US20060060237A1 - Formation of solar cells on foil substrates - Google Patents

Formation of solar cells on foil substrates Download PDF

Info

Publication number
US20060060237A1
US20060060237A1 US10/943,685 US94368504A US2006060237A1 US 20060060237 A1 US20060060237 A1 US 20060060237A1 US 94368504 A US94368504 A US 94368504A US 2006060237 A1 US2006060237 A1 US 2006060237A1
Authority
US
United States
Prior art keywords
absorber layer
substrate
elements
nascent
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/943,685
Inventor
Craig Leidholm
Brent Bollman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aeris Capital Sustainable IP Ltd
Original Assignee
Nanosolar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanosolar Inc filed Critical Nanosolar Inc
Priority to US10/943,685 priority Critical patent/US20060060237A1/en
Assigned to NANOSOLAR, INC. reassignment NANOSOLAR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOLLMAN, BRENT, LEIDHOLM, CRAIG
Priority to CN2005800369091A priority patent/CN101061588B/en
Priority to KR1020077008734A priority patent/KR20070064345A/en
Priority to CN2010105225893A priority patent/CN102136522A/en
Priority to EP10003020A priority patent/EP2230693B1/en
Priority to AT05796064T priority patent/ATE462200T1/en
Priority to ES10003020T priority patent/ES2380564T3/en
Priority to ES05796064T priority patent/ES2342091T3/en
Priority to JP2007532382A priority patent/JP2008514006A/en
Priority to PCT/US2005/032151 priority patent/WO2006033858A1/en
Priority to EP10184761A priority patent/EP2348540B1/en
Priority to EP05796064A priority patent/EP1805804B1/en
Priority to AT10003020T priority patent/ATE540428T1/en
Priority to DE602005020174T priority patent/DE602005020174D1/en
Priority to US11/361,688 priority patent/US20070169812A1/en
Priority to US11/361,522 priority patent/US20070166453A1/en
Priority to US11/361,523 priority patent/US20070169811A1/en
Priority to US11/362,266 priority patent/US20070169813A1/en
Priority to US11/361,498 priority patent/US20070163639A1/en
Priority to US11/361,521 priority patent/US20070163383A1/en
Priority to US11/361,433 priority patent/US7700464B2/en
Priority to US11/361,103 priority patent/US20070169809A1/en
Priority to US11/361,515 priority patent/US20070163640A1/en
Priority to US11/361,497 priority patent/US20070163638A1/en
Priority to US11/361,464 priority patent/US20070169810A1/en
Publication of US20060060237A1 publication Critical patent/US20060060237A1/en
Priority to US11/395,438 priority patent/US20070163643A1/en
Priority to US11/395,426 priority patent/US20070163642A1/en
Priority to US11/395,668 priority patent/US8309163B2/en
Priority to US11/394,849 priority patent/US20070163641A1/en
Priority to US11/427,328 priority patent/US7732229B2/en
Priority to US11/765,436 priority patent/US8623448B2/en
Priority to US11/765,422 priority patent/US8372734B2/en
Priority to US11/765,407 priority patent/US20080124831A1/en
Priority to US12/175,945 priority patent/US8846141B1/en
Priority to US12/176,312 priority patent/US8329501B1/en
Priority to US12/363,613 priority patent/US20090246906A1/en
Priority to US12/437,539 priority patent/US8541048B1/en
Priority to US12/437,532 priority patent/US20090305455A1/en
Priority to US12/505,083 priority patent/US20100089453A1/en
Priority to US12/553,951 priority patent/US20100170564A1/en
Priority to US12/757,942 priority patent/US20110092010A1/en
Priority to US12/763,146 priority patent/US8642455B2/en
Priority to US12/795,594 priority patent/US8525152B2/en
Priority to US13/481,994 priority patent/US20120295022A1/en
Priority to US13/589,099 priority patent/US20120315722A1/en
Priority to US13/602,023 priority patent/US20120329195A1/en
Priority to US13/645,443 priority patent/US20130025532A1/en
Priority to US13/673,993 priority patent/US20130210191A1/en
Assigned to AERIS CAPITAL SUSTAINABLE IMPACT PRIVATE INVESTMENT FUND CAYMAN L.P. reassignment AERIS CAPITAL SUSTAINABLE IMPACT PRIVATE INVESTMENT FUND CAYMAN L.P. SECURITY AGREE,EMT Assignors: NANOSOLAR, INC.
Assigned to AERIS CAPITAL SUSTAINABLE IP LTD. reassignment AERIS CAPITAL SUSTAINABLE IP LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NANOSOLAR, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to fabrication of photovoltaic devices and more specifically to processing and annealing of absorber layers for photovoltaic devices.
  • Efficient photovoltaic devices such as solar cells have been fabricated using absorber layers made with alloys containing elements of group IB, IIIA and VIA, e.g., alloys of copper with indium and/or gallium or aluminum and selenium and/or sulfur.
  • Such absorber layers are often referred to as CIGS layers and the resulting devices are often referred to as CIGS solar cells.
  • the CIGS absorber layer may be deposited on a substrate. It would be desirable to fabricate such an absorber layer on an aluminum foil substrate because Aluminum foil is relatively inexpensive, lightweight, and flexible. Unfortunately, current techniques for depositing CIGS absorber layers are incompatible with the use of aluminum foil as a substrate.
  • Typical deposition techniques include evaporation, sputtering, chemical vapor deposition, and the like. These deposition processes are typically carried out at high temperatures and for extended times. Both factors can result in damage to the substrate upon which deposition is occurring. Such damage can arise directly from changes in the substrate material upon exposure to heat, and/or from undesirable chemical reactions driven by the heat of the deposition process. Thus very robust substrate materials are typically required for fabrication of CIGS solar cells. These limitations have excluded the use of aluminum and aluminum-foil based foils.
  • An alternative deposition approach is the solution-based printing of the CIGS precursor materials onto a substrate.
  • solution-based printing techniques are described, e.g., in Published PCT Application WO 2002/084708 and commonly-assigned U.S. patent application Ser. No. 10/782,017, both of which are incorporated herein by reference.
  • Advantages to this deposition approach include both the relatively lower deposition temperature and the rapidity of the deposition process. Both advantages serve to minimize the potential for heat-induced damage of the substrate on which the deposit is being formed.
  • solution deposition is a relatively low temperature step in fabrication of CIGS solar cells, it is not the only step.
  • a key step in the fabrication of CIGS solar cells is the selenization and annealing of the CIGS absorber layer.
  • Selenization introduces selenium into the bulk CIG or CI absorber layer, where the element incorporates into the film, while the annealing provides the absorber layer with the proper crystalline structure.
  • selenization and annealing has been performed by heating the substrate in the presence of H 2 Se or Se vapor and keeping this nascent absorber layer at high temperatures for long periods of time.
  • Al can migrate into the CIGS absorber layer, disrupting the function of the semiconductor.
  • the impurities that are typically present in the Al foil e.g. Si, Fe, Mn, Ti, Zn, and V
  • the impurities that are typically present in the Al foil can travel along with mobile Al that diffuses into the solar cell upon extended heating, which can disrupt both the electronic and optoelectronic function of the cell.
  • CIGS solar cells cannot be effectively fabricated on aluminum substrates (e.g. flexible foils comprised of Al and/or Al-based alloys) and instead must be fabricated on heavier substrates made of more robust (and more expensive) materials, such as stainless steel, titanium, or molybdenum foils, glass substrates, or metal- or metal-oxide coated glass.
  • aluminum substrates e.g. flexible foils comprised of Al and/or Al-based alloys
  • more robust (and more expensive) materials such as stainless steel, titanium, or molybdenum foils, glass substrates, or metal- or metal-oxide coated glass.
  • current practice does not permit aluminum foil to be used as a substrate.
  • FIG. 1 is a cross-sectional schematic diagram illustrating fabrication of an absorber layer according to an embodiment of the present invention.
  • Embodiments of the present invention allow fabrication of CIGS absorber layers on aluminum foil substrates.
  • a nascent absorber layer containing elements of group IB and IIIA formed on an aluminum substrate by solution deposition may be annealed by rapid heating from an ambient temperature to a plateau temperature range of between about 200° C. and about 600° C. The temperature is maintained in the plateau range for between about 2 minutes and about 30 minutes, and subsequently reduced.
  • the annealing temperature could be modulated to oscillate within a temperature range without being maintained at a particular plateau temperature.
  • FIG. 1 depicts a partially fabricated photovoltaic device 100 , and a rapid heating unit 110 the device generally includes an aluminum foil substrate 102 , an optional base electrode 104 , and a nascent absorber layer 106 .
  • the aluminum foil substrate 102 may be approximately 5 microns to one hundred or more microns thick and of any suitable width and length.
  • the aluminum foil substrate 102 may be made of aluminum or an aluminum-based alloy.
  • the aluminum foil substrate 102 may be made by metallizing a polymer foil substrate, where the polymer is selected from the group of polyesters, polyethylene naphtalates, polyetherimides, polyethersulfones, polyetheretherketones, polyimides, and/or combinations of the above.
  • the substrate 102 may be in the form of a long sheet of aluminum foil suitable for processing in a roll-to-roll system.
  • the base electrode 104 is made of an electrically conducive material compatible with processing of the nascent absorber layer 106 .
  • the base electrode 104 may be a layer of molybdenum, e.g., about 0.1 to 25 microns thick, and more preferably from about 0.1 to 5 microns thick.
  • the base electrode layer may be deposited by sputtering or evaporation or, alternatively, by chemical vapor deposition (CVD), atomic layer deposition (ALD), sol-gel coating, electroplating and the like.
  • an intermediate, interfacial layer 103 may be incorporated between the aluminum foil substrate 102 and molybdenum base electrode 104 .
  • the interfacial layer may be composed of any of a variety of materials, including but not limited to chromium, vanadium, tungsten, and glass, or compounds such as nitrides (including tantalum nitride, tungsten nitride, and silicon nitride), oxides, and/or carbides.
  • the thickness of this layer can range from 10 nm to 50 nm, and more preferably from 10 nm to 30 nm.
  • the nascent absorber layer 106 may include material containing elements of groups IB, IIIA, and (optionally) VIA.
  • the absorber layer copper (Cu) is the group IB element, Gallium (Ga) and/or Indium (In) and/or Aluminum may be the group IIIA elements and Selenium (Se) and/or Sulfur (S) as group VIA elements.
  • the group VIA element may be incorporated into the nascent absorber layer 106 when it is initially solution deposited or during subsequent processing to form a final absorber layer from the nascent absorber layer 106 .
  • the nascent absorber layer 106 may be about 1000 nm thick when deposited. Subsequent rapid thermal processing and incorporation of group VIA elements may change the morphology of the resulting absorber layer such that it increases in thickness (e.g., to about twice as much as the nascent layer thickness under some circumstances).
  • the nascent absorber layer is deposited on the substrate 102 either directly on the aluminum or on an uppermost layer such as the electrode 104 .
  • the nascent absorber layer may be deposited in the form of a film of a solution-based precursor material containing nanoparticles that include one or more elements of groups IB, IIIA and (optionally) VIA. Examples of such films of such solution-based printing techniques are described e.g., in commonly-assigned U.S. patent application Ser. No.
  • the nascent absorber layer 106 may be formed by a sequence of atomic layer deposition reactions or any other conventional process normally used for forming such layers.
  • Atomic layer deposition of IB-IIIA-VIA absorber layers is described, e.g., in commonly-assigned, co-pending application Ser. No. ______, entitled “FORMATION OF CIGS ABSORBER LAYER MATERIALS USING ATOMIC LAYER DEPOSITION AND HIGH THROUGHPUT SURFACE TREATMENT ON COILED FLEXIBLE SUBSTRATES”, (Attorney Docket No. NSL-035), which has been incorporated herein by reference above.
  • the nascent absorber layer 106 is then annealed by flash heating it and/or the substrate 102 from an ambient temperature to an average plateau temperature range of between about 200° C. and about 600° C. with the heating unit 110 .
  • the heating unit 110 preferably provides sufficient heat to rapidly raise the temperature of the nascent absorber layer 106 and/or substrate 102 (or a significant portion thereof) e.g., at between about 5 C°/sec and about 150 C°/sec.
  • the heating unit 110 may include one or more infrared (IR) lamps that provide sufficient radiant heat.
  • 8 IR lamps rated at about 500 watts each situated about 1 ⁇ 8′′ to about 1′′ from the surface of the substrate 102 (4 above and 4 below the substrate, all aimed towards the substrate) can provide sufficient radiant heat to process a substrate area of about 25 cm 2 per hour in a 4′′ tube furnace.
  • the lamps may be ramped up in a controlled fashion, e.g., at an average ramp rate of about 10 C°/sec.
  • Those of skill in the art will be able to devise other types and configurations of heat sources that may be used as the heating unit 110 .
  • heating and other processing can be carried out by use of IR lamps spaced 1′′ apart along the length of the processing region, with IR lamps equally positioned both above and below the substrate, and where both the IR lamps above and below the substrate are aimed towards the substrate.
  • IR lamps could be placed either only above or only below the substrate 102 , and/or in configurations that augment lateral heating from the side of the chamber to the side of the substrate 102 .
  • the absorber layer 106 and/or substrate 102 are maintained in the average plateau temperature range for between about 2 minutes and about 30 minutes.
  • the temperature may be maintained in the desired range by reducing the amount of heat from the heating unit 110 to a suitable level.
  • the heat may be reduced by simply turning off the lamps.
  • the lamps may be actively cooled.
  • the temperature of the absorber layer 106 and/or substrate 102 is subsequently reduced to a suitable level, e.g., by further reducing or shutting off the supply of heat from the heating unit 110 .
  • group VIA elements such as selenium or sulfur may be incorporated into the absorber layer either before or during the annealing stage.
  • two or more discrete or continuous annealing stages can be sequentially carried out, in which group VIA elements such as selenium or sulfur are incorporated in a second or latter stage.
  • the nascent absorber layer 106 may be exposed to H 2 Se gas, H 2 S gas or Se vapor before or during flash heating or rapid thermal processing (RTP).
  • RTP rapid thermal processing
  • the relative brevity of exposure allows the aluminum substrate to better withstand the presence of these gases and vapors, especially at high heat levels.
  • a window layer is typically used as a junction partner for the absorber layer.
  • the junction partner layer may include cadmium sulfide (CdS), zinc sulfide (ZnS), or zinc selenide (ZnSe) or some combination of two or more of these.
  • Layers of these materials may be deposited, e.g., by chemical bath deposition, chemical surface deposition, or spray pyrolysis, to a thickness of about 50 nm to about 100 nm.
  • a transparent electrode e.g., a conductive oxide layer, may be formed on the window layer by sputtering, vapor deposition, CVD, ALD, electrochemical atomic layer epitaxy and the like.
  • Embodiments of the present invention overcome the disadvantages associated with the prior art by rapid thermal processing of nascent CIGS absorber layers deposited or otherwise formed on aluminum substrates.
  • Aluminum substrates are much cheaper and more lightweight than conventional substrates.
  • solar cells based on aluminum substrates can have a lower cost per watt for electricity generated and a far shorter energy payback period when compared to conventional silicon-based solar cells.
  • aluminum substrates allow for a flexible form factor that permits both high-throughput roll-to-roll printing during solar cell fabrication and faster and easier installation processes during solar module and system installation.
  • Embodiments of the present invention allow the fabrication of lightweight and inexpensive photovoltaic devices on aluminum substrates. Flash heating/rapid thermal processing of the nascent absorber layer 106 allows for proper annealing and incorporation of group VIA elements without damaging or destroying the aluminum foil substrate 102 .
  • the plateau temperature range is sufficiently below the melting point of aluminum (about 660° C.) to avoid damaging or destroying the aluminum foil substrate.
  • the use of aluminum foil substrates can greatly reduce the materials cost of photovoltaic devices, e.g., solar cells, made on such substrates thereby reducing the cost per watt. economies of scale may be achieved by processing the aluminum foil substrate in a roll-to-roll fashion, with the various layers of the photovoltaic devices being built up on the substrate as it passes through a series of deposition annealing and other processing stages.

