US20060153425A1 - Method of processing three-dimensional image in mobile device - Google Patents

Method of processing three-dimensional image in mobile device Download PDF

Info

Publication number
US20060153425A1
US20060153425A1 US11/326,839 US32683906A US2006153425A1 US 20060153425 A1 US20060153425 A1 US 20060153425A1 US 32683906 A US32683906 A US 32683906A US 2006153425 A1 US2006153425 A1 US 2006153425A1
Authority
US
United States
Prior art keywords
image
pattern
camera
tracing
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/326,839
Inventor
Tae Kim
Min Lee
Hang Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, HANG SHIN, KIM, TAE SEONG, LEE, MIN JEONG
Publication of US20060153425A1 publication Critical patent/US20060153425A1/en
Priority to US12/420,004 priority Critical patent/US8749555B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/275Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B9/00Methods or installations for drawing-off water
    • E03B9/02Hydrants; Arrangements of valves therein; Keys for hydrants
    • E03B9/08Underground hydrants
    • E03B9/10Protective plates or covers
    • A63F13/10
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/213Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/45Controlling the progress of the video game
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/60Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor
    • A63F13/65Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1087Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals comprising photodetecting means, e.g. a camera
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/40Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterised by details of platform network
    • A63F2300/406Transmission via wireless network, e.g. pager or GSM
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/6045Methods for processing data by generating or executing the game program for mapping control signals received from the input arrangement into game commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/261Image signal generators with monoscopic-to-stereoscopic image conversion

Definitions

  • the present invention relates to a processing method of interfacing a three-dimensional (3D) image and a camera image in a mobile device.
  • Cameras with several hundred thousand to several million pixels tend to be built in mobile devices that are represented by a mobile phone.
  • Various kinds of mobile devices with various functions are commercially available. Examples of the mobile devices are mobile phone, personal digital assistant (PDA), smart phone, portable multimedia player (PMP), and MP3 player.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • MP3 player MP3 player
  • the mobile devices and the applications support a function of acquiring photograph or moving picture, a function of transmitting the acquired photograph or moving picture to a PC or another mobile device and storing it, a function of editing and searching the photograph or moving picture, and a function of transmitting the photograph or moving picture to a personal homepage or Blog in Internet site and displaying it.
  • an image processing makes it possible to acquire an image by means of the camera and display a 2D or 3D graphic image.
  • a representative application using the 3D display function is a 3D game.
  • the 3D game has been introduced as a new trend in game markets of the mobile device, which have been limited to two-dimension.
  • the interface of an existing camera and a 3D image system has been performed in a PC or arcade game system. For example, a motion of a gamer (user) is traced by an inter-frame image flow in a user image inputted by the camera. A response suitable for the 3D graphic image based on an estimation result of the user's motion is applied. In this manner, the user can enjoy the 3D game.
  • the interface between the camera image and the 3D graphic engine requires complicated operations, including an analysis of an image in each frame, a calculation and matching of the motion, and so on. For this reason, it is very inefficient to directly apply the interface system to the mobile device having a relatively low performance processor compared with the PC or arcade game system.
  • a 3D display having a relatively large amount of calculation compared with a 2D image a real-time display and interaction cannot be secured and thus the application may be greatly limited.
  • the present invention is directed to a method of processing a 3D image in a mobile device that substantially obviate one or more problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide a method of processing a 3D image in a mobile device, capable of interfacing a camera image and a 3D graphic engine and securing a real-time operation.
  • Another object of the present invention is to provide a processing method of interfacing a 3D image and a camera image.
  • a specific image pattern defined by a user is recognized, the recognized pattern is traced within an image, and a camera image and a 3D image are interfaced based on the tracing result.
  • a 3D object is animated and rendered using a 3D graphic engine. The rendered image of the 3D object and the camera image are integrated and displayed.
  • a further object of the present invention is to provide a method of processing a 3D image in a mobile device, in which an image acquired by a camera can be used as a kind of a user interface and an interaction can be executed through various motions in front of the camera by using the camera as the user interface. Also, an interaction with the contents within the mobile device can be executed by the motion itself of the mobile device.
  • a method of processing a 3D image in a mobile device the mobile device having a camera and a 3D graphic engine, the method including: recognizing a specific pattern designated by a user based on images inputted by the camera, and setting the recognized pattern as a defined pattern; tracing the defined pattern among the images inputted by the camera, and interfacing the pattern and a 3D image; and performing an animation process followed by a response of a corresponding 3D image in accordance with the tracing result of the pattern interfaced with the 3D image, integrating the processed image and the camera image, and displaying the integrated image.
  • a method of processing an interface between a camera image and a graphic image including: setting a specific pattern of an image as an image-based interface tool; recognizing the set pattern among images inputted by a camera, and tracing the recognized pattern; generating a response of a graphic image in accordance with the pattern tracing; and combining the traced pattern and the responding graphic image, and displaying the combined image.
  • a system that can allow the interaction through the interface of the camera and the 3D graphic engine that are built in the mobile device is implemented.
  • the present invention can be applied to the 3D graphic based game of the mobile device.
  • the camera By using the camera as a new interface in addition to a 2D or 3D game based on the exiting key manipulation, a user's motion is inputted through the camera. Therefore, an interaction with a 3D object on the screen can be undergone in an interface environment of a real space and a virtual space.
  • an operation of directly caressing or punishing a 3D object can be possible.
  • An operation of taking a picture with a pet object can be possible.
  • the camera image can be used as a kind of a user interface, an interaction can be executed through various motions in front of the camera. Also, an interaction with the contents within the mobile device can be executed by the motion itself of the mobile device.
  • the camera image can be used as various user interfaces through a combination of an existing key, a fingerprint sensor, a gravity sensor, and a joystick.
  • FIG. 1 is a block diagram of a mobile device according to the present invention.
  • FIG. 2 is a flowchart illustrating a method of interfacing a camera image and a 3D graphic engine according to the present invention
  • FIG. 3 is a view of exemplary images given by a method of defining a pattern according to the present invention.
  • FIG. 4 is a view of exemplary images for explaining a method of tracing a motion of a pattern defined according to the present invention
  • FIG. 5 is a view of exemplary images for explaining a method of testing an intersection between a rendered region of a 3D object and a pattern region;
  • FIG. 6 is a view of exemplary images of each operation when the camera image and the 3D graphic engine are interfaced according to the present invention.
  • FIG. 1 is a block diagram of a mobile device according to the present invention.
  • the mobile device are PDA, PDA phone, smart phone, notebook computer, and PMP, on which a camera is mounted.
  • a mobile phone with a built-in camera is illustrated as an example.
  • the mobile device includes a camera module 10 for acquiring an image, a display unit 20 for displaying an image, a processor 30 for managing a pattern recognition, a pattern tracing, and a control of an interface display with a 3D image, a 3D graphic engine 40 for processing the 3D graphic image, a memory 50 for storing data, a communication module 60 for performing a wired/wireless communication, and a user interface 70 for allowing a user to manipulate the device.
  • a camera module 10 for acquiring an image
  • a display unit 20 for displaying an image
  • a processor 30 for managing a pattern recognition, a pattern tracing, and a control of an interface display with a 3D image
  • a 3D graphic engine 40 for processing the 3D graphic image
  • a memory 50 for storing data
  • a communication module 60 for performing a wired/wireless communication
  • a user interface 70 for allowing a user to manipulate the device.
  • the camera module 10 takes an image of an object (including the user himself/herself) designated by the user, and processes the taken image and then transmits the processed image to the display unit 20 .
  • the camera image may be stored in the memory 50 or transmitted through the communication module 60 .
  • the processor 30 displays the image taken by the camera module 10 , stores it in the memory 50 , or performs a transmission-related control, and manages a signal processing and control, such as a pattern recognition, a setting, a tracing, and an interface display of the pattern for interface with a 3D graphic engine.
  • the latter function may be contained in a 3D graphic system.
  • the 3D graphic engine 40 constructs and outputs a 3D animation image and performs an animating process followed by a predetermined response corresponding to the result of a specific pattern tracing within the camera image.
  • the user interface 70 is generally a key input unit. Meanwhile, in some cases, the user interface 70 may be a fingerprint sensor, a gravity sensor, a joystick, or a touch screen.
  • FIG. 2 is a flowchart illustrating a method of interfacing a camera image and a 3D image in the mobile device with the camera module and the 3D graphic engine.
  • a specific pattern is defined in a 2D image inputted from the camera. This operation is performed for defining the specific pattern and tracing the movement of the specific pattern, instead of tracing all moving portions of the camera image.
  • the pattern recognition corresponds to an initialization operation.
  • the pattern recognition is executed when the system starts, or it is called and executed so as to re-designate the pattern when the pattern tracing fails. Also, the pattern recognition is executed when an application program level is forcedly called, for example, when the user designates a new pattern.
  • the pattern is defined using a user-oriented passive method.
  • the definition of the pattern using the user-oriented passive method is for the purpose of allowing the user to accurately define desired pattern.
  • it aims to provide flexibility such that the user can designate desired feature as a pattern.
  • the specific pattern can be defined as one of an input image S 11 , a color S 12 designated by the user, and a region.
  • an image intended to be set as the pattern is taken by the camera.
  • the color is designated
  • a color designated in a specific threshold range within the corresponding image is detected and the detected color is set as the pattern.
  • the region is inputted, the user can directly designate the region by moving a pointer within the image. This can be simply implemented by a method of setting a region by moving a specific pointer using a direction key of the user interface. Meanwhile, in a case where a touch screen is provided in the user interface, a region can be designated more easily by directly touching the corresponding region. This method can receive the user-defined pattern most correctly.
  • the mobile device In a case where the image is inputted, if the mobile device has already contained the image corresponding to the pattern in a form of the corresponding image file, a method of recognizing a pattern similar to the image designated in the given corresponding image is used.
  • the pattern is defined using these methods, and the user is allowed to approve the defined pattern, thereby setting the specific pattern.
  • the set pattern will be later traced in an integrated display state of the camera image and the 3D image. A processing for inducing the response of the 3D image according to the tracing result is performed.
  • FIG. 3 illustrates an example of the pattern recognition.
  • Two specific patterns 121 and 122 are recognized from the images 110 and 120 taken by the camera.
  • the patterns 121 and 122 show the result recognized based on the respective colors.
  • the first pattern 121 is a blue color point and the second pattern 122 is a red color point.
  • the pattern is traced after the pattern recognition.
  • the pattern recognition is to trace the recognized and set patterns 121 and 122 within the camera image S 100 in real time.
  • the patterns are traced through a motion estimation of the pattern of a next frame by referring to position information of the patterns 121 and 122 of a previous frame. A real-time tracing is possible.
  • FIG. 3 illustrates the motion tracing of the defined patterns.
  • the two defined patterns 121 and 122 within the image 120 taken by the camera are illustrated.
  • the first pattern 121 is represented as a first pattern 121 a at a new position where the first pattern 121 moves
  • the second pattern 122 is represented by a second pattern 122 a at a new position where the second pattern 122 moves.
  • an applied operation processing for example, a collision test
  • a collision test is performed on the 2D image (the camera image containing the pattern) and the 3D image. That is, while performing the interface processing of the camera image and the 3D image by using the pattern obtained from the camera image and the display result of the 3D graphic engine, a region where the 3D object is rendered on the screen is extracted, and a region where the pattern of the camera image exists is extracted. Through these processes, it is checked whether or not two regions are intersected with each other.
  • FIG. 5 illustrates an example of the collision test. Images 130 and 131 obtained before and after the collision of the traced patterns 121 and 122 and the 3D object 141 will be described with reference to FIG. 5 .
  • the operation result of the previous stage is reflected.
  • an animation responding after the collision is set. That is, when the specific patterns 121 and 122 contained in the user characters 140 collide with the 3D object 141 , an animation (variation of the object) exhibiting a specific response in the 3D object 141 is set.
  • an operation suitable for the application as well as the simple animation can be performed in an upper application.
  • the patterns 121 and 122 are mapped into both fists of the user character 140 and the patterns 121 and 122 are considered as striking the 3D object 141 .
  • the 3D object 141 may fall down or frown.
  • an operation such as increasing a score made by the user may be performed.
  • operation S 34 an application logic and a 3D animation are implemented based on the 3D data S 200 .
  • operation S 35 the 3D animation S 300 is displayed. That is, using the 3D graphic engine mounted on the mobile device, the 3D object is animated and rendered. The resulting 3D image S 300 is constructed.
  • the camera image S 100 and the 3D image S 300 are integrated. That is, the integrated image of the rendered image of the 3D object and the camera image is generated.
  • operation S 50 the integrated image of the camera image and the 3D image is displayed on the display unit (LCD).
  • operation S 60 the entire process for one frame is terminated. Then, the procedures from the pattern tracing to the displaying of the integrated image with respect to a next frame are performed.
  • FIG. 6 illustrates an example of an image processing according to the method of processing the 3D image in the mobile device.
  • the image 210 for the pattern recognition is inputted using the camera.
  • Two regions with specific colors regions where dense specific colors are expressed) are selected from the image 210 taken by the camera and are recognized as the specific patterns defined by the user.
  • the recognized patterns are illustrated.
  • the recognized pattern is combined with the 3D image. That is, as illustrated in the next image 230 , in the 3D animation game, the picture necessary for an opponent object, which is a game object, and background is constructed by combining the patterns with the user character and then is displayed.
  • the motion of the specific pattern defined by the user is traced and it is determined whether or not the specific pattern collides (intersected) with the rendered region of the 3D object.
  • the image 250 is referred when the pattern region collides with the rendered region of the 3D object is referred.
  • the 3D object responds (varies) as illustrated in the processed image 260 given after the collision. This response can be variously changed with respect to the motion of the specific pattern within the camera image according to the intension of the application program.
  • the process of recognizing the specific pattern, tracing the recognized pattern, and assigning the specific response according to the tracing result can be applied to the user interface as well as the 3D graphic engine interface.
  • the camera image is used as a kind of user interface, such as key, fingerprint sensor, gravity sensor, and joystick.
  • the present invention can provide the applicable utilization of the user interface through the combination with the existing interface.
  • the specific content can be selected using the direction key (or numerical key) and an enter key.
  • the existing interface can be replaced by selecting the content corresponding to the position where the specific pattern moves within the camera image.
  • the displaying of the integrated image of the content list image and the pattern image can be simply implemented by applying the method of displaying the integrated image of the camera image and the 3D image. That is, it can be considered that a mouse-cursor concept is replaced with a camera image-pattern recognition and trace concept.

Abstract

A processing method of interfacing a 3D image and a camera image is provided. In the processing method, a specific image pattern defined by a user is recognized, the recognized pattern is traced within an image, and a camera image and a 3D image are interfaced based on the tracing result. A 3D object is animated and rendered using a 3D graphic engine. The rendered image of the 3D object and the camera image are integrated and displayed.

Description

  • Pursuant to 35 U.S.C. § 119(a), this application claims the benefit of earlier filing date and right of priority to Korean Patent Application No(s). 10-2005-0001843 filed on Jan. 7, 2005, which is hereby incorporated by reference herein in their entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a processing method of interfacing a three-dimensional (3D) image and a camera image in a mobile device.
  • 2. Description of the Related Art
  • Cameras with several hundred thousand to several million pixels tend to be built in mobile devices that are represented by a mobile phone. Various kinds of mobile devices with various functions are commercially available. Examples of the mobile devices are mobile phone, personal digital assistant (PDA), smart phone, portable multimedia player (PMP), and MP3 player. Using the cameras built in the mobile devices, an image can be directly acquired and the acquired image can be stored in the device and can also be transmitted or edited.
  • In mobile device markets, generalization of various kinds of mobile devices with built-in cameras is in progress. At the same time, various applications using the mobile devices have been developed and released. The mobile devices and the applications support a function of acquiring photograph or moving picture, a function of transmitting the acquired photograph or moving picture to a PC or another mobile device and storing it, a function of editing and searching the photograph or moving picture, and a function of transmitting the photograph or moving picture to a personal homepage or Blog in Internet site and displaying it.
  • In the mobile device, an image processing makes it possible to acquire an image by means of the camera and display a 2D or 3D graphic image. A representative application using the 3D display function is a 3D game. The 3D game has been introduced as a new trend in game markets of the mobile device, which have been limited to two-dimension.
  • The interface of an existing camera and a 3D image system has been performed in a PC or arcade game system. For example, a motion of a gamer (user) is traced by an inter-frame image flow in a user image inputted by the camera. A response suitable for the 3D graphic image based on an estimation result of the user's motion is applied. In this manner, the user can enjoy the 3D game.
  • In the existing PC or arcade game system, the interface between the camera image and the 3D graphic engine requires complicated operations, including an analysis of an image in each frame, a calculation and matching of the motion, and so on. For this reason, it is very inefficient to directly apply the interface system to the mobile device having a relatively low performance processor compared with the PC or arcade game system. In addition, if concurrently using a 3D display having a relatively large amount of calculation compared with a 2D image, a real-time display and interaction cannot be secured and thus the application may be greatly limited.
  • In order to use the interface system in the mobile device, a solution having a simpler and faster response has to be developed. Therefore, there is a demand for a processing system that can interface the camera image and the 3D graphic engine in the mobile device having the camera and the 3D graphic engine mounted thereon.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a method of processing a 3D image in a mobile device that substantially obviate one or more problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide a method of processing a 3D image in a mobile device, capable of interfacing a camera image and a 3D graphic engine and securing a real-time operation.
  • Another object of the present invention is to provide a processing method of interfacing a 3D image and a camera image. In the processing method, a specific image pattern defined by a user is recognized, the recognized pattern is traced within an image, and a camera image and a 3D image are interfaced based on the tracing result. A 3D object is animated and rendered using a 3D graphic engine. The rendered image of the 3D object and the camera image are integrated and displayed.
  • A further object of the present invention is to provide a method of processing a 3D image in a mobile device, in which an image acquired by a camera can be used as a kind of a user interface and an interaction can be executed through various motions in front of the camera by using the camera as the user interface. Also, an interaction with the contents within the mobile device can be executed by the motion itself of the mobile device.
  • Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, there is provided a method of processing a 3D image in a mobile device, the mobile device having a camera and a 3D graphic engine, the method including: recognizing a specific pattern designated by a user based on images inputted by the camera, and setting the recognized pattern as a defined pattern; tracing the defined pattern among the images inputted by the camera, and interfacing the pattern and a 3D image; and performing an animation process followed by a response of a corresponding 3D image in accordance with the tracing result of the pattern interfaced with the 3D image, integrating the processed image and the camera image, and displaying the integrated image.
  • In another aspect of the present invention, there is provided a method of processing an interface between a camera image and a graphic image, including: setting a specific pattern of an image as an image-based interface tool; recognizing the set pattern among images inputted by a camera, and tracing the recognized pattern; generating a response of a graphic image in accordance with the pattern tracing; and combining the traced pattern and the responding graphic image, and displaying the combined image.
  • A system that can allow the interaction through the interface of the camera and the 3D graphic engine that are built in the mobile device is implemented. The present invention can be applied to the 3D graphic based game of the mobile device. By using the camera as a new interface in addition to a 2D or 3D game based on the exiting key manipulation, a user's motion is inputted through the camera. Therefore, an interaction with a 3D object on the screen can be undergone in an interface environment of a real space and a virtual space.
  • Also, in an application such as a pet avatar, an operation of directly caressing or punishing a 3D object can be possible. An operation of taking a picture with a pet object can be possible.
  • Further, since the camera image can be used as a kind of a user interface, an interaction can be executed through various motions in front of the camera. Also, an interaction with the contents within the mobile device can be executed by the motion itself of the mobile device. The camera image can be used as various user interfaces through a combination of an existing key, a fingerprint sensor, a gravity sensor, and a joystick.
  • It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
  • FIG. 1 is a block diagram of a mobile device according to the present invention;
  • FIG. 2 is a flowchart illustrating a method of interfacing a camera image and a 3D graphic engine according to the present invention;
  • FIG. 3 is a view of exemplary images given by a method of defining a pattern according to the present invention;
  • FIG. 4 is a view of exemplary images for explaining a method of tracing a motion of a pattern defined according to the present invention;
  • FIG. 5 is a view of exemplary images for explaining a method of testing an intersection between a rendered region of a 3D object and a pattern region; and
  • FIG. 6 is a view of exemplary images of each operation when the camera image and the 3D graphic engine are interfaced according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • Hereinafter, a method of processing a 3D image in a mobile device according to the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 1 is a block diagram of a mobile device according to the present invention. Examples of the mobile device are PDA, PDA phone, smart phone, notebook computer, and PMP, on which a camera is mounted. In FIG. 1, a mobile phone with a built-in camera is illustrated as an example.
  • Referring to FIG. 1, the mobile device according to the present invention includes a camera module 10 for acquiring an image, a display unit 20 for displaying an image, a processor 30 for managing a pattern recognition, a pattern tracing, and a control of an interface display with a 3D image, a 3D graphic engine 40 for processing the 3D graphic image, a memory 50 for storing data, a communication module 60 for performing a wired/wireless communication, and a user interface 70 for allowing a user to manipulate the device.
  • The camera module 10 takes an image of an object (including the user himself/herself) designated by the user, and processes the taken image and then transmits the processed image to the display unit 20. Under control of the processor 30, the camera image may be stored in the memory 50 or transmitted through the communication module 60. The processor 30 displays the image taken by the camera module 10, stores it in the memory 50, or performs a transmission-related control, and manages a signal processing and control, such as a pattern recognition, a setting, a tracing, and an interface display of the pattern for interface with a 3D graphic engine. The latter function may be contained in a 3D graphic system. The 3D graphic engine 40 constructs and outputs a 3D animation image and performs an animating process followed by a predetermined response corresponding to the result of a specific pattern tracing within the camera image. The user interface 70 is generally a key input unit. Meanwhile, in some cases, the user interface 70 may be a fingerprint sensor, a gravity sensor, a joystick, or a touch screen.
  • FIG. 2 is a flowchart illustrating a method of interfacing a camera image and a 3D image in the mobile device with the camera module and the 3D graphic engine.
  • In operation S10, a specific pattern is defined in a 2D image inputted from the camera. This operation is performed for defining the specific pattern and tracing the movement of the specific pattern, instead of tracing all moving portions of the camera image.
  • In an entire system, the pattern recognition corresponds to an initialization operation. The pattern recognition is executed when the system starts, or it is called and executed so as to re-designate the pattern when the pattern tracing fails. Also, the pattern recognition is executed when an application program level is forcedly called, for example, when the user designates a new pattern.
  • In this embodiment, the pattern is defined using a user-oriented passive method. The definition of the pattern using the user-oriented passive method is for the purpose of allowing the user to accurately define desired pattern. In addition, it aims to provide flexibility such that the user can designate desired feature as a pattern.
  • In this embodiment, the specific pattern can be defined as one of an input image S11, a color S12 designated by the user, and a region. First, an image intended to be set as the pattern is taken by the camera. Then, if the color is designated, a color designated in a specific threshold range within the corresponding image is detected and the detected color is set as the pattern. If the region is inputted, the user can directly designate the region by moving a pointer within the image. This can be simply implemented by a method of setting a region by moving a specific pointer using a direction key of the user interface. Meanwhile, in a case where a touch screen is provided in the user interface, a region can be designated more easily by directly touching the corresponding region. This method can receive the user-defined pattern most correctly.
  • In a case where the image is inputted, if the mobile device has already contained the image corresponding to the pattern in a form of the corresponding image file, a method of recognizing a pattern similar to the image designated in the given corresponding image is used. The pattern is defined using these methods, and the user is allowed to approve the defined pattern, thereby setting the specific pattern. The set pattern will be later traced in an integrated display state of the camera image and the 3D image. A processing for inducing the response of the 3D image according to the tracing result is performed.
  • FIG. 3 illustrates an example of the pattern recognition. Two specific patterns 121 and 122 are recognized from the images 110 and 120 taken by the camera. The patterns 121 and 122 show the result recognized based on the respective colors. For example, the first pattern 121 is a blue color point and the second pattern 122 is a red color point.
  • Referring again to FIG. 2, in operations S21 and S22, the pattern is traced after the pattern recognition. The pattern recognition is to trace the recognized and set patterns 121 and 122 within the camera image S100 in real time. The patterns are traced through a motion estimation of the pattern of a next frame by referring to position information of the patterns 121 and 122 of a previous frame. A real-time tracing is possible.
  • FIG. 3 illustrates the motion tracing of the defined patterns. The two defined patterns 121 and 122 within the image 120 taken by the camera are illustrated. When the patterns 121 and 122 moves to a predetermined position, the first pattern 121 is represented as a first pattern 121 a at a new position where the first pattern 121 moves, and the second pattern 122 is represented by a second pattern 122 a at a new position where the second pattern 122 moves.
  • In operation S31, if the pattern tracing succeeds, an applied operation processing (for example, a collision test) is performed on the 2D image (the camera image containing the pattern) and the 3D image. That is, while performing the interface processing of the camera image and the 3D image by using the pattern obtained from the camera image and the display result of the 3D graphic engine, a region where the 3D object is rendered on the screen is extracted, and a region where the pattern of the camera image exists is extracted. Through these processes, it is checked whether or not two regions are intersected with each other.
  • FIG. 5 illustrates an example of the collision test. Images 130 and 131 obtained before and after the collision of the traced patterns 121 and 122 and the 3D object 141 will be described with reference to FIG. 5.
  • In both of the images 130 and 131 before and after the collision, user characters 140 containing the specific patterns 121 and 122 by the interface processing of the camera image and the 3D image appear in an animation form, and the corresponding 3D objects 141 also appear. As illustrated in FIG. 5, in the image 131 after the collision, the first pattern 121 of the two patterns 121 and 122 is intersected with the region where the 3D object 141 is rendered.
  • In operation S32, the operation result of the previous stage is reflected. For example, an animation responding after the collision is set. That is, when the specific patterns 121 and 122 contained in the user characters 140 collide with the 3D object 141, an animation (variation of the object) exhibiting a specific response in the 3D object 141 is set. In this case, an operation suitable for the application as well as the simple animation can be performed in an upper application. For example, in the case of a fighting game between the user character 140 and the 3D object 141, the patterns 121 and 122 are mapped into both fists of the user character 140 and the patterns 121 and 122 are considered as striking the 3D object 141. The 3D object 141 may fall down or frown. In addition, an operation such as increasing a score made by the user may be performed.
  • In operation S34, an application logic and a 3D animation are implemented based on the 3D data S200. In operation S35, the 3D animation S300 is displayed. That is, using the 3D graphic engine mounted on the mobile device, the 3D object is animated and rendered. The resulting 3D image S300 is constructed.
  • In operation S40, the camera image S100 and the 3D image S300 are integrated. That is, the integrated image of the rendered image of the 3D object and the camera image is generated.
  • In operation S50, the integrated image of the camera image and the 3D image is displayed on the display unit (LCD). In operation S60, the entire process for one frame is terminated. Then, the procedures from the pattern tracing to the displaying of the integrated image with respect to a next frame are performed.
  • FIG. 6 illustrates an example of an image processing according to the method of processing the 3D image in the mobile device.
  • As described above, the image 210 for the pattern recognition is inputted using the camera. Two regions with specific colors (regions where dense specific colors are expressed) are selected from the image 210 taken by the camera and are recognized as the specific patterns defined by the user. In the next image 220, the recognized patterns are illustrated. The recognized pattern is combined with the 3D image. That is, as illustrated in the next image 230, in the 3D animation game, the picture necessary for an opponent object, which is a game object, and background is constructed by combining the patterns with the user character and then is displayed.
  • Next, the motion of the specific pattern defined by the user is traced and it is determined whether or not the specific pattern collides (intersected) with the rendered region of the 3D object. The image 250 is referred when the pattern region collides with the rendered region of the 3D object is referred. In this manner, when the pattern region collides with the rendered region of the 3D object, the 3D object responds (varies) as illustrated in the processed image 260 given after the collision. This response can be variously changed with respect to the motion of the specific pattern within the camera image according to the intension of the application program.
  • In the method of processing the 3D image in the mobile device according to the present invention, the process of recognizing the specific pattern, tracing the recognized pattern, and assigning the specific response according to the tracing result can be applied to the user interface as well as the 3D graphic engine interface.
  • That is, the camera image is used as a kind of user interface, such as key, fingerprint sensor, gravity sensor, and joystick. The present invention can provide the applicable utilization of the user interface through the combination with the existing interface.
  • For example, it is assumed that one specific pattern is recognized and set, and several image content lists are displayed. In this case, the method of selecting one content from the image content lists will be described below. In the case of the existing key input interface, the specific content can be selected using the direction key (or numerical key) and an enter key. However, according to the present invention, the existing interface can be replaced by selecting the content corresponding to the position where the specific pattern moves within the camera image.
  • For this purpose, the displaying of the integrated image of the content list image and the pattern image can be simply implemented by applying the method of displaying the integrated image of the camera image and the 3D image. That is, it can be considered that a mouse-cursor concept is replaced with a camera image-pattern recognition and trace concept.
  • The above description of the interface is merely exemplary, and various interface methods based on the camera image can be implemented based on the method of processing the 3D image in the mobile device.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalent.

Claims (20)

1. A method of processing a 3D image in a mobile device, the mobile device having a camera and a 3D graphic engine, the method comprising:
recognizing a specific pattern designated by a user based on images inputted by the camera, and setting the recognized pattern as a defined pattern;
tracing the defined pattern among the images inputted by the camera, and interfacing the pattern and a 3D image; and
performing an animation process followed by a response of a corresponding 3D image in accordance with the tracing result of the pattern interfaced with the 3D image, integrating the processed image and the camera image, and displaying the integrated image.
2. The method according to claim 1, wherein the mobile device includes mobile phone, PDA, PDA phone, smart phone, notebook computer, and PMP, all of which has a camera mounted thereon.
3. The method according to claim 1, wherein the tracing result of the defined pattern within the camera image is used as a user interface.
4. The method according to claim 1, wherein the specific pattern is manually designated by the user or designated by a previously stored image file.
5. The method according to claim 1, wherein the specific pattern is selected in accordance with a color, a region, or an inputted image.
6. The method according to claim 1, wherein the specific pattern is designated from the previously stored image file; regions similar to the image file are detected within the camera image and are set as candidate patterns; and the user approves the desired pattern of the detected candidate patterns.
7. The method according to claim 1, wherein the response of an animation image followed by the tracing of the specific pattern is based on a collision process between the specific pattern within the camera and a 3D object.
8. The method according to claim 1, wherein the interface between the camera image and the 3D image includes:
extracting a region where a 3D object is rendered;
extracting a region where the pattern of the camera image exists; and
checking whether or not the two regions are intersected with each other.
9. The method according to claim 1, wherein the recognition and setting of the specific pattern are executed when a system starts, are called and executed for re-designating the pattern when the pattern tracing fails, and are executed when there is a forced call of an application program level, including a designation of a new pattern by the user.
10. The method according to claim 1, wherein the pattern is traced in real time by referring to a position information of the pattern in a previous frame of the camera image and estimating a motion of a pattern of a next frame.
11. A method of processing an interface between a camera image and a graphic image, comprising:
setting a specific pattern of an image as an image-based interface tool;
recognizing the set pattern among images inputted by a camera, and tracing the recognized pattern;
generating a response of a graphic image in accordance with the pattern tracing; and
combining the traced pattern and the responding graphic image, and displaying the combined image.
12. The method according to claim 11, wherein the specific pattern is set among image acquired by the camera.
13. The method according to claim 11, wherein characteristic of the specific pattern is manually designated by a user.
14. The method according to claim 11, wherein characteristic of the specific pattern is designated by setting a color of the pattern, or setting a region of the pattern, or selecting a previously stored image.
15. The method according to claim 11, wherein the setting of the specific pattern includes:
designating an image for the setting of the pattern;
detecting a pattern similar to the designated image within images acquired by the camera; and
setting the pattern selected among the detected candidate patterns by the user.
16. The method according to claim 11, wherein a specific operation of the device is carried out from the response of the graphic image according to the pattern tracing.
17. The method according to claim 11, wherein the response of the graphic image in accordance with the pattern tracing is an animation effect.
18. The method according to claim 11, wherein the set pattern is mapped into a specific object within the graphic image, the mapped image is combined with the graphic image in real time, and the combined image is displayed.
19. The method according to claim 11, wherein the generation of the response of the graphic image in accordance with the pattern tracing includes:
extracting a region where a specific object is rendered within the graphic image;
extracting a region where the set pattern of the camera image exists; and
generating the response of the graphic image according to whether the two regions are intersected with each other.
20. The method according to claim 11, wherein the interfaced image is a 2D camera image and a 3D graphic image.
US11/326,839 2005-01-07 2006-01-06 Method of processing three-dimensional image in mobile device Abandoned US20060153425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/420,004 US8749555B2 (en) 2005-01-07 2009-04-07 Method of processing three-dimensional image in mobile device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050001843A KR100659888B1 (en) 2005-01-07 2005-01-07 3d video processing system of mobile device
KR10-2005-0001843 2005-01-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/420,004 Continuation US8749555B2 (en) 2005-01-07 2009-04-07 Method of processing three-dimensional image in mobile device

Publications (1)

Publication Number Publication Date
US20060153425A1 true US20060153425A1 (en) 2006-07-13

Family

ID=36647747

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/326,839 Abandoned US20060153425A1 (en) 2005-01-07 2006-01-06 Method of processing three-dimensional image in mobile device
US12/420,004 Expired - Fee Related US8749555B2 (en) 2005-01-07 2009-04-07 Method of processing three-dimensional image in mobile device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/420,004 Expired - Fee Related US8749555B2 (en) 2005-01-07 2009-04-07 Method of processing three-dimensional image in mobile device

Country Status (3)

Country Link
US (2) US20060153425A1 (en)
KR (1) KR100659888B1 (en)
WO (1) WO2006073287A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080215973A1 (en) * 2007-03-01 2008-09-04 Sony Computer Entertainment America Inc Avatar customization
US20120127282A1 (en) * 2009-04-24 2012-05-24 Lg Electronics Inc. Video display apparatus and operating method therefor
US20130278727A1 (en) * 2010-11-24 2013-10-24 Stergen High-Tech Ltd. Method and system for creating three-dimensional viewable video from a single video stream

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924687B1 (en) * 2007-12-15 2009-11-03 한국전자통신연구원 System and method for producing locomotion animation by using riding motion
US8477139B2 (en) 2008-06-09 2013-07-02 Apple Inc. Touch screen device, method, and graphical user interface for manipulating three-dimensional virtual objects
KR101627214B1 (en) * 2009-11-12 2016-06-03 엘지전자 주식회사 Image Display Device and Operating Method for the Same
KR101799270B1 (en) * 2010-12-29 2017-11-21 엘지전자 주식회사 Mobile terminal and Method for recognizing touch thereof
US8797620B2 (en) 2011-12-20 2014-08-05 Ergophos, Llc Autostereoscopic display assembly based on digital semiplanar holography
KR20170076471A (en) 2015-12-24 2017-07-04 삼성전자주식회사 Deforming display apparatus and method for displaying image by using the same
CN107481310B (en) * 2017-08-14 2020-05-08 迈吉客科技(北京)有限公司 Image rendering method and system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703512A (en) * 1984-07-31 1987-10-27 Omron Tateisi Electronics Co. Pattern outline tracking method and apparatus
US6064749A (en) * 1996-08-02 2000-05-16 Hirota; Gentaro Hybrid tracking for augmented reality using both camera motion detection and landmark tracking
US6330356B1 (en) * 1999-09-29 2001-12-11 Rockwell Science Center Llc Dynamic visual registration of a 3-D object with a graphical model
US20020070934A1 (en) * 1997-10-27 2002-06-13 Kiyomi Sakamoto Storage medium for use with a three-dimensional map display device
US20020191862A1 (en) * 2001-03-07 2002-12-19 Ulrich Neumann Augmented-reality tool employing scen e-feature autocalibration during camera motion
US6522312B2 (en) * 1997-09-01 2003-02-18 Canon Kabushiki Kaisha Apparatus for presenting mixed reality shared among operators
US20040071346A1 (en) * 2002-07-10 2004-04-15 Northrop Grumman Corporation System and method for template matching of candidates within a two-dimensional image
US20040136567A1 (en) * 2002-10-22 2004-07-15 Billinghurst Mark N. Tracking a surface in a 3-dimensional scene using natural visual features of the surface
US20050001852A1 (en) * 2003-07-03 2005-01-06 Dengler John D. System and method for inserting content into an image sequence
US6937255B2 (en) * 2003-03-20 2005-08-30 Tama-Tlo, Ltd. Imaging apparatus and method of the same
US6951515B2 (en) * 1999-06-11 2005-10-04 Canon Kabushiki Kaisha Game apparatus for mixed reality space, image processing method thereof, and program storage medium
US7148917B2 (en) * 2001-02-01 2006-12-12 Motorola Inc. Method and apparatus for indicating a location of a person with respect to a video capturing volume of a camera

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053704A (en) * 1972-11-17 1977-10-11 Smith-Schreyer & Assoc., Inc. Plug and kit of parts including same for use in forming a moisture-proof cable splice enclosure
US4843568A (en) * 1986-04-11 1989-06-27 Krueger Myron W Real time perception of and response to the actions of an unencumbered participant/user
US5261041A (en) * 1990-12-28 1993-11-09 Apple Computer, Inc. Computer controlled animation system based on definitional animated objects and methods of manipulating same
JP3301369B2 (en) * 1992-09-30 2002-07-15 カシオ計算機株式会社 Imaging device and imaging system
JP2552427B2 (en) * 1993-12-28 1996-11-13 コナミ株式会社 Tv play system
WO1996034332A1 (en) * 1995-04-28 1996-10-31 Matsushita Electric Industrial Co., Ltd. Interface device
JPH08305892A (en) * 1995-05-11 1996-11-22 Sega Enterp Ltd Image processor and game device equipped with the same
US5682196A (en) * 1995-06-22 1997-10-28 Actv, Inc. Three-dimensional (3D) video presentation system providing interactive 3D presentation with personalized audio responses for multiple viewers
JP3570813B2 (en) * 1996-03-07 2004-09-29 株式会社ナムコ Game device
JP4489849B2 (en) * 1996-10-02 2010-06-23 株式会社ニコン Image display control device and recording medium
JP3372832B2 (en) * 1997-07-25 2003-02-04 コナミ株式会社 GAME DEVICE, GAME IMAGE PROCESSING METHOD, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING GAME IMAGE PROCESSING PROGRAM
KR100331827B1 (en) 1999-08-24 2002-04-09 구자홍 Method for realizing reservation guidance/reservation conviction screen of digital TV
KR100641435B1 (en) 2000-01-12 2006-10-31 엘지전자 주식회사 Method for program preengagement of digital broadcasting receiver
US7227526B2 (en) * 2000-07-24 2007-06-05 Gesturetek, Inc. Video-based image control system
JP4027031B2 (en) * 2000-11-16 2007-12-26 株式会社コナミデジタルエンタテインメント Competitive 3D video game device
US20030048280A1 (en) * 2001-09-12 2003-03-13 Russell Ryan S. Interactive environment using computer vision and touchscreens
EP1345179A3 (en) * 2002-03-13 2004-01-21 Matsushita Electric Industrial Co., Ltd. Method and apparatus for computer graphics animation
JP3865663B2 (en) * 2002-07-18 2007-01-10 新世代株式会社 Boxing game system
KR100491432B1 (en) * 2002-11-06 2005-05-25 주식회사 유씨티코리아 Interactive exhibition system using multi-modal user interface
US7483026B2 (en) * 2003-01-17 2009-01-27 Fischer John G Method of displaying product and service performance data
US20050071306A1 (en) * 2003-02-05 2005-03-31 Paul Kruszewski Method and system for on-screen animation of digital objects or characters
JP4551631B2 (en) 2003-05-07 2010-09-29 ソニー株式会社 Program recording reservation method and program recording reservation device
KR100652632B1 (en) * 2004-04-30 2006-12-06 엘지전자 주식회사 A apparatus and method for changing direction in mobile communication terminal with digital camera
KR100599158B1 (en) 2004-09-13 2006-07-12 삼성전자주식회사 Broadcasting receive apparatus having quick search function and method thereof
KR100703713B1 (en) * 2004-10-05 2007-04-05 한국전자통신연구원 3D mobile devices capable offer 3D image acquisition and display

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703512A (en) * 1984-07-31 1987-10-27 Omron Tateisi Electronics Co. Pattern outline tracking method and apparatus
US6064749A (en) * 1996-08-02 2000-05-16 Hirota; Gentaro Hybrid tracking for augmented reality using both camera motion detection and landmark tracking
US6522312B2 (en) * 1997-09-01 2003-02-18 Canon Kabushiki Kaisha Apparatus for presenting mixed reality shared among operators
US20020070934A1 (en) * 1997-10-27 2002-06-13 Kiyomi Sakamoto Storage medium for use with a three-dimensional map display device
US6951515B2 (en) * 1999-06-11 2005-10-04 Canon Kabushiki Kaisha Game apparatus for mixed reality space, image processing method thereof, and program storage medium
US6330356B1 (en) * 1999-09-29 2001-12-11 Rockwell Science Center Llc Dynamic visual registration of a 3-D object with a graphical model
US7148917B2 (en) * 2001-02-01 2006-12-12 Motorola Inc. Method and apparatus for indicating a location of a person with respect to a video capturing volume of a camera
US20020191862A1 (en) * 2001-03-07 2002-12-19 Ulrich Neumann Augmented-reality tool employing scen e-feature autocalibration during camera motion
US20040071346A1 (en) * 2002-07-10 2004-04-15 Northrop Grumman Corporation System and method for template matching of candidates within a two-dimensional image
US20040136567A1 (en) * 2002-10-22 2004-07-15 Billinghurst Mark N. Tracking a surface in a 3-dimensional scene using natural visual features of the surface
US6937255B2 (en) * 2003-03-20 2005-08-30 Tama-Tlo, Ltd. Imaging apparatus and method of the same
US20050001852A1 (en) * 2003-07-03 2005-01-06 Dengler John D. System and method for inserting content into an image sequence

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080215973A1 (en) * 2007-03-01 2008-09-04 Sony Computer Entertainment America Inc Avatar customization
US20080215972A1 (en) * 2007-03-01 2008-09-04 Sony Computer Entertainment America Inc. Mapping user emotional state to avatar in a virtual world
US8788951B2 (en) 2007-03-01 2014-07-22 Sony Computer Entertainment America Llc Avatar customization
US20120127282A1 (en) * 2009-04-24 2012-05-24 Lg Electronics Inc. Video display apparatus and operating method therefor
US9191651B2 (en) * 2009-04-24 2015-11-17 Lg Electronics Inc. Video display apparatus and operating method therefor
US20130278727A1 (en) * 2010-11-24 2013-10-24 Stergen High-Tech Ltd. Method and system for creating three-dimensional viewable video from a single video stream

Also Published As

Publication number Publication date
US8749555B2 (en) 2014-06-10
US20090195539A1 (en) 2009-08-06
KR100659888B1 (en) 2006-12-20
WO2006073287A1 (en) 2006-07-13
KR20060081498A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
US8749555B2 (en) Method of processing three-dimensional image in mobile device
CN107204031B (en) Information display method and device
Memo et al. Head-mounted gesture controlled interface for human-computer interaction
CA3104243C (en) Real-time animation generation using machine learning
US9600078B2 (en) Method and system enabling natural user interface gestures with an electronic system
CN102915112B (en) For the system and method for closely motion tracking
CN110716645A (en) Augmented reality data presentation method and device, electronic equipment and storage medium
CN105279795B (en) Augmented reality system based on 3D marker
CN110622219B (en) Interactive augmented reality
Bai et al. Freeze view touch and finger gesture based interaction methods for handheld augmented reality interfaces
CN104081307A (en) Image processing apparatus, image processing method, and program
CN112598769B (en) Special effect rendering method, device, electronic equipment and computer readable storage medium
CN109448050B (en) Method for determining position of target point and terminal
CN110942479A (en) Virtual object control method, storage medium, and electronic device
CN106536004B (en) enhanced gaming platform
US20230177755A1 (en) Predicting facial expressions using character motion states
CN113986093A (en) Interaction method and related device
CN105468249B (en) Intelligent interaction system and its control method
Hansen et al. Use your head: exploring face tracking for mobile interaction
CN111651054A (en) Sound effect control method and device, electronic equipment and storage medium
CN116095221B (en) Frame rate adjusting method in game and related device
CN114546103A (en) Operation method through gestures in augmented reality and head-mounted display system
CN109597480A (en) Man-machine interaction method, device, electronic equipment and computer readable storage medium
Bai Mobile augmented reality: Free-hand gesture-based interaction
JP7373090B1 (en) Information processing system, information processing device, program and information processing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, TAE SEONG;LEE, MIN JEONG;CHO, HANG SHIN;REEL/FRAME:017451/0491

Effective date: 20060103

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION