US20060129123A1 - Transcutaneous inserter for low-profile infusion sets - Google Patents

Transcutaneous inserter for low-profile infusion sets Download PDF

Info

Publication number
US20060129123A1
US20060129123A1 US11/340,268 US34026806A US2006129123A1 US 20060129123 A1 US20060129123 A1 US 20060129123A1 US 34026806 A US34026806 A US 34026806A US 2006129123 A1 US2006129123 A1 US 2006129123A1
Authority
US
United States
Prior art keywords
retainer
inserter
cannula
housing
release lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/340,268
Inventor
Steven Wojcik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/340,268 priority Critical patent/US20060129123A1/en
Publication of US20060129123A1 publication Critical patent/US20060129123A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • A61M2005/1585Needle inserters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • A61M2005/1587Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body suitable for being connected to an infusion line after insertion into a patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3287Accessories for bringing the needle into the body; Automatic needle insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/46Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for controlling depth of insertion

Definitions

  • This invention relates to medical devices, and more particularly to an automatic inserter for installing an angled or low-profile infusion set in the skin of a person to subcutaneously administer medication or other substances beneficial to health.
  • an infusion set Frequent or continuous subcutaneous injection of medication such as insulin is often accomplished through the use of an infusion set or injection port which may remain in place for several days.
  • the infusion set reduces the need to constantly puncture the skin, thereby minimizing the risk of infection and the formation of scar tissue.
  • an infusion set is often used to provide a method of temporarily detaching the pump and fluid line for activities such as dressing or bathing. It is also desirable in this instance to detach the fluid line from the pump as close to the injection site as possible, thereby leaving a relatively small component attached to the body which minimizes any interference during dressing, bathing or other activities.
  • Angled infusion sets such as disclosed in my copending U.S. patent application Ser. No. 09/625,245 filed on Jul. 25, 2000, now U.S. Pat. No. 6,572,586, the disclosure of which is herein incorporated by reference, are especially advantageous due to their low profile during use. See also U.S. Pat. No. 5,522,803 issued to Tiessen-Simoney on Jun. 4, 1996.
  • Such devices include a manual inserter with a handle and an introducer needle that attach to a cannula housing.
  • a self-adhesive pad on the bottom surface of the cannula housing secures the housing to the skin of a person.
  • the user grasps the handle with one hand while pinching a fold of skin between the thumb and forefinger of the other hand.
  • the introducer needle together with the outer end of the cannula are then pushed by the user into the fold of skin.
  • the introducer needle is removed from the cannula housing leaving the cannula inserted in the subcutaneous layer.
  • the housing is then adhesively secured to the skin.
  • a tubing connector from an insulin pump can then be connected to the cannula housing to deliver insulin or other substances to the subcutaneous layer.
  • the cannula may become kinked during an improper installation and impede the flow of insulin, or may be positioned in an improper skin layer. Surrounding tissue may also be damaged during attempts to correctly position the cannula, causing added pain and trauma to a user. Many users prefer to avoid the trauma associated with self-inserting the introducer needle and cannula into their bodies.
  • a low-profile inserter for an angled infusion set comprises an inserter housing having a bottom wall, a retainer slidably connected to the inserter housing for movement between retracted and extended positions in a direction substantially parallel with the bottom wall, and a base member connected to the inserter housing.
  • the retainer is adapted to releasably receive a cannula assembly, including a cannula connected to a cannula housing.
  • the base member has a lower surface that is adapted to contact an outer skin surface. The lower surface and bottom wall together form an acute angle. With this arrangement, the cannula can be inserted subcutaneously at the acute angle with respect to the outer skin surface.
  • an inserter for an infusion set comprises an inserter housing, and a retainer slidably connected to the inserter housing for movement between retracted and extended positions.
  • the retainer is adapted to releasably receive the cannula assembly.
  • a biasing member is connected between the retainer and the inserter housing for biasing the retainer toward the extended position.
  • a first release lever is pivotally mounted to the inserter housing. The first release lever includes a first end portion that is exposed through the housing for manipulation by an operator and a second end portion for engagement with the retainer to thereby hold the retainer in the retracted position. In this manner, pivotal movement of the first release lever in a first rotational direction causes disengagement of the second end portion and the retainer to thereby release the retainer.
  • FIG. 1 is a side elevational view of a low-profile inserter assembly according to the invention in a retracted or cocked position;
  • FIG. 2 is a side elevational view of the inserter assembly of FIG. 1 in an extended position with an insertion needle and cannula inserted in the skin (shown in cross section);
  • FIG. 3 is a front elevational view of the inserter assembly
  • FIG. 4 is top plan view in partial cross section of the inserter assembly
  • FIG. 5 is an enlarged cross sectional view of the inserter assembly taken along line 5 - 5 of FIG. 3 ;
  • FIG. 6 is an enlarged cross sectional view of a portion of the inserter assembly taken along line 6 - 6 of FIG. 5 ;
  • FIG. 7 is an isometric view of a low-profile inserter assembly according to a second embodiment of the invention.
  • FIG. 8 is a top plan view of the inserter assembly second embodiment
  • FIG. 9 is top plan view in partial cross section of a low-profile inserter assembly according to a third embodiment of the invention.
  • FIG. 10 is an enlarged cross sectional view of the inserter assembly second embodiment taken along line 10 - 10 of FIG. 9 ;
  • FIG. 11 is an enlarged cross sectional view of a portion of the inserter assembly taken along line 11 - 11 of FIG. 10 ;
  • FIG. 12 is a side elevational view of a low-profile inserter assembly according to a fourth embodiment of the invention.
  • FIG. 13 is a top plan view of the inserter assembly fourth embodiment.
  • FIG. 14 is a front elevational view in partial cross section of the inserter assembly fourth embodiment.
  • a low-profile inserter assembly 10 includes a housing 12 with an upper housing portion 14 connected to a lower housing portion 16 .
  • An angled alignment guide in the form of a triangular-shaped base 18 is preferably integrally formed with the lower housing portion 16 and includes a lower surface 20 that is adapted to contact an outer surface 22 of skin 24 during use.
  • the lower surface 20 extends at an acute angle 0 with respect to a bottom wall 25 of the lower housing portion 16 so that an insertion needle 27 and cannula 26 of a low-profile cannula housing 28 placed in the inserter assembly 10 can be inserted into the skin 24 at the proper angle.
  • the angle 0 is in the range of approximately 10° to 40°, and preferably in the range of 15° to 35°, depending on the particular configuration of the cannula housing 28 to be installed. In one preferred embodiment, the angle 0 is approximately 30° to accommodate a cannula housing and accompanying cannula that will extend into the subcutaneous layer at approximately 30° with respect to the skin outer surface 22 .
  • the housing portions may be constructed of any suitable material, and can be retained together through screws 23 ( FIG. 5 ), interlocking tabs, adhesive, heat-staking, or a combination thereof, or any other well-known fastening means.
  • a retainer 30 is slidably mounted in the housing 12 between the upper housing portion 14 and the lower housing portion 16 .
  • the retainer 30 includes a main body 40 and a pair of side flanges 42 (only one shown in FIG. 6 ) that extend laterally from the main body and a pair of bottom flanges 44 (only one shown in FIG. 6 ) that extend downwardly from the main body.
  • a pair of spaced guide ribs 32 extend downwardly from an upper wall 34 of the upper housing portion 14 .
  • Each guide rib 32 includes a lower surface 36 that slidably contacts an upper surface 46 of one of the side flanges 42 .
  • a pair of spaced shoulders 48 (only one shown in FIG.
  • Each bottom flange 44 includes a side surface 50 and a lower surface 54 that slidably contact a shoulder side surface 56 and an inner surface 58 of the bottom wall 25 , respectively, to guide sliding movement of the retainer 30 in a substantially linear direction between a retracted position ( FIG. 1 ) and an extended position ( FIG. 2 ).
  • an infusion set release lever 60 is pivotally connected to a forward end of the retainer 30 at a pivot joint 64 .
  • the pivot joint 64 may include fingers (not shown) on the lever 60 that extend in opposite directions and fit into opposed depressions (not shown) in the retainer 30 .
  • a release button 66 is formed at a forward end of the lever 60 for manipulation by a user.
  • a downwardly-extending catch 68 is formed on the lever 60 rearwardly of the pivot joint 64 and normally seats against a depression 70 in the top of a handle portion 72 of the cannula housing 28 .
  • a lower ramped surface 62 extends from the release button 66 to the catch 68 to facilitate connection of the cannula housing 28 to the retainer 30 .
  • a slot 74 is formed in the forward end of the retainer 30 for receiving the handle portion 72 .
  • a slot 78 ( FIG. 4 ) is also formed in the housing 12 between the upper housing portion 14 and the lower housing portion 16 to accommodate an adhesive-backed mounting pad 80 associated with the cannula housing 28 since, as shown in FIGS. 3 and 4 , the pad is wider than the housing 12 .
  • the housing may be wide enough to completely receive the mounting pad 80 , as will be described in further detail below.
  • the release button 66 is normally biased upwardly by means of a tension spring 82 connected between a forwardly extending hook 84 of the retainer 30 and a rearwardly extending hook 86 of the release lever 60 .
  • a tension spring 82 connected between a forwardly extending hook 84 of the retainer 30 and a rearwardly extending hook 86 of the release lever 60 .
  • the cannula housing 28 is locked to the retainer 30 and is slidable therewith along the housing 12 between the extended and retracted positions.
  • the release lever 60 is pivotally connected to the retainer 30 , it is also slidable with the retainer to maintain the cannula housing in a locked position until the housing is released by depressing the release button 66 .
  • the release button 66 is located within the housing 12 and therefore cannot be accessed until the retainer is extended to expose the release button.
  • the cannula housing 28 cannot be inadvertently released during handling or positioning of the inserter assembly 10 , to thereby reduce the possibility of cannula contamination and/or injury.
  • Depression of the release button 66 when the retainer 30 is extended causes the release lever 60 to rotate (clockwise as viewed in FIG. 5 ) about the pivot joint 64 against bias from the spring 82 until the catch 68 clears the handle portion 72 of the cannula housing 28 . In this position, the cannula housing and inserter assembly can be separated.
  • a pair of cocking levers 90 extend in opposite directions from opposite sides of the retainer 30 and into the housing slot 78 .
  • the cocking levers 90 can be grasped by a user to move the retainer 30 and attached cannula housing 28 into the retracted position.
  • a pair of tension springs 92 are located on opposite sides of the retainer 30 .
  • Each tension spring 92 has one end connected to a hook 94 projecting downwardly from a rear end of the retainer side flange 42 and an opposite end connected to a hook 96 extending from the guide flange 32 of the upper housing portion 14 . In this manner, the retainer 30 is normally biased toward the extended position.
  • a single, centrally mounted tension or compression spring may be used to bias the retainer 30 toward the extended position.
  • the one or both tension springs may be replaced with other biasing means, such as an elastomeric member, an air cylinder, and so on.
  • a retainer release lever 98 ( FIG. 5 ) is pivotally connected to the upper housing portion 14 by a pivot pin 100 that extends between the guide flanges 32 and through the lever 98 .
  • a release button 102 is located at a forward end of the release lever 98 and projects upwardly through an opening 104 in an upper wall 105 of the upper housing portion 14 .
  • a catch 106 is located at a rearward end of the release lever 98 and projects downwardly therefrom. The catch 106 is arranged to fit within a recess 108 of the retainer 30 and hold the retainer in the retracted position under bias from the tension spring 92 .
  • a compression spring 114 is positioned in a bore 110 formed in the rearward end of the release lever 98 and extends to a corresponding depression 112 formed in the upper wall 105 of the upper housing portion 14 to normally bias the catch 106 toward the recess 108 .
  • the levers 90 ( FIG. 4 ) are grasped by a user to slide the retainer 30 rearwardly in the housing 12 .
  • a rear end of the retainer is initially in contact with a lower ramped surface 110 of the catch 106 and rearward movement of the retainer causes the catch 106 to rotate upwardly about the pivot pin 100 (clockwise as viewed in FIG. 5 ) against bias force from the spring 114 until the catch 106 is clear of the retainer.
  • Further rearward movement of the retainer causes the catch 106 to snap into the recess 108 with a clear audible sound to thereby indicate to a user that the retainer 30 is properly cocked.
  • the inserter assembly can be placed on the skin of a patient with the lower surface 20 of the base 18 positioned against a user's or patient's outer skin 22 .
  • the release button 102 can be depressed to rotate the catch 106 out of the recess 108 , which causes the retainer 30 to slide forwardly to the extended position under force from the springs 92 at a relatively rapid rate. Forward movement of the retainer in this manner causes the needle 27 and cannula 26 to pierce the skin at the proper angle and enter into the subcutaneous layer at the proper distance.
  • the cannula housing 28 can then be released from the inserter assembly 10 by depressing the release button 66 , as previously described.
  • the mounting pad 80 can then be secured to the skin and the needle 27 removed in a well-known manner, thus leaving the cannula 26 in place.
  • a safety button 120 is mounted in the upper housing portion 14 between the guide flanges 32 for limited forward and rearward sliding movement.
  • the safety button 120 includes an upper portion 122 that extends through a rear opening 124 in the top wall 105 for grasping by a user.
  • a pair of resilient arms 126 extend from a lower portion 130 of the button 120 .
  • a head 128 is formed at the free end of each arm and is positioned to engage one of two detents 132 , 134 formed in the guide flanges 32 which define unlocked and locked positions, respectively, of the safety button 120 . In the locked position, the lower portion 130 of the safety button 120 is adjacent a ledge 136 of the catch 106 ( FIG.
  • a low-profile inserter assembly 140 according to a second embodiment of the invention is illustrated, wherein like parts in the previous embodiment are represented by like numerals.
  • the inserter assembly 140 is similar in construction to the inserter assembly 10 , with the exception that an upper housing portion 142 and lower housing portion 144 are narrowed in width behind the release button 102 to form a narrowed handle portion 146 that is easier to hold and manipulate.
  • This narrower width necessitates moving the tension springs 92 (not shown in FIG. 7 ) inward, closer to the longitudinal centerline of the housing.
  • These springs will now be located under the retainer 30 rather than on each side as shown in FIGS. 4 and 5 . However they are attached to the retainer side flange 42 and guide flange 32 of the upper housing portion 142 in a similar manner.
  • a low-profile inserter assembly 150 according to a third embodiment of the invention is illustrated, wherein like parts in the previous embodiments are represented by like numerals.
  • a slot 152 is formed in the bottom wall 25 of the lower housing portion 16 .
  • a single cocking lever 154 extends downwardly through the slot 152 from the retainer 30 .
  • the cocking lever 154 includes a head portion 156 that is larger than the slot and a neck portion 158 that extends through the slot.
  • the neck portion 158 is preferably integrally formed with the retainer 30 .
  • a fastener 160 is countersunk in the head portion 156 and extends through the head and neck portions 156 , 158 and into the retainer 30 for securing the head portion to the retainer.
  • the bottom wall 25 is formed in a depression 162 of the lower housing portion 16 and is defined by a pair of inner side walls 164 (only one shown in FIG. 9 ) that extend downwardly from the bottom wall 25 .
  • An L-shaped guide flange 166 is formed at each longitudinal side of the retainer 30 and contacts the bottom wall 25 and inner side wall 164 to guide sliding movement of the retainer in a substantially linear direction.
  • Operation of the inserter assembly 150 is similar to the operation of the inserter assembly 10 , with the exception that a user sets the retainer in a retracted position by pushing the head portion 156 of the cocking lever 154 rearwardly until the catch 106 is located in the recess 108 of the retainer to thereby hold the retainer in the retracted position under bias force from the springs 92 .
  • the head portion 156 is preferably entirely located within the depression 162 of the lower housing portion 16 to prevent interference between the head portion and other objects, such as the skin or clothing of a user, and thus possible injury or misplacement of the cannula assembly in the skin during release of the retainer 30 .
  • the inserter assembly 170 includes a housing 172 that is relatively wide in comparison to the previous embodiments.
  • the housing 172 has an upper housing portion 174 connected to a lower housing portion 176 in a manner as previously described.
  • a bifurcated base 178 is preferably integrally formed with the lower housing portion 176 and includes spaced feet 180 , 182 .
  • Each foot has a lower surface 184 that extends at an acute angle 0 with respect to a lower surface 186 of the lower housing portion 176 so that an insertion needle 17 and cannula 26 of a low-profile cannula housing 28 placed in the inserter assembly 170 can be inserted into the skin 24 at the proper angle, as previously described.
  • the angle 0 is approximately 30° to accommodate a cannula that will extend approximately 30° with respect to the outer skin surface 22 .
  • the actual angle can vary depending on the shape of the cannula housing, as well as the length of the needle and cannula assembly 26 .
  • the spaced-apart feet offer greater stability over the previous embodiment and permit a fold of skin to be inserted therebetween during insertion of the needle and cannula assembly 26 into the subcutaneous layer.
  • a generally vertically extending channel 190 is formed in a forward end of the housing 172 .
  • the channel is wide enough to receive the cannula housing 28 and the mounting pad 80 .
  • a generally horizontally extending slot 192 is formed between the upper housing portion 174 and lower housing portion 176 and intersects with the channel 190 .
  • the slot 192 is dimensioned to receive the cannula housing 28 , the mounting pad 80 , and the release button 66 so that the cannula housing and mounting pad can be releasably connected to the retainer and moved into and out of the housing 172 without obstruction.
  • orientation and/or position such as upper, lower, forward, rearward, downward, bottom, and side, including their respective derivatives, as may be used throughout the specification, refer to relative rather than absolute orientations and/or positions.

Abstract

A low-profile inserter for an angled infusion set comprises an inserter housing having a bottom wall, a retainer slidably connected to the inserter housing for movement between retracted and extended positions in a direction substantially parallel with the bottom wall, and a base member connected to the inserter housing. The retainer is adapted to releasably receive a cannula assembly, including a cannula connected to a cannula housing. The base member has a lower surface that is adapted to contact a skin outer surface. The lower surface and bottom wall together form an acute angle. With this arrangement, the cannula can be inserted subcutaneously at the acute angle with respect to the skin outer surface.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 10/024,894, filed Dec. 18, 2001, which claims the benefit of U.S. application Ser. No. 60/256,573, filed Dec. 19, 2000.
  • BACKGROUND OF THE INVENTION
  • This invention relates to medical devices, and more particularly to an automatic inserter for installing an angled or low-profile infusion set in the skin of a person to subcutaneously administer medication or other substances beneficial to health.
  • Frequent or continuous subcutaneous injection of medication such as insulin is often accomplished through the use of an infusion set or injection port which may remain in place for several days. In the case of frequent injections, the infusion set reduces the need to constantly puncture the skin, thereby minimizing the risk of infection and the formation of scar tissue. For continuous subcutaneous delivery of medication through portable insulin pumps or the like, an infusion set is often used to provide a method of temporarily detaching the pump and fluid line for activities such as dressing or bathing. It is also desirable in this instance to detach the fluid line from the pump as close to the injection site as possible, thereby leaving a relatively small component attached to the body which minimizes any interference during dressing, bathing or other activities.
  • Angled infusion sets, such as disclosed in my copending U.S. patent application Ser. No. 09/625,245 filed on Jul. 25, 2000, now U.S. Pat. No. 6,572,586, the disclosure of which is herein incorporated by reference, are especially advantageous due to their low profile during use. See also U.S. Pat. No. 5,522,803 issued to Tiessen-Simoney on Jun. 4, 1996. Such devices include a manual inserter with a handle and an introducer needle that attach to a cannula housing. A self-adhesive pad on the bottom surface of the cannula housing secures the housing to the skin of a person. To insert the infusion set, the user grasps the handle with one hand while pinching a fold of skin between the thumb and forefinger of the other hand. The introducer needle together with the outer end of the cannula are then pushed by the user into the fold of skin. The introducer needle is removed from the cannula housing leaving the cannula inserted in the subcutaneous layer. The housing is then adhesively secured to the skin. A tubing connector from an insulin pump can then be connected to the cannula housing to deliver insulin or other substances to the subcutaneous layer.
  • While this process is relatively straightforward for more experienced persons, it does require manual dexterity. In addition, the cannula may become kinked during an improper installation and impede the flow of insulin, or may be positioned in an improper skin layer. Surrounding tissue may also be damaged during attempts to correctly position the cannula, causing added pain and trauma to a user. Many users prefer to avoid the trauma associated with self-inserting the introducer needle and cannula into their bodies.
  • Accordingly, it would be desirous to provide an automatic inserter for angled or low-profile infusion sets, thereby assuring the correct placement of the cannula in the subcutaneous layer at the correct angle while minimizing the trauma associated with cannula installation.
  • SUMMARY OF THE INVENTION
  • According to one aspect of the invention, a low-profile inserter for an angled infusion set comprises an inserter housing having a bottom wall, a retainer slidably connected to the inserter housing for movement between retracted and extended positions in a direction substantially parallel with the bottom wall, and a base member connected to the inserter housing. The retainer is adapted to releasably receive a cannula assembly, including a cannula connected to a cannula housing. The base member has a lower surface that is adapted to contact an outer skin surface. The lower surface and bottom wall together form an acute angle. With this arrangement, the cannula can be inserted subcutaneously at the acute angle with respect to the outer skin surface.
  • According to a further aspect of the invention, an inserter for an infusion set comprises an inserter housing, and a retainer slidably connected to the inserter housing for movement between retracted and extended positions. The retainer is adapted to releasably receive the cannula assembly. A biasing member is connected between the retainer and the inserter housing for biasing the retainer toward the extended position. A first release lever is pivotally mounted to the inserter housing. The first release lever includes a first end portion that is exposed through the housing for manipulation by an operator and a second end portion for engagement with the retainer to thereby hold the retainer in the retracted position. In this manner, pivotal movement of the first release lever in a first rotational direction causes disengagement of the second end portion and the retainer to thereby release the retainer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
  • FIG. 1 is a side elevational view of a low-profile inserter assembly according to the invention in a retracted or cocked position;
  • FIG. 2 is a side elevational view of the inserter assembly of FIG. 1 in an extended position with an insertion needle and cannula inserted in the skin (shown in cross section);
  • FIG. 3 is a front elevational view of the inserter assembly;
  • FIG. 4 is top plan view in partial cross section of the inserter assembly;
  • FIG. 5 is an enlarged cross sectional view of the inserter assembly taken along line 5-5 of FIG. 3;
  • FIG. 6 is an enlarged cross sectional view of a portion of the inserter assembly taken along line 6-6 of FIG. 5;
  • FIG. 7 is an isometric view of a low-profile inserter assembly according to a second embodiment of the invention;
  • FIG. 8 is a top plan view of the inserter assembly second embodiment;
  • FIG. 9 is top plan view in partial cross section of a low-profile inserter assembly according to a third embodiment of the invention;
  • FIG. 10 is an enlarged cross sectional view of the inserter assembly second embodiment taken along line 10-10 of FIG. 9;
  • FIG. 11 is an enlarged cross sectional view of a portion of the inserter assembly taken along line 11-11 of FIG. 10;
  • FIG. 12 is a side elevational view of a low-profile inserter assembly according to a fourth embodiment of the invention;
  • FIG. 13 is a top plan view of the inserter assembly fourth embodiment; and
  • FIG. 14 is a front elevational view in partial cross section of the inserter assembly fourth embodiment.
  • It is noted that the drawings are intended to represent only typical embodiments of the invention and therefore should not be construed as limiting the scope thereof. The invention will now be described in greater detail with reference to the drawings, wherein like parts throughout the drawing figures are represented by like numerals.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings, and to FIGS. 1-3 in particular, a low-profile inserter assembly 10 according to the invention includes a housing 12 with an upper housing portion 14 connected to a lower housing portion 16. An angled alignment guide in the form of a triangular-shaped base 18 is preferably integrally formed with the lower housing portion 16 and includes a lower surface 20 that is adapted to contact an outer surface 22 of skin 24 during use. The lower surface 20 extends at an acute angle 0 with respect to a bottom wall 25 of the lower housing portion 16 so that an insertion needle 27 and cannula 26 of a low-profile cannula housing 28 placed in the inserter assembly 10 can be inserted into the skin 24 at the proper angle. The angle 0 is in the range of approximately 10° to 40°, and preferably in the range of 15° to 35°, depending on the particular configuration of the cannula housing 28 to be installed. In one preferred embodiment, the angle 0 is approximately 30° to accommodate a cannula housing and accompanying cannula that will extend into the subcutaneous layer at approximately 30° with respect to the skin outer surface 22. The housing portions may be constructed of any suitable material, and can be retained together through screws 23 (FIG. 5), interlocking tabs, adhesive, heat-staking, or a combination thereof, or any other well-known fastening means.
  • With reference now to FIGS. 4-6, a retainer 30 is slidably mounted in the housing 12 between the upper housing portion 14 and the lower housing portion 16. The retainer 30 includes a main body 40 and a pair of side flanges 42 (only one shown in FIG. 6) that extend laterally from the main body and a pair of bottom flanges 44 (only one shown in FIG. 6) that extend downwardly from the main body. A pair of spaced guide ribs 32 extend downwardly from an upper wall 34 of the upper housing portion 14. Each guide rib 32 includes a lower surface 36 that slidably contacts an upper surface 46 of one of the side flanges 42. A pair of spaced shoulders 48 (only one shown in FIG. 6) are formed at the intersection of the bottom wall 25 and opposite side walls 52 of the lower housing portion 16. Each bottom flange 44 includes a side surface 50 and a lower surface 54 that slidably contact a shoulder side surface 56 and an inner surface 58 of the bottom wall 25, respectively, to guide sliding movement of the retainer 30 in a substantially linear direction between a retracted position (FIG. 1) and an extended position (FIG. 2).
  • As best shown in FIG. 5, an infusion set release lever 60 is pivotally connected to a forward end of the retainer 30 at a pivot joint 64. The pivot joint 64 may include fingers (not shown) on the lever 60 that extend in opposite directions and fit into opposed depressions (not shown) in the retainer 30. A release button 66 is formed at a forward end of the lever 60 for manipulation by a user. A downwardly-extending catch 68 is formed on the lever 60 rearwardly of the pivot joint 64 and normally seats against a depression 70 in the top of a handle portion 72 of the cannula housing 28. A lower ramped surface 62 extends from the release button 66 to the catch 68 to facilitate connection of the cannula housing 28 to the retainer 30. A slot 74 is formed in the forward end of the retainer 30 for receiving the handle portion 72. A slot 78 (FIG. 4) is also formed in the housing 12 between the upper housing portion 14 and the lower housing portion 16 to accommodate an adhesive-backed mounting pad 80 associated with the cannula housing 28 since, as shown in FIGS. 3 and 4, the pad is wider than the housing 12. In a further embodiment, the housing may be wide enough to completely receive the mounting pad 80, as will be described in further detail below.
  • The release button 66 is normally biased upwardly by means of a tension spring 82 connected between a forwardly extending hook 84 of the retainer 30 and a rearwardly extending hook 86 of the release lever 60. In this position, the cannula housing 28 is locked to the retainer 30 and is slidable therewith along the housing 12 between the extended and retracted positions. Since the release lever 60 is pivotally connected to the retainer 30, it is also slidable with the retainer to maintain the cannula housing in a locked position until the housing is released by depressing the release button 66. When the retainer 30 is retracted, the release button 66 is located within the housing 12 and therefore cannot be accessed until the retainer is extended to expose the release button. In this manner, the cannula housing 28 cannot be inadvertently released during handling or positioning of the inserter assembly 10, to thereby reduce the possibility of cannula contamination and/or injury. Depression of the release button 66 when the retainer 30 is extended causes the release lever 60 to rotate (clockwise as viewed in FIG. 5) about the pivot joint 64 against bias from the spring 82 until the catch 68 clears the handle portion 72 of the cannula housing 28. In this position, the cannula housing and inserter assembly can be separated.
  • As shown in FIG. 4, a pair of cocking levers 90 extend in opposite directions from opposite sides of the retainer 30 and into the housing slot 78. The cocking levers 90 can be grasped by a user to move the retainer 30 and attached cannula housing 28 into the retracted position. A pair of tension springs 92 (only one shown in FIGS. 4 and 6) are located on opposite sides of the retainer 30. Each tension spring 92 has one end connected to a hook 94 projecting downwardly from a rear end of the retainer side flange 42 and an opposite end connected to a hook 96 extending from the guide flange 32 of the upper housing portion 14. In this manner, the retainer 30 is normally biased toward the extended position. In an alternative arrangement, a single, centrally mounted tension or compression spring may be used to bias the retainer 30 toward the extended position. In a further embodiment, the one or both tension springs may be replaced with other biasing means, such as an elastomeric member, an air cylinder, and so on.
  • A retainer release lever 98 (FIG. 5) is pivotally connected to the upper housing portion 14 by a pivot pin 100 that extends between the guide flanges 32 and through the lever 98. A release button 102 is located at a forward end of the release lever 98 and projects upwardly through an opening 104 in an upper wall 105 of the upper housing portion 14. A catch 106 is located at a rearward end of the release lever 98 and projects downwardly therefrom. The catch 106 is arranged to fit within a recess 108 of the retainer 30 and hold the retainer in the retracted position under bias from the tension spring 92. A compression spring 114 is positioned in a bore 110 formed in the rearward end of the release lever 98 and extends to a corresponding depression 112 formed in the upper wall 105 of the upper housing portion 14 to normally bias the catch 106 toward the recess 108.
  • In order to retract the retainer 30, including the attached cannula housing 12, to a cocked position, the levers 90 (FIG. 4) are grasped by a user to slide the retainer 30 rearwardly in the housing 12. A rear end of the retainer is initially in contact with a lower ramped surface 110 of the catch 106 and rearward movement of the retainer causes the catch 106 to rotate upwardly about the pivot pin 100 (clockwise as viewed in FIG. 5) against bias force from the spring 114 until the catch 106 is clear of the retainer. Further rearward movement of the retainer causes the catch 106 to snap into the recess 108 with a clear audible sound to thereby indicate to a user that the retainer 30 is properly cocked.
  • Once in the retracted position, the inserter assembly can be placed on the skin of a patient with the lower surface 20 of the base 18 positioned against a user's or patient's outer skin 22. The release button 102 can be depressed to rotate the catch 106 out of the recess 108, which causes the retainer 30 to slide forwardly to the extended position under force from the springs 92 at a relatively rapid rate. Forward movement of the retainer in this manner causes the needle 27 and cannula 26 to pierce the skin at the proper angle and enter into the subcutaneous layer at the proper distance. The cannula housing 28 can then be released from the inserter assembly 10 by depressing the release button 66, as previously described. The mounting pad 80 can then be secured to the skin and the needle 27 removed in a well-known manner, thus leaving the cannula 26 in place.
  • A safety button 120 is mounted in the upper housing portion 14 between the guide flanges 32 for limited forward and rearward sliding movement. The safety button 120 includes an upper portion 122 that extends through a rear opening 124 in the top wall 105 for grasping by a user. A pair of resilient arms 126 (only one shown in FIG. 4) extend from a lower portion 130 of the button 120. A head 128 is formed at the free end of each arm and is positioned to engage one of two detents 132, 134 formed in the guide flanges 32 which define unlocked and locked positions, respectively, of the safety button 120. In the locked position, the lower portion 130 of the safety button 120 is adjacent a ledge 136 of the catch 106 (FIG. 5), to prevent upward movement of the catch 106 and thus inadvertent release of the retainer 30 and the attached cannula housing 28. In the unlocked position, the ledge 136 is clear of the lower portion 130 to move upwardly when the release button 102 is depressed or when the retainer 30 is moved to the retracted position.
  • With reference now to FIGS. 7 and 8, a low-profile inserter assembly 140 according to a second embodiment of the invention is illustrated, wherein like parts in the previous embodiment are represented by like numerals. The inserter assembly 140 is similar in construction to the inserter assembly 10, with the exception that an upper housing portion 142 and lower housing portion 144 are narrowed in width behind the release button 102 to form a narrowed handle portion 146 that is easier to hold and manipulate. This narrower width necessitates moving the tension springs 92 (not shown in FIG. 7) inward, closer to the longitudinal centerline of the housing. These springs will now be located under the retainer 30 rather than on each side as shown in FIGS. 4 and 5. However they are attached to the retainer side flange 42 and guide flange 32 of the upper housing portion 142 in a similar manner.
  • With reference now to FIGS. 9-11, a low-profile inserter assembly 150 according to a third embodiment of the invention is illustrated, wherein like parts in the previous embodiments are represented by like numerals. In this embodiment, a slot 152 is formed in the bottom wall 25 of the lower housing portion 16. A single cocking lever 154 extends downwardly through the slot 152 from the retainer 30. As shown, the cocking lever 154 includes a head portion 156 that is larger than the slot and a neck portion 158 that extends through the slot. The neck portion 158 is preferably integrally formed with the retainer 30. A fastener 160 is countersunk in the head portion 156 and extends through the head and neck portions 156, 158 and into the retainer 30 for securing the head portion to the retainer.
  • The bottom wall 25 is formed in a depression 162 of the lower housing portion 16 and is defined by a pair of inner side walls 164 (only one shown in FIG. 9) that extend downwardly from the bottom wall 25. An L-shaped guide flange 166 is formed at each longitudinal side of the retainer 30 and contacts the bottom wall 25 and inner side wall 164 to guide sliding movement of the retainer in a substantially linear direction.
  • Operation of the inserter assembly 150 is similar to the operation of the inserter assembly 10, with the exception that a user sets the retainer in a retracted position by pushing the head portion 156 of the cocking lever 154 rearwardly until the catch 106 is located in the recess 108 of the retainer to thereby hold the retainer in the retracted position under bias force from the springs 92. The head portion 156 is preferably entirely located within the depression 162 of the lower housing portion 16 to prevent interference between the head portion and other objects, such as the skin or clothing of a user, and thus possible injury or misplacement of the cannula assembly in the skin during release of the retainer 30.
  • With reference now to FIGS. 12-14, a low-profile inserter assembly 170 according to a fourth embodiment of the invention is illustrated, wherein like parts in the previous embodiments are represented by like numerals. The inserter assembly 170 includes a housing 172 that is relatively wide in comparison to the previous embodiments. The housing 172 has an upper housing portion 174 connected to a lower housing portion 176 in a manner as previously described. A bifurcated base 178 is preferably integrally formed with the lower housing portion 176 and includes spaced feet 180, 182. Each foot has a lower surface 184 that extends at an acute angle 0 with respect to a lower surface 186 of the lower housing portion 176 so that an insertion needle 17 and cannula 26 of a low-profile cannula housing 28 placed in the inserter assembly 170 can be inserted into the skin 24 at the proper angle, as previously described. In one preferred embodiment, the angle 0 is approximately 30° to accommodate a cannula that will extend approximately 30° with respect to the outer skin surface 22. However, the actual angle can vary depending on the shape of the cannula housing, as well as the length of the needle and cannula assembly 26. The spaced-apart feet offer greater stability over the previous embodiment and permit a fold of skin to be inserted therebetween during insertion of the needle and cannula assembly 26 into the subcutaneous layer.
  • A generally vertically extending channel 190 is formed in a forward end of the housing 172. Preferably, the channel is wide enough to receive the cannula housing 28 and the mounting pad 80. A generally horizontally extending slot 192 is formed between the upper housing portion 174 and lower housing portion 176 and intersects with the channel 190. The slot 192 is dimensioned to receive the cannula housing 28, the mounting pad 80, and the release button 66 so that the cannula housing and mounting pad can be releasably connected to the retainer and moved into and out of the housing 172 without obstruction.
  • It will be understood that the terms relating to orientation and/or position, such as upper, lower, forward, rearward, downward, bottom, and side, including their respective derivatives, as may be used throughout the specification, refer to relative rather than absolute orientations and/or positions.
  • While the invention has been taught with specific reference to the above-described embodiments, those skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and the scope of the invention. For example, although the present invention has been described for use with a low profile or angled infusion set, it will be understood that the invention may be used to insert straight infusion sets or other types of needles and/or cannulas. Thus, the described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (11)

1. An inserter for a low-profile angled infusion set, the low-profile inserter comprising:
an inserter housing having a bottom wall, and a distal end defining an opening therein;
a retainer slideably mounted in the inserter housing for movement between retracted and extended positions in a direction substantially parallel with the bottom wall, the retainer being adapted to releasably receive the infusion set, including a cannula and an insertion needle, the cannula and insertion needle defining an insertion axis;
a tension spring for biasing said retainer toward said extended position, said tension spring being movable between an expanded position when said retainer is in said retracted position, and a contracted position when said retainer is in said extended position;
a release lever releasably holding the retainer in the retracted position;
a first release button for releasing said tension spring from said expanded position, said first release button movable in a direction substantially normal to said insertion axis; and
a base member connected to the inserter housing, the base member having a lower surface that is adapted to contact a user's skin surface, the lower surface and the bottom wall forming an acute angle, wherein the cannula and the insertion needle are guided to be inserted subcutaneously along the insertion axis at said acute angle with respect to the skin surface.
2. An inserter according to claim 1, and further comprising a safety member slideably mounted to the inserter housing to prevent inadvertent release of the retainer.
3. An inserter according to claim 2, wherein the release lever includes a first end portion exposed through the housing for manipulation by an operator and a second end portion for engagement with the retainer to hold the retainer in the retraced position, whereby pivotal movement of the release lever in a first rotational direction causes disengagement of the second end portion and the retainer to release the retainer.
4. An inserter according to claim 3, wherein the release lever is biased in a second rotational direction opposite the first rotational direction, such that movement of the retainer toward the retracted position causes the second end portion of the release lever to engage and hold the retainer.
5. An inserter according to claim 4, wherein the safety member comprises a lower surface that, in a first locking position, engages the second end portion of the release lever to block movement of the release lever in the first rotational direction.
6. An inserter according to claim 1, wherein the acute angle is in a range of about 10 degrees to about 40 degrees.
7. An inserter according to claim 1, wherein the acute angle is approximately 30 degrees.
8. An inserter for an infusion set, the inserter comprising:
an inserter housing defining an opening in a distal end thereof;
a retainer slideably connected to the inserter housing for movement between retracted and extended positions, the retainer being adapted to releasably receive the infusion set including a cannula and an insertion needle, the cannula and the insertion needle defining an insertion axis;
a biasing member connected between the retainer and the inserter housing for biasing the retainer toward the extended position, said biasing member being expanded when said retainer is in said retracted position, and contracted when said retainer is in said extended position;
a first release button for releasing said biasing member from being expanded, movable in a direction substantially normal to said insertion axis; and
a base attached to a lower surface of said inserter housing defining an acute angle with respect to said inserter housing, for guiding the insertion needle and the cannula to be inserted subcutaneously in skin of a user, along the insertion axis and at the acute angle with respect to the skin.
9. An inserter according to claim 8, further comprising a release lever mounted for pivotal movement on the retainer, the release lever including a first end portion exposed for manipulation by an operator when the retainer is in the extended position and a second end portion for engagement with the cannula assembly to hold the cannula assembly on the retainer, wherein pivotal movement of the release lever in a first rotational direction causes disengagement of the second end portion of the release lever and the cannula assembly to release the cannula assembly from the inserter.
10. An inserter according to claim 9, wherein the release lever is biased in a second rotational direction opposite the first rotational direction, such that movement of the retainer toward the retracted position causes the second end portion of the release lever to engage and hold the retainer.
11. A method for inserting an insertion needle and a cannula into skin of a user, comprising the steps of:
providing an inserter housing having a bottom wall, a distal end defining an opening therein, and a base member attached to the bottom wall proximate the distal end, said base member including a lower surface adapted to contact the skin and defining an acute angle with said bottom wall;
slideably mounting a retainer within said inserter housing, movable between a retracted position and an extended position, said extended position being substantially parallel with said bottom wall of said inserter housing;
mounting the cannula and the insertion needle in said retainer to define an insertion axis;
providing a tension spring for biasing said retainer toward said extended position, movable between an expanded position and a contracted position;
releasing said tension spring by pressing a release button proximate said distal end of said inserter housing, in a direction substantially normal to the insertion axis, thereby releasing said spring to move from said expanded position to said contracted position and move said retainer to said extended position, whereby said insertion needle and said cannula are guided to be inserted subcutaneously in the skin at said acute angle with respect to the skin.
US11/340,268 2000-12-19 2006-01-25 Transcutaneous inserter for low-profile infusion sets Abandoned US20060129123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/340,268 US20060129123A1 (en) 2000-12-19 2006-01-25 Transcutaneous inserter for low-profile infusion sets

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US25657300P 2000-12-19 2000-12-19
US10/024,894 US7052483B2 (en) 2000-12-19 2001-12-18 Transcutaneous inserter for low-profile infusion sets
US11/340,268 US20060129123A1 (en) 2000-12-19 2006-01-25 Transcutaneous inserter for low-profile infusion sets

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/024,894 Continuation US7052483B2 (en) 2000-12-19 2001-12-18 Transcutaneous inserter for low-profile infusion sets

Publications (1)

Publication Number Publication Date
US20060129123A1 true US20060129123A1 (en) 2006-06-15

Family

ID=26698999

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/024,894 Expired - Lifetime US7052483B2 (en) 2000-12-19 2001-12-18 Transcutaneous inserter for low-profile infusion sets
US11/340,268 Abandoned US20060129123A1 (en) 2000-12-19 2006-01-25 Transcutaneous inserter for low-profile infusion sets

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/024,894 Expired - Lifetime US7052483B2 (en) 2000-12-19 2001-12-18 Transcutaneous inserter for low-profile infusion sets

Country Status (1)

Country Link
US (2) US7052483B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107743A1 (en) * 2003-11-18 2005-05-19 Fangrow Thomas F.Jr. Infusion set
US20070185441A1 (en) * 2006-02-07 2007-08-09 Fangrow Thomas F Jr Infusion set
US20080215003A1 (en) * 2005-03-17 2008-09-04 Grete Kornerup Gateway System
US20080312598A1 (en) * 2001-03-04 2008-12-18 Sterling Medivations, Inc. Infusion hub assembly and fluid line disconnect system
US20090124979A1 (en) * 2007-09-17 2009-05-14 Icu Medical, Inc Insertion devices for infusion devices
US20100030155A1 (en) * 2006-08-02 2010-02-04 Steffen Gyrn Cannula and Delivery Device
US20110060287A1 (en) * 2007-12-10 2011-03-10 Patton Medical Devices, Lp Insertion Devices, Insertion Needles, and Related Methods
US8012126B2 (en) 2006-10-31 2011-09-06 Unomedical A/S Infusion set
US8062250B2 (en) 2004-08-10 2011-11-22 Unomedical A/S Cannula device
US20120130344A1 (en) * 2009-05-28 2012-05-24 Simcro Limited Skin Gripping Means, Injector Including the Skin Gripping Means and Method of Performing a Subcutaneous Injection
US8221355B2 (en) 2004-03-26 2012-07-17 Unomedical A/S Injection device for infusion set
US8246588B2 (en) 2007-07-18 2012-08-21 Unomedical A/S Insertion device with pivoting action
US8303549B2 (en) 2005-12-23 2012-11-06 Unomedical A/S Injection device
US8430850B2 (en) 2007-07-03 2013-04-30 Unomedical A/S Inserter having bistable equilibrium states
US8439838B2 (en) 2006-06-07 2013-05-14 Unomedical A/S Inserter for transcutaneous sensor
US8486003B2 (en) 2007-07-10 2013-07-16 Unomedical A/S Inserter having two springs
US8562567B2 (en) 2009-07-30 2013-10-22 Unomedical A/S Inserter device with horizontal moving part
US20130303991A1 (en) * 2006-02-09 2013-11-14 Deka Products Limited Partnership Adhesive and Peripheral Systems and Methods for Medical Devices
US8790311B2 (en) 2006-06-09 2014-07-29 Unomedical A/S Mounting pad
US9005169B2 (en) 2007-10-16 2015-04-14 Cequr Sa Cannula insertion device and related methods
US9186480B2 (en) 2007-06-20 2015-11-17 Unomedical A/S Apparatus for making a catheter
US9211379B2 (en) 2006-02-28 2015-12-15 Unomedical A/S Inserter for infusion part and infusion part provided with needle protector
US9254373B2 (en) 2008-12-22 2016-02-09 Unomedical A/S Medical device comprising adhesive pad
US9415159B2 (en) 2010-03-30 2016-08-16 Unomedical A/S Medical device
US9440051B2 (en) 2011-10-27 2016-09-13 Unomedical A/S Inserter for a multiplicity of subcutaneous parts
US9533092B2 (en) 2009-08-07 2017-01-03 Unomedical A/S Base part for a medication delivery device
US9566384B2 (en) 2008-02-20 2017-02-14 Unomedical A/S Insertion device with horizontally moving part
US9724127B2 (en) 2010-09-27 2017-08-08 Unomedical A/S Insertion system and insertion kit
US10369277B2 (en) 2005-09-12 2019-08-06 Unomedical A/S Invisible needle
JP2019205792A (en) * 2018-05-30 2019-12-05 大成化工株式会社 Intracutaneous injection aid
US10898643B2 (en) 2008-02-13 2021-01-26 Unomedical A/S Sealing between a cannula part and a fluid path
US11020526B2 (en) 2010-10-04 2021-06-01 Unomedical A/S Sprinkler cannula
US11110261B2 (en) 2011-10-19 2021-09-07 Unomedical A/S Infusion tube system and method for manufacture
US11197689B2 (en) 2011-10-05 2021-12-14 Unomedical A/S Inserter for simultaneous insertion of multiple transcutaneous parts

Families Citing this family (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070142776A9 (en) * 1997-02-05 2007-06-21 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6607509B2 (en) * 1997-12-31 2003-08-19 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7052483B2 (en) * 2000-12-19 2006-05-30 Animas Corporation Transcutaneous inserter for low-profile infusion sets
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
US8034026B2 (en) 2001-05-18 2011-10-11 Deka Products Limited Partnership Infusion pump assembly
EP2140891B1 (en) 2001-05-18 2013-03-27 DEKA Products Limited Partnership Conduit for coupling to a fluid delivery device
US6830562B2 (en) 2001-09-27 2004-12-14 Unomedical A/S Injector device for placing a subcutaneous infusion set
US10022078B2 (en) 2004-07-13 2018-07-17 Dexcom, Inc. Analyte sensor
WO2004020020A2 (en) * 2002-08-30 2004-03-11 Sterling Medivations, Inc. Adapter connector for an infusion set and inserter system
US20040051019A1 (en) 2002-09-02 2004-03-18 Mogensen Lasse Wesseltoft Apparatus for and a method of adjusting the length of an infusion tube
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
DK200201823A (en) 2002-11-26 2004-05-27 Maersk Medical As Connection piece for a hose connection
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
ES2737835T3 (en) * 2003-04-23 2020-01-16 Valeritas Inc Hydraulically driven pump for long-term medication administration
EP1624913B1 (en) * 2003-05-08 2010-07-21 Novo Nordisk A/S Skin mountable injection device with a detachable needle insertion actuation portion
EP1475113A1 (en) * 2003-05-08 2004-11-10 Novo Nordisk A/S External needle inserter
WO2004098683A1 (en) * 2003-05-08 2004-11-18 Novo Nordisk A/S Internal needle inserter
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
EP1502613A1 (en) * 2003-08-01 2005-02-02 Novo Nordisk A/S Needle device with retraction means
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
KR20060099520A (en) * 2003-10-21 2006-09-19 노보 노르디스크 에이/에스 Medical skin mountable device
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
US7699808B2 (en) * 2003-11-10 2010-04-20 Smiths Medical Asd, Inc. Subcutaneous infusion device and method
US7731691B2 (en) 2003-11-10 2010-06-08 Smiths Medical Asd, Inc. Subcutaneous infusion device and device for insertion of a cannula of an infusion device and method
US7850658B2 (en) * 2003-11-10 2010-12-14 Smiths Medical Asd, Inc. Subcutaneous infusion device and method including release feature for adhesive portion
US7699807B2 (en) 2003-11-10 2010-04-20 Smiths Medical Asd, Inc. Device and method for insertion of a cannula of an infusion device
US7998119B2 (en) * 2003-11-18 2011-08-16 Nano Pass Technologies Ltd. System and method for delivering fluid into flexible biological barrier
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
EP1718198A4 (en) 2004-02-17 2008-06-04 Therasense Inc Method and system for providing data communication in continuous glucose monitoring and management system
EP1732626A1 (en) * 2004-03-30 2006-12-20 Novo Nordisk A/S Actuator system comprising lever mechanism
US20050240154A1 (en) * 2004-04-21 2005-10-27 Unomedical A/S: Infusion set with patch
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
CA2572455C (en) 2004-06-04 2014-10-28 Therasense, Inc. Diabetes care host-client architecture and data management system
US7585287B2 (en) * 2004-06-16 2009-09-08 Smiths Medical Md, Inc. Device and method for insertion of a cannula of an infusion device
WO2006014425A1 (en) 2004-07-02 2006-02-09 Biovalve Technologies, Inc. Methods and devices for delivering glp-1 and uses thereof
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US20060020192A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US7270649B2 (en) * 2004-07-14 2007-09-18 P. Rowan Smith, Jr. Intravenous catheter device
WO2006032689A1 (en) * 2004-09-22 2006-03-30 Novo Nordisk A/S Medical device with transcutaneous cannula device
US20090012472A1 (en) * 2004-09-22 2009-01-08 Novo Nordisk A/S Medical Device with Cannula Inserter
US20090048563A1 (en) * 2004-12-06 2009-02-19 Novo Nordisk A/S Ventilated Skin Mountable Device
WO2006061027A2 (en) 2004-12-10 2006-06-15 Unomedical A/S Cannula inserter
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US8888745B2 (en) * 2005-01-24 2014-11-18 Merck Sharp & Dohme B.V. Applicator for inserting an implant
JP2008528086A (en) * 2005-01-24 2008-07-31 ノボ・ノルデイスク・エー/エス Medical device with protected puncture device
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US20080167641A1 (en) * 2005-05-13 2008-07-10 Novo Nordisk A/S Medical Device Adapted To Detect Disengagement Of A Transcutaneous Device
CN102440785A (en) 2005-08-31 2012-05-09 弗吉尼亚大学专利基金委员会 Sensor signal processing method and sensor signal processing device
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
IL178557A0 (en) * 2005-10-19 2007-02-11 Animas Corp Safety infusion set
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
USD655807S1 (en) 2005-12-09 2012-03-13 Unomedical A/S Medical device
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
CA2636034A1 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
EP1984063B1 (en) 2006-01-19 2019-08-14 Merck Sharp & Dohme B.V. Kit for and method of assembling an applicator for inserting an implant
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
CN101401313B (en) * 2006-03-13 2014-06-11 诺沃—诺迪斯克有限公司 Secure pairing of electronic devices using dual means of communication
EP1997234A1 (en) * 2006-03-13 2008-12-03 Novo Nordisk A/S Medical system comprising dual purpose communication means
GB2436526B (en) * 2006-03-29 2010-01-27 Arash Bakhtyari-Nejad-Esfahani Syringe
US7762993B2 (en) * 2006-03-30 2010-07-27 James Gerard Perez Catheter syringe conveyor with a needle guard housing
AU2007233231B2 (en) 2006-03-30 2011-02-24 Mannkind Corporation Multi-cartridge fluid delivery device
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8583205B2 (en) 2008-03-28 2013-11-12 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
WO2007122207A1 (en) * 2006-04-26 2007-11-01 Novo Nordisk A/S Skin-mountable device in packaging comprising coated seal member
CN101460207B (en) * 2006-06-06 2012-03-21 诺沃-诺迪斯克有限公司 Assembly comprising skin-mountable device and packaging therefore
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
CN101500626B (en) * 2006-08-02 2012-08-22 优诺医疗有限公司 Insertion device
US8135548B2 (en) 2006-10-26 2012-03-13 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US7993306B2 (en) * 2006-10-31 2011-08-09 Smiths Medical Asd, Inc. Subcutaneous infusion device and method including tapered cannula
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
JP2010520409A (en) * 2007-03-06 2010-06-10 ノボ・ノルデイスク・エー/エス Pump assembly with actuator system
US9220837B2 (en) 2007-03-19 2015-12-29 Insuline Medical Ltd. Method and device for drug delivery
US8622991B2 (en) 2007-03-19 2014-01-07 Insuline Medical Ltd. Method and device for drug delivery
AU2008227875B2 (en) 2007-03-19 2014-06-12 Insuline Medical Ltd. Drug delivery device
EP1972267A1 (en) 2007-03-20 2008-09-24 Roche Diagnostics GmbH System for in vivo measurement of an analyte concentration
US20080243085A1 (en) * 2007-03-30 2008-10-02 Animas Corporation Method for mounting a user releasable side-attach rotary infusion set to an infusion site
US20080243051A1 (en) * 2007-03-30 2008-10-02 Animas Corporation Torsion bar-based cannula insertion device
US20080243084A1 (en) * 2007-03-30 2008-10-02 Animas Corporation User-releasable side-attach rotary infusion set
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2137637A4 (en) 2007-04-14 2012-06-20 Abbott Diabetes Care Inc Method and apparatus for providing data processing and control in medical communication system
EP2146625B1 (en) 2007-04-14 2019-08-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2146627B1 (en) 2007-04-14 2020-07-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
ES2784736T3 (en) 2007-04-14 2020-09-30 Abbott Diabetes Care Inc Procedure and apparatus for providing data processing and control in a medical communication system
CA2683721C (en) 2007-04-14 2017-05-23 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
EP2139543B1 (en) * 2007-04-23 2018-06-06 Sid Technologies LLC Devices for intradermal injection
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
CA2692038A1 (en) * 2007-06-15 2008-12-24 Lifescan, Inc. Flexible cannula or medical device conduit
JP5680960B2 (en) 2007-06-21 2015-03-04 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Health care device and method
CN103251414B (en) 2007-06-21 2017-05-24 雅培糖尿病护理公司 Device for detecting analyte level
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8303545B2 (en) 2007-09-07 2012-11-06 Stat Medical Devices, Inc. Infusion device and method of using and making the same
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
WO2009056616A1 (en) * 2007-10-31 2009-05-07 Novo Nordisk A/S Non-porous material as sterilization barrier
EP2231229A1 (en) 2007-12-18 2010-09-29 Insuline Medical Ltd. Drug delivery device with sensor for closed-loop operation
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US20090192469A1 (en) * 2008-01-24 2009-07-30 Istvan Bognar Devices and Methods for Development of a Scar Tissue Tunnel Track
EP2254622B1 (en) * 2008-02-08 2019-05-01 Unomedical A/S Inserter assembly
CN101970033A (en) * 2008-02-08 2011-02-09 优诺医疗有限公司 Assembly comprising inserter, cannula part and base part
WO2009126942A2 (en) 2008-04-10 2009-10-15 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
ATE527007T1 (en) 2008-10-07 2011-10-15 Hoffmann La Roche INSERTION DEVICE
US8267892B2 (en) 2008-10-10 2012-09-18 Deka Products Limited Partnership Multi-language / multi-processor infusion pump assembly
US8016789B2 (en) 2008-10-10 2011-09-13 Deka Products Limited Partnership Pump assembly with a removable cover assembly
US8223028B2 (en) 2008-10-10 2012-07-17 Deka Products Limited Partnership Occlusion detection system and method
US8708376B2 (en) 2008-10-10 2014-04-29 Deka Products Limited Partnership Medium connector
US9180245B2 (en) 2008-10-10 2015-11-10 Deka Products Limited Partnership System and method for administering an infusible fluid
US8262616B2 (en) 2008-10-10 2012-09-11 Deka Products Limited Partnership Infusion pump assembly
US8066672B2 (en) 2008-10-10 2011-11-29 Deka Products Limited Partnership Infusion pump assembly with a backup power supply
EP2355758A2 (en) 2008-11-07 2011-08-17 Insuline Medical Ltd. Device and method for drug delivery
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
BRPI0922213B8 (en) * 2008-12-08 2021-06-22 Program For Appropriate Tech In Health alignment of a needle on an intradermal injection device
CA3037538C (en) 2009-01-21 2021-02-16 Becton, Dickinson And Company Infusion set
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
WO2010121084A1 (en) 2009-04-15 2010-10-21 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010127187A1 (en) 2009-04-29 2010-11-04 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc Method and system for providing real time analyte sensor calibration with retrospective backfill
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
ES2776474T3 (en) 2009-07-23 2020-07-30 Abbott Diabetes Care Inc Continuous analyte measurement system
CN104606745B (en) 2009-07-23 2017-07-28 适宜卫生科技项目公司 The injector assembly of Intradermal injection adapter, intracutaneous injection component and intracutaneous injection conveying
US8795309B2 (en) 2009-07-29 2014-08-05 Smiths Medical Asd, Inc. Device for insertion of a cannula of an infusion device and method
AU2010278894B2 (en) 2009-07-30 2014-01-30 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
WO2011014851A1 (en) 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
EP3988470B1 (en) 2009-08-31 2023-06-28 Abbott Diabetes Care Inc. Displays for a medical device
WO2011026148A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
CA2765712A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Medical devices and methods
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US8185181B2 (en) 2009-10-30 2012-05-22 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
CN102711596B (en) 2010-01-22 2015-02-25 生命扫描有限公司 Analyte testing method and system
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
DE102010001506A1 (en) * 2010-02-02 2011-08-04 Vosseler, Michael, 78073 Dermal access device
US9168163B2 (en) 2010-02-18 2015-10-27 P Tech, Llc Anatomic needle system
WO2011112753A1 (en) 2010-03-10 2011-09-15 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
WO2011112916A1 (en) * 2010-03-12 2011-09-15 Sid Technologies, Llc Assembly for use with a syringe
CA3135001A1 (en) 2010-03-24 2011-09-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
EP2404547A1 (en) * 2010-07-10 2012-01-11 Roche Diagnostics GmbH Method for preparing the insertion of an insertion needle into subcutaneous fatty tissue and insertion device for same
WO2012048168A2 (en) 2010-10-07 2012-04-12 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US9950109B2 (en) 2010-11-30 2018-04-24 Becton, Dickinson And Company Slide-activated angled inserter and cantilevered ballistic insertion for intradermal drug infusion
EP2489379B1 (en) 2011-01-21 2020-09-23 SID Technologies, LLC Intradermal pen adapter
GB2487899A (en) 2011-02-01 2012-08-15 Olberon Ltd Needle holder with grip means
CA3177983A1 (en) 2011-02-28 2012-11-15 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
WO2012142502A2 (en) 2011-04-15 2012-10-18 Dexcom Inc. Advanced analyte sensor calibration and error detection
WO2012146679A1 (en) * 2011-04-28 2012-11-01 Sanofi-Aventis Deutschland Gmbh Connection for medical device
CN103501845B (en) * 2011-04-28 2016-02-10 泰尔茂株式会社 Entry needle assembly and medication injection device
BE1020202A3 (en) * 2011-08-25 2013-06-04 Intravascular I C T Consult Cooeperatieve Vennootschap Met Beperkte Aansprakelijkheid A TOOL FOR INSERTING A NEEDLE INTO A BODY PART, METHODS FOR ORIENTING A NEEDLE TO BE INSERTED INTO A BODY PART AND INSERTING THEREOF AND A FABRIC.
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
JP6443802B2 (en) 2011-11-07 2018-12-26 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Analyte monitoring apparatus and method
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
EP4344633A2 (en) 2011-12-11 2024-04-03 Abbott Diabetes Care, Inc. Analyte sensor methods
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
EP2890297B1 (en) 2012-08-30 2018-04-11 Abbott Diabetes Care, Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
WO2014052136A1 (en) 2012-09-26 2014-04-03 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9782538B2 (en) 2012-09-27 2017-10-10 Becton, Dickinson And Company Angled inserter for drug infusion
US9498249B2 (en) 2012-11-21 2016-11-22 P Tech, Llc Expandable access systems and methods
DE102013001105A1 (en) * 2013-01-23 2014-07-24 Fresenius Medical Care Deutschland Gmbh Vascular access device for the reproducible introduction of a cannula in a puncture site
US10080839B2 (en) 2013-03-14 2018-09-25 Becton, Dickinson And Company Angled inserter for drug infusion
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US9821113B2 (en) 2013-03-15 2017-11-21 Becton, Dickinson And Company Automatic angled infusion set assembly
US9474865B2 (en) 2013-04-25 2016-10-25 West Pharmaceutical Services, Inc. Needle shield for disposable syringe with annular ring
EP3068472B1 (en) 2013-11-14 2020-03-04 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Access device
US10279105B2 (en) 2013-12-26 2019-05-07 Tandem Diabetes Care, Inc. System and method for modifying medicament delivery parameters after a site change
US11229382B2 (en) 2013-12-31 2022-01-25 Abbott Diabetes Care Inc. Self-powered analyte sensor and devices using the same
US20170185748A1 (en) 2014-03-30 2017-06-29 Abbott Diabetes Care Inc. Method and Apparatus for Determining Meal Start and Peak Events in Analyte Monitoring Systems
EP3171780B1 (en) * 2014-07-22 2018-04-25 Roche Diabetes Care GmbH Insertion device with safety lock
WO2016183493A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
EP3319518A4 (en) 2015-07-10 2019-03-13 Abbott Diabetes Care Inc. System, device and method of dynamic glucose profile response to physiological parameters
WO2017180279A2 (en) * 2016-04-15 2017-10-19 Thegents Of The University Of Michigan Assistive device for subcutaneous injections or implants
WO2017189541A1 (en) 2016-04-29 2017-11-02 Smiths Medical Asd, Inc. Subcutaneous insertion systems, devices and related methods
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
USD840030S1 (en) 2016-06-02 2019-02-05 Intarcia Therapeutics, Inc. Implant placement guide
USD876628S1 (en) 2016-07-20 2020-02-25 Nyxoah S.A. Medical implant
USD988519S1 (en) 2016-09-12 2023-06-06 Nyxoah S.A. Patch
USD858753S1 (en) * 2017-01-17 2019-09-03 Nyxoah S.A. Medical device
EP3570917A1 (en) * 2017-01-17 2019-11-27 Amgen Inc. Injection devices and related methods of use and assembly
CN115444410A (en) 2017-01-23 2022-12-09 雅培糖尿病护理公司 Applicator and assembly for inserting an in vivo analyte sensor
JP2018138070A (en) * 2017-02-24 2018-09-06 テルモ株式会社 Catheter system
US11707623B2 (en) 2017-02-28 2023-07-25 Nyxoah S.A. Surgical implant system
US11596330B2 (en) 2017-03-21 2023-03-07 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
US10413658B2 (en) 2017-03-31 2019-09-17 Capillary Biomedical, Inc. Helical insertion infusion device
US11382540B2 (en) 2017-10-24 2022-07-12 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
USD933219S1 (en) 2018-07-13 2021-10-12 Intarcia Therapeutics, Inc. Implant removal tool and assembly
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601708A (en) * 1985-09-09 1986-07-22 Pavel Jordan Automatic injection for syringe needle, and assembly
US4755173A (en) * 1986-02-25 1988-07-05 Pacesetter Infusion, Ltd. Soft cannula subcutaneous injection set
US4787891A (en) * 1987-07-13 1988-11-29 Paul Levin Syringe holder and applicator
US4966589A (en) * 1988-11-14 1990-10-30 Hemedix International, Inc. Intravenous catheter placement device
US4988339A (en) * 1988-12-30 1991-01-29 Vadher Dinesh L Retractable needle/syringe devices for blood collection, catheterization, and medicinal injection procedures
US4994042A (en) * 1989-10-02 1991-02-19 Vadher Dinesh L Combined catheter and needle
US5147375A (en) * 1991-05-31 1992-09-15 Ann Sullivan Safety finger prick instrument
US5176662A (en) * 1990-08-23 1993-01-05 Minimed Technologies, Ltd. Subcutaneous injection set with improved cannula mounting arrangement
US5257980A (en) * 1993-04-05 1993-11-02 Minimed Technologies, Ltd. Subcutaneous injection set with crimp-free soft cannula
US5368045A (en) * 1989-07-18 1994-11-29 Boston Scientific Corporation Biopsy needle instrument
US5522803A (en) * 1993-03-09 1996-06-04 Pharma Plast International A/S Infusion set for an intermittent or continuous administration of a therapeutical substance
US5545143A (en) * 1993-01-21 1996-08-13 T. S. I. Medical Device for subcutaneous medication delivery
US5562631A (en) * 1995-06-07 1996-10-08 Johnson & Johnson Medical, Inc. Catheter arrangement with interlocking sequenced guarding members for protecting cannula
US5586553A (en) * 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5591188A (en) * 1994-04-12 1997-01-07 Wais-Med Lmt, A Subsidiary Company Of Teic Technion Enterpreneurial Incubator Ltd. Surgical instrument for impact insertion of an intraosseous trocar-needle
US5779665A (en) * 1997-05-08 1998-07-14 Minimed Inc. Transdermal introducer assembly
US5851197A (en) * 1997-02-05 1998-12-22 Minimed Inc. Injector for a subcutaneous infusion set
US5868711A (en) * 1991-04-29 1999-02-09 Board Of Regents, The University Of Texas System Implantable intraosseous device for rapid vascular access
US5957895A (en) * 1998-02-20 1999-09-28 Becton Dickinson And Company Low-profile automatic injection device with self-emptying reservoir
US5980506A (en) * 1998-03-20 1999-11-09 Mathiasen; Orla Subcutaneous infusion device
US5997507A (en) * 1998-08-07 1999-12-07 Dysarz; Edward D. Biased spring hard needle retractable IV catheter
US6093172A (en) * 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
US6293925B1 (en) * 1997-12-31 2001-09-25 Minimed Inc. Insertion device for an insertion set and method of using the same
US20020022855A1 (en) * 1997-12-31 2002-02-21 Bobroff Randa M. Insertion device for an insertion set and method of using the same
US20020072720A1 (en) * 2000-12-11 2002-06-13 Hague Clifford W. Rigid soluble materials for use with needle-less infusion sets, sensor sets and injection devices and methods of making the same
US20020119711A1 (en) * 1997-06-09 2002-08-29 Minimed, Inc. Insertion set for a transcutaneous sensor
US7052483B2 (en) * 2000-12-19 2006-05-30 Animas Corporation Transcutaneous inserter for low-profile infusion sets

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759620A (en) * 1972-05-30 1973-09-18 Philco Ford Corp Flaw detection and marking apparatus
US4173441A (en) * 1977-03-28 1979-11-06 E. I. Du Pont De Nemours And Company Web inspection system and method therefor
DE3325125C1 (en) * 1983-07-12 1985-02-14 Erwin Sick Gmbh Optik-Elektronik, 7808 Waldkirch Arrangement for marking defects on fast moving material webs
JP2602201B2 (en) * 1985-04-12 1997-04-23 株式会社日立製作所 Defect inspection method for inspected pattern
US4752897A (en) * 1987-05-01 1988-06-21 Eastman Kodak Co. System for monitoring and analysis of a continuous process
IL99823A0 (en) * 1990-11-16 1992-08-18 Orbot Instr Ltd Optical inspection method and apparatus
US5440648A (en) * 1991-11-19 1995-08-08 Dalsa, Inc. High speed defect detection apparatus having defect detection circuits mounted in the camera housing
WO1994001528A1 (en) * 1992-07-13 1994-01-20 Minnesota Mining And Manufacturing Company A technique to count objects in a scanned image
US5365596A (en) * 1992-12-17 1994-11-15 Philip Morris Incorporated Methods and apparatus for automatic image inspection of continuously moving objects
US5305392A (en) * 1993-01-11 1994-04-19 Philip Morris Incorporated High speed, high resolution web inspection system
US5544256A (en) * 1993-10-22 1996-08-06 International Business Machines Corporation Automated defect classification system
US5434629A (en) * 1993-12-20 1995-07-18 Focus Automation Systems Inc. Real-time line scan processor
US6031931A (en) * 1996-03-15 2000-02-29 Sony Corporation Automated visual inspection apparatus
JP3975408B2 (en) * 1996-08-20 2007-09-12 ウステル・テヒノロジーズ・アクチエンゲゼルシヤフト Method and apparatus for recognizing defects in fiber surface texture
US5774177A (en) * 1996-09-11 1998-06-30 Milliken Research Corporation Textile fabric inspection system
US6092059A (en) * 1996-12-27 2000-07-18 Cognex Corporation Automatic classifier for real time inspection and classification
FR2761475B1 (en) * 1997-03-28 1999-06-11 Lorraine Laminage METHOD FOR INSPECTING THE SURFACE OF A SCROLLING STRIP BY IMAGE SEGMENTATION IN SUSPECTED AREAS
KR100303608B1 (en) * 1997-05-22 2001-11-22 박호군 Method and device for automatically recognizing blood cell
US6014209A (en) * 1997-06-23 2000-01-11 Beltronics, Inc. Method of optically inspecting multi-layered electronic parts and the like with fluorescent scattering top layer discrimination and apparatus therefor
US6246472B1 (en) * 1997-07-04 2001-06-12 Hitachi, Ltd. Pattern inspecting system and pattern inspecting method
AU8916498A (en) * 1997-08-27 1999-03-16 Datacube, Inc. Web inspection system for analysis of moving webs
US6252237B1 (en) * 1998-07-15 2001-06-26 3M Innovation Properties Company Low cost thickness measurement method and apparatus for thin coatings
US6266436B1 (en) * 1999-04-09 2001-07-24 Kimberly-Clark Worldwide, Inc. Process control using multiple detections
US6496596B1 (en) * 1999-03-23 2002-12-17 Advanced Micro Devices, Inc. Method for detecting and categorizing defects
US6407373B1 (en) * 1999-06-15 2002-06-18 Applied Materials, Inc. Apparatus and method for reviewing defects on an object
US6484306B1 (en) * 1999-12-17 2002-11-19 The Regents Of The University Of California Multi-level scanning method for defect inspection

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601708A (en) * 1985-09-09 1986-07-22 Pavel Jordan Automatic injection for syringe needle, and assembly
US4755173A (en) * 1986-02-25 1988-07-05 Pacesetter Infusion, Ltd. Soft cannula subcutaneous injection set
US4787891A (en) * 1987-07-13 1988-11-29 Paul Levin Syringe holder and applicator
US4966589A (en) * 1988-11-14 1990-10-30 Hemedix International, Inc. Intravenous catheter placement device
US4988339A (en) * 1988-12-30 1991-01-29 Vadher Dinesh L Retractable needle/syringe devices for blood collection, catheterization, and medicinal injection procedures
US5368045A (en) * 1989-07-18 1994-11-29 Boston Scientific Corporation Biopsy needle instrument
US4994042A (en) * 1989-10-02 1991-02-19 Vadher Dinesh L Combined catheter and needle
US5176662A (en) * 1990-08-23 1993-01-05 Minimed Technologies, Ltd. Subcutaneous injection set with improved cannula mounting arrangement
US5868711A (en) * 1991-04-29 1999-02-09 Board Of Regents, The University Of Texas System Implantable intraosseous device for rapid vascular access
US5147375A (en) * 1991-05-31 1992-09-15 Ann Sullivan Safety finger prick instrument
US5545143A (en) * 1993-01-21 1996-08-13 T. S. I. Medical Device for subcutaneous medication delivery
US5522803A (en) * 1993-03-09 1996-06-04 Pharma Plast International A/S Infusion set for an intermittent or continuous administration of a therapeutical substance
US5257980A (en) * 1993-04-05 1993-11-02 Minimed Technologies, Ltd. Subcutaneous injection set with crimp-free soft cannula
US5591188A (en) * 1994-04-12 1997-01-07 Wais-Med Lmt, A Subsidiary Company Of Teic Technion Enterpreneurial Incubator Ltd. Surgical instrument for impact insertion of an intraosseous trocar-needle
US5586553A (en) * 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5562631A (en) * 1995-06-07 1996-10-08 Johnson & Johnson Medical, Inc. Catheter arrangement with interlocking sequenced guarding members for protecting cannula
US6093172A (en) * 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
US5851197A (en) * 1997-02-05 1998-12-22 Minimed Inc. Injector for a subcutaneous infusion set
US20030225373A1 (en) * 1997-02-05 2003-12-04 Minimed, Inc. Insertion device for an insertion set and method of using the same
US5779665A (en) * 1997-05-08 1998-07-14 Minimed Inc. Transdermal introducer assembly
US20020119711A1 (en) * 1997-06-09 2002-08-29 Minimed, Inc. Insertion set for a transcutaneous sensor
US20020022855A1 (en) * 1997-12-31 2002-02-21 Bobroff Randa M. Insertion device for an insertion set and method of using the same
US6293925B1 (en) * 1997-12-31 2001-09-25 Minimed Inc. Insertion device for an insertion set and method of using the same
US5957895A (en) * 1998-02-20 1999-09-28 Becton Dickinson And Company Low-profile automatic injection device with self-emptying reservoir
US5980506A (en) * 1998-03-20 1999-11-09 Mathiasen; Orla Subcutaneous infusion device
US5997507A (en) * 1998-08-07 1999-12-07 Dysarz; Edward D. Biased spring hard needle retractable IV catheter
US20020072720A1 (en) * 2000-12-11 2002-06-13 Hague Clifford W. Rigid soluble materials for use with needle-less infusion sets, sensor sets and injection devices and methods of making the same
US7052483B2 (en) * 2000-12-19 2006-05-30 Animas Corporation Transcutaneous inserter for low-profile infusion sets

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744568B2 (en) 2001-03-04 2010-06-29 Icu Medical, Inc. Infusion hub assembly and fluid line disconnect system
US8152769B2 (en) 2001-03-04 2012-04-10 Tecpharma Licensing Ag Infusion hub assembly and fluid line disconnect system
US20100268166A1 (en) * 2001-03-04 2010-10-21 Icu Medical, Inc. Infusion hub assembly and fluid line disconnect system
US20080312598A1 (en) * 2001-03-04 2008-12-18 Sterling Medivations, Inc. Infusion hub assembly and fluid line disconnect system
US20060211990A1 (en) * 2003-11-18 2006-09-21 Fangrow Thomas F Jr Infusion set
US20060211991A1 (en) * 2003-11-18 2006-09-21 Fangrow Thomas F Jr Infusion set
US20060224119A1 (en) * 2003-11-18 2006-10-05 Fangrow Thomas F Jr Infusion set
US20060270990A1 (en) * 2003-11-18 2006-11-30 Fangrow Thomas F Jr Infusion set
US20060270992A1 (en) * 2003-11-18 2006-11-30 Fangrow Thomas F Jr Infusion set
US20060276760A1 (en) * 2003-11-18 2006-12-07 Fangrow Thomas F Jr Infusion set
US20050107743A1 (en) * 2003-11-18 2005-05-19 Fangrow Thomas F.Jr. Infusion set
US7744570B2 (en) 2003-11-18 2010-06-29 Icu Medical, Inc. Infusion set
US8287516B2 (en) 2004-03-26 2012-10-16 Unomedical A/S Infusion set
US8221355B2 (en) 2004-03-26 2012-07-17 Unomedical A/S Injection device for infusion set
US8062250B2 (en) 2004-08-10 2011-11-22 Unomedical A/S Cannula device
US20080215003A1 (en) * 2005-03-17 2008-09-04 Grete Kornerup Gateway System
US7985199B2 (en) 2005-03-17 2011-07-26 Unomedical A/S Gateway system
US10369277B2 (en) 2005-09-12 2019-08-06 Unomedical A/S Invisible needle
US8303549B2 (en) 2005-12-23 2012-11-06 Unomedical A/S Injection device
US9278173B2 (en) 2005-12-23 2016-03-08 Unomedical A/S Device for administration
US7892216B2 (en) 2006-02-07 2011-02-22 Icu Medical, Inc. Infusion set
US8657788B2 (en) 2006-02-07 2014-02-25 Tecpharma Licensing Ag Infusion set
US7931615B2 (en) 2006-02-07 2011-04-26 Icu Medical, Inc. Infusion set
US20070185455A1 (en) * 2006-02-07 2007-08-09 Fangrow Thomas F Jr Infusion set
US8956330B2 (en) 2006-02-07 2015-02-17 Techpharma Licensing Ag Infusion set
US20070185441A1 (en) * 2006-02-07 2007-08-09 Fangrow Thomas F Jr Infusion set
US9492613B2 (en) * 2006-02-09 2016-11-15 Deka Products Limited Partnership Adhesive and peripheral systems and methods for medical devices
US20130303991A1 (en) * 2006-02-09 2013-11-14 Deka Products Limited Partnership Adhesive and Peripheral Systems and Methods for Medical Devices
US9211379B2 (en) 2006-02-28 2015-12-15 Unomedical A/S Inserter for infusion part and infusion part provided with needle protector
US8439838B2 (en) 2006-06-07 2013-05-14 Unomedical A/S Inserter for transcutaneous sensor
US8790311B2 (en) 2006-06-09 2014-07-29 Unomedical A/S Mounting pad
US20100030155A1 (en) * 2006-08-02 2010-02-04 Steffen Gyrn Cannula and Delivery Device
US8945057B2 (en) * 2006-08-02 2015-02-03 Unomedical A/S Cannula and delivery device
US8012126B2 (en) 2006-10-31 2011-09-06 Unomedical A/S Infusion set
US9320869B2 (en) 2007-06-20 2016-04-26 Unomedical A/S Apparatus for making a catheter
US9186480B2 (en) 2007-06-20 2015-11-17 Unomedical A/S Apparatus for making a catheter
US8430850B2 (en) 2007-07-03 2013-04-30 Unomedical A/S Inserter having bistable equilibrium states
US8486003B2 (en) 2007-07-10 2013-07-16 Unomedical A/S Inserter having two springs
US8246588B2 (en) 2007-07-18 2012-08-21 Unomedical A/S Insertion device with pivoting action
US8409145B2 (en) 2007-09-17 2013-04-02 Tecpharma Licensing Ag Insertion devices for infusion devices
US20090124979A1 (en) * 2007-09-17 2009-05-14 Icu Medical, Inc Insertion devices for infusion devices
US9005169B2 (en) 2007-10-16 2015-04-14 Cequr Sa Cannula insertion device and related methods
US9968747B2 (en) 2007-10-16 2018-05-15 Cequr Sa Cannula insertion device and related methods
US20110060287A1 (en) * 2007-12-10 2011-03-10 Patton Medical Devices, Lp Insertion Devices, Insertion Needles, and Related Methods
US10076606B2 (en) 2007-12-10 2018-09-18 Medtronic Minimed, Inc. Insertion devices, insertion needles, and related methods
US10898643B2 (en) 2008-02-13 2021-01-26 Unomedical A/S Sealing between a cannula part and a fluid path
US9566384B2 (en) 2008-02-20 2017-02-14 Unomedical A/S Insertion device with horizontally moving part
US10376637B2 (en) 2008-02-20 2019-08-13 Unomedical A/S Insertion device with horizontally moving part
US9254373B2 (en) 2008-12-22 2016-02-09 Unomedical A/S Medical device comprising adhesive pad
US9232990B2 (en) * 2009-05-28 2016-01-12 Simcro Limited Skin gripping means, injector including the skin gripping means and method of performing a subcutaneous injection
US20120130344A1 (en) * 2009-05-28 2012-05-24 Simcro Limited Skin Gripping Means, Injector Including the Skin Gripping Means and Method of Performing a Subcutaneous Injection
US8562567B2 (en) 2009-07-30 2013-10-22 Unomedical A/S Inserter device with horizontal moving part
US9533092B2 (en) 2009-08-07 2017-01-03 Unomedical A/S Base part for a medication delivery device
US9415159B2 (en) 2010-03-30 2016-08-16 Unomedical A/S Medical device
US11786653B2 (en) 2010-03-30 2023-10-17 Unomedical A/S Insertion device
US9724127B2 (en) 2010-09-27 2017-08-08 Unomedical A/S Insertion system and insertion kit
US11020526B2 (en) 2010-10-04 2021-06-01 Unomedical A/S Sprinkler cannula
US11197689B2 (en) 2011-10-05 2021-12-14 Unomedical A/S Inserter for simultaneous insertion of multiple transcutaneous parts
US11110261B2 (en) 2011-10-19 2021-09-07 Unomedical A/S Infusion tube system and method for manufacture
US11684767B2 (en) 2011-10-19 2023-06-27 Unomedical A/S Infusion tube system and method for manufacture
US9440051B2 (en) 2011-10-27 2016-09-13 Unomedical A/S Inserter for a multiplicity of subcutaneous parts
JP2019205792A (en) * 2018-05-30 2019-12-05 大成化工株式会社 Intracutaneous injection aid

Also Published As

Publication number Publication date
US20020077599A1 (en) 2002-06-20
US7052483B2 (en) 2006-05-30

Similar Documents

Publication Publication Date Title
US7052483B2 (en) Transcutaneous inserter for low-profile infusion sets
US6830562B2 (en) Injector device for placing a subcutaneous infusion set
CN110650768B (en) Catheter insertion device
US6911020B2 (en) Huber needle with folding safety wings
US20030109829A1 (en) Injector device for placing a subcutaneous infusion set
US6837878B2 (en) Bluntable needle assembly with open-ended blunting probe
US8172803B2 (en) Cannula insertion device
EP0615768B1 (en) Device for subcutaneous medication delivery
US6544239B2 (en) Releasable locking needle assembly with optional release accessory therefor
US20040087912A1 (en) Needle assembly
CA2622109C (en) Manually retracted safety needle with rigid wing structure
US7648494B2 (en) Infusion set and injector device for infusion set
JP4871484B2 (en) Low profile infusion set
EP1346738B1 (en) Safety needle device with a dorsal fin
EP1880741A1 (en) Straight insertion safety infusion set
US20050090784A1 (en) Medical puncturing device
CA2513692A1 (en) Needle having optimum grind for reduced insertion force
US20030229316A1 (en) Medical device
TW200950842A (en) Fluid flow control device with retractable cannula
CN115461002A (en) Puncture support and biopsy device
US20210402151A1 (en) Dressing-based traction device and related systems and methods

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION