US20060075679A1 - Acetylated wax compositions and articles containing them - Google Patents

Acetylated wax compositions and articles containing them Download PDF

Info

Publication number
US20060075679A1
US20060075679A1 US10/964,081 US96408104A US2006075679A1 US 20060075679 A1 US20060075679 A1 US 20060075679A1 US 96408104 A US96408104 A US 96408104A US 2006075679 A1 US2006075679 A1 US 2006075679A1
Authority
US
United States
Prior art keywords
wax
acetylated
oil
wax composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/964,081
Other versions
US7510584B2 (en
Inventor
Daniel Cap
Original Assignee
NATURE'S GIFTS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATURE'S GIFTS Inc filed Critical NATURE'S GIFTS Inc
Priority to US10/964,081 priority Critical patent/US7510584B2/en
Assigned to NATURE'S GIFTS, INC. reassignment NATURE'S GIFTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAP, DANIEL S.
Publication of US20060075679A1 publication Critical patent/US20060075679A1/en
Assigned to CAP, DANIEL S. reassignment CAP, DANIEL S. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NATURE'S GIFTS, INC.
Application granted granted Critical
Publication of US7510584B2 publication Critical patent/US7510584B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C5/00Candles
    • C11C5/002Ingredients
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C5/00Candles
    • C11C5/006Candles wicks, related accessories

