US20060138146A1 - Moisture proof container - Google Patents

Moisture proof container Download PDF

Info

Publication number
US20060138146A1
US20060138146A1 US11/013,844 US1384404A US2006138146A1 US 20060138146 A1 US20060138146 A1 US 20060138146A1 US 1384404 A US1384404 A US 1384404A US 2006138146 A1 US2006138146 A1 US 2006138146A1
Authority
US
United States
Prior art keywords
container
closure member
moisture proof
proof container
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/013,844
Inventor
Edgar Earnhart
Michael McGovern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US11/013,844 priority Critical patent/US20060138146A1/en
Assigned to EASTMAN KODAK COMPANY reassignment EASTMAN KODAK COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EARNHART, EDGAR G., MCGOVERN, MICHAEL R.
Publication of US20060138146A1 publication Critical patent/US20060138146A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D43/00Lids or covers for rigid or semi-rigid containers
    • B65D43/02Removable lids or covers
    • B65D43/0202Removable lids or covers without integral tamper element
    • B65D43/0204Removable lids or covers without integral tamper element secured by snapping over beads or projections
    • B65D43/0208Removable lids or covers without integral tamper element secured by snapping over beads or projections on both the inside and the outside of the mouth of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00018Overall construction of the lid
    • B65D2543/00064Shape of the outer periphery
    • B65D2543/00074Shape of the outer periphery curved
    • B65D2543/00092Shape of the outer periphery curved circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00018Overall construction of the lid
    • B65D2543/00222Hollow and made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00018Overall construction of the lid
    • B65D2543/00259Materials used
    • B65D2543/00296Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00342Central part of the lid
    • B65D2543/00398Reinforcing ribs in the central part of the closure
    • B65D2543/00407Reinforcing ribs in the central part of the closure radial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00481Contact between the container and the lid on the inside or the outside of the container
    • B65D2543/0049Contact between the container and the lid on the inside or the outside of the container on the inside, or a part turned to the inside of the mouth of the container
    • B65D2543/00518Skirt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00481Contact between the container and the lid on the inside or the outside of the container
    • B65D2543/00537Contact between the container and the lid on the inside or the outside of the container on the outside, or a part turned to the outside of the mouth of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00481Contact between the container and the lid on the inside or the outside of the container
    • B65D2543/00555Contact between the container and the lid on the inside or the outside of the container on both the inside and the outside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00601Snapping means on the container
    • B65D2543/00611Profiles
    • B65D2543/00629Massive bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00601Snapping means on the container
    • B65D2543/00675Periphery concerned
    • B65D2543/00685Totality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00712Snapping means on the lid
    • B65D2543/00722Profiles
    • B65D2543/00731Groove or hollow bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00444Contact between the container and the lid
    • B65D2543/00592Snapping means
    • B65D2543/00712Snapping means on the lid
    • B65D2543/00787Periphery concerned
    • B65D2543/00796Totality

Definitions

  • This invention relates to a moisture proof container for a photographic film cartridge. More particularly, the invention concerns a combination of a plurality of protuberances and a plurality of retention members positioned in a channel of the container cover providing a vent duct to release deleterious gas pressure incurred during high-altitude shipping.
  • the second type typically exhibits inconsistent closure retention force and Moisture Vapor Transmission Rate. It is therefore the object of the present invention to provide a container for photographic film with a low and consistent Moisture Vapor Transmission Rate (MVTR) while providing a suitable and consistent retention force (or fitting strength as disclosed in U.S. Pat. No. 4,639,386) for a container with a flange on the exterior of the body part.
  • a suitable closure retention or separation force is within a force range that is a) acceptable to consumers to be easily removed and b) resists the rigors of manufacturing; supply chain; distribution and retail environment to provide product integrity until it reaches the consumer. In the case of a container for consumer 35 mm photographic film, this acceptable force range is typically 9 to 22 Newtons.
  • a common means for providing mold release and desired Moisture Vapor Transmission Rate performance for containers and in particular those for photographic film is to use lubricant or slip additives such as fatty acid amides or esters.
  • Fatty acid amide slip additives however can be detrimental to closure retention force when the amount approaches a level suitable for maintaining a low Moisture Vapor Transmission Rate.
  • the present invention overcomes this stated mutually exclusive condition of achieving the desired Moisture Vapor Transmission Rate performance while at the same time achieving a suitable and consistent closure retention force.
  • the present invention provides a container that meets the above objectives.
  • the closure for the container of the present invention is composed of a blend of various density polyethylenes resins along with suitable amounts of additives for improvements such as color, opacity, appearance, lubricity, Moisture Vapor Transmission Rate (MVTR), moldability and coloration during processing.
  • the container body for the container of the present invention is composed wholly of high-density polyethylene (HDPE) along with suitable amounts of additives for improvements such as color, opacity, appearance, lubricity, Moisture Vapor Transmission Rate (MVTR), moldability and coloration during processing.
  • HDPE high-density polyethylene
  • containers for photographic film prefferably have a closure comprised wholly of a singular polyethylene resin with a specific density range plus small amounts (less than 5% by weight each) of additives for improvements such as color, opacity, appearance, lubricity, Moisture Vapor Transmission Rate (MVTR), moldability and coloration during processing.
  • LDPE low-density polyethylene
  • MDPE medium-density polyethylene
  • HDPE high-density polyethylene
  • MFR Melt Flow Rate
  • the flexural modulus for LDPE ranges from about 700 to about 2100 Kg/cm 2 , for MDPE from about 2500 to 4500 Kg/cm 2 and for HDPE from about 6300 to 10500 Kg/cm 2 .
  • a common type of container for photographic film (as described in U.S. Pat. No. 4,639,386) has a closure with a sealing channel forming a sealing surface that interfaces with the inside of the body part and a skirt circumscribing the outside of the body part with a continuous retention bead that overlaps a bead or flange around the outside top of the body.
  • the retention force of the closure is a function of the stiffness of the closure, lubricity of the body and/or closure material and the cooperating geometry of the cover retention bead and the body part flange.
  • one way of compensating for the loss in cover retention or separation force due to the lubricant is to increase the stiffness of the material by using blends of various density polyethylene materials. It is noted that a closure comprised wholly of low-density (LDPE) or high-density polyethylene (HDPE) is too flexible or too stiff and the closure retention or separation force is highly variable. It is also noted that the cost of medium-density polyethylene ( MDPE) material is considerably higher than a blend of LDPE and HDPE.
  • LDPE low-density
  • HDPE high-density polyethylene
  • Another object of this invention is to provide a container for photographic film with a low and consistent Moisture Vapor Transmission Rate (MVTR).
  • MVTR Moisture Vapor Transmission Rate
  • Another object of this invention is to provide a container for photographic film and low material cost.
  • a moisture proof container in one aspect of the invention, includes a container body having a flange portion for cooperatively receiving a closure member.
  • the closure member has a top portion joining an inner sealing surface and an outer surface defining a channel.
  • the channel is configured to engageably receive the flange portion.
  • the outer surface comprises a plurality of spaced inward facing retention members arranged in the channel.
  • the invention provides a container that meets the above objects.
  • the closure for this container is composed of a blend of LDPE and HDPE resins along with suitable amounts additives for improvements such as color, opacity, appearance, lubricity, Moisture Vapor Transmission Rate (MVTR), moldability and coloration during processing.
  • LDPE Low Density Polyethylene
  • HDPE High Density Polyethylene
  • MVTR Moisture Vapor Transmission Rate
  • FIG. 1 is a depiction of the prior art for photographic film containers as disclosed by Akao et al. (U.S. Pat. No. 4,630,386).
  • FIG. 2 is a depiction of the prior art for the fitting structure for a photographic film container to Type 2 as disclosed by Akao et al. (U.S. Pat. No. 4,960,626).
  • FIG. 3 a is a an enlarged cross sectional view of the fitting structure between removable closure member in the body of the container.
  • FIG. 3 b is an isometric partially removed section exposing the inner structure on the removable closure member.
  • FIG. 3 c is a cross section of the assembled container.
  • FIG. 4 a is an enlarged cross section view of the fitment structure cut through the retention member of the removable closure.