Abstract

An absorber layer of a photovoltaic device may be formed on an aluminum or metallized polymer foil substrate. A nascent absorber layer containing one or more elements of group IB and one or more elements of group IIIA is formed on the substrate. The nascent absorber layer and/or substrate is then rapidly heated from an ambient temperature to an average plateau temperature range of between about 200° C. and about 600° C. and maintained in the average plateau temperature range 2 to 30 minutes after which the temperature is reduced.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is related to commonly-assigned, co-pending application Ser. No. ______, entitled “FORMATION OF CIGS ABSORBER LAYER MATERIALS USING ATOMIC LAYER DEPOSITION AND HIGH THROUGHPUT SURFACE TREATMENT ON COILED FLEXIBLE SUBSTRATES”, (Attorney Docket No. NSL-035), which is filed the same day as the present application, the entire disclosures of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to fabrication of photovoltaic devices and more specifically to processing and annealing of absorber layers for photovoltaic devices.
  • BACKGROUND OF THE INVENTION
  • Efficient photovoltaic devices, such as solar cells, have been fabricated using absorber layers made with alloys containing elements of group IB, IIIA and VIA, e.g., alloys of copper with indium and/or gallium or aluminum and selenium and/or sulfur. Such absorber layers are often referred to as CIGS layers and the resulting devices are often referred to as CIGS solar cells. The CIGS absorber layer may be deposited on a substrate. It would be desirable to fabricate such an absorber layer on an aluminum foil substrate because Aluminum foil is relatively inexpensive, lightweight, and flexible. Unfortunately, current techniques for depositing CIGS absorber layers are incompatible with the use of aluminum foil as a substrate.
  • Typical deposition techniques include evaporation, sputtering, chemical vapor deposition, and the like. These deposition processes are typically carried out at high temperatures and for extended times. Both factors can result in damage to the substrate upon which deposition is occurring. Such damage can arise directly from changes in the substrate material upon exposure to heat, and/or from undesirable chemical reactions driven by the heat of the deposition process. Thus very robust substrate materials are typically required for fabrication of CIGS solar cells. These limitations have excluded the use of aluminum and aluminum-foil based foils.
  • An alternative deposition approach is the solution-based printing of the CIGS precursor materials onto a substrate. Examples of solution-based printing techniques are described, e.g., in Published PCT Application WO 2002/084708 and commonly-assigned U.S. patent application Ser. No. 10/782,017, both of which are incorporated herein by reference. Advantages to this deposition approach include both the relatively lower deposition temperature and the rapidity of the deposition process. Both advantages serve to minimize the potential for heat-induced damage of the substrate on which the deposit is being formed.
  • Although solution deposition is a relatively low temperature step in fabrication of CIGS solar cells, it is not the only step. In addition to the deposition, a key step in the fabrication of CIGS solar cells is the selenization and annealing of the CIGS absorber layer. Selenization introduces selenium into the bulk CIG or CI absorber layer, where the element incorporates into the film, while the annealing provides the absorber layer with the proper crystalline structure. In the prior art, selenization and annealing has been performed by heating the substrate in the presence of H2Se or Se vapor and keeping this nascent absorber layer at high temperatures for long periods of time.
  • While use of Al as a substrate for solar cell devices would be desirable due to both the low cost and lightweight nature of such a substrate, conventional techniques that effectively anneal the CIGS absorber layer also heat the substrate to high temperatures, resulting in damage to Al substrates. There are several factors that result in Al substrate degradation upon extended exposure to heat and/or selenium-containing compounds for extended times. First, upon extended heating, the discrete layers within a Mo-coated Al substrate can fuse and form an intermetallic back contact for the device, which decreases the intended electronic functionality of the Mo-layer. Second, the interfacial morphology of the Mo layer is altered during heating, which can negatively affect subsequent CIGS grain growth through changes in the nucleation patterns that arise on the Mo layer surface. Third, upon extended heating, Al can migrate into the CIGS absorber layer, disrupting the function of the semiconductor. Fourth, the impurities that are typically present in the Al foil (e.g. Si, Fe, Mn, Ti, Zn, and V) can travel along with mobile Al that diffuses into the solar cell upon extended heating, which can disrupt both the electronic and optoelectronic function of the cell. Fifth, when Se is exposed to Al for relatively long times and at relatively high temperatures, aluminum selenide can form, which is unstable. In moist air the aluminum selenide can react with water vapor to form aluminum oxide and hydrogen selenide. Hydrogen selenide is a highly toxic gas, whose free formation can pose a safety hazard. For all these reasons, high-temperature deposition, annealing, and selenization are therefore impractical for substrates made of aluminum or aluminum alloys.
  • Because of the high-temperature, long-duration deposition and annealing steps, CIGS solar cells cannot be effectively fabricated on aluminum substrates (e.g. flexible foils comprised of Al and/or Al-based alloys) and instead must be fabricated on heavier substrates made of more robust (and more expensive) materials, such as stainless steel, titanium, or molybdenum foils, glass substrates, or metal- or metal-oxide coated glass. Thus, even though CIGS solar cells based on aluminum foils would be more lightweight, flexible, and inexpensive than stainless steel, titanium, or molybdenum foils, glass substrates, or metal- or metal-oxide coated glass substrates, current practice does not permit aluminum foil to be used as a substrate.
  • Thus, there is a need in the art, for a method for fabricating CIGS solar cells on aluminum substrates.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a cross-sectional schematic diagram illustrating fabrication of an absorber layer according to an embodiment of the present invention.
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • Although the following detailed description contains many specific details for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the exemplary embodiments of the invention described below are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
  • Embodiments of the present invention allow fabrication of CIGS absorber layers on aluminum foil substrates. According to embodiments of the present invention, a nascent absorber layer containing elements of group IB and IIIA formed on an aluminum substrate by solution deposition may be annealed by rapid heating from an ambient temperature to a plateau temperature range of between about 200° C. and about 600° C. The temperature is maintained in the plateau range for between about 2 minutes and about 30 minutes, and subsequently reduced. Alternatively, the annealing temperature could be modulated to oscillate within a temperature range without being maintained at a particular plateau temperature.
  • FIG. 1 depicts a partially fabricated photovoltaic device 100, and a rapid heating unit 110 the device generally includes an aluminum foil substrate 102, an optional base electrode 104, and a nascent absorber layer 106. The aluminum foil substrate 102 may be approximately 5 microns to one hundred or more microns thick and of any suitable width and length. The aluminum foil substrate 102 may be made of aluminum or an aluminum-based alloy. Alternatively, the aluminum foil substrate 102 may be made by metallizing a polymer foil substrate, where the polymer is selected from the group of polyesters, polyethylene naphtalates, polyetherimides, polyethersulfones, polyetheretherketones, polyimides, and/or combinations of the above. By way of example, the substrate 102 may be in the form of a long sheet of aluminum foil suitable for processing in a roll-to-roll system. The base electrode 104 is made of an electrically conducive material compatible with processing of the nascent absorber layer 106. By way of example, the base electrode 104 may be a layer of molybdenum, e.g., about 0.1 to 25 microns thick, and more preferably from about 0.1 to 5 microns thick. The base electrode layer may be deposited by sputtering or evaporation or, alternatively, by chemical vapor deposition (CVD), atomic layer deposition (ALD), sol-gel coating, electroplating and the like.
  • Aluminum and molybdenum can and often do inter-diffuse into one another, with deleterious electronic and/or optoelectronic effects on the device 100. To inhibit such inter-diffusion, an intermediate, interfacial layer 103 may be incorporated between the aluminum foil substrate 102 and molybdenum base electrode 104. The interfacial layer may be composed of any of a variety of materials, including but not limited to chromium, vanadium, tungsten, and glass, or compounds such as nitrides (including tantalum nitride, tungsten nitride, and silicon nitride), oxides, and/or carbides. The thickness of this layer can range from 10 nm to 50 nm, and more preferably from 10 nm to 30 nm.
  • The nascent absorber layer 106 may include material containing elements of groups IB, IIIA, and (optionally) VIA. Preferably, the absorber layer copper (Cu) is the group IB element, Gallium (Ga) and/or Indium (In) and/or Aluminum may be the group IIIA elements and Selenium (Se) and/or Sulfur (S) as group VIA elements. The group VIA element may be incorporated into the nascent absorber layer 106 when it is initially solution deposited or during subsequent processing to form a final absorber layer from the nascent absorber layer 106. The nascent absorber layer 106 may be about 1000 nm thick when deposited. Subsequent rapid thermal processing and incorporation of group VIA elements may change the morphology of the resulting absorber layer such that it increases in thickness (e.g., to about twice as much as the nascent layer thickness under some circumstances).
  • Fabrication of the absorber layer on the aluminum foil substrate 102 is relatively straightforward. First, the nascent absorber layer is deposited on the substrate 102 either directly on the aluminum or on an uppermost layer such as the electrode 104. By way of example, and without loss of generality, the nascent absorber layer may be deposited in the form of a film of a solution-based precursor material containing nanoparticles that include one or more elements of groups IB, IIIA and (optionally) VIA. Examples of such films of such solution-based printing techniques are described e.g., in commonly-assigned U.S. patent application Ser. No. 10/782,017, entitled “SOLUTION-BASED FABRICATION OF PHOTOVOLTAIC CELL” and also in PCT Publication WO 02/084708, entitled “METHOD OF FORMING SEMICONDUCTOR COMPOUND FILM FOR FABRICATION OF ELECTRONIC DEVICE AND FILM PRODUCED BY SAME” the disclosures of both of which are incorporated herein by reference.
  • Alternatively, the nascent absorber layer 106 may be formed by a sequence of atomic layer deposition reactions or any other conventional process normally used for forming such layers. Atomic layer deposition of IB-IIIA-VIA absorber layers is described, e.g., in commonly-assigned, co-pending application Ser. No. ______, entitled “FORMATION OF CIGS ABSORBER LAYER MATERIALS USING ATOMIC LAYER DEPOSITION AND HIGH THROUGHPUT SURFACE TREATMENT ON COILED FLEXIBLE SUBSTRATES”, (Attorney Docket No. NSL-035), which has been incorporated herein by reference above.
  • The nascent absorber layer 106 is then annealed by flash heating it and/or the substrate 102 from an ambient temperature to an average plateau temperature range of between about 200° C. and about 600° C. with the heating unit 110. The heating unit 110 preferably provides sufficient heat to rapidly raise the temperature of the nascent absorber layer 106 and/or substrate 102 (or a significant portion thereof) e.g., at between about 5 C°/sec and about 150 C°/sec. By way of example, the heating unit 110 may include one or more infrared (IR) lamps that provide sufficient radiant heat. By way of example, 8 IR lamps rated at about 500 watts each situated about ⅛″ to about 1″ from the surface of the substrate 102 (4 above and 4 below the substrate, all aimed towards the substrate) can provide sufficient radiant heat to process a substrate area of about 25 cm2 per hour in a 4″ tube furnace. The lamps may be ramped up in a controlled fashion, e.g., at an average ramp rate of about 10 C°/sec. Those of skill in the art will be able to devise other types and configurations of heat sources that may be used as the heating unit 110. For example, in a roll-to-roll manufacturing line, heating and other processing can be carried out by use of IR lamps spaced 1″ apart along the length of the processing region, with IR lamps equally positioned both above and below the substrate, and where both the IR lamps above and below the substrate are aimed towards the substrate. Alternatively, IR lamps could be placed either only above or only below the substrate 102, and/or in configurations that augment lateral heating from the side of the chamber to the side of the substrate 102.
  • The absorber layer 106 and/or substrate 102 are maintained in the average plateau temperature range for between about 2 minutes and about 30 minutes. For example, the temperature may be maintained in the desired range by reducing the amount of heat from the heating unit 110 to a suitable level. In the example of IR lamps, the heat may be reduced by simply turning off the lamps. Alternatively, the lamps may be actively cooled. The temperature of the absorber layer 106 and/or substrate 102 is subsequently reduced to a suitable level, e.g., by further reducing or shutting off the supply of heat from the heating unit 110.
  • In some embodiments of the invention, group VIA elements such as selenium or sulfur may be incorporated into the absorber layer either before or during the annealing stage. Alternatively, two or more discrete or continuous annealing stages can be sequentially carried out, in which group VIA elements such as selenium or sulfur are incorporated in a second or latter stage. For example, the nascent absorber layer 106 may be exposed to H2Se gas, H2S gas or Se vapor before or during flash heating or rapid thermal processing (RTP). In this embodiment, the relative brevity of exposure allows the aluminum substrate to better withstand the presence of these gases and vapors, especially at high heat levels.
  • Once the nascent absorber layer 106 has been annealed additional layers may be formed to complete the device 100. For example a window layer is typically used as a junction partner for the absorber layer. By way of example, the junction partner layer may include cadmium sulfide (CdS), zinc sulfide (ZnS), or zinc selenide (ZnSe) or some combination of two or more of these. Layers of these materials may be deposited, e.g., by chemical bath deposition, chemical surface deposition, or spray pyrolysis, to a thickness of about 50 nm to about 100 nm. In addition, a transparent electrode, e.g., a conductive oxide layer, may be formed on the window layer by sputtering, vapor deposition, CVD, ALD, electrochemical atomic layer epitaxy and the like.
  • Embodiments of the present invention overcome the disadvantages associated with the prior art by rapid thermal processing of nascent CIGS absorber layers deposited or otherwise formed on aluminum substrates. Aluminum substrates are much cheaper and more lightweight than conventional substrates. Thus, solar cells based on aluminum substrates can have a lower cost per watt for electricity generated and a far shorter energy payback period when compared to conventional silicon-based solar cells. Furthermore aluminum substrates allow for a flexible form factor that permits both high-throughput roll-to-roll printing during solar cell fabrication and faster and easier installation processes during solar module and system installation.
  • Embodiments of the present invention allow the fabrication of lightweight and inexpensive photovoltaic devices on aluminum substrates. Flash heating/rapid thermal processing of the nascent absorber layer 106 allows for proper annealing and incorporation of group VIA elements without damaging or destroying the aluminum foil substrate 102. The plateau temperature range is sufficiently below the melting point of aluminum (about 660° C.) to avoid damaging or destroying the aluminum foil substrate. The use of aluminum foil substrates can greatly reduce the materials cost of photovoltaic devices, e.g., solar cells, made on such substrates thereby reducing the cost per watt. Economies of scale may be achieved by processing the aluminum foil substrate in a roll-to-roll fashion, with the various layers of the photovoltaic devices being built up on the substrate as it passes through a series of deposition annealing and other processing stages.
  • While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. In the claims that follow, the indefinite article “A”, or “An” refers to a quantity of one or more of the item following the article, except where expressly stated otherwise. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.”

Claims (20)

1. A method for forming an absorber layer of a photovoltaic device, comprising the steps of:
forming a nascent absorber layer containing one or more elements of group IB and one or more elements of group IIIA on an aluminum foil substrate.
2. The method of claim 1 wherein forming the nascent absorber layer includes depositing the nascent absorber layer from a solution of nanoparticulate precursor materials.
3. The method of claim 1, further comprising:
rapidly heating the nascent absorber layer and/or substrate from an ambient temperature to a plateau temperature range of between about 200° C. and about 600° C.;
maintaining the absorber layer and/or substrate in the plateau temperature range for between about 2 minutes and about 30 minutes; and
reducing the temperature of the absorber layer and/or substrate.
4. The method of claim 3 wherein rapidly heating the nascent absorber layer and/or substrate includes increasing the temperature of the absorber layer and/or substrate at a rate of between about 5 C°/sec and about 150 C°/sec.
5. The method of claim 3 further comprising, incorporating one or more group VIA elements into the nascent absorber layer either before or during the step of rapidly heating the nascent absorber layer and/or substrate.
6. The method of claim 3 wherein the one or more group VIA elements include selenium.
7. The method of claim 3 wherein the one or more group VIA elements include sulfur.
8. The method of claim 3 wherein rapidly heating the nascent absorber layer and/or substrate is performed by radiant heating of the nascent absorber layer and/or substrate.
9. The method of claim 8 wherein one or more infrared lamps apply the radiant heating.
10. The method of claim 3 wherein the steps of forming and rapidly heating the nascent absorber layer take place as the substrate passes through roll-to-roll processing.
11. The method of claim 3 further comprising, incorporating one or more group VIA elements into the nascent absorber layer after rapidly heating the nascent absorber layer and/or substrate
12. The method of claim 3, further comprising, incorporating an intermediate layer between the layer of molybdenum and the aluminum substrate, wherein the intermediate layer inhibits inter-diffusion of molybdenum and aluminum during heating.
13. The method of claim 12 wherein, the intermediate layer includes, chromium, vanadium, tungsten, glass, and/or nitrides, tantalum nitride, tungsten nitride, and silicon nitride, oxides, or carbides.
14. The method of claim 1 wherein forming a nascent absorber layer includes depositing a film of an ink containing elements of groups IB and IIIA on the substrate.
15. The method of claim 1, further comprising disposing a layer of molybdenum between the aluminum substrate and the nascent absorber layer.
16. A photovoltaic device, comprising:
an aluminum foil substrate; and
an absorber layer containing one or more elements of group IB, one or more elements of group IIIA and one or more elements of group VIA disposed on the aluminum foil substrate.
17. A method for forming an absorber layer of a photovoltaic device, comprising the steps of:
forming a nascent absorber layer containing one or more elements of group IB and one or more elements of group IIIA on a metallized polymer foil substrate.
18. The method of claim 17 where the foil substrate is a polymer selected from the group of polyesters, polyethylene naphtalates, polyetherimides, polyethersulfones, polyetheretherketones, polyimides, and/or combinations of the above.
19. The method of claim 17 where a metal used for metallization of the polymer foil substrate is aluminum or an alloy of aluminum with one or more metals.
20. A photovoltaic device, comprising:
a metallized polymer foil substrate; and
an absorber layer containing one or more elements of group IB, one or more elements of group IIIA and one or more elements of group VIA disposed on the metallized foil substrate.
US10/943,685 2004-02-19 2004-09-18 Formation of solar cells on foil substrates Abandoned US20060060237A1 (en)

Priority Applications (48)

Application Number Priority Date Filing Date Title
US10/943,685 US20060060237A1 (en) 2004-09-18 2004-09-18 Formation of solar cells on foil substrates
CN2005800369091A CN101061588B (en) 2004-09-18 2005-09-06 Formation of solar cells on foil substrates
KR1020077008734A KR20070064345A (en) 2004-09-18 2005-09-06 Formation of solar cells on foil substrates
CN2010105225893A CN102136522A (en) 2004-09-18 2005-09-06 Formation of solar cells on foil substrates
EP10003020A EP2230693B1 (en) 2004-09-18 2005-09-06 Formation of solar cells on foil substrates
AT05796064T ATE462200T1 (en) 2004-09-18 2005-09-06 FORMATION OF SOLAR CELLS ON FILM SUBSTRATES
ES10003020T ES2380564T3 (en) 2004-09-18 2005-09-06 Formation of solar cells on metal foil substrates
ES05796064T ES2342091T3 (en) 2004-09-18 2005-09-06 TRAINING OF SOLAR CELLS ON SUBSTRATES OF METAL SHEET.
JP2007532382A JP2008514006A (en) 2004-09-18 2005-09-06 Formation of solar cells on foil substrates
PCT/US2005/032151 WO2006033858A1 (en) 2004-09-18 2005-09-06 Formation of solar cells on foil substrates
EP10184761A EP2348540B1 (en) 2004-09-18 2005-09-06 Formation of Solar Cells on Foil Substrates
EP05796064A EP1805804B1 (en) 2004-09-18 2005-09-06 Formation of solar cells on foil substrates
AT10003020T ATE540428T1 (en) 2004-09-18 2005-09-06 FORMATION OF SOLAR CELLS ON FILM SUBSTRATES
DE602005020174T DE602005020174D1 (en) 2004-09-18 2005-09-06 FORMATION OF SOLAR CELLS ON FILM SUBSTRATES
US11/361,688 US20070169812A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer from nanoflake particles
US11/361,522 US20070166453A1 (en) 2004-02-19 2006-02-23 High-throughput printing of chalcogen layer
US11/361,523 US20070169811A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of thermal and chemical gradients
US11/362,266 US20070169813A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer from microflake particles
US11/361,498 US20070163639A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer from microflake particles
US11/361,521 US20070163383A1 (en) 2004-02-19 2006-02-23 High-throughput printing of nanostructured semiconductor precursor layer
US11/361,433 US7700464B2 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer from nanoflake particles
US11/361,103 US20070169809A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of low-melting chalcogenides
US11/361,515 US20070163640A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of chalcogen-rich chalcogenides
US11/361,497 US20070163638A1 (en) 2004-02-19 2006-02-23 Photovoltaic devices printed from nanostructured particles
US11/361,464 US20070169810A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor
US11/395,438 US20070163643A1 (en) 2004-02-19 2006-03-30 High-throughput printing of chalcogen layer and the use of an inter-metallic material
US11/395,426 US20070163642A1 (en) 2004-02-19 2006-03-30 High-throughput printing of semiconductor precursor layer from inter-metallic microflake articles
US11/395,668 US8309163B2 (en) 2004-02-19 2006-03-30 High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material
US11/394,849 US20070163641A1 (en) 2004-02-19 2006-03-30 High-throughput printing of semiconductor precursor layer from inter-metallic nanoflake particles
US11/427,328 US7732229B2 (en) 2004-09-18 2006-06-28 Formation of solar cells with conductive barrier layers and foil substrates
US11/765,436 US8623448B2 (en) 2004-02-19 2007-06-19 High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles
US11/765,422 US8372734B2 (en) 2004-02-19 2007-06-19 High-throughput printing of semiconductor precursor layer from chalcogenide nanoflake particles
US11/765,407 US20080124831A1 (en) 2004-02-19 2007-06-19 High-throughput printing of semiconductor precursor layer from chalcogenide particles
US12/175,945 US8846141B1 (en) 2004-02-19 2008-07-18 High-throughput printing of semiconductor precursor layer from microflake particles
US12/176,312 US8329501B1 (en) 2004-02-19 2008-07-18 High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles
US12/363,613 US20090246906A1 (en) 2004-02-19 2009-01-30 High-Throughput Printing of Semiconductor Precursor Layer From Microflake Particles
US12/437,539 US8541048B1 (en) 2004-09-18 2009-05-07 Formation of photovoltaic absorber layers on foil substrates
US12/437,532 US20090305455A1 (en) 2004-09-18 2009-05-07 Formation of CIGS Absorber Layers on Foil Substrates
US12/505,083 US20100089453A1 (en) 2004-02-19 2009-07-17 High-Throughput Printing of Semiconductor Precursor Layer From Microflake Particles
US12/553,951 US20100170564A1 (en) 2004-02-19 2009-09-03 High-throughput printing of semiconductor precursor layer by use of chalcogen-rich chalcogenides
US12/757,942 US20110092010A1 (en) 2004-02-19 2010-04-09 High-throughput printing of nanostructured semiconductor precursor layer
US12/763,146 US8642455B2 (en) 2004-02-19 2010-04-19 High-throughput printing of semiconductor precursor layer from nanoflake particles
US12/795,594 US8525152B2 (en) 2004-09-18 2010-06-07 Formation of solar cells with conductive barrier layers and foil substrates
US13/481,994 US20120295022A1 (en) 2004-02-19 2012-05-29 High-Throughput Printing of Chalcogen Layer
US13/589,099 US20120315722A1 (en) 2004-02-19 2012-08-18 High-Throughput Printing of Semiconductor Precursor Layer from Nanoflake Particles
US13/602,023 US20120329195A1 (en) 2004-09-18 2012-08-31 Formation of CIGS Absorber Layers on Foil Substrates
US13/645,443 US20130025532A1 (en) 2004-09-18 2012-10-04 Formation of photovoltaic absorber layers on foil substrates
US13/673,993 US20130210191A1 (en) 2004-02-19 2012-11-10 High-Throughput Printing of Semiconductor Precursor Layer by Use of Chalcogen-Rich Chalcogenides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/943,685 US20060060237A1 (en) 2004-09-18 2004-09-18 Formation of solar cells on foil substrates

Related Parent Applications (6)

Application Number Title Priority Date Filing Date
US10/782,017 Continuation-In-Part US7663057B2 (en) 2004-02-19 2004-02-19 Solution-based fabrication of photovoltaic cell
US10/943,657 Continuation-In-Part US7306823B2 (en) 2004-02-19 2004-09-18 Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US11/039,053 Continuation-In-Part US7276724B2 (en) 2004-09-18 2005-01-20 Series interconnected optoelectronic device module assembly
US11/207,157 Continuation-In-Part US7838868B2 (en) 2004-09-18 2005-08-16 Optoelectronic architecture having compound conducting substrate
US11/361,464 Continuation-In-Part US20070169810A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor
US74091507A Continuation-In-Part 2004-09-18 2007-04-26

Related Child Applications (22)

Application Number Title Priority Date Filing Date
US10/943,657 Continuation-In-Part US7306823B2 (en) 2004-02-19 2004-09-18 Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US11/081,163 Continuation-In-Part US7604843B1 (en) 2004-02-19 2005-03-16 Metallic dispersion
US11/290,633 Continuation-In-Part US8048477B2 (en) 2004-02-19 2005-11-29 Chalcogenide solar cells
US11/361,521 Continuation-In-Part US20070163383A1 (en) 2004-02-19 2006-02-23 High-throughput printing of nanostructured semiconductor precursor layer
US11/361,523 Continuation-In-Part US20070169811A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of thermal and chemical gradients
US11/362,266 Continuation-In-Part US20070169813A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer from microflake particles
US11/361,498 Continuation-In-Part US20070163639A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer from microflake particles
US11/361,103 Continuation-In-Part US20070169809A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of low-melting chalcogenides
US11/361,688 Continuation-In-Part US20070169812A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer from nanoflake particles
US11/361,497 Continuation-In-Part US20070163638A1 (en) 2004-02-19 2006-02-23 Photovoltaic devices printed from nanostructured particles
US11/361,522 Continuation-In-Part US20070166453A1 (en) 2004-02-19 2006-02-23 High-throughput printing of chalcogen layer
US11/361,433 Continuation-In-Part US7700464B2 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer from nanoflake particles
US11/361,515 Continuation-In-Part US20070163640A1 (en) 2004-02-19 2006-02-23 High-throughput printing of semiconductor precursor layer by use of chalcogen-rich chalcogenides
US11/395,668 Continuation-In-Part US8309163B2 (en) 2004-02-19 2006-03-30 High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material
US11/394,849 Continuation-In-Part US20070163641A1 (en) 2004-02-19 2006-03-30 High-throughput printing of semiconductor precursor layer from inter-metallic nanoflake particles
US11/395,426 Continuation-In-Part US20070163642A1 (en) 2004-02-19 2006-03-30 High-throughput printing of semiconductor precursor layer from inter-metallic microflake articles
US11/395,438 Continuation-In-Part US20070163643A1 (en) 2004-02-19 2006-03-30 High-throughput printing of chalcogen layer and the use of an inter-metallic material
US11/427,328 Continuation-In-Part US7732229B2 (en) 2004-09-18 2006-06-28 Formation of solar cells with conductive barrier layers and foil substrates
US74700107A Continuation-In-Part 2004-09-18 2007-05-10
US12/060,221 Continuation-In-Part US20090032108A1 (en) 2004-09-18 2008-03-31 Formation of photovoltaic absorber layers on foil substrates
US12/437,532 Continuation US20090305455A1 (en) 2004-09-18 2009-05-07 Formation of CIGS Absorber Layers on Foil Substrates
US13/602,023 Continuation US20120329195A1 (en) 2004-09-18 2012-08-31 Formation of CIGS Absorber Layers on Foil Substrates

Publications (1)

Publication Number Publication Date
US20060060237A1 true US20060060237A1 (en) 2006-03-23

Family

ID=36072640

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/943,685 Abandoned US20060060237A1 (en) 2004-02-19 2004-09-18 Formation of solar cells on foil substrates
US12/437,532 Abandoned US20090305455A1 (en) 2004-09-18 2009-05-07 Formation of CIGS Absorber Layers on Foil Substrates
US13/602,023 Abandoned US20120329195A1 (en) 2004-09-18 2012-08-31 Formation of CIGS Absorber Layers on Foil Substrates

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/437,532 Abandoned US20090305455A1 (en) 2004-09-18 2009-05-07 Formation of CIGS Absorber Layers on Foil Substrates
US13/602,023 Abandoned US20120329195A1 (en) 2004-09-18 2012-08-31 Formation of CIGS Absorber Layers on Foil Substrates

Country Status (6)

Country Link
US (3) US20060060237A1 (en)
EP (2) EP2348540B1 (en)
CN (2) CN102136522A (en)
AT (2) ATE540428T1 (en)
DE (1) DE602005020174D1 (en)
ES (2) ES2380564T3 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080308148A1 (en) * 2005-08-16 2008-12-18 Leidholm Craig R Photovoltaic Devices With Conductive Barrier Layers and Foil Substrates
US20090032108A1 (en) * 2007-03-30 2009-02-05 Craig Leidholm Formation of photovoltaic absorber layers on foil substrates
US20090145482A1 (en) * 2007-12-06 2009-06-11 Mitzi David B Photovoltaic Device with Solution-processed Chalcogenide Absorber Layer
US20090235986A1 (en) * 2008-03-18 2009-09-24 Solexant Corp Back contact for thin film solar cells
US20090242029A1 (en) * 2008-03-26 2009-10-01 Solexant Corp. Junctions in substrate solar cells
US20100229931A1 (en) * 2008-03-18 2010-09-16 Solexant Corp. Back contact for thin film solar cells
US20100267222A1 (en) * 2004-02-19 2010-10-21 Robinson Matthew R High-Throughput Printing of Semiconductor Precursor Layer from Nanoflake Particles
CN101882640A (en) * 2010-06-28 2010-11-10 普尼太阳能(杭州)有限公司 CuInSe2-based thin film solar cell
US20110030582A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Polymeric precursors for caigas aluminum-containing photovoltaics
US20110030797A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods and articles for aigs silver-containing photovoltaics
US20110031444A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Polymeric precursors for cis and cigs photovoltaics
US20110030768A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods for photovoltaic absorbers with controlled group 13 stoichiometry
US20110049520A1 (en) * 2009-08-31 2011-03-03 Alliance For Sustainable Energy, Llc Lattice matched crystalline substrates for cubic nitride semiconductor gr
US20110048514A1 (en) * 2009-08-31 2011-03-03 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US20110059231A1 (en) * 2007-12-06 2011-03-10 Brent Bollman Methods and devices for processing a precursor layer in a group via environment
US20110146532A1 (en) * 2009-12-17 2011-06-23 Precursor Energetics, Inc. Molecular precursors for optoelectronics
US20110147791A1 (en) * 2009-12-21 2011-06-23 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
CN102412319A (en) * 2011-09-30 2012-04-11 陈聪茂 High-efficiency gallium arsenide solar cell manufactured on metal film and manufacturing method thereof
US8418418B2 (en) 2009-04-29 2013-04-16 3Form, Inc. Architectural panels with organic photovoltaic interlayers and methods of forming the same
US20140124362A1 (en) * 2008-09-06 2014-05-08 Soltrium Technology, Ltd. Shenzhen Methods for fabricating thin film solar cells
US20140130859A1 (en) * 2011-06-13 2014-05-15 Kyoung-Bo Kim Solar cell substrate and solar cell using same
US8828787B2 (en) 2010-09-15 2014-09-09 Precursor Energetics, Inc. Inks with alkali metals for thin film solar cell processes
US9041027B2 (en) 2010-12-01 2015-05-26 Alliance For Sustainable Energy, Llc Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates
US9214563B2 (en) 2009-09-24 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9425249B2 (en) 2010-12-01 2016-08-23 Alliance For Sustainable Energy, Llc Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259872A (en) * 2008-04-11 2009-11-05 Rohm Co Ltd Photoelectric conversion device, method of manufacturing the same, and solid-state imaging device
CN101838788A (en) * 2010-05-06 2010-09-22 深圳丹邦投资集团有限公司 Method for growing Cu2SixSn1-xS3 photovoltaic film in situ
TW201203584A (en) 2010-07-02 2012-01-16 Adpv Technology Ltd Rapid thermal process heating system and method thereof
US8748216B2 (en) 2010-10-25 2014-06-10 Imra America, Inc. Non-vacuum method for fabrication of a photovoltaic absorber layer
US8409906B2 (en) 2010-10-25 2013-04-02 Imra America, Inc. Non-vacuum method for fabrication of a photovoltaic absorber layer
US8343267B2 (en) * 2011-02-18 2013-01-01 Rohm And Haas Electronic Materials Llc Gallium formulated ink and methods of making and using same
JP5536153B2 (en) * 2011-09-16 2014-07-02 新日光能源科技股▲ふん▼有限公司 Method of forming chalcogenide semiconductor film and photovoltaic device
WO2013129044A1 (en) * 2012-02-27 2013-09-06 株式会社日本マイクロニクス Method for fabricating alloy for cigs solar cell
EP2834853A4 (en) * 2012-02-29 2015-12-09 Alliance Sustainable Energy SYSTEMS AND METHODS FOR FORMING SOLAR CELLS WITH CuInSe2 AND Cu(In,Ga)Se2 FILMS
CN103296129A (en) * 2012-03-05 2013-09-11 任丘市永基光电太阳能有限公司 Preparation technology for flexible CIGS solar cell back electrode layer
KR101720884B1 (en) * 2012-07-19 2017-03-28 쌩-고벵 글래스 프랑스 Avoidance of glass bending in thermal processes
US9130113B2 (en) 2012-12-14 2015-09-08 Tsmc Solar Ltd. Method and apparatus for resistivity and transmittance optimization in TCO solar cell films
CN103268899B (en) * 2012-12-18 2015-10-28 深圳首创光伏有限公司 Manufacture the method for thin-film solar cells
US9105799B2 (en) * 2013-06-10 2015-08-11 Tsmc Solar Ltd. Apparatus and method for producing solar cells using light treatment

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423301A (en) * 1964-11-02 1969-01-21 Monsanto Co Electrolytic production of high-purity gallium
US3586541A (en) * 1966-04-21 1971-06-22 Ncr Co Photosensitive devices comprising aluminum foil
US3966568A (en) * 1974-10-21 1976-06-29 Cominco Ltd. Electrowinning of gallium
US4191794A (en) * 1978-05-11 1980-03-04 Westinghouse Electric Corp. Integrated solar cell array
US4192721A (en) * 1979-04-24 1980-03-11 Baranski Andrzej S Method for producing a smooth coherent film of a metal chalconide
US4404422A (en) * 1980-09-26 1983-09-13 Unisearch Limited High efficiency solar cell structure
US4522663A (en) * 1980-09-09 1985-06-11 Sovonics Solar Systems Method for optimizing photoresponsive amorphous alloys and devices
US4536607A (en) * 1984-03-01 1985-08-20 Wiesmann Harold J Photovoltaic tandem cell
US4622432A (en) * 1983-04-29 1986-11-11 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US4642140A (en) * 1985-04-30 1987-02-10 The United States Of America As Represented By The United States Department Of Energy Process for producing chalcogenide semiconductors
US4677250A (en) * 1985-10-30 1987-06-30 Astrosystems, Inc. Fault tolerant thin-film photovoltaic cell
US4806436A (en) * 1984-08-06 1989-02-21 Showa Aluminum Corporation Substrate for amorphous silicon solar cells
US4940604A (en) * 1987-09-04 1990-07-10 Matsushita Electric Industrial Co., Ltd. Method for production of copper indium diselenide
US5045409A (en) * 1987-11-27 1991-09-03 Atlantic Richfield Company Process for making thin film solar cell
US5078804A (en) * 1989-06-27 1992-01-07 The Boeing Company I-III-VI2 based solar cell utilizing the structure CuInGaSe2 CdZnS/ZnO
US5093453A (en) * 1989-12-12 1992-03-03 Administrator Of The National Aeronautics And Space Administration Aromatic polyimides containing a dimethylsilane-linked dianhydride
US5141564A (en) * 1988-05-03 1992-08-25 The Boeing Company Mixed ternary heterojunction solar cell
US5244509A (en) * 1990-08-09 1993-09-14 Canon Kabushiki Kaisha Substrate having an uneven surface for solar cell and a solar cell provided with said substrate
US5277786A (en) * 1991-02-20 1994-01-11 Canon Kabushiki Kaisha Process for producing a defect-free photoelectric conversion device
US5286306A (en) * 1992-02-07 1994-02-15 Shalini Menezes Thin film photovoltaic cells from I-III-VI-VII compounds
US5356839A (en) * 1993-04-12 1994-10-18 Midwest Research Institute Enhanced quality thin film Cu(In,Ga)Se2 for semiconductor device applications by vapor-phase recrystallization
US5401573A (en) * 1992-11-30 1995-03-28 Mcdonnell Douglas Corporation Protection of thermal control coatings from ultraviolet radiation
US5419781A (en) * 1981-11-04 1995-05-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Flexible photovoltaic device
US5436204A (en) * 1993-04-12 1995-07-25 Midwest Research Institute Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
US5441897A (en) * 1993-04-12 1995-08-15 Midwest Research Institute Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
US5445847A (en) * 1992-05-19 1995-08-29 Matsushita Electric Industrial Co., Ltd. Method for preparing chalcopyrite-type compound
US5538903A (en) * 1993-11-18 1996-07-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solar cell
US5578503A (en) * 1992-09-22 1996-11-26 Siemens Aktiengesellschaft Rapid process for producing a chalcopyrite semiconductor on a substrate
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
US5633033A (en) * 1994-04-18 1997-05-27 Matsushita Electric Industrial Co., Ltd. Method for manufacturing chalcopyrite film
US5677250A (en) * 1994-10-17 1997-10-14 Cooper Industries, Inc. Low-temperature lead-free glaze for alumina ceramics
US5728231A (en) * 1995-05-15 1998-03-17 Matsushita Electric Industrial Co., Ltd. Precursor for semiconductor thin films and method for producing semiconductor thin films
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
US5925228A (en) * 1997-01-09 1999-07-20 Sandia Corporation Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
US5994163A (en) * 1994-10-21 1999-11-30 Nordic Solar Energy Ab Method of manufacturing thin-film solar cells
US6107562A (en) * 1998-03-24 2000-08-22 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method for manufacturing the same, and solar cell using the same
US6121541A (en) * 1997-07-28 2000-09-19 Bp Solarex Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US6124039A (en) * 1996-04-03 2000-09-26 Alusuisse Technology & Management Ltd. Coating substrate
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
US6268014B1 (en) * 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US6372538B1 (en) * 2000-03-16 2002-04-16 University Of Delaware Fabrication of thin-film, flexible photovoltaic module
US6429369B1 (en) * 1999-05-10 2002-08-06 Ist-Institut Fur Solartechnologies Gmbh Thin-film solar cells on the basis of IB-IIIA-VIA compound semiconductors and method for manufacturing same
US20040144419A1 (en) * 2001-01-31 2004-07-29 Renaud Fix Transparent substrate equipped with an electrode
US20040219730A1 (en) * 2001-04-16 2004-11-04 Basol Bulent M. Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
US20050183767A1 (en) * 2004-02-19 2005-08-25 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US20050186342A1 (en) * 2004-02-19 2005-08-25 Nanosolar, Inc. Formation of CIGS absorber layer materials using atomic layer deposition and high throughput surface treatment
US6974976B2 (en) * 2002-09-30 2005-12-13 Miasole Thin-film solar cells

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169246B1 (en) * 1998-09-08 2001-01-02 Midwest Research Institute Photovoltaic devices comprising zinc stannate buffer layer and method for making
US6258408B1 (en) * 1999-07-06 2001-07-10 Arun Madan Semiconductor vacuum deposition system and method having a reel-to-reel substrate cassette
WO2001037324A1 (en) * 1999-11-16 2001-05-25 Midwest Research Institute A NOVEL PROCESSING APPROACH TOWARDS THE FORMATION OF THIN-FILM Cu(In,Ga)Se¿2?
WO2003007386A1 (en) * 2001-07-13 2003-01-23 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
SE525704C2 (en) * 2003-08-12 2005-04-05 Sandvik Ab Coated steel product of metal strip material comprising an electrically insulating layer doped with one or more alkali metals
US7605328B2 (en) * 2004-02-19 2009-10-20 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423301A (en) * 1964-11-02 1969-01-21 Monsanto Co Electrolytic production of high-purity gallium
US3586541A (en) * 1966-04-21 1971-06-22 Ncr Co Photosensitive devices comprising aluminum foil
US3966568A (en) * 1974-10-21 1976-06-29 Cominco Ltd. Electrowinning of gallium
US4191794A (en) * 1978-05-11 1980-03-04 Westinghouse Electric Corp. Integrated solar cell array
US4192721A (en) * 1979-04-24 1980-03-11 Baranski Andrzej S Method for producing a smooth coherent film of a metal chalconide
US4522663A (en) * 1980-09-09 1985-06-11 Sovonics Solar Systems Method for optimizing photoresponsive amorphous alloys and devices
US4404422A (en) * 1980-09-26 1983-09-13 Unisearch Limited High efficiency solar cell structure
US5419781A (en) * 1981-11-04 1995-05-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Flexible photovoltaic device
US4622432A (en) * 1983-04-29 1986-11-11 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US4536607A (en) * 1984-03-01 1985-08-20 Wiesmann Harold J Photovoltaic tandem cell
US4806436A (en) * 1984-08-06 1989-02-21 Showa Aluminum Corporation Substrate for amorphous silicon solar cells
US4642140A (en) * 1985-04-30 1987-02-10 The United States Of America As Represented By The United States Department Of Energy Process for producing chalcogenide semiconductors
US4677250A (en) * 1985-10-30 1987-06-30 Astrosystems, Inc. Fault tolerant thin-film photovoltaic cell
US4940604A (en) * 1987-09-04 1990-07-10 Matsushita Electric Industrial Co., Ltd. Method for production of copper indium diselenide
US5045409A (en) * 1987-11-27 1991-09-03 Atlantic Richfield Company Process for making thin film solar cell
US5141564A (en) * 1988-05-03 1992-08-25 The Boeing Company Mixed ternary heterojunction solar cell
US5078804A (en) * 1989-06-27 1992-01-07 The Boeing Company I-III-VI2 based solar cell utilizing the structure CuInGaSe2 CdZnS/ZnO
US5093453A (en) * 1989-12-12 1992-03-03 Administrator Of The National Aeronautics And Space Administration Aromatic polyimides containing a dimethylsilane-linked dianhydride
US5244509A (en) * 1990-08-09 1993-09-14 Canon Kabushiki Kaisha Substrate having an uneven surface for solar cell and a solar cell provided with said substrate
US5277786A (en) * 1991-02-20 1994-01-11 Canon Kabushiki Kaisha Process for producing a defect-free photoelectric conversion device
US5286306A (en) * 1992-02-07 1994-02-15 Shalini Menezes Thin film photovoltaic cells from I-III-VI-VII compounds
US5445847A (en) * 1992-05-19 1995-08-29 Matsushita Electric Industrial Co., Ltd. Method for preparing chalcopyrite-type compound
US5578503A (en) * 1992-09-22 1996-11-26 Siemens Aktiengesellschaft Rapid process for producing a chalcopyrite semiconductor on a substrate
US5401573A (en) * 1992-11-30 1995-03-28 Mcdonnell Douglas Corporation Protection of thermal control coatings from ultraviolet radiation
US5441897A (en) * 1993-04-12 1995-08-15 Midwest Research Institute Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
US5356839A (en) * 1993-04-12 1994-10-18 Midwest Research Institute Enhanced quality thin film Cu(In,Ga)Se2 for semiconductor device applications by vapor-phase recrystallization
US5436204A (en) * 1993-04-12 1995-07-25 Midwest Research Institute Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
US5538903A (en) * 1993-11-18 1996-07-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solar cell
US5633033A (en) * 1994-04-18 1997-05-27 Matsushita Electric Industrial Co., Ltd. Method for manufacturing chalcopyrite film
US5677250A (en) * 1994-10-17 1997-10-14 Cooper Industries, Inc. Low-temperature lead-free glaze for alumina ceramics
US5994163A (en) * 1994-10-21 1999-11-30 Nordic Solar Energy Ab Method of manufacturing thin-film solar cells
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
US5728231A (en) * 1995-05-15 1998-03-17 Matsushita Electric Industrial Co., Ltd. Precursor for semiconductor thin films and method for producing semiconductor thin films
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
US6124039A (en) * 1996-04-03 2000-09-26 Alusuisse Technology & Management Ltd. Coating substrate
US5925228A (en) * 1997-01-09 1999-07-20 Sandia Corporation Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
US6121541A (en) * 1997-07-28 2000-09-19 Bp Solarex Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US6268014B1 (en) * 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US6107562A (en) * 1998-03-24 2000-08-22 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method for manufacturing the same, and solar cell using the same
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
US6429369B1 (en) * 1999-05-10 2002-08-06 Ist-Institut Fur Solartechnologies Gmbh Thin-film solar cells on the basis of IB-IIIA-VIA compound semiconductors and method for manufacturing same
US6372538B1 (en) * 2000-03-16 2002-04-16 University Of Delaware Fabrication of thin-film, flexible photovoltaic module
US20040144419A1 (en) * 2001-01-31 2004-07-29 Renaud Fix Transparent substrate equipped with an electrode
US20040219730A1 (en) * 2001-04-16 2004-11-04 Basol Bulent M. Method of forming semiconductor compound film for fabrication of electronic device and film produced by same
US6974976B2 (en) * 2002-09-30 2005-12-13 Miasole Thin-film solar cells
US20050183767A1 (en) * 2004-02-19 2005-08-25 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US20050186342A1 (en) * 2004-02-19 2005-08-25 Nanosolar, Inc. Formation of CIGS absorber layer materials using atomic layer deposition and high throughput surface treatment

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642455B2 (en) 2004-02-19 2014-02-04 Matthew R. Robinson High-throughput printing of semiconductor precursor layer from nanoflake particles
US20100267222A1 (en) * 2004-02-19 2010-10-21 Robinson Matthew R High-Throughput Printing of Semiconductor Precursor Layer from Nanoflake Particles
US20080308148A1 (en) * 2005-08-16 2008-12-18 Leidholm Craig R Photovoltaic Devices With Conductive Barrier Layers and Foil Substrates
US8198117B2 (en) 2005-08-16 2012-06-12 Nanosolar, Inc. Photovoltaic devices with conductive barrier layers and foil substrates
US20090032108A1 (en) * 2007-03-30 2009-02-05 Craig Leidholm Formation of photovoltaic absorber layers on foil substrates
US20090145482A1 (en) * 2007-12-06 2009-06-11 Mitzi David B Photovoltaic Device with Solution-processed Chalcogenide Absorber Layer
US20110065224A1 (en) * 2007-12-06 2011-03-17 Brent Bollman Methods and devices for processing a precursor layer in a group via environment
US9324890B2 (en) 2007-12-06 2016-04-26 Globalfoundries Inc. Photovoltaic device with solution-processed chalcogenide absorber layer
US20110059231A1 (en) * 2007-12-06 2011-03-10 Brent Bollman Methods and devices for processing a precursor layer in a group via environment
US8613973B2 (en) 2007-12-06 2013-12-24 International Business Machines Corporation Photovoltaic device with solution-processed chalcogenide absorber layer
US7858872B2 (en) 2008-03-18 2010-12-28 Solexant Corp. Back contact for thin film solar cells
US8410357B2 (en) 2008-03-18 2013-04-02 Solexant Corp. Back contact for thin film solar cells
US20100229931A1 (en) * 2008-03-18 2010-09-16 Solexant Corp. Back contact for thin film solar cells
US20090235986A1 (en) * 2008-03-18 2009-09-24 Solexant Corp Back contact for thin film solar cells
US8143512B2 (en) 2008-03-26 2012-03-27 Solexant Corp. Junctions in substrate solar cells
US20090242029A1 (en) * 2008-03-26 2009-10-01 Solexant Corp. Junctions in substrate solar cells
US20140124362A1 (en) * 2008-09-06 2014-05-08 Soltrium Technology, Ltd. Shenzhen Methods for fabricating thin film solar cells
US9076731B2 (en) 2009-04-29 2015-07-07 3Form, Llc Architectural panels with organic photovoltaic interlayers and methods of forming the same
US8418418B2 (en) 2009-04-29 2013-04-16 3Form, Inc. Architectural panels with organic photovoltaic interlayers and methods of forming the same
US8067262B2 (en) 2009-08-04 2011-11-29 Precursor Energetics, Inc. Polymeric precursors for CAIGS silver-containing photovoltaics
US20110030797A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods and articles for aigs silver-containing photovoltaics
US20110030755A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods for photovoltaic absorbers with controlled group 11 stoichiometry
US20110031453A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Processes for polymeric precursors for caigas aluminum-containing photovoltaics
US20110030799A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods and materials for cis and cigs photovoltaics
US20110034667A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Processes for polymeric precursors for aigs silver-containing photovoltaics
US20110031445A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Processes for polymeric precursors for caigs silver-containing photovoltaics
US20110034640A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Processes for polymeric precursors for cis and cigs photovoltaics
US20110030798A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods and articles for caigas aluminum-containing photovoltaics
US20110030784A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods and materials for caigs silver-containing photovoltaics
US20110030800A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods for caigs silver-containing photovoltaics
US20110041918A1 (en) * 2009-08-04 2011-02-24 Precursor Energetics, Inc. Methods and materials for aigs silver-containing photovoltaics
US20110030582A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Polymeric precursors for caigas aluminum-containing photovoltaics
US8741182B2 (en) 2009-08-04 2014-06-03 Precursor Energetics, Inc. Methods and materials for AIGS silver-containing photovoltaics
US20110030796A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods and articles for caigs silver-containing photovoltaics
US20110030788A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods for caigas aluminum-containing photovoltaics
US8721930B2 (en) 2009-08-04 2014-05-13 Precursor Energetics, Inc. Polymeric precursors for AIGS silver-containing photovoltaics
US20110030785A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods and materials for caigas aluminum-containing photovoltaics
US8715775B2 (en) 2009-08-04 2014-05-06 Precursor Energetics, Inc. Precursors and uses for CIS and CIGS photovoltaics
US20110030787A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods for aigs silver-containing photovoltaics
US8617431B2 (en) 2009-08-04 2013-12-31 Precursor Energetics, Inc. Selenolate inks and precursors for photovoltaics
US8067626B2 (en) 2009-08-04 2011-11-29 Precursor Energetics, Inc. Processes for polymeric precursors for CAIGS silver-containing photovoltaics
US20110030768A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods for photovoltaic absorbers with controlled group 13 stoichiometry
US20110030786A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods for cis and cigs photovoltaics
US20110031444A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Polymeric precursors for cis and cigs photovoltaics
US8158033B2 (en) 2009-08-04 2012-04-17 Precursor Energetics, Inc. Polymeric precursors for CAIGAS aluminum-containing photovoltaics
US8168090B2 (en) 2009-08-04 2012-05-01 Precursor Energetics, Inc. Processes for polymeric precursors for CIS and CIGS photovoltaics
US20110034605A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Polymeric precursors for caigs silver-containing photovoltaics
US8318050B2 (en) 2009-08-04 2012-11-27 Precursor Energetics, Inc. Processes for polymeric precursors for caigas aluminum-containing photovoltaics
US20110030795A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Methods and articles for cis and cigs photovoltaics
US20110030581A1 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Polymeric precursors for aigs silver-containing photovoltaics
US8440114B2 (en) 2009-08-04 2013-05-14 Precursor Energetics, Inc. Methods and materials for CAIGAS aluminum-containing photovoltaics
US8449793B2 (en) 2009-08-04 2013-05-28 Precursor Energetics, Inc. Methods and articles for CAIGAS aluminum-containing photovoltaics
US8465679B2 (en) 2009-08-04 2013-06-18 Precursor Energetics, Inc. Methods for CAIGAS aluminum-containing photovoltaics
US8497390B2 (en) 2009-08-04 2013-07-30 Precursor Energetics, Inc. Methods and articles for CAIGS silver-containing photovoltaics
US8591775B2 (en) 2009-08-04 2013-11-26 Precursor Energetics, Inc. Methods and articles for CIS and CIGS photovoltaics
US8512603B2 (en) 2009-08-04 2013-08-20 Precursor Energetics, Inc. Polymeric precursors for CIS and CIGS photovoltaics
US8545734B2 (en) 2009-08-04 2013-10-01 Precursor Energetics, Inc. Methods for photovoltaic absorbers with controlled group 13 stoichiometry
US8585936B2 (en) 2009-08-04 2013-11-19 Precursor Energetics, Inc. Methods for photovoltaic absorbers with controlled group 11 stoichiometry
US8585932B2 (en) 2009-08-04 2013-11-19 Precursor Energetics, Inc. Methods and articles for AIGS silver-containing photovoltaics
US8585933B2 (en) 2009-08-04 2013-11-19 Precursor Energetics, Inc. Methods for AIGS silver-containing photovoltaics
US20110048514A1 (en) * 2009-08-31 2011-03-03 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US20110049520A1 (en) * 2009-08-31 2011-03-03 Alliance For Sustainable Energy, Llc Lattice matched crystalline substrates for cubic nitride semiconductor gr
US8575471B2 (en) 2009-08-31 2013-11-05 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US8961687B2 (en) 2009-08-31 2015-02-24 Alliance For Sustainable Energy, Llc Lattice matched crystalline substrates for cubic nitride semiconductor growth
US10418491B2 (en) 2009-09-24 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9853167B2 (en) 2009-09-24 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9318617B2 (en) 2009-09-24 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US9214563B2 (en) 2009-09-24 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8715537B2 (en) 2009-12-17 2014-05-06 Precursor Energetics, Inc. Molecular precursor methods and materials for optoelectronics
US8628696B2 (en) 2009-12-17 2014-01-14 Precursor Energetics, Inc. Molecular precursors for optoelectronics
US20110146764A1 (en) * 2009-12-17 2011-06-23 Precursor Energetics, Inc. Molecular precursor methods and articles for optoelectronics
US20110146532A1 (en) * 2009-12-17 2011-06-23 Precursor Energetics, Inc. Molecular precursors for optoelectronics
US20110146790A1 (en) * 2009-12-17 2011-06-23 Precursor Energetics, Inc. Molecular precursor methods for optoelectronics
US20110146789A1 (en) * 2009-12-17 2011-06-23 Precursor Energetics, Inc. Molecular precursor methods and materials for optoelectronics
US20110147791A1 (en) * 2009-12-21 2011-06-23 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
US8507365B2 (en) 2009-12-21 2013-08-13 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
CN101882640A (en) * 2010-06-28 2010-11-10 普尼太阳能(杭州)有限公司 CuInSe2-based thin film solar cell
US8883550B2 (en) 2010-09-15 2014-11-11 Precursor Energetics, Inc. Deposition processes for photovoltaic devices
US8828782B2 (en) 2010-09-15 2014-09-09 Precursor Energetics, Inc. Annealing processes for photovoltaics
US8828787B2 (en) 2010-09-15 2014-09-09 Precursor Energetics, Inc. Inks with alkali metals for thin film solar cell processes
US9041027B2 (en) 2010-12-01 2015-05-26 Alliance For Sustainable Energy, Llc Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates
US9425249B2 (en) 2010-12-01 2016-08-23 Alliance For Sustainable Energy, Llc Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
US20140130859A1 (en) * 2011-06-13 2014-05-15 Kyoung-Bo Kim Solar cell substrate and solar cell using same
CN102412319A (en) * 2011-09-30 2012-04-11 陈聪茂 High-efficiency gallium arsenide solar cell manufactured on metal film and manufacturing method thereof

Also Published As

Publication number Publication date
EP2348540A2 (en) 2011-07-27
DE602005020174D1 (en) 2010-05-06
EP2348540B1 (en) 2013-02-13
CN101061588A (en) 2007-10-24
US20090305455A1 (en) 2009-12-10
ATE462200T1 (en) 2010-04-15
EP2230693B1 (en) 2012-01-04
ATE540428T1 (en) 2012-01-15
ES2342091T3 (en) 2010-07-01
CN102136522A (en) 2011-07-27
US20120329195A1 (en) 2012-12-27
EP2348540A3 (en) 2011-11-09
ES2380564T3 (en) 2012-05-16
CN101061588B (en) 2010-12-22
EP2230693A1 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
EP2348540B1 (en) Formation of Solar Cells on Foil Substrates
EP1805804B1 (en) Formation of solar cells on foil substrates
US20080302413A1 (en) Formation of photovoltaic absorber layers on foil substrates
US7605328B2 (en) Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
CN100463230C (en) Method for manufacturing chalcopyrite thin-film solar cell
US9087954B2 (en) Method for producing the pentanary compound semiconductor CZTSSe, and thin-film solar cell
US8415559B2 (en) Method for forming copper indium gallium chalcogenide layer with shaped gallium profile
WO2009142308A1 (en) Manufacturing method of cis thin-film solar cell
WO2014145177A1 (en) Method and apparatus for depositing copper-indiumgalliumselenide (cuingase2-cigs) thin films and other materials on a substrate
CN104813482B (en) Molybdenum base material for CIGS photovoltaic devices
US20090050208A1 (en) Method and structures for controlling the group iiia material profile through a group ibiiiavia compound layer
Badgujar et al. Cu (In, Ga) Se2 thin film solar cells produced by atmospheric selenization of spray casted nanocrystalline layers
US8779283B2 (en) Absorber layer for thin film photovoltaics and a solar cell made therefrom
US20090032108A1 (en) Formation of photovoltaic absorber layers on foil substrates
US20130025532A1 (en) Formation of photovoltaic absorber layers on foil substrates
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
US20140224312A1 (en) Deposition of a high surface energy thin film layer for improved adhesion of group i-iii-vi2 solar cells
JP2004047917A (en) Thin film solar battery and its manufacturing method
US9136423B1 (en) Method and apparatus for depositing copper—indiumgalliumselenide (CuInGaSe2-CIGS) thin films and other materials on a substrate
Basol et al. CuInSe2 films and solar cells obtained by selenization of evaporated Cu‐In layers
US8541048B1 (en) Formation of photovoltaic absorber layers on foil substrates
US20160020345A1 (en) Method and device of manufacturing compound-semiconductor thin-film
EP2179449A2 (en) Formation of photovoltaic absorber layers on foil substrates
JP2014216479A (en) Method of manufacturing photoelectric conversion element
Basol et al. High Efficiency Copper Ternary Thin Film Solar Cells, Final Subcontract Report, 1 March 1987-31 July 1990

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANOSOLAR, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEIDHOLM, CRAIG;BOLLMAN, BRENT;REEL/FRAME:015805/0606

Effective date: 20040916

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: AERIS CAPITAL SUSTAINABLE IMPACT PRIVATE INVESTMEN

Free format text: SECURITY AGREE,EMT;ASSIGNOR:NANOSOLAR, INC.;REEL/FRAME:029556/0418

Effective date: 20121109

AS Assignment

Owner name: AERIS CAPITAL SUSTAINABLE IP LTD., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NANOSOLAR, INC.;REEL/FRAME:033016/0290

Effective date: 20131223