Definitions

  • This invention is directed to acetylated wax compositions having a combination of controlled melting points, reduced brittleness, improved flexibility and enhanced chemical stability.
  • the invention is also directed to articles of manufacture incorporating the acetylated wax compositions.
  • Plant-based wax compositions based on vegetable oils have become increasingly popular for use in the manufacture of candle wicks and candles, due in part to their relatively clean burning characteristics.
  • Vegetable oils are often liquid at room temperature. In order to convert the vegetable oils to a wax-like consistency, they can be hydrogenated to various levels, and/or mixed with other ingredients such as fatty acids, monoglycerides, triglycerides and the like.
  • Partial hydrogenation of vegetable oils yields wax compositions having greater flexibility and pliability, and less brittleness, which are desirable for use in candle wicks and candles.
  • these wax compositions have lower melting points which may permit deformation or destabilization of the candles during shipment and storage at high temperature.
  • partially hydrogenated vegetable oils can oxidize during prolonged exposure to atmospheric air, especially at higher temperatures. Oxidation causes the wax compositions to be less uniform, and distorts their chemical make-up and burning characteristics.
  • the present invention is directed to a wax composition including an acetylated vegetable wax.
  • the acetylated vegetable wax includes an acetylated glyceride and, optionally, a plant-based wax.
  • the acetylated glyceride includes at least an acetylated monoglyceride and may include an acetylated diglyceride.
  • the acetylated glyceride may be partially or fully hydrogenated.
  • the plant-based wax may be a partially or fully hydrogenated vegetable oil having an iodine value of about 0-80, or an unhydrogenated wax.
  • the acetylaed vegetable wax can be used alone or in combination with other ingredients to make the wax composition.
  • the levels of hydrogenation in the acetylated glyceride and plant-based wax, the level of acetylation of the acetylated glyceride, the amounts and types of each, and the amounts and types of other ingredients are selected to provide a wax composition having suitable melting properties, flexibility, rigidity and chemical stability.
  • the acetylated glyceride component increases the flexibility of the wax composition (i.e., decreases its brittleness and hardness) without undesirably affecting its melting point or chemical stability. This permits the use of other ingredients which are less flexible and have greater chemical stability, such as wax ingredients having higher levels of hydrogenation.
  • the present invention is also directed to articles of manufacture which incorporate the wax composition of the invention.
  • articles of manufacture include without limitation candle wicks, candles and dental floss, and coatings for paper and corrugated cardboard.
  • acetylated vegetable wax refers to a blend that includes an acetylated glyceride and, optionally, a plant-based wax as described further below.
  • the wax composition of the invention may include the acetylated vegetable wax alone or in combination with other ingredients.
  • the ingredients of the acetylated vegetable wax namely, the acetylated glyceride and the plant-based wax may be added separately or together when making the wax composition.
  • acetylated glyceride refers to glycerides derived from vegetable oils with varying levels of iodine values which have been acetylated as described below. As explained below, acetylated glycerides derived from vegetable oils typically include mixtures of acetylated monoglycerides and acetylated diglycerides, and may include unreacted triglycerides.
  • plant-based wax refers to a plant-based substance which has a solid, wax-like consistency at ambient conditions (72° F., 50% relative humidity).
  • the term includes vegetable oils which have been partially or fully hydrogenated or fractionated to generate a solid, wax-like consistency, and plant-based substances such as carnauba wax and candelilla wax which have a solid, wax-like consistency without requiring hydrogenation.
  • hydrogenated vegetable oil encompasses partially and fully hydrogenated vegetable oils.
  • Vegetable oil includes any plant-based oil. Vegetable oils may be naturally occurring or processed, and may be solid or liquid at ambient conditions (72° F., 50% relative humidity). The term includes plant-based oils whose carbon-carbon double bonds are unsaturated, partially or fully saturated.
  • partially hydrogenated vegetable oil includes any plant-based oil which has been partially hydrogenated.
  • partially hydrogenated vegetable oil also includes mixtures of partially hydrogenated vegetable oil and fully hydrogenated vegetable oil. Such mixtures are by definition, partially hydrogenated with an intermediate level of hydrogenation.
  • partially hydrogenated vegetable oil includes mixtures of partially hydrogenated vegetable oil and vegetable oil which has not been hydrogenated, and mixtures of fully hydrogenated and unhydrogenated vegetable oil.
  • Fully hydrogenated vegetable oil includes any plant-based oil which has been fully hydrogenated. Fully hydrogenated vegetable oils typically have iodine values between zero and five.
  • iodine value is the number of grams of iodine that an unsaturated compound or blend will absorb in a given time under arbitrary conditions. A low iodine value implies a high level of saturation, and vice versa. The iodine value can be determined by the WIJS method of the American Oil Chemists' Society (A.O.C.S. Cd 1-25).
  • the invention is directed to a wax composition including an acetylated vegetable wax, and articles incorporating the wax composition.
  • the acetylated vegetable wax includes an actylated glyceride and, optionally, a plant-based wax.
  • the plant-based wax can be any plant-based substance which has a wax-like consistency at ambient conditions.
  • examples include plant-based substances such as carnauba wax, candelilla wax and rice bran wax which have a wax-like consistency without requiring hydrogenation.
  • Other examples include partially and fully hydrogenated vegetable oils having an iodine value of about 0-80, suitably about 0-50, particularly about 0-25 and desirably about 0-10.
  • the vegetable oil may be fully hydrogenated with an iodine value of about 0-5.
  • a fully hydrogenated vegetable oil has the advantage of high melting point and chemical stability. Generally, the melting point of a vegetable oil increases as the level of hydrogenation increases and the iodine value decreases.
  • the hydrogenation process adds hydrogen atoms to the carbon-carbon double bonds in unsaturated fatty acids.
  • the plant-based wax can also be a fractionated vegetable oil. Fractionation removes the solid, wax-like components from the liquid components of vegetable oil by controlled crystallization and separation. Fractionation techniques involve the use of solvents or dry processing. The effect of hydrogenation or fractionation is to provide a vegetable oil with a sufficiently high degree of saturation to perform as a wax having a desired melting point and other properties.
  • the hydrogenated or fractionated vegetable oil can be derived from any plant-based oil. Examples include without limitation partially or fully hydrogenated cottonseed oil, sunflower oil, canola oil, peanut oil, soybean oil, safflower oil, corn oil, palm oil, olive oil, coconut oil, palm kernel oil, almond oil, jojoba oil, avocado oil, sesame oil, castor oil, and combinations thereof.
  • the hydrogenated or fractionated vegetable oil may be derived from one or more vegetable oils having the same or different levels of hydrogenation. Castor oil is suitable because of its low cost. Fully hydrogenated castor oil is desirable because of its high melting point (about 84° C.) and chemical stability.
  • Vegetable oils derived from natural sources typically include one or more triglycerides as a major component, lesser amounts of diglycerides and monoglycerides, and very minor amounts of free fatty acids.
  • a triglyceride is an ester compound of glycerol linked to three fatty acids, and has the following general formula: wherein R 1 , R 2 and R 3 are fatty acid chains and may be the same or different.
  • a diglyceride is an ester compound of glycerol linked to two fatty acid chains.
  • a monoglyceride is an ester composed of glycerol linked to one fatty acid chain.
  • a free fatty acid is an unattached fatty acid in a vegetable oil, most commonly stearic acid and/or palmitic acid.
  • the hydrogenated vegetable oil can be partially or fully hydrogenated using known techniques for chemically adding hydrogen gas to a liquid vegetable oil in the presence of a catalyst.
  • the process converts some or all of the unsaturated carbon-carbon double bonds in the vegetable oil molecules to single carbon-carbon bonds, thereby increasing the level of saturation.
  • the degree of hydrogenation reflects the total number of double bonds which are converted.
  • the hydrogenation may cause partial or total saturation of the double bonds in any of the vegetable oil components, including triglycerides, diglycerides, monoglycerides and free fatty acids. Partial hydrogenation may relocate some of the double bonds to new locations, e.g., from a cis isomeric configuration to a trans isomeric configuration.
  • Sufficient hydrogenation typically causes the vegetable oil to assume a solid or semi-solid state at ambient temperature (e.g., 25° C.).
  • the acetylated glyceride can be derived from one or more glycerides of unhydrogenated vegetable oil, partially hydrogenated vegetable oil or fully hydrogenated vegetable oil.
  • the glycerides used for acetylation are partially or fully hydrogenated and have a collective iodine value of about 0-80, suitably about 0-50, particularly about 0-25, desirably about 0-10.
  • the glycerides may be fully hydrogenated with an iodine value of about 0-5, for optimal chemical stability.
  • the acetylated glyceride may be formed by acetylation of any plant-based or animal-based glycerides.
  • suitable plant-based glycerides include without limitation glycerides derived from unsaturated, partially or fully saturated cottonseed oil, sunflower oil, canola oil, peanut oil, soybean oil, safflower oil, corn oil, palm oil, olive oil, coconut oil, palm kernel oil, almond oil, jojoba oil, avocado oil, sesame oil, castor oil, and combinations thereof.
  • Palm oil is suitable for acetylation because it converts readily to acetylated palm oil using the processes described below, leaving relatively less unreacted chemicals. Fully saturated palm oil is desirable because the resulting acetylated palm oil is chemically stable and does not oxidize significantly. Various levels of saturation may be naturally occurring or may be achieved by hydrogenation or fractionation as described above.
  • the acetylation reaction can be accomplished in two steps. First, the vegetable oil (saturated to an appropriate level) can be reacted with glycerol to form a mixture of monoglyceride and diglyceride molecules.
  • the following reaction is exemplary:
  • the above reaction may proceed in a mixing kettle, suitably a closed vessel, at a temperature high enough to melt the unsaturated, partially or fully saturated vegetable oil. Suitable temperatures may range from about 50-130° C., particularly about 80-120° C. A suitable catalyst may be employed.
  • the amount of monoglycerides and diglycerides obtained may be varied by increasing or decreasing the amount of glycerol in the reaction mixture relative to the unsaturated, partially or fully saturated vegetable oil.
  • Equimolar quantities of triglyceride and glycerol favor the production of roughly equal amounts of monoglyceride and diglyceride.
  • Higher levels of glycerol favor the production of more monoglyceride and less diglyceride.
  • Lower levels of glycerol favor the production of more diglyceride.
  • Much lower levels of glycerol i.e., less than one mole of glycerol per two moles of triglyceride) favor the production of diglyceride and unreacted triglyceride.
  • Distilled monoglycerides and mixtures of monoglycerides and diglycerides, are commercially available.
  • One suitable mixture containing roughly equal amounts of monoglyceride and diglyceride derived from soybean oil, is available from Bunge under the trade name ESTRIC.
  • the monoglyceride and diglyceride molecules can be reacted with acetic anhydride to form acetylated monoglyceride and diglyceride molecules.
  • the following reaction is exemplary:
  • the second reaction step can proceed at a temperature high enough to soften and/or melt the glyceride components.
  • the second reaction can proceed at a temperature of about 50-130° C., suitably about 80-120° C.
  • the foregoing exemplary reaction achieves complete acetylation of monoglyceride and triglyceride molecules using a stoichiometric amount of acetic anhydride. Partial acetylation can be achieved using lower amounts of acetic anhydride.
  • the acetic acid and unreacted acetic anhydride can be washed away using water.
  • acetylated glyceride Other chemical processes can also be used to produce the acetylated glyceride.
  • the invention is not limited to a particular reaction process, provided that the end product is an acetylated monoglyceride, or mixture of acetylated monoglyceride and acetylated diglyceride.
  • the degree of acetylation is the percentage of hydroxyl (—OH) linkages on the monoglyceride and diglyceride molecules that are converted to esters via acetylation. Each monoglyceride molecule has two hydroxyl groups available for conversion. Each diglyceride molecule has one hydroxyl group available for conversion.
  • the degree of acetylation for the collective mixture of monoglyceride and diglyceride molecules influences the amount of flexibility that the acetylated glyceride contributes to the wax composition. Higher degrees of acetylation lead to higher flexibility and less rigidity.
  • the degree of acetylation of the acetylated glyceride may range from about 10-100%, and is suitably about 30-85%, particularly about 45-75%.
  • the acetylated glyceride may contain at least about 40% by weight acetylated monoglyceride, suitably about 40-100% by weight acetylated monoglyceride and about 0-60% by weight acetylated diglyceride.
  • the acetylated glyceride may contain about 45-95% by weight acetylated monoglyceride and about 5-55% by weight acetylated diglyceride.
  • Acetylated monoglycerides and mixtures of acetylated monoglycerides and acetylated diglycerides, are available commercially.
  • One source of acetylated monoglycerides derived from fully hydrogenated palm oil, is available from Danisco Co. under the trade name GRINDSTED ACETAM 50-00PK.
  • Another source, derived from fully hydrogenated soybean oil, is available from Quest Co. under the trade name MYVACET 5-07. Both products have a degree of acetylation of about 50%.
  • the acetylated vegetable wax may include about 0-95% by weight of the plant-based wax and about 5-100% by weight of the acetylated glyceride, suitably about 15-80% by weight of the plant-based wax and about 20-85% by weight of the acetylated glyceride, particularly about 30-65% by weight of the plant-based wax and about 35-70% by weight of the acetylated glyceride.
  • the wax composition of the invention may be substantially composed of the acetylated vegetable wax, or may contain significant amounts of other ingredients in addition to the acetylated vegetable wax.
  • the wax composition may contain about 25-100% by weight of the acetylated vegetable wax, suitably about 50-100% by weight, particularly about 50-95% by weight. Other ingredients may constitute the balance of the wax composition.
  • Such other ingredients include without limitation beeswax, montan wax, paraffin wax and other conventional waxes. These waxes may be present at about 0-75% by weight of the wax composition, suitably about 0-50% by weight, particularly about 5-50% by weight.
  • Other ingredients also include additional free acids such as lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, palmitoleic acid, oleic acid, gadoleic acid, linoleic acid, linolenic acid and combinations thereof.
  • Free fatty acids may constitute about 0-75% by weight of the wax composition, suitably about 0-50% by weight, particularly about 5-50% by weight.
  • ingredients also include additional (e.g., non-acetylated) monoglycerides, diglycerides, propylene glycol monoesters, vegetable oil esters, sorbitan tristearate, and combinations thereof. These ingredients may constitute about 0-30% by weight of the wax composition, suitably about 1-20% by weight.
  • Conventional dyes, pigments and other coloring agents can be added to the wax composition at levels of about 0-3% by weight, suitably about 0.1-1.5% by weight.
  • Conventional perfumes, fragrances, essences, other aromatic agents and scenting oils can be added to the wax composition at levels of about 0-12% by weight, suitably about 2-6% by weight.
  • the ingredients of the wax composition can be added individually or together to a melt blender and mixed at about 50-95° C., suitably about 55-70° C. until a uniform melt blend is obtained. Any conventional mixing equipment can be employed.
  • the resulting wax composition is useful in a variety of articles.
  • the wax composition of the invention is particularly suitable for use as a wick wax for candle wicks.
  • Candle wicks typically include a string material such as cotton string, paper/cotton blended string, fiberglass, nylon, hemp or any plant fiber. Candle wicks can also be made of non-consumable materials such as wire mesh.
  • the wick wax is typically combined with the string material by soaking the string material in the molten wick wax, to make the candle wick. Higher soak temperatures facilitate incorporation of the wick wax into the string material.
  • the wax composition of the invention due to its chemical stability, can be maintained in the molten state at higher temperatures and/or longer times than conventional wax materials, with little or no oxidation, while keeping the necessary flexibility and rigidity for well-performing wicks.
  • the wax composition of the invention is particularly suitable for use in dental floss.
  • Dental floss typically includes a nylon string or other high strength string material, having an embedded and coated wax for ease of sliding between the user's teeth.
  • Dental floss should be highly flexible.
  • the wax composition of the invention is useful for dental floss due in part to the flexibility contributed by the acetylated glyceride component.
  • the wax composition of the invention can also be used as a candlewax for container candles, stand-alone molded candles that are not in a container, and taper candles made by repeatedly dipping a wick into molten candlewax to form successive wax layers around the wick. Because the wax composition has a suitably high melting temperature, stand-alone candles made from it can be transported and stored in typical warm weather conditions without melting or deforming. Because of its chemical stability, the wax composition can be maintained in a molten state during manufacture of pillar candles without significantly oxidizing or otherwise degrading. Because of its pliability, the wax composition can burn desirably without cracking as sometimes happens with molded candles made using partially hydrogenated vegetable oils.
  • the components were blended together for 30 minutes in an agitated kettle at a temperature of 94° C.
  • the resulting wax composition had excellent flexibility, suitable for candle wicks, candles and dental floss, even though its melting point was only 5° C. lower than the fully hydrogenated castor oil. Due to the absence of unsaturated carbon-carbon double bonds, the wax composition possessed excellent chemical stability.

Abstract

A wax composition is provided having high melt temperature, flexibility, pliability and chemical stability. The wax composition includes an acetylated wax including an acetylated glyceride and, optionally, a plant-based wax. The wax composition is useful for candle wicks, dental floss, candle bodies and other articles where these properties are advantageous.

Description

    FIELD OF THE INVENTION
  • This invention is directed to acetylated wax compositions having a combination of controlled melting points, reduced brittleness, improved flexibility and enhanced chemical stability. The invention is also directed to articles of manufacture incorporating the acetylated wax compositions.
  • BACKGROUND OF THE INVENTION
  • Plant-based wax compositions based on vegetable oils have become increasingly popular for use in the manufacture of candle wicks and candles, due in part to their relatively clean burning characteristics. Vegetable oils are often liquid at room temperature. In order to convert the vegetable oils to a wax-like consistency, they can be hydrogenated to various levels, and/or mixed with other ingredients such as fatty acids, monoglycerides, triglycerides and the like.
  • Complete hydrogenation of vegetable oils often leads to relatively high melting wax compositions which are brittle. The high melting points are beneficial because they allow the candle wicks and candles to remain stable during shipment and storage, even at relatively high temperatures experienced in southern climates. Yet the brittleness of the compositions can result in chipping and cracking of the compositions, before and during use of the candles.
  • Partial hydrogenation of vegetable oils yields wax compositions having greater flexibility and pliability, and less brittleness, which are desirable for use in candle wicks and candles. However, these wax compositions have lower melting points which may permit deformation or destabilization of the candles during shipment and storage at high temperature. Also, partially hydrogenated vegetable oils can oxidize during prolonged exposure to atmospheric air, especially at higher temperatures. Oxidation causes the wax compositions to be less uniform, and distorts their chemical make-up and burning characteristics.
  • There is a need or desire for vegetable oil-based wax compositions having a combination of controlled melting points, high flexibility and pliability, low brittleness, and chemical stability.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a wax composition including an acetylated vegetable wax. The acetylated vegetable wax includes an acetylated glyceride and, optionally, a plant-based wax. The acetylated glyceride includes at least an acetylated monoglyceride and may include an acetylated diglyceride. The acetylated glyceride may be partially or fully hydrogenated. The plant-based wax may be a partially or fully hydrogenated vegetable oil having an iodine value of about 0-80, or an unhydrogenated wax.
  • The acetylaed vegetable wax can be used alone or in combination with other ingredients to make the wax composition. The levels of hydrogenation in the acetylated glyceride and plant-based wax, the level of acetylation of the acetylated glyceride, the amounts and types of each, and the amounts and types of other ingredients are selected to provide a wax composition having suitable melting properties, flexibility, rigidity and chemical stability. The acetylated glyceride component increases the flexibility of the wax composition (i.e., decreases its brittleness and hardness) without undesirably affecting its melting point or chemical stability. This permits the use of other ingredients which are less flexible and have greater chemical stability, such as wax ingredients having higher levels of hydrogenation.
  • The present invention is also directed to articles of manufacture which incorporate the wax composition of the invention. These articles of manufacture include without limitation candle wicks, candles and dental floss, and coatings for paper and corrugated cardboard.
  • With the foregoing in mind, it is a feature and advantage of the invention to provide an improved wax composition and articles of manufacture as set forth herein.
  • Definitions
  • As used herein, “acetylated vegetable wax” refers to a blend that includes an acetylated glyceride and, optionally, a plant-based wax as described further below. The wax composition of the invention may include the acetylated vegetable wax alone or in combination with other ingredients. The ingredients of the acetylated vegetable wax (namely, the acetylated glyceride and the plant-based wax) may be added separately or together when making the wax composition.
  • As used herein, “acetylated glyceride” refers to glycerides derived from vegetable oils with varying levels of iodine values which have been acetylated as described below. As explained below, acetylated glycerides derived from vegetable oils typically include mixtures of acetylated monoglycerides and acetylated diglycerides, and may include unreacted triglycerides.
  • As used herein, the term “plant-based wax” refers to a plant-based substance which has a solid, wax-like consistency at ambient conditions (72° F., 50% relative humidity). The term includes vegetable oils which have been partially or fully hydrogenated or fractionated to generate a solid, wax-like consistency, and plant-based substances such as carnauba wax and candelilla wax which have a solid, wax-like consistency without requiring hydrogenation.
  • As used herein, “hydrogenated vegetable oil” encompasses partially and fully hydrogenated vegetable oils.
  • As used herein, “vegetable oil” includes any plant-based oil. Vegetable oils may be naturally occurring or processed, and may be solid or liquid at ambient conditions (72° F., 50% relative humidity). The term includes plant-based oils whose carbon-carbon double bonds are unsaturated, partially or fully saturated.
  • As used herein, “partially hydrogenated vegetable oil” includes any plant-based oil which has been partially hydrogenated. The term “partially hydrogenated vegetable oil” also includes mixtures of partially hydrogenated vegetable oil and fully hydrogenated vegetable oil. Such mixtures are by definition, partially hydrogenated with an intermediate level of hydrogenation. Similarly, the term “partially hydrogenated vegetable oil” includes mixtures of partially hydrogenated vegetable oil and vegetable oil which has not been hydrogenated, and mixtures of fully hydrogenated and unhydrogenated vegetable oil.
  • As used herein, “fully hydrogenated vegetable oil” includes any plant-based oil which has been fully hydrogenated. Fully hydrogenated vegetable oils typically have iodine values between zero and five.
  • As used herein, “iodine value” is the number of grams of iodine that an unsaturated compound or blend will absorb in a given time under arbitrary conditions. A low iodine value implies a high level of saturation, and vice versa. The iodine value can be determined by the WIJS method of the American Oil Chemists' Society (A.O.C.S. Cd 1-25).
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • The invention is directed to a wax composition including an acetylated vegetable wax, and articles incorporating the wax composition. The acetylated vegetable wax includes an actylated glyceride and, optionally, a plant-based wax.
  • The plant-based wax can be any plant-based substance which has a wax-like consistency at ambient conditions. Examples include plant-based substances such as carnauba wax, candelilla wax and rice bran wax which have a wax-like consistency without requiring hydrogenation. Other examples include partially and fully hydrogenated vegetable oils having an iodine value of about 0-80, suitably about 0-50, particularly about 0-25 and desirably about 0-10. The vegetable oil may be fully hydrogenated with an iodine value of about 0-5. A fully hydrogenated vegetable oil has the advantage of high melting point and chemical stability. Generally, the melting point of a vegetable oil increases as the level of hydrogenation increases and the iodine value decreases. The hydrogenation process adds hydrogen atoms to the carbon-carbon double bonds in unsaturated fatty acids.
  • In addition to higher melting points, hydrogenation leads to higher solid fat content and longer shelf life.
  • The plant-based wax can also be a fractionated vegetable oil. Fractionation removes the solid, wax-like components from the liquid components of vegetable oil by controlled crystallization and separation. Fractionation techniques involve the use of solvents or dry processing. The effect of hydrogenation or fractionation is to provide a vegetable oil with a sufficiently high degree of saturation to perform as a wax having a desired melting point and other properties.
  • The hydrogenated or fractionated vegetable oil can be derived from any plant-based oil. Examples include without limitation partially or fully hydrogenated cottonseed oil, sunflower oil, canola oil, peanut oil, soybean oil, safflower oil, corn oil, palm oil, olive oil, coconut oil, palm kernel oil, almond oil, jojoba oil, avocado oil, sesame oil, castor oil, and combinations thereof. The hydrogenated or fractionated vegetable oil may be derived from one or more vegetable oils having the same or different levels of hydrogenation. Castor oil is suitable because of its low cost. Fully hydrogenated castor oil is desirable because of its high melting point (about 84° C.) and chemical stability.
  • Vegetable oils derived from natural sources typically include one or more triglycerides as a major component, lesser amounts of diglycerides and monoglycerides, and very minor amounts of free fatty acids. A triglyceride is an ester compound of glycerol linked to three fatty acids, and has the following general formula:
    Figure US20060075679A1-20060413-C00001

    wherein R1, R2 and R3 are fatty acid chains and may be the same or different.
  • A diglyceride is an ester compound of glycerol linked to two fatty acid chains. A monoglyceride is an ester composed of glycerol linked to one fatty acid chain. A free fatty acid is an unattached fatty acid in a vegetable oil, most commonly stearic acid and/or palmitic acid.
  • The hydrogenated vegetable oil can be partially or fully hydrogenated using known techniques for chemically adding hydrogen gas to a liquid vegetable oil in the presence of a catalyst. The process converts some or all of the unsaturated carbon-carbon double bonds in the vegetable oil molecules to single carbon-carbon bonds, thereby increasing the level of saturation. The degree of hydrogenation reflects the total number of double bonds which are converted. The hydrogenation may cause partial or total saturation of the double bonds in any of the vegetable oil components, including triglycerides, diglycerides, monoglycerides and free fatty acids. Partial hydrogenation may relocate some of the double bonds to new locations, e.g., from a cis isomeric configuration to a trans isomeric configuration. Sufficient hydrogenation typically causes the vegetable oil to assume a solid or semi-solid state at ambient temperature (e.g., 25° C.).
  • The acetylated glyceride can be derived from one or more glycerides of unhydrogenated vegetable oil, partially hydrogenated vegetable oil or fully hydrogenated vegetable oil. Suitably, the glycerides used for acetylation are partially or fully hydrogenated and have a collective iodine value of about 0-80, suitably about 0-50, particularly about 0-25, desirably about 0-10. The glycerides may be fully hydrogenated with an iodine value of about 0-5, for optimal chemical stability.
  • The acetylated glyceride may be formed by acetylation of any plant-based or animal-based glycerides. Examples of suitable plant-based glycerides include without limitation glycerides derived from unsaturated, partially or fully saturated cottonseed oil, sunflower oil, canola oil, peanut oil, soybean oil, safflower oil, corn oil, palm oil, olive oil, coconut oil, palm kernel oil, almond oil, jojoba oil, avocado oil, sesame oil, castor oil, and combinations thereof. Palm oil is suitable for acetylation because it converts readily to acetylated palm oil using the processes described below, leaving relatively less unreacted chemicals. Fully saturated palm oil is desirable because the resulting acetylated palm oil is chemically stable and does not oxidize significantly. Various levels of saturation may be naturally occurring or may be achieved by hydrogenation or fractionation as described above.
  • The acetylation reaction can be accomplished in two steps. First, the vegetable oil (saturated to an appropriate level) can be reacted with glycerol to form a mixture of monoglyceride and diglyceride molecules. The following reaction is exemplary:
    Figure US20060075679A1-20060413-C00002
  • The above reaction may proceed in a mixing kettle, suitably a closed vessel, at a temperature high enough to melt the unsaturated, partially or fully saturated vegetable oil. Suitable temperatures may range from about 50-130° C., particularly about 80-120° C. A suitable catalyst may be employed.
  • The amount of monoglycerides and diglycerides obtained may be varied by increasing or decreasing the amount of glycerol in the reaction mixture relative to the unsaturated, partially or fully saturated vegetable oil. Equimolar quantities of triglyceride and glycerol favor the production of roughly equal amounts of monoglyceride and diglyceride. Higher levels of glycerol favor the production of more monoglyceride and less diglyceride. Lower levels of glycerol favor the production of more diglyceride. Much lower levels of glycerol (i.e., less than one mole of glycerol per two moles of triglyceride) favor the production of diglyceride and unreacted triglyceride.
  • Distilled monoglycerides, and mixtures of monoglycerides and diglycerides, are commercially available. One suitable mixture, containing roughly equal amounts of monoglyceride and diglyceride derived from soybean oil, is available from Bunge under the trade name ESTRIC.
  • Second, the monoglyceride and diglyceride molecules can be reacted with acetic anhydride to form acetylated monoglyceride and diglyceride molecules. The following reaction is exemplary:
    Figure US20060075679A1-20060413-C00003
  • The second reaction step can proceed at a temperature high enough to soften and/or melt the glyceride components. For instance, the second reaction can proceed at a temperature of about 50-130° C., suitably about 80-120° C. The foregoing exemplary reaction achieves complete acetylation of monoglyceride and triglyceride molecules using a stoichiometric amount of acetic anhydride. Partial acetylation can be achieved using lower amounts of acetic anhydride. Following the second reaction step, the acetic acid and unreacted acetic anhydride can be washed away using water.
  • Other chemical processes can also be used to produce the acetylated glyceride. The invention is not limited to a particular reaction process, provided that the end product is an acetylated monoglyceride, or mixture of acetylated monoglyceride and acetylated diglyceride.
  • The degree of acetylation is the percentage of hydroxyl (—OH) linkages on the monoglyceride and diglyceride molecules that are converted to esters via acetylation. Each monoglyceride molecule has two hydroxyl groups available for conversion. Each diglyceride molecule has one hydroxyl group available for conversion. The degree of acetylation for the collective mixture of monoglyceride and diglyceride molecules influences the amount of flexibility that the acetylated glyceride contributes to the wax composition. Higher degrees of acetylation lead to higher flexibility and less rigidity. The degree of acetylation of the acetylated glyceride may range from about 10-100%, and is suitably about 30-85%, particularly about 45-75%.
  • The acetylated glyceride may contain at least about 40% by weight acetylated monoglyceride, suitably about 40-100% by weight acetylated monoglyceride and about 0-60% by weight acetylated diglyceride. In particular, the acetylated glyceride may contain about 45-95% by weight acetylated monoglyceride and about 5-55% by weight acetylated diglyceride.
  • Acetylated monoglycerides, and mixtures of acetylated monoglycerides and acetylated diglycerides, are available commercially. One source of acetylated monoglycerides, derived from fully hydrogenated palm oil, is available from Danisco Co. under the trade name GRINDSTED ACETAM 50-00PK. Another source, derived from fully hydrogenated soybean oil, is available from Quest Co. under the trade name MYVACET 5-07. Both products have a degree of acetylation of about 50%.
  • The acetylated vegetable wax may include about 0-95% by weight of the plant-based wax and about 5-100% by weight of the acetylated glyceride, suitably about 15-80% by weight of the plant-based wax and about 20-85% by weight of the acetylated glyceride, particularly about 30-65% by weight of the plant-based wax and about 35-70% by weight of the acetylated glyceride.
  • The wax composition of the invention may be substantially composed of the acetylated vegetable wax, or may contain significant amounts of other ingredients in addition to the acetylated vegetable wax. The wax composition may contain about 25-100% by weight of the acetylated vegetable wax, suitably about 50-100% by weight, particularly about 50-95% by weight. Other ingredients may constitute the balance of the wax composition.
  • Such other ingredients include without limitation beeswax, montan wax, paraffin wax and other conventional waxes. These waxes may be present at about 0-75% by weight of the wax composition, suitably about 0-50% by weight, particularly about 5-50% by weight.
  • Other ingredients also include additional free acids such as lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, palmitoleic acid, oleic acid, gadoleic acid, linoleic acid, linolenic acid and combinations thereof. Free fatty acids may constitute about 0-75% by weight of the wax composition, suitably about 0-50% by weight, particularly about 5-50% by weight.
  • Other ingredients also include additional (e.g., non-acetylated) monoglycerides, diglycerides, propylene glycol monoesters, vegetable oil esters, sorbitan tristearate, and combinations thereof. These ingredients may constitute about 0-30% by weight of the wax composition, suitably about 1-20% by weight.
  • Conventional dyes, pigments and other coloring agents can be added to the wax composition at levels of about 0-3% by weight, suitably about 0.1-1.5% by weight. Conventional perfumes, fragrances, essences, other aromatic agents and scenting oils can be added to the wax composition at levels of about 0-12% by weight, suitably about 2-6% by weight.
  • The ingredients of the wax composition can be added individually or together to a melt blender and mixed at about 50-95° C., suitably about 55-70° C. until a uniform melt blend is obtained. Any conventional mixing equipment can be employed. The resulting wax composition is useful in a variety of articles.
  • The wax composition of the invention is particularly suitable for use as a wick wax for candle wicks. Candle wicks typically include a string material such as cotton string, paper/cotton blended string, fiberglass, nylon, hemp or any plant fiber. Candle wicks can also be made of non-consumable materials such as wire mesh. The wick wax is typically combined with the string material by soaking the string material in the molten wick wax, to make the candle wick. Higher soak temperatures facilitate incorporation of the wick wax into the string material. The wax composition of the invention, due to its chemical stability, can be maintained in the molten state at higher temperatures and/or longer times than conventional wax materials, with little or no oxidation, while keeping the necessary flexibility and rigidity for well-performing wicks.
  • The wax composition of the invention is particularly suitable for use in dental floss. Dental floss typically includes a nylon string or other high strength string material, having an embedded and coated wax for ease of sliding between the user's teeth. Dental floss should be highly flexible. The wax composition of the invention is useful for dental floss due in part to the flexibility contributed by the acetylated glyceride component.
  • The wax composition of the invention can also be used as a candlewax for container candles, stand-alone molded candles that are not in a container, and taper candles made by repeatedly dipping a wick into molten candlewax to form successive wax layers around the wick. Because the wax composition has a suitably high melting temperature, stand-alone candles made from it can be transported and stored in typical warm weather conditions without melting or deforming. Because of its chemical stability, the wax composition can be maintained in a molten state during manufacture of pillar candles without significantly oxidizing or otherwise degrading. Because of its pliability, the wax composition can burn desirably without cracking as sometimes happens with molded candles made using partially hydrogenated vegetable oils.
  • EXAMPLE
  • 475 Kg of fully hydrogenated castor oil (m.p. 84° C.) was mixed with 525 Kg of acetylated glyceride (m.p. 49° C.) to produce a vegetable oil blend containing 47.5% by weight fully hydrogenated castor oil, 52.5% by weight acetylated glyceride, and having a melting point of 79° C. The fully hydrogenated castor oil was obtained from Campbell and Co. under the trade name HYDROGENATED CASTOR OIL. The acetylated glyceride was obtained from Danisco Co. under the trade name GRINDSTED ACETAM 50-00PK. The acetylated glyceride was derived from fully hydrogenated palm oil, distilled to about 90% by weight monoglyceride and about 10% by weight diglyceride, and had a degree of acetylation of about 50%.
  • The components were blended together for 30 minutes in an agitated kettle at a temperature of 94° C. The resulting wax composition had excellent flexibility, suitable for candle wicks, candles and dental floss, even though its melting point was only 5° C. lower than the fully hydrogenated castor oil. Due to the absence of unsaturated carbon-carbon double bonds, the wax composition possessed excellent chemical stability.
  • While the embodiments of the invention described herein are presently preferred, various modifications and improvements can be made without departing from the spirit and scope of the invention. The scope of the invention is indicated by the appended claims, and all changes that fall within the meaning and range of equivalents are intended to be embraced therein.

Claims (46)

1. A wax composition, comprising an acetylated vegetable wax which includes:
about 5-100% by weight of an acetylated glyceride; and
about 0-95% by weight of a plant-based wax.
2. The wax composition of claim 1, wherein the acetylated vegetable wax comprises about 20-85% by weight of the acetylated glyceride and about 15-80% by weight of the plant-based wax.
3. The wax composition of claim 2, wherein the plant-based wax comprises a vegetable oil.
4. The wax composition of claim 3, wherein the vegetable oil has an iodine value of about 0-80.
5. The wax composition of claim 3, wherein the vegetable oil has an iodine value of about 0-50.
6. The wax composition of claim 3, wherein the vegetable oil has an iodine value of about 0-25.
7. The wax composition of claim 3, wherein the vegetable oil has an iodine value of about 0-10.
8. The wax composition of claim 3, wherein the vegetable oil comprises a hydrogenated plant-based oil selected from the group consisting of cottonseed oil, sunflower oil, canola oil, peanut oil, soybean oil, safflower oil, corn oil, palm oil, olive oil, coconut oil, palm kernel oil, almond oil, jojoba oil, avocado oil, sesame oil, castor oil, and combinations thereof.
9. The wax composition of claim 3, wherein the vegetable oil comprises fully hydrogenated castor oil.
10. The wax composition of claim 2, wherein the plant-based wax is selected from the group consisting of carnauba wax, candelilla wax, rice bran wax, and combinations thereof.
11. The wax composition of claim 1, wherein the acetylated glyceride comprises about 40-100% by weight acetylated monoglyceride and about 0-60% by weight acetylated diglyceride.
12. The wax composition of claim 1, wherein the acetylated glyceride comprises about 45-95% by weight acetylated monoglyceride and about 5-55% by weight acetylated diglyceride.
13. The wax composition of claim 1, wherein the acetylated glyceride has a degree of acetylation of about 10-100%.
14. The wax composition of claim 1, wherein the acetylated glyceride has a degree of acetylation of about 30-85%.
15. The wax composition of claim 1, wherein the acetylated glyceride has a degree of acetylation of about 45-75%.
16. The wax composition of claim 1, wherein the acetylated glyceride is derived from a vegetable oil having an iodine value of about 0-80.
17. The wax composition of claim 1, wherein the acetylated glyceride is derived from a vegetable oil having an iodine value of about 0-50.
18. The wax composition of claim 1, wherein the acetylated glyceride is derived from a vegetable oil having an iodine value of about 0-25.
19. The wax composition of claim 1, wherein the acetylated glyceride is derived from a vegetable oil having an iodine value of about 0-10.
20. A candle wick comprising the wax composition of claim 1 and a string.
21. Dental floss comprising the wax composition of claim 1 and a string.
22. A candle comprising wax and the candle wick of claim 17.
23. A candle comprising wax and a wick, wherein the candlewax comprises the wax composition of claim 1.
24. A wax composition, comprising:
about 25-100% by weight of an acetylated vegetable wax; and
about 0-75% by weight of additional ingredients;
wherein the acetylated vegetable wax comprises about 5-100% by weight acetylated glyceride and about 0-95% by weight plant-based wax.
25. The wax composition of claim 24, wherein the acetylated vegetable wax comprises about 20-85% by weight of the acetylated glyceride and about 15-80% by weight of the plant-based wax.
26. The wax composition of claim 24, wherein the acetylated vegetable wax comprises about 35-70% by weight of the acetylated glyceride and about 30-65% by weight of the plant-based wax.
27. The wax composition of claim 24, comprising about 50-95% by weight of the acetylated vegetable wax and about 5-50% by weight of the additional ingredients.
28. The wax composition of claim 27, wherein the additional ingredients comprise a wax selected from the group consisting of beeswax, montan wax, paraffin wax, and combinations thereof.
29. The wax composition of claim 27, wherein the additional ingredients comprise an ingredient selected from the group consisting of monoglycerides, diglycerides, propylene glycol monoesters, vegetable oil esters, sorbitan tristearate, and combinations thereof.
30. The wax composition of claim 27, wherein the additional ingredients comprise one or more free fatty acids.
31. The wax composition of claim 27, wherein the additional ingredients comprise an ingredient selected from coloring agents, scenting agents and combinations thereof.
32. A candle wick comprising a string and the wax composition of claim 24.
33. Dental floss comprising a string and the wax composition of claim 24.
34. A candle comprising wax and the candle wick of claim 32.
35. A candle comprising candlewax and a wick, wherein the candlewax comprises the wax composition of claim 24.
36. A wax composition, comprising an acetylated wax which includes:
a first vegetable oil having an iodine value of about 0-25; and
an acetylated glyceride derived from a vegetable oil having an iodine value of about 0-25.
37. The wax composition of claim 36, wherein the first vegetable oil has an iodine value of about 0-10.
38. The wax composition of claim 36, wherein the acetylated glyceride is derived from a vegetable oil having an iodine value of about 0-10.
39. The wax composition of claim 36, wherein the first hydrogenated vegetable oil comprises castor oil.
40. The wax composition of claim 36, wherein the acetylated glyceride is derived from palm oil.
41. The wax composition of claim 36, wherein the acetylated glyceride comprises about 45-95% by weight acetylated monoglyceride and about 5-55% by weight acetylated diglyceride.
42. The wax composition of claim 36, wherein the acetylated glyceride has a degree of acetylation of about 45-75%.
43. A candle wick comprising a string and the wax composition of claim 36.
44. Dental floss comprising a string and the wax composition of claim 36.
45. A candle comprising wax and the candle wick of claim 43.
46. A candle comprising candlewax and a wick, wherein the candlewax comprises the wax composition of claim 36.
US10/964,081 2004-10-13 2004-10-13 Acetylated wax compositions and articles containing them Expired - Fee Related US7510584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/964,081 US7510584B2 (en) 2004-10-13 2004-10-13 Acetylated wax compositions and articles containing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/964,081 US7510584B2 (en) 2004-10-13 2004-10-13 Acetylated wax compositions and articles containing them

Publications (2)

Publication Number Publication Date
US20060075679A1 true US20060075679A1 (en) 2006-04-13
US7510584B2 US7510584B2 (en) 2009-03-31

Family

ID=36143862

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/964,081 Expired - Fee Related US7510584B2 (en) 2004-10-13 2004-10-13 Acetylated wax compositions and articles containing them

Country Status (1)

Country Link
US (1) US7510584B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080166307A1 (en) * 2007-01-10 2008-07-10 Jose Eder Fontana Oral Care Compositions Comprising a Hippophae Extract
WO2008115604A1 (en) * 2007-03-22 2008-09-25 Smith Mountain Industries Candle composition
WO2009143552A1 (en) * 2008-05-28 2009-12-03 Goodman Fielder Limited Protective coating composition
US20170015939A1 (en) * 2010-11-23 2017-01-19 Cargill, Incorporated Lipid-based wax compositions substantially free of fat bloom and methods of making
CN106916632A (en) * 2017-02-21 2017-07-04 大连达伦特工艺品有限公司 A kind of rice bran candle and preparation method thereof
US20180312778A1 (en) * 2018-05-04 2018-11-01 Lucy M. Campbell Candle with scent
US20210235818A1 (en) * 2020-01-17 2021-08-05 Amir James Dia Methods And Devices Of Applying Wax
WO2023192504A1 (en) * 2022-03-30 2023-10-05 Cargill, Incorporated Candle wax compositions

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645261B2 (en) 2000-03-06 2003-11-11 Cargill, Inc. Triacylglycerol-based alternative to paraffin wax
US6503285B1 (en) * 2001-05-11 2003-01-07 Cargill, Inc. Triacylglycerol based candle wax
US7128766B2 (en) * 2001-09-25 2006-10-31 Cargill, Incorporated Triacylglycerol based wax compositions
US7192457B2 (en) * 2003-05-08 2007-03-20 Cargill, Incorporated Wax and wax-based products
MX2007008359A (en) * 2005-01-10 2007-09-06 Cargill Inc Candle and candle wax containing metathesis and metathesis-like products.
US20100044924A1 (en) * 2005-04-21 2010-02-25 Cap Daniel S Candle refill kit and method of use
WO2008008420A1 (en) * 2006-07-12 2008-01-17 Elevance Renewable Sciences, Inc. Hot melt adhesive compositions comprising metathesized unsaturated polyol ester wax
EP2121846B1 (en) 2007-02-16 2011-10-26 Elevance Renewable Sciences, Inc. Wax compositions and methods of preparing wax compositions
CN101772564B (en) * 2007-05-30 2015-07-15 埃莱文斯可更新科学公司 Prilled waxes comprising small particles and smooth-sided compression candles made therefrom
CA2690811C (en) 2007-06-15 2017-02-28 Elevance Renewable Sciences, Inc. Hybrid wax compositions for use in compression molded wax articles such as candles
DK2545151T3 (en) * 2010-03-10 2014-02-17 Elevance Renewable Sciences Lipid-based wax composition substantially free of fat bloom and method of preparation
EP2569379B8 (en) 2010-05-12 2018-09-19 Cargill, Incorporated Natural oil based marking compositions and their methods of making
CN103108850B (en) 2010-07-09 2016-06-08 艾勒旺斯可再生科学公司 Wax derived from metathesized natural oil and amine and preparation method thereof
WO2013009605A1 (en) 2011-07-10 2013-01-17 Elevance Renewable Sciences, Inc. Metallic soap compositions for various applications
US10039851B2 (en) 2014-01-28 2018-08-07 S. C. Johnson & Son, Inc. Wax melt system
US10363333B2 (en) 2014-04-02 2019-07-30 S.C. Johnson & Son, Inc. Wax warmer
WO2016025706A1 (en) 2014-08-15 2016-02-18 S.C. Johnson & Son, Inc. Wax warmers
US10342886B2 (en) 2016-01-26 2019-07-09 S.C. Johnson & Son, Inc. Extruded wax melt and method of producing same
US10010638B2 (en) 2016-06-14 2018-07-03 S. C. Johnson & Son, Inc. Wax melt with filler
US10351798B2 (en) * 2017-01-20 2019-07-16 Iowa State University Research Foundation, Inc. Fatty acid ester-based wax compositions and methods of making thereof

Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1935946A (en) * 1932-04-20 1933-11-21 Procter & Gamble Candle manufacture
US1954659A (en) * 1931-08-06 1934-04-10 Will & Baumer Candle Co Inc Candle and method of making same
US1958462A (en) * 1932-05-05 1934-05-15 Norbert J Baumer Candle
US3630697A (en) * 1969-07-09 1971-12-28 Sun Oil Co Wickless candles
US3645705A (en) * 1970-03-03 1972-02-29 Kolar Lab Inc Transparent combustible material suitable for candle bodies
US3744956A (en) * 1970-11-04 1973-07-10 Vollmar W Bonner Wachsbleiche Wax candle manufacture
US3844706A (en) * 1973-10-30 1974-10-29 E Tsaras Candles and manufacture thereof
US3936312A (en) * 1973-05-17 1976-02-03 Mathias Stemmler Composition for the preparation of coatings on meat and sausage goods
US4118203A (en) * 1977-05-18 1978-10-03 Shell Oil Company Wax composition
US4134708A (en) * 1976-12-22 1979-01-16 Brauser Bradley O Wind driven electric power plant
US4293345A (en) * 1978-10-26 1981-10-06 Akzona Incorporated Wax composition for entirely or partly replacing carnauba wax or montan wax
US4314915A (en) * 1979-08-03 1982-02-09 International Flavors & Fragrances Inc. Uses in perfumery of ether derivatives of indanes
US4390590A (en) * 1981-10-19 1983-06-28 Essex Group, Inc. Power insertable polyamide-imide coated magnet wire
US4411829A (en) * 1981-01-13 1983-10-25 Firmenich Sa Perfuming ingredient
US4434306A (en) * 1980-12-17 1984-02-28 Takasago Perfumery Co., Ltd. Perfume composition
US4507077A (en) * 1982-01-25 1985-03-26 Sapper John M Dripless candle
US4567548A (en) * 1983-12-02 1986-01-28 Peter Schneeberger Candle-shaped luminary
US4608011A (en) * 1984-04-27 1986-08-26 Comstock Todd M Candle apparatus
US4614625A (en) * 1983-02-28 1986-09-30 Lumi-Lite Candle Company, Inc. Method of imparting color and/or fragrance to candle wax and candle formed therefrom
US4714496A (en) * 1986-02-18 1987-12-22 National Distillers And Chemical Corporation Wax compositions
US4759709A (en) * 1986-02-18 1988-07-26 National Distillers And Chemical Corporation Wax compositions
US4813975A (en) * 1986-09-25 1989-03-21 Unilever Patent Holdings B.V. Fatty acid composition suitable for candle pressing
US4842648A (en) * 1987-10-22 1989-06-27 Tajchai Phadoemchit Paraffin wax replacer
US4855098A (en) * 1987-12-16 1989-08-08 Ted Taylor Method of forming candles and candle composition therefor
US5171329A (en) * 1991-10-09 1992-12-15 Kuo-Lung Lin Method for manufacturing a candle
US5338187A (en) * 1992-10-08 1994-08-16 Shimon Elharar Candle and method of making same
US5578089A (en) * 1995-04-27 1996-11-26 Lancaster Colony Corporation Clear candle
US5753015A (en) * 1996-11-15 1998-05-19 Dixon Ticonderoga Company Soybean oil marking compositions and methods of making the same
US5843194A (en) * 1997-07-28 1998-12-01 The Noville Corporation Clear gel formulation for use in transparent candles
US5882657A (en) * 1995-06-02 1999-03-16 L'oreal Cosmetic composition in the form of a soft paste, a process for its preparation and its use
US5885600A (en) * 1997-04-01 1999-03-23 Burlington Bio-Medical & Scientific Corp. Natural insect repellent formula and method of making same
US6007286A (en) * 1995-09-11 1999-12-28 Koyo Seiko Co., Ltd. Driving screw and a method for forming lubricating film thereon
US6019804A (en) * 1997-11-25 2000-02-01 S. C. Johnson & Son, Inc. Compression-molded candle product
US6022402A (en) * 1998-12-18 2000-02-08 Stephenson; Eugene Kyle Wax compositions comprising alkenyl succinic anhydride-capped poly (oxyalkylenated) colorants
US6063144A (en) * 1999-02-23 2000-05-16 Calzada; Jose Francisco Non-paraffin candle composition
US6099877A (en) * 1992-04-10 2000-08-08 Schuppan; Robert L. Food product that maintains a flame
US6106597A (en) * 1998-12-18 2000-08-22 Milliken & Company Wax compositions comprising fatty ester poly(oxyalkylenated) colorants
US6132742A (en) * 1994-01-25 2000-10-17 L'oreal Cosmetic composition in the form of a soft paste
US6156369A (en) * 1999-01-04 2000-12-05 Eger; Shaul Food spreads
US6214918B1 (en) * 2000-04-10 2001-04-10 Eldon C. Johnson Candle and the method of making the same
US6276925B1 (en) * 2000-08-11 2001-08-21 Charles L. Varga Candle and method of making the same
US6277310B1 (en) * 1997-08-28 2001-08-21 Archer Daniels Midland Company Material for enhancing water tolerance of composite boards by a use of a melted triglyceride
US6284007B1 (en) * 1998-08-12 2001-09-04 Indiana Soybean Board, Inc. Vegetable lipid-based composition and candle
US20020005007A1 (en) * 2000-02-02 2002-01-17 Roeske Alfred D. Non sooting paraffin containing candle
US20020157303A1 (en) * 2000-03-06 2002-10-31 Murphy Timothy A. Triacylglycerol-based alternative to paraffin wax
US6503285B1 (en) * 2001-05-11 2003-01-07 Cargill, Inc. Triacylglycerol based candle wax
US20030022121A1 (en) * 2000-11-02 2003-01-30 Charles Biggs Vegetable-based compositions and articles, and methods of making same
US20030046860A1 (en) * 2001-08-02 2003-03-13 Archer Daniels Midland Co. Vegetable fat-based candles
US20030061760A1 (en) * 2001-03-08 2003-04-03 Bernard Tao Vegetable lipid-based composition and candle
US20030091949A1 (en) * 2001-11-14 2003-05-15 Maxine Pesu Vegetable oil candle
US6599334B1 (en) * 2000-04-25 2003-07-29 Jill M. Anderson Soybean wax candles
US20040031191A1 (en) * 2002-08-13 2004-02-19 D'amico Daniel Protection of fragrance in a wax candle using an antioxidant
US20040088908A1 (en) * 2002-11-12 2004-05-13 Cargill, Inc Triacylglycerol based wax for use in candles
US20040088907A1 (en) * 2002-11-12 2004-05-13 Cargill, Inc. Triacylglycerol based wax for use in container candles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134718A (en) 1976-12-10 1979-01-16 Cma, Inc. Oil-burning illuminating device
JPH0459897A (en) 1990-06-29 1992-02-26 Tonen Corp Wax composition for candle
JP2505128B2 (en) 1992-06-25 1996-06-05 日本精蝋株式会社 Candle composition
EP0685554A1 (en) 1994-05-29 1995-12-06 CLILCO COSMETICS & PHARMACEUTICALS LTD. Solid oil-based candles
DE4439509A1 (en) 1994-11-08 1996-05-09 Beringer Schott Lamai Mixture for burning

Patent Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1954659A (en) * 1931-08-06 1934-04-10 Will & Baumer Candle Co Inc Candle and method of making same
US1935946A (en) * 1932-04-20 1933-11-21 Procter & Gamble Candle manufacture
US1958462A (en) * 1932-05-05 1934-05-15 Norbert J Baumer Candle
US3630697A (en) * 1969-07-09 1971-12-28 Sun Oil Co Wickless candles
US3645705A (en) * 1970-03-03 1972-02-29 Kolar Lab Inc Transparent combustible material suitable for candle bodies
US3744956A (en) * 1970-11-04 1973-07-10 Vollmar W Bonner Wachsbleiche Wax candle manufacture
US3936312A (en) * 1973-05-17 1976-02-03 Mathias Stemmler Composition for the preparation of coatings on meat and sausage goods
US3844706A (en) * 1973-10-30 1974-10-29 E Tsaras Candles and manufacture thereof
US4134708A (en) * 1976-12-22 1979-01-16 Brauser Bradley O Wind driven electric power plant
US4118203A (en) * 1977-05-18 1978-10-03 Shell Oil Company Wax composition
US4293345A (en) * 1978-10-26 1981-10-06 Akzona Incorporated Wax composition for entirely or partly replacing carnauba wax or montan wax
US4314915A (en) * 1979-08-03 1982-02-09 International Flavors & Fragrances Inc. Uses in perfumery of ether derivatives of indanes
US4434306A (en) * 1980-12-17 1984-02-28 Takasago Perfumery Co., Ltd. Perfume composition
US4411829A (en) * 1981-01-13 1983-10-25 Firmenich Sa Perfuming ingredient
US4390590A (en) * 1981-10-19 1983-06-28 Essex Group, Inc. Power insertable polyamide-imide coated magnet wire
US4507077A (en) * 1982-01-25 1985-03-26 Sapper John M Dripless candle
US4614625A (en) * 1983-02-28 1986-09-30 Lumi-Lite Candle Company, Inc. Method of imparting color and/or fragrance to candle wax and candle formed therefrom
US4567548A (en) * 1983-12-02 1986-01-28 Peter Schneeberger Candle-shaped luminary
US4608011A (en) * 1984-04-27 1986-08-26 Comstock Todd M Candle apparatus
US4714496A (en) * 1986-02-18 1987-12-22 National Distillers And Chemical Corporation Wax compositions
US4759709A (en) * 1986-02-18 1988-07-26 National Distillers And Chemical Corporation Wax compositions
US4813975A (en) * 1986-09-25 1989-03-21 Unilever Patent Holdings B.V. Fatty acid composition suitable for candle pressing
US4842648A (en) * 1987-10-22 1989-06-27 Tajchai Phadoemchit Paraffin wax replacer
US4855098A (en) * 1987-12-16 1989-08-08 Ted Taylor Method of forming candles and candle composition therefor
US5171329A (en) * 1991-10-09 1992-12-15 Kuo-Lung Lin Method for manufacturing a candle
US6099877A (en) * 1992-04-10 2000-08-08 Schuppan; Robert L. Food product that maintains a flame
US5338187A (en) * 1992-10-08 1994-08-16 Shimon Elharar Candle and method of making same
US6132742A (en) * 1994-01-25 2000-10-17 L'oreal Cosmetic composition in the form of a soft paste
US5578089A (en) * 1995-04-27 1996-11-26 Lancaster Colony Corporation Clear candle
US5882657A (en) * 1995-06-02 1999-03-16 L'oreal Cosmetic composition in the form of a soft paste, a process for its preparation and its use
US6007286A (en) * 1995-09-11 1999-12-28 Koyo Seiko Co., Ltd. Driving screw and a method for forming lubricating film thereon
US5753015A (en) * 1996-11-15 1998-05-19 Dixon Ticonderoga Company Soybean oil marking compositions and methods of making the same
US5885600A (en) * 1997-04-01 1999-03-23 Burlington Bio-Medical & Scientific Corp. Natural insect repellent formula and method of making same
US5843194A (en) * 1997-07-28 1998-12-01 The Noville Corporation Clear gel formulation for use in transparent candles
US6277310B1 (en) * 1997-08-28 2001-08-21 Archer Daniels Midland Company Material for enhancing water tolerance of composite boards by a use of a melted triglyceride
US6019804A (en) * 1997-11-25 2000-02-01 S. C. Johnson & Son, Inc. Compression-molded candle product
US6497735B2 (en) * 1998-08-12 2002-12-24 Indiana Soybean Board Vegetable lipid-based composition and candle
US6284007B1 (en) * 1998-08-12 2001-09-04 Indiana Soybean Board, Inc. Vegetable lipid-based composition and candle
US6022402A (en) * 1998-12-18 2000-02-08 Stephenson; Eugene Kyle Wax compositions comprising alkenyl succinic anhydride-capped poly (oxyalkylenated) colorants
US6106597A (en) * 1998-12-18 2000-08-22 Milliken & Company Wax compositions comprising fatty ester poly(oxyalkylenated) colorants
US6156369A (en) * 1999-01-04 2000-12-05 Eger; Shaul Food spreads
US6063144A (en) * 1999-02-23 2000-05-16 Calzada; Jose Francisco Non-paraffin candle composition
US6758869B2 (en) * 2000-02-02 2004-07-06 Cleanwax, Llp Non sooting paraffin containing candle
US20020005007A1 (en) * 2000-02-02 2002-01-17 Roeske Alfred D. Non sooting paraffin containing candle
US20020157303A1 (en) * 2000-03-06 2002-10-31 Murphy Timothy A. Triacylglycerol-based alternative to paraffin wax
US6645261B2 (en) * 2000-03-06 2003-11-11 Cargill, Inc. Triacylglycerol-based alternative to paraffin wax
US6214918B1 (en) * 2000-04-10 2001-04-10 Eldon C. Johnson Candle and the method of making the same
US6599334B1 (en) * 2000-04-25 2003-07-29 Jill M. Anderson Soybean wax candles
US6276925B1 (en) * 2000-08-11 2001-08-21 Charles L. Varga Candle and method of making the same
US20030022121A1 (en) * 2000-11-02 2003-01-30 Charles Biggs Vegetable-based compositions and articles, and methods of making same
US20030061760A1 (en) * 2001-03-08 2003-04-03 Bernard Tao Vegetable lipid-based composition and candle
US6503285B1 (en) * 2001-05-11 2003-01-07 Cargill, Inc. Triacylglycerol based candle wax
US20030110683A1 (en) * 2001-05-11 2003-06-19 Cargill, Inc. Triacylglycerol based candle wax
US20030046860A1 (en) * 2001-08-02 2003-03-13 Archer Daniels Midland Co. Vegetable fat-based candles
US20030091949A1 (en) * 2001-11-14 2003-05-15 Maxine Pesu Vegetable oil candle
US20040031191A1 (en) * 2002-08-13 2004-02-19 D'amico Daniel Protection of fragrance in a wax candle using an antioxidant
US20040088908A1 (en) * 2002-11-12 2004-05-13 Cargill, Inc Triacylglycerol based wax for use in candles
US20040088907A1 (en) * 2002-11-12 2004-05-13 Cargill, Inc. Triacylglycerol based wax for use in container candles
US6773469B2 (en) * 2002-11-12 2004-08-10 Cargill, Incorporated Triacylglycerol based wax for use in candles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080166307A1 (en) * 2007-01-10 2008-07-10 Jose Eder Fontana Oral Care Compositions Comprising a Hippophae Extract
WO2008115604A1 (en) * 2007-03-22 2008-09-25 Smith Mountain Industries Candle composition
WO2009143552A1 (en) * 2008-05-28 2009-12-03 Goodman Fielder Limited Protective coating composition
AU2009253717B2 (en) * 2008-05-28 2012-10-18 Integro Foods Australia Pty Ltd Protective coating composition
US20170015939A1 (en) * 2010-11-23 2017-01-19 Cargill, Incorporated Lipid-based wax compositions substantially free of fat bloom and methods of making
US10179888B2 (en) * 2010-11-23 2019-01-15 Cargill, Incorporated Lipid-based wax compositions substantially free of fat bloom and methods of making
CN106916632A (en) * 2017-02-21 2017-07-04 大连达伦特工艺品有限公司 A kind of rice bran candle and preparation method thereof
US20180312778A1 (en) * 2018-05-04 2018-11-01 Lucy M. Campbell Candle with scent
US10519399B2 (en) * 2018-05-04 2019-12-31 Lucy M. Campbell Candle with scent
US20210235818A1 (en) * 2020-01-17 2021-08-05 Amir James Dia Methods And Devices Of Applying Wax
WO2023192504A1 (en) * 2022-03-30 2023-10-05 Cargill, Incorporated Candle wax compositions

Also Published As

Publication number Publication date
US7510584B2 (en) 2009-03-31

Similar Documents

Publication Publication Date Title
US7510584B2 (en) Acetylated wax compositions and articles containing them
US7588607B1 (en) Candlewax compositions with improved scent-throw
US7731767B2 (en) Vegetable lipid-based composition and candle
US6852140B1 (en) Low-soot, low-smoke renewable resource candle
US6758869B2 (en) Non sooting paraffin containing candle
JP2505128B2 (en) Candle composition
CA2525088A1 (en) Wax and wax-based products
US20030046860A1 (en) Vegetable fat-based candles
AU2006299270B2 (en) Non-hydrogenated hardstock fat
KR101754370B1 (en) Natural candle composition using rice bran oil and method for preparing natural candle using the same
JPH08509621A (en) Human breast milk fat substitute derived from transesterified triglyceride blend
WO2007022897A1 (en) Non-hydrogenated hardstock fat
ZA200407149B (en) Triglyceride fat.
CZ248298A3 (en) Edible vegetable fat mixture and process for preparing thereof
CA2531317A1 (en) Antioxidant fat or oil composition containing long-chain highly unsaturated fatty acid
KR20180023887A (en) Candle products containing vegetable oils and gelling agents with low polyunsaturation
HU221023B1 (en) Fat material usable as hardstock, process for preparing thereof and spreadable composition containing such fat material and shortening
JP2008127399A (en) Solid-liquid separation inhibitor of oil and fat
JP4407085B2 (en) Oil for coating
JP3797970B2 (en) Molding improver for plant candles
PL200683B1 (en) Cheese coating composition
JP4362911B2 (en) Plastic oil composition
JP2003206494A (en) Vegetable candle composition
JP2004168796A (en) Oil and fat composition for candle
WO2023192504A1 (en) Candle wax compositions

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATURE'S GIFTS, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAP, DANIEL S.;REEL/FRAME:015901/0838

Effective date: 20041012

AS Assignment

Owner name: CAP, DANIEL S., TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NATURE'S GIFTS, INC.;REEL/FRAME:022074/0913

Effective date: 20081229

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210331