load vehicle traction motors 308 to provide additional motoring power to the tandem Off Highway Vehicle 200 and load vehicle 300 .
  • hybrid energy Off Highway Vehicle system 300 configured with a fuel cell with a separate load vehicle.
  • This embodiment includes a fuel cell as primary power source 102 that drives DC-to-DC converter 302 .
  • Converter 302 provides DC power to inverter that provides primary tractive power.
  • the traction motor 108 is a DC traction motor
  • the converter may provide tractive DC power directly to the DC traction motor 108 via traction bus 112 .
  • load vehicle power source 320 is a fuel cell that generates a constant source of DC electrical energy.
  • the DC electrical energy that is generated by the fuel cell is converted by a DC-to-DC converter 322 and provided to an Inverter 324 for the provision of load vehicle primary power.
  • load vehicle primary power may be provided by load vehicle bus 312 to the load vehicle traction motor 308 , to the Off Highway Vehicle traction motors 108 , to load vehicle energy capture and storage system 306 , or to Off Highway Vehicle energy capture and storage system 204 .
  • the load vehicle power source 320 , the power converter 322 , the converter 324 and/or the load vehicle energy capture and storage system 306 may be operable in response to a load vehicle energy management system (not shown) or to the energy management system 206 of the coupled Off Highway Vehicle via a energy management communication link 328 .
  • a load vehicle energy management system not shown
  • Such an energy management communication link 328 may be a wired communication link or a wireless communication link.
  • FIG. 4 is a system-level block diagram that illustrates aspects of one embodiment of the energy storage and generation system.
  • FIG. 4 illustrates an energy storage and generation system 400 suitable for use with a hybrid energy Off Highway Vehicle system, such as hybrid energy Off Highway Vehicle system 200 or load vehicle system 300 ( FIG. 3 ).
  • a hybrid energy Off Highway Vehicle system such as hybrid energy Off Highway Vehicle system 200 or load vehicle system 300 ( FIG. 3 ).
  • Such an energy storage and generation system 400 could be implemented, for example, as part of a separate load vehicle (e.g., FIGS. 2 and 3 ) and/or incorporated into an Off Highway Vehicle.
  • a primary energy source 102 drives a prime mover power source 104 (e.g., an alternator/rectifier converter).
  • the prime mover power source 104 preferably supplies DC power to an inverter 106 that provides three-phase AC power to a Off Highway Vehicle traction motor 108 .
  • the system 400 illustrated in FIG. 4 can be modified to operate with DC traction motors as well.
  • there is a plurality of traction motors 108 e.g., one per traction wheel 109 .
  • each Off Highway Vehicle traction motor preferably includes a rotatable shaft coupled to the associated wheel 109 for providing tractive power to the associated wheel 109 .
  • each Off Highway Vehicle traction motor 108 provides the necessary motoring force to an associated wheel 109 to cause the Off Highway Vehicle 200 to move.
  • One arrangement includes a single wheel 109 on the Off Highway Vehicle to be equipped with a single traction motor 108 .
  • Another embodiment is for two wheels 109 on opposing sides of the vehicle acting as an axle-equivalent, each equipped with a separate traction motor 108 .
  • energy storage 204 When traction motors 108 are operated in a dynamic braking mode, at least a portion of the generated electrical power is routed to an energy storage medium such as energy storage 204 . To the extent that energy storage 204 is unable to receive and/or store all of the dynamic braking energy, the excess energy is routed to braking grids 110 for dissipation as heat energy. Also, during periods when primary power source 102 is being operated such that it provides more energy than needed to drive traction motors 108 , the excess capacity (also referred to as excess prime mover electric power) may be optionally stored in energy storage 204 . Accordingly, energy storage 204 can be charged at times other than when traction motors 108 are operating in the dynamic braking mode. This aspect of the system is illustrated in FIG. 4 by a dashed line 402 .
  • the energy storage 204 of FIG. 4 is preferably constructed and arranged to selectively augment the power provided to traction motors 108 or, optionally, to power separate traction motors 308 associated the load vehicle 300 . Such power may be referred to as secondary electric power and is derived from the electrical energy stored in energy storage 204 .
  • the system 400 illustrated in FIG. 4 is suitable for use in connection with an Off Highway Vehicle having an on-board energy capture and storage 204 and/or with a separate load vehicle 300 equipped with a load vehicle energy capture and storage 306 .
  • FIG. 5A is a block diagram that illustrates aspects of one embodiment of an energy storage and generation system 500 suitable for use with a hybrid energy Off Highway Vehicle system.
  • the system 500 includes an energy management system 206 for controlling the storage and regeneration of energy. Therefore, although FIG. 5A is generally described with respect to an Off Highway Vehicle system, the energy management system 500 illustrated therein is not to be considered as limited to Off Highway Vehicle applications.
  • system 500 preferably operates in the same general manner as system 400 of FIG. 4 ; the energy management system 206 provides additional intelligent control functions.
  • FIG. 5A also illustrates an optional energy source 504 that is preferably controlled by the energy management system 206 .
  • the optional energy source 504 may be a second energy source (e.g., another Off Highway Vehicle operating in tandem with the primary Off Highway Vehicle) or a completely separate power source (e.g., trolley line, or a wayside power source such as a battery charger) for charging energy storage 204 .
  • a separate charging power source includes an electrical power station for charging an energy storage medium associated with a separate load vehicle (e.g., vehicle 202 of FIG.
  • optional energy source 504 is connected to a traction bus (not illustrated in FIG. 5 ) that also carries primary electric power from prime mover power source 104 .
  • the energy management system 206 preferably includes an energy management processor 506 , a database 508 , and a position identification system 510 , such as, for example, a global positioning satellite system receiver (GPS) 510 .
  • the energy management processor 506 determines present and anticipated Off Highway Vehicle position information via the position identification system 510 .
  • energy management processor 506 uses this position information to locate data in the database 508 regarding present and/or anticipated travel path topographic and profile conditions, sometimes referred to as travel path situation information.
  • travel path situation information may include, for example, travel path grade, travel path elevation (e.g., height above mean sea level), travel path curve data, speed limit information, and the like.
  • the travel path and characteristics are those of a railroad track.
  • database information could be provided by a variety of sources including: an onboard database associated with processor 510 , a communication system (e.g., a wireless communication system) providing the information from a central source, manual operator input(s), via one or more travel path signaling devices, a combination of such sources, and the like.
  • vehicle information such as, the size and weight of the vehicle, a power capacity associated with the prime mover, efficiency ratings, present and anticipated speed, present and anticipated electrical load, and so on may also be included in a database (or supplied in real or near real time) and used by energy management processor 506 .
  • energy management system 206 could be configured to determine power storage and transfer requirements associated with energy storage 204 in a static fashion.
  • energy management processor 506 could be preprogrammed with any of the above information, or could use look-up tables based on past operating experience (e.g., when the vehicle reaches a certain point, it is nearly always necessary to store additional energy to meet an upcoming demand). Such a program may be based on historical information of the preferred mode of power operation of the vehicle 200 (i.e., the amount of power to be generated, regenerated, stored or discharged from storage) at any point or location of the vehicle 200 along its travel path.
  • the position of the vehicle 200 may be determined by conventional techniques, such as a GPS system 510 and track maps stored in a memory (e.g., database 508 ) on the vehicle 200 , AEI tag readers, vehicle heading and inclination for mining dump trucks, mileposts and other markers along the travel path.
  • a GPS system 510 and track maps stored in a memory (e.g., database 508 ) on the vehicle 200 , AEI tag readers, vehicle heading and inclination for mining dump trucks, mileposts and other markers along the travel path.
  • the energy management processor 506 identifies the energy storage and discharge activities of the electrical energy capture system 204 based on the anticipated future power load and power generation for the vehicle 200 (which includes at least one hybrid, electro-motive vehicle), and controls the transmission of electrical power among the primary electric power generator 102 , the vehicle propulsion system (e.g., traction motors 108 ), the electric energy capture system 204 , and the dynamic braking grid circuit 110 during the operation of the vehicle 200 to perform the identified energy storage and discharge activities.
  • the vehicle propulsion system e.g., traction motors 108
  • Power sources 510 include, for example, the primary power source (e.g., primary power generator 102 ), on board auxiliary power (e.g. auxiliary power drive 904 such as shown FIG. 9A ), external optional power (e.g., additional energy source 504 ), on-vehicle propulsion system (e.g., traction motors 108 ), the electric energy capture system 204 .
  • Power loads include, for example, the dynamic braking grid circuit 110 , on-board auxiliary loads 524 (e.g., fans, blowers, and external loads (e.g. 224 ).
  • the database 508 stores vehicle operating data 530 , physical vehicle characteristics data 532 , and present real-time operating data 534 .
  • Anticipated train data 530 includes data such as schedule/vehicle speed and upcoming track information (e.g., topography, elevation, curvature).
  • Physical vehicle characteristics data 532 includes vehicle weight, power capacity, speed limit, energy storage capacity, and charge/discharge rates of the energy capture system 204 .
  • Present real-time operating data 534 includes current speed, current location, current energy needs, and energy storage status.
  • improved train performance data 536 may be supplied to the energy management processor 506 via operator input, a central command, or may also be included in the database 508 .
  • Improved train performance data 536 includes information such as a target fuel efficiency, target power usage, power availability, a speed required to meet a schedule, and target noise and/or exhaust emissions.
  • the energy management processor 506 is responsive to operating data and the improved performance data 536 to calculate an expected power load that will be experienced by the vehicle 200 when traveling on an upcoming section of the track, or path, and calculates the amount of power to generate to satisfy the expected load. Thereafter, the energy management processor 506 controls the transmission of electrical power among the primary electric power generator 102 , the vehicle propulsion system 108 , the electric energy capture system 204 and the dynamic braking grid circuit 110 in response to the calculated power load so as to enhance the performance of the vehicle 200 over its future anticipated route.
  • the energy management processor 506 comprises a first processor module 513 for identifying the energy storage and discharge activities of the electrical energy capture system 204 based on the anticipated future power load and power generation for the vehicle (which includes at least one hybrid, electromotive, self-powered railroad locomotive) for optimizing a train or vehicle performance parameter.
  • the energy management system 206 further comprises a second processor module 514 on the vehicle 200 for controlling transmission of electrical power among the primary electric power generator 102 , the vehicle propulsion system (e.g., traction motors 108 ), the electric energy capture system 204 , and the dynamic braking grid circuit 110 during the operation of the vehicle 200 to perform the energy storage activities.
  • the energy storage and discharge activities of the electrical energy capture system 204 comprise charging the storage devices (e.g., battery, flywheel, etc.) at a selected time, controlling the rate at which such charging should occur, discharging from the storage devices at a selected time, and controlling the rate at which such discharge should occur.
  • the vehicle performance parameters comprise fuel consumption of the vehicle 200 , noise emissions from the vehicle 200 (such as the noise generated by the engine and the noise generated by the dynamic braking grid 110 cooling fans), rates of engine emissions of the train/vehicle at locations along the travel path, overall engine emissions of the vehicle 200 along the travel path and power consumption of the vehicle 200 over the travel path.
  • the anticipated future power load and power generation for the vehicle 200 is a function of the location of the vehicle 200 , the topography of the track, the weight or load of the vehicle 200 , wind resistance, track or road conditions, available primary power generation on the vehicle 200 (i.e., principally the number of locomotives in a train), speed limits on the travel of the vehicle 200 , and vehicle 200 acceleration requirements.
  • the operation of off-highway hybrid vehicles 200 that serve as mining dump trucks is similar to that described for a vehicle 200 having at least one hybrid locomotive, but with the travel path being along a road and each hybrid vehicle operating alone.
  • the first and second processor modules 513 , 514 may be located at spaced locations and may communicate to each other either directly for automated operation, and indeed may be performed by the same processing device (e.g., a single energy management processor 506 ) or indirectly via a vehicle operator for advisory operation of the vehicle 200 .
  • the first processor module 513 may be located off-board the vehicle 200 for directly or indirectly indicating the energy storage and discharge activities and thus controlling the second processor module 514 from an off-board location.
  • This remote control may take the form of a control signal, as indicated by arrow 516 , to the second processor module 514 on the vehicle 200 from a dispatch center directing the second processor module 514 to change the energy storage and discharge activities of the vehicle 200 , such as when the dispatch center determines that the vehicle 200 has reached a predetermined location along its route.
  • equipment alongside the route may communicate with the vehicle 200 to change the energy storage and discharge activities when the vehicle is adjacent such equipment.
  • the vehicle operator may also be advised to change the energy storage and discharge activities by instructions or other indicia from a dispatch center displayed at the operator's cab or otherwise communicated to the operator via an interface.
  • a display such as a computer monitor is responsive to control signal 516 to advise the operator how to change the energy storage and discharge activities of the vehicle 200 .
  • Such operator advice may take the form of instructions as to vehicle motoring, dynamic braking, air brake application and a mixture of air brake and dynamic brake as well as a mixture based on the status of energy storage, the location of the vehicle 200 or the status of the charge of the energy storage device.
  • the operator may initiate energy storage and discharge operations based on his own knowledge of the trajectory of the route and vehicle conditions.
  • the initiation may be executed via manual inputs to the second processor module 514 of the energy management processor 506 for either the storage or discharge of power.
  • the vehicle operator may issue a command to the second processor module 514 or to a switch for enabling or disabling the energy capture system 204 . If the system is enabled, the operator may further elect between charging or discharging modes, and the rate at which such charging and discharging are to be performed.
  • the operator's actions may be based on the operator's knowledge or experience as to the preferred energy storage system 204 charging and discharging activities in light of the anticipated train/vehicle operations either in terms of its future travel path or its future standby operations, as described hereinafter.
  • the condition of the track or road may be taken into consideration in determining when to change the energy storage and discharge activities.
  • wet or snowy conditions will reduce traction and impact the tractive effort of the traction motors and the amount of power regeneration.
  • wet or snowy route conditions will typically slow travel of the truck.
  • the energy management processor 506 preferably uses the present and/or upcoming travel path situation information, along with Off Highway Vehicle status information, to determine power storage and power transfer requirements. Energy management processor 506 also determines possible energy storage opportunities based on the present and future travel path situation information. For example, based on the travel path profile information, energy management processor 506 may determine that it is more efficient to completely use all of the stored energy, even though present demand is low, because a dynamic braking region is coming up (or because the Off Highway Vehicle is behind schedule and is attempting to make up time). In this way, the energy management system 206 improves efficiency by accounting for the stored energy before the next charging region is encountered. As another example, energy management processor 506 may determine not to use stored energy, despite present demand, if a heavier demand is soon to be encountered in the travel path.
  • energy management system 206 may also be configured to interface with primary energy source controls. Also, as illustrated in FIG. 5 , energy storage 204 may be configured to provide an intelligent control interface with energy management system 206 .
  • energy management processor 506 determines a power storage requirement and a power transfer requirement.
  • Energy storage 204 stores electrical energy in response to the power storage requirement.
  • Energy storage 204 provides secondary electric power (e.g. to a traction bus connected to inverters 106 to assist in motoring) in response to the power transfer requirement.
  • the secondary electric power is derived from the electrical energy stored in energy storage 204 .
  • energy management processor 506 preferably determines the power storage requirement based, in part, on a situation parameter indicative of a present and/or anticipated travel path topographic characteristic. Energy management processor 506 may also determine the power storage requirement as a function of an amount of primary electric power available from the prime mover power source 104 . Similarly, energy management processor 506 may determine the power storage requirement as function of a present or anticipated amount of primary electric power required to propel the Off Highway Vehicle.
  • energy management processor 506 preferably considers various parameters related to energy storage 204 .
  • energy storage 204 will have a storage capacity that is indicative of the amount of power that can be stored therein and/or the amount of power that can be transferred to energy storage 204 at any given time.
  • Another similar parameter relates to the amount of secondary electric power that energy storage 204 has available for transfer at a particular time.
  • system 500 preferably includes a plurality of sources for charging energy storage 204 .
  • sources include dynamic braking power, excess prime mover electric power, and external charging electric power.
  • energy management processor 506 determines which of these sources should charge energy storage 204 .
  • present or anticipated dynamic braking energy is used to charge energy storage 204 , if such dynamic braking energy is available. If dynamic braking energy is not available, either excess prime mover electric power or external charging electric power is used to charge energy storage 204 .
  • energy management processor 506 preferably determines the power transfer requirement as a function of a demand for power.
  • energy storage 204 preferably does not supply secondary electric power unless traction motors 108 are operating in a power consumption mode (i.e., a motoring mode, as opposed to a dynamic braking mode).
  • energy management processor 506 permits energy storage 204 to supply secondary electric power to inverters 106 until either (a) the demand for power terminates or (b) energy storage 204 is completely depleted.
  • energy management processor 506 considers anticipated power demands and controls the supply of secondary electric power from energy storage 204 such that sufficient reserve power remains in energy storage 204 to augment prime mover power source during peak demand periods. This may be referred to as a “look-ahead” energy management scheme.
  • energy management processor 506 preferably considers various present and/or anticipated travel path situation parameters, such as those discussed above. In addition, energy management processor may also consider the amount of power stored in energy storage 204 , anticipated charging opportunities, and any limitations on the ability to transfer secondary electric power from energy storage 204 to inverters 106 .
  • FIGS. 6 A-D, 7 A-D, and 8 A-E illustrate, in graphic form, aspects of three different embodiments of energy management systems, suitable for use with a hybrid energy vehicle, that could be implemented in a system such as system 500 of FIG. 5 .
  • FIGS. 6 A-D, 7 A-D, and 8 A-E illustrate, in graphic form, aspects of three different embodiments of energy management systems, suitable for use with a hybrid energy vehicle, that could be implemented in a system such as system 500 of FIG. 5 .
  • FIGS. 6 A-D, 7 A-D, and 8 A-E illustrate, in graphic form, aspects of three different embodiments of energy management systems, suitable for use with a hybrid energy vehicle, that could be implemented in a system such as system 500 of FIG. 5 .
  • these figures are provided for exemplary purposes and that, with the benefit of the present disclosure, other variations are possible.
  • the values illustrated in these figures are included to facilitate a detailed description and should not be considered in a limiting sense.
  • Off Highway Vehicles include vehicles using DC and AC traction motor drives and having dynamic braking/retarding capabilities.
  • FIGS. 6A-D there are four similar charts in each group of figures (FIGS. 6 A-D, FIGS. 7 A-D, and FIGS. 8 A-D).
  • the first chart in each group i.e., FIGS. 6A, 7A , and 8 A
  • the first chart in each group illustrates the required power for both motoring and braking.
  • the first chart graphically depicts the amount of power required by the vehicle.
  • Positive values on the vertical axis represent motoring power (horsepower); negative values represent dynamic braking power.
  • motoring power could originate with the prime mover (e.g., diesel engine, fuel cell or other primary energy source), or from stored energy (e.g., in an energy storage medium in a separate vehicle), or from a combination of the prime mover and stored energy.
  • Dynamic braking power could be dissipated or stored in the energy storage medium.
  • the second chart in each group of figures reflects theoretical power storage and consumption. Positive values reflect the amount of power that, if power were available in the energy storage medium, could be drawn to assist in motoring. Negative values reflect the amount of power that, if storage space remains in the energy storage medium, could be stored in the medium.
  • the amount of power that could be stored or drawn is partially a function of the converter and storage capabilities of a given vehicle configuration. For example, the energy storage medium will have some maximum/finite capacity. Further, the speed at which the storage medium is able to accept or supply energy is also limited (e.g., batteries typically charge slower than flywheel devices). Other variables also affect energy storage.
  • FIGS. 6 A-D reflect an energy management system that stores energy at the maximum rate possible during dynamic braking until the energy storage medium is completely full.
  • all energy transfers to the storage medium occur during dynamic braking.
  • no energy is transferred to the energy storage medium from excess prime mover power available during motoring, or from other energy sources.
  • energy is discharged, up to the maximum rate, whenever there is a motor demand (limited to and not exceeding the actual demand) until the energy storage medium is completely discharged/empty.
  • FIGS. 6 A-D assume that the energy storage medium is completely discharged/empty at time 0.
  • FIG. 6B is an exemplary curve that reflects power transfer limits. Positive values reflect the amount of stored energy that would be used to assist in the motoring effort, if such energy were available. Negative units reflect the amount of dynamic braking energy that could be stored in the energy storage medium if the medium were able to accept the full charge available.
  • the energy available for storage at any given time is illustrated as being limited to 500 units (e.g., horsepower). As explained above, a variety of factors limit the amount of power that can be captured and transferred. Thus, from about 0 to 30 minutes, the Off Highway Vehicle requires less than 500 h.p. If stored energy were available, it could be used to provide all of the motoring power.
  • the Off Highway Vehicle requires more than 500 h.p. Thus, if stored energy were available, it could supply some (e.g., 500 h.p.) but not all of the motoring power. From about 70 minutes to about 75 minutes or so, the Off Highway Vehicle is in a dynamic braking mode and generates less than 500 h.p. of dynamic braking energy. Thus, up to 500 h.p. of energy could be transferred to the energy storage medium, if the medium retained sufficient capacity to store the energy. At about 75 minutes, the dynamic braking process generates in excess of 500 h.p. Because of power transfer limits, only up to 500 h.p.
  • FIG. 6B does not reflect the actual amount of energy transferred to or from the energy storage medium. That information is depicted in FIG. 6C .
  • FIG. 6C is reflects the power transfer to/from the energy storage medium at any given instant of time.
  • the example shown therein assumes that the energy storage medium is completely empty at time 0. Therefore, the system cannot transfer any power from the storage at this time.
  • a first time period A from approximately 0-70 minutes
  • the vehicle is motoring (see FIG. 6A ) and no power is transferred to or from the energy storage.
  • the vehicle enters a dynamic braking phase (see FIG. 6A ).
  • power from the dynamic braking process is available for storage (see FIG. 6B ).
  • a second time period B (from approximately 70-80 minutes), dynamic braking energy is transferred to the energy storage medium at the maximum rate (e.g., 500 units) until the storage is full. During this time there is no motoring demand to deplete the stored energy. Thereafter, during a third time period C (from approximately 80-105 minutes) the storage is full. Consequently, even though the vehicle remains in the dynamic braking mode or is coasting (see FIG. 6A ), no energy is transferred to or from the energy storage medium during time period C.
  • the maximum rate e.g. 500 units
  • This dynamic braking phase reflects the start of a fifth time period E that lasts from approximately 125-145 minutes. As can be appreciated by viewing the curve during the fifth time period E, when the dynamic braking phase ends, the energy storage medium is not completely charged.
  • FIG. 6D illustrates the energy stored in the energy storage medium of the exemplary embodiment reflected in FIGS. 6 A-D.
  • the energy storage medium is assumed to be completely empty/discharged at time 0.
  • the present example assumes an energy management system that only stores energy from dynamic braking. From approximately 0-70 minutes, the vehicle is motoring and no energy is transferred to or from the energy storage medium. From approximately 70-80 minutes or so, energy from dynamic braking is transferred to the energy storage medium until it is completely full. At approximately 105 minutes, the vehicle begins another motoring phase and energy is drawn from the energy storage medium until about 120 minutes. At about 125 minutes, energy from dynamic braking is again transferred to the energy storage medium during another dynamic braking phase. At about 145 minutes or so, the dynamic braking phase ends and storage ceases. At about 150 minutes, energy is drawn from the energy storage medium to assist in motoring until all of the energy has been depleted at approximately 170 minutes.
  • FIGS. 7 A-D correspond to an energy management system that includes a “look-ahead” or anticipated needs capability. This embodiment applies particularly when the travel path of the Off Highway Vehicle is known or is planned. Such a system is unlike the system reflected in FIGS. 6 A-D, which simply stores dynamic braking energy when it can, and uses stored energy to assist motoring whenever such stored energy is available.
  • the energy management system reflected by the exemplary curves of FIGS. 7 A-D anticipates when the prime mover cannot produce the full required demand, or when it may be less efficient for the prime mover to produce the full required demand.
  • the energy management system can make such determinations based on, for example, known present position, present energy needs, anticipated future travel path topography, anticipated future energy needs, present energy storage capacity, anticipated energy storage opportunities, and like considerations.
  • the energy management system depicted in FIGS. 7 A-D therefore, preferably prevents the energy storage medium from becoming depleted below a determined minimum level required to meet future demands.
  • the system reflected in FIGS. 7 A-D is premised on a Off Highway Vehicle having a primary energy source that has a “prime mover limit” of 4,000 h.p.
  • a limit could exist for various factors.
  • the maximum rated output could be 4,000 h.p., or operating efficiency considerations may counsel against operating the primary power source above 4,000 h.p.
  • the system and figures are intended to reflect an exemplary embodiment only, and are presented herein to facilitate a detailed explanation of aspects of an energy management system suitable for use with off highway hybrid energy vehicles such as, for example, the Off Highway Vehicle system illustrated in FIG. 2 .
  • the exemplary curve illustrated therein depicts the power required for motoring (positive) and braking (negative).
  • the motoring demand exceeds 4,000 h.p.
  • the total demand at that time exceeds the 4,000 h.p. operating constraint for the primary energy source.
  • the “look-ahead” energy management system reflected in FIGS. 7 A-D anticipates this upcoming need and ensures that sufficient secondary power is available from the energy storage medium to fulfill the energy needs.
  • One way for the energy management system to accomplish this is to look ahead (periodically or continuously) to the upcoming travel path/course profile (e.g., incline/decline, length of incline/decline, and the like) for a given time period (also referred to as a look-ahead window).
  • the energy management system looks ahead 200 minutes and then computes energy needs/requirements backwards. The system determines that, for a brief period beginning at 180 minutes, the primary energy source would require more energy than the limit.
  • FIG. 7B is similar to FIG. 6B .
  • FIG. 7B also illustrates the fact that the energy storage medium is empty at time 0 and, therefore, there can be no power transfer from the energy storage medium unless and until it is charged.
  • FIG. 7B also reflects a look-ahead capability.
  • FIGS. 6 A-D Comparing FIGS. 6 A-D with FIGS. 7 A-D, it is apparent how the systems respectively depicted therein differ.
  • the system reflected in FIGS. 7 A-D prevents complete discharge of the energy storage medium prior to the anticipated need at 180 minutes.
  • FIGS. 7C and 7D prior to the 180 minute point, the system briefly stops transferring stored energy to assist in motoring, even though additional stored energy remains available. The additional energy is thereafter transferred, beginning at about 180 minutes, to assist the prime mover when the energy demand exceeds 4,000 h.p.
  • the system effectively reserves some of the stored energy to meet upcoming demands that exceed the desired limit of the prime mover.
  • the energy available in the energy storage medium could be used to supplement driving traction motors associated with the prime mover, or could also be used to drive separate traction motors (e.g., on a load vehicle).
  • an energy management system accommodating a variety of configurations is possible.
  • FIGS. 8 A-E reflect pertinent aspects of another embodiment of an energy management system suitable for use in connection with Off Highway Vehicle energy vehicles.
  • the system reflected in FIGS. 8 A-E includes a capability to store energy from both dynamic braking and from the prime mover or another charging power source.
  • a given power source may operate most efficiently at a given power setting (e.g., 4,000 h.p.).
  • a given power setting e.g., 4,000 h.p.
  • it may be more efficient to operate the power source at 4,000 h.p. at certain times, even when actual motoring demand falls below that level. In such cases, the excess energy can be transferred to an energy storage medium.
  • FIGS. 8A-D compare FIGS. 8 A-D with FIGS. 6 A-D and 7 A-D, the differences between the systems respectively depicted therein are apparent.
  • the motoring requirements FIG. 8A
  • the power source could be run at 4,000 h.p. during this time and the energy storage medium could be charged.
  • the energy management system determines that, based on the upcoming travel path profile and anticipated dynamic braking period(s), an upcoming dynamic braking process will be able to fully charge the energy storage medium. In other words, it is not necessary to operate the primary energy source at 4,000 h.p.
  • the system could also be designed in other ways. For example, in another configuration the system always seeks to charge the storage medium whenever excess energy could be made available.
  • the primary energy source can be operated at 4,000 h.p., with the excess energy used to charge the energy storage medium to ensure sufficient energy is available to meet the demand at 180 minutes.
  • the system reflected in FIG. 8D provides that, for a brief period prior to 180 minutes, energy is transferred to the energy storage medium from the prime mover, even though the vehicle is motoring (not braking).
  • FIGS. 6 A-D, 7 A-D, and 8 A-E have been separately described, it should be understood that the systems reflected therein could be embodied in a single energy management system. Further, the look-ahead energy storage and transfer capability described above could be accomplished dynamically or in advance.
  • an energy management processor (see FIG. 5 ) is programmed to compare the vehicle's present position with upcoming travel path/course characteristics in real or near real time. Based on such dynamic determinations, the processor then determines how to best manage the energy capture and storage capabilities associated with the vehicle in a manner similar to that described above with respect to FIGS. 7 A-D and 8 A-E. In another form, such determinations are made in advance.
  • FIGS. 9A-9G are electrical schematics illustrating several different embodiments of an electrical system suitable for use in connection with a hybrid energy Off Highway Vehicle.
  • the exemplary embodiments illustrated in these figures relate to a hybrid energy Off Highway Vehicle system.
  • the embodiments illustrated in FIGS. 9A-9G could be incorporated in a plurality of configurations, including those already discussed herein (e.g., a Off Highway Vehicle with a separate load vehicle, a Off Highway Vehicle with a self-contained hybrid energy system, an autonomous load vehicle, and the like).
  • Other vehicles like off highway dump trucks for mining use the same type of configuration using one, two or four traction motors, one per each driving wheel 109 .
  • the first processor module 513 of the energy management processor 506 identifies the energy storage and discharge activities of the electrical energy power capture for powering the auxiliary electrical power load 524 during the vehicle standby periods.
  • the auxiliary loads comprise one or more of the utilities for the operator cab, communications equipment, and train operational control equipment.
  • the auxiliary equipment may also comprise an air compressor for maintaining the air pressure in the air brake system for the vehicle 200 .
  • the auxiliary loads may comprise an engine for maintaining the temperature of the engine coolant above the freezing point.
  • An auxiliary electric power generator (not shown) may also be provided that is carried on the vehicle 200 and connected to the power bus 122 , with the energy management processor 506 controlling the transmission of electrical power from the auxiliary electric power generator to the power bus of the vehicle 200 .
  • the auxiliary electric power generator may be in the form of an engine-generator set.
  • the power generation equipment may also be in the form of an electrically powered fan that is subject to the application of mechanical force tending to operate the fan at speeds greater than its commanded speed of operation and generating electrical power when it does. It may also be in the form of an electrically powered turbocharger that is subject to the application of mechanical force tending to operate the turbocharger at speeds greater than its commanded speed of operation and generating electrical power when it does.
  • an optional flywheel storage element 906 can also be connected in parallel with battery storage 902 .
  • the flywheel storage 906 shown in FIG. 9A is preferably powered by an AC motor or generator connected to DC bus 122 via an inverter or converter.
  • Other storage elements such as, for example, capacitor storage devices (including ultra-capacitors) and additional battery storages (not shown) can also be connected across the DC bus and controlled using choppers and/or converters and the like.
  • battery storage 902 is schematically illustrated as a single battery, multiple batteries or battery banks may likewise be employed.
  • This energy provided by the storage element may be referred to as secondary electric power.
  • the auxiliaries are also driven by the same bus in this configuration, the ability to take power directly from DC bus 122 (or put power back into bus 122 ) is provided. This helps to minimize the number of power conversion stages and associated inefficiencies due to conversion losses. It also reduces costs and complexities.
  • a fuel cell provides all or a portion of the primary power.
  • the energy storage device may include an electrolysis or similar fuel cell energy source generation.
  • the energy generated during dynamic braking powers electrolysis to create hydrogen from water, one water source being the waster water created by the fuel cell during prime energy generation.
  • the generated hydrogen is stored and is used as a fuel for the primary power source, the fuel cell.
  • the braking grids may still be used to dissipate all or a portion of the dynamic braking electric power generated during dynamic braking operations.
  • an energy management system is preferably used in connection with the system illustrated in FIG. 9A .
  • Such an energy management system is configured to control one or more of the following functions: primary energy generation, energy storage; stored energy usage; and energy dissipation using the braking grids.
  • the battery storage (and/or any other optional storage element) may optionally be configured to store excess prime mover electric power that is available on the traction bus.
  • FIG. 9B illustrates a variation of the system of FIG. 9A .
  • the system shown in FIG. 9B includes chopper circuits DBC 1 and DBC 2 connected in series with the braking grids.
  • the chopper circuits DBC 1 and DBC 2 allow fine control of power dissipation through the grids that, therefore, provides greater control over the storage elements such as, for example, battery storage 902 .
  • chopper circuits DBC 1 and DBC 2 are controlled by an energy management system (see FIG. 5 ).
  • chopper circuits DBC 1 and DBC 2 could also be used to control transient power.
  • any optional storage devices added to the circuit e.g., flywheel storage 906
  • flywheel storage 906 could also be used to control transient power.
  • a combination of dynamic braking contactors and chopper circuits may be utilized.
  • the dynamic braking contactors e.g., DB 1 , DB 2
  • the dynamic braking contactors normally only control the dynamic braking grids in discrete increments.
  • the power flowing into the grids is also in discrete increments (assuming a fixed DC voltage). For example, if each discrete increment is 1,000 h.p., the battery storage capability is 2,000 h.p., and the braking energy returned is 2,500 h.p., the battery cannot accept all of the braking energy.
  • one string of grids is used to dissipate 1,000 h.p., leaving 1,500 h.p. for storage in the battery.
  • FIG. 9C is an electrical schematic of a Off Highway Vehicle electrical system illustrating still another configuration for implementing an energy storage medium.
  • the battery storage 902 of FIG. 9C is connected to DC bus 122 by way of a dc-to-dc converter 910 .
  • a dc-to-dc converter 910 Such a configuration accommodates a greater degree of variation between DC bus 122 voltage and the voltage rating of battery storage 902 .
  • Multiple batteries and/or DC storage elements e.g., capacitors
  • chopper control such as that illustrated in FIG. 9B could be implemented as part of the configuration of FIG. 9C .
  • the dc-to-dc converter 910 may be controlled via an energy management processor (see FIG. 5 ) as part of an energy management system and process that controls the storage and regeneration of energy in the energy storage medium.
  • the electric power carried on DC bus 122 is provided at a first power level (e.g., a first voltage level).
  • the dc-to-dc converter 910 is electrically coupled to DC bus 122 .
  • the dc-to-dc converter 910 receives the electric power at the first power level and converts it to a second power level (e.g., a second voltage level). In this way, the electric power stored in battery storage 902 is supplied at the second power level.
  • the voltage level on DC bus 122 and the voltage supplied to battery storage 902 via dc-to-dc converter 910 may also be at the same power level. The provision of dc-to-dc converter 910 , however, accommodates variations between these respective power levels.
  • FIG. 9D is an electrical schematic of an Off Highway Vehicle electrical system that is similar to the system shown in FIG. 9C .
  • the auxiliary power subsystem 904 reflected in FIG. 9D is connected to DC bus 122 via a pair of dc-to-dc converters 912 and 914 .
  • Such a configuration provides the advantage of allowing the use of existing, lower voltage auxiliary drives and/or motor drives having low insulation.
  • the auxiliary power traverses two power conversion stages. It should be understood that although FIG.
  • FIG. 9D illustrates the auxiliaries as consuming power all of the time—not regenerating—bi-directional dc-to-dc converters can also be used in configurations in which it is desirable to have the auxiliaries regenerate power (see, for example, FIG. 9G ).
  • These dc-to-dc converters 912 and 914 are preferably controlled via an energy management system that controls the storage and regeneration of energy in the energy storage medium.
  • auxiliary power loads 524 on the vehicle 200 which may generate power under certain conditions and thus operate as auxiliary power generators. For example, when the speed of a blower or fan is increased power is consumed from the DC bus 122 , but conversely when the speed of a blower or fan is decreased power is regenerated and returned to the bus. Similarly, when wind or the speed of the vehicle 200 drives the fan a speed higher than its commanded speed, power is regenerated and returned to the bus 122 . Further if electric turbochargers are used on the vehicle 200 , electric power drives the turbocharger at low engine speeds, but engine exhaust drives the turbocharger at high engine speeds, thereby producing electrical power returned to the bus. In each of these examples, the power returned to the bus by the auxiliary power loads 524 is available for storage or to drive the traction motors 108 or other auxiliary equipment that is then consuming power.
  • Auxiliary power generation equipment also known as an auxiliary power unit or APU
  • auxiliary power generation equipment may also be provided to power the auxiliary equipment when the primary power generation equipment is not in operation.
  • auxiliary power generation equipment takes the form of a relatively small engine-generator set and allows the primary power generation equipment to remain inactive during periods of time in which only light power loads, such as only auxiliary power loads, are imposed on the power system.
  • the auxiliary power generation equipment may be operated at high speeds and thus at near its maximum performance point during such periods of light load, whereas the primary power generation equipment would be operate at relatively slow speeds, which is fuel inefficient.
  • the power storage system is of significantly greater capacity so that auxiliary equipment may be operated for prolonged periods of time.
  • the power storage devices also have the capacity to power the air compressors and even to warm the engine so that engine start up can be avoided for extended periods of time.
  • the shut down periods can be extended from hours in the prior art systems to days in the hybrid power system of the instant inventions for increased fuel savings, reduced wear on the engine, reduced engine emissions and reduced noise generation in populated areas.
  • FIG. 9E illustrates, in electrical schematic form, still another configuration of an energy storage medium.
  • the configuration of FIG. 9E includes a separate DC battery bus 922 .
  • the separate battery bus 922 is electrically isolated from main DC bus 122 (the traction bus) by a dc-to-dc converter 920 (also referred to as a two-stage converter). Accordingly, the power flow between the traction bus (DC bus 122 ), the energy storage elements, and the auxiliaries preferably passes through the bi-directional dc-to-dc converter 920 .
  • DC bus 122 the traction bus
  • the auxiliaries preferably passes through the bi-directional dc-to-dc converter 920 .
  • any additional storage elements are preferably connected across the DC battery bus 922 , rather than across the main DC bus 122 .
  • the dc-to-dc converter 920 may be controlled via an energy management system that controls the storage and regeneration of energy in the energy storage medium.
  • FIG. 9F reflects a variation of the configuration of FIG. 9E .
  • any variable voltage storage elements e.g., capacitors, flywheels, and the like
  • main DC bus 122 the traction bus
  • battery 906 remains connected across the isolated DC battery bus 922 .
  • dc-to-dc converter 920 matches the voltage level of battery storage 902 but avoids two conversions of large amounts of power for the variable voltage storage elements.
  • the configuration of FIG. 9F may be implemented in connection with an energy management system that oversees and controls the storage and regeneration of energy in the energy storage medium.
  • FIG. 9G reflects a variation of the configuration of FIG. 9F in which only the auxiliaries are connected to a separate auxiliary bus 930 through two-stage converter 920 . Accordingly, electric power carried on DC bus 122 is provided at a first power level and power carried on the auxiliary bus 930 is provided at a second power level.
  • the first and second power levels may or may not be the same.
  • FIGS. 10A-10C are electrical schematics that illustrate additional embodiments, including embodiments particularly suited for modifying existing AC Off Highway Vehicles. It should be understood, however, that the configurations illustrated and described with respect to FIGS. 10A-10C are not limited to retrofitting existing Off Highway Vehicles.
  • FIG. 10A illustrates a variation of the embodiment illustrated in FIG. 9C .
  • the embodiment of FIG. 10A uses only battery storage devices and does not include a non-battery storage, such as optional flywheel storage 906 .
  • FIG. 10A illustrates an embodiment having a converter 1006 (e.g., a dc-to-dc converter) connected across DC bus 122 .
  • a battery storage element 1002 is connected to the converter 1006 . Additional converters and battery storage elements may be added to this configuration in parallel.
  • another converter 1008 may be connected across DC bus 122 to charge another battery storage element 1004 .
  • One of the advantages of the configuration of FIG. 10A is that it facilitates the use of multiple batteries (or battery banks) having different voltages and/or charging rates.
  • power transfer between energy storage devices is facilitated.
  • the configuration of FIG. 10A allows for energy transfer between batteries 1002 and 1004 via the DC bus 122 .
  • the primary power source supplies 2,000 h.p. of power to the dc traction bus
  • the traction motors consume 2,000 h.p.
  • battery 1002 supplies 100 h.p. to the traction bus (via converter 1006 )
  • the excess 100 h.p. is effectively transferred from battery 1002 to battery 1004 (less any normal losses).
  • FIG. 10B The configuration illustrated in FIG. 10B is similar to that of FIG. 10A , except that it uses a plurality of converters (e.g., converters 1006 , 1008 ) connected to the DC bus 122 to supply a common battery 1020 (or a common battery bank).
  • a plurality of converters e.g., converters 1006 , 1008
  • One of the advantages of the configuration of FIG. 10B is that it allows the use of relatively smaller converters. This may be particularly advantageous when retrofitting an existing Off Highway Vehicle that already has one converter.
  • a similar advantage of this configuration is that it allows the use of higher capacity batteries.
  • Still another advantage of the configuration of FIG. 10B is that it permits certain phase shifting operations, thereby reducing the ripple current in the battery and allowing the use of smaller inductors (not shown).
  • converters 1006 and 1008 are operated at 1,000 Hz, 50% duty cycles, and the duty cycles are selected such that converter 1006 is on while converter 1008 is off, the converter effect is as if a single converter is operating at 2,000 Hz, which allows the use of smaller inductors.
  • FIG. 10C an electrical schematic illustrating another embodiment that is particularly well suited for retrofitting an existing Off Highway Vehicle to operate as a hybrid energy Off Highway Vehicle.
  • the configuration of FIG. 10C uses a double set of converters 1006 , 1030 and one or more batteries 1020 (of the same or different voltage levels).
  • An advantage of the system depicted in FIG. 10C is that the battery 1020 can be at a higher voltage level than the DC bus 122 .
  • the converters 1006 , 1008 illustrated in FIGS. 10A and 10B are typical two quadrant converters, they will also have freewheeling diodes associated therewith (not illustrated). If the voltage of battery 1002 , 1004 ( FIG. 10A ), or 1020 ( FIG.
  • FIG. 11 is an electrical schematic that illustrates one way of connecting electrical storage elements.
  • FIG. 11 illustrates an electrical schematic of a system that may be used for retrofitting a prior art Off Highway Vehicle to operate as a hybrid energy Off Highway Vehicle, or for installing a hybrid energy system as part of the original equipment during the manufacturing process.
  • the embodiment illustrated assumes an AC diesel-electric Off Highway Vehicle with four wheels, a pair of wheels located on two axle-equivalents.
  • Two wheels 109 of a single axle-equivalent are driven by individual traction motor subsystems.
  • all four wheels 109 A and 109 B of the two axle-equivalents may be driven by four traction motor subsystems, or any number of traction motors are envisioned consistent with the current invention.
  • two wheels 109 A on a single axle with a single traction motor subsystem for the single axle two wheel arrangement are not commonplace for Off Highway Vehicles.
  • the primary energy source has extra capability (e.g., power capacity) available in the majority of operating conditions.
  • extra capability may be due to lower actual ambient conditions, as compared with the design criteria.
  • some Off Highway Vehicles are designed to operate in ambient temperatures of up to 60 degrees Celsius, which is well above typical operating conditions. Considerations other than thermal conditions may also result in extra capacity during significant operating periods.
  • the use of all of the traction motors may only be required for low speed and when the Off Highway Vehicle operates in an adhesion limited situation (poor tractive conditions). In such case, the weight on the driven wheels 109 determines the pulling power/tractive effort. Hence, all available wheel/motors need to be driven to obtain maximum tractive effort.
  • the embodiment of FIG. 11 is configured such that one of the two traction motor subsystems is connected to the energy storage element 1102 , through a transfer switch 1104 and a plurality of inductors 1110 .
  • the traction motor subsystem 124 B includes an inverter 106 B and a traction motor 1108 B.
  • Such a configuration is suited for retrofitting a single wheel 109 of an existing prior art Off Highway Vehicle. It should be understood that retrofitting a typical prior art Off Highway Vehicle requires the addition of power conversion equipment and associated cooling devices. The space available for installing the retrofit equipment, however, is generally limited. Therefore, one of the advantages of the “single-wheel” configuration of FIG. 11 is that it tends to minimize impacts and makes retrofitting a more viable option. Similar advantages, however, may also be enjoyed when the hybrid energy system is installed as original equipment during manufacturing.
  • the transfer switch 1104 preferably comprises a three-phase set of contactors or a set of motorized contacts (e.g., bus bars) that connect inverter 106 B to traction motor 1108 B when all of the wheels 109 A and 109 B are needed, and connects inverter 106 B to inductors 1110 and battery 1102 when battery charging or discharging is desired.
  • transfer switch 1104 has a first connection state and a second connection state. In the first connection state, transfer switch 1104 connects inverter 106 B to traction motor 1108 B. In the second connection state, transfer switch connects inverter 106 B to battery 1102 .
  • Transfer switch 1104 is preferably controlled by a switch controller 1120 .
  • the switch controller 1120 is a manual operator-controlled switch that places transfer switch 1104 into the first or the second connection state.
  • the switch controller reflects control logic that controls the connection state of transfer switch 1104 in accordance with one operating scheme. Table I (below) is indicative of one such operating scheme. Other schemes are possible.
  • FIG. 11 illustrates a three-phase connection between battery 1102 and transfer switch 1104 , it is not necessary that all three phases be used. For example, if the power requirement is relatively low, only one or two phases may be used. Similarly, three separate batteries could be independently connected (one to each phase), or one large battery could be connected to two phases, with a relatively smaller battery connected to the third phase. Further, power transfer between multiple batteries having different voltage potentials and/or capacities is also possible.
  • FIG. 11 is especially advantageous in the context of retrofitting existing Off Highway Vehicles because transfer switch 1104 is believed to be much less expensive than adding additional inverters and/or dc-to-dc converters. Such advantage, however, is not limited to the retrofit context. Also, it should be understood that the configuration of FIG. 11 is not limited to a single inverter per transfer switch configuration.
  • FIG. 11 further illustrates an optional charging source 1130 that may be electrically connected to DC traction bus 122 .
  • the charging source 1130 may be, for example, another charging energy source or an external charger, such as that discussed in connection with FIG. 5 .
  • transfer switch 1104 When transfer switch 1104 is in the first switch state, the second wheel 109 B is selectively used to provide additional motoring or braking power. In this switch state, battery 1102 is effectively disconnected and, therefore, neither charges nor discharges.
  • switch controller 1120 When the second wheel 109 B is not needed, switch controller 1120 preferably places transfer switch 1104 in the second connection state-battery 1102 is connected to inverter 106 B. If, at this time, the other traction motor (e.g., traction motor 108 A) is operating in a dynamic braking mode, electrical energy is generated and carried on DC traction bus 122 , as described in greater detail elsewhere herein. Inverter 106 B transfers a portion of this dynamic braking electrical energy to battery 1102 for storage. If, on the other hand, the other traction motor is operating in a motoring mode, inverter 106 B preferably transfers any electrical energy stored in battery 1102 onto DC traction bus 122 to supplement the primary electric power supplied by prime mover power source 104 . Such electrical energy transferred from battery 1102 to DC traction bus 122 may be referred to as secondary electric power. In one embodiment, inverter 106 B comprises a chopper circuit for controlling the provision of secondary electric power to DC traction bus 122 from battery 1102 .
  • battery 1102 can also be charged when the other traction motors are not operating in a dynamic braking mode.
  • the battery can be charged when transfer switch 1104 is in the second connection state (battery 1102 is connected to inverter 106 B) and the other traction motors are motoring or idling if the amount of power drawn by the other traction motors is less than the amount of primary electric power carried on DC traction bus 122 .
  • battery 1102 can also be charged using charging electric power from optional energy source 1130 .
  • optional energy source 1130 is preferably connected such that it provides charging electric power to be carried on DC traction bus 122 .
  • switch controller 1120 preferably places transfer switch 1104 in the second connection state.
  • inverter 106 B transfers a portion of the electric power carried on DC traction bus 122 to battery 1102 for storage.
  • battery 1102 may be charged from optional energy source 1130 .
  • battery 1102 when transfer switch is in the second connection state, battery 1102 may be charged from dynamic braking energy, from excess Off Highway Vehicle energy (i.e., when the other traction motors draw less power than the amount of primary electric power carried on DC traction bus 122 ), and/or from charging electric power from optional charging source 1130 .
  • inverter 106 B transfers secondary electric power from battery 1102 to DC traction bus 122 to supplement the primary electric power.
  • transfer switch 1104 is in the first connection state, battery 1102 is disconnected and traction motor 1108 B is operable to assist in motoring and/or dynamic braking.
  • Table I summarizes one set of operating modes of the embodiment of FIG. 11 . TABLE I One Axle Two Axles Low Speed and Low Battery Fully Charged & Tractive Effort Dynamic Braking Settings High Speed Motoring No Battery Charging & Motoring Battery Discharged & Motoring Very High Speed Dynamic Braking
  • FIG. 11 illustrates an energy storage device in the form of a battery
  • other energy storage devices such as flywheel systems or ultra-capacitors, may also be employed instead of or in addition to battery 1102 .
  • the configuration of FIG. 11 may be scaled. In other words, the configuration can be applied to more than one axle.
  • aspects of the present disclosure may be employed with diesel-electric, fuel cell, “all electric,” third-rail, trolley or overhead powered Off Highway Vehicles.
  • aspects of the hybrid energy Off Highway Vehicle systems and methods described herein can be used with Off Highway Vehicles using a DC generator rather than an AC alternator and combinations thereof.
  • the hybrid energy Off Highway Vehicle systems and methods described herein are not limited to use with AC traction motors.
  • the energy management system disclosed herein may be used in connection with locomotives, mine trucks, large excavators, etc.
  • the primary power generation equipment may include not only diesel engine generators and fuel cells, but also turbine generators, which run at relatively high speeds of rotation and have a high power to weight and size ratio.
  • the turbines may be powered by liquid fuel or gas in either a gaseous or liquefied form.
  • the fuel cells may be of any suitable cell construction or chemistry, including phosphoric acid, proton exchange membrane or solid polymer fuel cell, molten carbonate, solid oxide, alkaline, direct methanol, regenerative, zinc air, and/or protonic ceramic.
  • the fuel cell may be used for the generation of electrical power, the storage of energy or both generation and storage.
  • the fuel cell may be the primary power generation and/or storage device, used in combination with diesel engines, turbines or APU's for power generation or used in combination with batteries, ultra-capacitors or flywheels for power storage.
  • the hybrid systems of the instant inventions are adapted for use on various off-highway vehicles, including so-called road locomotives, and large mining dump trucks capable of moving large loads.
  • Road locomotives have engines that supply 4000-6000 hp and move trains carrying loads (including the weight of the railcars) of up to 40,000 to 60,000 tons.
  • Mining dump trucks have engines providing 1500 hp or more, and carry loads (including the weight of the truck itself) of up to 1500 tons.
  • Road locomotives as noted above, have engine power generation capability in the range of 4000-6000 HP.
  • the power regeneraton capability of the traction motors for such locomotives is in the range of 4000-8000 HP, and the electric energy capture system has a storage capacity of 750-5000 HPHR.
  • the charging time (or charging ratio) of the capture system is approximately 0.1 hour to 1 hour with the use of only engine generated power, somewhat less than that with the use of traction motor regeneration power, and approximately half of that, if both the engine generation and traction motor regeneration power are used.
  • the size of the electrical energy capture system relative to the available space on the locomotive is a limiting factor on the capacity of the energy capture system that can be used.
  • Road switcher vehicles have engine power generation capability in the range of 1000-4000 HP.
  • the power regeneraton capability of the traction motors for such vehicles is in the range of 1000-5000 HP, and the electric energy capture system has a storage capacity of 500-1500 HPHR.
  • the charging time (or charging ratio) of the capture system is approximately 0.1 hour to 1.5 hours with the use of only engine generated power, somewhat less than that with the use of traction motor regeneration power, and approximately half of that, if both the engine generation and traction motor regeneration power are used.
  • Yard switcher vehicles have engine power generation capability of approximately 1000 HP and power regeneration capability of its traction motors also of approximately 1000 HP.
  • the electric energy capture system of such vehicles has a storage capacity of 250-1000 HPHR.
  • the charging time (or charging ratio) of the capture system is approximately 0.25 hour to 1 hour, with the use of only engine generated power, the same ratio with the use of traction motor regeneration power, and approximately half of that, if both the engine generation and traction motor regeneration power are used.
  • Yard switcher vehicles using an auxiliary power unit (APU) of the type described above have engine power generation capability in the range of 250-500 HP.
  • the power regeneration capability of the traction motors for such vehicles is in the range of 1000-2000 HP, and the electric energy capture system has a storage capacity of 250-1000 HPHR.
  • the charging time (or charging ratio) of the capture system is approximately 0.5 hour to 4 hours, with the use of only engine generated power, approximately 0.1 to 1 hour with the use of traction motor regeneration power, and somewhat less than that, if both the engine generation and traction motor regeneration power are used.
  • Passenger locomotives have engine power generation capability in the range of 2000-4000 HP.
  • the power regeneration capability of the traction motors for such locomotives is in the range of 2000-5000 HP, and the electric energy capture system has a storage capacity of 50-200 HPHR.
  • the charging time (or charging ratio) of the capture system is approximately 0.01 hour to 0.1 hour, with the use of only engine generated power, somewhat less than that with the use of traction motor regeneration power, and approximately half of that, if both the engine generation and traction motor regeneration power are used.
  • the preferred charging ratio for hybrid vehicles of the current inventions with traction motor power regeneration is less than 4.
  • the capacity of the various electric energy capture systems of these various hybrid vehicles is effective to enable optimization of the performance parameters of the vehicles.
  • the capacity of the energy storage devices enable a corresponding period of operation of the vehicle, without the operation of the primary power generation equipment, such as for limp home operation upon the loss of the primary power generation equipment.
  • the electrical energy storage devices enable prolonged periods of vehicle standby operation when only the vehicle auxiliary equipment needs to be powered as well as the operation of air compressors, and the operation of engine heating devices in cold weather
  • the principles of the instant inventions may apply to any suitable computer equipment, such as other mainframes, minicomputers, microprocessors, microcontrollers, network servers, supercomputers, personal computers, or workstations, as well as other electronics applications. Therefore, while the specification herein focuses on particular applications, it should be understood that the instant inventions are not limited to the particular hardware designs, software designs, and communications protocols disclosed herein.
  • the inventions can also be embodied, in part, as computer readable code on a computer readable medium.
  • the computer readable medium is any data storage device that can store data, which thereafter can be read by a computer system. Examples of computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices.
  • the computer readable medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • the inventions may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof. Any such resulting program, having computer-readable code means, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the invention.
  • the computer readable media may be, for example, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), etc., or any transmitting/receiving medium such as the Internet or other communication network or link.
  • the article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.
  • An apparatus for making, using or selling the inventions may be one or more processing systems including, but not limited to, a central processing unit (CPU), memory, storage devices, communication links and devices, servers, 1 /O devices, or any sub-components of one or more processing systems, including software, firmware, hardware or any combination or subset thereof, which embody the invention as set forth in the claims.
  • CPU central processing unit
  • memory storage devices
  • communication links and devices servers
  • 1 /O devices any sub-components of one or more processing systems, including software, firmware, hardware or any combination or subset thereof, which embody the invention as set forth in the claims.
  • the hybrid energy systems and methods herein described provide substantial advantages over the prior art. Such advantages include improved performance parameter such as fuel efficiency, increased fuel range, and reduced emissions such as transient smoke. Other advantages include improved speed by the provision of an on-demand source of power for a horsepower burst.
  • the hybrid energy Off Highway Vehicle system herein described may also be adapted for use with existing Off Highway Vehicle systems.

Abstract

An energy management system for use with a hybrid energy off highway vehicle. The off highway vehicle includes a primary energy source and a power converter driven by the primary energy source for providing primary electric power. A traction bus is coupled to the power converter and carries the primary electric power. A traction drive is connected to the traction bus. The traction drive has a motoring mode in which the traction drive is responsive to the primary electric power for propelling the off highway vehicle. The traction drive has a dynamic braking mode of operation wherein said traction drive generates dynamic braking electrical energy. The energy management system includes an energy management processor for determining a power storage parameter and a power transfer parameter. An energy storage system is connected to the traction bus and is responsive to the energy management processor. The energy storage system selectively stores electrical energy as a function of the power storage parameter and selectively supplying secondary electric power from the stored electrical energy to the traction bus as a function of the power transfer parameter.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The invention of the present application is a Continuation-in-Part that claims of U.S. patent application Ser. No. 10/378,431, filed on Mar. 3, 2003, and entitled “HYBRID ENERGY OFF HIGHWAY VEHICLE ELECTRIC POWER MANAGEMENT SYSTEM AND METHOD”, which claims priority from U.S. patent application Ser. No. 10/033,172, filed on Dec. 26, 2001, and entitled “HYBRID ENERGY POWER MANAGEMENT SYSTEM AND METHOD”, allowed Dec. 23, 2002, and from U.S. Provisional Application Ser. No. 60/278,975, filed on Mar. 27, 2001, the entire disclosure of which is incorporated herein by reference. The following commonly owned, co-pending applications are related to the present application and are incorporated herein by reference:
  • U.S. patent application Ser. No. 10/378,335, filed on Mar. 3, 2003, and entitled “HYBRID ENERGY OFF HIGHWAY VEHICLE POWER STORAGE SYSTEM AND METHOD”;
  • U.S. patent application Ser. No. 10/033,347, filed on Dec. 26, 2001, and entitled “HYBRID ENERGY LOCOMOTIVE POWER STORAGE SYSTEM”;
  • U.S. patent application Ser. No. 10/033,191, filed on Dec. 26, 2001, and entitled “HYBRID ENERGY LOCOMOTIVE SYSTEM AND METHOD”; and
  • U.S. patent application Ser. No. 10/032,714, filed on Dec. 26, 2001, and entitled “LOCOMOTIVE ENERGY TENDER”.
  • FIELD OF THE INVENTION
  • The invention relates generally to energy management systems and methods for use in connection with a large, Off Highway Vehicle such as a railway locomotive, mining truck or excavator. In particular, the invention relates to a system and method for managing the storage and transfer of electrical energy, such as dynamic braking energy or excess prime mover power, produced by Off Highway Vehicles driven by electric traction motors.
  • BACKGROUND OF THE INVENTION
  • FIG. 1A is a block diagram of an exemplary prior art Off Highway Vehicle. In particular, FIG. 1A generally reflects a typical prior art diesel-electric Off Highway Vehicle. Off Highway Vehicles include locomotives and mining trucks and excavators, where mining trucks and excavators range from 100-ton capacity to 400-ton capacity, but may be smaller or larger. Off Highway Vehicles typically have a power weight ratio of less than 10 h.p. per ton with a ratio of 5 h.p. per ton being common. Off Highway Vehicles typically also utilize dynamic or electric braking. This is in contrast to a vehicle such as a passenger bus that has a ratio of 15 h.p. per ton or more and utilizes mechanical or resistive braking.
  • As illustrated in FIG. 1A, the Off Highway Vehicle 100 includes a diesel primary power source 102 driving an alternator/rectifier 104. As is generally understood in the art, the alternator/rectifier 104 provides DC electric power to an inverter 106 that converts the AC electric power to a form suitable for use by a traction motor 108. One common Off Highway Vehicle configuration includes one inverter/traction motor per wheel 109, with two wheels 109 comprising the equivalent of an axle (not shown). Such a configuration results in one or two inverters per Off Highway Vehicle. FIG. 1A illustrates a single inverter 106 and a single traction motor 108 for convenience. By way of example, large excavation dump trucks may employ motorized wheels such as the GEB23™ AC motorized wheel employing the GE150AC™ drive system (both of which are available from the assignee of the present system).
  • Strictly speaking, an inverter converts DC power to AC power. A rectifier converts AC power to DC power. The term “converter” is also sometimes used to refer to inverters and rectifiers. The electrical power supplied in this manner may be referred to as prime mover power (or primary electric power) and the alternator/rectifier 104 may be referred to as a source of prime mover power. In a typical AC diesel-electric Off Highway Vehicle application, the AC electric power from the alternator is first rectified (converted to DC). The rectified AC is thereafter inverted (e.g., using power electronics such as Insulated Gate Bipolar Transistors (IGBTs) or thyristors operating as pulse width modulators) to provide a suitable form of AC power for the respective traction motor 108.
  • As is understood in the art, traction motors 108 provide the tractive power to move Off Highway Vehicle 100 and any other vehicles, such as load vehicles, attached to Off Highway Vehicle 100. Such traction motors 108 may be an AC or DC electric motors. When using DC traction motors, the output of the alternator is typically rectified to provide appropriate DC power. When using AC traction motors, the alternator output is typically rectified to DC and thereafter inverted to three-phase AC before being supplied to traction motors 108.
  • The traction motors 108 also provide a braking force for controlling speed or for slowing Off Highway Vehicle 100. This is commonly referred to as dynamic braking, and is generally understood in the art. Simply stated, when a traction motor 108 is not needed to provide motivating force, it can be reconfigured (via power switching devices) so that the motor operates as an electric power generator. So configured, the traction motor 108 generates electric energy which has the effect of slowing the Off Highway Vehicle. In prior art Off Highway Vehicles, such as illustrated in FIG. 1A, the energy generated in the dynamic braking mode is typically transferred to resistance grids 110 mounted on the vehicle housing. Thus, the dynamic braking energy is converted to heat and dissipated from the system. Such electric energy generated in the dynamic braking mode is typically wasted.
  • It should be noted that, in a typical prior art DC hybrid vehicle, the dynamic braking grids 110 are connected to the traction motors 108. In a typical prior art AC hybrid vehicle, however, the dynamic braking grids are connected to the DC traction bus 122 because each traction motor 108 is normally connected to the bus by way of an associated inverter 106 (see FIG. 1B). FIG. 1A generally illustrates an AC hybrid vehicle with a plurality of traction motors; a single inverter is depicted for convenience.
  • FIG. 1B is an electrical schematic of a typical prior art Off Highway Vehicle 100. It is generally known in the art to employ a single electrical energy source 102, however, two or more electrical energy sources may be employed. In the case of a single electrical energy source, a diesel engine 102 coupled to an alternator 104 provides the primary source power 104. In the case where two or more electrical energy sources 102 are provided, a first system comprises the prime mover power system that provides power to the traction motors 108. A second system (not shown) provides power for so-called auxiliary electrical systems (or simply auxiliaries). Such an auxiliary system may be derived as an output of the alternator, from the DC output, or from a separate alternator driven by the primary power source. For example, in FIG. 1B, a diesel engine 102 drives the prime mover power source 104 (e.g., an alternator and rectifier), as well as any auxiliary alternators (not illustrated) used to power various auxiliary electrical subsystems such as, for example, lighting, air conditioning/heating, blower drives, radiator fan drives, control battery chargers, field exciters, power steering, pumps, and the like. The auxiliary power system may also receive power from a separate axle driven generator. Auxiliary power may also be derived from the traction alternator of prime mover power source 104.
  • The output of prime mover power source 104 is connected to a DC bus 122 that supplies DC power to the traction motor subsystems 124A-124B. The DC bus 122 may also be referred to as a traction bus 122 because it carries the power used by the traction motor subsystems. As explained above, a typical prior art diesel-electric Off Highway Vehicle includes two traction motors 108, one per each wheel 109, wherein the two wheels 109 operate as an axle assembly, or axle-equivalent. However, a system may be also be configured to include a single traction motor per axle or configured to include four traction motors, one per each wheel 109 of a two axle-equivalent four-wheel vehicle. In FIG. 1B, each traction motor subsystem 124A and 124B comprises an inverter (e.g., inverter 106A and 106B) and a corresponding traction motor (e.g., traction motor 108A and 108B, respectively).
  • During braking, the power generated by the traction motors 108 is dissipated through a dynamic braking grid subsystem 110. As illustrated in FIG. 1B, a typical prior art dynamic braking grid subsystem 110 includes a plurality of contactors (e.g., DB1-DB5) for switching a plurality of power resistive elements between the positive and negative rails of the DC bus 122. Each vertical grouping of resistors may be referred to as a string. One or more power grid cooling blowers (e.g., BL1 and BL2) are normally used to remove heat generated in a string due to dynamic braking. It is also understood that these contactors (DB1-DB5) can be replaced by solid-state switches like GTO/IGBTs and can be modulated (like a chopper) to control the effective dynamic brake resistance.
  • As indicated above, prior art Off Highway Vehicles typically waste the energy generated from dynamic braking. Attempts to make productive use of such energy have been unsatisfactory. For example, one system attempts to use energy generated by a traction motor 108 in connection with an electrolysis cell to generate hydrogen gas as a supplemental fuel source. Among the disadvantages of such a system are the safe storage of the hydrogen gas and the need to carry water for the electrolysis process. Still other prior art systems fail to recapture the dynamic braking energy at all, but rather selectively engage a special generator that operates when the associated vehicle travels downhill. One of the reasons such a system is unsatisfactory is because it fails to recapture existing braking energy and fails to make the captured energy available for reuse on board the Off Highway Vehicle.
  • Therefore, there is a need for an energy management system and method that control when energy is captured and stored, and when such energy is regenerated for later use.
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention relates to an energy management system for use with a hybrid energy off-highway vehicle system. The off highway vehicle system includes a vehicle having a primary energy source and a power converter driven by the primary energy source providing primary electric power. A traction bus is coupled to the power converter and carries the primary electric power. A traction drive is connected to the traction bus and has a motoring mode in which the traction drive is responsive to the primary electric power for propelling the off highway vehicle and a dynamic braking mode of operation wherein said traction drive generates dynamic braking electrical energy. The energy management system includes an energy management processor for determining a power storage parameter and a power transfer parameter. An energy storage system is connected to the traction bus and is responsive to the energy management processor. The energy storage system selectively stores electrical energy available from the traction bus as a function of the power storage parameter and selectively supplying secondary electric power from the stored electrical energy to the traction bus as a function of the power transfer parameter. The traction drive is responsive to the secondary electric power.
  • In another aspect, the invention is an energy management system for use with a hybrid energy off highway vehicle. The off highway vehicle includes a primary energy source and a power converter driven by the primary energy source for providing primary electric power. A traction bus is coupled to the power converter and carries the primary electric power. A traction drive is connected to the traction bus. The traction drive has a motoring mode in which the traction drive is responsive to the primary electric power for propelling the off highway vehicle. The traction drive has a dynamic braking mode of operation wherein said traction drive generates dynamic braking electrical energy. The energy management system includes an energy management processor for determining a power storage parameter and a power transfer parameter. An energy storage system is connected to the traction bus and is responsive to the energy management processor. The energy storage system selectively stores electrical energy as a function of the power storage parameter and selectively supplying secondary electric power from the stored electrical energy to the traction bus as a function of the power transfer parameter.
  • In another aspect, the invention is an energy management method for use with a hybrid energy off highway vehicle system. The off highway vehicle system includes a vehicle having a primary energy source and a power converter driven by the primary energy source to provide primary electric power. A traction bus is coupled to the power converter and carries the primary electric power. A traction drive is connected to the traction bus and has a motoring mode in which the traction drive is responsive to the primary electric power for propelling the off highway vehicle and a dynamic braking mode of operation wherein said traction drive generates dynamic braking electrical energy. The energy management method includes determining a power storage parameter and determining a power transfer parameter. The method further includes storing electrical energy available from the traction bus in an energy storage device connected to the traction bus as a function of the determined power storage parameter; and providing secondary electric power to the traction bus from the electrical energy stored in the energy storage device as a function of the determined power transfer parameter. The traction drive is responsive to the secondary electric power for propelling the off highway vehicle.
  • In yet another aspect of the invention, a hybrid energy system for propelling an off highway vehicle includes a primary energy source and a power converter driven by the primary energy source for providing primary electric power. A traction motor system receives the primary electric power and propels the off highway vehicle in response to the received primary electric power. The traction motor system has a dynamic braking mode of operation generating electrical energy. An energy storage system captures the electrical energy generated by the traction motor system in the dynamic braking mode and transfers a portion of the captured electrical energy to the traction motor system to augment the primary electric power. An energy management system controls the energy storage system. The energy management system determines a power storage parameter and a power transfer parameter whereby the energy management system controls the capture of electrical energy by the energy storage system as a function of the power storage parameter and controls the transfer of the portion of the captured electrical energy to the traction motor system as a function of the power transfer parameter.
  • In still another aspect of the invention, an energy management system for use in connection with a hybrid energy off highway vehicle includes a primary source and a power converter driven by the primary power source for providing primary electric power. A traction motor system receives the primary electric power and selectively propels the off highway vehicle in response to the received primary electric power. The traction motor system has a dynamic braking mode of operation generating dynamic braking electrical power. An energy storage system selectively stores a portion of the dynamic braking electrical power generated by the traction motor system in the dynamic braking mode and selectively supplies secondary electric power derived from the portion of the dynamic braking electrical power stored therein to the traction motor system that is responsive to the secondary electric power. The energy management system comprises an energy management processor that determines a power storage parameter and a power transfer parameter. The energy management processor controls the storage of dynamic braking electrical power by the energy storage system as a function of the power storage parameter. The energy management processor controls the supply of secondary electric power from the energy storage system to the traction motor system as a function of the power transfer parameter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a block diagram of a prior art Off Highway Vehicle.
  • FIG. 1B is an electrical schematic of a prior art AC diesel-electric Off Highway Vehicle.
  • FIG. 2 is a block diagram of one embodiment of hybrid energy Off Highway Vehicle system.
  • FIG. 3 is a block diagram of one embodiment of hybrid energy Off Highway Vehicle system configured with a fuel cell and a load vehicle.
  • FIG. 4 is a block diagram illustrating one embodiment of an energy storage and generation system suitable for use in connection with hybrid energy Off Highway Vehicle system.
  • FIG. 5A is a block diagram illustrating an energy storage and generation system suitable for use in a hybrid energy Off Highway Vehicle system, including an energy management system for controlling the storage and regeneration of energy.
  • FIG. 5B is a block diagram illustrating the interaction between components of the energy management system, power sources and power loads.
  • FIGS. 6A-6D are timing diagrams that illustrate one embodiment of an energy management system for controlling the storage and regeneration of energy, including dynamic braking energy.
  • FIGS. 7A-7D are timing diagrams that illustrate another embodiment energy management system for controlling the storage and regeneration of energy, including dynamic braking energy.
  • FIGS. 8A-8E are timing diagrams that illustrate another embodiment energy management system for controlling the storage and regeneration of energy, including dynamic braking energy.
  • FIGS. 9A-9G are electrical schematics illustrating several embodiments of an electrical system suitable for use in connection with a hybrid energy vehicle.
  • FIGS. 10A-10C are electrical schematics illustrating additional embodiments of an electrical system suitable for use in connection with a hybrid energy vehicle.
  • FIG. 11 is an electrical schematic that illustrates one embodiment of connecting electrical storage elements.
  • FIG. 12 is a flow chart that illustrates one method of operating a hybrid energy Off Highway Vehicle system.
  • Corresponding reference characters and designations generally indicate corresponding parts throughout the drawings.
  • DETAILED DESCRIPTION OF ASPECTS OF THE INVENTION
  • FIG. 2 is a block diagram of one embodiment of a hybrid energy Off Highway Vehicle system 200. In this embodiment, the hybrid energy Off Highway Vehicle system preferably captures and regenerates at least a portion of the dynamic braking electric energy generated when the vehicle traction motors operate in a dynamic braking mode.
  • The Off Highway Vehicle system includes an Off Highway Vehicle 200 having a primary energy source 104. In some embodiments, a power converter is driven by the primary energy source 102 and provides primary electric power. A traction bus 122 is coupled to the power converter and carries the primary electric power. A traction drive 108 is coupled to the traction bus 122. The traction drive 108 constitutes a vehicle propulsion system mechanically coupled to the wheels 109 of the vehicle 200 and has a motoring mode in which the traction drive is responsive to the primary electric power for propelling the Off Highway Vehicle 200, in which the traction drive 108 acts as a power load in the motoring mode. The traction drive 108 has a dynamic braking mode of operation wherein the traction drive generates dynamic braking electrical energy and thus acts as a power generator or source in the braking mode. An energy management system 206 comprises an energy management processor (not shown). The energy management system 206 determines a power storage parameter and a power transfer parameter. An energy capture and storage system 204 is responsive to the energy management system 206. The energy capture and storage system 204 selectively stores electrical energy as a function of the power storage parameter and thus acts as a power load during power storage. The energy capture and storage system 204 selectively supplies secondary electric power from the electrical energy stored therein as a function of the power transfer parameter and thus acts as power generator or source during power discharge when it converts stored mechanical or chemical energy into electrical power.
  • In one embodiment, the energy capture and storage system 204 selectively receives electrical power generated during the dynamic braking mode of operation and stores it for later regeneration and use. In the alternative or in addition to receiving and storing dynamic braking power, energy capture and storage system 204 can also be constructed and arranged to receive and store power from other sources. For example, excess prime mover power from primary energy source 104 can be transferred and stored. Similarly, when two or more Off Highway Vehicles 200 operate in tandem and are electrically coupled, excess power from one of the Off Highway Vehicles can be transferred and stored in energy capture and storage system 204. Also, a separate primary energy source 102 (e.g., diesel generator, fuel cell, trolley line, etc.) can be used to supply a charging voltage (e.g., a constant charging voltage) to energy capture and storage system 204. Still another source of charging is an optional off-vehicle charging source 220. For example, energy capture and storage system 204 can be charged by external charging generator or source 220 such as a battery charger. The hybrid vehicle 200 may also be operated so that at the completion of a leg of its travel path, energy will remain stored in the energy storage system 204 and thus be available for transfer to a suitable external power load 224 such as other vehicles (e.g., pushers to help propel another train), or to an external energy system (not shown), such as an electric grid via electrical interface connection to the vehicle's electrical system, a third rail or an overhead power line.
  • The energy capture and storage system 204 preferably includes at least one of the following storage subsystems for storing the electrical energy generated during the dynamic braking mode: a battery subsystem, a flywheel subsystem, an ultra-capacitor subsystem, and a fuel cell fuel generator (not shown). Other storage subsystems are possible. Ultra-capacitors are available from Maxwell Technologies. These storage subsystems may be used separately or in combination. When used in combination, these storage subsystems can provide synergistic benefits not realized with the use of a single energy storage subsystem. A flywheel subsystem, for example, typically stores energy relatively fast but may be relatively limited in its total energy storage capacity. A battery subsystem, on the other hand, often stores energy relatively slowly but can be constructed to provide a relatively large total storage capacity. Hence, a flywheel subsystem may be combined with a battery subsystem wherein the flywheel subsystem captures the dynamic braking energy that cannot be timely captured by the battery subsystem. The energy thus stored in the flywheel subsystem may be thereafter used to charge the battery. Accordingly, the overall capture and storage capabilities are preferably extended beyond the limits of either a flywheel subsystem or a battery subsystem operating alone. Such synergies can be extended to combinations of other storage subsystems, such as a battery and ultra-capacitor in combination where the ultra-capacitor supplies the peak demand needs. In the case where the primary energy source 102 is a fuel cell, the energy capture and storage system 204 may include an electrolysis system that generates hydrogen from the fuel cell wastewater. The stored hydrogen is provided to the fuel cell as an energy source for providing primary or secondary power.
  • It should be noted at this point that, when a flywheel subsystem is used, a plurality of flywheels is preferably arranged to limit or eliminate the gyroscopic effect each flywheel might otherwise have on the Off Highway Vehicle and load vehicles. For example, the plurality of flywheels may be arranged on a six-axis basis to greatly reduce or eliminate gyroscopic effects. It should be understood, however, that reference herein to a flywheel embraces a single flywheel or a plurality of flywheels.
  • Referring still to FIG. 2, energy capture and storage system 204 not only captures and stores electric energy generated in the dynamic braking mode of the Off Highway Vehicle, it also supplies the stored energy to assist the Off Highway Vehicle effort (i.e., to supplement and/or replace primary energy source power).
  • It should be understood that it is common for each Off Highway Vehicle 200 to operate separately from other Off Highway Vehicles. However, two or more Off Highway Vehicles could operate in tandem where they are mechanically and/or electrically coupled to operate together. Furthermore, another optional arrangement includes an Off Highway Vehicle that is mechanically coupled to a load vehicle. While FIG. 2 illustrates a single Off Highway Vehicle, FIG. 3 illustrates an Off Highway Vehicle 200 operating in a tandem arrangement with optional load vehicle 300. Load vehicle 300 may be a passive vehicle that is pulled or pushed by the Off Highway Vehicle 200 or optionally may include a plurality of load vehicle traction motors 308 that provide tractive effort to load vehicle wheels 318. The electrical power stored in energy capture and storage 204 may be selectively supplied (e.g., via tandem traction bus 314) to the load vehicle traction motors 308 via load vehicle traction bus 312. Thus, during times of increased demand, load vehicle traction motors 308 augment the tractive power provided by Off Highway Vehicle traction motors 108. As another example, during times when it is not possible to store more energy from dynamic braking (e.g., energy storage system 204 is charged to capacity), efficiency considerations may suggest that load vehicle traction motors 308 also augment Off Highway Vehicle traction motors 108.
  • It should be appreciated that when energy capture and storage system 204 drives load vehicle traction motors 308, additional circuitry will likely be required. For example, if energy capture and storage system 204 comprises a battery storing and providing a DC voltage, one or more inverter drives 106 may be used to convert the DC voltage to a form suitable for use by the load vehicle traction motors 308. Such drives are preferably operationally similar to those associated with the Off Highway Vehicle.
  • Rather than, or in addition to, using the electrical power stored in energy capture and storage 204 for powering load vehicle traction motors 308, such stored energy may also be used to augment the electrical power supplied to Off Highway Vehicle traction motors 108 (e.g., via line 212).
  • Other configurations are also possible. For example, the Off Highway Vehicle itself may be configured, either during manufacturing or as part of a retrofit program, to capture, store, and regenerate excess electrical energy, such as dynamic braking energy, excess primary energy source power or excess trolley line power. In another embodiment, an energy capture and storage subsystem 306 may be located on some or all of the load vehicles attached to the Off Highway Vehicle. FIG. 3 illustrates a load vehicle 300 equipped with a load vehicle energy capture and storage system 306 which receives load vehicle dynamic braking power from load vehicle traction motor 308 via bus 312 during dynamic braking. Such a load vehicle 300 may optionally include separate traction motors 308. In each of the foregoing embodiments, the load vehicle energy capture and storage subsystem 306 can include one or more of the subsystems previously described.
  • When a separate load vehicle 300 is used, the load vehicle 300 and the Off Highway Vehicle 200 are preferably mechanically coupled via mechanical linkage 316 and electrically coupled via tandem traction bus 314 such that dynamic braking energy from the Off Highway Vehicle traction motors 108 and/or from optional load vehicle traction motors 308 is stored in energy capture and storage system 206 on board the Off Highway Vehicle and/or is stored in load vehicle capture and storage system 306 on the load vehicle 300. During motoring operations, the stored energy in the energy capture and storage system in one or the other or both the Off Highway Vehicle 200 and the load vehicle 300 is selectively used to propel Off Highway Vehicle traction motors 108 and/or optional load vehicle traction motors 308. Similarly, when the Off Highway Vehicle primary power source 102 produces more power than required for motoring, the excess prime mover power can be stored in energy capture and storage 204 and or load vehicle energy capture and storage 306 for later use.
  • If load vehicle 300 is not electrically coupled to the Off Highway Vehicle (other than for standard control signals), the optional traction motors 308 on the load vehicle 300 can also be used in an autonomous fashion to provide dynamic braking energy to be stored in energy capture and storage 306 for later use. One advantage of such a configuration is that load vehicle 202 can be coupled to a wide variety of Off Highway Vehicles.
  • It should be appreciated that when load vehicle traction motors 308 operate in a dynamic braking mode, various reasons may counsel against storing the dynamic braking energy in energy capture and storage 204 and/or 306 (e.g., the storage may be full). Thus, it is preferable that some or all of the dynamic braking energy generated by the load vehicle traction motors 308 be dissipated by grids 310 associated with load vehicle 300, or transferred to Off Highway Vehicle 200 to be dissipated by grids 110 (e.g., via tandem traction bus 316).
  • It should also be appreciated that load vehicle energy capture and storage system 306 may be charged from an external charging source 326 when such a charging source is available.
  • The embodiment of FIG. 3 will be further described in terms of one possible operational example. It is to be understood that this operational example does not limit the invention. The Off Highway Vehicle system 200 is configured in tandem including an Off Highway Vehicle 200 and a load vehicle 300. Tractive power for the Off Highway Vehicle 200 is supplied by a plurality of Off Highway Vehicle traction motors 108. In one embodiment, the Off Highway Vehicle 200 has four wheels 109, each pair corresponds to an axle pair as depicted as an optional embodiment of FIG. 3 as 109A and 109B. Each wheel 109A and 109B includes a separate Off Highway Vehicle traction motor 108A and 108B, and each traction motor 108A and 108B is an AC traction motor. In one embodiment, each of the two rear wheels 109A has a separate Off Highway Vehicle traction motor 108A and operates as pair of wheels 109A on a common axle, or axle-equivalent (illustrated as a single wheel 109A in FIG. 3). However, the wheels 109A may or may not be actually connected by a common axle, as such an axle-equivalent. In fact, in one embodiment, each wheel 109 is mount by a separate half-axle. The Off Highway Vehicle 200 includes a primary energy source 102 that drives an electrical power system. In one embodiment, the primary energy source is a diesel engine drives an alternator/rectifier 104 that comprises a source of prime mover electrical power (sometimes referred to as traction power or primary power). In this particular embodiment, the prime mover electrical power is DC power that is converted to AC power for use by the traction motors. More specifically, one or more inverters (e.g., inverter 106) receive the prime mover electrical power and selectively supply AC power to the plurality of Off Highway Vehicle traction motors 108 to propel the Off Highway Vehicle. In another embodiment, the primary energy source 102 is a fuel cell. The fuel cell generates DC prime mover power and selectively supplies the DC primary mover power to a DC-to-DC converter 302 as shown in FIG. 3. In yet another embodiment, the Off Highway Vehicle 200 may utilize a trolley line (not shown) as the primary energy source, or as a secondary energy source that supplements the primary energy source when the Off Highway Vehicle is traversing an inclined travel path, e.g., trolley assist. Thus, Off Highway Vehicle traction motors 108 propel the Off Highway Vehicle in response to the prime mover electrical power.
  • Each of the plurality of Off Highway Vehicle traction motors 108 is preferably operable in at least two operating modes, a motoring mode and a dynamic braking mode. In the motoring mode, the Off Highway Vehicle traction motors 108 receive electrical power (e.g., prime mover electrical power via inverters) to propel the Off Highway Vehicle 200. As described elsewhere herein, when operating in the dynamic braking mode, the traction motors 108 generate electricity. In the embodiment of FIG. 3, load vehicle 300 is constructed and arranged to selectively capture and store a portion of the electricity generated by the traction motors 308 and/or 108 during dynamic braking operations. This is accomplished by energy capture and storage system 204 and/or 306. The captured and stored electricity is selectively used to provide a secondary source of electric power. This secondary source of electric power may be used to selectively supplement or replace the prime mover electrical power (e.g., to help drive one or more Off Highway Vehicle traction motors 108) and/or to drive one or more load vehicle traction motors 308. In the latter case, load vehicle traction motors 308 and Off Highway Vehicle traction motors 108 cooperate to propel the tandem Off Highway Vehicle 200 and load vehicle 300.
  • Advantageously, load vehicle energy capture and storage 306 can store dynamic braking energy without any electrical power transfer connection with the primary Off Highway Vehicle. In other words, energy capture and storage 306 can be charged without an electrical coupling such as tandem traction bus 314. This is accomplished by operating the Off Highway Vehicle primary power source 320 to provide motoring power to Off Highway Vehicle traction motors 308 while operating load vehicle 300 in a dynamic braking mode. For example, the Off Highway Vehicle primary power source 102 may be operated at a relatively high power setting while load vehicle traction motors 308 are configured for dynamic braking. Energy from the dynamic braking process can be used to charge energy capture and storage 306. Thereafter, the stored energy can be used to power load vehicle traction motors 308 to provide additional motoring power to the tandem Off Highway Vehicle 200 and load vehicle 300.
  • Referring again to FIG. 3 is another optional embodiment of hybrid energy Off Highway Vehicle system 300 configured with a fuel cell with a separate load vehicle. This embodiment includes a fuel cell as primary power source 102 that drives DC-to-DC converter 302. Converter 302 provides DC power to inverter that provides primary tractive power. In another embodiment, where the traction motor 108 is a DC traction motor, the converter may provide tractive DC power directly to the DC traction motor 108 via traction bus 112.
  • Referring again to FIG. 3, another optional embodiment includes a load vehicle configured with a load vehicle power source 320. Load vehicle power source could be any type of power source as described above for the Off Highway Vehicle 200. In one embodiment, load vehicle power source 320 is a fuel cell that generates a constant source of DC electrical energy. The DC electrical energy that is generated by the fuel cell is converted by a DC-to-DC converter 322 and provided to an Inverter 324 for the provision of load vehicle primary power. In this embodiment, load vehicle primary power may be provided by load vehicle bus 312 to the load vehicle traction motor 308, to the Off Highway Vehicle traction motors 108, to load vehicle energy capture and storage system 306, or to Off Highway Vehicle energy capture and storage system 204. In this embodiment, the load vehicle power source 320, the power converter 322, the converter 324 and/or the load vehicle energy capture and storage system 306 may be operable in response to a load vehicle energy management system (not shown) or to the energy management system 206 of the coupled Off Highway Vehicle via a energy management communication link 328. Such an energy management communication link 328 may be a wired communication link or a wireless communication link.
  • FIG. 4 is a system-level block diagram that illustrates aspects of one embodiment of the energy storage and generation system. In particular, FIG. 4 illustrates an energy storage and generation system 400 suitable for use with a hybrid energy Off Highway Vehicle system, such as hybrid energy Off Highway Vehicle system 200 or load vehicle system 300 (FIG. 3). Such an energy storage and generation system 400 could be implemented, for example, as part of a separate load vehicle (e.g., FIGS. 2 and 3) and/or incorporated into an Off Highway Vehicle.
  • As illustrated in FIG. 4, a primary energy source 102 drives a prime mover power source 104 (e.g., an alternator/rectifier converter). The prime mover power source 104 preferably supplies DC power to an inverter 106 that provides three-phase AC power to a Off Highway Vehicle traction motor 108. It should be understood, however, that the system 400 illustrated in FIG. 4 can be modified to operate with DC traction motors as well. Preferably, there is a plurality of traction motors 108, e.g., one per traction wheel 109. In other words, each Off Highway Vehicle traction motor preferably includes a rotatable shaft coupled to the associated wheel 109 for providing tractive power to the associated wheel 109. Thus, each Off Highway Vehicle traction motor 108 provides the necessary motoring force to an associated wheel 109 to cause the Off Highway Vehicle 200 to move. One arrangement includes a single wheel 109 on the Off Highway Vehicle to be equipped with a single traction motor 108. Another embodiment is for two wheels 109 on opposing sides of the vehicle acting as an axle-equivalent, each equipped with a separate traction motor 108.
  • When traction motors 108 are operated in a dynamic braking mode, at least a portion of the generated electrical power is routed to an energy storage medium such as energy storage 204. To the extent that energy storage 204 is unable to receive and/or store all of the dynamic braking energy, the excess energy is routed to braking grids 110 for dissipation as heat energy. Also, during periods when primary power source 102 is being operated such that it provides more energy than needed to drive traction motors 108, the excess capacity (also referred to as excess prime mover electric power) may be optionally stored in energy storage 204. Accordingly, energy storage 204 can be charged at times other than when traction motors 108 are operating in the dynamic braking mode. This aspect of the system is illustrated in FIG. 4 by a dashed line 402.
  • The energy storage 204 of FIG. 4 is preferably constructed and arranged to selectively augment the power provided to traction motors 108 or, optionally, to power separate traction motors 308 associated the load vehicle 300. Such power may be referred to as secondary electric power and is derived from the electrical energy stored in energy storage 204. Thus, the system 400 illustrated in FIG. 4 is suitable for use in connection with an Off Highway Vehicle having an on-board energy capture and storage 204 and/or with a separate load vehicle 300 equipped with a load vehicle energy capture and storage 306.
  • FIG. 5A is a block diagram that illustrates aspects of one embodiment of an energy storage and generation system 500 suitable for use with a hybrid energy Off Highway Vehicle system. The system 500 includes an energy management system 206 for controlling the storage and regeneration of energy. Therefore, although FIG. 5A is generally described with respect to an Off Highway Vehicle system, the energy management system 500 illustrated therein is not to be considered as limited to Off Highway Vehicle applications.
  • Referring still to the exemplary embodiment illustrated in FIG. 5A, system 500 preferably operates in the same general manner as system 400 of FIG. 4; the energy management system 206 provides additional intelligent control functions. FIG. 5A also illustrates an optional energy source 504 that is preferably controlled by the energy management system 206. The optional energy source 504 may be a second energy source (e.g., another Off Highway Vehicle operating in tandem with the primary Off Highway Vehicle) or a completely separate power source (e.g., trolley line, or a wayside power source such as a battery charger) for charging energy storage 204. In one embodiment, such a separate charging power source includes an electrical power station for charging an energy storage medium associated with a separate load vehicle (e.g., vehicle 202 of FIG. 2) while stationary, or a system for charging the energy storage medium while the load vehicle is in motion. In one embodiment, optional energy source 504 is connected to a traction bus (not illustrated in FIG. 5) that also carries primary electric power from prime mover power source 104.
  • As illustrated, the energy management system 206 preferably includes an energy management processor 506, a database 508, and a position identification system 510, such as, for example, a global positioning satellite system receiver (GPS) 510. The energy management processor 506 determines present and anticipated Off Highway Vehicle position information via the position identification system 510. In one embodiment, energy management processor 506 uses this position information to locate data in the database 508 regarding present and/or anticipated travel path topographic and profile conditions, sometimes referred to as travel path situation information. Such travel path situation information may include, for example, travel path grade, travel path elevation (e.g., height above mean sea level), travel path curve data, speed limit information, and the like. In the case of a locomotive off highway vehicle, the travel path and characteristics are those of a railroad track. It is to be understood that such database information could be provided by a variety of sources including: an onboard database associated with processor 510, a communication system (e.g., a wireless communication system) providing the information from a central source, manual operator input(s), via one or more travel path signaling devices, a combination of such sources, and the like. Finally, other vehicle information such as, the size and weight of the vehicle, a power capacity associated with the prime mover, efficiency ratings, present and anticipated speed, present and anticipated electrical load, and so on may also be included in a database (or supplied in real or near real time) and used by energy management processor 506.
  • It should be appreciated that, in an alternative embodiment, energy management system 206 could be configured to determine power storage and transfer requirements associated with energy storage 204 in a static fashion. For example, energy management processor 506 could be preprogrammed with any of the above information, or could use look-up tables based on past operating experience (e.g., when the vehicle reaches a certain point, it is nearly always necessary to store additional energy to meet an upcoming demand). Such a program may be based on historical information of the preferred mode of power operation of the vehicle 200 (i.e., the amount of power to be generated, regenerated, stored or discharged from storage) at any point or location of the vehicle 200 along its travel path. The position of the vehicle 200 may be determined by conventional techniques, such as a GPS system 510 and track maps stored in a memory (e.g., database 508) on the vehicle 200, AEI tag readers, vehicle heading and inclination for mining dump trucks, mileposts and other markers along the travel path. In other words, the energy management processor 506 identifies the energy storage and discharge activities of the electrical energy capture system 204 based on the anticipated future power load and power generation for the vehicle 200 (which includes at least one hybrid, electro-motive vehicle), and controls the transmission of electrical power among the primary electric power generator 102, the vehicle propulsion system (e.g., traction motors 108), the electric energy capture system 204, and the dynamic braking grid circuit 110 during the operation of the vehicle 200 to perform the identified energy storage and discharge activities.
  • Referring briefly to FIG. 5B, a block diagram further illustrates the interaction between the energy management processor 506, database 508, power sources 510 and power loads 512. Power sources 510 include, for example, the primary power source (e.g., primary power generator 102), on board auxiliary power (e.g. auxiliary power drive 904 such as shown FIG. 9A), external optional power (e.g., additional energy source 504), on-vehicle propulsion system (e.g., traction motors 108), the electric energy capture system 204. Power loads include, for example, the dynamic braking grid circuit 110, on-board auxiliary loads 524 (e.g., fans, blowers, and external loads (e.g. 224). In this embodiment, the database 508 stores vehicle operating data 530, physical vehicle characteristics data 532, and present real-time operating data 534. Anticipated train data 530 includes data such as schedule/vehicle speed and upcoming track information (e.g., topography, elevation, curvature). Physical vehicle characteristics data 532 includes vehicle weight, power capacity, speed limit, energy storage capacity, and charge/discharge rates of the energy capture system 204. Present real-time operating data 534 includes current speed, current location, current energy needs, and energy storage status. In addition, improved train performance data 536 may be supplied to the energy management processor 506 via operator input, a central command, or may also be included in the database 508. Improved train performance data 536 includes information such as a target fuel efficiency, target power usage, power availability, a speed required to meet a schedule, and target noise and/or exhaust emissions. The energy management processor 506 is responsive to operating data and the improved performance data 536 to calculate an expected power load that will be experienced by the vehicle 200 when traveling on an upcoming section of the track, or path, and calculates the amount of power to generate to satisfy the expected load. Thereafter, the energy management processor 506 controls the transmission of electrical power among the primary electric power generator 102, the vehicle propulsion system 108, the electric energy capture system 204 and the dynamic braking grid circuit 110 in response to the calculated power load so as to enhance the performance of the vehicle 200 over its future anticipated route.
  • In a further embodiment, the energy management processor 506 comprises a first processor module 513 for identifying the energy storage and discharge activities of the electrical energy capture system 204 based on the anticipated future power load and power generation for the vehicle (which includes at least one hybrid, electromotive, self-powered railroad locomotive) for optimizing a train or vehicle performance parameter. The energy management system 206 further comprises a second processor module 514 on the vehicle 200 for controlling transmission of electrical power among the primary electric power generator 102, the vehicle propulsion system (e.g., traction motors 108), the electric energy capture system 204, and the dynamic braking grid circuit 110 during the operation of the vehicle 200 to perform the energy storage activities. The energy storage and discharge activities of the electrical energy capture system 204 comprise charging the storage devices (e.g., battery, flywheel, etc.) at a selected time, controlling the rate at which such charging should occur, discharging from the storage devices at a selected time, and controlling the rate at which such discharge should occur. The vehicle performance parameters comprise fuel consumption of the vehicle 200, noise emissions from the vehicle 200 (such as the noise generated by the engine and the noise generated by the dynamic braking grid 110 cooling fans), rates of engine emissions of the train/vehicle at locations along the travel path, overall engine emissions of the vehicle 200 along the travel path and power consumption of the vehicle 200 over the travel path. The anticipated future power load and power generation for the vehicle 200 is a function of the location of the vehicle 200, the topography of the track, the weight or load of the vehicle 200, wind resistance, track or road conditions, available primary power generation on the vehicle 200 (i.e., principally the number of locomotives in a train), speed limits on the travel of the vehicle 200, and vehicle 200 acceleration requirements. The operation of off-highway hybrid vehicles 200 that serve as mining dump trucks is similar to that described for a vehicle 200 having at least one hybrid locomotive, but with the travel path being along a road and each hybrid vehicle operating alone.
  • The first and second processor modules 513, 514 may be located at spaced locations and may communicate to each other either directly for automated operation, and indeed may be performed by the same processing device (e.g., a single energy management processor 506) or indirectly via a vehicle operator for advisory operation of the vehicle 200. In addition, the first processor module 513 may be located off-board the vehicle 200 for directly or indirectly indicating the energy storage and discharge activities and thus controlling the second processor module 514 from an off-board location. This remote control may take the form of a control signal, as indicated by arrow 516, to the second processor module 514 on the vehicle 200 from a dispatch center directing the second processor module 514 to change the energy storage and discharge activities of the vehicle 200, such as when the dispatch center determines that the vehicle 200 has reached a predetermined location along its route. Alternatively, equipment alongside the route may communicate with the vehicle 200 to change the energy storage and discharge activities when the vehicle is adjacent such equipment.
  • The vehicle operator may also be advised to change the energy storage and discharge activities by instructions or other indicia from a dispatch center displayed at the operator's cab or otherwise communicated to the operator via an interface. For example, a display (not shown) such as a computer monitor is responsive to control signal 516 to advise the operator how to change the energy storage and discharge activities of the vehicle 200. Such operator advice may take the form of instructions as to vehicle motoring, dynamic braking, air brake application and a mixture of air brake and dynamic brake as well as a mixture based on the status of energy storage, the location of the vehicle 200 or the status of the charge of the energy storage device.
  • On routine runs of the vehicle 200, the operator may initiate energy storage and discharge operations based on his own knowledge of the trajectory of the route and vehicle conditions. The initiation may be executed via manual inputs to the second processor module 514 of the energy management processor 506 for either the storage or discharge of power. In a basic form of the present inventions, the vehicle operator may issue a command to the second processor module 514 or to a switch for enabling or disabling the energy capture system 204. If the system is enabled, the operator may further elect between charging or discharging modes, and the rate at which such charging and discharging are to be performed. The operator's actions may be based on the operator's knowledge or experience as to the preferred energy storage system 204 charging and discharging activities in light of the anticipated train/vehicle operations either in terms of its future travel path or its future standby operations, as described hereinafter.
  • In any of these various techniques of anticipating the future power demands on the vehicle 200 (i.e., real-time determination, preprogrammed, remotely controlled or manual control), the condition of the track or road, as described above, may be taken into consideration in determining when to change the energy storage and discharge activities. With a railroad vehicle, wet or snowy conditions will reduce traction and impact the tractive effort of the traction motors and the amount of power regeneration. With an off-highway truck, wet or snowy route conditions, will typically slow travel of the truck.
  • The energy management processor 506 preferably uses the present and/or upcoming travel path situation information, along with Off Highway Vehicle status information, to determine power storage and power transfer requirements. Energy management processor 506 also determines possible energy storage opportunities based on the present and future travel path situation information. For example, based on the travel path profile information, energy management processor 506 may determine that it is more efficient to completely use all of the stored energy, even though present demand is low, because a dynamic braking region is coming up (or because the Off Highway Vehicle is behind schedule and is attempting to make up time). In this way, the energy management system 206 improves efficiency by accounting for the stored energy before the next charging region is encountered. As another example, energy management processor 506 may determine not to use stored energy, despite present demand, if a heavier demand is soon to be encountered in the travel path.
  • Advantageously, energy management system 206 may also be configured to interface with primary energy source controls. Also, as illustrated in FIG. 5, energy storage 204 may be configured to provide an intelligent control interface with energy management system 206.
  • In operation, energy management processor 506 determines a power storage requirement and a power transfer requirement. Energy storage 204 stores electrical energy in response to the power storage requirement. Energy storage 204 provides secondary electric power (e.g. to a traction bus connected to inverters 106 to assist in motoring) in response to the power transfer requirement. The secondary electric power is derived from the electrical energy stored in energy storage 204.
  • As explained above, energy management processor 506 preferably determines the power storage requirement based, in part, on a situation parameter indicative of a present and/or anticipated travel path topographic characteristic. Energy management processor 506 may also determine the power storage requirement as a function of an amount of primary electric power available from the prime mover power source 104. Similarly, energy management processor 506 may determine the power storage requirement as function of a present or anticipated amount of primary electric power required to propel the Off Highway Vehicle.
  • Also, in determining the energy storage requirement, energy management processor 506 preferably considers various parameters related to energy storage 204. For example, energy storage 204 will have a storage capacity that is indicative of the amount of power that can be stored therein and/or the amount of power that can be transferred to energy storage 204 at any given time. Another similar parameter relates to the amount of secondary electric power that energy storage 204 has available for transfer at a particular time.
  • As explained above, system 500 preferably includes a plurality of sources for charging energy storage 204. These sources include dynamic braking power, excess prime mover electric power, and external charging electric power. Preferably, energy management processor 506 determines which of these sources should charge energy storage 204. In one embodiment, present or anticipated dynamic braking energy is used to charge energy storage 204, if such dynamic braking energy is available. If dynamic braking energy is not available, either excess prime mover electric power or external charging electric power is used to charge energy storage 204.
  • In the embodiment of FIG. 5, energy management processor 506 preferably determines the power transfer requirement as a function of a demand for power. In other words, energy storage 204 preferably does not supply secondary electric power unless traction motors 108 are operating in a power consumption mode (i.e., a motoring mode, as opposed to a dynamic braking mode). In one form, energy management processor 506 permits energy storage 204 to supply secondary electric power to inverters 106 until either (a) the demand for power terminates or (b) energy storage 204 is completely depleted. In another form, however, energy management processor 506 considers anticipated power demands and controls the supply of secondary electric power from energy storage 204 such that sufficient reserve power remains in energy storage 204 to augment prime mover power source during peak demand periods. This may be referred to as a “look-ahead” energy management scheme.
  • In the look-ahead energy management scheme, energy management processor 506 preferably considers various present and/or anticipated travel path situation parameters, such as those discussed above. In addition, energy management processor may also consider the amount of power stored in energy storage 204, anticipated charging opportunities, and any limitations on the ability to transfer secondary electric power from energy storage 204 to inverters 106.
  • FIGS. 6A-D, 7A-D, and 8A-E illustrate, in graphic form, aspects of three different embodiments of energy management systems, suitable for use with a hybrid energy vehicle, that could be implemented in a system such as system 500 of FIG. 5. It should be appreciated that these figures are provided for exemplary purposes and that, with the benefit of the present disclosure, other variations are possible. It should also be appreciated that the values illustrated in these figures are included to facilitate a detailed description and should not be considered in a limiting sense. It should be further understood that, the examples illustrated in these figures relate to a variety of large Off Highway Vehicles, including locomotives, excavators and mine trucks and which are generally capable of storing the electric energy generated during the operation of such vehicles. Some of these vehicles travel a known, repetitive or predictable course during operation. For example, a locomotive travels a known travel path, e.g., the railroad track. Such Off Highway Vehicles include vehicles using DC and AC traction motor drives and having dynamic braking/retarding capabilities.
  • There are four similar charts in each group of figures (FIGS. 6A-D, FIGS. 7A-D, and FIGS. 8A-D). The first chart in each group (i.e., FIGS. 6A, 7A, and 8A) illustrates the required power for both motoring and braking. Thus, the first chart graphically depicts the amount of power required by the vehicle. Positive values on the vertical axis represent motoring power (horsepower); negative values represent dynamic braking power. It should be understood that motoring power could originate with the prime mover (e.g., diesel engine, fuel cell or other primary energy source), or from stored energy (e.g., in an energy storage medium in a separate vehicle), or from a combination of the prime mover and stored energy. Dynamic braking power could be dissipated or stored in the energy storage medium.
  • The horizontal axis in all charts reflects time in minutes. The time basis for each chart in a given figure group are intended to be the same. It should be understood, however, that other reference bases are possible.
  • The second chart in each group of figures (i.e., FIGS. 6B, 7B, and 8B) reflects theoretical power storage and consumption. Positive values reflect the amount of power that, if power were available in the energy storage medium, could be drawn to assist in motoring. Negative values reflect the amount of power that, if storage space remains in the energy storage medium, could be stored in the medium. The amount of power that could be stored or drawn is partially a function of the converter and storage capabilities of a given vehicle configuration. For example, the energy storage medium will have some maximum/finite capacity. Further, the speed at which the storage medium is able to accept or supply energy is also limited (e.g., batteries typically charge slower than flywheel devices). Other variables also affect energy storage. These variables include, for example, ambient temperature, the size and length of any interconnect cabling, current and voltage limits on dc-to-dc converters used for battery charging, power ratings for an inverter for a flywheel drive, the charging and discharging rates of a battery, or a motor/shaft limit for a flywheel drive. The second chart assumes that the maximum amount of power that could be transferred to or from the energy storage medium at a given time is 500 h.p. Again, it should be understood that this 500 h.p. limit is included for exemplary purposes. Hence, the positive and negative limits in any given system could vary as a function of ambient conditions, the state and type of the energy storage medium, the type and limits of energy conversion equipment used, and the like.
  • The third chart in each figure group (i.e., FIGS. 6C, 7C, and 8C) depicts a power transfer associated with the energy storage medium. In particular, the third chart illustrates the actual power being transferred to and from the energy storage medium versus time. The third chart reflects limitations due to the power available for storage, and limitations due to the present state of charge/storage of the energy storage medium (e.g., the speed of the flywheel, the voltage in an ultra-capacitor, the charge in the battery, and the like).
  • The fourth chart in each figure group (i.e., FIGS. 6D, 7D, and 8D) depicts actual energy stored. In particular, the fourth chart illustrates the energy stored in the energy storage medium at any particular instant in time.
  • Referring first to FIGS. 6A-D, these figures reflect an energy management system that stores energy at the maximum rate possible during dynamic braking until the energy storage medium is completely full. In this embodiment, all energy transfers to the storage medium occur during dynamic braking. In other words, in the embodiment reflected in FIGS. 6A-D, no energy is transferred to the energy storage medium from excess prime mover power available during motoring, or from other energy sources. Similarly, energy is discharged, up to the maximum rate, whenever there is a motor demand (limited to and not exceeding the actual demand) until the energy storage medium is completely discharged/empty. FIGS. 6A-D assume that the energy storage medium is completely discharged/empty at time 0.
  • Referring now specifically to FIG. 6A, as mentioned above, the exemplary curve identified therein illustrates the power required (utilized) for motoring and dynamic braking. Positive units of power reflect when motoring power is being applied to the wheels 109 of the vehicle (e.g., one or more traction motors are driving Off Highway Vehicle wheels). Negative units of power reflect power generated by dynamic braking.
  • FIG. 6B is an exemplary curve that reflects power transfer limits. Positive values reflect the amount of stored energy that would be used to assist in the motoring effort, if such energy were available. Negative units reflect the amount of dynamic braking energy that could be stored in the energy storage medium if the medium were able to accept the full charge available. In the example of FIG. 6B, the energy available for storage at any given time is illustrated as being limited to 500 units (e.g., horsepower). As explained above, a variety of factors limit the amount of power that can be captured and transferred. Thus, from about 0 to 30 minutes, the Off Highway Vehicle requires less than 500 h.p. If stored energy were available, it could be used to provide all of the motoring power. From about 30 minutes to about 65 or 70 minutes, the Off Highway Vehicle requires more than 500 h.p. Thus, if stored energy were available, it could supply some (e.g., 500 h.p.) but not all of the motoring power. From about 70 minutes to about 75 minutes or so, the Off Highway Vehicle is in a dynamic braking mode and generates less than 500 h.p. of dynamic braking energy. Thus, up to 500 h.p. of energy could be transferred to the energy storage medium, if the medium retained sufficient capacity to store the energy. At about 75 minutes, the dynamic braking process generates in excess of 500 h.p. Because of power transfer limits, only up to 500 h.p. could be transferred to the energy storage medium (again, assuming that storage capacity remains); the excess power would be dissipated in the braking grids. It should be understood that FIG. 6B does not reflect the actual amount of energy transferred to or from the energy storage medium. That information is depicted in FIG. 6C.
  • FIG. 6C is reflects the power transfer to/from the energy storage medium at any given instant of time. The example shown therein assumes that the energy storage medium is completely empty at time 0. Therefore, the system cannot transfer any power from the storage at this time. During a first time period A (from approximately 0-70 minutes), the vehicle is motoring (see FIG. 6A) and no power is transferred to or from the energy storage. At the end of the first time period A, and for almost 30 minutes thereafter, the vehicle enters a dynamic braking phase (see FIG. 6A). During this time, power from the dynamic braking process is available for storage (see FIG. 6B).
  • During a second time period B (from approximately 70-80 minutes), dynamic braking energy is transferred to the energy storage medium at the maximum rate (e.g., 500 units) until the storage is full. During this time there is no motoring demand to deplete the stored energy. Thereafter, during a third time period C (from approximately 80-105 minutes) the storage is full. Consequently, even though the vehicle remains in the dynamic braking mode or is coasting (see FIG. 6A), no energy is transferred to or from the energy storage medium during time period C.
  • During a fourth time period D (from approximately 105-120 minutes), the vehicle resumes motoring. Because energy is available in the energy storage medium, energy is drawn from the storage and used to assist the motoring process. Hence, the curve illustrates that energy is being drawn from the energy storage medium during the fourth time period D.
  • At approximately 120 minutes, the motoring phase ceases and, shortly thereafter, another dynamic braking phase begins. This dynamic braking phase reflects the start of a fifth time period E that lasts from approximately 125-145 minutes. As can be appreciated by viewing the curve during the fifth time period E, when the dynamic braking phase ends, the energy storage medium is not completely charged.
  • Shortly before the 150-minute point, a sixth time period F begins which lasts from approximately 150-170 minutes. During this time period and thereafter (see FIG. 6A), the vehicle is motoring. From approximately 150-170 minutes, energy is transferred from the energy storage medium to assist in the motoring process. At approximately 170 minutes, however, the energy storage is completely depleted. Accordingly, from approximately 170-200 minutes (the end of the sample window), no energy is transferred to or from the energy storage medium.
  • FIG. 6D illustrates the energy stored in the energy storage medium of the exemplary embodiment reflected in FIGS. 6A-D. Recall that in the present example, the energy storage medium is assumed to be completely empty/discharged at time 0. Recall also that the present example assumes an energy management system that only stores energy from dynamic braking. From approximately 0-70 minutes, the vehicle is motoring and no energy is transferred to or from the energy storage medium. From approximately 70-80 minutes or so, energy from dynamic braking is transferred to the energy storage medium until it is completely full. At approximately 105 minutes, the vehicle begins another motoring phase and energy is drawn from the energy storage medium until about 120 minutes. At about 125 minutes, energy from dynamic braking is again transferred to the energy storage medium during another dynamic braking phase. At about 145 minutes or so, the dynamic braking phase ends and storage ceases. At about 150 minutes, energy is drawn from the energy storage medium to assist in motoring until all of the energy has been depleted at approximately 170 minutes.
  • FIGS. 7A-D correspond to an energy management system that includes a “look-ahead” or anticipated needs capability. This embodiment applies particularly when the travel path of the Off Highway Vehicle is known or is planned. Such a system is unlike the system reflected in FIGS. 6A-D, which simply stores dynamic braking energy when it can, and uses stored energy to assist motoring whenever such stored energy is available. The energy management system reflected by the exemplary curves of FIGS. 7A-D anticipates when the prime mover cannot produce the full required demand, or when it may be less efficient for the prime mover to produce the full required demand. As discussed elsewhere herein, the energy management system can make such determinations based on, for example, known present position, present energy needs, anticipated future travel path topography, anticipated future energy needs, present energy storage capacity, anticipated energy storage opportunities, and like considerations. The energy management system depicted in FIGS. 7A-D, therefore, preferably prevents the energy storage medium from becoming depleted below a determined minimum level required to meet future demands.
  • By way of further example, the system reflected in FIGS. 7A-D is premised on a Off Highway Vehicle having a primary energy source that has a “prime mover limit” of 4,000 h.p. Such a limit could exist for various factors. For example, the maximum rated output could be 4,000 h.p., or operating efficiency considerations may counsel against operating the primary power source above 4,000 h.p. It should be understood, however, that the system and figures are intended to reflect an exemplary embodiment only, and are presented herein to facilitate a detailed explanation of aspects of an energy management system suitable for use with off highway hybrid energy vehicles such as, for example, the Off Highway Vehicle system illustrated in FIG. 2.
  • Referring now to FIG. 7A, the exemplary curve illustrated therein depicts the power required for motoring (positive) and braking (negative). At approximately 180 minutes, the motoring demand exceeds 4,000 h.p. Thus, the total demand at that time exceeds the 4,000 h.p. operating constraint for the primary energy source. The “look-ahead” energy management system reflected in FIGS. 7A-D, however, anticipates this upcoming need and ensures that sufficient secondary power is available from the energy storage medium to fulfill the energy needs.
  • One way for the energy management system to accomplish this is to look ahead (periodically or continuously) to the upcoming travel path/course profile (e.g., incline/decline, length of incline/decline, and the like) for a given time period (also referred to as a look-ahead window). In the example illustrated in FIGS. 7A-D, the energy management system looks ahead 200 minutes and then computes energy needs/requirements backwards. The system determines that, for a brief period beginning at 180 minutes, the primary energy source would require more energy than the limit.
  • FIG. 7B is similar to FIG. 6B. FIG. 7B, however, also illustrates the fact that the energy storage medium is empty at time 0 and, therefore, there can be no power transfer from the energy storage medium unless and until it is charged. FIG. 7B also reflects a look-ahead capability.
  • Comparing FIGS. 6A-D with FIGS. 7A-D, it is apparent how the systems respectively depicted therein differ. Although the required power is the same in both examples (see FIGS. 6A and 7A), the system reflected in FIGS. 7A-D prevents complete discharge of the energy storage medium prior to the anticipated need at 180 minutes. Thus, as can be seen in FIGS. 7C and 7D, prior to the 180 minute point, the system briefly stops transferring stored energy to assist in motoring, even though additional stored energy remains available. The additional energy is thereafter transferred, beginning at about 180 minutes, to assist the prime mover when the energy demand exceeds 4,000 h.p. Hence, the system effectively reserves some of the stored energy to meet upcoming demands that exceed the desired limit of the prime mover.
  • It should be understood and appreciated that the energy available in the energy storage medium could be used to supplement driving traction motors associated with the prime mover, or could also be used to drive separate traction motors (e.g., on a load vehicle). With the benefit of the present disclosure, an energy management system accommodating a variety of configurations is possible.
  • FIGS. 8A-E reflect pertinent aspects of another embodiment of an energy management system suitable for use in connection with Off Highway Vehicle energy vehicles. The system reflected in FIGS. 8A-E includes a capability to store energy from both dynamic braking and from the prime mover or another charging power source. For example, a given power source may operate most efficiently at a given power setting (e.g., 4,000 h.p.). Thus, it may be more efficient to operate the power source at 4,000 h.p. at certain times, even when actual motoring demand falls below that level. In such cases, the excess energy can be transferred to an energy storage medium.
  • Thus, comparing FIGS. 8A-D with FIGS. 6A-D and 7A-D, the differences between the systems respectively depicted therein are apparent. Referring specifically to FIGS. 8A and 8D, from about 0-70 minutes, the motoring requirements (FIG. 8A) are less than the exemplary optimal 4,000 h.p. setting. If desirable, the power source could be run at 4,000 h.p. during this time and the energy storage medium could be charged. As illustrated, however, the energy management system determines that, based on the upcoming travel path profile and anticipated dynamic braking period(s), an upcoming dynamic braking process will be able to fully charge the energy storage medium. In other words, it is not necessary to operate the primary energy source at 4,000 h.p. and store the excess energy in the energy storage medium during this time because an upcoming dynamic braking phase will supply enough energy to fully charge the storage medium. It should be understood that the system could also be designed in other ways. For example, in another configuration the system always seeks to charge the storage medium whenever excess energy could be made available.
  • At approximately 180 minutes, power demands will exceed 4,000 h.p. Thus, shortly before that time (while motoring demand is less than 4,000 h.p.), the primary energy source can be operated at 4,000 h.p., with the excess energy used to charge the energy storage medium to ensure sufficient energy is available to meet the demand at 180 minutes. Thus, unlike the systems reflected in FIGS. 6D and 7D, the system reflected in FIG. 8D provides that, for a brief period prior to 180 minutes, energy is transferred to the energy storage medium from the prime mover, even though the vehicle is motoring (not braking).
  • FIG. 8E illustrates one way that the energy management system can implement the look-ahead capability to control energy storage and transfer in anticipation of future demands. FIG. 8E assumes a system having a 200 minute look-ahead window. Such a look-ahead window is chosen to facilitate an explanation of the system and should not be viewed in a limiting sense. Beginning at the end of the window (200 minutes), the system determines the power/energy demands at any given point in time. If the determined demand exceeds the prime mover's capacity or limit, the system continues back and determines opportunities when energy can be stored, in advance of the determined excess demand period, and ensures that sufficient energy is stored during such opportunities.
  • Although FIGS. 6A-D, 7A-D, and 8A-E have been separately described, it should be understood that the systems reflected therein could be embodied in a single energy management system. Further, the look-ahead energy storage and transfer capability described above could be accomplished dynamically or in advance. For example, in one form, an energy management processor (see FIG. 5) is programmed to compare the vehicle's present position with upcoming travel path/course characteristics in real or near real time. Based on such dynamic determinations, the processor then determines how to best manage the energy capture and storage capabilities associated with the vehicle in a manner similar to that described above with respect to FIGS. 7A-D and 8A-E. In another form, such determinations are made in advance. For example, an off-vehicle planning computer may be used to plan a route and determine energy storage and transfer opportunities based on a database of known course information and projected conditions such as, for example, vehicle speed, weather conditions, and the like. Such pre-planned data would thereafter be used by the energy management system to manage the energy capture and storage process. Look-ahead planning could also be done based on a route segment or an entire route. In some Off Highway Vehicle applications, such as a mine truck or excavator, the travel path may be substantially the same on a day-to-day basis, but may change on a weekly or monthly basis as the mine is worked and the travel path changes to adapt to the mine configuration. In these cases, look-ahead planning may be changed as changes to the travel path occur.
  • It should further be understood that the energy management system and methods described herein may be put into practice with a variety of vehicle configurations. The energy management systems and methods described herein may be employed as part of an Off Highway Vehicle in which the energy storage medium is included as part of the vehicle itself. In other embodiments, such systems and methods could be practiced with a Off Highway Vehicle having a separate load vehicle configured to house an external energy capture and storage medium. As another example, the energy management systems and methods herein described could be employed with a Off Highway Vehicle having a separate load vehicle that employs its own traction motors. Other possible embodiments and combinations should be appreciated from the present disclosure and need not be recited in additional detail herein.
  • FIGS. 9A-9G are electrical schematics illustrating several different embodiments of an electrical system suitable for use in connection with a hybrid energy Off Highway Vehicle. In particular, the exemplary embodiments illustrated in these figures relate to a hybrid energy Off Highway Vehicle system. It should be understood that the embodiments illustrated in FIGS. 9A-9G could be incorporated in a plurality of configurations, including those already discussed herein (e.g., a Off Highway Vehicle with a separate load vehicle, a Off Highway Vehicle with a self-contained hybrid energy system, an autonomous load vehicle, and the like). Other vehicles like off highway dump trucks for mining use the same type of configuration using one, two or four traction motors, one per each driving wheel 109.
  • FIG. 9A illustrates an electrical schematic of an Off Highway Vehicle electrical system having a energy capture and storage medium suitable for use in connection with aspects of the systems and methods disclosed herein. The particular energy storage element illustrated in FIG. 9A comprises a battery storage 902. The battery storage 902 is preferably connected directly across the traction bus (DC bus 122). In this exemplary embodiment, an auxiliary power drive 904 is also connected directly across DC bus 122. The power for the auxiliaries is derived from DC bus 122, rather than a separate bus. The auxiliary loads may be operated during periods of vehicle 200 standby operation when the vehicle 200 is available for service (including perhaps being manned), but not being moved under its own propulsive effort. The first processor module 513 of the energy management processor 506 identifies the energy storage and discharge activities of the electrical energy power capture for powering the auxiliary electrical power load 524 during the vehicle standby periods. The auxiliary loads comprise one or more of the utilities for the operator cab, communications equipment, and train operational control equipment. The auxiliary equipment may also comprise an air compressor for maintaining the air pressure in the air brake system for the vehicle 200. Further the auxiliary loads may comprise an engine for maintaining the temperature of the engine coolant above the freezing point. An auxiliary electric power generator (not shown) may also be provided that is carried on the vehicle 200 and connected to the power bus 122, with the energy management processor 506 controlling the transmission of electrical power from the auxiliary electric power generator to the power bus of the vehicle 200. The auxiliary electric power generator may be in the form of an engine-generator set. The power generation equipment may also be in the form of an electrically powered fan that is subject to the application of mechanical force tending to operate the fan at speeds greater than its commanded speed of operation and generating electrical power when it does. It may also be in the form of an electrically powered turbocharger that is subject to the application of mechanical force tending to operate the turbocharger at speeds greater than its commanded speed of operation and generating electrical power when it does.
  • It should be appreciated that more than one type of energy storage element may be employed in addition to battery storage 902. For example, an optional flywheel storage element 906 can also be connected in parallel with battery storage 902. The flywheel storage 906 shown in FIG. 9A is preferably powered by an AC motor or generator connected to DC bus 122 via an inverter or converter. Other storage elements such as, for example, capacitor storage devices (including ultra-capacitors) and additional battery storages (not shown) can also be connected across the DC bus and controlled using choppers and/or converters and the like. It should be understood that although battery storage 902 is schematically illustrated as a single battery, multiple batteries or battery banks may likewise be employed.
  • In operation, the energy storage elements (e.g., battery storage 902 and/or any optional energy storage elements such as flywheel 906) are charged directly during dynamic braking operations. Recall that, during dynamic braking, one or more of the traction motor subsystems (e.g., 124A-124B) operate as generators and supply dynamic braking electric power that is carried on DC bus 122. Thus, all or a portion of the dynamic braking electric power carried on DC bus 122 may be stored in the energy storage element because the power available on the bus exceeds demand. When the power source is motoring, the battery (and any other optional storage element) is permitted to discharge and provide energy to DC bus 122 that can be used to assist in driving the traction motors. This energy provided by the storage element may be referred to as secondary electric power. Advantageously, because the auxiliaries are also driven by the same bus in this configuration, the ability to take power directly from DC bus 122 (or put power back into bus 122) is provided. This helps to minimize the number of power conversion stages and associated inefficiencies due to conversion losses. It also reduces costs and complexities.
  • In an alternative embodiment, a fuel cell provides all or a portion of the primary power. In this embodiment, the energy storage device may include an electrolysis or similar fuel cell energy source generation. As one example, the energy generated during dynamic braking powers electrolysis to create hydrogen from water, one water source being the waster water created by the fuel cell during prime energy generation. The generated hydrogen is stored and is used as a fuel for the primary power source, the fuel cell.
  • It should be appreciated that the braking grids may still be used to dissipate all or a portion of the dynamic braking electric power generated during dynamic braking operations. For example, an energy management system is preferably used in connection with the system illustrated in FIG. 9A. Such an energy management system is configured to control one or more of the following functions: primary energy generation, energy storage; stored energy usage; and energy dissipation using the braking grids. It should further be appreciated that the battery storage (and/or any other optional storage element) may optionally be configured to store excess prime mover electric power that is available on the traction bus.
  • Those skilled in the art should appreciate that certain circumstances preclude the operation of a diesel engine or fuel cell operating as the primary energy source when the Off Highway Vehicle needs to be moved. For example, the engine or fuel cell may not be operable. As another example, various rules and concerns may prevent the operation of a diesel engine inside buildings, yards, maintenance facilities, mines or tunnels. In such situations, the Off Highway Vehicle may be moved using a fuel cell or stored secondary power. Advantageously, various hybrid energy Off Highway Vehicle configurations disclosed herein permit the use of stored power for battery jog operations directly. For example, the battery storage 902 of FIG. 9A can be used for battery jog operations. Further, the prior concept of battery jog operations suggests a relatively short time period over a short distance. The various configurations disclosed herein permit jog operations for much longer time periods and over much longer distances.
  • FIG. 9B illustrates a variation of the system of FIG. 9A. A primary difference between FIGS. 9A and 9B is that the system shown in FIG. 9B includes chopper circuits DBC1 and DBC2 connected in series with the braking grids. The chopper circuits DBC1 and DBC2 allow fine control of power dissipation through the grids that, therefore, provides greater control over the storage elements such as, for example, battery storage 902. In one embodiment, chopper circuits DBC1 and DBC2 are controlled by an energy management system (see FIG. 5). It should also be appreciated that chopper circuits DBC1 and DBC2, as well as any optional storage devices added to the circuit (e.g., flywheel storage 906), could also be used to control transient power. In some embodiments, a combination of dynamic braking contactors and chopper circuits may be utilized.
  • In the configuration of FIG. 9A, the dynamic braking contactors (e.g., DB1, DB2) normally only control the dynamic braking grids in discrete increments. Thus, the power flowing into the grids is also in discrete increments (assuming a fixed DC voltage). For example, if each discrete increment is 1,000 h.p., the battery storage capability is 2,000 h.p., and the braking energy returned is 2,500 h.p., the battery cannot accept all of the braking energy. As such, one string of grids is used to dissipate 1,000 h.p., leaving 1,500 h.p. for storage in the battery. By adding choppers DBC1, DBC2, the power dissipated in each grid string can be more closely controlled, thereby storing more energy in the battery and improving efficiency. In the foregoing example, choppers DBC1 and DBC2 can be operated at complementary 50% duty cycles so that only 500 h.p. of the braking energy is dissipated in the grids and 2,000 h.p. is stored in the battery.
  • FIG. 9C is an electrical schematic of a Off Highway Vehicle electrical system illustrating still another configuration for implementing an energy storage medium. In contrast to the systems illustrated in FIGS. 9A and 9B, the battery storage 902 of FIG. 9C is connected to DC bus 122 by way of a dc-to-dc converter 910. Such a configuration accommodates a greater degree of variation between DC bus 122 voltage and the voltage rating of battery storage 902. Multiple batteries and/or DC storage elements (e.g., capacitors) could be connected in a similar manner. Likewise, chopper control, such as that illustrated in FIG. 9B could be implemented as part of the configuration of FIG. 9C. It should be further understood that the dc-to-dc converter 910 may be controlled via an energy management processor (see FIG. 5) as part of an energy management system and process that controls the storage and regeneration of energy in the energy storage medium.
  • In operation, the electric power carried on DC bus 122 is provided at a first power level (e.g., a first voltage level). The dc-to-dc converter 910 is electrically coupled to DC bus 122. The dc-to-dc converter 910 receives the electric power at the first power level and converts it to a second power level (e.g., a second voltage level). In this way, the electric power stored in battery storage 902 is supplied at the second power level. It should be appreciated that the voltage level on DC bus 122 and the voltage supplied to battery storage 902 via dc-to-dc converter 910 may also be at the same power level. The provision of dc-to-dc converter 910, however, accommodates variations between these respective power levels.
  • FIG. 9D is an electrical schematic of an Off Highway Vehicle electrical system that is similar to the system shown in FIG. 9C. One difference between these systems is that the auxiliary power subsystem 904 reflected in FIG. 9D is connected to DC bus 122 via a pair of dc-to- dc converters 912 and 914. Such a configuration provides the advantage of allowing the use of existing, lower voltage auxiliary drives and/or motor drives having low insulation. On the other hand, in this configuration, the auxiliary power traverses two power conversion stages. It should be understood that although FIG. 9D illustrates the auxiliaries as consuming power all of the time—not regenerating—bi-directional dc-to-dc converters can also be used in configurations in which it is desirable to have the auxiliaries regenerate power (see, for example, FIG. 9G). These dc-to- dc converters 912 and 914 are preferably controlled via an energy management system that controls the storage and regeneration of energy in the energy storage medium.
  • There are auxiliary power loads 524 on the vehicle 200 which may generate power under certain conditions and thus operate as auxiliary power generators. For example, when the speed of a blower or fan is increased power is consumed from the DC bus 122, but conversely when the speed of a blower or fan is decreased power is regenerated and returned to the bus. Similarly, when wind or the speed of the vehicle 200 drives the fan a speed higher than its commanded speed, power is regenerated and returned to the bus 122. Further if electric turbochargers are used on the vehicle 200, electric power drives the turbocharger at low engine speeds, but engine exhaust drives the turbocharger at high engine speeds, thereby producing electrical power returned to the bus. In each of these examples, the power returned to the bus by the auxiliary power loads 524 is available for storage or to drive the traction motors 108 or other auxiliary equipment that is then consuming power.
  • Auxiliary power generation equipment (also known as an auxiliary power unit or APU) of the type described in U.S. Pat. No. 6,470,844 may also be provided to power the auxiliary equipment when the primary power generation equipment is not in operation. Typically, such auxiliary power generation equipment takes the form of a relatively small engine-generator set and allows the primary power generation equipment to remain inactive during periods of time in which only light power loads, such as only auxiliary power loads, are imposed on the power system. The auxiliary power generation equipment may be operated at high speeds and thus at near its maximum performance point during such periods of light load, whereas the primary power generation equipment would be operate at relatively slow speeds, which is fuel inefficient.
  • To maximize fuel efficiency, it is known in the prior art to shut down the primary power generation equipment rather than to run the engine at idle. Batteries on the prior art vehicle (and/or the above-noted APU, if installed on the vehicle) provide power to the auxiliary equipment on the vehicle 200 such as operator cab heating and cooling, lights, communications and control, during periods of shut-down. However the batteries on the prior art vehicle are of relatively small power storage capacity and thus the primary power generation equipment must be started relatively frequently (such as every few hours), whenever the battery charge is low. Similarly, the prior art batteries lack the power storage capacity to power the air compressors for increasing the air pressure when air brake pressure drops or to warm the engine water temperature if it drops close to freezing. In these instances the primary power generation equipment must be started again. In contrast, with the hybrid power system of the instant inventions, the power storage system is of significantly greater capacity so that auxiliary equipment may be operated for prolonged periods of time. The power storage devices also have the capacity to power the air compressors and even to warm the engine so that engine start up can be avoided for extended periods of time. Thus the shut down periods can be extended from hours in the prior art systems to days in the hybrid power system of the instant inventions for increased fuel savings, reduced wear on the engine, reduced engine emissions and reduced noise generation in populated areas.
  • FIG. 9E illustrates, in electrical schematic form, still another configuration of an energy storage medium. Unlike the examples illustrated in FIGS. 9A-9D, however, the configuration of FIG. 9E includes a separate DC battery bus 922. The separate battery bus 922 is electrically isolated from main DC bus 122 (the traction bus) by a dc-to-dc converter 920 (also referred to as a two-stage converter). Accordingly, the power flow between the traction bus (DC bus 122), the energy storage elements, and the auxiliaries preferably passes through the bi-directional dc-to-dc converter 920. In the configuration of FIG. 9E, any additional storage elements (e.g., flywheels, capacitors, and the like) are preferably connected across the DC battery bus 922, rather than across the main DC bus 122. The dc-to-dc converter 920 may be controlled via an energy management system that controls the storage and regeneration of energy in the energy storage medium.
  • FIG. 9F reflects a variation of the configuration of FIG. 9E. In the configuration of FIG. 9F, any variable voltage storage elements (e.g., capacitors, flywheels, and the like) that are used in addition to battery 906 are connected directly across main DC bus 122 (the traction bus). However, battery 906 remains connected across the isolated DC battery bus 922. Advantageously, in this configuration dc-to-dc converter 920 matches the voltage level of battery storage 902 but avoids two conversions of large amounts of power for the variable voltage storage elements. Like the other configurations, the configuration of FIG. 9F may be implemented in connection with an energy management system that oversees and controls the storage and regeneration of energy in the energy storage medium.
  • FIG. 9G reflects a variation of the configuration of FIG. 9F in which only the auxiliaries are connected to a separate auxiliary bus 930 through two-stage converter 920. Accordingly, electric power carried on DC bus 122 is provided at a first power level and power carried on the auxiliary bus 930 is provided at a second power level. The first and second power levels may or may not be the same.
  • FIGS. 10A-10C are electrical schematics that illustrate additional embodiments, including embodiments particularly suited for modifying existing AC Off Highway Vehicles. It should be understood, however, that the configurations illustrated and described with respect to FIGS. 10A-10C are not limited to retrofitting existing Off Highway Vehicles.
  • FIG. 10A illustrates a variation of the embodiment illustrated in FIG. 9C. The embodiment of FIG. 10A uses only battery storage devices and does not include a non-battery storage, such as optional flywheel storage 906. In particular, FIG. 10A illustrates an embodiment having a converter 1006 (e.g., a dc-to-dc converter) connected across DC bus 122. A battery storage element 1002 is connected to the converter 1006. Additional converters and battery storage elements may be added to this configuration in parallel. For example, another converter 1008 may be connected across DC bus 122 to charge another battery storage element 1004. One of the advantages of the configuration of FIG. 10A is that it facilitates the use of multiple batteries (or battery banks) having different voltages and/or charging rates.
  • In certain embodiments, power transfer between energy storage devices is facilitated. The configuration of FIG. 10A, for instance, allows for energy transfer between batteries 1002 and 1004 via the DC bus 122. For example, if during motoring operations, the primary power source supplies 2,000 h.p. of power to the dc traction bus, the traction motors consume 2,000 h.p., and battery 1002 supplies 100 h.p. to the traction bus (via converter 1006), the excess 100 h.p. is effectively transferred from battery 1002 to battery 1004 (less any normal losses).
  • The configuration illustrated in FIG. 10B is similar to that of FIG. 10A, except that it uses a plurality of converters (e.g., converters 1006, 1008) connected to the DC bus 122 to supply a common battery 1020 (or a common battery bank). One of the advantages of the configuration of FIG. 10B is that it allows the use of relatively smaller converters. This may be particularly advantageous when retrofitting an existing Off Highway Vehicle that already has one converter. A similar advantage of this configuration is that it allows the use of higher capacity batteries. Still another advantage of the configuration of FIG. 10B is that it permits certain phase shifting operations, thereby reducing the ripple current in the battery and allowing the use of smaller inductors (not shown). For example, if converters 1006 and 1008 are operated at 1,000 Hz, 50% duty cycles, and the duty cycles are selected such that converter 1006 is on while converter 1008 is off, the converter effect is as if a single converter is operating at 2,000 Hz, which allows the use of smaller inductors.
  • FIG. 10C an electrical schematic illustrating another embodiment that is particularly well suited for retrofitting an existing Off Highway Vehicle to operate as a hybrid energy Off Highway Vehicle. The configuration of FIG. 10C uses a double set of converters 1006, 1030 and one or more batteries 1020 (of the same or different voltage levels). An advantage of the system depicted in FIG. 10C is that the battery 1020 can be at a higher voltage level than the DC bus 122. For example, if the converters 1006, 1008 illustrated in FIGS. 10A and 10B are typical two quadrant converters, they will also have freewheeling diodes associated therewith (not illustrated). If the voltage of battery 1002, 1004 (FIG. 10A), or 1020 (FIG. 10B) exceeds the DC bus voltage, the battery will discharge through the freewheeling diode. A double converter, such as that illustrated in FIG. 10C, avoids this situation. One advantage of this capability is that the voltage level on the DC bus can be modulated to control power to the dynamic braking grids independently.
  • FIG. 11 is an electrical schematic that illustrates one way of connecting electrical storage elements. In particular, FIG. 11 illustrates an electrical schematic of a system that may be used for retrofitting a prior art Off Highway Vehicle to operate as a hybrid energy Off Highway Vehicle, or for installing a hybrid energy system as part of the original equipment during the manufacturing process. The embodiment illustrated assumes an AC diesel-electric Off Highway Vehicle with four wheels, a pair of wheels located on two axle-equivalents. Two wheels 109 of a single axle-equivalent are driven by individual traction motor subsystems. However, in other embodiments all four wheels 109A and 109B of the two axle-equivalents may be driven by four traction motor subsystems, or any number of traction motors are envisioned consistent with the current invention. For instance, while not commonplace for Off Highway Vehicles would be to have two wheels 109A on a single axle with a single traction motor subsystem for the single axle two wheel arrangement.
  • Typically, the primary energy source has extra capability (e.g., power capacity) available in the majority of operating conditions. Such extra capability may be due to lower actual ambient conditions, as compared with the design criteria. For example, some Off Highway Vehicles are designed to operate in ambient temperatures of up to 60 degrees Celsius, which is well above typical operating conditions. Considerations other than thermal conditions may also result in extra capacity during significant operating periods. In a typical Off Highway Vehicle, for instance, the use of all of the traction motors may only be required for low speed and when the Off Highway Vehicle operates in an adhesion limited situation (poor tractive conditions). In such case, the weight on the driven wheels 109 determines the pulling power/tractive effort. Hence, all available wheel/motors need to be driven to obtain maximum tractive effort. This can be especially true if the Off Highway Vehicle is heavily loaded during poor tractive conditions (snow, mud, or wet). Such conditions may normally be present for only a fraction of the operating time. During the majority of the operating time, all of the traction motors/inverters are not fully utilized to supply tractive effort. Thus, for example, when retrofitting an existing prior art Off Highway Vehicle, or manufacturing a new Off Highway Vehicle, it is possible to take advantage of this partial underutilization of the traction motors/inverters.
  • By way of a specific example, the embodiment of FIG. 11 is configured such that one of the two traction motor subsystems is connected to the energy storage element 1102, through a transfer switch 1104 and a plurality of inductors 1110. More particularly, the traction motor subsystem 124B includes an inverter 106B and a traction motor 1108B. Such a configuration is suited for retrofitting a single wheel 109 of an existing prior art Off Highway Vehicle. It should be understood that retrofitting a typical prior art Off Highway Vehicle requires the addition of power conversion equipment and associated cooling devices. The space available for installing the retrofit equipment, however, is generally limited. Therefore, one of the advantages of the “single-wheel” configuration of FIG. 11 is that it tends to minimize impacts and makes retrofitting a more viable option. Similar advantages, however, may also be enjoyed when the hybrid energy system is installed as original equipment during manufacturing.
  • The transfer switch 1104 preferably comprises a three-phase set of contactors or a set of motorized contacts (e.g., bus bars) that connect inverter 106B to traction motor 1108B when all of the wheels 109A and 109B are needed, and connects inverter 106B to inductors 1110 and battery 1102 when battery charging or discharging is desired. Thus, transfer switch 1104 has a first connection state and a second connection state. In the first connection state, transfer switch 1104 connects inverter 106B to traction motor 1108B. In the second connection state, transfer switch connects inverter 106B to battery 1102.
  • Transfer switch 1104 is preferably controlled by a switch controller 1120. In one form, the switch controller 1120 is a manual operator-controlled switch that places transfer switch 1104 into the first or the second connection state. In another form, the switch controller reflects control logic that controls the connection state of transfer switch 1104 in accordance with one operating scheme. Table I (below) is indicative of one such operating scheme. Other schemes are possible.
  • Although FIG. 11 illustrates a three-phase connection between battery 1102 and transfer switch 1104, it is not necessary that all three phases be used. For example, if the power requirement is relatively low, only one or two phases may be used. Similarly, three separate batteries could be independently connected (one to each phase), or one large battery could be connected to two phases, with a relatively smaller battery connected to the third phase. Further, power transfer between multiple batteries having different voltage potentials and/or capacities is also possible.
  • The configuration of FIG. 11 is especially advantageous in the context of retrofitting existing Off Highway Vehicles because transfer switch 1104 is believed to be much less expensive than adding additional inverters and/or dc-to-dc converters. Such advantage, however, is not limited to the retrofit context. Also, it should be understood that the configuration of FIG. 11 is not limited to a single inverter per transfer switch configuration.
  • FIG. 11 further illustrates an optional charging source 1130 that may be electrically connected to DC traction bus 122. The charging source 1130 may be, for example, another charging energy source or an external charger, such as that discussed in connection with FIG. 5.
  • The general operation of the configuration of FIG. 11 will be described by reference to the connection states of transfer switch 1104. When transfer switch 1104 is in the first switch state, the second wheel 109B is selectively used to provide additional motoring or braking power. In this switch state, battery 1102 is effectively disconnected and, therefore, neither charges nor discharges.
  • When the second wheel 109B is not needed, switch controller 1120 preferably places transfer switch 1104 in the second connection state-battery 1102 is connected to inverter 106B. If, at this time, the other traction motor (e.g., traction motor 108A) is operating in a dynamic braking mode, electrical energy is generated and carried on DC traction bus 122, as described in greater detail elsewhere herein. Inverter 106B transfers a portion of this dynamic braking electrical energy to battery 1102 for storage. If, on the other hand, the other traction motor is operating in a motoring mode, inverter 106B preferably transfers any electrical energy stored in battery 1102 onto DC traction bus 122 to supplement the primary electric power supplied by prime mover power source 104. Such electrical energy transferred from battery 1102 to DC traction bus 122 may be referred to as secondary electric power. In one embodiment, inverter 106B comprises a chopper circuit for controlling the provision of secondary electric power to DC traction bus 122 from battery 1102.
  • It should be understood, however, that battery 1102 can also be charged when the other traction motors are not operating in a dynamic braking mode. For example, the battery can be charged when transfer switch 1104 is in the second connection state (battery 1102 is connected to inverter 106B) and the other traction motors are motoring or idling if the amount of power drawn by the other traction motors is less than the amount of primary electric power carried on DC traction bus 122.
  • Advantageously, battery 1102 can also be charged using charging electric power from optional energy source 1130. As illustrated in FIG. 11, optional energy source 1130 is preferably connected such that it provides charging electric power to be carried on DC traction bus 122. When optional energy source 1130 is connected and providing charging electric power, switch controller 1120 preferably places transfer switch 1104 in the second connection state. In this configuration, inverter 106B transfers a portion of the electric power carried on DC traction bus 122 to battery 1102 for storage. As such, battery 1102 may be charged from optional energy source 1130.
  • In summary, in the embodiment of FIG. 11, when transfer switch is in the second connection state, battery 1102 may be charged from dynamic braking energy, from excess Off Highway Vehicle energy (i.e., when the other traction motors draw less power than the amount of primary electric power carried on DC traction bus 122), and/or from charging electric power from optional charging source 1130. When transfer switch 1104 is in the second connection state and the other traction motor draws more power than the amount of primary electric power carried on DC traction bus 122, inverter 106B transfers secondary electric power from battery 1102 to DC traction bus 122 to supplement the primary electric power. When transfer switch 1104 is in the first connection state, battery 1102 is disconnected and traction motor 1108B is operable to assist in motoring and/or dynamic braking. Table I summarizes one set of operating modes of the embodiment of FIG. 11.
    TABLE I
    One Axle Two Axles
    Low Speed and Low Battery Fully Charged &
    Tractive Effort Dynamic Braking
    Settings
    High Speed Motoring No Battery Charging & Motoring
    Battery Discharged & Motoring
    Very High Speed Dynamic Braking
  • While FIG. 11 illustrates an energy storage device in the form of a battery, other energy storage devices, such as flywheel systems or ultra-capacitors, may also be employed instead of or in addition to battery 1102. Further, it should be understood that the configuration of FIG. 11 may be scaled. In other words, the configuration can be applied to more than one axle.
  • Although the foregoing descriptions have often referred to AC Off Highway Vehicle systems to describe several pertinent aspects of the disclosure, the invention should not be interpreted as being limited to such Off Highway Vehicle systems. For example, aspects of the present disclosure may be employed with diesel-electric, fuel cell, “all electric,” third-rail, trolley or overhead powered Off Highway Vehicles. Further, aspects of the hybrid energy Off Highway Vehicle systems and methods described herein can be used with Off Highway Vehicles using a DC generator rather than an AC alternator and combinations thereof. Also, the hybrid energy Off Highway Vehicle systems and methods described herein are not limited to use with AC traction motors. As explained elsewhere herein, the energy management system disclosed herein may be used in connection with locomotives, mine trucks, large excavators, etc. In addition, the primary power generation equipment may include not only diesel engine generators and fuel cells, but also turbine generators, which run at relatively high speeds of rotation and have a high power to weight and size ratio. The turbines may be powered by liquid fuel or gas in either a gaseous or liquefied form.
  • The fuel cells may be of any suitable cell construction or chemistry, including phosphoric acid, proton exchange membrane or solid polymer fuel cell, molten carbonate, solid oxide, alkaline, direct methanol, regenerative, zinc air, and/or protonic ceramic. As noted above, the fuel cell may be used for the generation of electrical power, the storage of energy or both generation and storage. Further the fuel cell may be the primary power generation and/or storage device, used in combination with diesel engines, turbines or APU's for power generation or used in combination with batteries, ultra-capacitors or flywheels for power storage.
  • As noted in the Field of Invention section, the hybrid systems of the instant inventions are adapted for use on various off-highway vehicles, including so-called road locomotives, and large mining dump trucks capable of moving large loads. Road locomotives have engines that supply 4000-6000 hp and move trains carrying loads (including the weight of the railcars) of up to 40,000 to 60,000 tons. Mining dump trucks have engines providing 1500 hp or more, and carry loads (including the weight of the truck itself) of up to 1500 tons.
  • Road locomotives, as noted above, have engine power generation capability in the range of 4000-6000 HP. The power regeneraton capability of the traction motors for such locomotives is in the range of 4000-8000 HP, and the electric energy capture system has a storage capacity of 750-5000 HPHR. Thus the charging time (or charging ratio) of the capture system is approximately 0.1 hour to 1 hour with the use of only engine generated power, somewhat less than that with the use of traction motor regeneration power, and approximately half of that, if both the engine generation and traction motor regeneration power are used. The size of the electrical energy capture system relative to the available space on the locomotive is a limiting factor on the capacity of the energy capture system that can be used.
  • Road switcher vehicles have engine power generation capability in the range of 1000-4000 HP. The power regeneraton capability of the traction motors for such vehicles is in the range of 1000-5000 HP, and the electric energy capture system has a storage capacity of 500-1500 HPHR. Thus the charging time (or charging ratio) of the capture system is approximately 0.1 hour to 1.5 hours with the use of only engine generated power, somewhat less than that with the use of traction motor regeneration power, and approximately half of that, if both the engine generation and traction motor regeneration power are used.
  • Yard switcher vehicles have engine power generation capability of approximately 1000 HP and power regeneration capability of its traction motors also of approximately 1000 HP. The electric energy capture system of such vehicles has a storage capacity of 250-1000 HPHR. Thus the charging time (or charging ratio) of the capture system is approximately 0.25 hour to 1 hour, with the use of only engine generated power, the same ratio with the use of traction motor regeneration power, and approximately half of that, if both the engine generation and traction motor regeneration power are used.
  • Yard switcher vehicles using an auxiliary power unit (APU) of the type described above have engine power generation capability in the range of 250-500 HP. The power regeneration capability of the traction motors for such vehicles is in the range of 1000-2000 HP, and the electric energy capture system has a storage capacity of 250-1000 HPHR. Thus the charging time (or charging ratio) of the capture system is approximately 0.5 hour to 4 hours, with the use of only engine generated power, approximately 0.1 to 1 hour with the use of traction motor regeneration power, and somewhat less than that, if both the engine generation and traction motor regeneration power are used.
  • Passenger locomotives, as noted above, have engine power generation capability in the range of 2000-4000 HP. The power regeneration capability of the traction motors for such locomotives is in the range of 2000-5000 HP, and the electric energy capture system has a storage capacity of 50-200 HPHR. Thus the charging time (or charging ratio) of the capture system is approximately 0.01 hour to 0.1 hour, with the use of only engine generated power, somewhat less than that with the use of traction motor regeneration power, and approximately half of that, if both the engine generation and traction motor regeneration power are used. Thus the preferred charging ratio for hybrid vehicles of the current inventions with traction motor power regeneration is less than 4. The capacity of the various electric energy capture systems of these various hybrid vehicles is effective to enable optimization of the performance parameters of the vehicles.
  • The capacity of the energy storage devices enable a corresponding period of operation of the vehicle, without the operation of the primary power generation equipment, such as for limp home operation upon the loss of the primary power generation equipment. As described above the electrical energy storage devices enable prolonged periods of vehicle standby operation when only the vehicle auxiliary equipment needs to be powered as well as the operation of air compressors, and the operation of engine heating devices in cold weather
  • It should be appreciated that the principles of the instant inventions may apply to any suitable computer equipment, such as other mainframes, minicomputers, microprocessors, microcontrollers, network servers, supercomputers, personal computers, or workstations, as well as other electronics applications. Therefore, while the specification herein focuses on particular applications, it should be understood that the instant inventions are not limited to the particular hardware designs, software designs, and communications protocols disclosed herein. The inventions can also be embodied, in part, as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data, which thereafter can be read by a computer system. Examples of computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices. The computer readable medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • Based on the foregoing specification, the inventions may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof. Any such resulting program, having computer-readable code means, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the invention. The computer readable media may be, for example, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), etc., or any transmitting/receiving medium such as the Internet or other communication network or link. The article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.
  • An apparatus for making, using or selling the inventions may be one or more processing systems including, but not limited to, a central processing unit (CPU), memory, storage devices, communication links and devices, servers, 1/O devices, or any sub-components of one or more processing systems, including software, firmware, hardware or any combination or subset thereof, which embody the invention as set forth in the claims.
  • User input may be received from the keyboard, mouse, pen, voice, touch screen, or any other means by which a human can input data to a computer, including through other programs such as application programs.
  • One skilled in the art of computer science will be able to combine the software created as described with appropriate general purpose or special purpose computer hardware to create a computer system or computer sub-system embodying the method of the invention.
  • It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims.
  • As can now be appreciated, the hybrid energy systems and methods herein described provide substantial advantages over the prior art. Such advantages include improved performance parameter such as fuel efficiency, increased fuel range, and reduced emissions such as transient smoke. Other advantages include improved speed by the provision of an on-demand source of power for a horsepower burst. Significantly, the hybrid energy Off Highway Vehicle system herein described may also be adapted for use with existing Off Highway Vehicle systems.
  • When introducing elements of the invention or embodiments thereof, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
  • In view of the above, it will be seen that several aspects of the invention are achieved and other advantageous results attained.
  • As various changes could be made in the above exemplary constructions and methods without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. It is further to be understood that the steps described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated. It is also to be understood that additional or alternative steps may be employed.

Claims (77)

1. A hybrid energy, electro-motive, self-powered railroad train moving along a generally predetermined travel path, the train comprising:
at least one railway vehicle supported on a plurality of wheels for engaging railroad rails;
a vehicle propulsion system mechanically coupled to at least one of the wheels of the railway vehicle;
a primary electric power generator carried on the railroad train for generating primary electrical power to be supplied to the vehicle propulsion system, said vehicle propulsion system having a motoring mode in which the propulsion system is responsive to electric power supplied to the propulsion system for generating mechanical energy that is applied to said wheel for propelling the railroad train, and said vehicle propulsion system further having a dynamic braking mode in which the propulsion system is responsive to mechanical energy from said wheel during dynamic braking operations of the railroad train for generating dynamic braking electrical power;
an electrical energy capture system carried on the railroad train for storing electrical power generated on the train and for discharging the stored electrical power for use on the train, including selectively using the stored electrical power to propel the railroad train;
a power bus for electrically connecting the primary electric power generator, the vehicle propulsion system and the electrical energy capture system;
a dynamic braking resistance grid circuit electrically connected to the power bus for dissipating excess electrical power on the railroad train;
an energy management system comprising
an energy management processor in electrical connection with the primary power source, the vehicle propulsion system, the electrical energy capture system and the dynamic barking resistance grid circuit;
a database communicatively connected to the energy management processor storing data indicative of anticipated future train operations, data indicative of physical characteristics of the vehicle, and data indicative of present train operations; and
said energy management processor controlling transmission of electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system and the dynamic braking grid circuit in response to the data indicative of anticipated future train operations, the data indicative of physical characteristics of the vehicle and the data indicative of present train operations so as to enhance a performance parameter of the train over its future anticipated travel path.
2. The train of claim 1, wherein the train performance parameter comprises fuel consumption of the train.
3. The train of claim 1, wherein the travel path includes periods of train standby operation in which the train is not in motion and the train performance parameter comprises fuel consumption of the train including for train standby operation.
4. The train of claim 1, wherein the train performance parameter comprises rates of engine emission of the train.
5. The train of claim 1 wherein the train performance parameter comprises the overall engine emission of the train over the travel path.
6. The train of claim 1, wherein the train performance parameter comprises the overall power consumption of the train over the travel path.
7. The train of claim 1, wherein the train performance parameter comprises noise emissions.
8. The train of claim 7, wherein the noise emissions comprises engine operating noise emissions.
9. The train of claim 7, wherein the noise emissions comprises noise generated by cooling fans for the dynamic braking grid circuits.
10. The train of claim 1, wherein the data indicative of anticipated future train operations includes one or more of the following:
a topography along the travel path;
curvature along travel path;
a speed limit on the travel path;
a stand-by operation;
elevation of travel path of the train; and
and train acceleration requirements.
11. The train of claim 1, wherein data indicative of physical characteristics of the train includes one or more of the following:
a weight of the train;
power capacity of the train;
maximum speed of the train;
charging rate of the electrical energy capture system;
discharge rate of the electrical energy capture system;
a number of cars in train; and
a length of the train.
12. The train of claim 1, wherein the data indicative of present train operations includes one or more of the following:
weather conditions along the travel path of the train;
wind resistance on the train;
location of the train;
speed of the train;
present energy needs; and
energy storage status of the electrical energy capture system.
13. The train of claim 12 further including a sensor for sensing a present train operations condition, wherein the database is electrically connected to the sensor for receiving signals indicative of the sensed current operating condition of the train.
14. The train of claim 1, wherein the energy management processor retrieves the data stored in the database to identify an anticipated future power load on the train and a power generation requirement of the train as a function of the anticipated future train operations data, physical characteristics train data, and the present train operation data, for optimizing the train performance parameter, and wherein the energy management processor controls transmission of the electric power as a function of the identified future power load and/or a power requirement of the train.
15. The train of claim 14, wherein the anticipated future power load comprises an electric power load imposed by one or more electrical devices selected from the group comprising the propulsion system during motoring of the train, the electrical energy capture system during energy storage, an auxiliary power load on the train and a load external to the train.
16. The train of claim 14, wherein the power generation requirement comprises electrical power generated by one or more electrical devices selected from the group comprising the primary electric power generator, an auxiliary electric power generator, an external power source, the propulsion system during braking of the train, and the electrical energy capture system during energy discharge.
17. The train of claim 15, wherein the auxiliary power load comprises one or more of the loads selected from the group comprising power loads for an operator cab, an air compressor, a dynamic braking grid cooling fan, an electric turbocharger and an engine heater device.
18. The train of claim 16, wherein the power generation requirement comprises electrical power generated by one or more electrical devices selected from the group comprising the primary electric power generator, an auxiliary electric power generator, an external power source, the propulsion system during braking of the train, and the electrical energy capture system during energy discharge.
19. The train of claim 16, wherein the auxiliary electric power generator comprises one or more of the pieces of equipment selected from the group comprising a dynamic braking grid cooling fan, and an electric turbocharger.
20. The train of claim 1, wherein the energy management system is responsive to a train location determination device and a track map of the anticipated travel path to optimize the performance parameter of the train over its future anticipated travel path.
21. The train of claim 20, wherein the database stores data indicative of energy storage and discharge activities based on train location and the anticipated travel path.
22. The train of claim 1, wherein the energy management processor includes a first processor module for identifying energy storage and discharge activities of the electrical energy capture wherein said first processor module is responsive to the data indicative of anticipated future train operations, the data indicative of physical characteristics of the vehicle, and the data indicative of present train operations to identify anticipated future power loads and power generation requirements for optimizing the performance parameter over the travel path, and a second processor module on the train for controlling transmission of electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system, and the dynamic braking grid circuit during the operation of the railroad train to achieve the optimized train performance parameter.
23. The train of claim 22, wherein the first processing module is located off-board of the train.
24. The train of claim 22, wherein the first processor module is located on the train.
25. The train of claim 22, wherein the first processor module communicates directly to the second processing module.
26. The train of claim 22, wherein the first processor module generates signals that are communicated to a train operator, with the train operator issuing commands to the second processor module based on said signals.
27. The train of claim 1 further comprising an auxiliary electric power generator carried on the train and connected to the power bus, with the energy management processor further controlling the transmission of electrical power from the auxiliary electric power generator to the bus.
28. The train of claim 27, wherein the auxiliary electric power generator is an engine-generator set.
29. The train of claim 27, wherein the auxiliary electric power generator is an electrically powered fan that is subject to the application of mechanical force tending to operate the fan at speeds greater than its commanded speed of operation and generating electrical power when the fan operating speed greater than its commanded speed of operation.
30. The train of claim 14, wherein the auxiliary electric power generator is an electrically powered turbocharger that is subject to the application of mechanical force tending to operate the turbocharger at speeds greater than its commanded speed of operation and generating electrical power when it does.
31. The train of claim 1 further comprising an electrical power transmission interface connected to a source of electrical power external to the train for selectively providing electrical power to the train, and wherein the energy management processor is responsive to the data indicative of anticipated future train operations, the data indicative of physical characteristics of the vehicle and the data indicative of present train operations to identify the storage and discharge activities of the electrical energy capture system based in part on the power transmitted to the train from the source of electrical power external to the train.
32. The train of claim 1 further comprising an auxiliary electrical power load to be operated during periods of train standby operations when the train is manned and available for service, but not under its own propulsive effort.
33. The train of claim 32, wherein the energy management processor is responsive to the data indicative of anticipated future train operations, the data indicative of physical characteristics of the vehicle, and the data indicative of present train operations to identify the energy storage and discharge activities of the electrical energy power capture system for powering the auxiliary electrical power load during the train standby periods.
34. The train of claim 32, wherein the auxiliary electrical power load comprises utilities for an operator cab, and train operational control equipment.
35. The train of claim 32 wherein the auxiliary electrical power load further comprises an air compressor.
36. The train of claim 32, wherein the auxiliary electrical power load further comprises an engine heater device.
37. The train of claim 1, wherein the train has a power transmission interface for providing electrical power to electrical systems external to the train at a point along the travel path of the train, and wherein the energy management processor is responsive to the data indicative of anticipated future train operations, the data indicative of physical characteristics of the vehicle and the data indicative of present train operations to identify the energy storage and discharge activities of the electrical energy capture system for powering the external electrical system.
38. The train of claim 37, wherein the power transmission interface is to another train.
39. The train of claim 38, wherein the power transmission interface is to an external electric power grid.
40. A hybrid energy, electromotive, self-powered off-highway load vehicle moving along a generally predetermined travel path, the vehicle comprising:
a plurality of wheels for supporting and propelling the off-highway load vehicle (OHV);
a vehicle propulsion system mechanically coupled to at least one of the wheels of the OHV;
a primary electric power generator carried on the OHV for generating primary electrical power to be supplied to the vehicle propulsion system, said vehicle propulsion system having a motoring mode in which the propulsion system is responsive to electric power supplied to the propulsion system for generating mechanical energy that is applied to said wheel for propelling the OHV, and said vehicle propulsion system further having a dynamic braking mode in which the propulsion system is responsive to mechanical energy from said wheel during dynamic braking operations of the OHV for generating dynamic braking electrical power;
an electrical energy capture system carried on the OHV for storing electrical power generated on the OHV and for discharging the stored electrical power for use on the OHV, including selectively using the stored electrical power to propel the OHV;
a power bus for electrically connecting the primary electric power generator, the vehicle propulsion system and the electrical energy capture system;
a dynamic braking resistance grid circuit electrically connected to the power bus for dissipating excess electrical power on the OHV; and
an energy management system comprising:
an energy management processor in electrical connection with the primary power source, the vehicle propulsion system, the electrical energy capture system and the dynamic barking resistance grid circuit;
a database communicatively connected to the energy management processor storing data indicative of anticipated future OHV operations, data indicative of physical characteristics of the vehicle, and data indicative of present OHV operations; and
said energy management processor controlling transmission of electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system and the dynamic braking grid circuit in response to the data indicative of anticipated future OHV operations, the data indicative of physical characteristics of the OHV and the data indicative of present OHV operations so as to enhance a performance parameter of the OHV over its future anticipated travel path.
41. The OHV of claim 40 herein the travel path includes periods of OHV standby operation in which the OHV is not in motion and the OHV performance parameter comprises fuel consumption of the OHV including for OHV standby operation.
42. The OHV of claim 40, wherein the OHV performance parameter comprises one or more of the following:
an engine emission rate of the OHV;
a fuel consumption rate of the OHV;
overall engine emissions of the OHV over the travel path;
overall power consumption of the OHV over the travel path; and
noise emissions of the OHV.
43. The OHV of claim 40, wherein the data indicative of anticipated future OHV operations includes one or more of the following:
a topography along the travel path;
curvature along travel path;
a speed limit on the travel path;
a stand-by operation;
elevation of travel path of the OHV; and
and OHV acceleration requirements.
44. The OHV of claim 40, wherein data indicative of physical characteristics of the OHV includes one or more of the following:
a weight of the OHV;
power capacity of the OHV;
maximum speed of the OHV;
charging rate of the electrical energy capture system;
discharge rate of the electrical energy capture system;
a number of cars in OHV; and
a length of the OHV.
45. The OHV of claim 40, wherein the data indicative of present OHV operations includes one or more of the following:
weather conditions along the travel path of the OHV;
wind resistance on the OHV;
location of the OHV;
speed of the OHV;
present energy needs of the OHV; and
energy storage status of the electrical energy capture system.
46. The OHV of claim 40, wherein the energy management processor is responsive to the data stored in the database to identify an anticipated future power load on the OHV and a power generation requirement of the OHV as a function of the anticipated future train operations data, physical characteristics train data, and the present train operation data, for optimizing the train performance parameter, and wherein the energy management processor controls transmission of the electric power as a function of the identified future power load and/or a power requirement of the OHV.
47. The OHV of claim 46, wherein the power generation comprises electrical power generated by one or more electrical devices selected from the group comprising the primary electric power generator, an auxiliary electric power generator, an external power source, the propulsion system during braking of the OHV, and the electrical energy capture system during energy discharge.
48. The OHV of claim 40, wherein the energy management system comprises an OHV location determination device and a track map of the anticipated travel path to optimize the performance parameter of the OHV over its future anticipated travel path.
49. The OHV of claim 48, wherein the database stores data indicative of energy storage and discharge activities based on the OHV location and the anticipated travel path.
50. The OHV of claim 40, wherein the energy management processor includes a first processor module for identifying energy storage and discharge activities of the electrical energy capture, wherein said first processor module retrieves the anticipated future OHV operations data, the physical characteristics data, and present OHV operations data to identify anticipated future power loads and power generation requirements for optimizing the performance parameter over the travel path, and a second processor module on the OHV for controlling transmission of electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system, and the dynamic braking grid circuit during the operation of the OHV to achieve the optimized OHV performance parameter.
51. The OHV of claim 50, wherein the first processing module is located off-board of the OHV.
52. The OHV of claim 50, wherein the first processor module is located on the OHV.
53. The OHV of claim 50, wherein the first processor module communicates directly to the second processing module.
54. The OHV of claim 50, wherein the first processor module generates control signals that are communicated to an OHV operator, with the OHV operator issuing commands to the second processor module based on said control signals.
55. A method for managing operation of a hybrid energy, electro-motive, self-powered railroad train moving along a generally predetermined travel path for optimizing a train performance parameter,
with the train comprising:
(1) at least one railway vehicle supported on a plurality of wheels for engaging railroad rail;
(2) a vehicle propulsion system mechanically coupled to at least one of the wheels of the railway vehicle;
(3) a primary electric power generator carried on the railroad train for generating primary electrical power to be supplied to the vehicle propulsion system, said vehicle propulsion system having a motoring mode in which the propulsion system is responsive to electric power supplied to the propulsion system for generating mechanical energy that is applied to said wheel for propelling the railroad train, and said vehicle propulsion system further having a dynamic braking mode in which the propulsion system is responsive to mechanical energy from said wheel during dynamic braking operations of the railroad train;
(4) an electrical energy capture system carried on the railroad train for storing electrical power generated on the train and for discharging the stored electrical power for use on the train, including selectively using the stored electrical power to propel the railroad train;
(5) a dynamic braking resistance grid circuit for dissipating excess electrical power generated on the railroad train; and
(6) a power bus for electrically connecting the primary electric power generator, the vehicle propulsion system and the electrical energy capture system;
the method comprising:
storing information including information indicative of anticipated future train operations, physical characteristics of the vehicle, and present train operations; and
identifying an anticipated future power loads and power generation requirement of the train as a function of the stored information for optimizing a performance parameter over the travel path; and
providing control signals for meeting the optimized train performance parameter over the travel path; and
controlling transmission of electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system, and the dynamic braking grid circuit during the operation of the railroad train according to control signal signals such as to enhance the performance parameter of the train over its future anticipated travel path
56. The method of claim 55, wherein an operator of the train performs said identifying the anticipated future power load.
57. The method of claim 55, wherein indicia of a current location of the train are presented to the operator of the train.
58. The method of claim 55, wherein the operator of the train performs said controlling the transmission of electrical power.
59. The method of claim 58, wherein the operator of the train controls the transmission of electrical power by commanding the operation of one or more devices electrically connected to the power bus.
60. The method of claim 55, wherein controlling the transmission of the electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system includes adjusting the rate at which electrical energy is discharged from the electrical energy capture system to the vehicle propulsion system such that the train enhances the performance parameter when traveling over its future anticipated travel path.
61. The method of claim 55, wherein controlling the transmission of the electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system includes adjusting the rate at which electrical energy is charged to the electrical energy capture system from the dynamic braking grid and/or primary electric generator to enhances the performance parameter of the train when traveling over its future anticipated travel path.
62. A computer readable medium having computer executable instructions for managing operation of a hybrid energy, electromotive, self-powered off-highway load vehicle moving along a generally predetermined travel path for optimizing performance parameter of the off-highway load vehicle, with the off-highway load vehicle comprising:
(1) a plurality of wheels for supporting the hybrid energy, electromotive, self-powered off-highway load vehicle (OHV);
(2) a vehicle propulsion system mechanically coupled to at least one of the wheels of the OHV;
(3) a primary electric power generator carried on the OHV for generating primary electrical power supplied to the vehicle propulsion system; said vehicle propulsion system having a motoring mode in which the propulsion system is responsive to the electric power supplied to the propulsion system from the generator for generating mechanical energy that is applied to said wheels for propelling the OHV, and said vehicle propulsion system generating dynamic braking electrical power in a dynamic braking mode in which the propulsion system is responsive to mechanical energy from said wheel during dynamic braking operations of the OHV;
(4) an electrical energy capture system carried on the OHV for selectively storing electrical power and for selectively discharging to the vehicle propulsion system the stored electrical power for propelling the OHV;
(5) a dynamic braking resistance grid circuit for dissipating excess electrical power generated on the OHV; and
(6) a power bus for electrically connecting the primary electric power generator, the vehicle propulsion system and the electrical energy capture system;
the computer-readable medium comprising:
storing instructions for storing power information indicative of anticipated future OHV operations, physical characteristics of the vehicle, and present OHV operations;
identifying instructions for identifying an anticipated future power load on the OHV and a power generation requirement of the OHV as a function of the stored power information for optimizing a performance parameter over the travel path;
generating instructions for generating control signals for meeting the optimized a OHV performance parameter over the travel path; and
controlling instructions for controlling the transmission of electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system, and the dynamic braking grid circuit during the operation of the OHV according to generated control signals so as to enhance the performance parameter of the OHV over its future anticipated travel path.
63. The computer-readable medium of claim 62, wherein the controlling instructions control the transmission of electrical power in response to commands received from an operator to operate one or more devices electrically connected to the power bus.
64. The computer-readable medium of claim 62, wherein the controlling instructions control the transmission of the electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system by adjusting the rate at which electrical energy is discharged from the electrical energy capture system to the vehicle propulsion system such that the OHV enhances the performance parameter when traveling over its future anticipated travel path.
65. The computer-readable medium of claim 62, wherein controlling instructions control the transmission of the electrical power among the primary electric power generator, the vehicle propulsion system, the electric energy capture system by adjusting the rate at which electrical energy is charged to the electrical energy capture system from the dynamic braking grid and/or primary electric generator to enhances the performance parameter of the OHV when traveling over its future anticipated travel path.
66. The computer-readable medium of claim 62 wherein the OHV performance parameter comprises fuel consumption of the OHV.
67. The computer-readable medium of claim 62, wherein the travel path includes periods of OHV standby operation in which the OHV is not in motion and the OHV performance parameter comprises fuel consumption of the OHV including for OHV standby operation.
68. The computer-readable medium of claim 62, wherein the OHV performance parameter comprises rates of engine emission of the OHV.
69. The computer-readable medium of claim 62, wherein the OHV performance parameter comprises the overall engine emission of the OHV over the travel path.
70. The computer-readable medium of claim 62, wherein the OHV performance parameter comprises the level of power consumption of the OHV over the travel path.
71. The computer-readable medium of claim 62, wherein the OHV performance parameter comprises noise emissions.
72. The computer-readable medium of claim 71, wherein the noise emissions comprises engine operating noise emissions.
73. The computer-readable medium of claim 71, wherein the noise emissions comprises noise generated by cooling fans for the dynamic braking grid circuits.
74. The computer-readable medium of claim 62, wherein the data indicative of anticipated future OHV operations includes one or more of the following:
a topography along the travel path;
curvature along travel path;
a speed limit on the travel path;
a stand-by operation;
elevation of travel path of the OHV; and
and OHV acceleration requirements.
75. The computer-readable medium of claim 62, wherein data indicative of physical characteristics of the OHV includes one or more of the following:
a weight of the OHV;
power capacity of the OHV;
maximum speed of the OHV;
charging rate of electrical energy capture system;
discharge rate electrical energy capture system;
a number of cars in OHV; and
a length of the OHV.
76. The computer-readable medium of claim 62, wherein the data indicative of present OHV operations includes one or more of the following:
weather conditions along the travel path of the OHV;
wind resistance on the OHV;
location of the OHV;
speed of the OHV;
present energy needs; and
energy storage status electrical energy capture system.
77. The computer-readable medium of claim 62, wherein the OHV is a mining dump trucks, or a railroad train.
US11/180,345 2001-03-27 2005-07-13 Hybrid energy off highway vehicle electric power management system and method Abandoned US20060005736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/180,345 US20060005736A1 (en) 2001-03-27 2005-07-13 Hybrid energy off highway vehicle electric power management system and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US27897501P 2001-03-27 2001-03-27
US10/033,172 US6615118B2 (en) 2001-03-27 2001-12-26 Hybrid energy power management system and method
US10/378,431 US7532960B2 (en) 2001-03-27 2003-03-03 Hybrid energy off highway vehicle electric power management system and method
US11/180,345 US20060005736A1 (en) 2001-03-27 2005-07-13 Hybrid energy off highway vehicle electric power management system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/378,431 Continuation-In-Part US7532960B2 (en) 2001-03-27 2003-03-03 Hybrid energy off highway vehicle electric power management system and method

Publications (1)

Publication Number Publication Date
US20060005736A1 true US20060005736A1 (en) 2006-01-12

Family

ID=35539977

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/180,345 Abandoned US20060005736A1 (en) 2001-03-27 2005-07-13 Hybrid energy off highway vehicle electric power management system and method

Country Status (1)

Country Link
US (1) US20060005736A1 (en)

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133315A1 (en) * 2003-01-06 2004-07-08 General Electric Company Multi-level railway operations optimization system and method
US20050024002A1 (en) * 2003-07-31 2005-02-03 Jackson Robert D. Inductive heating system and method for controlling discharge of electric energy from machines
US20070112475A1 (en) * 2005-11-17 2007-05-17 Motility Systems, Inc. Power management systems and devices
US20080148993A1 (en) * 2006-12-08 2008-06-26 Tom Mack Hybrid propulsion system and method
US20080154451A1 (en) * 2006-12-21 2008-06-26 Rail-Veyor Systems, Inc. Method of Controlling a Rail Transport System for Conveying Bulk Materials
US20080164850A1 (en) * 2006-12-29 2008-07-10 Elias Ayana Shore power transfer switch
US20080246355A1 (en) * 2007-04-06 2008-10-09 Northrop Grumman Space & Mission Systems Corporation Self-Powered Mobile Electrical Power Hub
US20080265812A1 (en) * 2007-04-30 2008-10-30 Rodwan Tarek Adra Electric powertrain system having bidirectional DC generator
US20080270023A1 (en) * 2007-04-25 2008-10-30 Ajith Kuttannair Kumar Hybrid Energy Power Management System And Method
US20080276824A1 (en) * 2007-05-07 2008-11-13 General Electric Company Propulsion system
US20080276825A1 (en) * 2007-05-07 2008-11-13 General Electric Company Electric drive vehicle retrofit system and associated method
US20080281479A1 (en) * 2007-05-07 2008-11-13 General Electric Company Method of operating propulsion system
US20080288192A1 (en) * 2007-04-25 2008-11-20 Ajith Kuttannair Kumar System and Method For Monitoring The Effectiveness Of A Brake Function In A Powered System
US20090088915A1 (en) * 2006-04-04 2009-04-02 Mikio Kizaki Vehicle assistance system
US20090125170A1 (en) * 2007-04-25 2009-05-14 Joseph Forrest Noffsinger System and method for optimizing a braking schedule of a powered system traveling along a route
EP2106954A2 (en) * 2008-04-01 2009-10-07 Hitachi Ltd. Traction system of railway car
US20100051359A1 (en) * 2008-09-03 2010-03-04 Hitachi Construction Machinery Co., Ltd. Dump truck
US20100152937A1 (en) * 2008-12-11 2010-06-17 Denso Corporation Drive control apparatus for hybrid vehicle
US20100256846A1 (en) * 2009-04-07 2010-10-07 Cisco Technology, Inc. System and method for managing electric vehicle travel
US20110080040A1 (en) * 2009-10-02 2011-04-07 Ajith Kuttannair Kumar Power generation apparatus
US20110166736A1 (en) * 2008-10-23 2011-07-07 Mitsubishi Electric Corporation Propulsion control apparatus for electric vehicle
US20110257869A1 (en) * 2006-03-20 2011-10-20 Ajith Kuttannair Kumar Fuel management system and method
WO2011132195A1 (en) * 2010-04-20 2011-10-27 Louis Antony Mechanical electric power production
WO2012115866A1 (en) * 2011-02-25 2012-08-30 Bendix Commercial Vehicle Systems Llc Method of operating a vehicle equipped with a pneumatic booster system
US20120272857A1 (en) * 2011-04-26 2012-11-01 Norfolk Southern Multiple Compressor System and Method For Locomotives
US20130046411A1 (en) * 2011-08-15 2013-02-21 Siemens Corporation Electric Vehicle Load Management
US20130073125A1 (en) * 2010-06-01 2013-03-21 Daijiro ARAKI Drive device for railway vehicle
US20130317674A1 (en) * 2012-05-22 2013-11-28 Kabushiki Kaisha Toshiba Battery charging control apparatus of a train
US8602141B2 (en) 2010-04-05 2013-12-10 Daimler Trucks North America Llc Vehicle power system with fuel cell auxiliary power unit (APU)
US20140009115A1 (en) * 2011-03-22 2014-01-09 Construcciones Y Auxiliar De Ferrocarriles, S.A. Electrical charging system for energy accumulators of railway vehicles
US20140033942A1 (en) * 2012-07-31 2014-02-06 Aaron Gamache Foege Consist having self-propelled tender car
US20140033943A1 (en) * 2012-07-31 2014-02-06 Aaron Gamache Foege Fuel distribution system for multi-locomotive consist
US20140033948A1 (en) * 2012-07-31 2014-02-06 Aaron Gamache Foege Consist having self-powered tender car
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US20140184170A1 (en) * 2013-01-02 2014-07-03 Kt Corporation Management of electric power demand in electric vehicle charging stations
US20140277860A1 (en) * 2013-03-15 2014-09-18 General Electric Company System and method of vehicle system control
US20140288749A1 (en) * 2011-10-18 2014-09-25 Amt, Inc. Power Hybrid Integrated Management System
US8955444B2 (en) 2012-07-31 2015-02-17 Electro-Motive Diesel, Inc. Energy recovery system for a mobile machine
US8960100B2 (en) 2012-07-31 2015-02-24 Electro-Motive Diesel, Inc. Energy recovery system for a mobile machine
US20150134206A1 (en) * 2013-11-08 2015-05-14 Mitsubishi Electric Corporation Vehicle energy management device
US20150158374A1 (en) * 2013-10-09 2015-06-11 Zhejiang Geely Holding Group Co., Ltd. Power system of a series hybrid vehicle
US20150202973A1 (en) * 2014-01-21 2015-07-23 Delta Electronics, Inc. Charging apparatus with dynamical charging power and method of operating the same
GB2487224B (en) * 2011-01-14 2015-08-12 John Ritchie Kinghorn Energy management system for trains with flexible formations incorporating regenerative braking
US9118201B2 (en) 2012-05-08 2015-08-25 General Electric Company Systems and methods for energy transfer control
US20150251564A1 (en) * 2014-03-04 2015-09-10 General Electric Company System and method for controlling energy usage
US20150274323A1 (en) * 2014-03-25 2015-10-01 Parker-Hannifin Corporation Aircraft ground support vehicle
US20150298680A1 (en) * 2014-04-22 2015-10-22 Alcatel-Lucent Usa Inc. System and method for control of a hybrid vehicle with regenerative braking using location awareness
US20150321573A1 (en) * 2014-05-08 2015-11-12 Toyota Jidosha Kabushiki Kaisha Power control system of hybrid vehicle
US20160052399A1 (en) * 2013-03-29 2016-02-25 Mitsubishi Electric Corporation Electric vehicle control device and brake controlling method for electric vehicle
US20160176414A1 (en) * 2016-03-02 2016-06-23 Electro-Motive Diesel, Inc. Power management system for train
US20160257296A1 (en) * 2013-10-16 2016-09-08 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle
US20160257299A1 (en) * 2015-03-04 2016-09-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device of hybrid vehicle
US9669851B2 (en) 2012-11-21 2017-06-06 General Electric Company Route examination system and method
US9682624B1 (en) 2005-11-17 2017-06-20 Invent.Ly, Llc Power management using route information for a hybrid electric vehicle
US9682716B2 (en) 2012-11-21 2017-06-20 General Electric Company Route examining system and method
US9689681B2 (en) 2014-08-12 2017-06-27 General Electric Company System and method for vehicle operation
US9688296B2 (en) * 2015-10-19 2017-06-27 Electro-Motive Diesel, Inc. Remote data backup for locomotive on-board equipment
US9718478B2 (en) 2012-07-31 2017-08-01 Electro-Motive Diesel, Inc. Fuel system for consist having daughter locomotive
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US9792736B1 (en) 2005-11-17 2017-10-17 Invently Automotive Inc. Telemetry device for capturing vehicle environment and operational status history
US20170311490A1 (en) * 2014-11-18 2017-10-26 General Electric Company System and method for cooling power electronics
US9828010B2 (en) 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
US9834237B2 (en) 2012-11-21 2017-12-05 General Electric Company Route examining system and method
EP3109090A4 (en) * 2014-02-20 2018-03-07 Coordenação Dos Programas De Pós Graduação De Engenharia Da Universidade Federal Do Rio De Janeiro Smart energy management systems for electric and hybrid electric vehicles with bidirectional connection, smart energy management system for an energy generator, method for managing energy in a smart energy management system and method for controlling the operation of an energy generator
US9981560B2 (en) * 2013-10-10 2018-05-29 Continental Automotive Gmbh Predictive method for operating a vehicle and corresponding driver assistance system for a vehicle
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US10569792B2 (en) 2006-03-20 2020-02-25 General Electric Company Vehicle control system and method
US10882399B2 (en) 2005-11-17 2021-01-05 Invently Automotive Inc. Electric vehicle power management system
WO2021069697A1 (en) * 2019-10-09 2021-04-15 Ejzenberg Geoffrey A cyber-physically controlled autonomous or semi-autonomous vehicle with increased availability over repetitive closed paths
US11084377B2 (en) 2005-11-17 2021-08-10 Invently Automotive Inc. Vehicle power management system responsive to voice commands from a Gps enabled device
IT202000002566A1 (en) * 2020-02-10 2021-08-10 Hitachi Rail S P A ELECTRIC DRIVE VEHICLE INCLUDING AN ENERGY MANAGEMENT SYSTEM, AND METHOD OF ENERGY MANAGEMENT IN SUCH ELECTRIC DRIVE VEHICLE
US11180025B2 (en) 2005-11-17 2021-11-23 Invently Automotive Inc. Electric vehicle power management system
US11186174B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Vehicle power management system
US11186173B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Electric vehicle power management system
US11186175B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Vehicle power management system
US11207981B2 (en) 2005-11-17 2021-12-28 Invently Automotive Inc. Vehicle power management system
US11207980B2 (en) 2005-11-17 2021-12-28 Invently Automotive Inc. Vehicle power management system responsive to traffic conditions
US11214144B2 (en) 2005-11-17 2022-01-04 Invently Automotive Inc. Electric vehicle power management system
US11220179B2 (en) 2005-11-17 2022-01-11 Invently Automotive Inc. Vehicle power management system determining route segment length
US11225144B2 (en) 2005-11-17 2022-01-18 Invently Automotive Inc. Vehicle power management system
US11230190B2 (en) 2005-11-17 2022-01-25 Invently Automotive Inc. Electric vehicle power management system
US11247564B2 (en) 2005-11-17 2022-02-15 Invently Automotive Inc. Electric vehicle power management system
US11254211B2 (en) 2005-11-17 2022-02-22 Invently Automotive Inc. Electric vehicle power management system
US11267339B2 (en) 2005-11-17 2022-03-08 Invently Automotive Inc. Vehicle power management system
US11267338B2 (en) 2005-11-17 2022-03-08 Invently Automotive Inc. Electric vehicle power management system
US11279233B2 (en) 2005-11-17 2022-03-22 Invently Automotive Inc. Electric vehicle power management system
US11279234B2 (en) 2005-11-17 2022-03-22 Invently Automotive Inc. Vehicle power management system
US11285810B2 (en) 2005-11-17 2022-03-29 Invently Automotive Inc. Vehicle power management system
US11325468B2 (en) 2005-11-17 2022-05-10 Invently Automotive Inc. Vehicle power management system
US11345236B2 (en) 2005-11-17 2022-05-31 Invently Automotive Inc. Electric vehicle power management system
US11351863B2 (en) 2005-11-17 2022-06-07 Invently Automotive Inc. Vehicle power management system
US11370302B2 (en) 2005-11-17 2022-06-28 Invently Automotive Inc. Electric vehicle power management system
US11390165B2 (en) 2005-11-17 2022-07-19 Invently Automotive Inc. Electric vehicle power management system
EP4088955A1 (en) * 2021-05-10 2022-11-16 Plasan Sasa Ltd A controllable electric vehicle and a control system therefor
EP4335685A1 (en) * 2022-08-24 2024-03-13 Siemens Mobility GmbH Electric propulsion system

Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US423421A (en) * 1890-03-11 Apparatus for producing steam
US714157A (en) * 1902-03-29 1902-11-25 Gen Electric Regenerative system.
US714196A (en) * 1901-10-18 1902-11-25 Martin T A Kubierschky Regenerative system.
US723727A (en) * 1902-10-14 1903-03-24 Philip Pfeil Car or vehicle propulsion.
US744187A (en) * 1903-04-13 1903-11-17 Gibbs Engineering And Mfg Company System of electric traction.
US807029A (en) * 1904-09-16 1905-12-12 Joseph H Hoadley System of electric railways.
US881387A (en) * 1907-03-06 1908-03-10 Arthur C Eastwood System of control for electric motors.
US1188570A (en) * 1913-05-29 1916-06-27 Victor O Strobel Power system.
US1216694A (en) * 1914-12-16 1917-02-20 Charles Francis Jenkins Gravity-railway device.
US2600320A (en) * 1950-09-15 1952-06-10 Westinghouse Electric Corp Two-power electric locomotive
US2704813A (en) * 1954-05-10 1955-03-22 Westinghouse Electric Corp Recuperative braking for enginepowered locomotives
US3238896A (en) * 1963-06-03 1966-03-08 Toretsky G Mashinostriotelny Z Locomotive with energy accumulator in the form of a revolving flywheel
US3455107A (en) * 1967-05-25 1969-07-15 Albert N Addie Regenerative gas turbine engine structure
US3743901A (en) * 1971-11-15 1973-07-03 Gen Motors Corp Locomotive excitation and regenerative braking control arrangement
US3858674A (en) * 1971-10-22 1975-01-07 Harry Zvi Tabor Electric motor-flywheel drive system
US3886810A (en) * 1972-09-22 1975-06-03 Nissan Motor Hybrid power system
US3972380A (en) * 1975-04-11 1976-08-03 Hudson Perley N Vehicle with regenerative power system
US4108077A (en) * 1974-06-07 1978-08-22 Nikolaus Laing Rail vehicles with propulsion energy recovery system
US4165795A (en) * 1978-02-17 1979-08-28 Gould Inc. Hybrid automobile
US4342921A (en) * 1981-05-11 1982-08-03 Williams Thomas J Locomotive energy recovery system
US4382189A (en) * 1979-05-25 1983-05-03 Wilson John B Hydrogen supplemented diesel electric locomotive
US4597463A (en) * 1984-01-23 1986-07-01 Richard Barnard Electric vehicle using the vehicle's kinetic and mechanical power to regenerate it's energy storage device
US4900944A (en) * 1988-10-14 1990-02-13 Frank Donnelly Booster unit for diesel electric locomotive
US5215156A (en) * 1990-04-11 1993-06-01 Nathan Stulbach Electric vehicle with downhill electro-generating system
US5283470A (en) * 1991-02-06 1994-02-01 Lauzun Corporation Hybrid drive system with regeneration for motor vehicles and the like with a brushless motor
US5291960A (en) * 1992-11-30 1994-03-08 Ford Motor Company Hybrid electric vehicle regenerative braking energy recovery system
US5345154A (en) * 1993-02-26 1994-09-06 General Electric Company Electric continuously variable transmission and controls for operation of a heat engine in a closed-loop power-control mode
US5345761A (en) * 1993-12-02 1994-09-13 Ford Motor Company Energy management system for hybrid vehicle
US5373195A (en) * 1992-12-23 1994-12-13 General Electric Company Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
US5392716A (en) * 1993-07-28 1995-02-28 General Electric Company Locomotive traction motor control system
US5466998A (en) * 1993-03-19 1995-11-14 Fuji Electric Co., Ltd. Electric system for an electric vehicle
US5517093A (en) * 1993-12-16 1996-05-14 General Electric Company Braking grid isolation for locomotive traction motor control system
US5517923A (en) * 1994-04-22 1996-05-21 Pomagalski S.A. Cable drawn vehicle having an on-board motor
US5589743A (en) * 1995-03-03 1996-12-31 General Electric Company Integrated cranking inverter and boost converter for a series hybrid drive system
US5659240A (en) * 1995-02-16 1997-08-19 General Electric Company Intelligent battery charger for electric drive system batteries
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
US5713425A (en) * 1996-01-16 1998-02-03 Ford Global Technologies, Inc. Parallel hybrid powertrain for an automotive vehicle
US5723956A (en) * 1996-05-28 1998-03-03 General Electric Company Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications
US5771743A (en) * 1995-04-13 1998-06-30 Ulrich Menzi Continuously variable torque transmission with torsion bars and energy recuperating brake device
US5839533A (en) * 1996-04-11 1998-11-24 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling electric generator of hybrid drive vehicle to control regenerative brake depending upon selected degree of drive source brake application
US5898282A (en) * 1996-08-02 1999-04-27 B.C. Research Inc. Control system for a hybrid vehicle
US5905360A (en) * 1996-08-22 1999-05-18 Toyota Jidosha Kabushiki Kaisha Battery system and electric motor vehicle using the battery system with charge equalizing features
US5929595A (en) * 1997-11-21 1999-07-27 Lockheed Martin Corporation Hybrid electric vehicle with traction motor drive allocated between battery and auxiliary source depending upon battery charge state
US5999864A (en) * 1997-04-23 1999-12-07 Chrysler Corporation Method of power management for a hybrid powertrain system
US6022290A (en) * 1998-09-09 2000-02-08 Chrysler Corporation Power transfer system for vehicle with power-Interrupt auto-manual transmission, alternate means for providing torque to driveline, and engine throttle controls
US6026921A (en) * 1998-03-20 2000-02-22 Nissan Motor Co., Ltd Hybrid vehicle employing parallel hybrid system, using both internal combustion engine and electric motor for propulsion
US6144901A (en) * 1997-09-12 2000-11-07 New York Air Brake Corporation Method of optimizing train operation and training
US6230496B1 (en) * 2000-06-20 2001-05-15 Lockheed Martin Control Systems Energy management system for hybrid electric vehicles
US6294843B1 (en) * 1999-02-03 2001-09-25 Honda Giken Kogyo Kabushiki Kaisha Control system for a hybrid vehicle
US6307277B1 (en) * 2000-04-18 2001-10-23 General Motors Corporation Apparatus and method for a torque and fuel control system for a hybrid vehicle
US6309639B1 (en) * 1991-02-05 2001-10-30 The Board Of Regents Of The University Of Oklahoma Method for inhibiting an inflammatory response using antibodies to P-selectin glycoprotein ligand
US6314346B1 (en) * 1998-12-07 2001-11-06 Honda Giken Kogyo Kabushiki Kaisha Control system for hybrid vehicle
US6331365B1 (en) * 1998-11-12 2001-12-18 General Electric Company Traction motor drive system
US6367570B1 (en) * 1997-10-17 2002-04-09 Electromotive Inc. Hybrid electric vehicle with electric motor providing strategic power assist to load balance internal combustion engine
US6387007B1 (en) * 1997-01-24 2002-05-14 Anthony W. Fini, Jr. Electromechanical vehicle regeneration system
US6408766B1 (en) * 1999-06-25 2002-06-25 Mclaughlin Edward M. Auxiliary drive, full service locomotive tender
US6434452B1 (en) * 2000-10-31 2002-08-13 General Electric Company Track database integrity monitor for enhanced railroad safety distributed power
US6441581B1 (en) * 2001-03-20 2002-08-27 General Electric Company Energy management system and method
US6486568B1 (en) * 1999-12-21 2002-11-26 General Electric Company Power system using a multi-functional power interface unit
US6497182B2 (en) * 2000-02-02 2002-12-24 General Electric Company Railroad locomotive traction motor isolation
US6522955B1 (en) * 2000-07-28 2003-02-18 Metallic Power, Inc. System and method for power management
US20040007404A1 (en) * 2001-01-19 2004-01-15 Transportation Techniques, Llc Hybrid electric vehicle and method of selectively operating the hybrid electric vehicle
US6809429B1 (en) * 1998-04-21 2004-10-26 The Regents Of The University Of California Control method and apparatus for internal combustion engine electric hybrid vehicles
US7185591B2 (en) * 2001-03-27 2007-03-06 General Electric Company Hybrid energy off highway vehicle propulsion circuit

Patent Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US423421A (en) * 1890-03-11 Apparatus for producing steam
US714196A (en) * 1901-10-18 1902-11-25 Martin T A Kubierschky Regenerative system.
US714157A (en) * 1902-03-29 1902-11-25 Gen Electric Regenerative system.
US723727A (en) * 1902-10-14 1903-03-24 Philip Pfeil Car or vehicle propulsion.
US744187A (en) * 1903-04-13 1903-11-17 Gibbs Engineering And Mfg Company System of electric traction.
US807029A (en) * 1904-09-16 1905-12-12 Joseph H Hoadley System of electric railways.
US881387A (en) * 1907-03-06 1908-03-10 Arthur C Eastwood System of control for electric motors.
US1188570A (en) * 1913-05-29 1916-06-27 Victor O Strobel Power system.
US1216694A (en) * 1914-12-16 1917-02-20 Charles Francis Jenkins Gravity-railway device.
US2600320A (en) * 1950-09-15 1952-06-10 Westinghouse Electric Corp Two-power electric locomotive
US2704813A (en) * 1954-05-10 1955-03-22 Westinghouse Electric Corp Recuperative braking for enginepowered locomotives
US3238896A (en) * 1963-06-03 1966-03-08 Toretsky G Mashinostriotelny Z Locomotive with energy accumulator in the form of a revolving flywheel
US3455107A (en) * 1967-05-25 1969-07-15 Albert N Addie Regenerative gas turbine engine structure
US3858674A (en) * 1971-10-22 1975-01-07 Harry Zvi Tabor Electric motor-flywheel drive system
US3743901A (en) * 1971-11-15 1973-07-03 Gen Motors Corp Locomotive excitation and regenerative braking control arrangement
US3886810A (en) * 1972-09-22 1975-06-03 Nissan Motor Hybrid power system
US4108077A (en) * 1974-06-07 1978-08-22 Nikolaus Laing Rail vehicles with propulsion energy recovery system
US3972380A (en) * 1975-04-11 1976-08-03 Hudson Perley N Vehicle with regenerative power system
US4165795A (en) * 1978-02-17 1979-08-28 Gould Inc. Hybrid automobile
US4382189A (en) * 1979-05-25 1983-05-03 Wilson John B Hydrogen supplemented diesel electric locomotive
US4342921A (en) * 1981-05-11 1982-08-03 Williams Thomas J Locomotive energy recovery system
US4597463A (en) * 1984-01-23 1986-07-01 Richard Barnard Electric vehicle using the vehicle's kinetic and mechanical power to regenerate it's energy storage device
US4900944A (en) * 1988-10-14 1990-02-13 Frank Donnelly Booster unit for diesel electric locomotive
US5215156A (en) * 1990-04-11 1993-06-01 Nathan Stulbach Electric vehicle with downhill electro-generating system
US6309639B1 (en) * 1991-02-05 2001-10-30 The Board Of Regents Of The University Of Oklahoma Method for inhibiting an inflammatory response using antibodies to P-selectin glycoprotein ligand
US5283470A (en) * 1991-02-06 1994-02-01 Lauzun Corporation Hybrid drive system with regeneration for motor vehicles and the like with a brushless motor
US5291960A (en) * 1992-11-30 1994-03-08 Ford Motor Company Hybrid electric vehicle regenerative braking energy recovery system
US5373195A (en) * 1992-12-23 1994-12-13 General Electric Company Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
US5345154A (en) * 1993-02-26 1994-09-06 General Electric Company Electric continuously variable transmission and controls for operation of a heat engine in a closed-loop power-control mode
US5466998A (en) * 1993-03-19 1995-11-14 Fuji Electric Co., Ltd. Electric system for an electric vehicle
US5392716A (en) * 1993-07-28 1995-02-28 General Electric Company Locomotive traction motor control system
US5345761A (en) * 1993-12-02 1994-09-13 Ford Motor Company Energy management system for hybrid vehicle
US5517093A (en) * 1993-12-16 1996-05-14 General Electric Company Braking grid isolation for locomotive traction motor control system
US5517923A (en) * 1994-04-22 1996-05-21 Pomagalski S.A. Cable drawn vehicle having an on-board motor
US5659240A (en) * 1995-02-16 1997-08-19 General Electric Company Intelligent battery charger for electric drive system batteries
US5589743A (en) * 1995-03-03 1996-12-31 General Electric Company Integrated cranking inverter and boost converter for a series hybrid drive system
US5771743A (en) * 1995-04-13 1998-06-30 Ulrich Menzi Continuously variable torque transmission with torsion bars and energy recuperating brake device
US5713425A (en) * 1996-01-16 1998-02-03 Ford Global Technologies, Inc. Parallel hybrid powertrain for an automotive vehicle
US5839533A (en) * 1996-04-11 1998-11-24 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling electric generator of hybrid drive vehicle to control regenerative brake depending upon selected degree of drive source brake application
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
US5723956A (en) * 1996-05-28 1998-03-03 General Electric Company Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications
US5898282A (en) * 1996-08-02 1999-04-27 B.C. Research Inc. Control system for a hybrid vehicle
US5905360A (en) * 1996-08-22 1999-05-18 Toyota Jidosha Kabushiki Kaisha Battery system and electric motor vehicle using the battery system with charge equalizing features
US6387007B1 (en) * 1997-01-24 2002-05-14 Anthony W. Fini, Jr. Electromechanical vehicle regeneration system
US5999864A (en) * 1997-04-23 1999-12-07 Chrysler Corporation Method of power management for a hybrid powertrain system
US6144901A (en) * 1997-09-12 2000-11-07 New York Air Brake Corporation Method of optimizing train operation and training
US6367570B1 (en) * 1997-10-17 2002-04-09 Electromotive Inc. Hybrid electric vehicle with electric motor providing strategic power assist to load balance internal combustion engine
US5929595A (en) * 1997-11-21 1999-07-27 Lockheed Martin Corporation Hybrid electric vehicle with traction motor drive allocated between battery and auxiliary source depending upon battery charge state
US6026921A (en) * 1998-03-20 2000-02-22 Nissan Motor Co., Ltd Hybrid vehicle employing parallel hybrid system, using both internal combustion engine and electric motor for propulsion
US6809429B1 (en) * 1998-04-21 2004-10-26 The Regents Of The University Of California Control method and apparatus for internal combustion engine electric hybrid vehicles
US6022290A (en) * 1998-09-09 2000-02-08 Chrysler Corporation Power transfer system for vehicle with power-Interrupt auto-manual transmission, alternate means for providing torque to driveline, and engine throttle controls
US6331365B1 (en) * 1998-11-12 2001-12-18 General Electric Company Traction motor drive system
US6737822B2 (en) * 1998-11-12 2004-05-18 General Electric Company Traction motor drive system
US6314346B1 (en) * 1998-12-07 2001-11-06 Honda Giken Kogyo Kabushiki Kaisha Control system for hybrid vehicle
US6294843B1 (en) * 1999-02-03 2001-09-25 Honda Giken Kogyo Kabushiki Kaisha Control system for a hybrid vehicle
US6408766B1 (en) * 1999-06-25 2002-06-25 Mclaughlin Edward M. Auxiliary drive, full service locomotive tender
US6486568B1 (en) * 1999-12-21 2002-11-26 General Electric Company Power system using a multi-functional power interface unit
US6497182B2 (en) * 2000-02-02 2002-12-24 General Electric Company Railroad locomotive traction motor isolation
US6307277B1 (en) * 2000-04-18 2001-10-23 General Motors Corporation Apparatus and method for a torque and fuel control system for a hybrid vehicle
US6230496B1 (en) * 2000-06-20 2001-05-15 Lockheed Martin Control Systems Energy management system for hybrid electric vehicles
US6522955B1 (en) * 2000-07-28 2003-02-18 Metallic Power, Inc. System and method for power management
US6434452B1 (en) * 2000-10-31 2002-08-13 General Electric Company Track database integrity monitor for enhanced railroad safety distributed power
US20040007404A1 (en) * 2001-01-19 2004-01-15 Transportation Techniques, Llc Hybrid electric vehicle and method of selectively operating the hybrid electric vehicle
US6441581B1 (en) * 2001-03-20 2002-08-27 General Electric Company Energy management system and method
US7185591B2 (en) * 2001-03-27 2007-03-06 General Electric Company Hybrid energy off highway vehicle propulsion circuit

Cited By (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538611B2 (en) * 2003-01-06 2013-09-17 General Electric Company Multi-level railway operations optimization system and method
US20040133315A1 (en) * 2003-01-06 2004-07-08 General Electric Company Multi-level railway operations optimization system and method
US20050024002A1 (en) * 2003-07-31 2005-02-03 Jackson Robert D. Inductive heating system and method for controlling discharge of electric energy from machines
US20050040780A1 (en) * 2003-07-31 2005-02-24 Jackson Robert D. Enhanced system and method for controlling discharge of electric energy from machines
US7106016B2 (en) * 2003-07-31 2006-09-12 Siemens Energy & Automation, Inc. Inductive heating system and method for controlling discharge of electric energy from machines
US7126299B2 (en) * 2003-07-31 2006-10-24 Siemens Energy & Automation, Inc. Enhanced system and method for controlling discharge of electric energy from machines
US11230190B2 (en) 2005-11-17 2022-01-25 Invently Automotive Inc. Electric vehicle power management system
US10829065B1 (en) 2005-11-17 2020-11-10 Invently Automotive Inc. Vehicle power management system
US11186175B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Vehicle power management system
US11370302B2 (en) 2005-11-17 2022-06-28 Invently Automotive Inc. Electric vehicle power management system
US9792736B1 (en) 2005-11-17 2017-10-17 Invently Automotive Inc. Telemetry device for capturing vehicle environment and operational status history
US11390165B2 (en) 2005-11-17 2022-07-19 Invently Automotive Inc. Electric vehicle power management system
US11345236B2 (en) 2005-11-17 2022-05-31 Invently Automotive Inc. Electric vehicle power management system
US11325468B2 (en) 2005-11-17 2022-05-10 Invently Automotive Inc. Vehicle power management system
US11285810B2 (en) 2005-11-17 2022-03-29 Invently Automotive Inc. Vehicle power management system
US11279234B2 (en) 2005-11-17 2022-03-22 Invently Automotive Inc. Vehicle power management system
US11279233B2 (en) 2005-11-17 2022-03-22 Invently Automotive Inc. Electric vehicle power management system
US11186173B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Electric vehicle power management system
US11267338B2 (en) 2005-11-17 2022-03-08 Invently Automotive Inc. Electric vehicle power management system
US11186174B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Vehicle power management system
US11267339B2 (en) 2005-11-17 2022-03-08 Invently Automotive Inc. Vehicle power management system
US11254211B2 (en) 2005-11-17 2022-02-22 Invently Automotive Inc. Electric vehicle power management system
US11247564B2 (en) 2005-11-17 2022-02-15 Invently Automotive Inc. Electric vehicle power management system
US10919409B2 (en) 2005-11-17 2021-02-16 Invently Automotive Inc. Braking power management
US11180025B2 (en) 2005-11-17 2021-11-23 Invently Automotive Inc. Electric vehicle power management system
US11225144B2 (en) 2005-11-17 2022-01-18 Invently Automotive Inc. Vehicle power management system
US10882399B2 (en) 2005-11-17 2021-01-05 Invently Automotive Inc. Electric vehicle power management system
US10832498B1 (en) 2005-11-17 2020-11-10 Invently Automotive Inc. Vehicle telemetry device for inferring driver identity and building a vehicle history
US11220179B2 (en) 2005-11-17 2022-01-11 Invently Automotive Inc. Vehicle power management system determining route segment length
US20070112475A1 (en) * 2005-11-17 2007-05-17 Motility Systems, Inc. Power management systems and devices
US7925426B2 (en) * 2005-11-17 2011-04-12 Motility Systems Power management systems and devices
US10821983B1 (en) 2005-11-17 2020-11-03 Invently Automotive Inc. Power management systems and devices
US11214144B2 (en) 2005-11-17 2022-01-04 Invently Automotive Inc. Electric vehicle power management system
US11084377B2 (en) 2005-11-17 2021-08-10 Invently Automotive Inc. Vehicle power management system responsive to voice commands from a Gps enabled device
US11207981B2 (en) 2005-11-17 2021-12-28 Invently Automotive Inc. Vehicle power management system
US11207980B2 (en) 2005-11-17 2021-12-28 Invently Automotive Inc. Vehicle power management system responsive to traffic conditions
US11351863B2 (en) 2005-11-17 2022-06-07 Invently Automotive Inc. Vehicle power management system
US9682624B1 (en) 2005-11-17 2017-06-20 Invent.Ly, Llc Power management using route information for a hybrid electric vehicle
US9201409B2 (en) * 2006-03-20 2015-12-01 General Electric Company Fuel management system and method
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US20110257869A1 (en) * 2006-03-20 2011-10-20 Ajith Kuttannair Kumar Fuel management system and method
US10569792B2 (en) 2006-03-20 2020-02-25 General Electric Company Vehicle control system and method
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US9828010B2 (en) 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
US20090088915A1 (en) * 2006-04-04 2009-04-02 Mikio Kizaki Vehicle assistance system
US8428802B2 (en) * 2006-04-04 2013-04-23 Toyota Jidosha Kabushiki Kaisha Vehicle assistance system
US20080148993A1 (en) * 2006-12-08 2008-06-26 Tom Mack Hybrid propulsion system and method
US8140202B2 (en) 2006-12-21 2012-03-20 Rail-Veyor Systems, Inc. Method of controlling a rail transport system for conveying bulk materials
WO2008079866A3 (en) * 2006-12-21 2008-09-04 Rail Veyor Systems Inc Method of controlling a rail transport system for conveying bulk materials
US20080154451A1 (en) * 2006-12-21 2008-06-26 Rail-Veyor Systems, Inc. Method of Controlling a Rail Transport System for Conveying Bulk Materials
WO2008079866A2 (en) * 2006-12-21 2008-07-03 Rail-Veyor Systems, Inc. Method of controlling a rail transport system for conveying bulk materials
US8085002B2 (en) * 2006-12-29 2011-12-27 Cummins Power Generation Ip, Inc. Shore power transfer switch
US20120193982A1 (en) * 2006-12-29 2012-08-02 Elias Ayana Shore power transfer switch
US8729869B2 (en) * 2006-12-29 2014-05-20 Cummins Power Generation Ip, Inc. Shore power transfer switch
US20080164850A1 (en) * 2006-12-29 2008-07-10 Elias Ayana Shore power transfer switch
US8513925B2 (en) * 2006-12-29 2013-08-20 Cummins Power Generation Ip, Inc. Shore power transfer switch
US20080246355A1 (en) * 2007-04-06 2008-10-09 Northrop Grumman Space & Mission Systems Corporation Self-Powered Mobile Electrical Power Hub
US7635921B2 (en) * 2007-04-06 2009-12-22 Northrop Grumman Space & Mission Systems Corporation Self-powered mobile electrical power hub
US8112191B2 (en) 2007-04-25 2012-02-07 General Electric Company System and method for monitoring the effectiveness of a brake function in a powered system
US7715958B2 (en) 2007-04-25 2010-05-11 General Electric Company Hybrid energy power management system and method
WO2008134114A1 (en) * 2007-04-25 2008-11-06 General Electric Company Hybrid energy power management system and method
US8180544B2 (en) 2007-04-25 2012-05-15 General Electric Company System and method for optimizing a braking schedule of a powered system traveling along a route
US20090125170A1 (en) * 2007-04-25 2009-05-14 Joseph Forrest Noffsinger System and method for optimizing a braking schedule of a powered system traveling along a route
US20080288192A1 (en) * 2007-04-25 2008-11-20 Ajith Kuttannair Kumar System and Method For Monitoring The Effectiveness Of A Brake Function In A Powered System
US20080270023A1 (en) * 2007-04-25 2008-10-30 Ajith Kuttannair Kumar Hybrid Energy Power Management System And Method
US7812555B2 (en) 2007-04-30 2010-10-12 Caterpillar Inc Electric powertrain system having bidirectional DC generator
US20080265812A1 (en) * 2007-04-30 2008-10-30 Rodwan Tarek Adra Electric powertrain system having bidirectional DC generator
US8001906B2 (en) 2007-05-07 2011-08-23 General Electric Company Electric drive vehicle retrofit system and associated method
US20080276824A1 (en) * 2007-05-07 2008-11-13 General Electric Company Propulsion system
US20080276825A1 (en) * 2007-05-07 2008-11-13 General Electric Company Electric drive vehicle retrofit system and associated method
US20080281479A1 (en) * 2007-05-07 2008-11-13 General Electric Company Method of operating propulsion system
US7723932B2 (en) 2007-05-07 2010-05-25 General Electric Company Propulsion system
US9073448B2 (en) 2007-05-07 2015-07-07 General Electric Company Method of operating propulsion system
EP2106954A2 (en) * 2008-04-01 2009-10-07 Hitachi Ltd. Traction system of railway car
EP2106954A3 (en) * 2008-04-01 2014-01-08 Hitachi Ltd. Traction system of railway car
US8008877B2 (en) * 2008-09-03 2011-08-30 Hitachi Construction Machinery Co., Ltd. Electrically-driven dump truck
US20100051359A1 (en) * 2008-09-03 2010-03-04 Hitachi Construction Machinery Co., Ltd. Dump truck
US8615341B2 (en) * 2008-10-23 2013-12-24 Mitsubishi Electric Corporation Propulsion control apparatus for electric vehicle
US20110166736A1 (en) * 2008-10-23 2011-07-07 Mitsubishi Electric Corporation Propulsion control apparatus for electric vehicle
US20100152937A1 (en) * 2008-12-11 2010-06-17 Denso Corporation Drive control apparatus for hybrid vehicle
US8370012B2 (en) * 2008-12-11 2013-02-05 Denso Corporation Drive control apparatus for hybrid vehicle
US8457821B2 (en) * 2009-04-07 2013-06-04 Cisco Technology, Inc. System and method for managing electric vehicle travel
US20100256846A1 (en) * 2009-04-07 2010-10-07 Cisco Technology, Inc. System and method for managing electric vehicle travel
US8330291B2 (en) 2009-10-02 2012-12-11 General Electric Company Power generation apparatus
US20110080040A1 (en) * 2009-10-02 2011-04-07 Ajith Kuttannair Kumar Power generation apparatus
US8602141B2 (en) 2010-04-05 2013-12-10 Daimler Trucks North America Llc Vehicle power system with fuel cell auxiliary power unit (APU)
WO2011132195A1 (en) * 2010-04-20 2011-10-27 Louis Antony Mechanical electric power production
US8924051B2 (en) * 2010-06-01 2014-12-30 Hitachi, Ltd. Drive device for railway vehicle
US20130073125A1 (en) * 2010-06-01 2013-03-21 Daijiro ARAKI Drive device for railway vehicle
US11186192B1 (en) 2010-06-02 2021-11-30 Bryan Marc Failing Improving energy transfer with vehicles
US9114719B1 (en) 2010-06-02 2015-08-25 Bryan Marc Failing Increasing vehicle security
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US9393878B1 (en) 2010-06-02 2016-07-19 Bryan Marc Failing Energy transfer with vehicles
US10124691B1 (en) 2010-06-02 2018-11-13 Bryan Marc Failing Energy transfer with vehicles
GB2487224B (en) * 2011-01-14 2015-08-12 John Ritchie Kinghorn Energy management system for trains with flexible formations incorporating regenerative braking
US8484971B2 (en) 2011-02-25 2013-07-16 Bendix Commercial Vehicle Systems Llc Method of operating a vehicle equipped with a pneumatic booster system
WO2012115866A1 (en) * 2011-02-25 2012-08-30 Bendix Commercial Vehicle Systems Llc Method of operating a vehicle equipped with a pneumatic booster system
US9283860B2 (en) * 2011-03-22 2016-03-15 Construcciones Y Auxiliar De Ferrocarriles, S.A. Electrical charging system for energy accumulators of railway vehicles
US20140009115A1 (en) * 2011-03-22 2014-01-09 Construcciones Y Auxiliar De Ferrocarriles, S.A. Electrical charging system for energy accumulators of railway vehicles
US9302682B2 (en) * 2011-04-26 2016-04-05 Norfolk Southern Corporation Multiple compressor system and method for locomotives
US20120272857A1 (en) * 2011-04-26 2012-11-01 Norfolk Southern Multiple Compressor System and Method For Locomotives
US20130046411A1 (en) * 2011-08-15 2013-02-21 Siemens Corporation Electric Vehicle Load Management
US11021061B2 (en) * 2011-10-18 2021-06-01 Amt, Inc. Power hybrid integrated management system
US20140288749A1 (en) * 2011-10-18 2014-09-25 Amt, Inc. Power Hybrid Integrated Management System
US9118201B2 (en) 2012-05-08 2015-08-25 General Electric Company Systems and methods for energy transfer control
US20130317674A1 (en) * 2012-05-22 2013-11-28 Kabushiki Kaisha Toshiba Battery charging control apparatus of a train
US9168932B2 (en) * 2012-05-22 2015-10-27 Kabushiki Kaisha Toshiba Battery charging control apparatus of a train
CN103419668A (en) * 2012-05-22 2013-12-04 株式会社东芝 Battery charging control apparatus of a train
US20140033948A1 (en) * 2012-07-31 2014-02-06 Aaron Gamache Foege Consist having self-powered tender car
US9718478B2 (en) 2012-07-31 2017-08-01 Electro-Motive Diesel, Inc. Fuel system for consist having daughter locomotive
US20140033942A1 (en) * 2012-07-31 2014-02-06 Aaron Gamache Foege Consist having self-propelled tender car
US20140033943A1 (en) * 2012-07-31 2014-02-06 Aaron Gamache Foege Fuel distribution system for multi-locomotive consist
US9073556B2 (en) * 2012-07-31 2015-07-07 Electro-Motive Diesel, Inc. Fuel distribution system for multi-locomotive consist
US8899158B2 (en) * 2012-07-31 2014-12-02 Electro-Motive Diesel, Inc. Consist having self-powered tender car
US8925465B2 (en) * 2012-07-31 2015-01-06 Electro-Motive Diesel, Inc. Consist having self-propelled tender car
US8955444B2 (en) 2012-07-31 2015-02-17 Electro-Motive Diesel, Inc. Energy recovery system for a mobile machine
US8960100B2 (en) 2012-07-31 2015-02-24 Electro-Motive Diesel, Inc. Energy recovery system for a mobile machine
US9682716B2 (en) 2012-11-21 2017-06-20 General Electric Company Route examining system and method
US9834237B2 (en) 2012-11-21 2017-12-05 General Electric Company Route examining system and method
US9669851B2 (en) 2012-11-21 2017-06-06 General Electric Company Route examination system and method
US9227522B2 (en) * 2013-01-02 2016-01-05 Kt Corporation Management of electric power demand in electric vehicle charging stations
US9475401B2 (en) * 2013-01-02 2016-10-25 Kt Corporation Management of electric power demand in electric vehicle charging stations
US20140184170A1 (en) * 2013-01-02 2014-07-03 Kt Corporation Management of electric power demand in electric vehicle charging stations
US20160075248A1 (en) * 2013-01-02 2016-03-17 Kt Corporation Management of electric power demand in electric vehicle charging stations
US20140277860A1 (en) * 2013-03-15 2014-09-18 General Electric Company System and method of vehicle system control
US9205759B2 (en) * 2013-03-15 2015-12-08 General Electric Company System and method of vehicle system control
US9505309B2 (en) * 2013-03-29 2016-11-29 Mitsubishi Electric Corporation Electric vehicle control device and brake controlling method for electric vehicle
US20160052399A1 (en) * 2013-03-29 2016-02-25 Mitsubishi Electric Corporation Electric vehicle control device and brake controlling method for electric vehicle
US10081252B2 (en) 2013-10-09 2018-09-25 Zhejiang Geely Holding Group Co., Ltd. Power system of a series hybrid vehicle
US20150158374A1 (en) * 2013-10-09 2015-06-11 Zhejiang Geely Holding Group Co., Ltd. Power system of a series hybrid vehicle
US9193254B2 (en) * 2013-10-09 2015-11-24 Zhejiang Geely Holding Group Power system of a series hybrid vehicle
US9981560B2 (en) * 2013-10-10 2018-05-29 Continental Automotive Gmbh Predictive method for operating a vehicle and corresponding driver assistance system for a vehicle
US20160257296A1 (en) * 2013-10-16 2016-09-08 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle
US20150134206A1 (en) * 2013-11-08 2015-05-14 Mitsubishi Electric Corporation Vehicle energy management device
US9701302B2 (en) * 2013-11-08 2017-07-11 Mitsubishi Electric Corporation Energy management device for a vehicle having a plurality of different energy sources
US20150202973A1 (en) * 2014-01-21 2015-07-23 Delta Electronics, Inc. Charging apparatus with dynamical charging power and method of operating the same
US9457672B2 (en) * 2014-01-21 2016-10-04 Delta Electronics, Inc. Charging apparatus with dynamical charging power and method of operating the same
EP3109090A4 (en) * 2014-02-20 2018-03-07 Coordenação Dos Programas De Pós Graduação De Engenharia Da Universidade Federal Do Rio De Janeiro Smart energy management systems for electric and hybrid electric vehicles with bidirectional connection, smart energy management system for an energy generator, method for managing energy in a smart energy management system and method for controlling the operation of an energy generator
US9233625B2 (en) * 2014-03-04 2016-01-12 General Electric Company System and method for controlling energy usage
US20150251564A1 (en) * 2014-03-04 2015-09-10 General Electric Company System and method for controlling energy usage
US20150274323A1 (en) * 2014-03-25 2015-10-01 Parker-Hannifin Corporation Aircraft ground support vehicle
US9666889B2 (en) * 2014-03-25 2017-05-30 Parker-Hannifin Corporation Aircraft ground support vehicle
US9327712B2 (en) * 2014-04-22 2016-05-03 Alcatel Lucent System and method for control of a hybrid vehicle with regenerative braking using location awareness
US20150298680A1 (en) * 2014-04-22 2015-10-22 Alcatel-Lucent Usa Inc. System and method for control of a hybrid vehicle with regenerative braking using location awareness
US20150321573A1 (en) * 2014-05-08 2015-11-12 Toyota Jidosha Kabushiki Kaisha Power control system of hybrid vehicle
US9290106B2 (en) * 2014-05-08 2016-03-22 Toyota Jidosha Kabushiki Kaisha Power control system of hybrid vehicle
US9689681B2 (en) 2014-08-12 2017-06-27 General Electric Company System and method for vehicle operation
US20170311490A1 (en) * 2014-11-18 2017-10-26 General Electric Company System and method for cooling power electronics
US10225961B2 (en) * 2014-11-18 2019-03-05 Ge Global Sourcing Llc System and method for cooling power electronics
US9908522B2 (en) * 2015-03-04 2018-03-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device of hybrid vehicle
US20160257299A1 (en) * 2015-03-04 2016-09-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device of hybrid vehicle
US9688296B2 (en) * 2015-10-19 2017-06-27 Electro-Motive Diesel, Inc. Remote data backup for locomotive on-board equipment
US20160176414A1 (en) * 2016-03-02 2016-06-23 Electro-Motive Diesel, Inc. Power management system for train
WO2021069069A1 (en) * 2019-10-09 2021-04-15 Ejzenberg Geoffrey A cyber-physical hybrid electric autonomous or semi-autonomous off-highway dump truck for surface mining industry
WO2021069697A1 (en) * 2019-10-09 2021-04-15 Ejzenberg Geoffrey A cyber-physically controlled autonomous or semi-autonomous vehicle with increased availability over repetitive closed paths
WO2021161191A1 (en) * 2020-02-10 2021-08-19 Hitachi Rail S.P.A. Vehicle with electrical traction including an energy management system, and method for managing the energy in such a vehicle with electrical traction
IT202000002566A1 (en) * 2020-02-10 2021-08-10 Hitachi Rail S P A ELECTRIC DRIVE VEHICLE INCLUDING AN ENERGY MANAGEMENT SYSTEM, AND METHOD OF ENERGY MANAGEMENT IN SUCH ELECTRIC DRIVE VEHICLE
EP4088955A1 (en) * 2021-05-10 2022-11-16 Plasan Sasa Ltd A controllable electric vehicle and a control system therefor
EP4335685A1 (en) * 2022-08-24 2024-03-13 Siemens Mobility GmbH Electric propulsion system

Similar Documents

Publication Publication Date Title
US20060005736A1 (en) Hybrid energy off highway vehicle electric power management system and method
US7448328B2 (en) Hybrid energy off highway vehicle electric power storage system and method
US7430967B2 (en) Multimode hybrid energy railway vehicle system and method
US7532960B2 (en) Hybrid energy off highway vehicle electric power management system and method
US6973880B2 (en) Hybrid energy off highway vehicle electric power storage system and method
US6612245B2 (en) Locomotive energy tender
US7231877B2 (en) Multimode hybrid energy railway vehicle system and method
US6591758B2 (en) Hybrid energy locomotive electrical power storage system
US6612246B2 (en) Hybrid energy locomotive system and method
US7325498B2 (en) Hybrid energy off highway vehicle propulsion circuit
US9193268B2 (en) Hybrid energy power management system and method
US7137344B2 (en) Hybrid energy off highway vehicle load control system and method
US7854203B2 (en) Electrical energy capture system with circuitry for blocking flow of undesirable electrical currents therein
US7715958B2 (en) Hybrid energy power management system and method
US8371230B2 (en) Rail vehicle system
US20060005738A1 (en) Railroad vehicle with energy regeneration

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUMAR, AJITH KUTTANNAIR;REEL/FRAME:016846/0050

Effective date: 20050829

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION