US20060162365A1 - Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel - Google Patents

Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel Download PDF

Info

Publication number
US20060162365A1
US20060162365A1 US11/256,007 US25600706A US2006162365A1 US 20060162365 A1 US20060162365 A1 US 20060162365A1 US 25600706 A US25600706 A US 25600706A US 2006162365 A1 US2006162365 A1 US 2006162365A1
Authority
US
United States
Prior art keywords
liquid
semi
cavity
toroidal
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/256,007
Inventor
Triem Hoang
Michael Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/256,007 priority Critical patent/US20060162365A1/en
Publication of US20060162365A1 publication Critical patent/US20060162365A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • H01L23/4735Jet impingement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/021Evaporators in which refrigerant is sprayed on a surface to be cooled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • This invention relates to cooling electronics, specifically to spray-cooling of two-phase fluid on a heated surface contained within a conventional refrigeration loop.
  • the problem addressed in this invention is removal of high thermal dissipation flux from electronic devices such as amplifier gate arrays, laser diodes, etc.
  • Heat flux from electronics is now in the range of 100 to 1,000 Watts per square centimeter (W/cm 2 ).
  • Thermal literature refers to this as the high-flux range, and ultra-high flux being from 10 3 to 10 5 W/cm 2 and describes a number of ways to remove the heat. If the heated surface is in the interior of an electronics package it can be removed only by circulation of a fluid against the heated surface.
  • Fluids commonly available for this are air, water and fluorochemicals (generally called “refrigerants”, although they may be used in high temperature applications), and the means of circulation can be natural convection, single-phase forced (mechanically pumped) convection, and boiling (2-phase pumped flow).
  • the heat transfer coefficient W/cm 2 -C defines the rate of heat removal from a surface for a given temperature difference between the surface and the cooling liquid, and is highly dependant on the type of fluid and the means of circulation.
  • Air is a poor choice for any type of circulation because of its low mass and low thermal conductivity. Water will have a coefficient about an order of magnitude greater than a refrigerant.
  • Natural convection with water reaches only about 0.1 W/cm 2 -C, so this process cannot be considered for use with a refrigerant for high flux needs.
  • refrigerants reach about 1 W/cm 2 -C and water 10 W/cm 2 -C
  • boiling heat transfer refrigerants reach about 10 W/cm 2 -C and water over 100 W/cm 2 -C.
  • water would require a temperature difference of 100C to carry away 1 kW/cm 2 , limiting the practical approach in most cases to boiling heat transfer.
  • key advantage of phase change flow is that only a modest increase in heated surface temperature results in a large increase in heat flux, and in certain situations such as freezing environments only a refrigerant can be used in the two-phase system.
  • phase change cooling schemes there are several phase change cooling schemes available: micro- and mini-channel cooling, jet impingement cooling and spray cooling.
  • CHF critical heat flux
  • Micro-channel and mini-channel refer to flow devices having hydraulic diameters of 10 to several hundred micro-meters, and one to a few millimeters, respectively.
  • the channels are rectangular grooves cut in a metal plate on which the thermally dissipating element is mounted.
  • High heat transfer coefficients inversely proportional to the Reynolds Number, are achieved by the thinness of the liquid channel in laminar flow.
  • Drawbacks include the limitations of the minimum size of the hydraulic diameter necessary to avoid flow clogging, and high streamwise pressure drops that can cause flow choking as the fluid suddenly evaporates. This latter problem limits the size of the cooling device.
  • Typical values for heat transfer coefficient with refrigerant fluids are 3 to 5 W/cm 2 -C.
  • Conventional Jet impingement cooling ( FIG. 2 a ) is done by directing a stream of liquid orthogonally against a heated flat plate. Heat transfer from plate to liquid is enhanced by the thinness of the boundary layer at the jet's small area of impingement, and then by the high velocity of the liquid moving tangential for two or three jet radii along the heated surface.
  • the first is flow in a curved channel where the concave surface is heated.
  • the g-forces generated by the flow velocity on the curved heated surface tend to force bubbles to move away from the heated surface and so prevent the bubbles from blocking access of liquid to the surface.
  • Another flow regime of interest is annular flow in a pipe ( FIG. 3 ). Heat transfer texts show this can produce the highest heat transfer rates in pipe flow boiling.
  • annular flow there is a thin liquid film moving along the pipe wall, with the vapor moving down the center of the pipe at very high velocity. The high velocity of vapor relative to that of the liquid creates turbulence in the liquid film much higher than that created by flow of the liquid against the pipe wall.
  • Chu U.S. Pat. No. 6,519,151 discloses a jet impingement thermal control device consisting of a nozzle that directs a fluid to strike perpendicular to, and at the bottom center of, a (bowl-shaped) concave conic-sectioned heated surface, so the liquid flows radially outwards along the surface of the bowl and exits the apparatus in a direction generally opposite to the incoming jet ( FIG. 2 b ).
  • Several such assemblies may be located in parallel to cool a large surface.
  • the liquid film thins as it expands from the point of impact, and, combined with a high-g centrifugal force, this causes the fluid velocity to increase while the velocity in conventional flat plate jet impingement rapidly decreases by flow friction as it moves from the impact point.
  • the combination of high velocity and thin, stable liquid film in Chu's invention causes an increase in efficiency over conventional jet impingement cooling.
  • the perpendicular impact will cause momentum and velocity loss in the liquid stream as it turns a right angle to flow along the curved surface.
  • the radial velocity of the liquid is highest where it moves away in a direction perpendicular from the jet, so if there is any initial circumferential difference in film thickness there will not be sufficient time for the film to come to even thickness.
  • the extent of the radial flow is limited because eventually the flow friction overcomes the momentum in the liquid film when the film becomes very thin.
  • Hocker Application 2002/0062945 A1 shows the same concept as Chu cited above.
  • Rini et al. (U.S. Pat. No. 6,571,569) shows a design of an evaporative cooling system wherein the refrigeration expansion valve (nozzle) directs fluid directly against the flat plate having the heat dissipating elements on its opposite side.
  • This approach suffers from the same problems described above in spray cooling.
  • This patent further describes a means for a mechanical pump to force a high velocity vapor steam into the stream of liquid refrigerant to increase its velocity and cooling effectiveness. This approach adds to the weight and complexity of the cooling system.
  • Remsburg (U.S. Pat. Nos. 5,864,466 and 6,064,572) shows a conic-sectioned plate in a heat exchange apparatus.
  • the function of the curved piece is to create a themosyphon action to direct liquid flow against a heated flat plate. The flow is then convectional to that heat transfer coefficients will be very low.
  • Searight (U.S. Pat. No. 4,108,242) shows a means to inject fluid jets into a cylindrical cavity to induce swirling flow in general flow along the axis of the cavity.
  • the heated surface has a single axis of curvature so the flow is not accelerated by motion along the curved surface nor is a thin flow film created.
  • Lynch (U.S. Pat. No.
  • 4,140,302 shows a water-cooled blast-furnace tuyeres nozzle having a number of liquid jets at high speed directed against the contoured inner surface of the nozzle.
  • the jet impinges the surface at low angle to avoid momentum loss, but the curved surface shown is only to direct flow against a heated surface that is flat. Further, in this design the water passages are filled with liquid, so this arrangement does not produce a thin film liquid flow nor does the single-axis curved surface provide an acceleration of flow.
  • Bemisderfer U.S. Pat. No. 5,056,586) shows a spray system whereby the liquid is directed against cusp-shaped surfaces to increase turbulence. This does not produce a thin film nor accelerate flow.
  • Tilton (20030172669) shows transverse thin-film evaporative spray cooling.
  • the spray nozzle directs droplets down a narrow channel on whose side(s) are electronic devices to be cooled. This does not create a continuous liquid film, nor does it provide uniform cooling of the devices.
  • Niggeman (U.S. Pat. No. 4,643,250) shows a heat exchanger whereby a conical surface is used as a means to separate cryogenic liquid from vapor phase, and then to condense the vapor phase in a heat exchanger wherein the liquid phase is the heat sink. This is not possible since the two phases will be at the same temperature at the entrance to the apparatus.
  • a coolant fluid jet directed against a doubly-curved, semi toroidal surface located in a conductive plate on whose the opposite face are thermally dissipating electronic devices.
  • FIG. 1 shows a schematic of a conventional refrigeration loop cooling system that employs an evaporative cooling plate in accordance with the principles of the present invention.
  • FIG. 2 a shows prior art conventional jet impingement assemblies where a fluid jet impacts a flat plate
  • 2 b prior art where the jet impacts a concave conic section, in both cases in a direction perpendicular to the surface at the impact point.
  • FIG. 3 describes annular two-phase evaporative cooling flow in a conventional circular pipe whose geometry shall be modified for application in the present invention.
  • FIG. 4 a defines the geometry of a torus.
  • FIG. 4 b shows an elevation view of a torus with specific relations among dimensions, and 4 c , 4 d sections thereof to show how the doubly-curved surface is created.
  • FIG. 5 shows a comprehensive view of the present invention.
  • FIG. 6 a shows a cross-section view of the preferred embodiment of the two-phase cooling device invention, with an expansion valve having multiple orifices shown in detail in FIG. 6 b.
  • FIG. 7 shows a partial cross-section detail view of another design of an expansion valve formed by a continuous circumferential gap.
  • FIG. 8 shows a cross-section view of another embodiment of a two phase cooling device having no convex surface to control vapor flow.
  • FIG. 9 shows application of the invention to a rectangular slot.
  • FIG. 10 shows how circumferential segments of the toroidal surface can be arranged to absorb heat from a large, rectangular surface.
  • FIG. 11 shows a refrigeration expansion valve with a flow orifice upstream of it to increase the velocity of the fluid jet.
  • the present invention is designed to use a two-phase cooling fluid to remove high heat flux from electronics systems over a surface area that is relatively large compared with state-of-art cooling systems.
  • Electronic system designers are now seeking cooling system for thermal fluxes greater than 1 kW/cm 2 over areas of tens of square centimeters.
  • Thermal research shows the highest heat removal rate is achieved by a two-phase fluid system wherein heat dissipating devices mounted on a conductive plate evaporate a liquid directed against the opposite side of the plate. The highest flux rates are achieved with water.
  • a refrigerant although the operating temperature of the system may be above that normally thought of as refrigeration.
  • FIG. 1 is a schematic of a conventional refrigeration cycle as shown in textbooks on thermodynamics.
  • Heat from a thermally dissipating element 10 transfers to an evaporator 11 where it evaporates a liquid entering the evaporator through pipe 12 .
  • the resulting vapor is transported by differential pressure to a compressor 13 that raises both the temperature and pressure of the vapor.
  • a condenser 14 then removes heat from the vapor, forming a high pressure, subcooled liquid.
  • an expansion valve its pressure drops so that a fraction of the liquid evaporates producing a cold saturated liquid-vapor mix that flows to the evaporator 11 to complete the cycle.
  • FIG. 2 a prior art shows conventional jet impingement within an evaporator.
  • the liquid jet 20 enters the evaporator 11 through pipe 12 and vapor leaves the evaporator through pipe 24 .
  • the jet impacts the evaporator wall at very high velocity directly below the dissipating element 10 , and in a direction perpendicular to the surface of the wall. This creates a high pressure stagnation region 21 at the point of impact.
  • the flow which has now lost some momentum, turns in radial direction 22 along the flat wall, initially creating a high turbulent heat transfer coefficient that is generally proportional to the flow velocity and inversely proportional to liquid film thickness.
  • the momentum of the thinned film is overcome by flow friction that slows the flow and thickens the liquid film 23 , sharply decreasing the heat transfer coefficient.
  • the turbulence directly adjacent to the stagnation area 21 can also cause pockets of sub-stagnation pressure leading to bubble formation on the surface that can block heat transfer. Bubbles will also form on the evaporator wall where the liquid film 23 slows and thickens, producing the same effect. This blockage of liquid from the heated surface creates what is called the critical heat flux that is the limit of the heat flux that the evaporator can absorb.
  • FIG. 2 b prior art shows jet 20 impacting the bottom center 25 of a semi-spherical concave surface 26 adjacent to a dissipating element 10 .
  • the liquid behaves as described above, but the flow radially along the concave surface is very different. If the flow velocity is high enough, the force of centrifugal acceleration will cause the thinning film to overcome flow friction and accelerate, create a desirable thin, high velocity film that is shown to increase heat transfer coefficient by about 65% in single-phase flow. Eventually, however, the liquid film will become very thin and so its reduced momentum will be overcome by flow friction and the heat transfer coefficient will decrease. Since the highest radial velocity (orthogonal to the center axis of the apparatus) is at the point where the liquid film leaves the jet impact point, any substantial circumferential differences in film thickness may not have time to even out.
  • FIG. 3 is a heat transfer textbook diagram showing a flow regime called annular flow that exists in boiling heat transfer flow in circular pipes as in a powerplant.
  • the figure shows fluid flow in a pipe 30 heated along its outer surface.
  • the liquid flows as a continuous film 31 along the wall, and the vapor 32 moves at a very high velocity down the center of the liquid annulus.
  • the high velocity of the vapor relative to that of the liquid creates turbulence in the liquid film much greater than that created by the interface between pipe wall and liquid, and the heat transfer coefficient can increase one or more orders of magnitude greater than that in turbulent liquid flow.
  • the objective of the present invention is to create the annular flow effect described in FIG. 3 above, but without the problems experienced in pipe flow, on the evaporative cooling plate in a two-phase cooling system. This is achieved in the present invention by creating flow on a semi-toroidal cavity surface within an evaporator, and the creation of this surface is now explained.
  • FIG. 4 a shows a definition of a hollow torus formed by rotating a circle of radius r about a central axis 41 at radius C, with a sectional view cut by plane 42 for the general case of C>r.
  • FIG. 4 c shows a view of a semi-toroidal surface of 4 b cut by plane 43 .
  • FIG. 4 d shows a cross-section of the semi-toroidal surface in 4 c cut by plane 44 .
  • This shape can be likened to a hemispherical bowl with a central, curved cone.
  • the apex 45 of the cone lies on the plane 44 .
  • the conical surface is truncated at plane 44 .
  • the surface from the apex of the cone to the radius C is a doubly curved saddle shape, convex in the direction circumferential to the axis 41 and concave in the direction of curves extending from the apex to the outer diameter of the toroidal surface and orthogonal to the circumferential curves. Beyond radius C the curves circumferential about the axis 41 form a concave surface.
  • FIG. 5 shows an isometric view 50 of the preferred embodiment of the invention and a cross-section with arrows indicating liquid entrance and vapor exit passages from the semi-toroidal channel.
  • the concave semi-toroidal cavity surface 51 is part of a thermally conductive, cylindrical solid 52 on whose circular external end face are mounted the dissipating devices 10 to be cooled.
  • the semi-toroidal protrusion surface 53 on cylindrical body 55 is coaxial with surface 51 and the two form a channel 54 whose width may vary with distance radially from center axis of body 52 in the flow direction.
  • a refrigerant supply tube 12 is shown concentric with and sealed to cylindrical body 55 .
  • FIG. 6 a shows details of the preferred embodiment of the invention applicable to a closed loop refrigeration system.
  • the cylindrical solid 52 containing semi-toroidal cavity surface 51 blends into the cylindrical pipe 61 that forms the pressure containment vessel for this part of the two-phase cooling system.
  • Axially symmetric solid shape 55 containing semi-toroidal protrusion surface 53 is shown with a conical shape to allow smooth expansion of the vapor exiting semi-toroidal channel 54 .
  • Refrigerant supply tube 12 terminates in a number of orifices 62 spaced around the center axis of tube 12 .
  • FIG. 6 b is a detail of the nozzle exit area showing that, in operation, liquid refrigerant 63 is forced through the orifices 62 and exits the expansion valve at high velocity, so a certain fraction of liquid evaporates as the pressure drops and the liquid and vapor phases of the fluid are cooled to the same temperature.
  • the liquid jets are aimed so as to strike the semi-toroidal cavity surface 51 directly below apex 45 and tangential to the surface so that momentum and jet velocity are not lost.
  • the individual liquid films then coalesce under the Coanda effect into a continuous film 64 achieving constant circumferential thickness as they flow on the convex curved surface about the center axis of the assembly.
  • This process is aided by the very small velocity of the film in a radial direction perpendicular to the assembly's center axis in the region directly below the apex of the cone.
  • the film continues to flow and thin as it moves radially outwards from the central axis.
  • the high g-forces acting on the thinning film accelerate the flow.
  • the high centrifugal force on the liquid film also creates a pressure gradient in the liquid film, with highest pressure against the torodial surface 51 decreasing to saturation pressure at the liquid/vapor interface 65 . This biases vapor formation toward the liquid/vapor interface and forces any vapor bubble forming on surface 51 to go to interface 65 .
  • the high velocity of the vapor 66 with respect to the liquid film 65 creates very high turbulence in the liquid and so creates a very high heat transfer coefficient.
  • the centrifugal force on the liquid film prevents it from being broken up into inefficient mist flow as in annular pipe flow and further prevents an increase in pressure drop in the flow direction caused by a roughened liquid/vapor interface.
  • the vapor velocity continues to accelerate the liquid film against flow friction forces so that the flow remains turbulent even when the liquid film becomes very thin and CHF is never reached, so 100% evaporative efficiency is achieved if desired.
  • This parallel flow of vapor also allows the liquid flow to continue over very large diameters of the heat absorbing surface, without risk of exceeding critical heat flux.
  • the vapor exits the evaporator assembly through the expansion volume formed by body 55 and returns to the compressor.
  • the shape of the exit from the gap between the toroidal surfaces may be designed to use the gap's vapor exit velocity to entrain any liquid and force it to the compressor for applications such as in zero-g space environment.
  • FIG. 7 shows a detail of the expansion valve area.
  • the apex 45 of the semi-toroidal cavity surface 51 extends concentrically up into the liquid supply tube 12 so the expansion valve has the form of a very thin, circumferential gap 71 .
  • the semi-toroidal protrusion surface 53 is shaped at the interface with the end of the supply tube 12 to form a step expansion 72 of the semi-toroidal channel 54 . Since the liquid flow is already in a high-g mode at this point, the vapor of expansion forms on the top of the liquid film as shown in FIG. 6 a and the heated surface remains covered with liquid from the apex point onwards.
  • the refrigerant supply tube 12 and the apex 45 of the semi-toroidal cavity surface 51 my be mechanically in contact or joined to provide exact alignment between liquid jets and apex.
  • FIG. 8 shows a further embodiment of the design, applicable to both single phase and two-phase flow.
  • the axially symmetric shape 55 and semi-toroidal protrusion surface 53 have been eliminated.
  • the liquid jets impact the semi-toroidal cavity surface 51 as before.
  • vapor formed at the liquid/vapor interface does not contribute directly to the liquid film velocity, but the vapor 81 formed exiting the nozzle is directed generally parallel with the liquid jets and follows the liquid film moving on the cavity surface so there is some turbulence created in the liquid film.
  • the vapor 82 flowing off the liquid film converges with the vapor flowing from the jets orifices to create a swirling flow 81 to increase turbulence as a function of evaporation rate from the toroidal surface.
  • This design will also benefit single-phase liquid flow by creating a thin, high velocity and accelerating film without any loss in velocity at the jet impact point on surface 51 .
  • FIG. 9 shows how this concept can be used to create a flow surface is a rectangular slot, for example to cool a very small rectangular area as under an amplifier gate array 91 .
  • the nozzle 92 directs a jet of liquid refrigerant to impact tangential to surface 93 that is convex in one dimension at one end of the channel.
  • the convex surface causes the liquid jet to spread out quickly into a thin film.
  • the bottom of the channel gradually changes to flat as shown as 93 in section A-A and then slightly concave 94 so the high-g forces on the liquid do not force it to the edges.
  • the high heat transfer coefficient directly under the gate array eliminates the need for heat spreaders seen in conventional spray or jet cooling with heat transfer coefficients of only a few W/cm- 2 C.
  • FIG. 10 shows an arrangement for cooling very large rectangular areas by an arrangement of alternating cooling surfaces 101 that are circumferential segments of a semi-toroidal surface.
  • the dividing walls 102 between the segments act as structural supports to contain the high pressure of the refrigeration system and to minimize the thickness of the conductive plate 103 between flow passages 54 and dissipating source 10 .
  • Vapor and liquid are transferred to and from the segments by plenums 104 and 105 .
  • Surface 51 is shown elliptical instead of circular as in previous figures to reduce the thickness between thermally dissipating elements and the evaporative surface 51 .
  • FIG. 11 shows a sequential arrangement of orifices in the liquid refrigerant supply line to create vapor in the line to increase fluid jet velocity and/or turbulence.
  • Refrigerant liquid in supply tube 12 passes through an orifice 111 causing a small fraction of the liquid to flash to vapor and create a liquid/vapor mix 112 .
  • this mix passes through the nozzle orifices 62 to strike toroidal surface apex 45 , the resulting fluid exit velocity is increased over that possible with only liquid passing through orifice 62 .

Abstract

A two-fluid-phase cooling device for absorbing high thermal flux from electronics devices and other thermally dissipating devices. It consists of a thermally conductive plate with thermally dissipating elements on one face and a semi-toroidal cavity in the opposite face with the cavity's axis perpendicular to the face of the plate, a liquid refrigerant supply tube ending in a thermodynamic cycle's refrigeration expansion valve that directs jets of liquid to impact the conical surface in the center region of the semi-toroidal cavity in a direction along the cavity's axis and tangent to the conical surface, a second plate with a semi-toroidal protrusion extending into the semi-toroidal cavity to form a thin, semi-toroidal channel between the two plates, and a seal between the liquid supply tube and the second semi-toroidal plate. In operation liquid refrigerant jets strike the conical surface generally tangential to the surface and flow at high velocity in a thin film on the surface of the semi-toroidal cavity from its center radially to the outer edge of the toroidal channel, absorbing heat and boiling as it does so. The high radial acceleration forces caused by the liquid film moving at high velocity on the cavity's concave surface force the liquid film against the surface and create a pressure gradient that biases evaporation toward the liquid/vapor interface. The vapor moves parallel to the liquid flow radially outwards between the liquid film and the surface of the semi-toroidal protrusion at very high velocity, causing extreme turbulence in the liquid film and highly augmented heat transfer between the heated plate and the liquid film, while the liquid film nevertheless remains intact and forced against the heated surface by radial acceleration and carried to a distance significantly greater than in conventional jet impingement systems. The device may also be composed of wedge-shaped sections of the semi-toroidal plates. It may further have two expansion valves in series in the liquid supply line, the first generating a small amount of vapor (increase in quality) so the resulting increase in flow volume greatly increases the velocity through the second expansion valve toward the heated surface to further enhance heat transfer.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of provisional patent application Ser. No. 60/621,894, filed 2004 Oct. 22 by the present inventors.
  • FEDERALLY SPONSORED RESEARCH
  • Not Applicable
  • SEQUENCE LISTING OF PROGRAM
  • Not Applicable
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention
  • This invention relates to cooling electronics, specifically to spray-cooling of two-phase fluid on a heated surface contained within a conventional refrigeration loop.
  • 2. Prior Art
  • The problem addressed in this invention is removal of high thermal dissipation flux from electronic devices such as amplifier gate arrays, laser diodes, etc.
  • Heat flux from electronics is now in the range of 100 to 1,000 Watts per square centimeter (W/cm2). Thermal literature refers to this as the high-flux range, and ultra-high flux being from 103 to 105 W/cm2 and describes a number of ways to remove the heat. If the heated surface is in the interior of an electronics package it can be removed only by circulation of a fluid against the heated surface.
  • Fluids commonly available for this are air, water and fluorochemicals (generally called “refrigerants”, although they may be used in high temperature applications), and the means of circulation can be natural convection, single-phase forced (mechanically pumped) convection, and boiling (2-phase pumped flow). The heat transfer coefficient Watts per centimeter-squared and degree centigrade (W/cm2-C) defines the rate of heat removal from a surface for a given temperature difference between the surface and the cooling liquid, and is highly dependant on the type of fluid and the means of circulation. Air is a poor choice for any type of circulation because of its low mass and low thermal conductivity. Water will have a coefficient about an order of magnitude greater than a refrigerant. Natural convection with water reaches only about 0.1 W/cm2-C, so this process cannot be considered for use with a refrigerant for high flux needs. In single-phase forced convection flow refrigerants reach about 1 W/cm2-C and water 10 W/cm2-C, and in boiling heat transfer refrigerants reach about 10 W/cm2-C and water over 100 W/cm2-C. In single-phase flow, water would require a temperature difference of 100C to carry away 1 kW/cm2, limiting the practical approach in most cases to boiling heat transfer. A further, key advantage of phase change flow is that only a modest increase in heated surface temperature results in a large increase in heat flux, and in certain situations such as freezing environments only a refrigerant can be used in the two-phase system.
  • There are several phase change cooling schemes available: micro- and mini-channel cooling, jet impingement cooling and spray cooling. In all of these the upper limit of heat transfer is set by critical heat flux (CHF) which is the point at which liquid cannot reach the heated surface fast enough to prevent dryout of the surface. Micro-channel and mini-channel refer to flow devices having hydraulic diameters of 10 to several hundred micro-meters, and one to a few millimeters, respectively. Typically the channels are rectangular grooves cut in a metal plate on which the thermally dissipating element is mounted. High heat transfer coefficients, inversely proportional to the Reynolds Number, are achieved by the thinness of the liquid channel in laminar flow. Drawbacks include the limitations of the minimum size of the hydraulic diameter necessary to avoid flow clogging, and high streamwise pressure drops that can cause flow choking as the fluid suddenly evaporates. This latter problem limits the size of the cooling device. In addition, there will be thermal resistance to the flow of heat through the fins to the heated baseplate. Typical values for heat transfer coefficient with refrigerant fluids are 3 to 5 W/cm2-C. Conventional Jet impingement cooling (FIG. 2 a) is done by directing a stream of liquid orthogonally against a heated flat plate. Heat transfer from plate to liquid is enhanced by the thinness of the boundary layer at the jet's small area of impingement, and then by the high velocity of the liquid moving tangential for two or three jet radii along the heated surface. Problems here are first the smallness of the effective cooling area and the necessity for very high jet velocities. In particular for two phase flows, the vapor bubbles formed on the plate's surface tend to push the liquid film away from the surface. There is also a loss in liquid momentum by the orthogonal impact on the plate, and areas of sub-saturated pressure directly under and near the impinging jet that may cause surface bubbles at this region. Heat transfer coefficients are in the range of 2 to 3 W/cm2-C. Spray cooling produces a peak heat transfer rate about half that of jet impingement, but cools a larger area. A problem with spray cooling is maintenance of the nozzles.
  • There are three other relevant two-phase phenomenon that must be listed. The first is flow in a curved channel where the concave surface is heated. Here the g-forces generated by the flow velocity on the curved heated surface tend to force bubbles to move away from the heated surface and so prevent the bubbles from blocking access of liquid to the surface. Another flow regime of interest is annular flow in a pipe (FIG. 3). Heat transfer texts show this can produce the highest heat transfer rates in pipe flow boiling. In annular flow, there is a thin liquid film moving along the pipe wall, with the vapor moving down the center of the pipe at very high velocity. The high velocity of vapor relative to that of the liquid creates turbulence in the liquid film much higher than that created by flow of the liquid against the pipe wall. This can increase the heat transfer coefficient by more than an order of magnitude. However, the high turbulence quickly causes the liquid film to break up into what is called mist flow, so CHF is exceeded and the heat transfer coefficient falls back sharply. A third flow phenomenon is called the Coanda effect. This is the tendency for a flowing liquid to remain attached to a convex surface, with the result that unevenness in film thickness is eliminated as the pressure head in the thicker film areas pushed the fluid toward thinner areas. This is seen in water flowing over an apple held under a faucet.
  • The following prior-art patents describe specific attempts to solve he problem of high thermal flux removal.
  • Chu (U.S. Pat. No. 6,519,151) discloses a jet impingement thermal control device consisting of a nozzle that directs a fluid to strike perpendicular to, and at the bottom center of, a (bowl-shaped) concave conic-sectioned heated surface, so the liquid flows radially outwards along the surface of the bowl and exits the apparatus in a direction generally opposite to the incoming jet (FIG. 2 b). Several such assemblies may be located in parallel to cool a large surface. The liquid film thins as it expands from the point of impact, and, combined with a high-g centrifugal force, this causes the fluid velocity to increase while the velocity in conventional flat plate jet impingement rapidly decreases by flow friction as it moves from the impact point. The combination of high velocity and thin, stable liquid film in Chu's invention causes an increase in efficiency over conventional jet impingement cooling. However, the perpendicular impact will cause momentum and velocity loss in the liquid stream as it turns a right angle to flow along the curved surface. Further, the radial velocity of the liquid is highest where it moves away in a direction perpendicular from the jet, so if there is any initial circumferential difference in film thickness there will not be sufficient time for the film to come to even thickness. The extent of the radial flow is limited because eventually the flow friction overcomes the momentum in the liquid film when the film becomes very thin. Hocker (Application 2002/0062945 A1) shows the same concept as Chu cited above.
  • Rini et al. (U.S. Pat. No. 6,571,569) shows a design of an evaporative cooling system wherein the refrigeration expansion valve (nozzle) directs fluid directly against the flat plate having the heat dissipating elements on its opposite side. This approach suffers from the same problems described above in spray cooling. This patent further describes a means for a mechanical pump to force a high velocity vapor steam into the stream of liquid refrigerant to increase its velocity and cooling effectiveness. This approach adds to the weight and complexity of the cooling system.
  • Remsburg (U.S. Pat. Nos. 5,864,466 and 6,064,572) shows a conic-sectioned plate in a heat exchange apparatus. However, the function of the curved piece is to create a themosyphon action to direct liquid flow against a heated flat plate. The flow is then convectional to that heat transfer coefficients will be very low. Searight (U.S. Pat. No. 4,108,242) shows a means to inject fluid jets into a cylindrical cavity to induce swirling flow in general flow along the axis of the cavity. Here the heated surface has a single axis of curvature so the flow is not accelerated by motion along the curved surface nor is a thin flow film created. Lynch (U.S. Pat. No. 4,140,302) shows a water-cooled blast-furnace tuyeres nozzle having a number of liquid jets at high speed directed against the contoured inner surface of the nozzle. The jet impinges the surface at low angle to avoid momentum loss, but the curved surface shown is only to direct flow against a heated surface that is flat. Further, in this design the water passages are filled with liquid, so this arrangement does not produce a thin film liquid flow nor does the single-axis curved surface provide an acceleration of flow. Bemisderfer (U.S. Pat. No. 5,056,586) shows a spray system whereby the liquid is directed against cusp-shaped surfaces to increase turbulence. This does not produce a thin film nor accelerate flow. Tilton (20030172669) shows transverse thin-film evaporative spray cooling. The spray nozzle directs droplets down a narrow channel on whose side(s) are electronic devices to be cooled. This does not create a continuous liquid film, nor does it provide uniform cooling of the devices.
  • Niggeman (U.S. Pat. No. 4,643,250) shows a heat exchanger whereby a conical surface is used as a means to separate cryogenic liquid from vapor phase, and then to condense the vapor phase in a heat exchanger wherein the liquid phase is the heat sink. This is not possible since the two phases will be at the same temperature at the entrance to the apparatus.
  • OBJECTS AND ADVANTAGES
  • Several objects and advantages of the present invention are:
      • to provide a means to direct a coolant fluid jet against a heated surface without loss of velocity or momentum after contact with the surface;
      • to provide a means to enable the coolant fluid jet to form into a thin, high-velocity liquid film of consistent thickness on the heated surface to create a high value of convection heat transfer coefficient and significant increase in critical flux;
      • to provide a means to maintain velocity of a cooling liquid film over a heated surface to a distance significantly longer than conventional jet impingement devices;
      • to increase the effectiveness of the coolant fluid jet beyond what is available from the thermodynamic refrigeration system's expansion valve jet but without addition of a mechanical system;
      • to create an equivalent of circular pipe annular flow over the heated surface to increase the heat flux removal rate.
    BRIEF SUMMARY OF THE INVENTION
  • In accordance with the present invention a coolant fluid jet directed against a doubly-curved, semi toroidal surface located in a conductive plate on whose the opposite face are thermally dissipating electronic devices.
  • BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 shows a schematic of a conventional refrigeration loop cooling system that employs an evaporative cooling plate in accordance with the principles of the present invention.
  • FIG. 2 a shows prior art conventional jet impingement assemblies where a fluid jet impacts a flat plate, and 2 b prior art where the jet impacts a concave conic section, in both cases in a direction perpendicular to the surface at the impact point.
  • FIG. 3 describes annular two-phase evaporative cooling flow in a conventional circular pipe whose geometry shall be modified for application in the present invention.
  • FIG. 4 a defines the geometry of a torus. FIG. 4 b shows an elevation view of a torus with specific relations among dimensions, and 4 c, 4 d sections thereof to show how the doubly-curved surface is created.
  • FIG. 5 shows a comprehensive view of the present invention.
  • FIG. 6 a shows a cross-section view of the preferred embodiment of the two-phase cooling device invention, with an expansion valve having multiple orifices shown in detail in FIG. 6 b.
  • FIG. 7 shows a partial cross-section detail view of another design of an expansion valve formed by a continuous circumferential gap.
  • FIG. 8 shows a cross-section view of another embodiment of a two phase cooling device having no convex surface to control vapor flow.
  • FIG. 9 shows application of the invention to a rectangular slot.
  • FIG. 10 shows how circumferential segments of the toroidal surface can be arranged to absorb heat from a large, rectangular surface.
  • FIG. 11 shows a refrigeration expansion valve with a flow orifice upstream of it to increase the velocity of the fluid jet.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is designed to use a two-phase cooling fluid to remove high heat flux from electronics systems over a surface area that is relatively large compared with state-of-art cooling systems. Electronic system designers are now seeking cooling system for thermal fluxes greater than 1 kW/cm2 over areas of tens of square centimeters. Thermal research shows the highest heat removal rate is achieved by a two-phase fluid system wherein heat dissipating devices mounted on a conductive plate evaporate a liquid directed against the opposite side of the plate. The highest flux rates are achieved with water. However, in some cases, e.g., when the system must be dormant in freezing temperatures, it is necessary to use a volatile fluid referred to as a refrigerant (although the operating temperature of the system may be above that normally thought of as refrigeration).
  • FIG. 1 is a schematic of a conventional refrigeration cycle as shown in textbooks on thermodynamics. Heat from a thermally dissipating element 10 transfers to an evaporator 11 where it evaporates a liquid entering the evaporator through pipe 12. The resulting vapor is transported by differential pressure to a compressor 13 that raises both the temperature and pressure of the vapor. A condenser 14 then removes heat from the vapor, forming a high pressure, subcooled liquid. When the liquid flows through an orifice 15 called an expansion valve, its pressure drops so that a fraction of the liquid evaporates producing a cold saturated liquid-vapor mix that flows to the evaporator 11 to complete the cycle.
  • FIG. 2 a prior art shows conventional jet impingement within an evaporator. The liquid jet 20 enters the evaporator 11 through pipe 12 and vapor leaves the evaporator through pipe 24. The jet impacts the evaporator wall at very high velocity directly below the dissipating element 10, and in a direction perpendicular to the surface of the wall. This creates a high pressure stagnation region 21 at the point of impact. The flow, which has now lost some momentum, turns in radial direction 22 along the flat wall, initially creating a high turbulent heat transfer coefficient that is generally proportional to the flow velocity and inversely proportional to liquid film thickness. In a few jet radii, however, the momentum of the thinned film is overcome by flow friction that slows the flow and thickens the liquid film 23, sharply decreasing the heat transfer coefficient. The turbulence directly adjacent to the stagnation area 21 can also cause pockets of sub-stagnation pressure leading to bubble formation on the surface that can block heat transfer. Bubbles will also form on the evaporator wall where the liquid film 23 slows and thickens, producing the same effect. This blockage of liquid from the heated surface creates what is called the critical heat flux that is the limit of the heat flux that the evaporator can absorb.
  • FIG. 2 b prior art shows jet 20 impacting the bottom center 25 of a semi-spherical concave surface 26 adjacent to a dissipating element 10. At the stagnation region the liquid behaves as described above, but the flow radially along the concave surface is very different. If the flow velocity is high enough, the force of centrifugal acceleration will cause the thinning film to overcome flow friction and accelerate, create a desirable thin, high velocity film that is shown to increase heat transfer coefficient by about 65% in single-phase flow. Eventually, however, the liquid film will become very thin and so its reduced momentum will be overcome by flow friction and the heat transfer coefficient will decrease. Since the highest radial velocity (orthogonal to the center axis of the apparatus) is at the point where the liquid film leaves the jet impact point, any substantial circumferential differences in film thickness may not have time to even out.
  • FIG. 3 is a heat transfer textbook diagram showing a flow regime called annular flow that exists in boiling heat transfer flow in circular pipes as in a powerplant. The figure shows fluid flow in a pipe 30 heated along its outer surface. Here the liquid flows as a continuous film 31 along the wall, and the vapor 32 moves at a very high velocity down the center of the liquid annulus. The high velocity of the vapor relative to that of the liquid creates turbulence in the liquid film much greater than that created by the interface between pipe wall and liquid, and the heat transfer coefficient can increase one or more orders of magnitude greater than that in turbulent liquid flow. But the vapor friction quickly creates ripples and waves 33 in the liquid film which is then forced off the wall as droplets 34 to create regimes called annular mist and then mist flow, both having greatly reduced heat transfer coefficients. The roughened liquid/vapor interface surface also creates a very high pressure drop in the fluid flow direction. The objective of the present invention is to create the annular flow effect described in FIG. 3 above, but without the problems experienced in pipe flow, on the evaporative cooling plate in a two-phase cooling system. This is achieved in the present invention by creating flow on a semi-toroidal cavity surface within an evaporator, and the creation of this surface is now explained.
  • FIG. 4 a shows a definition of a hollow torus formed by rotating a circle of radius r about a central axis 41 at radius C, with a sectional view cut by plane 42 for the general case of C>r. The sectional view with C=r is a special case, and 4 b is a elevation view of a torus with C=r. FIG. 4 c shows a view of a semi-toroidal surface of 4 b cut by plane 43. FIG. 4 d shows a cross-section of the semi-toroidal surface in 4 c cut by plane 44. This shape can be likened to a hemispherical bowl with a central, curved cone. With radii C and r equal, the apex 45 of the cone lies on the plane 44. If C>r, the conical surface is truncated at plane 44. The surface from the apex of the cone to the radius C is a doubly curved saddle shape, convex in the direction circumferential to the axis 41 and concave in the direction of curves extending from the apex to the outer diameter of the toroidal surface and orthogonal to the circumferential curves. Beyond radius C the curves circumferential about the axis 41 form a concave surface.
  • FIG. 5 shows an isometric view 50 of the preferred embodiment of the invention and a cross-section with arrows indicating liquid entrance and vapor exit passages from the semi-toroidal channel. Here the concave semi-toroidal cavity surface 51 is part of a thermally conductive, cylindrical solid 52 on whose circular external end face are mounted the dissipating devices 10 to be cooled. The semi-toroidal protrusion surface 53 on cylindrical body 55 is coaxial with surface 51 and the two form a channel 54 whose width may vary with distance radially from center axis of body 52 in the flow direction. A refrigerant supply tube 12 is shown concentric with and sealed to cylindrical body 55.
  • FIG. 6 a shows details of the preferred embodiment of the invention applicable to a closed loop refrigeration system. Here the cylindrical solid 52 containing semi-toroidal cavity surface 51 blends into the cylindrical pipe 61 that forms the pressure containment vessel for this part of the two-phase cooling system. Axially symmetric solid shape 55 containing semi-toroidal protrusion surface 53 is shown with a conical shape to allow smooth expansion of the vapor exiting semi-toroidal channel 54. Refrigerant supply tube 12 terminates in a number of orifices 62 spaced around the center axis of tube 12.
  • FIG. 6 b is a detail of the nozzle exit area showing that, in operation, liquid refrigerant 63 is forced through the orifices 62 and exits the expansion valve at high velocity, so a certain fraction of liquid evaporates as the pressure drops and the liquid and vapor phases of the fluid are cooled to the same temperature. The liquid jets are aimed so as to strike the semi-toroidal cavity surface 51 directly below apex 45 and tangential to the surface so that momentum and jet velocity are not lost. The individual liquid films then coalesce under the Coanda effect into a continuous film 64 achieving constant circumferential thickness as they flow on the convex curved surface about the center axis of the assembly. This process is aided by the very small velocity of the film in a radial direction perpendicular to the assembly's center axis in the region directly below the apex of the cone. The film continues to flow and thin as it moves radially outwards from the central axis. The high g-forces acting on the thinning film accelerate the flow. The high centrifugal force on the liquid film also creates a pressure gradient in the liquid film, with highest pressure against the torodial surface 51 decreasing to saturation pressure at the liquid/vapor interface 65. This biases vapor formation toward the liquid/vapor interface and forces any vapor bubble forming on surface 51 to go to interface 65. The vapor formed as the liquid jets exit the nozzles, and as the liquid evaporates as it flows around the curved toroidal channel 54, are constrained by the semi-toroidal protrusion surface 53 to flow in a direction parallel to the liquid film flow. The high velocity of the vapor 66 with respect to the liquid film 65 creates very high turbulence in the liquid and so creates a very high heat transfer coefficient. However, the centrifugal force on the liquid film prevents it from being broken up into inefficient mist flow as in annular pipe flow and further prevents an increase in pressure drop in the flow direction caused by a roughened liquid/vapor interface. The vapor velocity continues to accelerate the liquid film against flow friction forces so that the flow remains turbulent even when the liquid film becomes very thin and CHF is never reached, so 100% evaporative efficiency is achieved if desired. This parallel flow of vapor also allows the liquid flow to continue over very large diameters of the heat absorbing surface, without risk of exceeding critical heat flux. The vapor exits the evaporator assembly through the expansion volume formed by body 55 and returns to the compressor. The shape of the exit from the gap between the toroidal surfaces may be designed to use the gap's vapor exit velocity to entrain any liquid and force it to the compressor for applications such as in zero-g space environment.
  • FIG. 7 shows a detail of the expansion valve area. Here the apex 45 of the semi-toroidal cavity surface 51 extends concentrically up into the liquid supply tube 12 so the expansion valve has the form of a very thin, circumferential gap 71. The semi-toroidal protrusion surface 53 is shaped at the interface with the end of the supply tube 12 to form a step expansion 72 of the semi-toroidal channel 54. Since the liquid flow is already in a high-g mode at this point, the vapor of expansion forms on the top of the liquid film as shown in FIG. 6 a and the heated surface remains covered with liquid from the apex point onwards. In this design and the previous design with a number of orifices, the refrigerant supply tube 12 and the apex 45 of the semi-toroidal cavity surface 51 my be mechanically in contact or joined to provide exact alignment between liquid jets and apex.
  • FIG. 8 shows a further embodiment of the design, applicable to both single phase and two-phase flow. Here the axially symmetric shape 55 and semi-toroidal protrusion surface 53 have been eliminated. The liquid jets impact the semi-toroidal cavity surface 51 as before. In two-phase flow, vapor formed at the liquid/vapor interface does not contribute directly to the liquid film velocity, but the vapor 81 formed exiting the nozzle is directed generally parallel with the liquid jets and follows the liquid film moving on the cavity surface so there is some turbulence created in the liquid film. Further, the vapor 82 flowing off the liquid film converges with the vapor flowing from the jets orifices to create a swirling flow 81 to increase turbulence as a function of evaporation rate from the toroidal surface. This design will also benefit single-phase liquid flow by creating a thin, high velocity and accelerating film without any loss in velocity at the jet impact point on surface 51.
  • FIG. 9 shows how this concept can be used to create a flow surface is a rectangular slot, for example to cool a very small rectangular area as under an amplifier gate array 91. The nozzle 92 directs a jet of liquid refrigerant to impact tangential to surface 93 that is convex in one dimension at one end of the channel. The convex surface causes the liquid jet to spread out quickly into a thin film. The bottom of the channel gradually changes to flat as shown as 93 in section A-A and then slightly concave 94 so the high-g forces on the liquid do not force it to the edges. The high heat transfer coefficient directly under the gate array eliminates the need for heat spreaders seen in conventional spray or jet cooling with heat transfer coefficients of only a few W/cm-2C.
  • FIG. 10 shows an arrangement for cooling very large rectangular areas by an arrangement of alternating cooling surfaces 101 that are circumferential segments of a semi-toroidal surface. The dividing walls 102 between the segments act as structural supports to contain the high pressure of the refrigeration system and to minimize the thickness of the conductive plate 103 between flow passages 54 and dissipating source 10. Vapor and liquid are transferred to and from the segments by plenums 104 and 105. Surface 51 is shown elliptical instead of circular as in previous figures to reduce the thickness between thermally dissipating elements and the evaporative surface 51.
  • FIG. 11 shows a sequential arrangement of orifices in the liquid refrigerant supply line to create vapor in the line to increase fluid jet velocity and/or turbulence. Refrigerant liquid in supply tube 12 passes through an orifice 111 causing a small fraction of the liquid to flash to vapor and create a liquid/vapor mix 112. When this mix passes through the nozzle orifices 62 to strike toroidal surface apex 45, the resulting fluid exit velocity is increased over that possible with only liquid passing through orifice 62. This increases turbulence in the liquid film on surface 51 in either thin channel flow configuration FIG. 5, or in open cavity flow FIG. 8.

Claims (14)

1. A cooling device comprising: a thermally conductive solid such as a plate with thermally dissipating elements attached to one face and a semi-toroidal cavity in the opposite face, the cavity formed by cutting in the material face, and about an axis perpendicular to the face, a groove of generally semi-circular shape of radius r1, with the center of radius r1 at a radius C from the axis of the circle to the center of the groove, so that setting the radius r1 equal to radius C causes the semi-toroidal cavity to form an apex point that lies both on the center line of the cavity and in the plane of the plate in which the cavity is cut, so the surface is, to a distance from its centerline to the radius C, convex in a direction circumferential to the axis of the cavity and concave in a direction radial from the axis of the cavity, and past the radius C is concave both in circumferential direction and radial direction; and a second plate having a semi-toroidal protrusion in the shape of a circular ridge of semi-circular cross-section of radius r2<r1, with the center of radius r2 located at radius C from the axis of the circular protrusion, and the protrusion located concentric with and extending into the semi-toroidal cavity so a semi-toroidal channel exists between the cavity wall surface and the protrusion wall surface; and a nozzle on the centerline of the circular protrusion and parallel to its axis, passing through and sealed to the plate containing the protrusion, and containing several orifices that direct streams of a volatile fluid in a direction generally parallel to the axis of the semi-toroidal cavity to strike the upper surface of the cavity immediately below the centerline apex of its surface and in a direction generally tangent to the cavity surface, and flows outward in the semi-toroidal channel and exits the channel in a direction generally opposite that of the fluid streams directed from the nozzle.
2. The cooling device of claim 1 wherein the nozzle acts as the expansion valve in a thermodynamic cooling cycle, so that a volatile compressed liquid at subcooled temperature forced through the nozzle drops to a saturated temperature and pressure causing a fraction of the liquid to flash to vapor so a mix of cooled liquid and vapor enters the semi-toroidal channel.
3. The cooling device of claim 1, wherein the fluid striking the upper surface of the cavity directly below its centerline apex in a direction generally tangent to the surface does so virtually without loss of momentum and velocity.
4. The cooling device of claim 1 where the velocity of the liquid on the cavity surface immediately below the impact point has a relatively small component in a direction perpendicular to the axis of the cavity, so the liquid film has negligible axial velocity and so thins rapidly in this region giving the film time to coalesce into an even thickness in the circumferential dimension about the axis of the cavity by flowing in the convex direction of the surface under the Coanda effect.
5. The cooling device of claim 1 wherein the volatile liquid film flowing in the semi-toroidal channel experiences very high centripetal acceleration that forces the film against the concave cavity wall of the channel, so the liquid and vapor phases of the fluid are separated with liquid against the cavity wall and vapor between the liquid film and the semi-toroidal protrusion wall surface above it, creating a high pressure gradient in the liquid film with the minimum value equal to the saturation pressure at the liquid/vapor interface, so that when the liquid is heated by the thermally dissipating elements the boiling is biased toward the vapor/liquid interface that is at saturation pressure, and any bubbles forming on the cavity surface are immediately pushed to the liquid/vapor interface thereby increasing the efficiency of the heat transfer process.
6. The cooling device of claim 1 wherein the rate of thinning of the liquid film as it expands outwards in the channel is increased by the evaporation of liquid from the film, so the heat transfer coefficient between cavity wall and liquid film increases more rapidly and generally in inverse proportion to the thinness of the liquid film.
7. The cooling device of claim 1 wherein the vapor formed by the expansion valve process combines with the vapor formed by the energy input from the dissipating elements to expand radially outwards in the semi-toroidal channel at a great velocity relative to the velocity of the liquid film moving in the same direction, so that the vapor creates extreme turbulence in the liquid film to increase the heat transfer from the cavity wall to the liquid film, and the vapor pushes the liquid film to overcome the flow friction between wall and film so the film increases its velocity, over that rate of increase naturally afforded by the effect of centripetal acceleration on the thinning film, even when the film becomes extremely thin, and maintains this velocity to provide cooling over an area much larger than state of art jet impingement, while the centripetal acceleration forces on the liquid film prevent the film from being broken up by the vapor into mist flow that would decrease the heat transfer rate as occurs in annular pipe flow.
9. The cooling device of claim 1 wherein the expansion valve is formed by extending the refrigerant liquid supply tube over the apex of the semi-toroidal cavity until a narrow annulus is created between tube and cavity surface, at which point the tube expands orthogonally to create irreversible flow conditions in the fluid and then blends into the semi-toroidal protruding surface
10. The cooling device of claim 1 wherein the semi-toroidal protruding surface is removed so the vapor is not channeled above the semi-toroidal cavity, but the vapor emitted from the nozzle flows above and in a general direction tangential to the liquid film flowing on the surface of the semi-toroidal cavity so that some increased turbulence is created in the liquid film on the surface of the semi-toroidal cavity and heat transfer is enhanced.
11. The cooling device of claim 1 wherein the liquid refrigerant supply tube has an orifice upstream of the nozzle, acting to create irreversible flow to cause a small amount of liquid refrigerant to flash to vapor so that the volume flow rate through nozzle directed at the semi-toroidal cavity is greatly increases to increase the heat transfer of the system.
12. A cooling device wherein a flow channel with a rectangular cross-section is located below a surface on which is mounted a generally elongated thermally dissipating device, with the entrance and exits of the channel in directions generally orthogonal to the plane on which the dissipating devices are located and the connecting channel curved in a convex direction toward the dissipating elements, the wall of the channel in opposition to the dissipating devices being initially convex in the cross-sectional view at the entrance, changing to flat and then concave with increasing distance along the channel; and a nozzle sealed around the entrance to the channel and directing a jet of volatile liquid into entrance of the channel.
13. The cooling device of claim 12 wherein the a jet of volatile liquid strikes the convex surface at the entrance to the channel in a direction generally tangential to the surface, spreads out in the convex direction of the surface to form a film of even thickness and maintains an even thickness by means of the gradual change of the cross-sectional shape of the surface from convex to concave, the liquid film being held against the wall by the centripetal force caused by the concave shape of the shape in the flow direction.
14. A cooling device wherein a number of semi-toroidal channels and nozzles are located in a face of a conductive plate to increase the effective heat-gathering area of the apparatus.
15. The cooling device of claim 14 wherein cooling channels are composed of a number of alternately placed wedge-shaped sections of the semi-toroidal surface so that heat may be evenly absorbed from a large rectangular surface, and the dividing walls between the alternately placed channels act as structural support ribs in the plate to allow the thickness of the plate between the thermally dissipating elements and the cavity surfaces to be minimized to enhance heat transfer.
US11/256,007 2004-10-26 2006-02-21 Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel Abandoned US20060162365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/256,007 US20060162365A1 (en) 2004-10-26 2006-02-21 Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62189404P 2004-10-26 2004-10-26
US11/256,007 US20060162365A1 (en) 2004-10-26 2006-02-21 Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel

Publications (1)

Publication Number Publication Date
US20060162365A1 true US20060162365A1 (en) 2006-07-27

Family

ID=36695233

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/256,007 Abandoned US20060162365A1 (en) 2004-10-26 2006-02-21 Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel

Country Status (1)

Country Link
US (1) US20060162365A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018093A1 (en) * 2004-07-21 2006-01-26 Metal Industries Research & Development Centre Closed-loop cycling type heat-dissipation apparatus
US20080037221A1 (en) * 2006-08-07 2008-02-14 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
WO2010034729A1 (en) * 2008-09-24 2010-04-01 Stemke, Esther Contact cooling system
US20100328882A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Direct jet impingement-assisted thermosyphon cooling apparatus and method
US20100328891A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser block structures with cavities facilitating vapor condensation cooling of coolant
US20100328890A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser structures with fin cavities facilitating vapor condensation cooling of coolant
US20100328889A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
US20100326628A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
US7885070B2 (en) 2008-10-23 2011-02-08 International Business Machines Corporation Apparatus and method for immersion-cooling of an electronic system utilizing coolant jet impingement and coolant wash flow
US7916483B2 (en) 2008-10-23 2011-03-29 International Business Machines Corporation Open flow cold plate for liquid cooled electronic packages
US7944694B2 (en) 2008-10-23 2011-05-17 International Business Machines Corporation Liquid cooling apparatus and method for cooling blades of an electronic system chassis
US7961475B2 (en) 2008-10-23 2011-06-14 International Business Machines Corporation Apparatus and method for facilitating immersion-cooling of an electronic subsystem
US7983040B2 (en) 2008-10-23 2011-07-19 International Business Machines Corporation Apparatus and method for facilitating pumped immersion-cooling of an electronic subsystem
US8179677B2 (en) 2010-06-29 2012-05-15 International Business Machines Corporation Immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US8184436B2 (en) 2010-06-29 2012-05-22 International Business Machines Corporation Liquid-cooled electronics rack with immersion-cooled electronic subsystems
US8345423B2 (en) 2010-06-29 2013-01-01 International Business Machines Corporation Interleaved, immersion-cooling apparatuses and methods for cooling electronic subsystems
US8351206B2 (en) 2010-06-29 2013-01-08 International Business Machines Corporation Liquid-cooled electronics rack with immersion-cooled electronic subsystems and vertically-mounted, vapor-condensing unit
US8369091B2 (en) 2010-06-29 2013-02-05 International Business Machines Corporation Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US8643173B1 (en) * 2013-01-04 2014-02-04 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses and power electronics modules with single-phase and two-phase surface enhancement features
US20140140006A1 (en) * 2012-11-21 2014-05-22 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling Apparatuses Having Sloped Vapor Outlet Channels
US9131631B2 (en) 2013-08-08 2015-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Jet impingement cooling apparatuses having enhanced heat transfer assemblies
US9484284B1 (en) 2016-03-16 2016-11-01 Northrop Grumman Systems Corporation Microfluidic impingement jet cooled embedded diamond GaN HEMT
US20170082326A1 (en) * 2015-09-17 2017-03-23 Timothy S. Fisher Devices, systems, and methods for the rapid transient cooling of pulsed heat sources
US10085362B2 (en) 2016-09-30 2018-09-25 International Business Machines Corporation Cold plate device for a two-phase cooling system
US10136550B2 (en) 2016-09-30 2018-11-20 International Business Machines Corporation Cold plate device for a two-phase cooling system
US10270220B1 (en) * 2013-03-13 2019-04-23 Science Research Laboratory, Inc. Methods and systems for heat flux heat removal
US10423735B2 (en) 2016-06-29 2019-09-24 International Business Machines Corporation Hybrid modeling for a device under test associated with a two-phase cooling system
US20200096849A1 (en) * 2018-09-21 2020-03-26 Panasonic Intellectual Property Management Co., Ltd. Cooling device, projector, and heat-receiving unit
US10915674B2 (en) 2017-03-14 2021-02-09 International Business Machines Corporation Autonomous development of two-phase cooling architecture
CN112989728A (en) * 2021-05-13 2021-06-18 星河动力(北京)空间科技有限公司 Method and device for calculating temperature of inner wall of thrust chamber, electronic equipment and storage medium
US11101194B2 (en) * 2016-12-19 2021-08-24 Agency For Science, Technology And Research Heat sinks and methods for fabricating a heat sink
CN113438872A (en) * 2021-07-01 2021-09-24 合肥工业大学 Jet flow cold plate with gradually-reduced outlet type micro channel
CN113543588A (en) * 2021-06-24 2021-10-22 西安交通大学 Jet flow-transverse flow combined immersed heat dissipation device and method
CN114060785A (en) * 2020-07-31 2022-02-18 广东美的环境电器制造有限公司 Steam generator and household appliance
WO2022140700A1 (en) * 2020-12-23 2022-06-30 Pikulski Joseph L Thermal management system for electrically-powered devices
US11621213B2 (en) * 2017-12-01 2023-04-04 Mitsubishi Electric Corporation Semiconductor device including a spring plate
CN116454046A (en) * 2023-04-25 2023-07-18 江苏大学 Phase-change fluid jet impact cooling device based on porous layer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864466A (en) * 1994-07-19 1999-01-26 Remsburg; Ralph Thermosyphon-powered jet-impingement cooling device
US6058712A (en) * 1996-07-12 2000-05-09 Thermotek, Inc. Hybrid air conditioning system and a method therefor
US6064572A (en) * 1996-11-27 2000-05-16 Remsburg; Ralph Thermosyphon-powered jet-impingement cooling device
US6105373A (en) * 1996-09-09 2000-08-22 Technova, Inc. Thermoelectric converter
US6178766B1 (en) * 1996-04-04 2001-01-30 Xiamin Tong Air-conditioner with high-efficiency differential cold-valley pipes
US6292365B1 (en) * 1998-09-18 2001-09-18 Hitachi, Ltd. Electronic apparatus
US20010046652A1 (en) * 2000-03-08 2001-11-29 Ostler Scientific Internationsl, Inc. Light emitting diode light source for curing dental composites
US6349760B1 (en) * 1999-10-22 2002-02-26 Intel Corporation Method and apparatus for improving the thermal performance of heat sinks
US6817196B2 (en) * 2001-02-22 2004-11-16 Hewlett-Packard Development Company, L.P. Spray cooling system with cooling regime detection
US6999316B2 (en) * 2003-09-10 2006-02-14 Qnx Cooling Systems Inc. Liquid cooling system
US6996996B1 (en) * 2002-09-13 2006-02-14 Isothermal Systems Research, Inc. Sealed spray cooling system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864466A (en) * 1994-07-19 1999-01-26 Remsburg; Ralph Thermosyphon-powered jet-impingement cooling device
US6178766B1 (en) * 1996-04-04 2001-01-30 Xiamin Tong Air-conditioner with high-efficiency differential cold-valley pipes
US6058712A (en) * 1996-07-12 2000-05-09 Thermotek, Inc. Hybrid air conditioning system and a method therefor
US6105373A (en) * 1996-09-09 2000-08-22 Technova, Inc. Thermoelectric converter
US6064572A (en) * 1996-11-27 2000-05-16 Remsburg; Ralph Thermosyphon-powered jet-impingement cooling device
US6292365B1 (en) * 1998-09-18 2001-09-18 Hitachi, Ltd. Electronic apparatus
US6349760B1 (en) * 1999-10-22 2002-02-26 Intel Corporation Method and apparatus for improving the thermal performance of heat sinks
US20010046652A1 (en) * 2000-03-08 2001-11-29 Ostler Scientific Internationsl, Inc. Light emitting diode light source for curing dental composites
US6817196B2 (en) * 2001-02-22 2004-11-16 Hewlett-Packard Development Company, L.P. Spray cooling system with cooling regime detection
US6996996B1 (en) * 2002-09-13 2006-02-14 Isothermal Systems Research, Inc. Sealed spray cooling system
US6999316B2 (en) * 2003-09-10 2006-02-14 Qnx Cooling Systems Inc. Liquid cooling system

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018093A1 (en) * 2004-07-21 2006-01-26 Metal Industries Research & Development Centre Closed-loop cycling type heat-dissipation apparatus
US20080037221A1 (en) * 2006-08-07 2008-02-14 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
US20080062639A1 (en) * 2006-08-07 2008-03-13 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
US7362574B2 (en) * 2006-08-07 2008-04-22 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
US7375962B2 (en) 2006-08-07 2008-05-20 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
WO2010034729A1 (en) * 2008-09-24 2010-04-01 Stemke, Esther Contact cooling system
US7916483B2 (en) 2008-10-23 2011-03-29 International Business Machines Corporation Open flow cold plate for liquid cooled electronic packages
US8203842B2 (en) 2008-10-23 2012-06-19 International Business Machines Corporation Open flow cold plate for immersion-cooled electronic packages
US7983040B2 (en) 2008-10-23 2011-07-19 International Business Machines Corporation Apparatus and method for facilitating pumped immersion-cooling of an electronic subsystem
US7961475B2 (en) 2008-10-23 2011-06-14 International Business Machines Corporation Apparatus and method for facilitating immersion-cooling of an electronic subsystem
US7944694B2 (en) 2008-10-23 2011-05-17 International Business Machines Corporation Liquid cooling apparatus and method for cooling blades of an electronic system chassis
US7885070B2 (en) 2008-10-23 2011-02-08 International Business Machines Corporation Apparatus and method for immersion-cooling of an electronic system utilizing coolant jet impingement and coolant wash flow
US20100328891A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser block structures with cavities facilitating vapor condensation cooling of coolant
US8490679B2 (en) 2009-06-25 2013-07-23 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
US20100326628A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
US20100328889A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
US20100328890A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser structures with fin cavities facilitating vapor condensation cooling of coolant
US8014150B2 (en) 2009-06-25 2011-09-06 International Business Machines Corporation Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
US8018720B2 (en) 2009-06-25 2011-09-13 International Business Machines Corporation Condenser structures with fin cavities facilitating vapor condensation cooling of coolant
US8059405B2 (en) 2009-06-25 2011-11-15 International Business Machines Corporation Condenser block structures with cavities facilitating vapor condensation cooling of coolant
US9303926B2 (en) 2009-06-25 2016-04-05 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
US7885074B2 (en) 2009-06-25 2011-02-08 International Business Machines Corporation Direct jet impingement-assisted thermosyphon cooling apparatus and method
US20100328882A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Direct jet impingement-assisted thermosyphon cooling apparatus and method
US8184436B2 (en) 2010-06-29 2012-05-22 International Business Machines Corporation Liquid-cooled electronics rack with immersion-cooled electronic subsystems
US8351206B2 (en) 2010-06-29 2013-01-08 International Business Machines Corporation Liquid-cooled electronics rack with immersion-cooled electronic subsystems and vertically-mounted, vapor-condensing unit
US8369091B2 (en) 2010-06-29 2013-02-05 International Business Machines Corporation Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US8345423B2 (en) 2010-06-29 2013-01-01 International Business Machines Corporation Interleaved, immersion-cooling apparatuses and methods for cooling electronic subsystems
US8179677B2 (en) 2010-06-29 2012-05-15 International Business Machines Corporation Immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US9099295B2 (en) * 2012-11-21 2015-08-04 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses having sloped vapor outlet channels
US20140140006A1 (en) * 2012-11-21 2014-05-22 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling Apparatuses Having Sloped Vapor Outlet Channels
US8643173B1 (en) * 2013-01-04 2014-02-04 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses and power electronics modules with single-phase and two-phase surface enhancement features
US8786078B1 (en) 2013-01-04 2014-07-22 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicles, power electronics modules and cooling apparatuses with single-phase and two-phase surface enhancement features
US10270220B1 (en) * 2013-03-13 2019-04-23 Science Research Laboratory, Inc. Methods and systems for heat flux heat removal
US9131631B2 (en) 2013-08-08 2015-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Jet impingement cooling apparatuses having enhanced heat transfer assemblies
US10634397B2 (en) * 2015-09-17 2020-04-28 Purdue Research Foundation Devices, systems, and methods for the rapid transient cooling of pulsed heat sources
US20170082326A1 (en) * 2015-09-17 2017-03-23 Timothy S. Fisher Devices, systems, and methods for the rapid transient cooling of pulsed heat sources
US11649995B2 (en) 2015-09-17 2023-05-16 Purdue Research Foundation Devices, systems, and methods for the rapid transient cooling of pulsed heat sources
US9484284B1 (en) 2016-03-16 2016-11-01 Northrop Grumman Systems Corporation Microfluidic impingement jet cooled embedded diamond GaN HEMT
US11068628B2 (en) 2016-06-29 2021-07-20 International Business Machines Corporation Hybrid modeling for a device under test associated with a two-phase cooling system
US10423735B2 (en) 2016-06-29 2019-09-24 International Business Machines Corporation Hybrid modeling for a device under test associated with a two-phase cooling system
US10499541B2 (en) 2016-09-30 2019-12-03 International Business Machines Corporation Cold plate device for a two-phase cooling system
US10085362B2 (en) 2016-09-30 2018-09-25 International Business Machines Corporation Cold plate device for a two-phase cooling system
US10306801B2 (en) 2016-09-30 2019-05-28 International Business Machines Corporation Cold plate device for a two-phase cooling system
US10653035B2 (en) 2016-09-30 2020-05-12 International Business Machines Corporation Cold plate device for a two-phase cooling system
US10834848B2 (en) 2016-09-30 2020-11-10 International Business Machines Corporation Cold plate device for a two-phase cooling system
US10136550B2 (en) 2016-09-30 2018-11-20 International Business Machines Corporation Cold plate device for a two-phase cooling system
US11101194B2 (en) * 2016-12-19 2021-08-24 Agency For Science, Technology And Research Heat sinks and methods for fabricating a heat sink
US10915674B2 (en) 2017-03-14 2021-02-09 International Business Machines Corporation Autonomous development of two-phase cooling architecture
US10929577B2 (en) 2017-03-14 2021-02-23 International Business Machines Corporation Autonomous development of two-phase cooling architecture
US11621213B2 (en) * 2017-12-01 2023-04-04 Mitsubishi Electric Corporation Semiconductor device including a spring plate
US10962869B2 (en) * 2018-09-21 2021-03-30 Panasonic Intellectual Property Management Co., Ltd. Cooling device used for cooling a heat-generating body, projector including the cooling device, and heat-receiving unit used in the cooling device
US20200096849A1 (en) * 2018-09-21 2020-03-26 Panasonic Intellectual Property Management Co., Ltd. Cooling device, projector, and heat-receiving unit
CN114060785A (en) * 2020-07-31 2022-02-18 广东美的环境电器制造有限公司 Steam generator and household appliance
WO2022140700A1 (en) * 2020-12-23 2022-06-30 Pikulski Joseph L Thermal management system for electrically-powered devices
CN112989728A (en) * 2021-05-13 2021-06-18 星河动力(北京)空间科技有限公司 Method and device for calculating temperature of inner wall of thrust chamber, electronic equipment and storage medium
CN113543588A (en) * 2021-06-24 2021-10-22 西安交通大学 Jet flow-transverse flow combined immersed heat dissipation device and method
CN113438872A (en) * 2021-07-01 2021-09-24 合肥工业大学 Jet flow cold plate with gradually-reduced outlet type micro channel
CN116454046A (en) * 2023-04-25 2023-07-18 江苏大学 Phase-change fluid jet impact cooling device based on porous layer

Similar Documents

Publication Publication Date Title
US20060162365A1 (en) Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel
Devahdhanush et al. Review of critical heat flux (CHF) in jet impingement boiling
US6571569B1 (en) Method and apparatus for high heat flux heat transfer
US7921664B2 (en) Method and apparatus for high heat flux heat transfer
Kim Spray cooling heat transfer: The state of the art
JP5039916B2 (en) Heat distribution assembly, system for heat transfer and method for heat control (high power microjet cooler)
Lee et al. Comparative analysis of jet impingement and microchannel cooling for high heat flux applications
Tan et al. Multi-nozzle spray cooling for high heat flux applications in a closed loop system
EP1892494B1 (en) System and method of boiling heat transfer using self-induced coolant transport and impingements
US20070119568A1 (en) System and method of enhanced boiling heat transfer using pin fins
US7392660B2 (en) Spray cooling system for narrow gap transverse evaporative spray cooling
US20050185378A1 (en) Etched open microchannel spray cooling
US8763408B2 (en) Hybrid thermoelectric-ejector cooling system
US6993926B2 (en) Method and apparatus for high heat flux heat transfer
Wang et al. Enhanced heat transfer by an original immersed spray cooling system integrated with an ejector
EP1754011A2 (en) Hotspot spray cooling
CN109671688B (en) Refrigerant phase change cold plate
JP6258236B2 (en) Method and apparatus for fluid temperature and flow control
Liao et al. Experimental study of boiling heat transfer in a microchannel with nucleated-shape columnar micro-pin-fins
US7159414B2 (en) Hotspot coldplate spray cooling system
RU2649170C1 (en) Method of electronic equipment cooling using combined film and drop liquid flows
EP1860695A2 (en) System and method of jet impingement cooling with extended surfaces
Joshi et al. Keynote Lecture: Micro and Meso Scale Compact Heat Exchangers in Electronics Thermal Management–Review
Kadam et al. Bubble dynamics in microchannel: An overview of the state-of-the-art
CN209639574U (en) A kind of micro-channel heat exchanger structure with jet pipe

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION