US20060013130A1 - Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel - Google Patents

Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel Download PDF

Info

Publication number
US20060013130A1
US20060013130A1 US10/890,607 US89060704A US2006013130A1 US 20060013130 A1 US20060013130 A1 US 20060013130A1 US 89060704 A US89060704 A US 89060704A US 2006013130 A1 US2006013130 A1 US 2006013130A1
Authority
US
United States
Prior art keywords
data link
error correction
radio channel
channel
transmission interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/890,607
Other versions
US7855973B2 (en
Inventor
Leland Bloebaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Mobile Communications AB
Original Assignee
Sony Ericsson Mobile Communications AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Ericsson Mobile Communications AB filed Critical Sony Ericsson Mobile Communications AB
Priority to US10/890,607 priority Critical patent/US7855973B2/en
Assigned to SONY ERICSSON MOBILE COMMUNICATIONS AB reassignment SONY ERICSSON MOBILE COMMUNICATIONS AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLOEBAUM, LELAND SCOTT
Priority to EP05713101A priority patent/EP1766833A1/en
Priority to CN2005800232154A priority patent/CN101010902B/en
Priority to JP2007521450A priority patent/JP4668994B2/en
Priority to PCT/US2005/003935 priority patent/WO2006019403A1/en
Publication of US20060013130A1 publication Critical patent/US20060013130A1/en
Application granted granted Critical
Publication of US7855973B2 publication Critical patent/US7855973B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1803Stop-and-wait protocols

Definitions

  • the present invention relates to radio communications, and more particularly, to provision of data links over radio channels.
  • a relatively fertile area of innovation in wireless communications is the development of applications that utilize radio protocols for unlicensed, ad hoc short range radio communications, such as those specified under the IEEE 802.11 and BluetoothTM specifications.
  • radio protocols for unlicensed, ad hoc short range radio communications, such as those specified under the IEEE 802.11 and BluetoothTM specifications.
  • laptop computers, printers, personal digital assistants (PDAs), cellular handsets, headsets and the like are increasingly being offered with interfaces that allow such devices to create short range radio connections amongst themselves or with network nodes, such as network access points.
  • the format of the voice data is either A-law or ⁇ -law pulse code modulation (PCM) or continuous variable-slope delta (CVSD) modulation.
  • PCM ⁇ -law pulse code modulation
  • CVSD continuous variable-slope delta
  • the CTP specification also allows for a transparent format whereby some arbitrary coding may be used to generate the 64 kb/s data stream, as the SCO specification does not allow for retransmission.
  • Ericsson's Mobile Services Profile (MSP) uses a BluetoothTM asynchronous connection-less (ACL) channel with retransmission capability to transmit voice data from a vocoder circuit at a fixed rate of approximately 12.2 kb/s.
  • a data link e.g., an audio and/or video data link
  • a data link is established from a data source to a data recipient via an adjustable synchronous radio channel between first and second devices.
  • a quality of the data link is determined.
  • a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link are adjusted responsive to the determined quality of the data link.
  • the first and second devices may be controllable to adjust the transmission interval and the retransmission criterion of the synchronous radio channel responsive to channel parameters communicated between the first and second devices over a radio channel, and adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link may include communicating channel parameters between the first and second devices over the radio channel to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
  • a quality of transmission of an audio and/or video source over the data link is determined.
  • the transmission interval and the retransmission criterion of the synchronous radio channel and the error correction coding of the audio and/or video source are adjusted responsive to the determined quality of transmission of the audio and/or video source over the data link.
  • the transmission interval and the retransmission criterion of the adjustable synchronous radio channel and the error correction coding of the audio and/or video source may be adjusted while maintaining a fixed coding rate.
  • a data link between a data source and a data recipient is established via an extended synchronous connection oriented (eSCO) channel between first and second BluetoothTM devices.
  • eSCO extended synchronous connection oriented
  • a quality of the data link is determined.
  • a transmission interval and a retransmission criterion of the eSCO channel and an error correction coding of the data link are adjusted responsive to the determined quality of the data link.
  • Link management messages may be communicated between the first and second BluetoothTM devices to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
  • an apparatus in additional embodiments of the present invention, includes a radio communications circuit configured to support a data link over an adjustable synchronous radio channel and operative to adjust a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to a quality of the data link.
  • the radio communications circuit may be controllable to adjust the transmission interval and the retransmission criterion of the synchronous radio channel responsive to channel parameters communicated between the radio communications circuit and another radio communications circuit that supports the adjustable synchronous radio channel.
  • the radio communications circuit may include a radio interface circuit operative transmit data input thereto over the adjustable synchronous radio channel, an adjustable error correction coder operative to provide adjustable error correction coding of the data input to the radio interface circuit, and a control circuit operative to control the radio interface circuit and the adjustable error correction coder responsive to the channel parameters.
  • the radio interface circuit may include a BluetoothTM controller circuit, and the adjustable synchronous radio channel may include an eSCO channel.
  • a computer program product includes computer program code embodied in a computer readable medium.
  • the program code includes program code configured to establish a data link from a data source to a data recipient via an adjustable synchronous radio channel between first and second devices, program code configured to determine a quality of the data link and program code configured to adjust a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link.
  • the program code configured to adjust a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link may include program code configured to communicate channel parameters between the first and second devices over the radio channel to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
  • FIG. 1 illustrates communications apparatus and operations according to some embodiments of the present invention.
  • FIGS. 2-5 are schematic diagrams illustrating BluetoothTM communications apparatus and operations according to various embodiments of the present invention.
  • FIG. 6 is a timing diagram illustrating various communications modes of BluetoothTM master and slave nodes according to some embodiments of the present invention.
  • FIG. 7 is a diagram illustrating exemplary BluetoothTM master/slave wireless communications according to further embodiments of the present invention.
  • each block of the block diagrams and/or operational illustrations, and combinations of blocks in the block diagrams and/or operational illustrations can be implemented by radio frequency, analog and/or digital hardware, and/or computer program instructions.
  • These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, ASIC, and/or other programmable data processing apparatus, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, create means for implementing the functions/acts specified in the block diagrams and/or operational illustrations.
  • electronic apparatus may include a radio communications circuit configured to provide operations described herein.
  • Such apparatus may include any of a number of types of devices, including, but not limited to: cellular handsets; wireless headsets for use with telecommunications devices and/or computers; computers and peripherals that include a radio interface (e.g., BluetoothTM compliant devices); personal communication terminals that may combine a cellular wireless terminal with data processing, facsimile and data communications capabilities; and personal data assistants (PDA) that can include a wireless transceiver, pager, Internet/intranet access, local area network interface, wide area network interface, Web browser, organizer, and/or calendar.
  • PDA personal data assistants
  • Computer program code for carrying out operations of the present invention may be written in an object oriented programming language such as Java®, Smalltalk or C++, a conventional procedural programming languages, such as the “C” programming language, or lower-level code, such as assembly language and/or microcode.
  • the program code may execute entirely on a single processor and/or across multiple processors, as a stand-alone software package or as part of another software package.
  • FIG. 1 illustrates apparatus and operations according to some embodiments of the present invention.
  • Data produced from a data source 10 such as an audio and/or video data source, is communicated to a data recipient 20 , such as an audio or video reproduction circuit, over a data link 110 .
  • the data is transferred over the data link 110 via an adjustable synchronous radio channel 113 that is supported by first and second radio circuits 112 , 114 .
  • the adjustable synchronous radio channel 113 has an adjustable transmission interval (e.g., the interval between transmission of packets over the radio channel 113 ) and an adjustable retransmission criterion (e.g., a maximum number of retransmissions per packet transmitted over the radio channel 113 ).
  • the data link 110 further includes adjustable error correction coder and decoder circuits 111 , 115 coupled to respective ends of the adjustable synchronous radio channel 113 .
  • a control circuit 120 adjusts the coding rate of the error correction coder and decoder circuits 111 , 115 and the transmission interval and retransmission criterion of the radio channel 113 , e.g., by controlling one or both of the radio circuits 112 , 114 , responsive to a quality of the data link 110 .
  • control circuit 140 may adjust transmission interval, retransmission and/or coding rate based on error detection decoding of the data transmitted over the data link 110 , error correction decoding metrics produced by the error correction decoder circuit 115 , a number of retransmissions over the radio channel 113 and/or any of a number of other measures of link quality.
  • FIG. 2 illustrates an exemplary configuration of a data link between an audio and/or video data source 211 and an audio and/or video data recipient 262 using an ad hoc BluetoothTM adjustable synchronous radio connection according to further embodiments of the present invention.
  • the audio and/or video data source 211 are coupled to an adjustable error correction coder circuit 212 configured to adjustably encode data from the data source 211 .
  • the adjustable error correction coder circuit may be adjustable to provide no additional error correction coding.
  • Data produced from the adjustable error correction coder circuit 212 is provided to a first BluetoothTM controller circuit 220 that is operatively associated with a first BluetoothTM host 210 and that supports an extended Synchronous Connection-Oriented (eSCO) radio channel 230 to a second BluetoothTM controller circuit 250 .
  • the second BluetoothTM controller circuit 250 is coupled to a second BluetoothTM host 260 and to a complementary adjustable error detection decoder circuit 261 and the audio and/or video data recipient 262 .
  • a transmission interval and a retransmission limit of the eSCO channel 230 is adjusted by link management parameters included in messages between the first and second BluetoothTM controller circuits 220 , 250 over an Asynchronous Connection-Less (ACL) channel 240 .
  • link management parameters are described in Specification of the Bluetooth System, Version 1.2 (November 2003), published by the BluetoothTM Special Interest Group and available on the Web at bluetooth.org.
  • Control circuitry in or associated with the first BluetoothTM host 210 and/or the second BluetoothTM host 260 determines a quality of the link between the data source 211 and the data recipient 262 and responsively controls the transmission of such parameters. For example, as shown in FIG.
  • the receiving BluetoothTM host 260 may be responsive to a quality determiner circuit 263 that, for example, monitors error correction and/or detection metrics for the data link.
  • the BluetoothTM host 260 may include control circuitry that, responsive to the determined quality, provides appropriate Host Command Interface (HCI) messages that cause transmission of appropriate link management messages from the second BluetoothTM controller circuit 250 to the first BluetoothTM controller circuit 220 over the ACL channel 240 and/or the eSCO channel 230 , which, in turn, causes transmission of appropriate HCI messages between the first BluetoothTM controller circuit 220 and the first BluetoothTM host 210 to adjust the transmission interval and/or retransmission limit of the eSCO channel 230 and/or the error correction coding applied by the adjustable error correction coder circuit 212 and the adjustable error correction decoder circuit 261 to maintain, for example, a minimum or substantially fixed transfer rate between the data source 211 and the data recipient 262 while maintaining a predetermined link quality.
  • HCI Host Command Interface
  • FIG. 3 illustrates a modification of the circuitry and operations illustrated in FIG. 2 to provide bidirectional communications.
  • Like components of FIGS. 2 and 3 are indicated by like numerals, and further description of these like components will not be provided in lieu of the foregoing description of FIG. 2 .
  • a first BluetoothTM host 210 ′ is coupled to a first BluetoothTM controller circuit 220 that is coupled to an audio and/or video recipient 214 that receives audio and/or video data from an audio and/or video data source 265 associated with a second BluetoothTM host 260 ′.
  • An adjustable error correction coder circuit 264 adjustably error correction codes the output of the data source 265 and provides the data to a second BluetoothTM controller circuit 250 for transmission to the first BluetoothTM controller circuit 220 over an eSCO channel 230 ′.
  • An adjustable error correction decoder circuit 215 receives the data from the first BluetoothTM controller circuit 220 and provides data to the audio and/or video recipient 214 .
  • the first BluetoothTM host 210 ′ is responsive to a link quality determiner circuit 213 that determines quality of the link between the audio and/or video data source 265 and the audio and/or video data recipient 214 .
  • the first BluetoothTM host 210 ′ and/or the second BluetoothTM host 260 ′ may adjust the transmission interval and/or the retransmission limit of the eSCO channel 230 ′ and/or the coding of the error correction coder circuit 264 and the error correction decoder circuit 215 responsive to the determined quality.
  • the bidirectional communications illustrated in FIG. 3 need not be symmetrical.
  • the eSCO channel 230 ′ may provide different rates and/or different coding, transmission interval and retransmission criteria in different directions.
  • FIGS. 4 and 5 illustrate exemplary application environments in which a structure along the lines illustrated in FIG. 3 may be used.
  • a headset 401 includes an integrated BluetoothTM controller circuit 420 , i.e., a BluetoothTM controller that implements upper-level protocol and profile layers without a host interface.
  • the integrated BluetoothTM controller circuit 420 is operatively associated with a data source in the form of an audio encoder circuit 411 , which produces audio data from an audio source, such as a microphone (not shown) of the headset 401 .
  • An adjustable error correction coder circuit 412 receives audio data from the audio encoder circuit 411 and provides adjustable error correction coding (which may include an option of providing no error correction coding) of the received data for provision to the integrated BluetoothTM controller circuit 420 .
  • the integrated BluetoothTM controller circuit 420 transmits the audio data over an eSCO channel 430 to a BluetoothTM controller circuit 450 in a cellular transceiver unit 402 (e.g., a mobile handset or fixed cellular radiotelephone), with the eSCO channel being controlled by link management parameters communicated over an ACL channel 440 .
  • the cellular transceiver unit 402 further includes a BluetoothTM host circuit 460 that is coupled to the BluetoothTM controller circuit 450 and operatively associated with an adjustable error correction decoder circuit 461 for adjustably error correction decoding audio data received by the BluetoothTM controller circuit 450 , and a telephony interface circuit 462 that receives data from the adjustable error correction decoder circuit 450 .
  • a link quality determiner circuit 464 determines quality of data transferred over the data link between the audio encoder circuit 411 and the telephony interface circuit 462 .
  • the telephony interface circuit 462 is further operative to provide audio data to an adjustable error correction decoder circuit 463 , which adjustably error correction codes the data for transmission over the eSCO channel 430 by the BluetoothTM controller circuit 450 .
  • the transmitted data is received by the integrated BluetoothTM controller circuit 420 and passed to a complementary adjustable error correction decoder circuit 415 .
  • Audio data is provided from the error correction decoder circuit 415 to an audio decoder circuit 414 for use, for example, in driving a speaker (not shown) of the headset 401 .
  • a link quality determiner circuit 423 determines a link quality of the link between the telephony interface circuit 462 and the audio decoder circuit 414 .
  • FIG. 5 illustrates another exemplary application, in particular, a configuration that uses an adjustable synchronous BluetoothTM radio channel to communicate audio data from a cellular handset 501 to a network access point 502 , for example, a node of an Internet Protocol (IP) network, such that the handset 501 may be used, for example, for voice over IP (VoIP) communications via the IP network.
  • IP Internet Protocol
  • the handset 501 includes a first BluetoothTM host 510 and a first BluetoothTM controller circuit 520 .
  • a data source in the form of an audio encoder circuit 511 produces audio data from an audio source, such as a microphone (not shown) of the handset 501 .
  • An adjustable error correction coder circuit 512 receives audio data from the audio encoder circuit 511 and provides adjustable error correction coding (which may include no error correction coding) of the received data for provision to the first BluetoothTM controller circuit 520 .
  • the BluetoothTM host circuit 510 receives control information and conveys it to the BluetoothTM controller circuit 520 .
  • the first BluetoothTM controller circuit 520 transmits the audio data over an eSCO channel 530 to a second BluetoothTM controller circuit 550 in the access point 502 , with the eSCO channel being controlled by link management parameters communicated over an ACL channel 540 between the first and second BluetoothTM controller circuits 520 , 550 .
  • the access point 502 further includes a second BluetoothTM host circuit 560 that is coupled to the second BluetoothTM controller circuit 550 .
  • An adjustable error correction decoder circuit 461 adjustably error correction decodes audio data received by the second BluetoothTM controller circuit 550 , and a telephony interface circuit 562 receives data from the adjustable error correction decoder circuit 550 .
  • a link quality determiner circuit 564 determines quality of data transferred over the data link between the audio encoder circuit 511 and the telephony interface circuit 562 .
  • the telephony interface circuit 562 is further operative to provide audio data to an adjustable error correction decoder circuit 563 , which adjustably error correction codes the data for transmission over the eSCO channel 530 by the second BluetoothTM controller circuit 550 .
  • the transmitted data is received by the first BluetoothTM controller circuit 520 and passed to a complementary adjustable error correction decoder circuit 515 .
  • Audio data, suitably decoded, is provided from the adjustable error correction decoder circuit 515 to an audio decoder circuit 514 for use, for example, in driving a speaker (not shown) of the handset 501 .
  • a link quality determiner circuit 513 determines a link quality of the link between the telephony interface circuit 562 and the audio decoder circuit 514 .
  • Telephony control information is also exchanged between the BluetoothTM host circuits 510 , 560 via the ACL channel 540 .
  • an eSCO channel includes adjustable retransmission and adjustable transmission interval parameters.
  • the number of transmission slots that occur between packet transmissions on an eSCO channel is adjustable, and the number of maximum ARQ retransmissions for a single packet can be adjusted to various values, including zero.
  • a vocoder circuit e.g., a GSM vocoder
  • a fixed rate e.g. 10.2 kb/s
  • a fixed rate e.g. 10.2 kb/s
  • a fixed rate e.g. 10.2 kb/s
  • Error correction coding of the vocoder output and the transmission interval and retransmission limit of the eSCO channel can be varied responsive to link quality to maintain a fixed rate of transfer of the vocoder output over the link.
  • an adaptive BluetoothTM channel can be used to couple a device having such a vocoder, such as a cellular handset, to a network access point such that the device can also be used for telephony over a network linked to the access point.
  • FIG. 6 illustrates four operational modes 601 , 602 , 603 , 604 for such a link.
  • a first mode 601 only a single voice packet (per direction) is transmitted for each 20-ms voice frame, without error correction coding.
  • Such a mode may be used, for example, in optimal channel conditions.
  • Lost packets may be retransmitted using an Automatic Repeat Request (ARQ) technique.
  • ARQ Automatic Repeat Request
  • the system may transition to a second mode 602 , which uses rate 1 ⁇ 2 error correction coding (e.g., convolutional coding) to generate two packets per 20 ms frame.
  • the second mode 602 may eliminate retransmission, or may limit transmission to a single retransmission.
  • the third and fourth modes 603 , 604 add repeat coding to the 1 ⁇ 2 rate coded bits (without retransmission) to increase robustness in poorer channel conditions.
  • FIG. 6 illustrates exemplary values of the BluetoothTM transmission interval parameter T esco and retransmit window D esco for the various modes 601 , 602 , 603 , 604 , while Table I illustrates values for negotiable sSCO link parameters for the modes 601 , 602 , 603 , 604 : TABLE I Transmit Retransmit Packet Rate Interval Window Packet Length (normalized) T esco D esco Type Air Mode (bytes) 1 32 2-30 EV3 Transparent 26 1/2 16 0 EV3 Transparent 26 (or 2) 1/4 8 0 EV3 Transparent 26 1/8 4 0 EV3 Transparent 26
  • FIG. 7 illustrates exemplary phases of operation of such a link in a telephony application.
  • a master entity includes a master host 701 and a master BluetoothTM device (e.g., controller) 702
  • a slave entity includes a slave host 704 and a slave BluetoothTM device (e.g., controller) 703 .
  • Each host/device pair 701 / 702 , 704 / 703 communicates using BluetoothTM HCI messages 710 , 730
  • the devices 702 , 703 communicate using Link Management Protocol (LMP) negotiation messages 720 .
  • the hosts include the telephony application and layers of the BluetoothTM stack above HCI, while the devices include the BluetoothTM Link Management (LM), baseband (BB), and physical layers below the HCI.
  • LM BluetoothTM Link Management
  • BB baseband
  • the master host 701 requests establishment of the connection with an HCI_Setup_Synchronous_Connection message that includes appropriate eSCO channel parameters.
  • an HCI_Connection_Request message followed by a responsive HCI_Accept Synchronous_Connection message
  • the master host 701 receives indication of establishment of the eSCO link in an HCI_Synchronous_Connection_Complete message.
  • a first phase 740 of two-way communication over the eSCO link e.g., a Rate 1 exchange, then may commence.
  • the master host 701 Upon determination by the master host 701 that link quality is unacceptable at 745 , the master host 701 initiates a renegotiation of the eSCO link parameters, ultimately leading to a second phase of operation 750 at rate 1 ⁇ 2. Upon determining that link quality has sufficiently improved at 755 , the master host 701 renegotiates the link parameters, leading to a third phase of operation 760 at rate 1 . Similar adaptations 770 may subsequently occur. At some subsequent time, the master host 701 initiates termination of the channel with an HCI_Disconnect message.
  • the exemplary operations shown in FIG. 7 are for a configuration in which the master host 701 controls communications in both directions.
  • a slave host such as the slave host 704 , could also request changes in channel criteria, in either direction.
  • FIGS. 1-7 illustrate architecture, functionality, and operations of possible implementations of apparatus, methods and computer program products according to various embodiments of the present invention. It should also be noted that, in some alternative implementations, the acts noted in the diagrams may occur out of the order noted in the figures. For example, two operations shown in succession may, in fact, be executed substantially concurrently, or the operations may sometimes be executed in the reverse order, depending upon the functionality involved.

Abstract

A data link, e.g., an audio and/or video data link, is established from a data source, such as an audio and/or video encoder, to a data recipient via an adjustable synchronous radio channel, such as an extended Synchronous Connection-Oriented (eSCO) channel between first and second Bluetooth™ devices. A quality of the data link is determined. A transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link are adjusted responsive to the determined quality of the data link to, for example, maintain a fixed information transfer rate over the data link. The transmission interval and retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link may be adjusted by communicating channel parameters between the first and second devices over the radio channel to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to radio communications, and more particularly, to provision of data links over radio channels.
  • A relatively fertile area of innovation in wireless communications is the development of applications that utilize radio protocols for unlicensed, ad hoc short range radio communications, such as those specified under the IEEE 802.11 and Bluetooth™ specifications. For example, laptop computers, printers, personal digital assistants (PDAs), cellular handsets, headsets and the like are increasingly being offered with interfaces that allow such devices to create short range radio connections amongst themselves or with network nodes, such as network access points.
  • Telephony profiles for Bluetooth™ devices have been developed. The Cordless Telephony Profile (CTP) specified by the Bluetooth™ Special Interest Group (SIG), available on the Web at bluetooth.org, utilizes a Bluetooth™ synchronous connection-oriented (SCO) channel to transmit voice data from a vocoder circuit at a fixed rate of 64 kilobits/second. The format of the voice data is either A-law or μ-law pulse code modulation (PCM) or continuous variable-slope delta (CVSD) modulation. The CTP specification also allows for a transparent format whereby some arbitrary coding may be used to generate the 64 kb/s data stream, as the SCO specification does not allow for retransmission. Ericsson's Mobile Services Profile (MSP) uses a Bluetooth™ asynchronous connection-less (ACL) channel with retransmission capability to transmit voice data from a vocoder circuit at a fixed rate of approximately 12.2 kb/s.
  • SUMMARY OF THE INVENTION
  • According to some embodiments of the present invention, a data link, e.g., an audio and/or video data link, is established from a data source to a data recipient via an adjustable synchronous radio channel between first and second devices. A quality of the data link is determined. A transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link are adjusted responsive to the determined quality of the data link. For example, the first and second devices may be controllable to adjust the transmission interval and the retransmission criterion of the synchronous radio channel responsive to channel parameters communicated between the first and second devices over a radio channel, and adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link may include communicating channel parameters between the first and second devices over the radio channel to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
  • In some embodiments of the present invention, a quality of transmission of an audio and/or video source over the data link is determined. The transmission interval and the retransmission criterion of the synchronous radio channel and the error correction coding of the audio and/or video source are adjusted responsive to the determined quality of transmission of the audio and/or video source over the data link. For example, the transmission interval and the retransmission criterion of the adjustable synchronous radio channel and the error correction coding of the audio and/or video source may be adjusted while maintaining a fixed coding rate.
  • In further embodiments of the present invention, a data link between a data source and a data recipient is established via an extended synchronous connection oriented (eSCO) channel between first and second Bluetooth™ devices. A quality of the data link is determined. A transmission interval and a retransmission criterion of the eSCO channel and an error correction coding of the data link are adjusted responsive to the determined quality of the data link. Link management messages may be communicated between the first and second Bluetooth™ devices to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
  • In additional embodiments of the present invention, an apparatus includes a radio communications circuit configured to support a data link over an adjustable synchronous radio channel and operative to adjust a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to a quality of the data link. The radio communications circuit may be controllable to adjust the transmission interval and the retransmission criterion of the synchronous radio channel responsive to channel parameters communicated between the radio communications circuit and another radio communications circuit that supports the adjustable synchronous radio channel.
  • The radio communications circuit may include a radio interface circuit operative transmit data input thereto over the adjustable synchronous radio channel, an adjustable error correction coder operative to provide adjustable error correction coding of the data input to the radio interface circuit, and a control circuit operative to control the radio interface circuit and the adjustable error correction coder responsive to the channel parameters. The radio interface circuit may include a Bluetooth™ controller circuit, and the adjustable synchronous radio channel may include an eSCO channel.
  • According to further embodiments of the present invention, a computer program product includes computer program code embodied in a computer readable medium. The program code includes program code configured to establish a data link from a data source to a data recipient via an adjustable synchronous radio channel between first and second devices, program code configured to determine a quality of the data link and program code configured to adjust a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link. The program code configured to adjust a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link may include program code configured to communicate channel parameters between the first and second devices over the radio channel to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates communications apparatus and operations according to some embodiments of the present invention.
  • FIGS. 2-5 are schematic diagrams illustrating Bluetooth™ communications apparatus and operations according to various embodiments of the present invention.
  • FIG. 6 is a timing diagram illustrating various communications modes of Bluetooth™ master and slave nodes according to some embodiments of the present invention.
  • FIG. 7 is a diagram illustrating exemplary Bluetooth™ master/slave wireless communications according to further embodiments of the present invention.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. However, this invention should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
  • It also will be understood that, as used herein, the terms “comprising”, “comprises”, “includes” and “including” are open-ended, i.e., refer to one or more stated elements, steps and/or functions without precluding one or more unstated elements, steps and/or functions. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that when transfer, communication, or other interaction is described as occurring “between” elements, such transfer, communication or other interaction may be unidirectional and/or bidirectional.
  • The present invention is described below with reference to block diagrams and/or operational illustrations of methods and wireless terminals according to embodiments of the invention. It will be understood that each block of the block diagrams and/or operational illustrations, and combinations of blocks in the block diagrams and/or operational illustrations, can be implemented by radio frequency, analog and/or digital hardware, and/or computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, ASIC, and/or other programmable data processing apparatus, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, create means for implementing the functions/acts specified in the block diagrams and/or operational illustrations. In some alternate implementations, the functions/acts noted in the figures may occur out of the order noted in the block diagrams and/or operational illustrations. For example, two operations shown as occurring in succession may, in fact, be executed substantially concurrently or the operations may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
  • According to some embodiments of the present invention, electronic apparatus may include a radio communications circuit configured to provide operations described herein. Such apparatus may include any of a number of types of devices, including, but not limited to: cellular handsets; wireless headsets for use with telecommunications devices and/or computers; computers and peripherals that include a radio interface (e.g., Bluetooth™ compliant devices); personal communication terminals that may combine a cellular wireless terminal with data processing, facsimile and data communications capabilities; and personal data assistants (PDA) that can include a wireless transceiver, pager, Internet/intranet access, local area network interface, wide area network interface, Web browser, organizer, and/or calendar.
  • Computer program code for carrying out operations of the present invention may be written in an object oriented programming language such as Java®, Smalltalk or C++, a conventional procedural programming languages, such as the “C” programming language, or lower-level code, such as assembly language and/or microcode. The program code may execute entirely on a single processor and/or across multiple processors, as a stand-alone software package or as part of another software package.
  • FIG. 1 illustrates apparatus and operations according to some embodiments of the present invention. Data produced from a data source 10, such as an audio and/or video data source, is communicated to a data recipient 20, such as an audio or video reproduction circuit, over a data link 110. The data is transferred over the data link 110 via an adjustable synchronous radio channel 113 that is supported by first and second radio circuits 112, 114. The adjustable synchronous radio channel 113 has an adjustable transmission interval (e.g., the interval between transmission of packets over the radio channel 113) and an adjustable retransmission criterion (e.g., a maximum number of retransmissions per packet transmitted over the radio channel 113). The data link 110 further includes adjustable error correction coder and decoder circuits 111, 115 coupled to respective ends of the adjustable synchronous radio channel 113. A control circuit 120 adjusts the coding rate of the error correction coder and decoder circuits 111, 115 and the transmission interval and retransmission criterion of the radio channel 113, e.g., by controlling one or both of the radio circuits 112, 114, responsive to a quality of the data link 110. For example, the control circuit 140 may adjust transmission interval, retransmission and/or coding rate based on error detection decoding of the data transmitted over the data link 110, error correction decoding metrics produced by the error correction decoder circuit 115, a number of retransmissions over the radio channel 113 and/or any of a number of other measures of link quality.
  • FIG. 2 illustrates an exemplary configuration of a data link between an audio and/or video data source 211 and an audio and/or video data recipient 262 using an ad hoc Bluetooth™ adjustable synchronous radio connection according to further embodiments of the present invention. In the illustrated embodiments, the audio and/or video data source 211 are coupled to an adjustable error correction coder circuit 212 configured to adjustably encode data from the data source 211. It will be appreciated that, in some embodiments, the adjustable error correction coder circuit may be adjustable to provide no additional error correction coding. Data produced from the adjustable error correction coder circuit 212 is provided to a first Bluetooth™ controller circuit 220 that is operatively associated with a first Bluetooth™ host 210 and that supports an extended Synchronous Connection-Oriented (eSCO) radio channel 230 to a second Bluetooth™ controller circuit 250. The second Bluetooth™ controller circuit 250 is coupled to a second Bluetooth™ host 260 and to a complementary adjustable error detection decoder circuit 261 and the audio and/or video data recipient 262.
  • A transmission interval and a retransmission limit of the eSCO channel 230 is adjusted by link management parameters included in messages between the first and second Bluetooth ™ controller circuits 220, 250 over an Asynchronous Connection-Less (ACL) channel 240. Such link management parameters are described in Specification of the Bluetooth System, Version 1.2 (November 2003), published by the Bluetooth™ Special Interest Group and available on the Web at bluetooth.org. Control circuitry in or associated with the first Bluetooth™ host 210 and/or the second Bluetooth™ host 260 determines a quality of the link between the data source 211 and the data recipient 262 and responsively controls the transmission of such parameters. For example, as shown in FIG. 2, the receiving Bluetooth™ host 260 may be responsive to a quality determiner circuit 263 that, for example, monitors error correction and/or detection metrics for the data link. The Bluetooth™ host 260 may include control circuitry that, responsive to the determined quality, provides appropriate Host Command Interface (HCI) messages that cause transmission of appropriate link management messages from the second Bluetooth™ controller circuit 250 to the first Bluetooth™ controller circuit 220 over the ACL channel 240 and/or the eSCO channel 230, which, in turn, causes transmission of appropriate HCI messages between the first Bluetooth™ controller circuit 220 and the first Bluetooth™ host 210 to adjust the transmission interval and/or retransmission limit of the eSCO channel 230 and/or the error correction coding applied by the adjustable error correction coder circuit 212 and the adjustable error correction decoder circuit 261 to maintain, for example, a minimum or substantially fixed transfer rate between the data source 211 and the data recipient 262 while maintaining a predetermined link quality. It will be appreciated, however, that quality determination and control of the eSCO channel 230 may be provided in a number of different ways. For example, a link quality determiner may be integrated into a Bluetooth™ controller circuit and/or a Bluetooth™ host circuit.
  • FIG. 3 illustrates a modification of the circuitry and operations illustrated in FIG. 2 to provide bidirectional communications. Like components of FIGS. 2 and 3 are indicated by like numerals, and further description of these like components will not be provided in lieu of the foregoing description of FIG. 2. In the illustrated embodiments of FIG. 3, a first Bluetooth™ host 210′ is coupled to a first Bluetooth™ controller circuit 220 that is coupled to an audio and/or video recipient 214 that receives audio and/or video data from an audio and/or video data source 265 associated with a second Bluetooth™ host 260′. An adjustable error correction coder circuit 264 adjustably error correction codes the output of the data source 265 and provides the data to a second Bluetooth™ controller circuit 250 for transmission to the first Bluetooth™ controller circuit 220 over an eSCO channel 230′. An adjustable error correction decoder circuit 215 receives the data from the first Bluetooth™ controller circuit 220 and provides data to the audio and/or video recipient 214. The first Bluetooth™ host 210′ is responsive to a link quality determiner circuit 213 that determines quality of the link between the audio and/or video data source 265 and the audio and/or video data recipient 214. Along lines described above with reference to FIG. 2, the first Bluetooth™ host 210′ and/or the second Bluetooth™ host 260′ may adjust the transmission interval and/or the retransmission limit of the eSCO channel 230′ and/or the coding of the error correction coder circuit 264 and the error correction decoder circuit 215 responsive to the determined quality.
  • It will be appreciated that the bidirectional communications illustrated in FIG. 3 need not be symmetrical. In particular, the eSCO channel 230′ may provide different rates and/or different coding, transmission interval and retransmission criteria in different directions.
  • FIGS. 4 and 5 illustrate exemplary application environments in which a structure along the lines illustrated in FIG. 3 may be used. Referring to FIG. 4, a headset 401 includes an integrated Bluetooth™ controller circuit 420, i.e., a Bluetooth™ controller that implements upper-level protocol and profile layers without a host interface. The integrated Bluetooth™ controller circuit 420 is operatively associated with a data source in the form of an audio encoder circuit 411, which produces audio data from an audio source, such as a microphone (not shown) of the headset 401. An adjustable error correction coder circuit 412 receives audio data from the audio encoder circuit 411 and provides adjustable error correction coding (which may include an option of providing no error correction coding) of the received data for provision to the integrated Bluetooth™ controller circuit 420.
  • The integrated Bluetooth™ controller circuit 420 transmits the audio data over an eSCO channel 430 to a Bluetooth™ controller circuit 450 in a cellular transceiver unit 402 (e.g., a mobile handset or fixed cellular radiotelephone), with the eSCO channel being controlled by link management parameters communicated over an ACL channel 440. The cellular transceiver unit 402 further includes a Bluetooth™ host circuit 460 that is coupled to the Bluetooth™ controller circuit 450 and operatively associated with an adjustable error correction decoder circuit 461 for adjustably error correction decoding audio data received by the Bluetooth™ controller circuit 450, and a telephony interface circuit 462 that receives data from the adjustable error correction decoder circuit 450. A link quality determiner circuit 464 determines quality of data transferred over the data link between the audio encoder circuit 411 and the telephony interface circuit 462.
  • The telephony interface circuit 462 is further operative to provide audio data to an adjustable error correction decoder circuit 463, which adjustably error correction codes the data for transmission over the eSCO channel 430 by the Bluetooth™ controller circuit 450. The transmitted data is received by the integrated Bluetooth™ controller circuit 420 and passed to a complementary adjustable error correction decoder circuit 415. Audio data is provided from the error correction decoder circuit 415 to an audio decoder circuit 414 for use, for example, in driving a speaker (not shown) of the headset 401. A link quality determiner circuit 423 determines a link quality of the link between the telephony interface circuit 462 and the audio decoder circuit 414.
  • FIG. 5 illustrates another exemplary application, in particular, a configuration that uses an adjustable synchronous Bluetooth™ radio channel to communicate audio data from a cellular handset 501 to a network access point 502, for example, a node of an Internet Protocol (IP) network, such that the handset 501 may be used, for example, for voice over IP (VoIP) communications via the IP network. The handset 501 includes a first Bluetooth™ host 510 and a first Bluetooth™ controller circuit 520. A data source in the form of an audio encoder circuit 511 produces audio data from an audio source, such as a microphone (not shown) of the handset 501. An adjustable error correction coder circuit 512 receives audio data from the audio encoder circuit 511 and provides adjustable error correction coding (which may include no error correction coding) of the received data for provision to the first Bluetooth™ controller circuit 520. The Bluetooth™ host circuit 510 receives control information and conveys it to the Bluetooth™ controller circuit 520.
  • The first Bluetooth™ controller circuit 520 transmits the audio data over an eSCO channel 530 to a second Bluetooth™ controller circuit 550 in the access point 502, with the eSCO channel being controlled by link management parameters communicated over an ACL channel 540 between the first and second Bluetooth ™ controller circuits 520, 550. The access point 502 further includes a second Bluetooth™ host circuit 560 that is coupled to the second Bluetooth™ controller circuit 550. An adjustable error correction decoder circuit 461 adjustably error correction decodes audio data received by the second Bluetooth™ controller circuit 550, and a telephony interface circuit 562 receives data from the adjustable error correction decoder circuit 550. A link quality determiner circuit 564 determines quality of data transferred over the data link between the audio encoder circuit 511 and the telephony interface circuit 562.
  • The telephony interface circuit 562 is further operative to provide audio data to an adjustable error correction decoder circuit 563, which adjustably error correction codes the data for transmission over the eSCO channel 530 by the second Bluetooth™ controller circuit 550. The transmitted data is received by the first Bluetooth™ controller circuit 520 and passed to a complementary adjustable error correction decoder circuit 515. Audio data, suitably decoded, is provided from the adjustable error correction decoder circuit 515 to an audio decoder circuit 514 for use, for example, in driving a speaker (not shown) of the handset 501. A link quality determiner circuit 513 determines a link quality of the link between the telephony interface circuit 562 and the audio decoder circuit 514. Telephony control information is also exchanged between the Bluetooth ™ host circuits 510, 560 via the ACL channel 540.
  • As specified by release 1.2 of the Bluetooth™ core specification, an eSCO channel includes adjustable retransmission and adjustable transmission interval parameters. In particular, the number of transmission slots that occur between packet transmissions on an eSCO channel is adjustable, and the number of maximum ARQ retransmissions for a single packet can be adjusted to various values, including zero.
  • In some embodiments of the present invention, a vocoder circuit (e.g., a GSM vocoder) operating at a fixed rate (e.g., 10.2 kb/s) may be coded to generate voice packets that fit within the payload of one eSCO frame (204 bits or 26 bytes). These packets are may be fed into an eSCO channel. Error correction coding of the vocoder output and the transmission interval and retransmission limit of the eSCO channel can be varied responsive to link quality to maintain a fixed rate of transfer of the vocoder output over the link. In this manner, an adaptive Bluetooth™ channel can be used to couple a device having such a vocoder, such as a cellular handset, to a network access point such that the device can also be used for telephony over a network linked to the access point.
  • FIG. 6 illustrates four operational modes 601, 602, 603, 604 for such a link. In a first mode 601, only a single voice packet (per direction) is transmitted for each 20-ms voice frame, without error correction coding. Such a mode may be used, for example, in optimal channel conditions. Lost packets may be retransmitted using an Automatic Repeat Request (ARQ) technique. As channel quality decreases, the system may transition to a second mode 602, which uses rate ½ error correction coding (e.g., convolutional coding) to generate two packets per 20 ms frame. The second mode 602 may eliminate retransmission, or may limit transmission to a single retransmission. The third and fourth modes 603, 604 add repeat coding to the ½ rate coded bits (without retransmission) to increase robustness in poorer channel conditions. FIG. 6 illustrates exemplary values of the Bluetooth™ transmission interval parameter Tesco and retransmit window Desco for the various modes 601, 602, 603, 604, while Table I illustrates values for negotiable sSCO link parameters for the modes 601, 602, 603, 604:
    TABLE I
    Transmit Retransmit Packet
    Rate Interval Window Packet Length
    (normalized) Tesco Desco Type Air Mode (bytes)
    1 32 2-30 EV3 Transparent 26
    1/2 16 0 EV3 Transparent 26
    (or 2)
    1/4 8 0 EV3 Transparent 26
    1/8 4 0 EV3 Transparent 26
  • FIG. 7 illustrates exemplary phases of operation of such a link in a telephony application. In FIG. 7, a master entity includes a master host 701 and a master Bluetooth™ device (e.g., controller) 702, and a slave entity includes a slave host 704 and a slave Bluetooth™ device (e.g., controller) 703. Each host/device pair 701/702, 704/703 communicates using Bluetooth ™ HCI messages 710, 730, and the devices 702, 703 communicate using Link Management Protocol (LMP) negotiation messages 720. The hosts include the telephony application and layers of the Bluetooth™ stack above HCI, while the devices include the Bluetooth™ Link Management (LM), baseband (BB), and physical layers below the HCI.
  • The master host 701 requests establishment of the connection with an HCI_Setup_Synchronous_Connection message that includes appropriate eSCO channel parameters. After appropriate negotiation between the master device 702 and the slave device 703 and between the slave device 703 and the slave host 704 (i.e., an HCI_Connection_Request message followed by a responsive HCI_Accept Synchronous_Connection message), the master host 701 receives indication of establishment of the eSCO link in an HCI_Synchronous_Connection_Complete message. A first phase 740 of two-way communication over the eSCO link, e.g., a Rate 1 exchange, then may commence.
  • Upon determination by the master host 701 that link quality is unacceptable at 745, the master host 701 initiates a renegotiation of the eSCO link parameters, ultimately leading to a second phase of operation 750 at rate ½. Upon determining that link quality has sufficiently improved at 755, the master host 701 renegotiates the link parameters, leading to a third phase of operation 760 at rate 1. Similar adaptations 770 may subsequently occur. At some subsequent time, the master host 701 initiates termination of the channel with an HCI_Disconnect message.
  • The exemplary operations shown in FIG. 7 are for a configuration in which the master host 701 controls communications in both directions. In other embodiments of the present invention, a slave host, such as the slave host 704, could also request changes in channel criteria, in either direction.
  • The flow diagrams and block diagrams of FIGS. 1-7 illustrate architecture, functionality, and operations of possible implementations of apparatus, methods and computer program products according to various embodiments of the present invention. It should also be noted that, in some alternative implementations, the acts noted in the diagrams may occur out of the order noted in the figures. For example, two operations shown in succession may, in fact, be executed substantially concurrently, or the operations may sometimes be executed in the reverse order, depending upon the functionality involved.
  • In the drawings and specification, there have been disclosed typical illustrative embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims (32)

1. A communications method comprising:
establishing a data link from a data source to a data recipient via an adjustable synchronous radio channel between first and second devices;
determining a quality of the data link; and
adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link.
2. A method according to claim 1, wherein the first and second devices are controllable to adjust the transmission interval and the retransmission criterion of the synchronous radio channel responsive to channel parameters communicated between the first and second devices over a radio channel, and wherein adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link comprises communicating channel parameters between the first and second devices over the radio channel to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
3. A method according to claim 1, wherein the data link comprises an audio and/or video data link.
4. A method according to claim 1:
wherein determining a quality of the data link comprises determining a quality of transmission of an audio and/or video source over the data link; and
wherein adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link comprises adjusting the transmission interval and the retransmission criterion of the synchronous radio channel and the error correction coding of the audio and/or video source responsive to the determined quality of transmission of the audio and/or video source over the data link.
5. A method according to claim 4, wherein adjusting the transmission interval and the retransmission criterion of the adjustable synchronous radio channel and the error correction coding of the audio and/or video source responsive to the determined quality of transmission of the audio and/or video source over the data link comprises adjusting the transmission interval and the retransmission criterion of the adjustable synchronous radio channel and the error correction coding of the audio and/or video source while maintaining a fixed coding rate.
6. A method according to claim 1, wherein adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link comprises adjusting the transmission interval and the retransmission criterion of the adjustable synchronous radio channel and the error correction coding of the data link while maintaining an information transfer rate between the data source and the data recipient that is greater than or equal to a predetermined minimum information rate.
7. A method according to claim 1, wherein the first and second devices comprise respective nodes in an ad hoc radio network.
8. A method according to claim 1, wherein one of the first and second devices comprises a wireless network access point.
9. A method according to claim 1, wherein adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link comprises:
changing the retransmission criterion from disabling retransmission to allowing retransmission; or
changing the error correction coding from providing no error correction coding of the data link to providing error correction coding of the data link.
10. A communications method comprising:
establishing a data link between a data source and a data recipient via an extended synchronous connection oriented (eSCO) channel between first and second Bluetooth™ devices;
determining a quality of the data link; and
adjusting a transmission interval and a retransmission criterion of the eSCO channel and an error correction coding of the data link responsive to the determined quality of the data link.
11. A method according to claim 10, wherein adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link comprises communicating link management messages between the first and second Bluetooth™ devices to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
12. A method according to claim 10, wherein the data link comprises an audio and/or video data link.
13. A method according to claim 10:
wherein determining a quality of the data link comprises determining a quality of transmission of an audio and/or video source over the data link; and
wherein adjusting a transmission interval and a retransmission criterion of the eSCO channel and an error correction coding of the data link responsive to the determined quality of the data source comprises adjusting the transmission interval and the retransmission criterion of the eSCO channel and the error correction coding of the audio and/or video source responsive to the determined quality of transmission of the audio and/or video source over the data link.
14. A method according to claim 13, wherein adjusting the transmission interval and the retransmission criterion of the eSCO channel and the error correction coding of the audio and/or video source responsive to the determined quality of transmission of the audio and/or video source over the data link comprises adjusting the transmission interval and the retransmission criterion of the eSCO channel and the error correction coding of the audio and/or video source while maintaining a fixed coding rate.
15. A method according to claim 10, wherein adjusting a transmission interval and a retransmission criterion of the eSCO channel and an error correction coding of the data link responsive to the determined quality of the data link comprises adjusting the transmission interval and the retransmission criterion of the adjustable synchronous radio channel and the error correction coding of the data link while maintaining an information transfer rate between the data source and the data recipient that is greater than or equal to a predetermined minimum information rate.
16. A method according to claim 10, wherein one of the first and second Bluetooth™ devices comprises a wireless network access point.
17. A method according to claim 10, wherein adjusting a transmission interval and a retransmission criterion of the eSCO channel and an error correction coding of the data link responsive to the determined quality of the data link comprises:
changing the retransmission criterion from disabling retransmission to allowing retransmission; or
changing the error correction coding from providing no error correction coding of the data link to providing error correction coding of the data link.
18. An apparatus comprising:
a radio communications circuit configured to support a data link over an adjustable synchronous radio channel and operative to adjust a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to a quality of the data link.
19. An apparatus according to claim 18, wherein the radio communications circuit is controllable to adjust the transmission interval and the retransmission criterion of the synchronous radio channel responsive to channel parameters communicated between the radio communications circuit and another radio communications circuit that supports the adjustable synchronous radio channel.
20. An apparatus according to claim 19, wherein the radio communications circuit comprises:
a radio interface circuit operative to transmit data input thereto over the adjustable synchronous radio channel;
an adjustable error correction coder operative to provide adjustable error correction coding of the data input to the radio interface circuit; and
a control circuit operative to control the radio interface circuit and the adjustable error correction code responsive to the channel parameters.
21. An apparatus according to claim 20:
wherein the radio interface circuit comprises a Bluetooth™ controller circuit; and
wherein the adjustable synchronous radio channel comprises an eSCO channel.
22. An apparatus according to claim 18, further comprising an audio and/or video encoder that provides data to the data link supported by the radio communications circuit.
23. An apparatus according to claim 22, wherein the radio communications circuit is operative to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel and the error correction coding of the data link while a rate of the audio and/or video encoder remains fixed.
24. An apparatus according to claim 18, wherein the radio communications circuit is operative to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel and the error correction coding of the data link while maintaining an information transfer rate between a data source and a data recipient at respective ends of the data link is greater than or equal to a predetermined minimum information rate.
25. An apparatus according to claim 18, incorporated in a wireless network access point or an ad hoc radio node.
26. A communications apparatus comprising:
means for establishing a data link via an adjustable synchronous radio channel;
means for determining a quality of the data link; and
means for adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link.
27. An apparatus according to claim 26, wherein the means for adjusting a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link comprises means for communicating channel parameters between the first and second devices over the radio channel to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
28. An apparatus according to claim 26, wherein the data link comprises an audio and/or video data link.
29. An apparatus according to claim 26, wherein the adjustable synchronous radio channel comprises a Bluetooth™ eSCO channel.
30. A computer program product comprising computer program code embodied in a computer readable medium, the program code comprising:
program code configured to establish a data link from a data source to a data recipient via an adjustable synchronous radio channel between first and second devices;
program code configured to determine a quality of the data link; and
program code configured to adjust a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link.
31. A computer program product according to claim 30, wherein the program code configured to adjust a transmission interval and a retransmission criterion of the adjustable synchronous radio channel and an error correction coding of the data link responsive to the determined quality of the data link comprises program code configured to communicate channel parameters between the first and second devices over the radio channel to adjust the transmission interval and the retransmission criterion of the adjustable synchronous radio channel.
32. A computer program product according to claim 30, wherein the adjustable synchronous radio channel comprises a Bluetooth™ eSCO channel.
US10/890,607 2004-07-14 2004-07-14 Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel Expired - Fee Related US7855973B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/890,607 US7855973B2 (en) 2004-07-14 2004-07-14 Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel
EP05713101A EP1766833A1 (en) 2004-07-14 2005-02-07 Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel
CN2005800232154A CN101010902B (en) 2004-07-14 2005-02-07 Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel
JP2007521450A JP4668994B2 (en) 2004-07-14 2005-02-07 Apparatus, method and computer program for transmitting data over an adjustable synchronous radio channel
PCT/US2005/003935 WO2006019403A1 (en) 2004-07-14 2005-02-07 Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/890,607 US7855973B2 (en) 2004-07-14 2004-07-14 Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel

Publications (2)

Publication Number Publication Date
US20060013130A1 true US20060013130A1 (en) 2006-01-19
US7855973B2 US7855973B2 (en) 2010-12-21

Family

ID=34960890

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/890,607 Expired - Fee Related US7855973B2 (en) 2004-07-14 2004-07-14 Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel

Country Status (5)

Country Link
US (1) US7855973B2 (en)
EP (1) EP1766833A1 (en)
JP (1) JP4668994B2 (en)
CN (1) CN101010902B (en)
WO (1) WO2006019403A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080010434A1 (en) * 2004-12-10 2008-01-10 Daisuke Jitsukawa Transmission apparatus, reception apparatus, and transmission/reception method for same
US20080117834A1 (en) * 2006-11-20 2008-05-22 Fujitsu Limited Call server, call terminal, call system, transfer processing method, and program storage medium storing program thereof
US20080207130A1 (en) * 2007-02-28 2008-08-28 Brother Kogyo Kabushiki Kaisha Communication Apparatus And Communication System
US20090241147A1 (en) * 2006-09-05 2009-09-24 Taek Soo Kim Method of transmitting link-adaptive transmission of data stream in a mobile communication system
US20110258511A1 (en) * 2010-04-16 2011-10-20 Thomas Clayton Mayo Automatic error control scheme selection for fixed-length messages based upon message payload size
CN107528793A (en) * 2017-08-01 2017-12-29 惠州Tcl移动通信有限公司 A kind of Bluetooth transmission processing method, storage device and mobile terminal
CN110248341A (en) * 2018-03-08 2019-09-17 华为技术有限公司 Transmission rate switching method, bluetooth equipment and computer-readable medium
US10609658B2 (en) 2016-11-15 2020-03-31 Alps Alpine Co., Ltd. Communication apparatus, communication processing method, and recording medium
US20200252162A1 (en) * 2019-02-05 2020-08-06 Qualcomm Incorporated Error correction for data packets in short-range wireless communications systems
US11115885B2 (en) * 2019-04-19 2021-09-07 Qualcomm Incorporated Audio synchronization during handover
CN113970686A (en) * 2021-10-27 2022-01-25 西南交通大学 Power distribution network fault detection method and system based on single-ended quantity protection and positioning method
CN113970685A (en) * 2021-10-27 2022-01-25 西南交通大学 Power distribution network fault detection method and system based on differential analysis and positioning method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550162B2 (en) 2005-09-19 2017-01-24 Intematix Corporation Printing liquid solution arrays for inorganic combinatorial libraries
US8489136B2 (en) 2007-01-05 2013-07-16 Aliphcom Wireless link to transmit digital audio data between devices in a manner controlled dynamically to adapt to variable wireless error rates
US8578247B2 (en) * 2008-05-08 2013-11-05 Broadcom Corporation Bit error management methods for wireless audio communication channels
GB2514817A (en) * 2013-06-05 2014-12-10 Nordic Semiconductor Asa Digital radio communication
CN106412701A (en) * 2015-07-23 2017-02-15 株式会社Ntt都科摩 Video transmission method, access device and network device
CN112260778B (en) * 2020-10-16 2023-02-14 展讯半导体(成都)有限公司 Method for evaluating broadcast channel and related product

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566174A (en) * 1994-04-08 1996-10-15 Philips Electronics North America Corporation MPEG information signal conversion system
US6205129B1 (en) * 1999-01-15 2001-03-20 Qualcomm Inc. Method and apparatus for variable and fixed forward link rate control in a mobile radio communications system
US6226290B1 (en) * 1998-04-28 2001-05-01 Nortel Networks Limited Method and apparatus for adjusting an interpacket gap using a network device in a data communications network
US20020085531A1 (en) * 2000-11-14 2002-07-04 Christoph Herrmann Wireless network with a selection of transport format combinations
US20020136231A1 (en) * 2001-03-12 2002-09-26 Leatherbury Ryan M. Time division multiple access over broadband modulation method and apparatus
US20030143953A1 (en) * 2000-07-19 2003-07-31 Bernd Schmandt Method of increasing the data throughput in a communication system
US20030147453A1 (en) * 2002-02-06 2003-08-07 Texas Instruments Incorporated Adaptive frequency hopping communication scheme
US6615382B1 (en) * 1999-08-27 2003-09-02 Samsung Electronics Co., Ltd. Method for controlling errors in link layer in wideband wireless communication and computer readable media therefor
US20040072582A1 (en) * 2002-08-20 2004-04-15 Daniel Aljadeff Method and system for synchronizing location finding measurements in a wireless local area network
US20050226198A1 (en) * 2004-04-05 2005-10-13 Barak Ilan S Multiplex communication with slotted retransmission on demand
US20060048208A1 (en) * 2002-04-29 2006-03-02 The Boeing Company Method for delivering cable channels to handheld devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209594A (en) 1999-01-18 2000-07-28 Mitsubishi Electric Corp Image encoder
JP3857831B2 (en) 1999-03-30 2006-12-13 大阪瓦斯株式会社 Wireless meter reading system
JP2001196997A (en) 2000-01-07 2001-07-19 Toshiba Corp Portable phone
JP4198921B2 (en) 2002-02-28 2008-12-17 株式会社エヌ・ティ・ティ・ドコモ Adaptive radio parameter control method, QoS control device, base station, and radio communication system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566174A (en) * 1994-04-08 1996-10-15 Philips Electronics North America Corporation MPEG information signal conversion system
US6226290B1 (en) * 1998-04-28 2001-05-01 Nortel Networks Limited Method and apparatus for adjusting an interpacket gap using a network device in a data communications network
US6205129B1 (en) * 1999-01-15 2001-03-20 Qualcomm Inc. Method and apparatus for variable and fixed forward link rate control in a mobile radio communications system
US6615382B1 (en) * 1999-08-27 2003-09-02 Samsung Electronics Co., Ltd. Method for controlling errors in link layer in wideband wireless communication and computer readable media therefor
US20030143953A1 (en) * 2000-07-19 2003-07-31 Bernd Schmandt Method of increasing the data throughput in a communication system
US20020085531A1 (en) * 2000-11-14 2002-07-04 Christoph Herrmann Wireless network with a selection of transport format combinations
US20020136231A1 (en) * 2001-03-12 2002-09-26 Leatherbury Ryan M. Time division multiple access over broadband modulation method and apparatus
US20030147453A1 (en) * 2002-02-06 2003-08-07 Texas Instruments Incorporated Adaptive frequency hopping communication scheme
US20060048208A1 (en) * 2002-04-29 2006-03-02 The Boeing Company Method for delivering cable channels to handheld devices
US20040072582A1 (en) * 2002-08-20 2004-04-15 Daniel Aljadeff Method and system for synchronizing location finding measurements in a wireless local area network
US20050226198A1 (en) * 2004-04-05 2005-10-13 Barak Ilan S Multiplex communication with slotted retransmission on demand

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080010434A1 (en) * 2004-12-10 2008-01-10 Daisuke Jitsukawa Transmission apparatus, reception apparatus, and transmission/reception method for same
US8276026B2 (en) * 2004-12-10 2012-09-25 Fujitsu Limited Transmission apparatus, reception apparatus, and transmission/reception method for same
US20090241147A1 (en) * 2006-09-05 2009-09-24 Taek Soo Kim Method of transmitting link-adaptive transmission of data stream in a mobile communication system
US8538470B2 (en) * 2006-11-20 2013-09-17 Fujitsu Limited Call server, call terminal, call system, transfer processing method, and program storage medium storing program thereof
US20080117834A1 (en) * 2006-11-20 2008-05-22 Fujitsu Limited Call server, call terminal, call system, transfer processing method, and program storage medium storing program thereof
US20080207130A1 (en) * 2007-02-28 2008-08-28 Brother Kogyo Kabushiki Kaisha Communication Apparatus And Communication System
US8958749B2 (en) * 2007-02-28 2015-02-17 Brother Kogyo Kabushiki Kaisha Communication apparatus and communication system
US20110258511A1 (en) * 2010-04-16 2011-10-20 Thomas Clayton Mayo Automatic error control scheme selection for fixed-length messages based upon message payload size
US8516302B2 (en) * 2010-04-16 2013-08-20 General Electric Company Automatic error control scheme selection for fixed-length messages based upon message payload size
US10609658B2 (en) 2016-11-15 2020-03-31 Alps Alpine Co., Ltd. Communication apparatus, communication processing method, and recording medium
CN107528793A (en) * 2017-08-01 2017-12-29 惠州Tcl移动通信有限公司 A kind of Bluetooth transmission processing method, storage device and mobile terminal
CN110248341A (en) * 2018-03-08 2019-09-17 华为技术有限公司 Transmission rate switching method, bluetooth equipment and computer-readable medium
EP3748999A4 (en) * 2018-03-08 2020-12-09 Huawei Technologies Co., Ltd. Transmission rate switching method, bluetooth device, and computer-readable medium
US20200252162A1 (en) * 2019-02-05 2020-08-06 Qualcomm Incorporated Error correction for data packets in short-range wireless communications systems
US10911184B2 (en) * 2019-02-05 2021-02-02 Qualcomm Incorporated Error correction for data packets in short-range wireless communications systems
TWI745841B (en) * 2019-02-05 2021-11-11 美商高通公司 Error correction for data packets in short-range wireless communications systems
US11115885B2 (en) * 2019-04-19 2021-09-07 Qualcomm Incorporated Audio synchronization during handover
CN113970686A (en) * 2021-10-27 2022-01-25 西南交通大学 Power distribution network fault detection method and system based on single-ended quantity protection and positioning method
CN113970685A (en) * 2021-10-27 2022-01-25 西南交通大学 Power distribution network fault detection method and system based on differential analysis and positioning method

Also Published As

Publication number Publication date
CN101010902B (en) 2011-04-06
JP4668994B2 (en) 2011-04-13
WO2006019403A1 (en) 2006-02-23
US7855973B2 (en) 2010-12-21
EP1766833A1 (en) 2007-03-28
JP2008507199A (en) 2008-03-06
CN101010902A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP4668994B2 (en) Apparatus, method and computer program for transmitting data over an adjustable synchronous radio channel
JP4733137B2 (en) Enhanced block acknowledgment
EP1626540B1 (en) Method and system for dynamically changing audio stream BIT rate based on condition of a bluetooth connection
EP1800437B1 (en) A radio communications gateway and radio communications terminal
EP1760897B1 (en) Method and system for optimized architecture for bluetooth streaming audio applications
EP1943858B1 (en) Traffic generation during a state of an inactive user plane
EP1768341A1 (en) Method of and device for controlling transmission rate.
JPH11505084A (en) Sliding window data flow control system using adjustable window size
JP2015213341A (en) Soft handoff across different networks assisted by end-to-end application protocol
JP4575915B2 (en) Communication of conversation data signals between terminal devices via wireless links
JP2005525049A (en) Wireless communication arrangement by packet communication
TW200412811A (en) Improved feedback system using dynamic decoding
EP1349147B1 (en) Method for changing voice coding mode, communication system, communication network and communication terminal
JP2002185555A (en) Transmission system and method and exchange node
JP2003517800A (en) Method for non-transparent transmission of data in digital mobile communication system
KR100750177B1 (en) Method and apparatus for securing a quality of service
KR20040008232A (en) Internet protocol framing using radio link protocol
US8265678B2 (en) Adaptive application data packaging to improve packet efficiency in a fixed frame packet communication system
WO2012097531A1 (en) Video communication method and terminal
KR20050085546A (en) Changing the operational mode of a communication device using a voice service option
Bilan Streaming audio over bluetooth ACL links
JP2017060028A (en) Radio terminal device
JP3947312B2 (en) Data communication processing device
WO2024063958A1 (en) Techniques for dynamically adjusting retransmission opportunities within a connected isochronous stream
JP2008072599A (en) Radio communication terminal, communicating system, band control method and program

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY ERICSSON MOBILE COMMUNICATIONS AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLOEBAUM, LELAND SCOTT;REEL/FRAME:015110/0683

Effective date: 20040707

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20181221