  • FIG. 4 b is a partial section view of the fitment structure showing vent ducts within the fitment structure.
  • FIG. 4 c is an isometric partially removed section exposing the inner structure on the removable closure member.
  • FIG. 4 d is a cross section of the FIG. 4 of the assembled container.
  • Type 1 plug style
  • Type 2 sem-over style
  • the moisture proof container is composed of a removable closure member 1 and body member 2 .
  • the closure member 1 further comprises a receiving channel 3 for cooperatively receiving a flange portion 4 of body member 2 providing protection from the ingress of moisture and resistance from inadvertent separation yet allowing easy opening by the customer for access to the product contained therein.
  • Moisture ingress is typically measured as an average weight gain per unit time.
  • the preferred separating force range is from a minimum of about 9 newtons to prevent inadvertent separation to a user-friendly maximum of about 22 newtons.
  • FIG. 2 this figure from U.S. Pat. No. 4,960,626 (Akao et al) depicts an enlargement of the prior art for the fitting structure of the cover member 1 to the body member 2 .
  • the receiving channel 3 of the cover member 1 is composed of: a top portion 8 joining a cover member inner sealing surface 6 cooperating with a body member inner sealing surface 5 ; and a receiving channel outer surface 9 and a continuous circumferential retention member 7 protruding axially to cooperate with the continuous circumferential flange member 4 of the container body member 2 .
  • FIGS. 3 a , 3 b and 3 c these figures again depict the prior art for moisture proof containers of the snap-over style used for protecting photographic film.
  • the cutaway view ( FIG. 3 b ) of the removable closure member 1 clearly shows the continuous circumferential nature of the receiving channel 3 , the top portion 8 , the closure member inner sealing surface 6 and the retention member 7 .
  • FIG. 3 a is the primary seal 11 , secondary seal 12 and the tertiary seal 13 between the closure member 1 and the container.
  • the use of multiple seals to improve the fitment or moisture proofness of the closure member 1 to the body member 2 is taught in U.S. Pat. No. 4,844,961.
  • a common problem with moisture proof containers of the snap-over type is that the closure member 1 has a nigh rate of blowing off when subjected to a drop of environmental pressure such as that associated with air shipping at high altitudes.
  • the redundant seals while being beneficial to preventing moisture ingress prevent the venting of higher pressure inside the container than that of a low-pressure environment.
  • a high-pressure differential induces removal forces on inside of closure member 1 to lift axially from body member 2 .
  • the tertiary seal 13 formed by the continuous circumferential retention member 7 and flange portion 4 of body member 2 prevents venting of the higher-pressure gas inside the container.
  • the forces induced on the inside of the closure member 1 from the higher differential pressure is often higher than the maximum user friendly removal force of about 22 newtons for which the structure of the container was designed.
  • the present invention has a cover member 1 with a receiving channel 3 composed of: a top portion 8 joining a closure member sealing surface 6 and a receiving channel outer surface 9 .
  • a plurality of spaced retention members 7 are directed radially from the outer surface 9 , and a plurality of spaced protuberances 10 are positioned on the top portion 8 .
  • the protuberances 10 and retention members 7 are spaced in a manner forming at least one vent duct 14 from the primary seal 11 to the exterior of the container.
  • the vent duct 14 allows venting of higher-pressure gas, such as those incurred in lower pressure environments encountered in high altitude shipping, from inside of the container 15 (see FIG. 4 d ). This equilibration of pressure prevents the pressure-induced forces on the inside of the closure member 1 from exceeding the maximum user-friendly removal force of about 22 newtons for which the structure of the container closure member 1 and body member 2 were designed.
  • the container closure member 1 and body member 2 are commonly composed of olefin based resins such as polyethylene or polypropylene selected for their inherent resistance to moisture transmission.
  • a lubricant such as fatty acid amide is commonly used as an additive to the materials composing the closure member 1 and/or the body member 2 to improve fitment for moisture proofing, affect the cover member 1 removal force, and affect extraction during forming by means of injection molding, thermoforming or compression forming.
  • the preferred additive are selected from a group of naturally occurring fatty acid amide slip agents represented at a rate from about 1500 parts per million (0.15 weight percent) to about 4000 parts per million (0.40 weight percent).
  • a representation rate lower than about 1500 parts per million resulted in deformation of the retention members 4 .
  • a representation rate higher than about 4000 parts per million resulted in a deleterious residue on the product contained inside.
  • moisture proofing i.e, MVTR
  • MVTR moisture proofing
  • the closure member 1 is composed of a blend of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) resins (with a Young's Modulus of about 2140 Kg/cm 2 ) along with suitable amounts of color and slip agent additives.
  • the HDPE resin is represented at a rate of about 15 to 20 weight percent.
  • the LDPE resin is represented at a rate of about 75 to 80 weight percent.
  • the fatty acid amide slip agent is represented at a nominal rate of about 0.2 weight percent.
  • the remainder is composed of coloring and opacifying agents (if required) such as titanium dioxide (TiO2) and carbon black.
  • coloring and opacifying agents such as titanium dioxide (TiO2) and carbon black.
  • TiO2 titanium dioxide
  • the blend representation of HDPE and LDPE provides the specific stiffness needed for the structure of the closure member 1 to satisfy the maximum user-friendly opening force requirement of about 22 Newtons.
  • the required specific stiffness could also be obtained by blending amounts of linear low-density polyethylene (LLDPE), polypropylene or other suitable low moisture transmission thermoplastic resins.

Abstract

A moisture proof container includes a container body having a flange portion for cooperatively receiving a closure member, the closure member includes a top portion joining an inner sealing surface and an outer surface both defining a channel, the channel being configured to engageably receive the flange portion, and wherein the outer surface includes spaced-apart retention members in the channel that provides a means for venting air pressure from within the container to outside the container.

Description

    FIELD OF THE INVENTION
  • This invention relates to a moisture proof container for a photographic film cartridge. More particularly, the invention concerns a combination of a plurality of protuberances and a plurality of retention members positioned in a channel of the container cover providing a vent duct to release deleterious gas pressure incurred during high-altitude shipping.
  • BACKGROUND OF THE INVENTION
  • It is common to use a two-piece plastic container to provide product integrity (prevention of deleterious moisture and dirt) for photographic film cartridges. There exists two basic types of containers in the marketplace as described in U.S. Pat. No. 4,639,386. One type has a closure with a retention feature cooperating with a groove or grasping ring on the inner diameter near the open end of the body part. The second type has a closure with a retention feature cooperating with a bead protrusion or flange on the exterior of the open end of the outer diameter of the body part. There is a great deal of art concerned with product integrity (closure and body fitness) with the first type. Examples of this prior art are: U.S. Pat. Nos. 4,844,961 and 4,960,626. However the second type typically exhibits inconsistent closure retention force and Moisture Vapor Transmission Rate. It is therefore the object of the present invention to provide a container for photographic film with a low and consistent Moisture Vapor Transmission Rate (MVTR) while providing a suitable and consistent retention force (or fitting strength as disclosed in U.S. Pat. No. 4,639,386) for a container with a flange on the exterior of the body part. A suitable closure retention or separation force is within a force range that is a) acceptable to consumers to be easily removed and b) resists the rigors of manufacturing; supply chain; distribution and retail environment to provide product integrity until it reaches the consumer. In the case of a container for consumer 35 mm photographic film, this acceptable force range is typically 9 to 22 Newtons.
  • A common means for providing mold release and desired Moisture Vapor Transmission Rate performance for containers and in particular those for photographic film is to use lubricant or slip additives such as fatty acid amides or esters. Fatty acid amide slip additives however can be detrimental to closure retention force when the amount approaches a level suitable for maintaining a low Moisture Vapor Transmission Rate. The present invention overcomes this stated mutually exclusive condition of achieving the desired Moisture Vapor Transmission Rate performance while at the same time achieving a suitable and consistent closure retention force.
  • The present invention provides a container that meets the above objectives. The closure for the container of the present invention is composed of a blend of various density polyethylenes resins along with suitable amounts of additives for improvements such as color, opacity, appearance, lubricity, Moisture Vapor Transmission Rate (MVTR), moldability and coloration during processing. The container body for the container of the present invention is composed wholly of high-density polyethylene (HDPE) along with suitable amounts of additives for improvements such as color, opacity, appearance, lubricity, Moisture Vapor Transmission Rate (MVTR), moldability and coloration during processing.
  • It is common for containers for photographic film to have a closure comprised wholly of a singular polyethylene resin with a specific density range plus small amounts (less than 5% by weight each) of additives for improvements such as color, opacity, appearance, lubricity, Moisture Vapor Transmission Rate (MVTR), moldability and coloration during processing. These resins are commonly identified as low-density polyethylene (LDPE) with density ranging from 0.910-0.925 g/cm3, medium-density (MDPE) from 0.926-0.940 g/cm3, and high-density polyethylene (HDPE) with density ranging from 0.941-0.965 g/cm3. Molding grades of these resins commonly have Melt Flow Rate (MFR) ranging from 5 to 50 g/10 min.. It is known that as the density of polyethylene increases so does the flexural modulus or bending stiffness. Likewise it is known that as MFR increases the stiffness of the bending stiffness decreases. However the interaction of stiffness to MFR is much less than the interaction of stiffness to density. The density of polyethylene is to a large part determined by the extent of branching of the polyethylene molecule, which determines the extent of crystallinity whereas the MFR is to a large part determined by the length of the polyethylene chain.
  • The flexural modulus for LDPE ranges from about 700 to about 2100 Kg/cm2, for MDPE from about 2500 to 4500 Kg/cm2 and for HDPE from about 6300 to 10500 Kg/cm2.
  • A common type of container for photographic film (as described in U.S. Pat. No. 4,639,386) has a closure with a sealing channel forming a sealing surface that interfaces with the inside of the body part and a skirt circumscribing the outside of the body part with a continuous retention bead that overlaps a bead or flange around the outside top of the body. The retention force of the closure is a function of the stiffness of the closure, lubricity of the body and/or closure material and the cooperating geometry of the cover retention bead and the body part flange.
  • It is also common in molding of closures for photographic film containers to use lubricants such as fatty acid amide as a mold release agent to decrease molding cycle time.
  • In the present invention, one way of compensating for the loss in cover retention or separation force due to the lubricant is to increase the stiffness of the material by using blends of various density polyethylene materials. It is noted that a closure comprised wholly of low-density (LDPE) or high-density polyethylene (HDPE) is too flexible or too stiff and the closure retention or separation force is highly variable. It is also noted that the cost of medium-density polyethylene ( MDPE) material is considerably higher than a blend of LDPE and HDPE.
  • SUMMARY OF THE INVENTION
  • It is, therefore, an object of this invention to provide a container for photographic film with a closure of suitable and consistent retention force.
  • Another object of this invention is to provide a container for photographic film with a low and consistent Moisture Vapor Transmission Rate (MVTR).
  • Another object of this invention is to provide a container for photographic film and low material cost.
  • Accordingly, in one aspect of the invention, a moisture proof container includes a container body having a flange portion for cooperatively receiving a closure member. The closure member has a top portion joining an inner sealing surface and an outer surface defining a channel. The channel is configured to engageably receive the flange portion. The outer surface comprises a plurality of spaced inward facing retention members arranged in the channel.
  • The invention provides a container that meets the above objects. The closure for this container is composed of a blend of LDPE and HDPE resins along with suitable amounts additives for improvements such as color, opacity, appearance, lubricity, Moisture Vapor Transmission Rate (MVTR), moldability and coloration during processing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a depiction of the prior art for photographic film containers as disclosed by Akao et al. (U.S. Pat. No. 4,630,386).
  • FIG. 2 is a depiction of the prior art for the fitting structure for a photographic film container to Type 2 as disclosed by Akao et al. (U.S. Pat. No. 4,960,626).
  • FIG. 3 a is a an enlarged cross sectional view of the fitting structure between removable closure member in the body of the container.
  • FIG. 3 b is an isometric partially removed section exposing the inner structure on the removable closure member.
  • FIG. 3 c is a cross section of the assembled container.
  • FIG. 4 a is an enlarged cross section view of the fitment structure cut through the retention member of the removable closure.
  • FIG. 4 b is a partial section view of the fitment structure showing vent ducts within the fitment structure.
  • FIG. 4 c is an isometric partially removed section exposing the inner structure on the removable closure member.
  • FIG. 4 d is a cross section of the FIG. 4 of the assembled container.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1: Two types of moisture proof containers such as those used for photographic film are depicted as previously disclosed in U.S. Pat. No. 4,630,386 (Akao). Type 1 (plug style) is composed of a removable closure member 1′ and a body portion 2′. Referring to Type 2 (snap-over style). The moisture proof container is composed of a removable closure member 1 and body member 2. The closure member 1 further comprises a receiving channel 3 for cooperatively receiving a flange portion 4 of body member 2 providing protection from the ingress of moisture and resistance from inadvertent separation yet allowing easy opening by the customer for access to the product contained therein. Moisture ingress is typically measured as an average weight gain per unit time.
  • Referring again to FIG. 1, in the case of photographic film it is preferable to have a maximum allowed moisture ingress of about 12 mg/wk. The preferred separating force range is from a minimum of about 9 newtons to prevent inadvertent separation to a user-friendly maximum of about 22 newtons.
  • Referring to FIG. 2, this figure from U.S. Pat. No. 4,960,626 (Akao et al) depicts an enlargement of the prior art for the fitting structure of the cover member 1 to the body member 2. The receiving channel 3 of the cover member 1 is composed of: a top portion 8 joining a cover member inner sealing surface 6 cooperating with a body member inner sealing surface 5; and a receiving channel outer surface 9 and a continuous circumferential retention member 7 protruding axially to cooperate with the continuous circumferential flange member 4 of the container body member 2.
  • Referring to FIGS. 3 a, 3 b and 3 c, these figures again depict the prior art for moisture proof containers of the snap-over style used for protecting photographic film. The cutaway view (FIG. 3 b) of the removable closure member 1 clearly shows the continuous circumferential nature of the receiving channel 3, the top portion 8, the closure member inner sealing surface 6 and the retention member 7. Of particular note in FIG. 3 a is the primary seal 11, secondary seal 12 and the tertiary seal 13 between the closure member 1 and the container. The use of multiple seals to improve the fitment or moisture proofness of the closure member 1 to the body member 2 is taught in U.S. Pat. No. 4,844,961.
  • Referring again to FIGS. 3 a, 3 b and 3 c, a common problem with moisture proof containers of the snap-over type is that the closure member 1 has a nigh rate of blowing off when subjected to a drop of environmental pressure such as that associated with air shipping at high altitudes. The redundant seals while being beneficial to preventing moisture ingress prevent the venting of higher pressure inside the container than that of a low-pressure environment. A high-pressure differential induces removal forces on inside of closure member 1 to lift axially from body member 2. However the tertiary seal 13 formed by the continuous circumferential retention member 7 and flange portion 4 of body member 2 prevents venting of the higher-pressure gas inside the container. The forces induced on the inside of the closure member 1 from the higher differential pressure is often higher than the maximum user friendly removal force of about 22 newtons for which the structure of the container was designed.
  • Referring to FIGS. 4 a, 4 b, 4 c and 4 d, these figures depict the present invention and the preferred embodiment. The present invention has a cover member 1 with a receiving channel 3 composed of: a top portion 8 joining a closure member sealing surface 6 and a receiving channel outer surface 9. A plurality of spaced retention members 7 are directed radially from the outer surface 9, and a plurality of spaced protuberances 10 are positioned on the top portion 8.
  • Referring again to FIG. 4 b, the protuberances 10 and retention members 7 are spaced in a manner forming at least one vent duct 14 from the primary seal 11 to the exterior of the container. The vent duct 14 allows venting of higher-pressure gas, such as those incurred in lower pressure environments encountered in high altitude shipping, from inside of the container 15 (see FIG. 4 d). This equilibration of pressure prevents the pressure-induced forces on the inside of the closure member 1 from exceeding the maximum user-friendly removal force of about 22 newtons for which the structure of the container closure member 1 and body member 2 were designed.
  • Referring again to FIGS. 4 a and 4 d, the container closure member 1 and body member 2 are commonly composed of olefin based resins such as polyethylene or polypropylene selected for their inherent resistance to moisture transmission. A lubricant such as fatty acid amide is commonly used as an additive to the materials composing the closure member 1 and/or the body member 2 to improve fitment for moisture proofing, affect the cover member 1 removal force, and affect extraction during forming by means of injection molding, thermoforming or compression forming. The preferred additive are selected from a group of naturally occurring fatty acid amide slip agents represented at a rate from about 1500 parts per million (0.15 weight percent) to about 4000 parts per million (0.40 weight percent). A representation rate lower than about 1500 parts per million resulted in deformation of the retention members 4. A representation rate higher than about 4000 parts per million resulted in a deleterious residue on the product contained inside. Further. it is noted that moisture proofing (i.e, MVTR) is acceptable with only the primary seal 11 required thru the slip agent additive range of about 1500 to 4000 parts per million.
  • Referring again to FIGS. 4 a, 4 b, 4 c and 4 d, these figures depict the preferred embodiment relative to the material composition of the present invention. The closure member 1 is composed of a blend of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) resins (with a Young's Modulus of about 2140 Kg/cm2) along with suitable amounts of color and slip agent additives. The HDPE resin is represented at a rate of about 15 to 20 weight percent. The LDPE resin is represented at a rate of about 75 to 80 weight percent. The fatty acid amide slip agent is represented at a nominal rate of about 0.2 weight percent. The remainder is composed of coloring and opacifying agents (if required) such as titanium dioxide (TiO2) and carbon black. The blend representation of HDPE and LDPE provides the specific stiffness needed for the structure of the closure member 1 to satisfy the maximum user-friendly opening force requirement of about 22 Newtons. The required specific stiffness could also be obtained by blending amounts of linear low-density polyethylene (LLDPE), polypropylene or other suitable low moisture transmission thermoplastic resins.
  • The invention has been described in detail with particular reference to certain preferred embodiments thereof. It will be understood that variations and modifications can be effected within the spirit and scope of the invention.
  • Parts List
    • 1 Closure member with receiving channel
    • 1′ Closure member
    • 2 Container body having flange portion
    • 2′ Container body with plug receiver
    • 3 Receiving channel
    • 4 Flange member
    • 5 Body member inner sealing surface
    • 6 Closure member inner sealing surface
    • 7 Retention member
    • 8 Top portion
    • 9 Receiving channel outer surface
    • 10 Protuberances
    • 11 Primary Seal
    • 12 Secondary Seal
    • 13 Tertiary Seal
    • 14 Vent duct
    • 15 Container

Claims (10)

1. A moisture proof container comprising: a container body having a flange portion for cooperatively receiving a closure member, said closure member comprising a top portion joining an inner sealing surface and an outer surface both defining a channel, said channel being configured to engageably receive said flange portion, and wherein said outer surface comprises a plurality of spaced-apart retention members in said channel that provides a means for venting air pressure from within the container to outside the container.
2. The moisture proof container recited in claim 1 wherein said top portion of said channel further comprises a plurality of spaced-apart protuberances in said channel for cooperatively assisting the spaced apart retention members to vent a deleterious pressure differential exerted about the moisture proof container.
3. The moisture proof container recited in claim 1 wherein said retention members of said closure member are configured to resist separation of said closure member from said body member when said closure member is exposed to a separation force in a range of substantially 9 Newtons to 22 Newtons.
4. The moisture proof container recited in claim 1 wherein said closure member comprises a fatty acid amide.
5. The moisture proof container recited in claim 1 wherein said container body comprises a fatty acid amide.
6. The moisture proof container recited in claim 1 wherein said closure member and said container body each comprises a fatty acid amide.
7. The moisture proof container recited in claim 6 wherein said fatty acid amide comprises a group consisting of naturally occurring slip agents of plant origin.
8. The moisture proof container recited in claim 4 wherein said fatty acid amide is represented in said closure member at a minimum rate of about 1500 parts per million.
9. The moisture proof container recited in claim 5 wherein said fatty acid amide is represented in said container body at a minimum rate of about 1500 parts per million.
10. The moisture proof container recited in claim 6 wherein said fatty acid amide is represented in each of said closure member and said container body at a minimum rate of about 1500 parts per million.
US11/013,844 2004-12-16 2004-12-16 Moisture proof container Abandoned US20060138146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/013,844 US20060138146A1 (en) 2004-12-16 2004-12-16 Moisture proof container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/013,844 US20060138146A1 (en) 2004-12-16 2004-12-16 Moisture proof container

Publications (1)

Publication Number Publication Date
US20060138146A1 true US20060138146A1 (en) 2006-06-29

Family

ID=36610205

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/013,844 Abandoned US20060138146A1 (en) 2004-12-16 2004-12-16 Moisture proof container

Country Status (1)

Country Link
US (1) US20060138146A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163099A1 (en) * 2005-01-26 2006-07-27 Eastman Kodak Company Moisture proof container for photographic film
US20110084045A1 (en) * 2009-10-09 2011-04-14 Brian Austin Self Closure and method of using same
US20110162636A1 (en) * 2010-01-07 2011-07-07 Gallo Christopher J Cool touch fireplace
WO2015054255A1 (en) * 2013-10-11 2015-04-16 Silgan Plastics Llc Container with high density molecular weight polyethylene moisture barrier layer

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339786A (en) * 1965-06-23 1967-09-05 Owens Illinois Inc Container and venting closure cap for same
US3679089A (en) * 1970-08-27 1972-07-25 Dart Ind Inc Press type closure
US3809280A (en) * 1971-03-05 1974-05-07 Cato Oil & Grease Co Closures for containers
US4190170A (en) * 1979-01-15 1980-02-26 United States Tobacco Company Snuff can and the like
US4639386A (en) * 1984-02-03 1987-01-27 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US4844961A (en) * 1986-10-30 1989-07-04 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US4921737A (en) * 1987-07-02 1990-05-01 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US4960626A (en) * 1986-06-11 1990-10-02 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US5236101A (en) * 1990-10-18 1993-08-17 Dugmore Peter B Radiation proof tamper-indicating container
US5443872A (en) * 1989-02-16 1995-08-22 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US5460768A (en) * 1992-11-06 1995-10-24 Fuji Photo Film Co., Ltd. Process for producing container for photographic film
US5657895A (en) * 1995-11-29 1997-08-19 Rogge; Dwaine W. Food container
US5722562A (en) * 1996-03-28 1998-03-03 C.A.P.S. Inc. Tube cap
US5791473A (en) * 1995-05-31 1998-08-11 Eastman Kodak Company Film canister with independent sealing surfaces
US5894953A (en) * 1996-06-12 1999-04-20 Tekni-Plex, Inc. Vented bowl and cover assembly
US20050139090A1 (en) * 2003-12-29 2005-06-30 Clougherty Kenan J. Pressure/moisture release cooking container
US7059492B2 (en) * 2002-06-25 2006-06-13 Capitol Plastic Products, Llc Moisture-proof resealable, non-cylindrical container for consumer packages
US20060163099A1 (en) * 2005-01-26 2006-07-27 Eastman Kodak Company Moisture proof container for photographic film

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339786A (en) * 1965-06-23 1967-09-05 Owens Illinois Inc Container and venting closure cap for same
US3679089A (en) * 1970-08-27 1972-07-25 Dart Ind Inc Press type closure
US3809280A (en) * 1971-03-05 1974-05-07 Cato Oil & Grease Co Closures for containers
US4190170A (en) * 1979-01-15 1980-02-26 United States Tobacco Company Snuff can and the like
US4639386A (en) * 1984-02-03 1987-01-27 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US4960626A (en) * 1986-06-11 1990-10-02 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US4844961A (en) * 1986-10-30 1989-07-04 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US4921737A (en) * 1987-07-02 1990-05-01 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US5443872A (en) * 1989-02-16 1995-08-22 Fuji Photo Film Co., Ltd. Container for photographic film cartridge
US5236101A (en) * 1990-10-18 1993-08-17 Dugmore Peter B Radiation proof tamper-indicating container
US5460768A (en) * 1992-11-06 1995-10-24 Fuji Photo Film Co., Ltd. Process for producing container for photographic film
US5791473A (en) * 1995-05-31 1998-08-11 Eastman Kodak Company Film canister with independent sealing surfaces
US5657895A (en) * 1995-11-29 1997-08-19 Rogge; Dwaine W. Food container
US5722562A (en) * 1996-03-28 1998-03-03 C.A.P.S. Inc. Tube cap
US5894953A (en) * 1996-06-12 1999-04-20 Tekni-Plex, Inc. Vented bowl and cover assembly
US7059492B2 (en) * 2002-06-25 2006-06-13 Capitol Plastic Products, Llc Moisture-proof resealable, non-cylindrical container for consumer packages
US20050139090A1 (en) * 2003-12-29 2005-06-30 Clougherty Kenan J. Pressure/moisture release cooking container
US20060163099A1 (en) * 2005-01-26 2006-07-27 Eastman Kodak Company Moisture proof container for photographic film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163099A1 (en) * 2005-01-26 2006-07-27 Eastman Kodak Company Moisture proof container for photographic film
US20110084045A1 (en) * 2009-10-09 2011-04-14 Brian Austin Self Closure and method of using same
US20110162636A1 (en) * 2010-01-07 2011-07-07 Gallo Christopher J Cool touch fireplace
US8333184B2 (en) * 2010-01-07 2012-12-18 Heat Surge, Llc Cool touch fireplace
WO2015054255A1 (en) * 2013-10-11 2015-04-16 Silgan Plastics Llc Container with high density molecular weight polyethylene moisture barrier layer

Similar Documents

Publication Publication Date Title
US6279774B1 (en) Cover locking mechanism
EP3106405B1 (en) Container having a base and a lid
AU599361B2 (en) Reclosable package with peelable seal
EP1101707B1 (en) Resealing overcap for a cylindrical container
US20060186075A1 (en) Oval container with click closure
US5791473A (en) Film canister with independent sealing surfaces
US10081475B2 (en) Packaging system with an overcap
US20060163099A1 (en) Moisture proof container for photographic film
US20090166361A1 (en) Two-part, flip top, snap cap for vials
US8746481B2 (en) Flexible cover for produce container
WO2005074571A2 (en) Flexible lip seal for an integral container and cap assembly
CN111819079B (en) Recoverable plastic package
CA2008707A1 (en) Closure with insert for enhanced sealing
MX2010012632A (en) Molded container with degassing valve.
EP3152123B1 (en) Lid structure for container
GB2206569A (en) Container
ATE254569T1 (en) MULTI-LAYER, HEAT SEALABLE PACKAGING MATERIAL, PACKAGING PRODUCED THEREFROM AND METHOD OF PRODUCTION THEREOF
SA07280714B1 (en) Container Closure Assembly
US6260722B1 (en) Cap and container assembly
US20060138146A1 (en) Moisture proof container
US20160130050A1 (en) Child Resistant Tube
CN109789951A (en) Improved plastic containers and container cover, carrying handle/container lever opening tool
US20130026127A1 (en) PVC-Free Seals for Twist Crowns
US20220024653A1 (en) Gasketless closure for open-top pails
US4397414A (en) Composite containers

Legal Events

Date Code Title Description
AS Assignment

Owner name: EASTMAN KODAK COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EARNHART, EDGAR G.;MCGOVERN, MICHAEL R.;REEL/FRAME:016103/0973

Effective date: 20041213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION