US20060099242A1 - Matrix for transdermal drug delivery - Google Patents

Matrix for transdermal drug delivery Download PDF

Info

Publication number
US20060099242A1
US20060099242A1 US11/318,312 US31831205A US2006099242A1 US 20060099242 A1 US20060099242 A1 US 20060099242A1 US 31831205 A US31831205 A US 31831205A US 2006099242 A1 US2006099242 A1 US 2006099242A1
Authority
US
United States
Prior art keywords
ioa
copolymer
hea
pmmamac
drug delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/318,312
Inventor
James Garbe
Daniel Duan
Cheryl Moore
Jamieson Keister
Chan Ko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23182561&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20060099242(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US11/318,312 priority Critical patent/US20060099242A1/en
Publication of US20060099242A1 publication Critical patent/US20060099242A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7038Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer
    • A61K9/7046Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds
    • A61K9/7053Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds, e.g. polyvinyl, polyisobutylene, polystyrene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7038Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer
    • A61K9/7046Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds
    • A61K9/7053Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds, e.g. polyvinyl, polyisobutylene, polystyrene
    • A61K9/7061Polyacrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J155/00Adhesives based on homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C09J123/00 - C09J153/00
    • C09J155/005Homopolymers or copolymers obtained by polymerisation of macromolecular compounds terminated by a carbon-to-carbon double bond

Definitions

  • This invention relates to drug containing matrices for use in transdermal drug delivery devices.
  • this invention relates to pressure sensitive skin adhesives.
  • this invention relates to pharmaceutical formulations involving a pressure sensitive skin adhesive layer.
  • Transdermal drug delivery devices are designed to deliver a therapeutically effective amount of drug across the skin of a patient.
  • Devices known to the art include reservoir type devices involving membranes that control the rate of drug release to the skin and devices involving a dispersion of the drug in a matrix.
  • Certain acrylic copolymers have been used as matrices for delivery of specific drugs. It is critical in such devices that intimate skin contact be achieved and maintained between the skin and the drug-containing matrix. Thus the range of copolymers that are suitable for use as matrices is limited by the ability of the copolymer to comply to the surface of the skin and still release cleanly from the skin.
  • the skin presents a substantial barrier to ingress of foreign substances such as drugs into the body. It is therefore often desirable or necessary to incorporate certain materials that enhance the rate at which the drug passes through the skin.
  • PSA pressure sensitive adhesive
  • This invention provides a transdermal drug delivery device, comprising:
  • the structure and amount of the comonomers in the copolymer, the inherent viscosity of the copolymer, and the amount and structure of the drug and the softener are such as to provide the matrix with a compliance value in the range 2 ⁇ 10 ⁇ 6 cm 2 /dyne to about 4 ⁇ 10 ⁇ 3 cm 2 /dyne.
  • this invention also provides a pressure sensitive skin adhesive comprising:
  • the structure and amount of the comonomers in the copolymer, the inherent viscosity of the copolymer, and the amount and structure of the softener are such as to provide the pressure sensitive skin adhesive with a compliance value in the range 2 ⁇ 10 ⁇ 6 cm 2 /dyne to about 4 ⁇ 10 ⁇ 3 cm 2 /dyne.
  • the invention provides a transdermal drug delivery device that allows dissolution of drug and relatively heavy loading with oily excipients, maintains contact with the skin, and can be removed cleanly from the skin.
  • the pressure sensitive skin adhesives of the invention provide these advantages and in addition adhere to the skin.
  • lower alkyl as used herein means straight chain or branched chain alkyl containing 1 to 4 carbon atoms.
  • the present invention provides a transdermal drug delivery device having a backing and a matrix adhered to one side thereof. It can be adhered directly to a backing or it can be adhered indirectly to a backing via an intermediate layer.
  • the matrix contains a copolymer as defined above and a softener.
  • the matrix is preferably a pressure sensitive skin adhesive.
  • the matrix (whether adhesive or not) can be removed cleanly from the skin.
  • the copolymer utilized in the practice of the invention should be substantially chemically inert to other components utilized in conjugation therewith (e.g., the drugs and/or softeners discussed in detail below).
  • the inherent viscosity of the copolymer is such as to ultimately provide a suitable transdermal matrix, preferably a pressure sensitive skin adhesive.
  • the copolymer has an inherent viscosity in the range 0.2 dl/g to about 2 dl/g, more preferably in the range 0.4 dl/g to 1.4 dl/g.
  • Suitable copolymers comprise one or more A monomers preferably in an amount about 40 to 95 percent by weight, more preferably about 50 to about 70 percent by weight, based on the total weight of all monomers in the copolymer.
  • the A monomer is selected from the group consisting of alkyl acrylates containing 4 to 10 carbon atoms in the alkyl group and alkyl methacrylates containing 4 to 10 carbon atoms in the alkyl group.
  • alkyl acrylates and methacrylates examples are n-butyl, n-pentyl, n-hexyl, isoheptyl, n-nonyl, n-decyl, isohexyl, 2-ethyloctyl, isooctyl and 2-ethylhexyl acrylates and methacrylates.
  • Preferred alkyl acrylates include isooctyl acrylate, 2-ethylhexyl acrylate, butyl acrylate, and cyclohexyl acrylate.
  • the most preferred alkyl acrylate is isooctyl acrylate.
  • Preferred alkyl methacrylates include butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, and methyl methacrylate.
  • the copolymer further optionally comprises one or more ethylenically unsaturated B monomers copolymerizable with the A monomer.
  • B monomers include those comprising a functional group selected from the group consisting of carboxylic acid, carboxylic acid ester, hydroxy, sulfonamide, urea, carbamate, carboxamide, amine, oxy, oxo, and cyano.
  • the B monomers are preferably used in a total amount from 0 to about 60 percent by weight, more preferably greater than 25 to about 50 percent by weight, and most preferably greater than 30 to about 50 percent by weight (based on the total weight of all the monomers in the copolymer).
  • Preferred B monomers include but are not limited to acrylic acid, methacrylic acid, maleic acid, a hydroxyalkyl acrylate containing 2 to 4 carbon atoms in the hydroxyalkyl group, a hydroxyalkyl methacrylate containing 2 to 4 carbon atoms in the hydroxyalkyl group, acrylamide, methacrylamide, an alkyl substituted acrylamide containing 1 to 8 carbon atoms in the alkyl group, diacetone acrylamide, a dialkyl acrylamide having 1 or 2 carbon atoms in the alkyl group, N-vinyl-N-methyl acetamide, N-vinyl valerolactam, N-vinyl caprolactam, N-vinyl-2-pyrrolidone, glycidyl methacrylate, alkoxyethyl acrylate containing 1 to 4 carbon atoms in the alkoxy group, alkoxyethyl methacrylate containing 1 to 4 carbon atoms in the alk
  • Particularly preferred B monomers include hydroxyethyl acrylate, acrylamide, hydroxyethyl methacrylate, glyceryl acrylate, N,N-dimethyl acrylamide, 2-ethoxyethoxyethyl acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, vinyl acetate and acrylic acid.
  • Most preferred B monomers include hydroxyethyl acrylate and N,N-dimethyl acrylamide, and a combination thereof.
  • the compositions of the invention can contain a relatively high loading of softener.
  • the copolymer incorporates a macromonomer, preferably a substantially linear macromonomer, copolymerizable with the A and B monomers defined above and having a molecular weight in the range 500-500,000, preferably 2,000-100,000, and more preferably 5,000-30,000, in an amount (e.g., at least about 0.1 percent by weight based on the total weight of comonomers in the copolymer) effective to control the rheological properties of the copolymer.
  • the macromonomer is generally present in an amount of not more than about 30% by weight based on the total weight of all monomers in the copolymer, more preferably not more than 15%, and most preferably not more than 5%.
  • the macromonomer can be a compound of the formula wherein X is a moiety comprising an ethylenically unsaturated group (such as vinyl, or 2-propenyl) copolymerizable with the A and B monomers, R 2 is a hydrogen atom or a lower alkyl group, R 3 is a lower alkyl group or the residue of a free-radical initiator, n is an integer from 20 to 500 and each R 4 is a monovalent radical independently selected from the group consisting of —CN, and —CO 2 R 6 wherein R 5 is a hydrogen atom or a lower alkyl group, and R 6 is a lower alkyl group.
  • Suitable macromonomers include polymethylmethacrylate, styrene/acrylonitrile, and polystyrene macromonomers. Polymethylmethacrylate macromonomers are preferred.
  • Exemplary macromonomers include those having a general formula selected from the group consisting of wherein R 7 is a hydrogen atom or a lower alkyl group, R 8 is hydrogen or methyl, and R 2 , R 3 , and R 4 are as defined above.
  • the macromonomers shown in the formulae directly above are functionally terminated polymers having a single functional group and are sometimes identified as a “semitelechelic” polymers.
  • Such macromonomers are known and may be prepared by the method disclosed in U.S. Pat. Nos. 3,786,116, 3,842,059 (both to Milkovich et al.), and U.S. Pat. No.
  • ELVACITE 1010 a polymethylmethacrylate macromonomer having an inherent viscosity of 0.070-0.080, a T g of 105° C., a GPC weight average molecular weight of 7,000-10,000, a GPC number average molecular weight of 2,500-4,000, and a polydispersity of 2.5-3.0
  • ELVACITE 1020 a polymethylmethacrylate macromonomer having an inherent viscosity of 0.085-0.10, a T g of 105° C., a GPC weight average molecular weight of 12,000-15,000, a GPC number average molecular weight of 4,600-6,000, and
  • a matrix of the invention further comprises a softener.
  • the softener is dissolved in the matrix.
  • softener refers to a generally oily material that raises the compliance value or lowers the glass transition temperature (T g ) of the matrix as compared to the copolymer.
  • Suitable softeners include certain materials that have been used as skin penetration enhancers or solubilizers in transdermal drug delivery systems.
  • Exemplary materials include C 8 -C 22 fatty acids such as isostearic acid, octanoic acid, and oleic acid, C 8 -C 22 fatty alcohols such as oleyl alcohol and lauryl alcohol, lower alkyl esters of C 8 -C 22 fatty acids such as ethyl oleate, isopropyl myristate, butyl stearate, and methyl laurate, di(lower) alkyl esters of C 6 -C 8 diacids such as diisopropyl adipate, monoglycerides of C 8 -C 22 fatty acids such as glyceryl monolaurate, tetrahydrofurfuryl alcohol polyethylene glycol ether, polyethylene glycol, propylene glycol, 2-(2-ethoxyethoxy)ethanol, diethylene glycol
  • Alkylaryl ethers of polyethylene oxide, polyethylene oxide monomethyl ethers, and polyethylene oxide dimethyl ethers are also suitable, as are solubilizers such as dimethyl sulfoxide, glycerol, ethanol, ethyl acetate, acetoacetic ester, N-methyl pyrrolidone, and isopropyl alcohol.
  • solubilizers such as dimethyl sulfoxide, glycerol, ethanol, ethyl acetate, acetoacetic ester, N-methyl pyrrolidone, and isopropyl alcohol.
  • certain drug substances function as softeners, including nicotine, nitroglycerine, chlorpheniramine, nicotinic acid benzyl ester, orphenadrine, scopolamine, and valproic acid.
  • Preferred softeners include glyceryl monolaurate, diethylene glycol monomethyl ether, tetrahydrofurfuryl alcohol polyethylene glycol ether, diisopropyl adipate, propylene glycol, isopropyl myristate, ethyl oleate, methyl laurate, 2-(2-ethoxyethoxy)ethanol, and oleyl alcohol.
  • the softener is present in not more than that amount which causes the matrix to leave substantial copolymer residue on the skin when peeled from the skin.
  • softeners enumerated above are known to affect skin penetration rate, certain softeners affect aspects of performance other than and in addition to skin penetration rate. For example, they are useful in softening or increasing the compliance value and/or lowering the glass transition temperature of otherwise non-compliant (and therefore non-pressure sensitive adhesive) copolymers, rendering them suitable for use as pressure sensitive skin adhesives.
  • the softeners enumerated above are generally oily substances that function as plasticizers when incorporated in a copolymer.
  • Such materials can affect adversely the performance of a transdermal matrix, for example by softening it to the point of cohesive failure (where substantial copolymer residue is left on the skin upon removal of the device from the skin), or by separating from the continuous phase and forming an oily layer that reduces adhesion of an otherwise adhesive matrix.
  • certain softeners e.g., glyceryl monolaurate, N,N-dimethyldodecylamine-N-oxide
  • softeners can be included in amounts of up to about 60% by weight based on the total weight of the matrix without cohesive failure or crystal formation, and often without loss of suitable skin adhesion.
  • Softener amounts in excess of 20% and preferably less than about 45% by weight based on the total weight of the matrix have been found to be preferred in order to obtain optimal flux rates in transdermal devices containing the hormone levonorgestrel, and amounts in excess of 30% and less than 45% are more preferred.
  • transdermal matrix The properties desirable in a transdermal matrix are well known to those skilled in the art. For example, it is necessary that the matrix remain in intimate contact with the skin in order to deliver drug at a stable rate. It is desirable for a matrix to have sufficiently little cold flow such that it is stable to flow upon storage. It is also preferred that it release cleanly from the skin, and that it adhere to the skin.
  • the amount and structure of the comonomers in the copolymer, the inherent viscosity of the copolymer, and the amount and structure of the softener are selected such that the matrix has a compliance value (measured according to the test method set forth in detail below) in the range 2 ⁇ 10 ⁇ 6 cm 2 /dyne to about 4 ⁇ 10 ⁇ 3 cm 2 /dyne, preferably in the range 3 ⁇ 10 ⁇ 6 cm 2 /dyne to about 1 ⁇ 10 ⁇ 3 cm 2 /dyne and even more preferably in the range 1 ⁇ 10 ⁇ 5 cm 2 /dyne to 5 ⁇ 10 4 cm 2 /dyne.
  • Compliance values outside the broad range recited above sometimes are obtained from materials that are suitable matrices, and even for some that are suitable for use as pressure sensitive skin adhesives. However, those matrices having substantially lower compliance values will generally be relatively stiff and have less than optimal skin contact and adhesion to skin. Those having substantially higher compliance values will generally have less than optimal cold flow and might leave substantial residue when removed from the skin. Also, a matrix of the invention that is intended for use as a pressure sensitive skin adhesive preferably has a glass transition temperature of ⁇ 10° C. or lower.
  • compositions can be readily selected for a given set of desired properties considering the effects of comonomers, inherent viscosity, and softeners on the properties of the resulting matrix. Certain of such effects are well known to those skilled in the art, and others are described below:
  • Strongly hydrogen bonding B monomers have been found to increase the amount of polar or hydrogen bonding substances that can be dissolved in a matrix and to decrease the amount of generally nonpolar substances that can be dissolved. Further, a strongly hydrogen bonding copolymer will be a relatively less compliant material. Therefore if B monomers such as acrylic acid or acrylamide are used a lesser amount of macromonomer will be required in order to lower compliance sufficiently to avoid cohesive failure.
  • Macromonomers also decrease compliance. Therefore a given target compliance value can often be achieved using a lower inherent viscosity A/B copolymer combination and a greater amount of macromonomer, or a higher inherent viscosity A/B combination and less macromonomer.
  • a relatively high compliance pressure sensitive skin adhesive involving a macromonomer will generally have better adhesive properties than an A/B copolymer having the same compliance value.
  • Increasing macromonomer content generally increases the amount of softener that can be loaded into a pressure sensitive skin adhesive without cohesive failure.
  • Increasing inherent viscosity will also tend to allow higher softener loading without cohesive failure.
  • a change that would increase inherent viscosity of a copolymer (such as increased molecular weight through selection of polymerization conditions and/or solvent ratios) will generally decrease compliance.
  • stabilizers and reinforcers e.g., colloidal silicon dioxide
  • colloidal silicon dioxide can be incorporated into the matrix if necessary or desirable.
  • the matrix of a transdermal drug delivery device of the invention further comprises a drug.
  • Suitable drugs include those active substances enumerated above in connection with softeners, as well as antiinflammatory drugs, both steroidal (e.g., hydrocortisone, prednisolone, triamcinolone) and nonsteroidal (e.g., naproxen, piroxicam); antibacterials (e.g., penicillins such as penicillin V, cephalosporins such as cephalexin, erythromycin, tetracycline, gentamycin, sulfathiazole, nitrofurantoin, and quinolones such as norfloxacin, flumequine, and ibafloxacin); antiprotazoals (e.g., metronidazole); antifungals (e.g., nystatin); coronary vasodilators (e.g., nitroglycerin); calcium channel blockers (e.g.,
  • acyclovir acyclovir
  • local anesthetics e.g., benzocaine, propofol
  • cardiotonics e.g., digitalis, digoxin
  • antitussives e.g., codeine, dextromethorphan
  • antihistamines e.g., diphenhydramine, chlorpheniramine, terfenadine
  • narcotic analgesics e.g., morphine, fentanyl
  • peptide hormones e.g., human or animal growth hormones, LHRH
  • cardioactive products such as atriopeptides
  • proteinaceous products e.g., insulin
  • enzymes e.g., anti-plaque enzymes, lysozyme, dextranase
  • antinauseants e.g., scopolomine
  • anticonvulsants e.g., carbamazine
  • immunosuppressives
  • the drug is present in a transdermal delivery device of the invention in a therapeutically effective amount, i.e., an amount effective to bring about a desired therapeutic result in the treatment of a condition.
  • a therapeutically effective amount i.e., an amount effective to bring about a desired therapeutic result in the treatment of a condition.
  • the amount that constitutes a therapeutically effective amount varies according to the particular drug incorporated in the device, the condition being treated, any drugs being coadministered with the selected drug, desired duration of treatment, the surface area of the skin over which the device is to be placed, and other components of the transdermal delivery device. Accordingly it is not practical to enumerate particular preferred amounts but such can be readily determined by those skilled in the art with due consideration of these factors.
  • a drug is present in a transdermal device of the invention in an amount of about 0.01 to about 30 percent by weight based on the total weight of the matrix.
  • the drug is substantially fully dissolved, and the matrix is substantially free of solid undissolved drug.
  • a transdermal delivery device or an adhesive coated sheet material of the invention also comprises a backing.
  • the backing is flexible such that the device conforms to the skin.
  • Suitable backing materials include conventional flexible backing materials used for pressure sensitive tapes, such as polyethylene, particularly low density polyethylene, linear low density polyethylene, high density polyethylene, polyester, polyethylene terephthalate, randomly oriented nylon fibers, polypropylene, ethylene-vinyl acetate copolymer, polyurethane, rayon and the like.
  • Backings that are layered, such as polyethylene-aluminum-polyethylene composites, are also suitable. The backing should be substantially inert to the ingredients of the matrix layer.
  • copolymers described above for use in a device of the invention can be prepared by methods well known to those skilled in the art and described, for example, in U.S. Pat. No. RE 24,906 (Ulrich) and U.S. Pat. No. 4,732,808 (Krampe at al.), the disclosures of which are incorporated herein by reference.
  • Matrices of the invention can be used in the form of an adhesive coated sheet material.
  • sheet materials are preferably prepared by combining the copolymer, the softener, and any additional components (e.g., a drug) with an organic solvent (e.g., ethyl acetate, methanol, acetone, 2-butanone, ethanol, isopropyl alcohol, toluene, alkanes, or a mixture thereof) to afford a coating formulation.
  • the total solids content of the coating formulation is preferably in a range of about 15 to 40 percent by weight, and more preferably in the range of about 20 to 35 percent by weight, based on the total weight of the coating formulation.
  • Suitable release liners include conventional release liners comprising a known sheet material such as a polyester web, a polyethylene web, or a polystyrene web, or a polyethylene-coated paper, coated with a suitable fluoropolymer or silicone based coating.
  • the coated release liner is dried and then laminated onto a backing material using conventional methods.
  • the coating formulation can be coated directly onto a backing.
  • a transdermal device involving a matrix that is not a skin adhesive can be fixed to the skin by conventional means such as a peripheral ring of a pressure sensitive skin adhesive.
  • Adhesive coated sheet materials of the invention can be made in the form of an article such as a tape, a patch, a sheet, a dressing or any other form known to those skilled in the art.
  • Transdermal drug delivery devices generally are made in the form of a patch of a size suitable to deliver a preselected amount of a drug through the skin. Generally the transdermal device will have a surface area of about 1 cm 2 to about 40 cm 2 .
  • the compliance values given in the examples below were obtained using a modified version of the Creep Compliance Procedure described in U.S. Pat. No. 4,737,559 (Kellen), the disclosure of which is incorporated herein by reference.
  • the release liner is removed from a sample of the material to be tested.
  • the exposed adhesive surface is folded back on itself in the lengthwise direction to produce a “sandwich” configuration, i.e., backing/adhesive/backing.
  • the “sandwiched” sample is passed through a laminator, or alternatively rolled with a hand-operated roller, then two test samples of equal area are cut using a rectangular die.
  • test sample is centered on a first stationary plate of a shear-creep rheometer with the long axis of the test sample centered on the short axis of the plate.
  • the small, non-stationary plate of the shear-creep rheometer is centered over the first sample on the first stationary plate such that the hook is facing up and toward the front of the rheometer.
  • the second test sample is centered on the upper surface of the small, non-stationary plate matching the axial orientation of the first test sample.
  • a second stationary plate is placed over the second test sample and the entire assembly is clamped into place.
  • the end of the small, non-stationary plate that is opposite the end with the hook is connected to a chart recorder.
  • a string is connected to the hook of the small, non-stationary plate and extended over the front pulley of the rheometer.
  • a weight e.g., 500 g
  • the chart recorder is started and at the same time the weight is quickly released so that it hangs free. The weight is removed after exactly 3 minutes has elapsed.
  • the displacement is read from the chart recorder.
  • A is expressed in cm 2 , h in cm, X in cm and f in dynes, the compliance value is given in cm 2 /dyne.
  • the amount of isopropyl myristate present in a pressure sensitive skin adhesive composition was determined using the following test method.
  • the release liner is removed from a sample of the material to be tested.
  • the adhesive coating is manually scraped from the backing film.
  • a 15 mg portion of the adhesive coating is placed into a clean sample vial.
  • Tetrahydrofuran (2 mL containing 0.10 mg/mL of lauryl acrylate which serves as an internal standard) is added and the sample is mixed until all of the adhesive coating is dissolved.
  • a portion of the solution is placed in an autosampler vial and analyzed by gas chromatography using the following conditions: Instrument: HP5890; Column: DB-5, 30 meter, 0.25 ⁇ M film, 0.25 mm I.D.; Temperature Program: Initial 100° C., ramp 10° C./min to 300° C., hold 2 min; Injection: 2 ⁇ L, split 25/1, 300° C.; Detection: FID, 300° C.
  • Isopropyl myristate standards are prepared using copolymer samples containing no isopropyl myristate. Separate standard curves are prepared for each copolymer. Each sample is run in duplicate.
  • the amount of oleyl alcohol present in a pressure sensitive skin adhesive composition was determined using the following test method.
  • the release liner is removed from a sample of the material to be tested.
  • the adhesive coating is manually scraped from the backing film.
  • a 15 mg portion of the adhesive coating is placed into a clean sample vial.
  • Tetrahydrofuran (10 mL containing 0.1 mg/mL of dodecyl alcohol which serves as an internal standard) is added and the sample is mixed until all of the adhesive coating is dissolved.
  • a portion of the solution is placed in an autosampler vial and analyzed by gas chromatography using the following conditions: Instrument: HP5890; Column: DB-wax, 15 meter, 0.25 ⁇ M film, 0.25 mm I.D.; Temperature Program: Initial 60° C., ramp 7° C./min to 250° C., hold 2 min; Injection: 2 ⁇ L, split 25/1, 250° C.; Detection: FID, 250° C.
  • Oleyl alcohol standards are prepared using copolymer samples containing no oleyl alcohol. Separate standard curves are prepared for each copolymer. Each sample is run in duplicate.
  • copolymers used in the examples that follow were prepared generally according to the methods described below.
  • the inherent viscosity values which are reported were measured by conventional means using a Cannon-Fenske #50 viscometer in a water bath controlled at 27° C. to measure the flow time of 10 milliliters of a polymer solution (0.15-0.25 g per deciliter of polymer in ethyl acetate, unless other wise indicated).
  • the test procedure followed and the apparatus used are described in detail in “Textbook of Polymer Science”, F. W. Billmeyer, Wiley Interscience, Second Edition, 1971, Pages 84 and 85.
  • Isooctyl acrylate 141.0 g
  • N,N-dimethylacrylamide 35.25 g
  • hydroxyethyl acrylate 35.25 g
  • ELVACITETM 1010 polymethylmethacrylate macromonomer 23.50 g, ICI
  • ethyl acetate 251.75 g
  • isopropanol 13.25 g
  • 2,2′-azobis(2,4-dimethylpentanenitrile) (0.47 g, VAZOTM 52 available from DuPont
  • Isooctyl acrylate (117.5 g), N,N-dimethylacrylamide (94.0 g), ELVACITETM 1010 polymethylmethacrylate macromonomer (23.5 g), ethyl acetate (251.75 g), isopropanol (13.25 g) and VAZO 52 (0.47 g) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 2 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed, opened, charged with an additional 0.47 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours.
  • the percent solids of the resulting solution of copolymer was 46.19%.
  • the inherent viscosity was 0.532 dl/g in ethyl acetate at 0.25 g/dl.
  • Isooctyl acrylate (157.5 g), N,N-dimethylacrylamide (67.5 g), ELVACITE 1010 macromonomer (25.0 g), ethyl acetate (261.25 g), isopropanol (13.75 g) and VAZO 52 (0.5 g) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours.
  • the percent solids of the resulting solution of copolymer was 47.8%.
  • the inherent viscosity was 0.394 dl/g in ethyl acetate at 0.15 g/dl.
  • Isooctyl acrylate (137.5 g), hydroxyethyl acrylate (100.0 g), ELVACITETM 1010 polymethylmethacrylate macromonomer (12.5 g), ethyl acetate (318.75 g), isopropanol (56.25 g) and VAZO 52 (0.5 g) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours.
  • the percent solids of the resulting solution of copolymer was 39.30%.
  • the inherent viscosity was 0.335 dl/g in ethyl acetate at 0.15 g/dl.
  • Isooctyl acrylate (135 g), hydroxyethyl acrylate (90 g), polystyrene macromonomer (25.0 g), ethyl acetate (356.25 g), isopropanol (18.75 g) and VAZO 52 (0.5 g) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours.
  • the percent solids of the resulting solution of copolymer was 41.2%.
  • the inherent viscosity was 0.75 dl/g in ethyl acetate at 0.15 g/dl.
  • Isooctyl acrylate (135 g), hydroxyethyl acrylate (90 g), polystyrene macromonomer (25.0 g), ethyl acetate (318.75 g), isopropanol (56.25 g) and VAZO 52 (0.5 g) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours.
  • the percent solids of the resulting solution of copolymer was 39.6%.
  • the inherent viscosity was 0.29 dl/g in ethyl acetate at 0.15 g/dl.
  • Isooctyl acrylate (237.5 g), polystyrene macromonomer (12.5 g), ethyl acetate (261.25 g), isopropanol (13.75 g) and VAZO 52 (0.5 g) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours.
  • the percent solids of the resulting solution of copolymer was 47.5%.
  • the inherent viscosity was 0.45 dl/g in ethyl acetate at 0.15 g/dl.
  • Isooctyl acrylate (145.0 g), vinyl acetate (92.5 g), ELVACITETM 1020 polymethylmethacrylate macromonomer (12.5 g), 2,2′-azobis(2,4-dimethylpentanenitrile) (0.5 g), and ethyl acetate (282.0) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed from the bath, opened, charged with an additional 0.5 g of 2,2′-azobis(2,4-dimethylpentanenitrile), deoxygenated as before, sealed and returned to the rotating water bath for an additional 24 hours.
  • the inherent viscosity in ethyl acetate at 0.15 g/dl was measured at 1.05 dl/g.
  • Isooctyl acrylate (145.0 g), vinyl acetate (92.5 g), ELVACITETM 1020 polymethylmethacrylate macromonomer (12.5 g), 2,2′-azobis(2,4-dimethylpentanenitrile) (0.5 g), and ethyl acetate (250.0) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed from the bath, opened, charged with an additional 0.5 g of 2,2′-azobis(2,4-dimethylpentanenitrile), deoxygenated as before, sealed and returned to the rotating water bath for an additional 24 hours.
  • the inherent viscosity in ethyl acetate at 0.15 g/dl was measured at 1.15 dl/g.
  • Isooctyl acrylate (132.5 g), vinyl acetate (92.5 g), ELVACITETM 1020 polymethylmethacrylate macromonomer (25.0 g), 2,2′-azobis(2,4-dimethylpentanenitrile) (0.5 g), and ethyl acetate (230.8) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed from the bath, opened, charged with an additional 0.5 g of 2,2′-azobis(2,4-dimethylpentanenitrile), deoxygenated as before, sealed and returned to the rotating water bath for an additional 24 hours.
  • the inherent viscosity in ethyl acetate at 0.15 g/dl was measured at 0.815 dl/g.
  • Isooctyl acrylate (132.5 g), vinyl acetate (92.5 g), ELVACITETM 1020 polymethylmethacrylate macromonomer (25.0 g), 2,2′-azobis(2,4-dimethylpentanenitrile) (0.5 g), and ethyl acetate (204.5) were charged into a one liter bottle.
  • the mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes.
  • the bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours.
  • the bottle was removed from the bath, opened, charged with an additional 0.5 g of 2,2′-azobis(2,4-dimethylpentanenitrile), deoxygenated as before, sealed and returned to the rotating water bath for an additional 24 hours.
  • the inherent viscosity in ethyl acetate at 0.15 g/dl was measured at 0.92 dl/g.
  • Dried adhesive is prepared by knife coating a 25 to 50 percent solids solution of the adhesive copolymer at a thickness of 20 to 25 mil (500 to 635 ⁇ M) onto a release liner.
  • the adhesive coated release liner is oven dried (e.g. 4 min at 110° F. (43° C.), 2 minutes at 185° F. (85° C.), and 10 minutes at 300° F. (149° C.)) to remove solvent and reduce the amount of residual monomers.
  • the dried adhesive copolymer is stripped off the release liner and stored in a glass container.
  • the polymethylmethacrylate macromonomer used was ELVACITE 1010.
  • the abbreviations BS, DDAO, DGME, DIPA, EO, GML, IPM, ISA, LG, ML, OA and PG are used for butyl stearate, N,N-dimethyldodecylamine-N-oxide, diethylene glycol monoethyl ether, diisopropyl adipate, ethyl oleate, glyceryl monolaurate, isopropyl myristate, isostearic acid, lauryl glycol, methyl laurate, oleyl alcohol and propylene glycol respectively.
  • the abbreviation LN is used for levonorgestrel.
  • the resulting coating contained 95 percent 54/36/10 IOA/HEA/PSMac copolymer and 5 percent isopropyl myristate.
  • the coated liner was laminated to the corona treated side of a 3 mil (76 ⁇ M) polyethylene film. The compliance was measured using the test method described above and found to be 0.42 ⁇ 10 ⁇ 5 cm 2 /dyne (average of three independent determinations).
  • Example 1 Using the general method of Example 1, a series of coated sheet materials in which the copolymer, softener and amount of softener were varied was prepared. The copolymer, identity and amount of softener, wet coating thickness, and the compliance values are shown in Table 1. Unless otherwise indicated, each J-value is the average of three independent determinations. When the compliance was “not run”, the formulation was too soft to be tested.
  • Example 2 Using the general method of Example 1, a series of coated sheet materials in which the copolymer was varied but the amount of IPM was theoretically held constant was prepared. The copolymer and amount (both calculated and determined using a modification of the method described above) of IPM, wet coating thickness, and the compliance values are shown in Table 2.
  • sample preparation involved combining 2 mL ethyl acetate containing 0.05 mg/mL lauryl acrylate with 25 mg of polymer.
  • isopropyl myristate standards did not contain copolymer. Unless otherwise indicated, each J-value is the average of three independent determinations.
  • oleyl alcohol 8.4 g
  • the resulting formulation was knife coated at a wet thickness of 15 mil (381 ⁇ M) onto a silicone release liner [5 mil (127 ⁇ M) Daubert PESTER].
  • the coated release liner was oven dried at 110° F. (43° C.) for 20 minutes.
  • the resulting coating theoretically contained 70 percent 51/34/15 IOA/HEA/PSMac copolymer and 30 percent oleyl alcohol.
  • the coated liner was laminated to a backing (1109 SCOTCHPAKTM tan, polyester film laminate, available from the 3M Company). The compliance was measured using the test method described above and found to be 0.74 ⁇ 10 ⁇ 5 cm 2 /dyne (average of three independent determinations). A portion of the coating was removed from the backing and assayed for oleyl alcohol using the test method described above. The oleyl alcohol content was found to be 28 percent.
  • Example 39 Using the general method of Example 39, a series of coated sheet materials in which the copolymer, softener and amount of softener were varied was prepared.
  • the copolymer, identity and amount (weight percent, both calculated and determined using the methods described above) of softener, wet coating thickness, and the compliance values are shown in Table 3. Unless otherwise indicated, each J-value is the average of three independent determinations.
  • Example 39 Using the general method of Example 39, a series of coated sheet materials in which the copolymer, softener and amount of softener were varied was prepared.
  • the copolymer, identity and amount (weight percent) of softener, wet coating thickness, and the compliance values are shown in Table 4. Unless otherwise indicated, each J-value is the average of two independent determinations. When the compliance was “not run”, the formulation was too soft to be tested.
  • the resulting adhesive coating contained 64.0 percent 63/27/10 IOA/HEA/PMMAMac copolymer, 1.0 percent levonorgestrel and 35.0 percent methyl laurate.
  • the coated liner was then laminated onto the corona treated surface of a 3 mil (76.2 ⁇ m) polyethylene backing. The compliance was measured using the test method described above and found to be 4.4 ⁇ 10 ⁇ 5 cm 2 /dyne.
  • Example 130 Using the general method of Example 130, a number of coated sheet materials were prepared in order to assess the effect of increasing the amount of skin penetration enhancer(s) on the compliance of certain formulations containing levonorgestrel. The compliance was measured using the test method described above. The formulations and the J-values are shown in Table 5, where amounts are percent by weight. Except as noted, the polymethylmethacrylate macromonomer was ELVACITE 1010. PMMAMac* indicates that the polymethylmethacrylate was ELVACITE 1020. TABLE 5 Ex Adhesive Additional J-Value No.
  • Amount Type iv LN GML DDAO Enhancer(s) (cm 2 /dyne) 131 68.7 63/27/10 1.0 0 0 30.3 ML 2.4 ⁇ 10 ⁇ 5 IOA/DMACM/PMMAMac 132 74.2 63/27/10 1.0 0 0 24.8 ML 2.1 ⁇ 10 ⁇ 5 IOA/DMACM/PMMAMac 133 64.5 55/40/5 1.0 0 0 17.1 DGME off scale IOA/HEA/PMMAMac 17.4 LG 134 68.7 55/40/5 1.0 0 0 15.2 DGME 15.4 ⁇ 10 ⁇ 5 IOA/HEA/PMMAMac 15.1 LG 135 74.0 55/40/5 1.0 0 0 12.6 DGME 5.2 ⁇ 10 ⁇ 5 IOA/HEA/PMMAMac 12.4 LG 136 78.9 55/40/5 1.0 0 0 10.1 DGME 5.0 ⁇ 10 ⁇ 5 IOA/HEA/P
  • the skin penetration data given in the examples below was obtained using the following test method.
  • a Diffusion cell is used.
  • Human cadaver skin (Dermatomed skin about 500 ⁇ M thick obtained from a skin bank) is used.
  • the skin 22 is mounted epidermal side up between upper portion 24 and lower portion 26 of the cell, which are held together by means of ball joint clamp 28 .
  • the portion of the cell below the mounted skin is completely filled with receptor fluid (30% N-methyl-2-pyrrolidone in water) such that the receptor fluid is in contact with the skin.
  • the receptor fluid is stirred using a magnetic stirrer (not illustrated).
  • the sampling port 30 is covered except when in use.
  • the skin is placed across the orifice of the lower portion of the diffusion cell, the release liner is removed from a 2.0 cm patch and the patch is applied to the skin and pressed to cause uniform contact with the skin.
  • the diffusion cell is assembled and the lower portion is filled with 10 mL of warm (32° C.) receptor fluid.
  • the cell is the placed in a constant temperature (32 ⁇ 2° C.) and humidity (50 ⁇ 10% relative humidity) chamber.
  • the receptor fluid is stirred by means of a magnetic stirrer throughout the experiment to assure a uniform sample and a reduced diffusion barrier on the dermal side of the skin.
  • the entire volume of receptor fluid is withdrawn at specified time intervals (6, 12, 24, 48 and 72 hours) and immediately replaced with fresh fluid.
  • the withdrawn fluid is filtered through a 0.45 ⁇ M filter.
  • a 1 mL portion of filtrate is then analyzed for levonorgestrel using high performance liquid chromatography (Column: 15 cm ⁇ 4.6 mm I.D.
  • Levonorgestrel (19.85 g), methyl laurate (330.8 g), propylene glycol (198.5 g), glyceryl monolaurate (33.08 g), N,N-dimethyldodecylamine-N-oxide (19.85 g) and copolymer (1803 g of 55/40/5 IOA/HEA/PMMAMac copolymer, 40% solids in 95/5 w/w ethyl acetate/isopropanol, which had been dried then resolvated, iv 0.59 dl/g after drying) were placed in a 1 gallon (3.8 L) high density polyethylene carboy. The carboy was tightly capped then placed on a roller/shaker for 19 hours.
  • the carboy was allowed to stand until all entrapped air bubbles had dissipated.
  • the resulting formulation was knife coated at a wet thickness of 16 mil (406 ⁇ M) onto a silicone coated polyester (5 mil, 127 ⁇ M) film.
  • the coated release liner was oven dried at 127° F. (53° C.) for 30 minutes.
  • the resulting adhesive coating contained 1.5 percent levonorgestrel, 15.0 percent propylene glycol, 25.0 percent methyl laurate, 2.5 percent glyceryl monolaurate, 1.5 percent N,N-dimethyldodecylamine-N-oxide, and 54.5 percent 55/40/5 IOA/HEA/PMMAMac copolymer.
  • the coated liner was allowed to cool for 10 minutes then it was laminated to the corona treated side of a 2 mil (51 ⁇ M) polypropylene film.
  • the compliance was measured using the test method described above and found to be 6.57 ⁇ 10 ⁇ 5 cm 2 /dynes. Skin penetration through human cadaver skin was measured using the test method described above; the steady state flux was found to be 0.166 ⁇ g/cm 2 /hr.
  • the carboy was tightly capped then placed on a roller/shaker for 19 hours. The carboy was allowed to stand until all entrapped air bubbles had dissipated.
  • the resulting formulation was knife coated at a wet thickness of 12 mil (305 ⁇ M) onto a silicone coated polyester (5 mil, 127 ⁇ M) film.
  • the coated release liner was oven dried at 127° F. (53° C.) for 80 minutes.
  • the resulting adhesive coating contained 1.4 percent levonorgestrel, 35.0 percent methyl laurate, 5.0 percent glyceryl monolaurate, 1.0 percent N,N-dimethyldodecylamine-N-oxide, and 57.6 percent 50/40/10 IOA/DMACM/PMMAMac copolymer.
  • the coated liner was allowed to cool for 10 minutes then it was laminated to the corona treated side of a 2 mil (51 ⁇ M) polypropylene film.
  • the compliance was measured using the test method described above and found to be 5.74 ⁇ 10 ⁇ 5 cm 2 /dynes. Skin penetration through human cadaver skin was measured using the test method described above; the steady state flux was found to be 0.148 ⁇ g/cm 2 /hr.
  • the carboy was tightly capped then placed on a roller/shaker for 19 hours. The carboy was allowed to stand until all entrapped air bubbles had dissipated.
  • the resulting formulation was knife coated at a wet thickness of 13 mil (330 ⁇ M) onto a silicone coated polyester (5 mil, 127 ⁇ M) film.
  • the coated release liner was oven dried at 127° F. (53° C.) for 75 minutes.
  • the resulting adhesive coating contained 1.5 percent levonorgestrel, 22.0 percent methyl laurate, 8.0 percent tetraglycol, 5.0 percent glyceryl monolaurate, 1.0 percent N,N-dimethyldodecylamine-N-oxide, and 62.5 percent 50/40/10 IOA/DMACM/PMMAMac copolymer.
  • the coated liner was allowed to cool for 10 minutes then it was laminated to the corona treated side of a 2 mil (51 ⁇ M) polypropylene film.
  • the compliance was measured using the test method described above and found to be 8.72 ⁇ 10 ⁇ 5 cm 2 /dynes. Skin penetration through human cadaver skin was measured using the test method described above; the steady state flux was found to be 0.131 ⁇ g/cm 2 /hr.
  • nicotine 5.04 g
  • the jar was capped and shaken for 15 minutes.
  • the resulting formulation was knife coated at a wet thickness of 8 mil (203 ⁇ M) onto a silicone coated polyester release liner (5 mil (127 ⁇ M) Daubert).
  • the coated release liner was oven dried at 110° F. (43° C.) for 30 minutes.
  • the resulting coating theoretically contained 79.71 percent 57/38/5 IOA/HEA/PMMAMac copolymer and 20.29 percent nicotine.
  • the coated liner was laminated to a backing (1109 SCOTCHPAKTM tan, polyester film laminate, available from the 3M Company). The compliance was measured 4 hours after the laminate was prepared using the test method described above and found to be 1.79 ⁇ 10 ⁇ 5 cm 2 /dyne. The compliance was measured again after the laminate had sat overnight and was found to be 1.5 ⁇ 10 ⁇ 5 cm 2 /dyne (average of two independent determinations).
  • Example 182 The formulation prepared in Example 182 was knife coated at a wet thickness of 6 mil (152 ⁇ M) onto a silicone coated polyester release liner (5 mil (127 ⁇ M) Daubert). The coated release liner was allowed to dry at ambient temperature (22° C.) for 100 minutes. The resulting coating theoretically contained 79.71 percent 57/38/5 IOA/HEA/PMMAMac copolymer and 20.29 percent nicotine. The coated liner was laminated to a backing (1109 SCOTCHPAKTM tan, polyester film laminate, available from the 3M Company). The compliance was measured after the laminate had sat over the weekend and was found to be 2.4 ⁇ 10 ⁇ 5 cm 2 /dyne (average of two determinations).
  • Copolymer (10.0 g of 55/9/28/8 2-ethylhexylacrylate/vinyl acetate/tetrahydrofurfuryl acrylate/ELVACITE 1020 PMMAMac 37.28% solids in 90/10 w/w ethyl acetate/isopropanol, 0.706 dl/g) and isopropyl myristate (1.60 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 ⁇ M) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with clean release from skin.
  • the formulation was coated at a wet thickness of 15 mil (381 ⁇ M) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with clean release from skin.
  • the formulation was coated at a wet thickness of 15 mil (381 ⁇ M) onto a polyethylene terephthalate film then air dried to provide an aggressive pressure sensitive adhesive with clean release from skin.
  • the formulation was coated at a wet thickness of 15 mil (381 ⁇ M) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with clean release from skin.
  • the formulation was coated at a wet thickness of 15 mil (381 ⁇ M) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with limited tack and with clean release from skin.
  • oleyl alcohol 14.57 g
  • the resulting formulation was knife coated at a wet thickness of about 7 mil (178 ⁇ M) onto a 2 mil (51 ⁇ M) polyethylene terephthalate film.
  • the coated film was oven dried at 110° F. (43° C.) for 20 minutes.
  • the resulting coating theoretically contained 70 percent 61/37/2 IOA/VoAc/PSMac copolymer and 30 percent oleyl alcohol.
  • the coated film was folded back onto itself to form a “sandwich” and the compliance was measured using the test method described above. The compliance was found to be 6.8 ⁇ 10 ⁇ 5 cm 2 /dyne (average of three independent determinations).
  • Example 193 Using the general method of Example 193, a series of coated sheet materials in which the copolymer, softener and amount of softener were varied was prepared.
  • the copolymer, identity and amount (weight percent) of softener, and the compliance values are shown in Table 6 where each J-value is the average of three independent determinations.
  • the polymethylmethacrylate macromonomer used was ELVACITE 1020.
  • the coated film was oven dried at 160° F. (71° C.) for 20 minutes and then at 210° F. (99° C.) for 10 minutes. Patches (5 cm 2 circles) each containing 0.044 g of dry adhesive were cut from the adhesive coated film.
  • Nicotine (0.011 g) was placed on top of the adhesive in each patch using a micropipette to provide a patch with an adhesive layer containing 20 percent by weight of nicotine.
  • the adhesive layer was covered with a release liner (SCOTCHPAKTM 1022) and allowed to equilibrate overnight.
  • the rate of release of nicotine from the patch was determined using the test method described below. The results are shown in Table 7 below where each entry is the average of three independent determinations.
  • the rate of release of nicotine from the patch was determined using the test method described below. The results are shown in Table 7 below where each entry is the average of three independent determinations.
  • This method describes the dissolution test procedure used to evaluate in-vitro release characteristics of nicotine transdermal delivery patches.
  • the method uses a Hanson Dissolution Apparatus with the dissolution media temperature set at 32° C.; the paddle speed set at 50 rpm; and the paddle height above the sample set at 25 mm.
  • Each patch (5 cm 2 ) is affixed with double sided adhesive tape to a separate stainless steel plate so that the release liner is facing upward (backing is in direct contact with the double sided tape).
  • Each dissolution flask is charged with 500 mL 0.1 M phosphate buffer (pH 6.0) and the temperature of the buffer is allowed to equilibrate at 32 ⁇ 0.5° C.
  • the release liner is removed from the patch and the mounted patch is placed in the dissolution flask.
  • 4 mL samples are withdrawn and analyzed for nicotine content using uv sprectrophotometry with the wavelength set at 262 nm using a 1 cm flow through the spectrophotometer cell. The results are reported as the cumulative percent nicotine released.
  • the adhesive layer of the patch had many air bubbles.
  • the compliance was found to be 1.5 ⁇ 10 ⁇ 5 cm 2 /dyne (average of three independent determinations).
  • the compliance was found to be 0.9 ⁇ 10 ⁇ 5 cm 2 /dyne (average of three independent determinations).
  • the coated release liner was oven dried for 4 minutes at 43° C., for 3 minutes at 85° C., and for 2 minutes at 107° C.
  • the coated release liner was then laminated to the corona treated side of a clear 2 mil (51 ⁇ M) polypropylene film. Patches (circular, 5 cm 2 ) were die cut from the resulting laminate. One patch was applied to the left forearm of a human subject. A second patch was applied to the right forearm of the same subject. The percent of patch surface adhering to skin was approximated by visual assessment through the clear backing. The results are shown in Table 8 below.
  • Example 223 Using the general method of Example 223, a number of patches were prepared and the adhesion to skin evaluated in order to assess the effect of copolymer composition, copolymer inherent viscosity, wet coating thickness, softener composition and the amount of softener on adhesion to skin.
  • the formulations (amounts are percent by weight) and adhesion evaluations are shown in Table 8 below wherein the absence of an entry indicates that the adhesion was not assessed at that time point, “OFF” means that the patch fell off by itself, and “R” means that the patch was removed by the subject. All adhesion testing was conducted on the same subject and unless otherwise indicated the patch was adhered to the left forearm.

Abstract

A transdermal drug delivery device involving a macromonomer-containing acrylate or methacrylate copolymer, a softener, and a drug. Also a pressure sensitive skin adhesive involving a macromonomer containing acrylate or methacrylate copolymer and a softener.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 08/968,519, filed Nov. 12, 1997 (now allowed) which is a continuation of U.S. patent application Ser. No. 08/523,762, filed Sep. 5, 1995 now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 08/305,833 filed Sep. 14, 1994 now abandoned.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to drug containing matrices for use in transdermal drug delivery devices. In another aspect this invention relates to pressure sensitive skin adhesives. In yet another aspect this invention relates to pharmaceutical formulations involving a pressure sensitive skin adhesive layer.
  • 2. Description of the Related Art
  • Transdermal drug delivery devices are designed to deliver a therapeutically effective amount of drug across the skin of a patient. Devices known to the art include reservoir type devices involving membranes that control the rate of drug release to the skin and devices involving a dispersion of the drug in a matrix. Certain acrylic copolymers have been used as matrices for delivery of specific drugs. It is critical in such devices that intimate skin contact be achieved and maintained between the skin and the drug-containing matrix. Thus the range of copolymers that are suitable for use as matrices is limited by the ability of the copolymer to comply to the surface of the skin and still release cleanly from the skin. Moreover, the skin presents a substantial barrier to ingress of foreign substances such as drugs into the body. It is therefore often desirable or necessary to incorporate certain materials that enhance the rate at which the drug passes through the skin.
  • Certain transdermal drug delivery devices have incorporated pressure sensitive adhesive (“PSA”) matrices. Fundamentally, PSA's require a balance of viscous and elastic properties which result in a four-fold balance of adhesion, cohesion, stretchiness, and elasticity. In essence, PSA products have sufficient cohesiveness and elasticity so that, despite their tackiness, they can be handled with the fingers and removed from the skin without leaving substantial residue.
  • SUMMARY OF THE INVENTION
  • This invention provides a transdermal drug delivery device, comprising:
  • (1) a backing;
  • (2) a matrix adhered to one side of the backing and comprising
      • (a) a copolymer comprising
        • (i) one or more A monomers selected from the group consisting of alkyl acrylates containing 4 to 10 carbon atoms in the alkyl group and alkyl methacrylates containing 4 to 10 carbon atoms in the alkyl group; and
        • (ii) optionally one or more ethylenically unsaturated B monomers copolymerizable with the A monomer; and
        • (iii) a macromonomer, preferably a substantially linear macromonomer, copolymerizable with the A and B monomers defined above and having a molecular weight in the range 500-500,000;
      • (b) a softener dissolved in the copolymer; and,
      • (c) if the softener is not therapeutically effective, a therapeutically effective amount of a drug,
  • wherein the structure and amount of the comonomers in the copolymer, the inherent viscosity of the copolymer, and the amount and structure of the drug and the softener are such as to provide the matrix with a compliance value in the range 2×10−6 cm2/dyne to about 4×10−3 cm2/dyne.
  • It has been found that the copolymer and the softener as defined above can be selected such that the resulting composition adheres to the skin. Accordingly this invention also provides a pressure sensitive skin adhesive comprising:
  • (1) a copolymer comprising
      • (a) one or more A monomers selected from the group consisting of alkyl acrylates containing 4 to 10 carbon atoms in the alkyl group and alkyl methacrylates containing 4 to 10 carbon atoms in the alkyl group; and
      • (b) optionally one or more ethylenically unsaturated B monomers copolymerizable with the A monomer; and
      • (c) a substantially linear macromonomer copolymerizable with the A and B monomers defined above and having a molecular weight in the range 500-500,000; and
  • (2) a softener dissolved in the copolymer,
  • wherein the structure and amount of the comonomers in the copolymer, the inherent viscosity of the copolymer, and the amount and structure of the softener are such as to provide the pressure sensitive skin adhesive with a compliance value in the range 2×10−6 cm2/dyne to about 4×10−3 cm2/dyne.
  • The invention provides a transdermal drug delivery device that allows dissolution of drug and relatively heavy loading with oily excipients, maintains contact with the skin, and can be removed cleanly from the skin. The pressure sensitive skin adhesives of the invention provide these advantages and in addition adhere to the skin.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The term “lower alkyl” as used herein means straight chain or branched chain alkyl containing 1 to 4 carbon atoms.
  • The present invention provides a transdermal drug delivery device having a backing and a matrix adhered to one side thereof. It can be adhered directly to a backing or it can be adhered indirectly to a backing via an intermediate layer.
  • The matrix contains a copolymer as defined above and a softener. The matrix is preferably a pressure sensitive skin adhesive. In addition, the matrix (whether adhesive or not) can be removed cleanly from the skin.
  • The copolymer utilized in the practice of the invention should be substantially chemically inert to other components utilized in conjugation therewith (e.g., the drugs and/or softeners discussed in detail below). Also the inherent viscosity of the copolymer is such as to ultimately provide a suitable transdermal matrix, preferably a pressure sensitive skin adhesive. Preferably the copolymer has an inherent viscosity in the range 0.2 dl/g to about 2 dl/g, more preferably in the range 0.4 dl/g to 1.4 dl/g.
  • Suitable copolymers comprise one or more A monomers preferably in an amount about 40 to 95 percent by weight, more preferably about 50 to about 70 percent by weight, based on the total weight of all monomers in the copolymer. The A monomer is selected from the group consisting of alkyl acrylates containing 4 to 10 carbon atoms in the alkyl group and alkyl methacrylates containing 4 to 10 carbon atoms in the alkyl group. Examples of suitable alkyl acrylates and methacrylates are n-butyl, n-pentyl, n-hexyl, isoheptyl, n-nonyl, n-decyl, isohexyl, 2-ethyloctyl, isooctyl and 2-ethylhexyl acrylates and methacrylates. Preferred alkyl acrylates include isooctyl acrylate, 2-ethylhexyl acrylate, butyl acrylate, and cyclohexyl acrylate. The most preferred alkyl acrylate is isooctyl acrylate. Preferred alkyl methacrylates include butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, and methyl methacrylate.
  • The copolymer further optionally comprises one or more ethylenically unsaturated B monomers copolymerizable with the A monomer. Suitable B monomers include those comprising a functional group selected from the group consisting of carboxylic acid, carboxylic acid ester, hydroxy, sulfonamide, urea, carbamate, carboxamide, amine, oxy, oxo, and cyano. The B monomers are preferably used in a total amount from 0 to about 60 percent by weight, more preferably greater than 25 to about 50 percent by weight, and most preferably greater than 30 to about 50 percent by weight (based on the total weight of all the monomers in the copolymer). Preferred B monomers include but are not limited to acrylic acid, methacrylic acid, maleic acid, a hydroxyalkyl acrylate containing 2 to 4 carbon atoms in the hydroxyalkyl group, a hydroxyalkyl methacrylate containing 2 to 4 carbon atoms in the hydroxyalkyl group, acrylamide, methacrylamide, an alkyl substituted acrylamide containing 1 to 8 carbon atoms in the alkyl group, diacetone acrylamide, a dialkyl acrylamide having 1 or 2 carbon atoms in the alkyl group, N-vinyl-N-methyl acetamide, N-vinyl valerolactam, N-vinyl caprolactam, N-vinyl-2-pyrrolidone, glycidyl methacrylate, alkoxyethyl acrylate containing 1 to 4 carbon atoms in the alkoxy group, alkoxyethyl methacrylate containing 1 to 4 carbon atoms in the alkoxy group, 2-ethoxyethoxyethyl acrylate, furfuryl methacrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate, propylene glycol monomethacrylate, propylene glycol monoacrylate, polyethylene glycol acrylate, polyethylene glycol methyl ether acrylate, polyethylene glycol methacrylate, polyethylene oxide methyl ether acrylate, di(lower)alkylamino ethyl acrylate, di(lower)alkylamino ethyl methacrylate, di(lower)alkylaminopropyl methacrylamide, acrylonitrile, methacrylonitrile, and vinyl acetate.
  • Particularly preferred B monomers include hydroxyethyl acrylate, acrylamide, hydroxyethyl methacrylate, glyceryl acrylate, N,N-dimethyl acrylamide, 2-ethoxyethoxyethyl acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, vinyl acetate and acrylic acid. Most preferred B monomers include hydroxyethyl acrylate and N,N-dimethyl acrylamide, and a combination thereof.
  • As noted in detail below, the compositions of the invention can contain a relatively high loading of softener. In order to accommodate such loadings the copolymer incorporates a macromonomer, preferably a substantially linear macromonomer, copolymerizable with the A and B monomers defined above and having a molecular weight in the range 500-500,000, preferably 2,000-100,000, and more preferably 5,000-30,000, in an amount (e.g., at least about 0.1 percent by weight based on the total weight of comonomers in the copolymer) effective to control the rheological properties of the copolymer. The macromonomer is generally present in an amount of not more than about 30% by weight based on the total weight of all monomers in the copolymer, more preferably not more than 15%, and most preferably not more than 5%.
  • The macromonomer can be a compound of the formula
    Figure US20060099242A1-20060511-C00001

    wherein X is a moiety comprising an ethylenically unsaturated group (such as
    Figure US20060099242A1-20060511-C00002

    vinyl, or 2-propenyl) copolymerizable with the A and B monomers, R2 is a hydrogen atom or a lower alkyl group, R3 is a lower alkyl group or the residue of a free-radical initiator, n is an integer from 20 to 500 and each R4 is a monovalent radical independently selected from the group consisting of
    Figure US20060099242A1-20060511-C00003

    —CN, and —CO2R6 wherein R5 is a hydrogen atom or a lower alkyl group, and R6 is a lower alkyl group. Suitable macromonomers include polymethylmethacrylate, styrene/acrylonitrile, and polystyrene macromonomers. Polymethylmethacrylate macromonomers are preferred.
  • Exemplary macromonomers include those having a general formula selected from the group consisting of
    Figure US20060099242A1-20060511-C00004

    wherein R7 is a hydrogen atom or a lower alkyl group, R8 is hydrogen or methyl, and R2, R3, and R4 are as defined above.
  • The macromonomers shown in the formulae directly above are functionally terminated polymers having a single functional group and are sometimes identified as a “semitelechelic” polymers. (Vol. 27 “Functionally Terminal Polymers via Anionic Methods” D. N. Schultz et al., pages 427-440, Anionic Polymerization, American Chemical Society (1981)). Such macromonomers are known and may be prepared by the method disclosed in U.S. Pat. Nos. 3,786,116, 3,842,059 (both to Milkovich et al.), and U.S. Pat. No. 4,732,808 (Krampe et al.), the disclosures of which are incorporated herein by reference for the description of the preparation of the macromonomers. Certain macromonomers are commercially available, for example those polymethylmethacrylate macromonomers sold under the trade designation “ELVACITE” by ICI Acrylics (e.g., ELVACITE 1010, a polymethylmethacrylate macromonomer having an inherent viscosity of 0.070-0.080, a Tg of 105° C., a GPC weight average molecular weight of 7,000-10,000, a GPC number average molecular weight of 2,500-4,000, and a polydispersity of 2.5-3.0, and ELVACITE 1020, a polymethylmethacrylate macromonomer having an inherent viscosity of 0.085-0.10, a Tg of 105° C., a GPC weight average molecular weight of 12,000-15,000, a GPC number average molecular weight of 4,600-6,000, and a polydispersity of 2.5-3.0).
  • A matrix of the invention further comprises a softener. The softener is dissolved in the matrix. As used herein the term “softener” refers to a generally oily material that raises the compliance value or lowers the glass transition temperature (Tg) of the matrix as compared to the copolymer.
  • Suitable softeners include certain materials that have been used as skin penetration enhancers or solubilizers in transdermal drug delivery systems. Exemplary materials include C8-C22 fatty acids such as isostearic acid, octanoic acid, and oleic acid, C8-C22 fatty alcohols such as oleyl alcohol and lauryl alcohol, lower alkyl esters of C8-C22 fatty acids such as ethyl oleate, isopropyl myristate, butyl stearate, and methyl laurate, di(lower) alkyl esters of C6-C8 diacids such as diisopropyl adipate, monoglycerides of C8-C22 fatty acids such as glyceryl monolaurate, tetrahydrofurfuryl alcohol polyethylene glycol ether, polyethylene glycol, propylene glycol, 2-(2-ethoxyethoxy)ethanol, diethylene glycol monomethyl ether, N,N-dimethyldodecylamine-N-oxide, and combinations of the foregoing. Alkylaryl ethers of polyethylene oxide, polyethylene oxide monomethyl ethers, and polyethylene oxide dimethyl ethers are also suitable, as are solubilizers such as dimethyl sulfoxide, glycerol, ethanol, ethyl acetate, acetoacetic ester, N-methyl pyrrolidone, and isopropyl alcohol. Likewise certain drug substances function as softeners, including nicotine, nitroglycerine, chlorpheniramine, nicotinic acid benzyl ester, orphenadrine, scopolamine, and valproic acid.
  • Preferred softeners include glyceryl monolaurate, diethylene glycol monomethyl ether, tetrahydrofurfuryl alcohol polyethylene glycol ether, diisopropyl adipate, propylene glycol, isopropyl myristate, ethyl oleate, methyl laurate, 2-(2-ethoxyethoxy)ethanol, and oleyl alcohol.
  • Preferably the softener is present in not more than that amount which causes the matrix to leave substantial copolymer residue on the skin when peeled from the skin.
  • While many of the softeners enumerated above are known to affect skin penetration rate, certain softeners affect aspects of performance other than and in addition to skin penetration rate. For example, they are useful in softening or increasing the compliance value and/or lowering the glass transition temperature of otherwise non-compliant (and therefore non-pressure sensitive adhesive) copolymers, rendering them suitable for use as pressure sensitive skin adhesives. However, the softeners enumerated above are generally oily substances that function as plasticizers when incorporated in a copolymer. Such materials can affect adversely the performance of a transdermal matrix, for example by softening it to the point of cohesive failure (where substantial copolymer residue is left on the skin upon removal of the device from the skin), or by separating from the continuous phase and forming an oily layer that reduces adhesion of an otherwise adhesive matrix. Also, certain softeners (e.g., glyceryl monolaurate, N,N-dimethyldodecylamine-N-oxide) can crystallize in the copolymer, resulting in unstable properties (e.g., unstable drug delivery rates in a transdermal drug delivery device).
  • Possible adverse effects of softeners notwithstanding, with proper selection of softeners, monomers and relative amounts thereof, and inherent viscosity of the copolymer, softeners can be included in amounts of up to about 60% by weight based on the total weight of the matrix without cohesive failure or crystal formation, and often without loss of suitable skin adhesion. Softener amounts in excess of 20% and preferably less than about 45% by weight based on the total weight of the matrix have been found to be preferred in order to obtain optimal flux rates in transdermal devices containing the hormone levonorgestrel, and amounts in excess of 30% and less than 45% are more preferred.
  • The properties desirable in a transdermal matrix are well known to those skilled in the art. For example, it is necessary that the matrix remain in intimate contact with the skin in order to deliver drug at a stable rate. It is desirable for a matrix to have sufficiently little cold flow such that it is stable to flow upon storage. It is also preferred that it release cleanly from the skin, and that it adhere to the skin. In order to achieve skin contact, clean release, preferred levels of adhesion, and resistance to cold flow the amount and structure of the comonomers in the copolymer, the inherent viscosity of the copolymer, and the amount and structure of the softener are selected such that the matrix has a compliance value (measured according to the test method set forth in detail below) in the range 2×10−6 cm2/dyne to about 4×10−3 cm2/dyne, preferably in the range 3×10−6 cm2/dyne to about 1×10−3 cm2/dyne and even more preferably in the range 1×10−5 cm2/dyne to 5×104 cm2/dyne. Compliance values outside the broad range recited above sometimes are obtained from materials that are suitable matrices, and even for some that are suitable for use as pressure sensitive skin adhesives. However, those matrices having substantially lower compliance values will generally be relatively stiff and have less than optimal skin contact and adhesion to skin. Those having substantially higher compliance values will generally have less than optimal cold flow and might leave substantial residue when removed from the skin. Also, a matrix of the invention that is intended for use as a pressure sensitive skin adhesive preferably has a glass transition temperature of −10° C. or lower.
  • Particularly suitable compositions can be readily selected for a given set of desired properties considering the effects of comonomers, inherent viscosity, and softeners on the properties of the resulting matrix. Certain of such effects are well known to those skilled in the art, and others are described below:
  • Strongly hydrogen bonding B monomers have been found to increase the amount of polar or hydrogen bonding substances that can be dissolved in a matrix and to decrease the amount of generally nonpolar substances that can be dissolved. Further, a strongly hydrogen bonding copolymer will be a relatively less compliant material. Therefore if B monomers such as acrylic acid or acrylamide are used a lesser amount of macromonomer will be required in order to lower compliance sufficiently to avoid cohesive failure.
  • Macromonomers also decrease compliance. Therefore a given target compliance value can often be achieved using a lower inherent viscosity A/B copolymer combination and a greater amount of macromonomer, or a higher inherent viscosity A/B combination and less macromonomer.
  • A relatively high compliance pressure sensitive skin adhesive involving a macromonomer will generally have better adhesive properties than an A/B copolymer having the same compliance value. Increasing macromonomer content generally increases the amount of softener that can be loaded into a pressure sensitive skin adhesive without cohesive failure. Increasing inherent viscosity will also tend to allow higher softener loading without cohesive failure.
  • A change that would increase inherent viscosity of a copolymer (such as increased molecular weight through selection of polymerization conditions and/or solvent ratios) will generally decrease compliance.
  • Further conventional components, such as stabilizers and reinforcers (e.g., colloidal silicon dioxide), can be incorporated into the matrix if necessary or desirable.
  • Of course such high levels of certain individual softeners (e.g., N,N-dimethyldodecylamine-N-oxide) are to be avoided in order to avoid excessive skin irritation.
  • The matrix of a transdermal drug delivery device of the invention further comprises a drug. Suitable drugs include those active substances enumerated above in connection with softeners, as well as antiinflammatory drugs, both steroidal (e.g., hydrocortisone, prednisolone, triamcinolone) and nonsteroidal (e.g., naproxen, piroxicam); antibacterials (e.g., penicillins such as penicillin V, cephalosporins such as cephalexin, erythromycin, tetracycline, gentamycin, sulfathiazole, nitrofurantoin, and quinolones such as norfloxacin, flumequine, and ibafloxacin); antiprotazoals (e.g., metronidazole); antifungals (e.g., nystatin); coronary vasodilators (e.g., nitroglycerin); calcium channel blockers (e.g., nifedipine, diltiazem); bronchodilators (e.g., theophylline, pirbuterol, salmeterol, isoproterenol); enzyme inhibitors such as collagenase inhibitors, protease inhibitors, elastase inhibitors, lipoxygenase inhibitors (e.g., A64077), and angiotensin converting enzyme inhibitors (e.g., captopril, lisinopril); other antihypertensives (e.g., propranolol); leukotriene antagonists (e.g., IC1204,219); anti-ulceratives such as H2 antagonists; steroidal hormones (e.g., progesterone, testosterone, estradiol, levonorgestrel); antivirals and/or immunomodulators (e.g., 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine, 1-(2-hydroxy-2-methylpropyl)-1H-imidazo[4,5-c]quinoline-4-amine, and other compounds disclosed in U.S. Pat. No. 4,689,338, incorporated herein by reference, acyclovir); local anesthetics (e.g., benzocaine, propofol); cardiotonics (e.g., digitalis, digoxin); antitussives (e.g., codeine, dextromethorphan); antihistamines (e.g., diphenhydramine, chlorpheniramine, terfenadine); narcotic analgesics (e.g., morphine, fentanyl); peptide hormones (e.g., human or animal growth hormones, LHRH); cardioactive products such as atriopeptides; proteinaceous products (e.g., insulin); enzymes (e.g., anti-plaque enzymes, lysozyme, dextranase); antinauseants (e.g., scopolomine); anticonvulsants (e.g., carbamazine); immunosuppressives (e.g., cyclosporine); psychotherapeutics (e.g., diazepam); sedatives (e.g., phenobarbital); anticoagulants (e.g., heparin); analgesics (e.g., acetaminophen); antimigraine agents (e.g., ergotamine, melatonin, sumatriptan); antiarrhythmic agents (e.g., flecainide); antiemetics (e.g., metaclopromide, ondansetron); anticancer agents (e.g., methotrexate); neurologic agents such as anxiolytic drugs; hemostatics; anti-obesity agents; and the like, as well as pharmaceutically acceptable salts and esters thereof.
  • The drug is present in a transdermal delivery device of the invention in a therapeutically effective amount, i.e., an amount effective to bring about a desired therapeutic result in the treatment of a condition. The amount that constitutes a therapeutically effective amount varies according to the particular drug incorporated in the device, the condition being treated, any drugs being coadministered with the selected drug, desired duration of treatment, the surface area of the skin over which the device is to be placed, and other components of the transdermal delivery device. Accordingly it is not practical to enumerate particular preferred amounts but such can be readily determined by those skilled in the art with due consideration of these factors. Generally, however, a drug is present in a transdermal device of the invention in an amount of about 0.01 to about 30 percent by weight based on the total weight of the matrix. In a preferred embodiment the drug is substantially fully dissolved, and the matrix is substantially free of solid undissolved drug.
  • A transdermal delivery device or an adhesive coated sheet material of the invention also comprises a backing. The backing is flexible such that the device conforms to the skin. Suitable backing materials include conventional flexible backing materials used for pressure sensitive tapes, such as polyethylene, particularly low density polyethylene, linear low density polyethylene, high density polyethylene, polyester, polyethylene terephthalate, randomly oriented nylon fibers, polypropylene, ethylene-vinyl acetate copolymer, polyurethane, rayon and the like. Backings that are layered, such as polyethylene-aluminum-polyethylene composites, are also suitable. The backing should be substantially inert to the ingredients of the matrix layer.
  • The copolymers described above for use in a device of the invention can be prepared by methods well known to those skilled in the art and described, for example, in U.S. Pat. No. RE 24,906 (Ulrich) and U.S. Pat. No. 4,732,808 (Krampe at al.), the disclosures of which are incorporated herein by reference.
  • Matrices of the invention can be used in the form of an adhesive coated sheet material. Such sheet materials are preferably prepared by combining the copolymer, the softener, and any additional components (e.g., a drug) with an organic solvent (e.g., ethyl acetate, methanol, acetone, 2-butanone, ethanol, isopropyl alcohol, toluene, alkanes, or a mixture thereof) to afford a coating formulation. The total solids content of the coating formulation is preferably in a range of about 15 to 40 percent by weight, and more preferably in the range of about 20 to 35 percent by weight, based on the total weight of the coating formulation. The components of the coating formulation are combined and mixed (e.g., by shaking or rolling) until a homogeneous formulation is obtained, then allowed to stand to dissipate air bubbles. The resulting coating formulation is knife coated onto a suitable release liner to provide a predetermined uniform thickness of the coating formulation. Suitable release liners include conventional release liners comprising a known sheet material such as a polyester web, a polyethylene web, or a polystyrene web, or a polyethylene-coated paper, coated with a suitable fluoropolymer or silicone based coating. The coated release liner is dried and then laminated onto a backing material using conventional methods. Alternatively the coating formulation can be coated directly onto a backing. A transdermal device involving a matrix that is not a skin adhesive can be fixed to the skin by conventional means such as a peripheral ring of a pressure sensitive skin adhesive.
  • Adhesive coated sheet materials of the invention can be made in the form of an article such as a tape, a patch, a sheet, a dressing or any other form known to those skilled in the art. Transdermal drug delivery devices generally are made in the form of a patch of a size suitable to deliver a preselected amount of a drug through the skin. Generally the transdermal device will have a surface area of about 1 cm2 to about 40 cm2.
  • The examples set forth below are intended to illustrate the invention.
  • Compliance Test Method
  • The compliance values given in the examples below were obtained using a modified version of the Creep Compliance Procedure described in U.S. Pat. No. 4,737,559 (Kellen), the disclosure of which is incorporated herein by reference. The release liner is removed from a sample of the material to be tested. The exposed adhesive surface is folded back on itself in the lengthwise direction to produce a “sandwich” configuration, i.e., backing/adhesive/backing. The “sandwiched” sample is passed through a laminator, or alternatively rolled with a hand-operated roller, then two test samples of equal area are cut using a rectangular die. One test sample is centered on a first stationary plate of a shear-creep rheometer with the long axis of the test sample centered on the short axis of the plate. The small, non-stationary plate of the shear-creep rheometer is centered over the first sample on the first stationary plate such that the hook is facing up and toward the front of the rheometer. The second test sample is centered on the upper surface of the small, non-stationary plate matching the axial orientation of the first test sample. A second stationary plate is placed over the second test sample and the entire assembly is clamped into place. The end of the small, non-stationary plate that is opposite the end with the hook is connected to a chart recorder. A string is connected to the hook of the small, non-stationary plate and extended over the front pulley of the rheometer. A weight (e.g., 500 g) is attached to the free end of the string. The chart recorder is started and at the same time the weight is quickly released so that it hangs free. The weight is removed after exactly 3 minutes has elapsed. The displacement is read from the chart recorder. The compliance is then calculated using the equation: J = 2 AX hf
    where A is the area of one face of the test sample, h is the thickness of the adhesive mass (i.e., two times the matrix thickness of the sample being tested), X is the displacement and f is the force due to the mass attached to the string. Where A is expressed in cm2, h in cm, X in cm and f in dynes, the compliance value is given in cm2/dyne.
  • Determination of Isopropyl Myristate Content
  • The amount of isopropyl myristate present in a pressure sensitive skin adhesive composition was determined using the following test method. The release liner is removed from a sample of the material to be tested. The adhesive coating is manually scraped from the backing film. A 15 mg portion of the adhesive coating is placed into a clean sample vial. Tetrahydrofuran (2 mL containing 0.10 mg/mL of lauryl acrylate which serves as an internal standard) is added and the sample is mixed until all of the adhesive coating is dissolved. A portion of the solution is placed in an autosampler vial and analyzed by gas chromatography using the following conditions: Instrument: HP5890; Column: DB-5, 30 meter, 0.25 μM film, 0.25 mm I.D.; Temperature Program: Initial 100° C., ramp 10° C./min to 300° C., hold 2 min; Injection: 2 μL, split 25/1, 300° C.; Detection: FID, 300° C. Isopropyl myristate standards are prepared using copolymer samples containing no isopropyl myristate. Separate standard curves are prepared for each copolymer. Each sample is run in duplicate.
  • Determination of Oleyl Alcohol Content
  • The amount of oleyl alcohol present in a pressure sensitive skin adhesive composition was determined using the following test method. The release liner is removed from a sample of the material to be tested. The adhesive coating is manually scraped from the backing film. A 15 mg portion of the adhesive coating is placed into a clean sample vial. Tetrahydrofuran (10 mL containing 0.1 mg/mL of dodecyl alcohol which serves as an internal standard) is added and the sample is mixed until all of the adhesive coating is dissolved. A portion of the solution is placed in an autosampler vial and analyzed by gas chromatography using the following conditions: Instrument: HP5890; Column: DB-wax, 15 meter, 0.25 μM film, 0.25 mm I.D.; Temperature Program: Initial 60° C., ramp 7° C./min to 250° C., hold 2 min; Injection: 2 μL, split 25/1, 250° C.; Detection: FID, 250° C. Oleyl alcohol standards are prepared using copolymer samples containing no oleyl alcohol. Separate standard curves are prepared for each copolymer. Each sample is run in duplicate.
  • Preparation of Copolymers
  • The copolymers used in the examples that follow were prepared generally according to the methods described below. The inherent viscosity values which are reported were measured by conventional means using a Cannon-Fenske #50 viscometer in a water bath controlled at 27° C. to measure the flow time of 10 milliliters of a polymer solution (0.15-0.25 g per deciliter of polymer in ethyl acetate, unless other wise indicated). The test procedure followed and the apparatus used are described in detail in “Textbook of Polymer Science”, F. W. Billmeyer, Wiley Interscience, Second Edition, 1971, Pages 84 and 85.
  • Preparation of Isooctyl Acrylate: Dimethylacrylamide: Hydroxyethyl Acrylate: Polymethylmethacrylate Macromonomer (60/15/15/10) Copolymer
  • Isooctyl acrylate (141.0 g), N,N-dimethylacrylamide (35.25 g), hydroxyethyl acrylate (35.25 g), ELVACITE™ 1010 polymethylmethacrylate macromonomer (23.50 g, ICI), ethyl acetate (251.75 g), isopropanol (13.25 g) and 2,2′-azobis(2,4-dimethylpentanenitrile) (0.47 g, VAZO™ 52 available from DuPont) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 2 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed, opened, charged with an additional 0.47 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours. The percent solids of the resulting solution of copolymer was 45.51%. The inherent viscosity was 0.469 deciliter/gram in ethyl acetate at 0.25 g/dl.
  • Preparation of Isooctyl Acrylate: Dimethylacrylamide: Polymethylmethacrylate Macromonomer (50/40/10) Copolymer
  • Isooctyl acrylate (117.5 g), N,N-dimethylacrylamide (94.0 g), ELVACITE™ 1010 polymethylmethacrylate macromonomer (23.5 g), ethyl acetate (251.75 g), isopropanol (13.25 g) and VAZO 52 (0.47 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 2 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed, opened, charged with an additional 0.47 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours. The percent solids of the resulting solution of copolymer was 46.19%. The inherent viscosity was 0.532 dl/g in ethyl acetate at 0.25 g/dl.
  • Preparation of Isooctyl Acrylate: Dimethylacrylamide: Polymethylmethacrylate Macromonomer (63/27/10) Copolymer
  • Isooctyl acrylate (157.5 g), N,N-dimethylacrylamide (67.5 g), ELVACITE 1010 macromonomer (25.0 g), ethyl acetate (261.25 g), isopropanol (13.75 g) and VAZO 52 (0.5 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours. The percent solids of the resulting solution of copolymer was 47.8%. The inherent viscosity was 0.394 dl/g in ethyl acetate at 0.15 g/dl.
  • Preparation of Isooctyl Acrylate: Hydroxyethyl Acrylate: Polymethylmethacrylate Macromonomer (55/40/5) Copolymer
  • Molecular sieves (50 g of 8-12 mesh, 4A, 1.6 mm beads) were added to each of 4 quart (0.95 L) wide mouth jars. The jars were filled with isooctyl acrylate, hydroxyethyl acrylate, ethyl acetate, and isopropanol respectively. The jars were tightly capped and allowed to stand for at least 24 hours. The molecular sieves were then removed by filtration through Whatman filter paper No. 4. The “dry” monomers and solvents were then stored in tightly capped bottles until used to prepare copolymer. Isooctyl acrylate (137.5 g), hydroxyethyl acrylate (100.0 g), ELVACITE™ 1010 polymethylmethacrylate macromonomer (12.5 g), ethyl acetate (318.75 g), isopropanol (56.25 g) and VAZO 52 (0.5 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours. The percent solids of the resulting solution of copolymer was 39.30%. The inherent viscosity was 0.335 dl/g in ethyl acetate at 0.15 g/dl.
  • Preparation of Isooctyl Acrylate: Hydroxyethyl acrylate: Polystyrene Macromonomer (54/36/10) Copolymer
  • Isooctyl acrylate (135 g), hydroxyethyl acrylate (90 g), polystyrene macromonomer (25.0 g), ethyl acetate (356.25 g), isopropanol (18.75 g) and VAZO 52 (0.5 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours. The percent solids of the resulting solution of copolymer was 41.2%. The inherent viscosity was 0.75 dl/g in ethyl acetate at 0.15 g/dl.
  • Preparation of Isooctyl Acrylate: Hydroxyethyl acrylate: Polystyrene Macromonomer (54/36/10) Copolymer
  • Isooctyl acrylate (135 g), hydroxyethyl acrylate (90 g), polystyrene macromonomer (25.0 g), ethyl acetate (318.75 g), isopropanol (56.25 g) and VAZO 52 (0.5 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours. The percent solids of the resulting solution of copolymer was 39.6%. The inherent viscosity was 0.29 dl/g in ethyl acetate at 0.15 g/dl.
  • Preparation of Isooctyl Acrylate:Polystyrene Macromonomer (95/5) Copolymer
  • Isooctyl acrylate (237.5 g), polystyrene macromonomer (12.5 g), ethyl acetate (261.25 g), isopropanol (13.75 g) and VAZO 52 (0.5 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed, opened, charged with an additional 0.5 g of VAZO 52, repurged with nitrogen as before, sealed and placed in the launderometer for an additional 24 hours. The percent solids of the resulting solution of copolymer was 47.5%. The inherent viscosity was 0.45 dl/g in ethyl acetate at 0.15 g/dl.
  • Preparation of Isooctyl Acrylate: Vinyl Acetate: Polystyrene Macromonomer (61/37/2) Copolymer
  • Isooctyl acrylate (134.2 g), vinyl acetate (81.4 g), polystyrene macromonomer (4.4 g), 2,2′-azobis(isobutyronitrile) (0.55 g), ethyl acetate (126.0 g), and toluene (54.0 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 2 minutes. The bottle was sealed and placed in a rotating water bath at 60° C. for 24 hours. The resulting copolymer solution was diluted with ethyl acetate (150 mL). The inherent viscosity in ethyl acetate at 0.2 g/dl was measured at 0.87 dl/g.
  • Preparation of Isooctyl Acrylate: Vinyl Acetate: Polystyrene Macromonomer (61/37/2) Copolymer
  • Isooctyl acrylate (134.2 g), vinyl acetate (81.4 g), polystyrene macromonomer (4.4 g), 2,2′-azobis(isobutyronitrile) (0.55 g), ethyl acetate (144.0 g), and toluene (36.0 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 2 minutes. The bottle was sealed and placed in a rotating water bath at 60° C. for 24 hours. The resulting copolymer solution was diluted with ethyl acetate (150 mL). The inherent viscosity in ethyl acetate at 0.2 g/dl was measured at 1.02 dl/g.
  • Preparation of Isooctyl Acrylate: Vinyl Acetate: Polystyrene Macromonomer (58/37/5) Copolymer
  • Isooctyl acrylate (127.6 g), vinyl acetate (81.4 g), polystyrene macromonomer (11.0 g), 2,2′-azobis(isobutyronitrile) (0.55 g), ethyl acetate (126.0), and toluene (54.0 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 2 minutes. The bottle was sealed and placed in a rotating water bath at 60° C. for 24 hours. The resulting copolymer solution was diluted with ethyl acetate (150 mL). The inherent viscosity in ethyl acetate at 0.2 g/dl was measured at 0.89 dl/g.
  • Preparation of Isooctyl Acrylate: Vinyl Acetate: Polystyrene Macromonomer (58/37/5) Copolymer
  • Isooctyl acrylate (127.6 g), vinyl acetate (81.4 g), polystyrene macromonomer (11.0 g), 2,2′-azobis(isobutyronitrile) (0.55 g), ethyl acetate (144.0), and toluene (36.0 g) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 2 minutes. The bottle was sealed and placed in a rotating water bath at 60° C. for 24 hours. The resulting copolymer solution was diluted with ethyl acetate (150 mL). The inherent viscosity in ethyl acetate at 0.2 g/dl was measured at 1.02 dl/g.
  • Preparation of Isooctyl Acrylate: Vinyl Acetate: Polymethylmethacrylate Macromonomer (58/37/5) Copolymer
  • Isooctyl acrylate (145.0 g), vinyl acetate (92.5 g), ELVACITE™ 1020 polymethylmethacrylate macromonomer (12.5 g), 2,2′-azobis(2,4-dimethylpentanenitrile) (0.5 g), and ethyl acetate (282.0) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed from the bath, opened, charged with an additional 0.5 g of 2,2′-azobis(2,4-dimethylpentanenitrile), deoxygenated as before, sealed and returned to the rotating water bath for an additional 24 hours. The inherent viscosity in ethyl acetate at 0.15 g/dl was measured at 1.05 dl/g.
  • Preparation of Isooctyl Acrylate: Vinyl Acetate: Polymethylmethacrylate Macromonomer (58/37/5) Copolymer
  • Isooctyl acrylate (145.0 g), vinyl acetate (92.5 g), ELVACITE™ 1020 polymethylmethacrylate macromonomer (12.5 g), 2,2′-azobis(2,4-dimethylpentanenitrile) (0.5 g), and ethyl acetate (250.0) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed from the bath, opened, charged with an additional 0.5 g of 2,2′-azobis(2,4-dimethylpentanenitrile), deoxygenated as before, sealed and returned to the rotating water bath for an additional 24 hours. The inherent viscosity in ethyl acetate at 0.15 g/dl was measured at 1.15 dl/g.
  • Preparation of Isooctyl Acrylate: Vinyl Acetate: Polymethylmethacrylate Macromonomer (53/37/10) Copolymer
  • Isooctyl acrylate (132.5 g), vinyl acetate (92.5 g), ELVACITE™ 1020 polymethylmethacrylate macromonomer (25.0 g), 2,2′-azobis(2,4-dimethylpentanenitrile) (0.5 g), and ethyl acetate (230.8) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed from the bath, opened, charged with an additional 0.5 g of 2,2′-azobis(2,4-dimethylpentanenitrile), deoxygenated as before, sealed and returned to the rotating water bath for an additional 24 hours. The inherent viscosity in ethyl acetate at 0.15 g/dl was measured at 0.815 dl/g.
  • Preparation of Isooctyl Acrylate: Vinyl Acetate: Polymethylmethacrylate Macromonomer (53/37/10) Copolymer
  • Isooctyl acrylate (132.5 g), vinyl acetate (92.5 g), ELVACITE™ 1020 polymethylmethacrylate macromonomer (25.0 g), 2,2′-azobis(2,4-dimethylpentanenitrile) (0.5 g), and ethyl acetate (204.5) were charged into a one liter bottle. The mixture was deoxygenated by purging with nitrogen (1 L/min) for 3 minutes. The bottle was sealed and placed in a rotating water bath at 45° C. for 24 hours. The bottle was removed from the bath, opened, charged with an additional 0.5 g of 2,2′-azobis(2,4-dimethylpentanenitrile), deoxygenated as before, sealed and returned to the rotating water bath for an additional 24 hours. The inherent viscosity in ethyl acetate at 0.15 g/dl was measured at 0.92 dl/g.
  • Preparation of “Dried” Adhesive
  • Dried adhesive is prepared by knife coating a 25 to 50 percent solids solution of the adhesive copolymer at a thickness of 20 to 25 mil (500 to 635 μM) onto a release liner. The adhesive coated release liner is oven dried (e.g. 4 min at 110° F. (43° C.), 2 minutes at 185° F. (85° C.), and 10 minutes at 300° F. (149° C.)) to remove solvent and reduce the amount of residual monomers. The dried adhesive copolymer is stripped off the release liner and stored in a glass container.
  • In the examples that follow all percentages are weight/weight unless otherwise indicated. The weight percentages of the formulations after drying are calculated values, unless otherwise indicated, and assume that only solvent was evaporated during the drying process. The abbreviations IOA, HEA, DMACM, PSMac, PMMAMac, and VoAc are used for isooctyl acrylate, hydroxyethyl acrylate, dimethylacrylamide, polystyrene macromonomer, polymethylmethacrylate macromonomer, and vinyl acetate respectively. The polystyrene macromonomer used in the copolymers in the examples below is that macromonomer designated as Example M-1 in U.S. Pat. No. 4,732,808 (Krampe). Except as noted, the polymethylmethacrylate macromonomer used was ELVACITE 1010. The abbreviations BS, DDAO, DGME, DIPA, EO, GML, IPM, ISA, LG, ML, OA and PG are used for butyl stearate, N,N-dimethyldodecylamine-N-oxide, diethylene glycol monoethyl ether, diisopropyl adipate, ethyl oleate, glyceryl monolaurate, isopropyl myristate, isostearic acid, lauryl glycol, methyl laurate, oleyl alcohol and propylene glycol respectively. The abbreviation LN is used for levonorgestrel.
  • EXAMPLE 1
  • Copolymer (50 g of 54/36/10 IOA/HEA/PSMac, 41% solids in 95/5 ethyl acetate/isopropanol, inherent viscosity (“iv”)=0.75 dl/g) and isopropyl myristate (1.08 g) were combined in a glass jar. The jar was capped and placed on a roller for about 24 hours. The resulting formulation was knife coated at a wet thickness of 12 mil (305 μM) onto a silicone release liner [5 mil (127 μM) Daubert PESTER]. The coated release liner was oven dried at 110° F. (43° C.) for 4 minutes then at 180° F. (82° C.) for 4 minutes. The resulting coating contained 95 percent 54/36/10 IOA/HEA/PSMac copolymer and 5 percent isopropyl myristate. The coated liner was laminated to the corona treated side of a 3 mil (76 μM) polyethylene film. The compliance was measured using the test method described above and found to be 0.42×10−5 cm2/dyne (average of three independent determinations).
  • EXAMPLES 2-33
  • Using the general method of Example 1, a series of coated sheet materials in which the copolymer, softener and amount of softener were varied was prepared. The copolymer, identity and amount of softener, wet coating thickness, and the compliance values are shown in Table 1. Unless otherwise indicated, each J-value is the average of three independent determinations. When the compliance was “not run”, the formulation was too soft to be tested.
    TABLE 1
    Copolymer Wet Coating J-value
    Example iv Thickness (×10−5 cm2/
    Number Type (dl/g) Softener (mil/μM) dyne)
    2 54/36/10 IOA/HEA/PSMac 0.75 10% IPM 12/305 0.57
    3 54/36/10 IOA/HEA/PSMac 0.75 13% IPM 12/305 0.57
    4 54/36/10 IOA/HEA/PSMac 0.75 17% IPM 10/254 0.80
    5 54/36/10 IOA/HEA/PSMac 0.75 20% IPM 10/254 1.12
    6 54/36/10 IOA/HEA/PSMac 0.75 25% IPM  8/203 2.26
    7 54/36/10 IOA/HEA/PSMac 0.29  5% IPM 12/305 1.09
    8 54/36/10 IOA/HEA/PSMac 0.29 10% IPM 12/305 1.65
    9 54/36/10 IOA/HEA/PSMac 0.29 13% IPM 12/305 1.83
    10 54/36/10 IOA/HEA/PSMac 0.29 17% IPM 10/254 2.131
    11 54/36/10 IOA/HEA/PSMac 0.29 20% IPM 10/254 3.872
    12 54/36/10 IOA/HEA/PSMac 0.29 25% IPM  8/203 14.2
    13 51/34/15 IOA/HEA/PMMAMac 0.38 10% IPM 12/305 0.28
    14 51/34/15 IOA/HEA/PMMAMac 0.38 20% IPM 10/254 0.46
    15 51/34/15 IOA/HEA/PMMAMac* 0.42 10% IPM 12/305 0.28
    16 51/34/15 IOA/HEA/PMMAMac* 0.42 20% IPM 10/254 0.38
    17 72/13/15 IOA/HEA/PMMAMac 0.36 10% IPM 12/305 0.38
    18 72/13/15 IOA/HEA/PMMAMac 0.36 20% IPM 10/254 0.53
    19 85/15 IOA/PMMAMac 0.48 10% IPM 12/305 not run
  • TABLE 1
    Copolymer Wet Coating J-value
    Example iv Thickness (×10−5 cm2/
    Number Type (dl/g) Softener (mil/μM) dyne)
    20 85/15 IOA/PMMAMac 0.48 20% IPM 10/254 off scale
    C1 57/38/5 IOA/HEA/PSMac 0.32 none  6/152 1.29
    21 54/36/10 IOA/HEA/PSMac 0.29 30% IPM  6/152 66.8
    22 51/34/15 IOA/HEA/PSMac 0.28 30% IPM  6/152 18.2
    23 51/34/15 IOA/HEA/PSMac 0.28 15% IPM 10/254 0.76
    C2 57/38/5 IOA/HEA/PSMac 0.65 none  6/152 0.57
    24 54/36/10 IOA/HEA/PSMac 0.75 35% IPM  6/152 11.2
    25 51/34/15 IOA/HEA/PSMac 0.73 50% IPM  6/152 155
    26 51/34/15 IOA/HEA/PSMac 0.73 40% IPM  6/152 27.8
    27 51/34/15 IOA/HEA/PSMac 0.73 30% IPM  6/152 2.36
    28 51/34/15 IOA/HEA/PSMac 0.73 50% OA 10/254 not run
    29 51/34/15 IOA/HEA/PSMac 0.73 40% OA 10/254 3.59
    30 51/34/15 IOA/HEA/PSMac 0.73 30% OA 10/254 0.64
    31 51/34/15 IOA/HEA/PSMac 0.73 20% OA 10/254 0.42
    32 51/34/15 IOA/HEA/PSMac 0.73 40% ISA 10/254 0.79
    33 51/34/15 IOA/HEA/PSMac 0.73 40% BS 10/254 not run

    1average of 2 determinations

    2average of 4 determinations

    PMMAMac* ELVACITE 1020
  • EXAMPLES 34-38
  • Using the general method of Example 1, a series of coated sheet materials in which the copolymer was varied but the amount of IPM was theoretically held constant was prepared. The copolymer and amount (both calculated and determined using a modification of the method described above) of IPM, wet coating thickness, and the compliance values are shown in Table 2. In the modified analysis procedure, sample preparation involved combining 2 mL ethyl acetate containing 0.05 mg/mL lauryl acrylate with 25 mg of polymer. In the modified analysis procedure, isopropyl myristate standards did not contain copolymer. Unless otherwise indicated, each J-value is the average of three independent determinations.
    TABLE 2
    Copolymer Wt Percent Wet Coating J-value
    Example iv IPM Thickness (×10−5 cm2/
    Number Type (dl/g) Calc. Actual (mil/μM) dyne)
    34 78/14/8 IOA/HEA/PSMac 1.601 20 13.5 10/254 1.682
    35 78/14/8 IOA/HEA/PSMac 1.071 20 11.7 10/254 3.86
    36 95/5 IOA/PSMac 0.47 20 12.5 10/254 12.8
    37 55/40/5 IOA/HEA/PSMac 0.38 20 13.4 10/254 19.7
    38 55/40/5 IOA/HEA/PMMAMac 0.34 20 10.5 10/254 10.3

    1Run in tetrahydrofuran

    2Average of 4 determinations
  • EXAMPLE 39
  • Copolymer (50 g of 51/34/15 IOA/HEA/PSMac, 39.2% solids in 95/5 ethyl acetate/isopropanol, iv=0.73 dl/g) and oleyl alcohol (8.4 g) were combined in a glass jar. The jar was capped and placed on a roller for about 24 hours. The resulting formulation was knife coated at a wet thickness of 15 mil (381 μM) onto a silicone release liner [5 mil (127 μM) Daubert PESTER]. The coated release liner was oven dried at 110° F. (43° C.) for 20 minutes. The resulting coating theoretically contained 70 percent 51/34/15 IOA/HEA/PSMac copolymer and 30 percent oleyl alcohol. The coated liner was laminated to a backing (1109 SCOTCHPAK™ tan, polyester film laminate, available from the 3M Company). The compliance was measured using the test method described above and found to be 0.74×10−5 cm2/dyne (average of three independent determinations). A portion of the coating was removed from the backing and assayed for oleyl alcohol using the test method described above. The oleyl alcohol content was found to be 28 percent.
  • EXAMPLES 40-106
  • Using the general method of Example 39, a series of coated sheet materials in which the copolymer, softener and amount of softener were varied was prepared. The copolymer, identity and amount (weight percent, both calculated and determined using the methods described above) of softener, wet coating thickness, and the compliance values are shown in Table 3. Unless otherwise indicated, each J-value is the average of three independent determinations.
    TABLE 3
    Copolymer Wet Coating J-value
    Example iv Softener Thickness (×10−5 cm2/
    Number Type (dl/g) ID Calc Actual (mil/μM) dyne)
    C3 57/38/5 IOA/HEA/PSMac 0.65 None 0 0 15/381 0.921
    40 57/38/5 IOA/HEA/PSMac 0.65 OA 10 8.9 15/381 2.05
    41 57/38/5 IOA/HEA/PSMac 0.65 OA 20 19.9 15/381 3.39
    42 57/38/5 IOA/HEA/PSMac 0.65 OA 30 29.7 15/381 4.29
    C4 95/5 IOA/PSMac 0.45 none 0 0 15/381 3.22
    43 95/5 IOA/PSMac 0.45 OA 20 18.9 15/381 5.00
    44 95/5 IOA/PSMac 0.45 OA 40 37.1 15/381 8.16
    C5 90/10 IOA/PSMac 0.65 none 0 0 15/381 1.07
    45 90/10 IOA/PSMac 0.65 OA 20 18.8 15/381 1.63
    46 90/10 IOA/PSMac 0.65 OA 40 39 15/381 2.72
    C6 85/15 IOA/PSMac 0.55 none 0 0 15/381 0.56
    47 85/15 IOA/PSMac 0.55 OA 20 19 15/381 0.85
    48 85/15 IOA/PSMac 0.55 OA 40 36 15/381 1.74
    49 57/38/5 IOA/HEA/PSMac 0.65 OA 40 37 15/381 4.99
    50 57/38/5 IOA/HEA/PSMac 0.65 OA 60 56.5 15/381 2212
    51 57/38/5 IOA/HEA/PSMac 0.65 OA 60  4/102 13002
    52 95/5 IOA/PSMac 0.45 OA 40 36.7 15/381 9.88
    53 95/5 IOA/PSMac 0.45 OA 60 52.8 15/381 not run
    54 95/5 IOA/PSMac 0.45 OA 60  4/102 not run
    55 90/10 IOA/PSMac 0.65 OA 40 38 15/381 2.95
    56 90/10 IOA/PSMac 0.65 OA 60 56.6 15/381 not run
    57 90/10 IOA/PSMac 0.65 OA 60  4/102 4.121
    58 85/15 IOA/PSMac 0.55 OA 40 40.5 15/381 1.99
    59 85/15 IOA/PSMac 0.55 OA 60 60 15/381 48.22
    60 85/15 IOA/PSMac 0.55 OA 60  4/102 2.823
    C7 54/36/10 IOA/HEA/PSMac 0.54 none 0 0 15/381 0.51
    61 54/36/10 IOA/HEA/PSMac 0.54 OA 10 9.1 15/381 0.83
    62 54/36/10 IOA/HEA/PSMac 0.54 OA 20 18.3 15/381 1.18
    63 54/36/10 IOA/HEA/PSMac 0.54 OA 30 28.1 15/381 1.63
    64 54/36/10 IOA/HEA/PSMac 0.54 OA 40 37.6 15/381 2.32
    65 54/36/10 IOA/HEA/PSMac 0.54 OA 60 56.9 15/381 1902
    66 54/36/10 IOA/HEA/PSMac 0.54 OA 60  4/102 2302
    67 95/5 IOA/PSMac 0.45 OA 47 45.5 15/381 40.52
    68 90/10 IOA/PSMac 0.65 OA 47 48 15/381 3.34
    69 90/10 IOA/PSMac 0.65 OA 53 53.5 15/381 6.263
    70 90/10 IOA/PSMac 0.65 OA 53  4/102 4.432
    71 85/15 IOA/PSMac 0.55 OA 47 42.2 15/381 15.13
    72 85/15 IOA/PSMac 0.55 OA 53 50.7 15/381 27.03
    73 57/38/5 IOA/HEA/PMMAMac* 0.53 IPM 20 19.2 15/381 2.343
    74 57/38/5 IOA/HEA/PMMAMac* 0.53 IPM 40 39.3 15/381 34.4
    75 54/36/10 IOA/HEA/PMMAMac* 0.46 IPM 20 19.6 15/381 0.79
    76 54/36/10 IOA/HEA/PMMAMac* 0.46 IPM 40 38.5 15/381 93.32
    C8 51/34/15 IOA/HEA/PMMAMac* 0.35 None 0 0 15/381 0.42
    77 51/34/15 IOA/HEA/PMMAMac* 0.35 IPM 10 9.6 15/381 0.833
    78 51/34/15 IOA/HEA/PMMAMac* 0.35 IPM 20 18.7 15/381 1.183
    79 51/34/15 IOA/HEA/PMMAMac* 0.35 IPM 30 27.2 15/381 1.523
    80 51/34/15 IOA/HEA/PMMAMac* 0.35 IPM 40 36.6 15/381 3342
    81 51/34/15 IOA/HEA/PMMAMac* 0.35 IPM 50 42.1  4/102 4.463
    82 51/34/15 IOA/HEA/PMMAMac* 0.35 IPM 60 45.2  4/102 4.263
    83 51/34/15 IOA/HEA/PMMAMac* 0.35 OA 10 9.7 15/381 0.613
    84 51/34/15 IOA/HEA/PMMAMac* 0.35 OA 20 19.3 15/381 0.943
    85 51/34/15 IOA/HEA/PMMAMac* 0.35 OA 30 30.5 15/381 1.223
    86 51/34/15 IOA/HEA/PMMAMac* 0.35 OA 40 40.3 15/381 1.773
    87 51/34/15 IOA/HEA/PMMAMac* 0.35 OA 50 48.7 15/381 2.433
    88 51/34/15 IOA/HEA/PMMAMac* 0.35 OA 60 58.6 15/381 3.693
    89 51/34/15 IOA/HEA/PMMAMac* 0.35 OA 60 60.1  4/102 4.032
    90 57/38/5 IOA/HEA/PSMac 0.65 OA 47 46.3 15/381 9.86
    91 57/38/5 IOA/HEA/PSMac 0.65 OA 47  4/102 36.33
    92 57/38/5 IOA/HEA/PSMac 0.65 OA 53 52.3 15/381 47.2
    93 57/38/5 IOA/HEA/PSMac 0.65 OA 53  4/102 2.872
    94 54/36/10 IOA/HEA/PSMac 0.56 OA 47 46 15/381 2.99
    95 54/36/10 IOA/HEA/PSMac 0.56 OA 47  4/102 3.623
    96 54/36/10 IOA/HEA/PSMac 0.56 OA 53 51 15/381 19.1
    97 54/36/10 IOA/HEA/PSMac 0.56 OA 53  4/102 1253
    C9 51/34/15 IOA/HEA/PSMac 0.52 none 0 0 15/381 0.36
    98 51/34/15 IOA/HEA/PSMac 0.52 OA 10 10 15/381 0.50
    99 51/34/15 IOA/HEA/PSMac 0.52 OA 20 19.7 15/381 0.56
    100  51/34/15 IOA/HEA/PSMac 0.52 OA 30 30.4 15/381 0.773
    101  51/34/15 IOA/HEA/PSMac 0.52 OA 40 40.5 15/381 1.16
    102  51/34/15 IOA/HEA/PSMac 0.52 OA 47 48.1 15/381 1.56
    103  51/34/15 IOA/HEA/PSMac 0.52 OA 47  4/102 1.813
    104  51/34/15 IOA/HEA/PSMac 0.52 OA 53 53.9 15/381 33.7
    105  51/34/15 IOA/HEA/PSMac 0.52 OA 53  4/102 4.042
    106  51/34/15 IOA/HEA/PSMac 0.52 OA 60 61 15/381 1472

    1Average of four determinations

    2Single determination

    3Average of two determinations

    PMMAMac* is ELVACITE 1020
  • EXAMPLES 107-129
  • Using the general method of Example 39, a series of coated sheet materials in which the copolymer, softener and amount of softener were varied was prepared. The copolymer, identity and amount (weight percent) of softener, wet coating thickness, and the compliance values are shown in Table 4. Unless otherwise indicated, each J-value is the average of two independent determinations. When the compliance was “not run”, the formulation was too soft to be tested.
    TABLE 4
    Copolymer Wet Coating J-value
    Example iv Thickness (×10−5 cm2/
    Number Type (dl/g) Softener (mil/μM) dyne
    C10 57/38/5 IOA/HEA/PMMAMac* 0.54 none 15/381 0.801
    107 57/38/5 IOA/HEA/PMMAMac* 0.54 10% IPM4 15/381 1.50
    108 57/38/5 IOA/HEA/PMMAMac* 0.54 20% IPM4 15/381 2.62
    109 57/38/5 IOA/HEA/PMMAMac* 0.54 30% IPM4 15/381 4.58
    110 57/38/5 IOA/HEA/PMMAMac* 0.54 40% IPM4  4/102 64.22
    111 57/38/5 IOA/HEA/PMMAMac* 0.54 50% IPM  4/102 not run
    112 57/38/15 IOA/HEA/PMMAMac* 0.54 60% IPM  4/102 not run
    C11 54/36/10 IOA/HEA/PMMAMac* 0.50 none 15/381 0.44
    113 54/36/10 IOA/HEA/PMMAMac* 0.50 10% IPM4 15/381 0.69
    114 54/36/10 IOA/HEA/PMMAMac* 0.50 20% IPM4 15/381 0.943
    115 54/36/10 IOA/HEA/PMMAMac* 0.50 30% IPM4 15/381 1.46
    116 54/36/10 IOA/HEA/PMMAMac* 0.50 40% IPM  4/102 not run
    117 54/36/10 IOA/HEA/PMMAMac* 0.50 50% IPM  4/102 not run
    118 57/38/5 IOA/HEA/PMMAMac* 0.54 10% OA 15/381 1.63
    119 57/38/5 IOA/HEA/PMMAMac* 0.54 20% OA 15/381 2.70
    120 57/38/5 IOA/HEA/PMMAMac* 0.54 30% OA 15/381 4.19
    121 57/38/5 IOA/HEA/PMMAMac* 0.54 40% OA  4/102 6.01
    122 57/38/5 IOA/HEA/PMMAMac* 0.54 50% OA  4/102 8.27
    123 57/38/5 IOA/HEA/PMMAMac* 0.54 60% OA  4/102 11.8
    124 54/36/10 IOA/HEA/PMMAMac* 0.50 10% OA 15/381 0.60
    125 54/36/10 IOA/HEA/PMMAMac* 0.50 20% OA 15/381 0.89
    126 54/36/10 IOA/HEA/PMMAMac* 0.50 30% OA 15/381 1.19
    127 54/36/10 IOA/HEA/PMMAMac* 0.50 40% OA  4/102 1.56
    128 54/36/10 IOA/HEA/PMMAMac* 0.50 50% OA  4/102 2.65
    129 54/36/10 IOA/HEA/PMMAMac* 0.50 60% OA  4/102 3.99

    PMMAMac* is ELVACITE 1020

    1Average of four determinations

    2Single determination

    3Average of three determinations

    4IPM content confirmed using the test method described above.
  • EXAMPLE 130
  • Copolymer (6.7306 g of 63/27/10 IOA/DMACM/PMMAMac, 47.8% solids in 95/5 w/w ethyl acetate/isopropanol, iv=0.39 dl/g), levonorgestrel (0.0502 g) and methyl laurate (1.7606 g) were combined in an 11 dram (40.7 mL) glass vial. The vial was capped then shaken overnight on a platform shaker. The resulting formulation was knife coated at a thickness of 16 mil (406 μm) onto a release liner (Daubert 164Z 5 mil [127 μM] PESTER). The coated release liner was oven dried for 4 minutes at 125° F. (52° C.), for 2 minutes at 185° F. (85° C.) and for 2 minutes at 225° F. (107° C.). The resulting adhesive coating contained 64.0 percent 63/27/10 IOA/HEA/PMMAMac copolymer, 1.0 percent levonorgestrel and 35.0 percent methyl laurate. The coated liner was then laminated onto the corona treated surface of a 3 mil (76.2 μm) polyethylene backing. The compliance was measured using the test method described above and found to be 4.4×10−5 cm2/dyne.
  • EXAMPLES 131-178
  • Using the general method of Example 130, a number of coated sheet materials were prepared in order to assess the effect of increasing the amount of skin penetration enhancer(s) on the compliance of certain formulations containing levonorgestrel. The compliance was measured using the test method described above. The formulations and the J-values are shown in Table 5, where amounts are percent by weight. Except as noted, the polymethylmethacrylate macromonomer was ELVACITE 1010. PMMAMac* indicates that the polymethylmethacrylate was ELVACITE 1020.
    TABLE 5
    Ex Adhesive Additional J-Value
    No. Amount Type iv LN GML DDAO Enhancer(s) (cm2/dyne)
    131 68.7 63/27/10 1.0 0 0 30.3 ML 2.4 × 10−5
    IOA/DMACM/PMMAMac
    132 74.2 63/27/10 1.0 0 0 24.8 ML 2.1 × 10−5
    IOA/DMACM/PMMAMac
    133 64.5 55/40/5 1.0 0 0 17.1 DGME off scale
    IOA/HEA/PMMAMac 17.4 LG
    134 68.7 55/40/5 1.0 0 0 15.2 DGME 15.4 × 10−5 
    IOA/HEA/PMMAMac 15.1 LG
    135 74.0 55/40/5 1.0 0 0 12.6 DGME 5.2 × 10−5
    IOA/HEA/PMMAMac 12.4 LG
    136 78.9 55/40/5 1.0 0 0 10.1 DGME 5.0 × 10−5
    IOA/HEA/PMMAMac 10.0 LG
    137 65.7 55/40/5 0.51 1.0 5.0 3.0 12.8 DGME 2.6 × 10−5
    IOA/HEA/PMMAMac 12.5 LG
    138 60.9 55/40/5 0.51 1.0 5.0 3.0 15.0 DGME 2.9 × 10−5
    IOA/HEA/PMMAMac 15.1 LG
    139 55.8 55/40/5 0.51 1.0 5.0 3.0 17.6 DGME 3.4 × 10−5
    IOA/HEA/PMMAMac 17.6 LG
    140 51.1 55/40/5 0.51 1.0 5.0 3.0 20.0 DGME 8.1 × 10−5
    IOA/HEA/PMMAMac 19.9 LG
    141 65.4 55/35/10 0.42 1.0 4.9 3.1 12.7 DGME 2.2 × 10−5
    IOA/HEA/PMMAMac 12.9 LG
    142 60.5 55/35/10 0.42 1.0 4.9 3.0 15.4 DGME 1.9 × 10−5
    IOA/HEA/PMMAMac 15.2 LG
    143 55.7 55/35/10 0.42 1.0 5.2 3.0 17.6 DGME 2.2 × 10−5
    IOA/HEA/PMMAMac 17.5 LG
    144 50.7 55/35/10 0.42 1.1 5.0 2.9 20.0 DGME 2.8 × 10−5
    IOA/HEA/PMMAMac 20.3 LG
    145 65.4 55/35/10 0.46 1.0 4.9 3.0 13.1 DGME 1.5 × 10−5
    IOA/HEA/PMMAMac* 12.6 LG
    146 60.7 55/35/10 0.46 1.1 5.4 3.0 15.0 DGME 1.8 × 10−5
    IOA/HEA/PMMAMac* 14.8 LG
    147 56.0 55/35/10 0.46 1.0 5.0 3.0 17.5 DGME 2.2 × 10−5
    IOA/HEA/PMMAMac* 17.5 LG
    148 50.7 55/35/10 0.46 1.1 5.0 3.0 20.0 DGME 2.4 × 10−5
    IOA/HEA/PMMAMac* 20.2 LG
    149 52.9 63/27/10 0.48 1.0 5.1 1.0 40.0 ML 17.4 × 10−5 
    IOA/DMACM/PMMAMac
    150 58.0 63/27/10 0.48 1.0 5.1 1.0 34.9 ML 9.5 × 10−5
    IOA/DMACM/PMMAMac
    151 63.1 63/27/10 0.48 1.0 5.0 1.0 29.9 ML 4.0 × 10−5
    IOA/DMACM/PMMAMac
    152 67.8 63/27/10 0.48 1.0 5.1 1.1 25.0 ML 3.7 × 10−5
    IOA/DMACM/PMMAMac
    153 72.9 63/27/10 0.48 1.0 5.0 1.0 20.1 ML 2.2 × 10−5
    IOA/DMACM/PMMAMac
    154 70.6 55/40/5 0.51 1.0 5.0 3.0 10.3 PG 3.3 × 10−5
    IOA/HEA/PMMAMac 10.1 ML
    155 65.0 55/40/5 0.51 1.0 5.1 3.0 12.3 PG 3.1 × 10−5
    IOA/HEA/PMMAMac 13.6 ML
    156 60.5 55/40/5 0.51 1.0 5.0 3.1 15.3 PG 4.9 × 10−5
    IOA/HEA/PMMAMac 15.1 ML
    157 55.7 55/40/5 0.51 1.0 5.1 3.0 17.7 PG 5.3 × 10−5
    IOA/HEA/PMMAMac 17.5 ML
    158 51.0 55/40/5 0.51 1.0 5.0 3.0 20.2 PG 3.4 × 10−5
    IOA/HEA/PMMAMac 19.8 ML
    159 69.8 55/35/10 0.42 1.0 5.2 3.0 10.0 PG 1.4 × 10−5
    IOA/HEA/PMMAMac 11.0 ML
    160 66.1 55/35/10 0.42 1.0 4.9 3.0 12.3 PG 1.4 × 10−5
    IOA/HEA/PMMAMac 12.7 ML
    161 60.7 55/35/10 0.42 1.0 5.0 3.0 15.3 PG 2.0 × 10−5
    IOA/HEA/PMMAMac 15.0 ML
    162 55.8 55/35/10 0.42 1.0 5.0 3.0 17.7 PG 2.3 × 10−5
    IOA/HEA/PMMAMac 17.5 ML
    163 50.7 55/35/10 0.42 1.0 5.3 3.0 20.2 PG 2.7 × 10−5
    IOA/HEA/PMMAMac 19.8 ML
    164 72.0 60/15/15/10 0.47 1.0 5.0 2.0 14.3 ML 2.0 × 10−5
    IOA/DMACM/HEA/PMMAMac 5.7 DIPA
    165 67.3 60/15/15/10 0.47 1.0 5.0 2.1 17.8 ML 2.4 × 10−5
    IOA/DMACM/HEA/PMMAMac 6.8 DIPA
    166 61.7 60/15/15/10 0.47 1.0 5.0 2.1 21.8 ML 5.0 × 10−5
    IOA/DMACM/HEA/PMMAMac 8.4 DIPA
    167 56.9 60/15/15/10 0.47 1.0 5.1 2.0 25.4 ML 7.8 × 10−5
    IOA/DMACM/HEA/PMMAMac 9.6 DIPA
    168 52.0 60/15/15/10 0.47 1.0 5.2 2.0 28.8 ML 16.6 × 10−5 
    IOA/DMACM/HEA/PMMAMac 11.0 DIPA
    169 72.7 68/27/5 0.47 1.0 5.0 1.0 20.3 ML 15.4 × 10−5 
    IOA/DMACM/PMMAMac
    170 68.0 68/27/5 0.47 1.0 5.0 1.1 24.9 ML 24.8 × 10−5 
    IOA/DMACM/PMMAMac
    171 72.2 50/40/10 0.53 1.0 4.9 1.0 20.9 ML 1.8 × 10−5
    IOA/DMACM/PMMAMac
    172 67.7 50/40/10 0.53 1.0 5.0 1.0 25.3 ML 2.7 × 10−5
    IOA/DMACM/PMMAMac
    173 63.5 50/40/10 0.53 1.0 4.9 1.0 29.6 ML 5.2 × 10−5
    IOA/DMACM/PMMAMac
    174 58.3 50/40/10 0.53 1.1 5.0 1.1 34.5 ML 10.7 × 10−5 
    IOA/DMACM/PMMAMac
    175 53.0 50/40/10 0.53 1.0 5.1 1.1 39.8 ML 21.5 × 10−5 
    IOA/DMACM/PMMAMac
    176 71.0 65/15/15/5 0.47 1.0 5.0 2.0 13.7 ML 8.8 × 10−5
    IOA/DMACM/HEA/PMMAMac 7.3 DIPA
    177 66.7 65/15/15/5 0.47 1.0 5.1 2.0 17.5 ML 13.2 × 10−5 
    IOA/DMACM/HEA/PMMAMac 7.7 DIPA
    178 62.6 65/15/15/5 0.47 1.0 5.1 2.0 20.3 ML 22.9 × 10−5 
    IOA/DMACM/HEA/PMMAMac 9.0 DIPA
  • In Vitro Skin Penetration Test Method
  • The skin penetration data given in the examples below was obtained using the following test method. A Diffusion cell is used. Human cadaver skin (Dermatomed skin about 500 μM thick obtained from a skin bank) is used. The skin 22 is mounted epidermal side up between upper portion 24 and lower portion 26 of the cell, which are held together by means of ball joint clamp 28.
  • The portion of the cell below the mounted skin is completely filled with receptor fluid (30% N-methyl-2-pyrrolidone in water) such that the receptor fluid is in contact with the skin. The receptor fluid is stirred using a magnetic stirrer (not illustrated). The sampling port 30 is covered except when in use.
  • When a transdermal delivery device is evaluated, the skin is placed across the orifice of the lower portion of the diffusion cell, the release liner is removed from a 2.0 cm patch and the patch is applied to the skin and pressed to cause uniform contact with the skin. The diffusion cell is assembled and the lower portion is filled with 10 mL of warm (32° C.) receptor fluid.
  • The cell is the placed in a constant temperature (32±2° C.) and humidity (50±10% relative humidity) chamber. The receptor fluid is stirred by means of a magnetic stirrer throughout the experiment to assure a uniform sample and a reduced diffusion barrier on the dermal side of the skin. The entire volume of receptor fluid is withdrawn at specified time intervals (6, 12, 24, 48 and 72 hours) and immediately replaced with fresh fluid. The withdrawn fluid is filtered through a 0.45 μM filter. A 1 mL portion of filtrate is then analyzed for levonorgestrel using high performance liquid chromatography (Column: 15 cm×4.6 mm I.D. ZORBAX™ RX-C18 from DuPont, 5 μM particle size; Mobile Phase: 60/40 v/v water/acetonitrile; Flow Rate: 1.5 mL/min; Run Time: 11.0 min; Detection: uv at 230 nm). The cumulative amount of levonorgestrel penetrating the skin is calculated. The greatest slope of a plot of the cumulative penetration versus time is reported as steady state levonorgestrel flux measured in μg/cm2/hour.
  • EXAMPLE 179
  • Levonorgestrel (19.85 g), methyl laurate (330.8 g), propylene glycol (198.5 g), glyceryl monolaurate (33.08 g), N,N-dimethyldodecylamine-N-oxide (19.85 g) and copolymer (1803 g of 55/40/5 IOA/HEA/PMMAMac copolymer, 40% solids in 95/5 w/w ethyl acetate/isopropanol, which had been dried then resolvated, iv=0.59 dl/g after drying) were placed in a 1 gallon (3.8 L) high density polyethylene carboy. The carboy was tightly capped then placed on a roller/shaker for 19 hours. The carboy was allowed to stand until all entrapped air bubbles had dissipated. The resulting formulation was knife coated at a wet thickness of 16 mil (406 μM) onto a silicone coated polyester (5 mil, 127 μM) film. The coated release liner was oven dried at 127° F. (53° C.) for 30 minutes. The resulting adhesive coating contained 1.5 percent levonorgestrel, 15.0 percent propylene glycol, 25.0 percent methyl laurate, 2.5 percent glyceryl monolaurate, 1.5 percent N,N-dimethyldodecylamine-N-oxide, and 54.5 percent 55/40/5 IOA/HEA/PMMAMac copolymer. The coated liner was allowed to cool for 10 minutes then it was laminated to the corona treated side of a 2 mil (51 μM) polypropylene film. The compliance was measured using the test method described above and found to be 6.57×10−5 cm2/dynes. Skin penetration through human cadaver skin was measured using the test method described above; the steady state flux was found to be 0.166 μg/cm2/hr.
  • EXAMPLE 180
  • Levonorgestrel (18.29 g), methyl laurate (457.2 g), glyceryl monolaurate (65.31 g), N,N-dimethyldodecylamine-N-oxide (13.06 g) and copolymer (1401 g of 50/40/10 IOA/DMACM/PMMAMac copolymer, 53.7% solids in 95/5 w/w ethyl acetate/isopropanol, which had been dried then resolvated, iv=0.55 dl/g before drying; iv=0.52 dl/g after drying) were placed in a 1 gallon (3.8 L) high density polyethylene carboy. The carboy was tightly capped then placed on a roller/shaker for 19 hours. The carboy was allowed to stand until all entrapped air bubbles had dissipated. The resulting formulation was knife coated at a wet thickness of 12 mil (305 μM) onto a silicone coated polyester (5 mil, 127 μM) film. The coated release liner was oven dried at 127° F. (53° C.) for 80 minutes. The resulting adhesive coating contained 1.4 percent levonorgestrel, 35.0 percent methyl laurate, 5.0 percent glyceryl monolaurate, 1.0 percent N,N-dimethyldodecylamine-N-oxide, and 57.6 percent 50/40/10 IOA/DMACM/PMMAMac copolymer. The coated liner was allowed to cool for 10 minutes then it was laminated to the corona treated side of a 2 mil (51 μM) polypropylene film. The compliance was measured using the test method described above and found to be 5.74×10−5 cm2/dynes. Skin penetration through human cadaver skin was measured using the test method described above; the steady state flux was found to be 0.148 μg/cm2/hr.
  • EXAMPLE 181
  • Levonorgestrel (18.04 g), methyl laurate (264.6 g), tetraglycol (96.23 g), glyceryl monolaurate (60.14 g), N,N-dimethyldodecylamine-N-oxide (12.03 g) and copolymer (1400 g of 50/40/10 IOA/DMACM/PMMAMac copolymer, 53.7% solids in 95/5 w/w ethyl acetate/isopropanol, which had been dried then resolvated, iv=0.55 dl/g before drying; iv=0.52 dl/g after drying) were placed in a 1 gallon (3.8 L) high density polyethylene carboy. The carboy was tightly capped then placed on a roller/shaker for 19 hours. The carboy was allowed to stand until all entrapped air bubbles had dissipated. The resulting formulation was knife coated at a wet thickness of 13 mil (330 μM) onto a silicone coated polyester (5 mil, 127 μM) film. The coated release liner was oven dried at 127° F. (53° C.) for 75 minutes. The resulting adhesive coating contained 1.5 percent levonorgestrel, 22.0 percent methyl laurate, 8.0 percent tetraglycol, 5.0 percent glyceryl monolaurate, 1.0 percent N,N-dimethyldodecylamine-N-oxide, and 62.5 percent 50/40/10 IOA/DMACM/PMMAMac copolymer. The coated liner was allowed to cool for 10 minutes then it was laminated to the corona treated side of a 2 mil (51 μM) polypropylene film. The compliance was measured using the test method described above and found to be 8.72×10−5 cm2/dynes. Skin penetration through human cadaver skin was measured using the test method described above; the steady state flux was found to be 0.131 μg/cm2/hr.
  • EXAMPLE 182
  • Copolymer (50.13 g of 57/38/5 IOA/HEA/PMMAMac, 39.5% solids in 97/3 ethyl acetate/isopropanol, iv=0.69 dl/g) and nicotine (5.04 g) were combined in a glass jar. The jar was capped and shaken for 15 minutes. The resulting formulation was knife coated at a wet thickness of 8 mil (203 μM) onto a silicone coated polyester release liner (5 mil (127 μM) Daubert). The coated release liner was oven dried at 110° F. (43° C.) for 30 minutes. The resulting coating theoretically contained 79.71 percent 57/38/5 IOA/HEA/PMMAMac copolymer and 20.29 percent nicotine. The coated liner was laminated to a backing (1109 SCOTCHPAK™ tan, polyester film laminate, available from the 3M Company). The compliance was measured 4 hours after the laminate was prepared using the test method described above and found to be 1.79×10−5 cm2/dyne. The compliance was measured again after the laminate had sat overnight and was found to be 1.5×10−5 cm2/dyne (average of two independent determinations).
  • EXAMPLE 183
  • The formulation prepared in Example 182 was knife coated at a wet thickness of 6 mil (152 μM) onto a silicone coated polyester release liner (5 mil (127 μM) Daubert). The coated release liner was allowed to dry at ambient temperature (22° C.) for 100 minutes. The resulting coating theoretically contained 79.71 percent 57/38/5 IOA/HEA/PMMAMac copolymer and 20.29 percent nicotine. The coated liner was laminated to a backing (1109 SCOTCHPAK™ tan, polyester film laminate, available from the 3M Company). The compliance was measured after the laminate had sat over the weekend and was found to be 2.4×10−5 cm2/dyne (average of two determinations).
  • EXAMPLE 184
  • Copolymer (10.0 g of 55/9/28/8 2-ethylhexylacrylate/vinyl acetate/tetrahydrofurfuryl acrylate/ELVACITE 1020 PMMAMac 37.28% solids in 90/10 w/w ethyl acetate/isopropanol, iv=0.706 dl/g) and isopropyl myristate (0.93 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 μM) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with clean release from skin.
  • EXAMPLE 185
  • Copolymer (10.0 g of 55/9/28/8 2-ethylhexylacrylate/vinyl acetate/tetrahydrofurfuryl acrylate/ELVACITE 1020 PMMAMac 37.28% solids in 90/10 w/w ethyl acetate/isopropanol, 0.706 dl/g) and isopropyl myristate (1.60 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 μM) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with clean release from skin.
  • EXAMPLE 186
  • Copolymer (10.0 g of 82/10/8 IOA/2-hydroxyethyl methacrylate/ELVACITE 1020 PMMAMac 38.7% solids in 95/5 w/w ethyl acetate/isopropanol, iv=0.378 dl/g) and oleyl alcohol (0.97 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 μM) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with clean release from skin.
  • EXAMPLE 187
  • Copolymer (10.0 g of 77/4/15/4 IOA/acrylamide/DMACM/ELVACITE 1020 PMMAMac 39.5% solids in 95/5 w/w ethyl acetate/isopropanol, iv=0.443 dl/g) and isopropyl myristate (0.99 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 μM) onto a polyethylene terephthalate film then air dried to provide an aggressive pressure sensitive adhesive with clean release from skin.
  • EXAMPLE 188
  • Copolymer (10.0 g of 74/9/9/8 2-ethylhexyl acrylate/N-vinyl pyrrolidone/2-hydroxyethyl acrylate/ELVACITE 1020 PMMAMac 39.4% solids in 95/5 w/w ethyl acetate/isopropanol, iv=0.365 dl/g) and isopropyl myristate (0.99 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 μM) onto a polyethylene terephthalate film then air dried to provide an aggressive pressure sensitive adhesive with clean release from skin.
  • EXAMPLE 189
  • Copolymer (10.0 g of 55/9/28/8 IOA/butyl methacrylate/ethoxy ethoxy ethyl acrylate/ELVACITE 1020 PMMAMac 38.3% solids in 95/5 w/w ethyl acetate/isopropanol, iv=0.78 dl/g) and oleyl alcohol (0.96 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 μM) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with clean release from skin.
  • EXAMPLE 190
  • Copolymer (10.0 g of 55/9/28/8 IOA/butyl methacrylate/ethoxy ethoxy ethyl acrylate/ELVACITE 1020 PMMAMac 38.3% solids in 95/5 w/w ethyl acetate/isopropanol, iv=0.78 dl/g) and oleyl alcohol (1.64 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 μM) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with limited tack and with clean release from skin.
  • EXAMPLE 191
  • Copolymer (10.0 g of 55/9/28/8 IOA/butyl acrylate/ethoxy ethoxy ethyl acrylate/ELVACITE 1020 PMMAMac 38.5% solids in 95/5 w/w ethyl acetate/isopropanol, iv=0.78 dl/g) and oleyl alcohol (0.96 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 μM) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with clean release from skin.
  • EXAMPLE 192
  • Copolymer (10.0 g of 55/9/28/8 IOA/butyl acrylate/ethoxy ethoxy ethyl acrylate/ELVACITE 1020 PMMAMac 38.5% solids in 95/5 w/w ethyl acetate/isopropanol, iv=0.78 dl/g) and oleyl alcohol (1.65 g) were combined then mixed to provide a homogeneous formulation. The formulation was coated at a wet thickness of 15 mil (381 μM) onto a polyethylene terephthalate film then air dried to provide a pressure sensitive adhesive with limited tack and with clean release from skin.
  • EXAMPLE 193
  • Copolymer (100 g of 61/37/2 IOA/VoAc/PSMac, 34 percent solids in 84/16 ethyl acetate/toluene, iv=0.87 dl/g) and oleyl alcohol (14.57 g) were combined in a glass jar. The jar was placed on a roller mixer overnight. The resulting formulation was knife coated at a wet thickness of about 7 mil (178 μM) onto a 2 mil (51 μM) polyethylene terephthalate film. The coated film was oven dried at 110° F. (43° C.) for 20 minutes. The resulting coating theoretically contained 70 percent 61/37/2 IOA/VoAc/PSMac copolymer and 30 percent oleyl alcohol. The coated film was folded back onto itself to form a “sandwich” and the compliance was measured using the test method described above. The compliance was found to be 6.8×10−5 cm2/dyne (average of three independent determinations).
  • EXAMPLES 194-218
  • Using the general method of Example 193, a series of coated sheet materials in which the copolymer, softener and amount of softener were varied was prepared. The copolymer, identity and amount (weight percent) of softener, and the compliance values are shown in Table 6 where each J-value is the average of three independent determinations. The polymethylmethacrylate macromonomer used was ELVACITE 1020.
    TABLE 6
    J-value
    Exam- (×10−5
    ple Copolymer cm2/
    Number Type iv (dl/g) Softener dyne)
    C12 61/37/2 IOA/VoAc/PSMac 0.87 none 1
    194 61/37/2 IOA/VoAc/PSMac 0.87 20% IPM 15.7
    195 61/37/2 IOA/VoAc/PSMac 0.87 30% IPM >20
    196 61/37/2 IOA/VoAc/PSMac 0.87 40% IPM >20
    197 61/37/2 IOA/VoAc/PSMac 0.87 40% OA >20
    C13 61/37/2 IOA/VoAc/PSMac 1.02 none 0.65
    198 61/37/2 IOA/VoAc/PSMac 1.02 20% IPM 8.3
    199 61/37/2 IOA/VoAc/PSMac 1.02 30% IPM 17.6
    200 61/37/2 IOA/VoAc/PSMac 1.02 40% IPM >20
    201 61/37/2 IOA/VoAc/PSMac 1.02 30% OA 3.2
    202 61/37/2 IOA/VoAc/PSMac 1.02 40% OA >20
    C14 58/37/5 IOA/VoAc/PSMac 0.89 none 0.46
    203 58/37/5 IOA/VoAc/PSMac 0.89 20% IPM 2.3
    204 58/37/5 IOA/VoAc/PSMac 0.89 30% IPM 17.7
    205 58/37/5 IOA/VoAc/PSMac 0.89 40% IPM >20
    206 58/37/5 IOA/VoAc/PSMac 0.89 30% OA 1.1
    207 58/37/5 IOA/VoAc/PSMac 0.89 40% OA >20
    C15 58/37/5 IOA/VoAc/PSMac 1.02 none 0.44
    208 58/37/5 IOA/VoAc/PSMac 1.02 20% IPM 3.9
    209 58/37/5 IOA/VoAc/PSMac 1.02 30% IPM 11.2
    210 58/37/5 IOA/VoAc/PSMac 1.02 40% IPM >20
    211 58/37/5 IOA/VoAc/PSMac 1.02 30% OA 1.6
    212 58/37/5 IOA/VoAc/PSMac 1.02 40% OA >20
    C16 53/37/10 IOA/VoAc/PMMAMac 0.815 none 0.15
    213 53/37/10 IOA/VoAc/PMMAMac 0.815 30% OA 0.32
    C17 53/37/10 IOA/VoAc/PMMAMac 0.92 none 0.16
    214 53/37/10 IOA/VoAc/PMMAMac 0.92 30% OA 0.36
    C18 58/37/5 IOA/VoAc/PMMAMac 1.05 none 0.4
    215 58/37/5 IOA/VoAc/PMMAMac 1.05 30% OA 0.67
    216 58/37/5 IOA/VoAc/PMMAMac 1.05 30% IPM 0.71
    C19 58/37/5 IOA/VoAc/PMMAMac 1.15 none 0.37
    217 58/37/5 IOA/VoAc/PMMAMac 1.15 30% OA 0.7
    218 58/37/5 IOA/VoAc/PMMAMac 1.15 30% IPM 0.8
  • EXAMPLE 219
  • Copolymer (58/37/5 IOA/VoAc/PSMac, 34 percent solids in 84/16 ethyl acetate/toluene, iv=0.89 dl/g) was knife coated at a wet thickness of about 7 mil (178 μM) onto a 2 mil (51 μM) polyethylene terephthalate film. The coated film was oven dried at 160° F. (71° C.) for 20 minutes and then at 210° F. (99° C.) for 10 minutes. Patches (5 cm2 circles) each containing 0.044 g of dry adhesive were cut from the adhesive coated film. Nicotine (0.011 g) was placed on top of the adhesive in each patch using a micropipette to provide a patch with an adhesive layer containing 20 percent by weight of nicotine. The adhesive layer was covered with a release liner (SCOTCHPAK™ 1022) and allowed to equilibrate overnight. The rate of release of nicotine from the patch was determined using the test method described below. The results are shown in Table 7 below where each entry is the average of three independent determinations.
  • EXAMPLE 220
  • The method of Example 219 was repeated using a 58/37/5 IOA/VoAc/PSMac having an iv=1.02 dl/g. The rate of release of nicotine from the patch was determined using the test method described below. The results are shown in Table 7 below where each entry is the average of three independent determinations.
  • In-Vitro Release of Nicotine
  • This method describes the dissolution test procedure used to evaluate in-vitro release characteristics of nicotine transdermal delivery patches.
  • The method uses a Hanson Dissolution Apparatus with the dissolution media temperature set at 32° C.; the paddle speed set at 50 rpm; and the paddle height above the sample set at 25 mm.
  • Each patch (5 cm2) is affixed with double sided adhesive tape to a separate stainless steel plate so that the release liner is facing upward (backing is in direct contact with the double sided tape). Each dissolution flask is charged with 500 mL 0.1 M phosphate buffer (pH 6.0) and the temperature of the buffer is allowed to equilibrate at 32±0.5° C.
  • The release liner is removed from the patch and the mounted patch is placed in the dissolution flask. At 5, 10, 20, 30, 60, 90, 120, 240, 480 and 720 minutes, 4 mL samples are withdrawn and analyzed for nicotine content using uv sprectrophotometry with the wavelength set at 262 nm using a 1 cm flow through the spectrophotometer cell. The results are reported as the cumulative percent nicotine released.
    TABLE 7
    In-vitro Nicotine Release
    Cumulative Percent
    Nicotine Released
    Time (minutes) Example 219 Example 220
    0 0 0
    5 36.7 38.4
    10 44.2 46.6
    20 55.8 60.3
    30 65.9 68.7
    60 77.5 80.0
    90 80.5 84.6
    120 84.9 87.2
    240 87.6 89.3
    480 88.5 90.4
    720 89.8 90.9
  • EXAMPLE 221
  • Using the method of Example 219, patches having an adhesive layer containing 25 percent by weight of nicotine were prepared using a 53/37/10 IOA/VoAc/ELVACITE 1020 copolymer having an iv=0.92 dl/g. The adhesive layer of the patch had many air bubbles. The compliance was found to be 1.5×10−5 cm2/dyne (average of three independent determinations).
  • EXAMPLE 222
  • Using the method of Example 219, patches having an adhesive layer containing 25 percent by weight of nicotine were prepared using a 58/37/5 IOA/VoAc/ELVACITE 1020 copolymer having an iv=1.15 dl/g. The compliance was found to be 0.9×10−5 cm2/dyne (average of three independent determinations).
  • EXAMPLE 223
  • Propylene glycol (1.52 g), methyl laurate (2.54 g), glyceryl monolaurate (0.25 g), N,N-dimethyldodecylamine-N-oxide (0.15 g), dried copolymer (5.53 g of 55/40/5 IOA/HEA/PMMAMac, iv=0.45 dl/g prior to drying) and solvent (15 g of 95/5 w/w ethyl acetate/isopropanol) were combined and mixed to provide a homogeneous coating formulation. The formulation was coated at a wet thickness of 20 mil (508 μM) onto a silicone coated polyester release liner (Daubert PESTER). The coated release liner was oven dried for 4 minutes at 43° C., for 3 minutes at 85° C., and for 2 minutes at 107° C. The coated release liner was then laminated to the corona treated side of a clear 2 mil (51 μM) polypropylene film. Patches (circular, 5 cm2) were die cut from the resulting laminate. One patch was applied to the left forearm of a human subject. A second patch was applied to the right forearm of the same subject. The percent of patch surface adhering to skin was approximated by visual assessment through the clear backing. The results are shown in Table 8 below.
  • EXAMPLES 224-261
  • Using the general method of Example 223, a number of patches were prepared and the adhesion to skin evaluated in order to assess the effect of copolymer composition, copolymer inherent viscosity, wet coating thickness, softener composition and the amount of softener on adhesion to skin. The formulations (amounts are percent by weight) and adhesion evaluations are shown in Table 8 below wherein the absence of an entry indicates that the adhesion was not assessed at that time point, “OFF” means that the patch fell off by itself, and “R” means that the patch was removed by the subject. All adhesion testing was conducted on the same subject and unless otherwise indicated the patch was adhered to the left forearm.
    TABLE 8
    Wet Coating
    Example Copolymer Thickness Adhesion (%)
    Number Type iv (dl/g) Softener (mil/μM) Day 0 Day 1 Day 2 Day 3 Day 4
    2231 55/40/5 IOA/HEA/PMMAMac 0.45 15.2 PG; 25.4 ML; 20/508 100 85 65 20
    2.5 GML
    2241,2 55/40/5 IOA/HEA/PMMAMac 0.45 15.2 PG; 25.4 ML; 20/508 100 95 85 50
    2.5 GML
    2251 55/40/5 IOA/HEA/PMMAMac 0.45 10.1 PG; 30.5 ML; 20/508 100 90 75 60
    2.5 GML
    2261,2 55/40/5 IOA/HEA/PMMAMac 0.45 10.1 PG; 30.5 ML; 20/508 100 95 85 50
    2.5 GML
    2271 55/40/5 IOA/HEA/PMMAMac 0.45 5.1 PG; 35.5 ML; 20/508 100 90 85 45
    2.5 GML
    2281,2 55/40/5 IOA/HEA/PMMAMac 0.45 5.1 PG; 35.5 ML; 20/508 100 90 75 25
    2.5 GML
    2291 60/35/5 IOA/HEA/PMMAMac 0.75 15.2 PG; 25.4 ML; 20/508 100 95 65 OFF
    2.5 GML
    2301,2 60/35/5 IOA/HEA/PMMAMac 0.75 15.2 PG; 25.4 ML; 20/508 100 100 98 60 R
    2.5 GML
    2311 60/35/5 IOA/HEA/PMMAMac 0.75 10.1 PG; 30.5 ML; 20/508 100 95 85 10 R
    2.5 GML
    2321,2 60/35/5 IOA/HEA/PMMAMac 0.75 10.1 PG; 30.5 ML; 20/508 100 100 100 ˜98 R
    2.5 GML
    2331 60/35/5 IOA/HEA/PMMAMac 0.75 5.1 PG; 35.5 ML; 20/508 100 95 10 R
    2.5 GML
    2341,2 60/35/5 IOA/HEA/PMMAMac 0.75 5.1 PG; 35.5 ML; 20/508 100 100 100 ˜95 R
    2.5 GML
    235 55/40/5 IOA/HEA/PMMAMac 0.45 30 OA 15/381 100 95 80 60 50
    236 55/40/5 IOA/HEA/PMMAMac 0.45 44 OA 15/381 100 85 70 65 OFF
    237 55/40/5 IOA/HEA/PMMAMac 0.45 30 ML 15/381 100 50 OFF
    238 55/40/5 IOA/HEA/PMMAMac 0.45 44 ML 15/381 100 90 65 OFF
    2391 59/40/1 IOA/HEA/PMMAMac* 0.68 10.2 PG; 30.5 ML; 15/381 100 80 80 78 75
    2.5 GML
    2401 59/39/2 IOA/HEA/PMMAMac* 0.63 10.2 PG; 30.5 ML; 15/381 100 95 ˜93 90 80
    2.5 GML
    2411 58/39/3 IOA/HEA/PMMAMac* 0.62 10.2 PG; 30.5 ML; 15/381 100 ˜92 ˜88 40 R
    2.5 GML
    2421 58/38/4 IOA/HEA/PMMAMac* 0.69 10.2 PG; 30.5 ML; 15/381 100 85 75 40 R
    2.5 GML
    2431 59/40/1 IOA/HEA/PMMAMac* 0.68 10.2 PG; 30.5 ML; 25/635 100 90 80 75 70
    2.5 GML
    2441 59/39/2 IOA/HEA/PMMAMac* 0.63 10.2 PG; 30.5 ML; 25/635 100 100 100 100 95
    2.5 GML
    2451 58/39/3 IOA/HEA/PMMAMac* 0.62 10.2 PG; 30.5 ML; 25/635 100 100 90 ˜88 80
    2.5 GML
    2461 58/38/4 IOA/HEA/PMMAMac* 0.69 10.2 PG; 30.5 ML; 25/635 100 ˜98 ˜96 95 60
    2.5 GML
    2471 57/38/5 IOA/HEA/PSMac 0.55 10.2 PG; 30.5 ML; 15/381 80 65 65 OFF
    2.5 GML
    2481 57/38/5 IOA/HEA/PSMac 0.32 10.2 PG; 30.5 ML; 15/381 95 85 80 75 R
    2.5 GML
    249 57/38/5 IOA/HEA/PSMac 0.55 44 EO 15/381 100 85 70 60 R
    250 57/38/5 IOA/HEA/PSMac 0.55 44 OA 15/381 95 70 20 OFF
    251 57/38/5 IOA/HEA/PSMac 0.55 44 ML 15/381 95 75 55 50 R
    252 57/38/5 IOA/HEA/PSMac 0.55 30 EO 20/508 100 95 80 75 R
    253 57/38/5 IOA/HEA/PSMac 0.55 30 OA 20/508 100 OFF
    254 57/38/5 IOA/HEA/PSMac 0.55 30 ML 20/508 100 30 R
    255 57/38/5 IOA/HEA/PSMac 0.55 30 IPM 20/508 100 ˜98 ˜95 ˜93 OFF
    256 57/38/5 IOA/HEA/PSMac 0.55 44 EO 20/508 100 OFF
    257 57/38/5 IOA/HEA/PSMac 0.55 44 OA 20/508 100 OFF
    258 57/38/5 IOA/HEA/PSMac 0.55 44 ML 20/508 100 50 35 35 OFF
    259 57/38/5 IOA/HEA/PSMac 0.55 44 IPM 20/508 100 80 70 50 OFF
    2601 57/38/5 IOA/HEA/PSMac 0.32 10.2 PG; 30.5 ML; 20/508 100 70 45 45 OFF
    2.5 GML
    2611 57/38/5 IOA/HEA/PSMac 0.55 10.2 PG; 30.5 ML; 20/508 100 80 80 OFF OFF
    2.5 GML

    *PMMAMac is ELVACITE 1020

    1Formulation also contained 1.5% DDAO

    2Adhesion test conducted on subject's right arm

Claims (20)

1. A transdermal drug delivery device, comprising:
(1) a backing;
(2) a matrix adhered to one side of the backing and comprising
(a) a copolymer comprising
(i) an alkyl acrylate containing 4 to 10 carbon atoms in the alkyl group;
(ii) hydroxyethyl acrylate; and
(iii) a substantially linear macromonomer copolymerizable with the alkyl acrylate and hydroxyethyl acrylate and having a molecular weight in the range 500-500,000;
(b) a softener dissolved in the copolymer; and,
(c) if the softener is not therapeutically effective, a therapeutically effective amount of a drug.
2. A transdermal drug delivery device according to claim 1, wherein the alkyl acrylate is present in an amount of about 40 to about 95 percent by weight, based on the total weight of all monomers in the copolymer.
3. A transdermal drug delivery device according to claim 2, wherein the alkyl acrylate is isooctyl acrylate.
4. A transdermal drug delivery device according to claim 2, wherein the alkyl acrylate is 2-ethylhexyl acrylate.
5. A transdermal drug delivery device according to claim 3, wherein the hydroxyethyl acrylate is present in an amount of less than 60 percent by weight based on the total weight of the copolymer.
6. A transdermal drug delivery device according to claim 3, wherein the hydroxyethyl acrylate is present in an amount of greater than 25 percent by weight based on the total weight of the copolymer, to about 50 percent by weight based on the total weight of the copolymer.
7. A transdermal drug delivery device according to claim 5, wherein the macromonomer has a molecular weight in the range 2,000-100,000.
8. A transdermal drug delivery device according to claim 5, wherein the macromonomer has a molecular weight in the range 5,000-30,000.
9. A transdermal drug delivery device according to claim 7, wherein the macromonomer is present in an amount of not more than about 30% by weight based on the total weight of all monomers in the copolymer.
10. A transdermal drug delivery device according to claim 7, wherein the macromonomer is present in an amount of not more than about 20% by weight based on the total weight of all monomers in the copolymer.
11. A transdermal drug delivery device according to claim 7, wherein the macromonomer is present in an amount of not more than about 10% by weight based on the total weight of all monomers in the copolymer.
12. A transdermal drug delivery device according to claim 11, wherein the macromonomer is selected from the group consisting of polymethylmethacrylate macromonomer, styrene/acrylonitrile macromonomer, and polystyrene macromonomer.
13. A transdermal drug delivery device according to claim 11, wherein the macromonomer is a polymethylmethacrylate macromonomer.
14. A transdermal drug delivery device according to claim 13, wherein the softener is present in an amount in excess of 20% based on the total weight of the matrix.
15. A transdermal drug delivery device according to claim 13, wherein the softener is present in an amount not in excess of 60% based on the total weight of the matrix.
16. A transdermal drug delivery device according to claim 13, wherein the softener is present in an amount in excess of 20% and less than about 45% by weight based on the total weight of the matrix.
17. A transdermal drug delivery device according to claim 15, wherein the softener is selected from the group consisting of C8-C22 fatty acids, C8-C22 fatty alcohols, lower alkyl esters of C8-C22 fatty acids, monoglycerides of C8-C22 fatty acids, di(lower)alkyl esters of C6-C8 diacids, tetrahydrofurfuryl alcohol polyethylene glycol ether, polyethylene glycol, propylene glycol, ethoxyethoxy ethanol, diethylene glycol monomethyl ether, N,N-dimethyl dodecylamine-N-oxide, 2-(2-ethoxyethoxy)ethanol, and combinations of the foregoing.
18. A transdermal drug delivery device according to claim 15, wherein the softener is selected from the group consisting of glyceryl monolaurate, diethylene glycol monomethyl ether, tetrahydrofurfuryl alcohol polyethylene glycol ether, propylene glycol, isopropyl myristate, ethyl oleate, diisopropyl adipate, oleyl alcohol, 2-(2-ethoxyethoxy)ethanol, and methyl laurate.
19. A transdermal drug delivery device according to claim 15, wherein the softener is methyl laurate.
20. A pressure sensitive skin adhesive comprising:
(1) a copolymer comprising
(i) an alkyl acrylate containing 4 to 10 carbon atoms in the alkyl group;
(ii) hydroxyethyl acrylate; and
(iii) a substantially linear macromonomer copolymerizable with the alkyl acrylate and hydroxyethyl acrylate and having a molecular weight in the range 500-500,000;
(2) a softener dissolved in the copolymer; and
(3) if the softener is not therapeutically effective, a therapeutically effective amount of a drug.
US11/318,312 1994-09-14 2005-12-23 Matrix for transdermal drug delivery Abandoned US20060099242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/318,312 US20060099242A1 (en) 1994-09-14 2005-12-23 Matrix for transdermal drug delivery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30583394A 1994-09-14 1994-09-14
US52376295A 1995-09-05 1995-09-05
US08/968,519 US7097853B1 (en) 1994-09-14 1997-11-12 Matrix for transdermal drug delivery
US11/318,312 US20060099242A1 (en) 1994-09-14 2005-12-23 Matrix for transdermal drug delivery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/968,519 Continuation US7097853B1 (en) 1994-09-14 1997-11-12 Matrix for transdermal drug delivery

Publications (1)

Publication Number Publication Date
US20060099242A1 true US20060099242A1 (en) 2006-05-11

Family

ID=23182561

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/968,519 Expired - Fee Related US7097853B1 (en) 1994-09-14 1997-11-12 Matrix for transdermal drug delivery
US11/318,312 Abandoned US20060099242A1 (en) 1994-09-14 2005-12-23 Matrix for transdermal drug delivery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/968,519 Expired - Fee Related US7097853B1 (en) 1994-09-14 1997-11-12 Matrix for transdermal drug delivery

Country Status (14)

Country Link
US (2) US7097853B1 (en)
EP (1) EP0781122B1 (en)
JP (1) JP4102901B2 (en)
KR (1) KR100382706B1 (en)
AT (1) ATE194281T1 (en)
AU (1) AU702593B2 (en)
CA (1) CA2198390C (en)
DE (1) DE69517816T2 (en)
DK (1) DK0781122T3 (en)
ES (1) ES2147858T3 (en)
GR (1) GR3033859T3 (en)
NZ (1) NZ293849A (en)
PT (1) PT781122E (en)
WO (1) WO1996008229A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090299304A1 (en) * 2008-05-30 2009-12-03 Mylan Technologies Inc. Stabilized transdermal drug delivery system
US9056060B2 (en) 2000-09-19 2015-06-16 Henkel Ag & Co. Kgaa Non-reactive adhesive useful in transdermal drug delivery system

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580682A (en) * 1983-01-31 1986-04-08 North American Science Associates, Inc. Self-contained indicator device
DE19526864A1 (en) * 1995-07-22 1997-01-23 Labtec Gmbh Hormone patches
US5703169A (en) * 1996-01-24 1997-12-30 Adhesives Research, Inc. Non-corrosive, low volatiles-containing pressure sensitive adhesive
DE19629468A1 (en) * 1996-07-11 1998-01-15 Schering Ag Transdermal therapeutic systems
US5951999A (en) 1997-02-21 1999-09-14 Adhesives Research, Inc. Transdermal pressure sensitive adhesive drug delivery system
WO1998053815A1 (en) * 1997-05-30 1998-12-03 Minnesota Mining And Manufacturing Company Transdermal drug delivery device for the delivery of tropisetron or granisetron
DE19728516C2 (en) * 1997-07-04 1999-11-11 Sanol Arznei Schwarz Gmbh TTS for administration of levonorgestrel and possibly estradiol
MY122454A (en) 1998-06-05 2006-04-29 Upjohn Co Use of oxazolidinones for the preparation of a medicament for transdermal delivery
US6136807A (en) * 1998-11-10 2000-10-24 3M Innovative Properties Company Composition for the transdermal delivery of lerisetron
US6503894B1 (en) * 2000-08-30 2003-01-07 Unimed Pharmaceuticals, Inc. Pharmaceutical composition and method for treating hypogonadism
US20030139384A1 (en) * 2000-08-30 2003-07-24 Dudley Robert E. Method for treating erectile dysfunction and increasing libido in men
EP1320710B1 (en) 2000-09-24 2006-04-26 3M Innovative Properties Company Drying method for selectively removing volatile components from wet coatings
US20020119187A1 (en) * 2000-09-29 2002-08-29 Cantor Adam S. Composition for the transdermal delivery of fentanyl
AU2007205756B2 (en) * 2000-09-29 2010-04-15 Kindeva Drug Delivery L.P. Composition for the transdermal delivery of fentanyl
US6479076B2 (en) * 2001-01-12 2002-11-12 Izhak Blank Nicotine delivery compositions
EP1757280A1 (en) * 2001-03-16 2007-02-28 ALZA Corporation Transdermal patch for administering sufentanyl
ES2270746T3 (en) 2001-03-16 2007-12-01 Alza Corporation TRANSDERMAL PATCH TO ADMINISTER FENTANIL.
US6902740B2 (en) * 2001-07-09 2005-06-07 3M Innovative Properties Company Pyrrolidonoethyl (meth)acrylate containing pressure sensitive adhesive compositions
DE10141650C1 (en) 2001-08-24 2002-11-28 Lohmann Therapie Syst Lts Safe transdermal therapeutic system for administration of fentanyl or analogous analgesics, having matrix layer of carboxy group-free polyacrylate adhesive providing high permeation rate
US6893655B2 (en) 2001-10-09 2005-05-17 3M Innovative Properties Co. Transdermal delivery devices
BR0308584A (en) * 2002-03-15 2005-02-22 Unimed Pharmaceuticals Inc Androgenic pharmaceutical composition and method for treating depression
JP4746984B2 (en) * 2003-03-28 2011-08-10 独立行政法人科学技術振興機構 Polymer with both biocompatibility and temperature response
JP4567998B2 (en) * 2004-03-22 2010-10-27 コスメディ製薬株式会社 Hydrophilic external skin pressure-sensitive adhesive composition and hydrophilic patch using hydrophilic pressure-sensitive adhesive
IL177071A0 (en) * 2005-08-01 2006-12-10 Nitto Denko Corp Method of preparing a nicotine transdermal preparation
EP2258441A3 (en) 2005-09-02 2011-09-21 Intercell USA, Inc. Devices for transcutaneous delivery of vaccines and transdermal delivery of drugs
WO2007035940A2 (en) * 2005-09-23 2007-03-29 Alza Corporation Transdermal norelgestromin delivery system
US8383149B2 (en) 2005-09-23 2013-02-26 Alza Corporation High enhancer-loading polyacrylate formulation for transdermal applications
ES2693745T3 (en) 2005-10-12 2018-12-13 Unimed Pharmaceuticals, Llc Improved testosterone gel for use in the treatment of hypogonadism
EP1774964B1 (en) 2005-10-13 2014-08-06 Nitto Denko Corporation Nicotine transdermal preparation and production method thereof
JP5188680B2 (en) * 2006-04-10 2013-04-24 花王株式会社 Plasticizer for biodegradable resin
JP5241714B2 (en) 2006-07-07 2013-07-17 プロテウス デジタル ヘルス, インコーポレイテッド Smart parenteral delivery system
EP2211974A4 (en) 2007-10-25 2013-02-27 Proteus Digital Health Inc Fluid transfer port information system
US20090124952A1 (en) * 2007-11-09 2009-05-14 Berman David A Herpes Treatment and Dressing
WO2009067463A1 (en) 2007-11-19 2009-05-28 Proteus Biomedical, Inc. Body-associated fluid transport structure evaluation devices
KR101264843B1 (en) * 2008-12-31 2013-05-16 주식회사 삼양바이오팜 Method of Producing a Patch for Transdermal Administration of Volatile or Heat-Sensitive Drug, and the Patch Thereof
US9549842B2 (en) 2011-02-04 2017-01-24 Joseph E. Kovarik Buccal bioadhesive strip and method of treating snoring and sleep apnea
US8701671B2 (en) 2011-02-04 2014-04-22 Joseph E. Kovarik Non-surgical method and system for reducing snoring
EP2531096A4 (en) 2010-02-01 2013-09-11 Proteus Digital Health Inc Two-wrist data gathering system
AU2011210648B2 (en) 2010-02-01 2014-10-16 Otsuka Pharmaceutical Co., Ltd. Data gathering system
SG187158A1 (en) 2010-07-21 2013-02-28 3M Innovative Properties Co Transdermal adhesive compositions, devices, and methods
US11844720B2 (en) 2011-02-04 2023-12-19 Seed Health, Inc. Method and system to reduce the likelihood of dental caries and halitosis
WO2013078422A2 (en) 2011-11-23 2013-05-30 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US9301920B2 (en) 2012-06-18 2016-04-05 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
WO2013090191A2 (en) 2011-12-13 2013-06-20 3M Innovative Properties Company Method of making pressure-sensitive adhesive article including active agent
US20130338122A1 (en) 2012-06-18 2013-12-19 Therapeuticsmd, Inc. Transdermal hormone replacement therapies
US10806740B2 (en) 2012-06-18 2020-10-20 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US20150196640A1 (en) 2012-06-18 2015-07-16 Therapeuticsmd, Inc. Progesterone formulations having a desirable pk profile
US10806697B2 (en) 2012-12-21 2020-10-20 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US20140093555A1 (en) * 2012-09-28 2014-04-03 Nitto Denko Corporation Patch preparation containing amine oxide
US10471072B2 (en) 2012-12-21 2019-11-12 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US9180091B2 (en) 2012-12-21 2015-11-10 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US10568891B2 (en) 2012-12-21 2020-02-25 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10537581B2 (en) 2012-12-21 2020-01-21 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11266661B2 (en) 2012-12-21 2022-03-08 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11246875B2 (en) 2012-12-21 2022-02-15 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
JP6186994B2 (en) * 2013-07-29 2017-08-30 三菱ケミカル株式会社 Acrylic resin composition
TWI709417B (en) 2013-10-07 2020-11-11 美商帝國製藥美國股份有限公司 Methods and compositions for treating attention deficit hyperactivity disorder, anxiety and insomnia using dexmedetomidine transdermal compositions
TWI704933B (en) * 2013-10-07 2020-09-21 美商帝國製藥美國股份有限公司 Dexmedetomidine transdermal delivery devices and methods for using the same
JP6188933B2 (en) 2013-10-07 2017-08-30 テイコク ファーマ ユーエスエー インコーポレーテッド Methods and compositions for transdermal delivery of non-sedating amounts of dexmedetomidine
US11839632B2 (en) 2013-12-20 2023-12-12 Seed Health, Inc. Topical application of CRISPR-modified bacteria to treat acne vulgaris
US11833177B2 (en) 2013-12-20 2023-12-05 Seed Health, Inc. Probiotic to enhance an individual's skin microbiome
US11826388B2 (en) 2013-12-20 2023-11-28 Seed Health, Inc. Topical application of Lactobacillus crispatus to ameliorate barrier damage and inflammation
AU2015264003A1 (en) 2014-05-22 2016-11-17 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
BR112017012824A2 (en) 2014-12-16 2018-01-02 3M Innovative Properties Co adhesive article with a barrier layer
CN107106552A (en) 2014-12-19 2017-08-29 3M创新有限公司 Transdermal drug delivery device comprising fentanyl
US10328087B2 (en) 2015-07-23 2019-06-25 Therapeuticsmd, Inc. Formulations for solubilizing hormones
US9931349B2 (en) 2016-04-01 2018-04-03 Therapeuticsmd, Inc. Steroid hormone pharmaceutical composition
WO2017173044A1 (en) 2016-04-01 2017-10-05 Therapeuticsmd Inc. Steroid hormone compositions in medium chain oils
WO2017223402A1 (en) 2016-06-23 2017-12-28 Corium International, Inc. Adhesive matrix with hydrophilic and hydrophobic domains and a therapeutic agent
CN116270551A (en) 2016-07-27 2023-06-23 考里安有限责任公司 Composition for in-situ conversion from salt to neutral drug, transdermal patch and application
MX2019001104A (en) 2016-07-27 2019-10-02 Corium Int Inc Memantine transdermal delivery systems.
JP2019522024A (en) 2016-07-27 2019-08-08 コリウム インターナショナル, インコーポレイテッド Transdermal delivery system with pharmacokinetics that are bioequivalent to oral delivery
WO2019126531A1 (en) 2017-12-20 2019-06-27 Corium, Inc. Transdermal adhesive composition comprising a volatile liquid therapeutic agent having low melting point
US11633405B2 (en) 2020-02-07 2023-04-25 Therapeuticsmd, Inc. Steroid hormone pharmaceutical formulations
IL296624A (en) * 2020-03-30 2022-11-01 Shinkei Therapeutics Inc Transdermal delivery of dextromethorphan

Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24906E (en) * 1955-11-18 1960-12-13 Pressure-sensitive adhesive sheet material
US3786116A (en) * 1972-08-21 1974-01-15 Cpc International Inc Chemically joined,phase separated thermoplastic graft copolymers
US3832423A (en) * 1971-02-22 1974-08-27 Cpc International Inc Chemically joined, phase separated graft copolymers having hydrocarbon polymeric backbones
US3842058A (en) * 1971-02-22 1974-10-15 Cpc International Inc Vinyl ether terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
US3842146A (en) * 1971-02-22 1974-10-15 Cpc International Inc Polymerizable diblock macromolecular monomers having a substantially uniform molecular weight distribution and their preparation
US3842059A (en) * 1971-02-22 1974-10-15 M Chiang Acrylate and methacrylate terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
US3842057A (en) * 1971-02-22 1974-10-15 Cpc International Inc Vinyl ester terminated macromolecular monomers having a substantially uniform molecular weight distribution and process for preparing same
US3862101A (en) * 1971-02-22 1975-01-21 Cpc International Inc Acrylate and methacrylate terminated polydiene macromolecular monomers having a substantially uniform molecular weight distribution
US3862098A (en) * 1971-02-22 1975-01-21 Cpc International Inc Alpha-olefin terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
US3862077A (en) * 1971-02-22 1975-01-21 Cpc International Inc Stable latexes of a chemically joined, phase separated thermoplastic graft copolymer and method for preparing the same
US3862102A (en) * 1971-02-22 1975-01-21 Cpc International Inc Alpha-olefin terminated polydiene macromolecular monomers having a substantially uniform molecular weight distribution
US3879494A (en) * 1971-02-22 1975-04-22 Cpc International Inc Polyblends of chemically joined, phase separated thermoplastic graft copolymers
US3928255A (en) * 1971-02-22 1975-12-23 Cpc International Inc Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US3989768A (en) * 1971-02-22 1976-11-02 Cpc International Inc. Chemically joined phase separated thermoplastic graft copolymers
US4085168A (en) * 1971-02-22 1978-04-18 Cpc International Inc. Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US4260659A (en) * 1979-06-18 1981-04-07 Minnesota Mining And Manufacturing Company Pressure-sensitive tape having a plurality of adhesive layers
US4304591A (en) * 1978-01-25 1981-12-08 Ciba-Geigy Corporation Water-insoluble hydrophilic copolymers used as carriers for medicaments and pesticides
US4374883A (en) * 1981-10-15 1983-02-22 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive tape
US4551388A (en) * 1983-06-27 1985-11-05 Atlantic Richfield Company Acrylic hot melt pressure sensitive adhesive coated sheet material
US4554324A (en) * 1982-09-16 1985-11-19 Minnesota Mining And Manufacturing Co. Acrylate copolymer pressure-sensitive adhesive composition and sheet materials coated therewith
US4656213A (en) * 1984-10-26 1987-04-07 Atlantic Richfield Company Acrylic hot melt pressure sensitive adhesive compounds
US4693776A (en) * 1985-05-16 1987-09-15 Minnesota Mining And Manufacturing Company Macromer reinforced pressure sensitive skin adhesive
US4732808A (en) * 1985-11-14 1988-03-22 Minnesota Mining And Manufacturing Company Macromer reinforced pressure sensitive skin adhesive sheet material
US4737559A (en) * 1986-05-19 1988-04-12 Minnesota Mining And Manufacturing Co. Pressure-sensitive adhesive crosslinked by copolymerizable aromatic ketone monomers
US4751087A (en) * 1985-04-19 1988-06-14 Riker Laboratories, Inc. Transdermal nitroglycerin delivery system
US4818540A (en) * 1985-02-25 1989-04-04 Rutgers, The State University Of New Jersey Transdermal fertility control system and process
US4847137A (en) * 1986-05-19 1989-07-11 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive crosslinked by copolymerizable aromatic ketone monomers
US4851278A (en) * 1986-08-11 1989-07-25 Minnesota Mining And Manufacturing Company Acrylate hot melt adhesive containing zinc carboxylate
US4871812A (en) * 1986-11-28 1989-10-03 Minnesota Mining And Manufacturing Company Moldable medical adhesive
US4883669A (en) * 1985-02-25 1989-11-28 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for estradiol and other estrogenic steroids and process for administration
US4906169A (en) * 1986-12-29 1990-03-06 Rutgers, The State University Of New Jersey Transdermal estrogen/progestin dosage unit, system and process
US4946742A (en) * 1988-05-20 1990-08-07 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive having improved adhesion to plasticized vinyl substrates
US4973468A (en) * 1989-03-22 1990-11-27 Cygnus Research Corporation Skin permeation enhancer compositions
US4994267A (en) * 1988-03-04 1991-02-19 Noven Pharmaceuticals, Inc. Transdermal acrylic multipolymer drug delivery system
US5006582A (en) * 1988-08-01 1991-04-09 E. I. Du Pont De Nemours And Company Acrylic hot melt pressure sensitive adhesive compositions
US5008110A (en) * 1988-11-10 1991-04-16 The Procter & Gamble Company Storage-stable transdermal patch
US5023084A (en) * 1986-12-29 1991-06-11 Rutgers, The State University Of New Jersey Transdermal estrogen/progestin dosage unit, system and process
US5032637A (en) * 1990-03-14 1991-07-16 Adhesives Research Inc. Water-inactivatable pressure sensitive adhesive
US5053227A (en) * 1989-03-22 1991-10-01 Cygnus Therapeutic Systems Skin permeation enhancer compositions, and methods and transdermal systems associated therewith
US5059426A (en) * 1989-03-22 1991-10-22 Cygnus Therapeutic Systems Skin permeation enhancer compositions, and methods and transdermal systems associated therewith
US5143972A (en) * 1990-05-17 1992-09-01 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive composition
US5145682A (en) * 1986-05-30 1992-09-08 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for postmenopausal syndrome treatment and process for administration
US5151271A (en) * 1981-08-27 1992-09-29 Nitti Electric Industrial Co., Ltd. Pressure-sensitively adhering composite medicinal preparation
US5175052A (en) * 1988-05-11 1992-12-29 Nitto Denko Corporation Adhesive tape preparation of clonidine
US5176916A (en) * 1990-04-18 1993-01-05 Nitto Electric Industrial Co., Ltd. Medical adhesives
US5200190A (en) * 1988-10-11 1993-04-06 Sekisui Kagaku Kogyo Kabushiki Kaisha Percutaneous pharmaceutical preparation
US5223261A (en) * 1988-02-26 1993-06-29 Riker Laboratories, Inc. Transdermal estradiol delivery system
US5225473A (en) * 1987-11-25 1993-07-06 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesives
US5229195A (en) * 1987-08-26 1993-07-20 Lintec Corporation Composite body having a blister-free pressure-sensitive adhesive sheet attached thereto
US5244677A (en) * 1988-12-29 1993-09-14 Minnesota Mining And Manufacturing Company Application system for drug containing microemulsions
US5252395A (en) * 1990-12-17 1993-10-12 Lintec Corporation Blister resistant pressure sensitive adhesive sheet
US5262165A (en) * 1992-02-04 1993-11-16 Schering Corporation Transdermal nitroglycerin patch with penetration enhancers
US5296230A (en) * 1985-02-25 1994-03-22 Rutgers, The State University Of New Jersey Transdermal fertility control system and process
US5298258A (en) * 1989-12-28 1994-03-29 Nitto Denko Corporation Acrylic oily gel bioadhesive material and acrylic oily gel preparation
US5302629A (en) * 1992-05-15 1994-04-12 Berejka Anthony J Hydrophilic acrylic pressure sensitive adhesives
US5306503A (en) * 1990-06-25 1994-04-26 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Patch with a high content of softening ingredients
US5352516A (en) * 1992-01-31 1994-10-04 Adhesives Research, Inc. Water-inactivatable pressure sensitive adhesive
US5368860A (en) * 1990-11-30 1994-11-29 Nitto Denko Corporation Preparation for transdermal drug administration
US5372819A (en) * 1992-08-07 1994-12-13 Minnesota Mining And Manufacturing Company Tramsdermal drug delivery device
US5389376A (en) * 1991-11-15 1995-02-14 Minnesota Mining And Manufacturing Company Pressure-sensitive poly(n-vinyl lactam) adhesive composition and skin covering articles using same
US5395907A (en) * 1993-11-29 1995-03-07 Adhesive Research, Inc. Water-soluble pressure sensitive adhesive
US5508367A (en) * 1993-11-29 1996-04-16 Adhesives Research, Inc. Water-soluble pressure sensitive adhesive
US5573778A (en) * 1995-03-17 1996-11-12 Adhesives Research, Inc. Drug flux enhancer-tolerant pressure sensitive adhesive composition
US5614210A (en) * 1995-03-31 1997-03-25 Minnesota Mining And Manufacturing Company Transdermal device for the delivery of alfuzosin
US5660178A (en) * 1992-12-01 1997-08-26 Minnesota Mining And Manufacturing Company Hydrophilic pressure sensitive adhesives

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596284B2 (en) * 1980-06-26 1984-02-10 積水化学工業株式会社 Treatment adhesive tape or sheet
JPS57125753A (en) 1981-01-30 1982-08-05 Sekisui Chemical Co Ltd Therapeutic adhesive tape or sheet
JPS58176208A (en) 1982-04-09 1983-10-15 Dainippon Ink & Chem Inc Coating resin composition
JPS60228413A (en) 1984-04-27 1985-11-13 Sekisui Chem Co Ltd Tape or sheet for therapeutic use and its preparation
JPH01213379A (en) 1988-02-22 1989-08-28 Nitto Denko Corp Pressure-sensitive adhesive
DE68922037T2 (en) 1988-08-04 1995-09-28 Lintec Corp Plastic plate and suitable adhesive film.
ATE107517T1 (en) 1989-05-25 1994-07-15 Takeda Chemical Industries Ltd TRANSDERMAL THERAPEUTIC AGENT.
US4994322A (en) 1989-09-18 1991-02-19 Minnesota Mining And Manufacturing Pressure-sensitive adhesive comprising hollow tacky microspheres and macromonomer-containing binder copolymer
CA2039586A1 (en) 1990-05-02 1991-11-03 Marian R. Appelt Crosslinked pressure-sensitive adhesives tolerant of alcohol-based excipients used in transdermal delivery devices and method of preparing same
AU641580B2 (en) 1991-02-28 1993-09-23 National Starch And Chemical Investment Holding Corporation Water vapor permeable pressure sensitive adhesive composition
AU665567B2 (en) 1991-09-23 1996-01-11 Minnesota Mining And Manufacturing Company Pressure sensitive adhesive composition which is repulpable under acidic pH conditions
SG49755A1 (en) 1992-12-07 1998-06-15 Minnesota Mining & Mfg Adhesive for polycarbonate

Patent Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24906E (en) * 1955-11-18 1960-12-13 Pressure-sensitive adhesive sheet material
US3862102A (en) * 1971-02-22 1975-01-21 Cpc International Inc Alpha-olefin terminated polydiene macromolecular monomers having a substantially uniform molecular weight distribution
US4085168A (en) * 1971-02-22 1978-04-18 Cpc International Inc. Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US3862077A (en) * 1971-02-22 1975-01-21 Cpc International Inc Stable latexes of a chemically joined, phase separated thermoplastic graft copolymer and method for preparing the same
US3842146A (en) * 1971-02-22 1974-10-15 Cpc International Inc Polymerizable diblock macromolecular monomers having a substantially uniform molecular weight distribution and their preparation
US3842059A (en) * 1971-02-22 1974-10-15 M Chiang Acrylate and methacrylate terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
US3842057A (en) * 1971-02-22 1974-10-15 Cpc International Inc Vinyl ester terminated macromolecular monomers having a substantially uniform molecular weight distribution and process for preparing same
US3862101A (en) * 1971-02-22 1975-01-21 Cpc International Inc Acrylate and methacrylate terminated polydiene macromolecular monomers having a substantially uniform molecular weight distribution
US3862098A (en) * 1971-02-22 1975-01-21 Cpc International Inc Alpha-olefin terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
US3842058A (en) * 1971-02-22 1974-10-15 Cpc International Inc Vinyl ether terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution
US3832423A (en) * 1971-02-22 1974-08-27 Cpc International Inc Chemically joined, phase separated graft copolymers having hydrocarbon polymeric backbones
US3928255A (en) * 1971-02-22 1975-12-23 Cpc International Inc Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
US3879494A (en) * 1971-02-22 1975-04-22 Cpc International Inc Polyblends of chemically joined, phase separated thermoplastic graft copolymers
US3989768A (en) * 1971-02-22 1976-11-02 Cpc International Inc. Chemically joined phase separated thermoplastic graft copolymers
US3786116A (en) * 1972-08-21 1974-01-15 Cpc International Inc Chemically joined,phase separated thermoplastic graft copolymers
US4304591A (en) * 1978-01-25 1981-12-08 Ciba-Geigy Corporation Water-insoluble hydrophilic copolymers used as carriers for medicaments and pesticides
US4260659A (en) * 1979-06-18 1981-04-07 Minnesota Mining And Manufacturing Company Pressure-sensitive tape having a plurality of adhesive layers
US5151271A (en) * 1981-08-27 1992-09-29 Nitti Electric Industrial Co., Ltd. Pressure-sensitively adhering composite medicinal preparation
US4374883A (en) * 1981-10-15 1983-02-22 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive tape
US4554324A (en) * 1982-09-16 1985-11-19 Minnesota Mining And Manufacturing Co. Acrylate copolymer pressure-sensitive adhesive composition and sheet materials coated therewith
US4551388A (en) * 1983-06-27 1985-11-05 Atlantic Richfield Company Acrylic hot melt pressure sensitive adhesive coated sheet material
US4656213A (en) * 1984-10-26 1987-04-07 Atlantic Richfield Company Acrylic hot melt pressure sensitive adhesive compounds
US4818540A (en) * 1985-02-25 1989-04-04 Rutgers, The State University Of New Jersey Transdermal fertility control system and process
US4883669A (en) * 1985-02-25 1989-11-28 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for estradiol and other estrogenic steroids and process for administration
US5296230A (en) * 1985-02-25 1994-03-22 Rutgers, The State University Of New Jersey Transdermal fertility control system and process
US4751087B1 (en) * 1985-04-19 1993-03-02 Riker Laboratories Inc
US4751087A (en) * 1985-04-19 1988-06-14 Riker Laboratories, Inc. Transdermal nitroglycerin delivery system
US4693776A (en) * 1985-05-16 1987-09-15 Minnesota Mining And Manufacturing Company Macromer reinforced pressure sensitive skin adhesive
US4732808A (en) * 1985-11-14 1988-03-22 Minnesota Mining And Manufacturing Company Macromer reinforced pressure sensitive skin adhesive sheet material
US4847137A (en) * 1986-05-19 1989-07-11 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive crosslinked by copolymerizable aromatic ketone monomers
US4737559A (en) * 1986-05-19 1988-04-12 Minnesota Mining And Manufacturing Co. Pressure-sensitive adhesive crosslinked by copolymerizable aromatic ketone monomers
US5145682A (en) * 1986-05-30 1992-09-08 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit for postmenopausal syndrome treatment and process for administration
US4851278A (en) * 1986-08-11 1989-07-25 Minnesota Mining And Manufacturing Company Acrylate hot melt adhesive containing zinc carboxylate
US4871812A (en) * 1986-11-28 1989-10-03 Minnesota Mining And Manufacturing Company Moldable medical adhesive
US4906169A (en) * 1986-12-29 1990-03-06 Rutgers, The State University Of New Jersey Transdermal estrogen/progestin dosage unit, system and process
US5023084A (en) * 1986-12-29 1991-06-11 Rutgers, The State University Of New Jersey Transdermal estrogen/progestin dosage unit, system and process
US5229195A (en) * 1987-08-26 1993-07-20 Lintec Corporation Composite body having a blister-free pressure-sensitive adhesive sheet attached thereto
US5225473A (en) * 1987-11-25 1993-07-06 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesives
US5223261A (en) * 1988-02-26 1993-06-29 Riker Laboratories, Inc. Transdermal estradiol delivery system
US4994267A (en) * 1988-03-04 1991-02-19 Noven Pharmaceuticals, Inc. Transdermal acrylic multipolymer drug delivery system
US5175052A (en) * 1988-05-11 1992-12-29 Nitto Denko Corporation Adhesive tape preparation of clonidine
US4946742A (en) * 1988-05-20 1990-08-07 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive having improved adhesion to plasticized vinyl substrates
US5006582A (en) * 1988-08-01 1991-04-09 E. I. Du Pont De Nemours And Company Acrylic hot melt pressure sensitive adhesive compositions
US5200190A (en) * 1988-10-11 1993-04-06 Sekisui Kagaku Kogyo Kabushiki Kaisha Percutaneous pharmaceutical preparation
US5008110A (en) * 1988-11-10 1991-04-16 The Procter & Gamble Company Storage-stable transdermal patch
US5244677A (en) * 1988-12-29 1993-09-14 Minnesota Mining And Manufacturing Company Application system for drug containing microemulsions
US5059426A (en) * 1989-03-22 1991-10-22 Cygnus Therapeutic Systems Skin permeation enhancer compositions, and methods and transdermal systems associated therewith
US4973468A (en) * 1989-03-22 1990-11-27 Cygnus Research Corporation Skin permeation enhancer compositions
US5053227A (en) * 1989-03-22 1991-10-01 Cygnus Therapeutic Systems Skin permeation enhancer compositions, and methods and transdermal systems associated therewith
US5298258A (en) * 1989-12-28 1994-03-29 Nitto Denko Corporation Acrylic oily gel bioadhesive material and acrylic oily gel preparation
US5032637A (en) * 1990-03-14 1991-07-16 Adhesives Research Inc. Water-inactivatable pressure sensitive adhesive
US5176916A (en) * 1990-04-18 1993-01-05 Nitto Electric Industrial Co., Ltd. Medical adhesives
US5143972A (en) * 1990-05-17 1992-09-01 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive composition
US5306503A (en) * 1990-06-25 1994-04-26 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Patch with a high content of softening ingredients
US5368860A (en) * 1990-11-30 1994-11-29 Nitto Denko Corporation Preparation for transdermal drug administration
US5252395A (en) * 1990-12-17 1993-10-12 Lintec Corporation Blister resistant pressure sensitive adhesive sheet
US5389376A (en) * 1991-11-15 1995-02-14 Minnesota Mining And Manufacturing Company Pressure-sensitive poly(n-vinyl lactam) adhesive composition and skin covering articles using same
US5352516A (en) * 1992-01-31 1994-10-04 Adhesives Research, Inc. Water-inactivatable pressure sensitive adhesive
US5262165A (en) * 1992-02-04 1993-11-16 Schering Corporation Transdermal nitroglycerin patch with penetration enhancers
US5302629A (en) * 1992-05-15 1994-04-12 Berejka Anthony J Hydrophilic acrylic pressure sensitive adhesives
US5372819A (en) * 1992-08-07 1994-12-13 Minnesota Mining And Manufacturing Company Tramsdermal drug delivery device
US5660178A (en) * 1992-12-01 1997-08-26 Minnesota Mining And Manufacturing Company Hydrophilic pressure sensitive adhesives
US5395907A (en) * 1993-11-29 1995-03-07 Adhesive Research, Inc. Water-soluble pressure sensitive adhesive
US5508367A (en) * 1993-11-29 1996-04-16 Adhesives Research, Inc. Water-soluble pressure sensitive adhesive
US5573778A (en) * 1995-03-17 1996-11-12 Adhesives Research, Inc. Drug flux enhancer-tolerant pressure sensitive adhesive composition
US5614210A (en) * 1995-03-31 1997-03-25 Minnesota Mining And Manufacturing Company Transdermal device for the delivery of alfuzosin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056060B2 (en) 2000-09-19 2015-06-16 Henkel Ag & Co. Kgaa Non-reactive adhesive useful in transdermal drug delivery system
US20090299304A1 (en) * 2008-05-30 2009-12-03 Mylan Technologies Inc. Stabilized transdermal drug delivery system
WO2009158120A3 (en) * 2008-05-30 2010-03-04 Mylan Laboratories Inc. Stabilized transdermal drug delivery system
US9226902B2 (en) 2008-05-30 2016-01-05 Mylan Technologies Inc. Stabilized transdermal drug delivery system
AU2009262871B2 (en) * 2008-05-30 2016-04-14 Mylan Inc. Stabilized transdermal drug delivery system
AU2016202212B2 (en) * 2008-05-30 2018-05-10 Mylan Inc. Stabilized transdermal drug delivery system
EP2299989B1 (en) 2008-05-30 2019-01-02 Mylan Inc. Stabilized transdermal drug delivery system

Also Published As

Publication number Publication date
AU3639795A (en) 1996-03-29
EP0781122B1 (en) 2000-07-05
PT781122E (en) 2000-11-30
KR100382706B1 (en) 2003-10-10
JP4102901B2 (en) 2008-06-18
KR970705974A (en) 1997-11-03
NZ293849A (en) 1998-10-28
EP0781122A2 (en) 1997-07-02
DK0781122T3 (en) 2000-10-30
JPH10508296A (en) 1998-08-18
WO1996008229A2 (en) 1996-03-21
US7097853B1 (en) 2006-08-29
AU702593B2 (en) 1999-02-25
WO1996008229A3 (en) 1996-07-25
DE69517816T2 (en) 2000-12-28
DE69517816D1 (en) 2000-08-10
ATE194281T1 (en) 2000-07-15
GR3033859T3 (en) 2000-10-31
CA2198390A1 (en) 1996-03-21
CA2198390C (en) 2009-08-11
ES2147858T3 (en) 2000-10-01

Similar Documents

Publication Publication Date Title
US7097853B1 (en) Matrix for transdermal drug delivery
JP6437908B2 (en) Composition for transdermal delivery of fentanyl
AU735944B2 (en) Transdermal device for the delivery of testosterone
EP0732922B1 (en) Transdermal delivery device
KR100418489B1 (en) Pressure-sensitive adhesive composition resistant to pharmaceutical fluidity improvers
KR20010024016A (en) Gel-form presssure-sensitive adhesive, and adhesive material and adhesive medicinal preparation both containing the same
US5614210A (en) Transdermal device for the delivery of alfuzosin
AU776102B2 (en) Matrix for transdermal drug delivery and pressure sensitive adhesive
US6136807A (en) Composition for the transdermal delivery of lerisetron
WO1996008255A1 (en) Transdermal device for delivery of levonorgestrel
WO2007011763A2 (en) Adhesive sheet and methods of use thereof
JPS6041968A (en) Hydrophilic drug member
JP2647222B2 (en) Transdermal formulation
JPH09278650A (en) Percutaneous preparation of nitroglycerin
MXPA00009361A (en) Device for the transdermal delivery of diclofenac
MXPA99007771A (en) Transdermal device for the delivery of testosterone

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION