US20060210015A1 - Computed tomography with increased field of view - Google Patents

Computed tomography with increased field of view Download PDF

Info

Publication number
US20060210015A1
US20060210015A1 US11/438,053 US43805306A US2006210015A1 US 20060210015 A1 US20060210015 A1 US 20060210015A1 US 43805306 A US43805306 A US 43805306A US 2006210015 A1 US2006210015 A1 US 2006210015A1
Authority
US
United States
Prior art keywords
fan beams
rotational axis
detector array
rays
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/438,053
Inventor
Norbert Pelc
Rebecca Fahrig
Edward Solomon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leland Stanford Junior University
NovaRay
Original Assignee
Leland Stanford Junior University
NovaRay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leland Stanford Junior University, NovaRay filed Critical Leland Stanford Junior University
Priority to US11/438,053 priority Critical patent/US20060210015A1/en
Assigned to BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE reassignment BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAHRIG, REBECCA, PELC, NORBERT J.
Publication of US20060210015A1 publication Critical patent/US20060210015A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Definitions

  • the present invention relates generally to systems and methods for computed tomography. More specifically, it relates to improved techniques for increasing the field of view in computed tomography.
  • a single x-ray source 100 generates a fan beam 102 directed at an extended detector array 104 , as shown in the cross-sectional view of FIG. 1 .
  • Fan beam 102 has a collection of rays diverging from source 100 at a divergence angle ⁇ , as shown.
  • a system of this type where the fan beam diverges from a single point source to a large array of detectors, is said to have a forward geometry.
  • the, point source is exchanged for a small array of detectors (or a single detector) and detector array is exchanged for a source array, so that the set of measurement rays converge at the detectors.
  • forward and inverse geometry systems have similar geometrical properties. Thus, the common geometrical properties of both forward and inverse geometries can be described by considering just the forward geometry case.
  • the rays of the fan beam 102 include a central ray 108 which is defined to be the ray from the point source 100 that intersects a midpoint 110 of the detector array 104 .
  • the central ray is the ray from the midpoint of the source array to the mid-point of the small detector.
  • the central ray 108 passes through (or very close to) a rotational axis 106 of the system.
  • source 100 and detector 104 are rotated around rotational axis 106 to various rotated positions.
  • FIG. 1 shows a rotated position corresponding to a rotation of the central ray 108 by an angle ⁇ .
  • fan beam 102 also rotates, providing the system with the capability to acquire x-ray transmission data at various angles from which an image is reconstructed.
  • the rotational angles ⁇ must cover a sufficient range so as to allow objects to be properly reconstructed. In this case, the range of ⁇ values must be at least ⁇ plus 180 degrees.
  • a field of view (FOV) 114 of the system is the region that is always exposed to the fan beam. Thus, for example, any portion of an object that is positioned within FOV 114 will be viewed from all rotational angles of the system. Outside of FOV 114 , however, image data is not available at some rotational angles.
  • CT systems are designed to reconstruct three-dimensional representations of objects within the FOV of the system.
  • FOV is the in-plane FOV, i.e., the FOV within the cross-sectional plane of the fan beam which is perpendicular to the rotational axis.
  • the size of FOV 114 is limited by the size of the detector array 104 .
  • the diameter of FOV 114 is always significantly less than the extent of the detector array.
  • An increased FOV can be provided by increasing the size of the detector array, as shown in FIG. 2 .
  • a source 200 emits a fan beam 202 toward a larger detector array 204 .
  • Fan beam 202 has a central ray 208 which passes through (or very close to) rotational axis 206 and intersects a midpoint 210 of detector array 204 .
  • Due to the increased size of the detector array 204 the system has an increased FOV 214 as compared to the smaller FOV 212 provided by the smaller detector.
  • an inverse geometry system also has an increased FOV if it has an increased source array size.
  • the FOV of a CT system can be increased using a larger detector array, increasing the size of the array often introduces significant technical difficulty and expense.
  • FIG. 3 shows a CT system with multiple sources 300 , 302 , 304 and multiple corresponding detector arrays 306 , 308 , 310 .
  • the sources 300 , 302 , 304 emit corresponding fan beams 312 , 314 , 316 having respective central rays 318 , 320 , 322 all intersecting at a point coincident with (or very close to) an axis of rotation 324 .
  • the required rotational angle is reduced by three, helping to mitigate problems caused by patient movement during scanning.
  • the field of view 326 of this system suffers from the same problem as the conventional single source-detector system of FIG. 1 .
  • the detector array sizes must be increased. In any case, the FOV is always less than the detector size.
  • FIG. 4 An alternative CT system that provides a slight increase in FOV is shown in FIG. 4 (see also U.S. Pat. No. 5,430,297 to Hawman, which is incorporated herein by reference).
  • a single source 400 emits a fan beam 402 directed at a detector array 404 .
  • a central ray 406 of fan beam 402 intersects a midpoint 410 of detector 404 .
  • the fan beam 402 of source 400 is offset from centerline 412 so that the central ray 406 is offset from the rotational axis 408 of the system. Consequently, line 418 from source 400 passing through axis 408 intersects the detector 404 at a point 420 that is far from midpoint 410 .
  • the single fan beam also rotates around axis 408 .
  • the FOV 414 of this system is larger than the FOV 416 of a comparable system with no offset, provided the system rotates through at least 360 degrees.
  • the FOV 414 while larger than FOV 416 , is still substantially limited unless the detector array is quite large.
  • the diameter of the FOV of this system is always less than twice that of the system of FIG. 1 , and generally less than the extent of the detector array.
  • the present invention provides improved CT systems and methods that enjoy substantially increased FOV.
  • the diameter of the in-plane FOV of CT systems according to the present invention can be larger than the in-plane extent of the detector (or source) array.
  • the invention provides CT systems with increased FOV without the expense and complication of larger detector (or source) array sizes required in the past.
  • a method for volumetric computed tomography.
  • multiple x-ray point sources emit corresponding fan beams at a single detector array at different corresponding times.
  • X-ray image data is acquired at the detector array as the x-ray point sources and the detector are both rotated together around a rotational axis.
  • Each of the fan beams has a central ray passing from the source to the midpoint of the detector.
  • the central rays of at least two fan beams intersect at the detector midpoint, and the central ray of at least one fan beam is offset from the rotational axis by an offset distance.
  • the diameter of the in-plane field of view provided by the combination of the fan beams is preferably larger than an in-plane extent of the detector array.
  • the other source has a fan beam whose central ray may pass through the rotational axis (i.e., have no offset) or may be offset from the rotational axis.
  • the other sources have fan beams whose central rays may pass through the rotational axis or may be offset from the rotational axis.
  • Additional embodiments include inverse geometry analogues and generalizations of the principles to 3D systems.
  • FIG. 1 is a cross-sectional illustration of a conventional CT system having an x-ray point source emitting a fan beam toward a detector array.
  • FIG. 2 is a cross-sectional illustration of a conventional CT system similar to the system of FIG. 1 except with a larger detector array to provide an increased field of view.
  • FIG. 3 is a cross-sectional illustration of a known CT system similar to that of FIG. 1 except with multiple sources and multiple corresponding detector arrays providing more efficient scanning, but no increase in field of view.
  • FIG. 4 is a cross-sectional illustration of a known CT system similar to that of FIG. 1 except with the single source offset a small distance off axis, providing up to a factor of two increase in field of view.
  • FIG. 5 is a cross-sectional illustration of a CT system having two sources whose fan beams are both offset from the system's rotational axis according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional illustration of a CT system having three sources, where two of the three fan beams are offset from the system's rotational axis according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional illustration of a CT system having four sources whose fan beams are all offset from the system's rotational axis according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional illustration of an inverse geometry CT system having one source array and two detectors, wherein the two corresponding fan beams are offset from the system's rotational axis according to an embodiment of the present invention.
  • FIG. 5 A volumetric CT system according to one embodiment of the invention is illustrated in FIG. 5 .
  • Two x-ray point sources 500 and 502 emit corresponding fan beams 504 and 506 at a single detector array 508 at different corresponding times.
  • X-ray image data is acquired from the detector array 508 to reconstruct a representation of an object of interest.
  • the x-ray point sources 500 and 502 , as well as the detector 508 are rotated together around a rotational axis 520 of the system. Consequently, fan beams 504 and 506 also rotate about axis 520 .
  • the fan beams 504 and 506 have corresponding central rays 510 and 512 that bisect the detector array 508 at a midpoint 514 .
  • the central rays 510 and 512 have different angular orientations and are radially offset from the rotational axis 520 by a significant offset distance D, resulting in a FOV 516 for the system which is significantly larger than the limited FOV 518 of prior systems.
  • a technique called “focal-spot wobbling” to improve in-plane sampling and reduce certain artifacts.
  • the focal spot is rapidly moved a short distance, causing a displacement of the central ray of less than 1% of the FOV of a single centered fan beam.
  • the displacement caused by focal spot wobbling is not significant.
  • the offset distance D of a fan beam is considered significant when it is approximately equal to or larger than 25%, and preferably on the order of 50% for the system of FIG. 5 , of the width of the fan beam near the rotational axis.
  • the diameter of the in-plane field of view provided by the fan beams of this system can be larger than an in-plane extent of the detector array 508 .
  • the FOV is smaller than the size of the detector array.
  • FIG. 6 Another embodiment of the invention is illustrated in FIG. 6 .
  • Three x-ray point sources 600 , 602 , 604 emit three respective fan beams 606 , 608 , 610 directed at a single detector array 618 . Because a single detector is used with multiple sources, the sources emit their corresponding beams at different corresponding times.
  • Fan beams 606 , 608 , 610 have three respective central rays 612 , 614 , 616 with different angular orientations. Although central ray 614 of beam 608 passes through rotational axis 622 , central rays 612 and 616 of beams 606 and 610 , respectively, are offset from rotational axis 622 by an offset distance D.
  • the system of FIG. 6 is modified by eliminating source 604 , which yields a system in which fan beam 608 has a central ray that passes through the rotational axis 622 , while fan beam 606 has a central ray that is offset from the rotational axis 622 .
  • at least one of the two fan beams i.e., in this case beam 606
  • the FOV 624 for this embodiment is larger than that of the embodiment described above in relation to FIG. 5 even though they both use the same size detector array and fan beam.
  • the edges of the fan beams in this system do not intersect at the rotational axis as they do in the system of FIG. 5 , avoiding problems with discontinuities there. Note, however, that this embodiment with only two fan beams requires a 360 degree rotation to obtain the maximum FOV.
  • four sources 700 , 702 , 704 , 706 emit four respective fan beams 708 , 710 , 712 , 714 directed at a single detector array 724 , as shown in FIG. 7 .
  • Fan beams 708 , 710 , 712 , 714 have respective central rays 716 , 718 , 720 , 722 which intersect detector 724 at a midpoint 726 and are offset from the rotational axis 728 by offset distances D 1 (for central rays 718 and 720 ) and D 2 (for central rays 716 and 722 ).
  • the diameter of FOV 730 is almost twice as large as the extent of detector array 724 .
  • prior art systems such as that shown in FIG. 1 have a FOV diameter on the order of half the size of the detector array.
  • the system of FIG. 7 is modified by eliminating either one or both of the sources 704 and 706 .
  • the system still will have multiple sources, at least one of which has a fan beam whose central ray is offset from the axis of rotation. Elimination of sources, however, may require increased rotation of the system to acquire sufficient data.
  • the system of FIG. 7 can also be modified by adding still more sources, providing a further increase in the FOV of the system.
  • providing multiple offset sources increases the FOV, the greatest FOV increase per additional source is obtained when there are fewer sources.
  • the number of sources is an integer from two to ten.
  • it is most preferred to have an odd number of sources where one of the sources has a fan beam whose central ray passes through the rotational axis and all the other sources have fan beams whose central rays are offset from the rotational axis.
  • An odd number of sources is preferred over an even number of sources in order to avoid sampling discontinuities at the center of rotation where edges of two innermost fan beams may intersect. It is possible, however, for a system with an even number of sources to avoid this problem by increasing the overlap between the two innermost fan beams, i.e., slightly decreasing the displacements of their central rays from the rotational axis.
  • the offsets of the central rays of the fan beams provide the system with a diversity of radial samples.
  • the rays in one fan preferably have offset distances from the rotational axis that differ from the offset distances of the rays in an adjacent fan beam by approximately 2R/N, where R is the radius of the FOV. In other embodiments, however, the rays in the fan beams are not necessarily offset uniformly.
  • the distances from the sources to the detector array may be different from each other.
  • the distances from the sources to the axis of rotation may be different from each other.
  • a single source array 818 is comprised of a large number of source locations, each with its own collimator within the collimator array 828 .
  • the collimators in 828 are designed to limit the x-rays so that they are directed at the three detectors 800 , 802 , 804 .
  • each collimator may be designed to simultaneously illuminate all three detector arrays.
  • An alternative collimator design is to dedicate each source position and corresponding collimator to direct x-rays to just one of the detector arrays, alternating adjacent collimators between the three detectors.
  • the source array has 100 source positions in the lateral direction, separated from each other by 2.5 mm, and the detector has 50 detector elements in the lateral dimension, separated from each other by about 1 mm.
  • each fan beam 806 , 808 , 810 has a corresponding central ray 812 , 814 , 816 that is defined as the line connecting the midpoint 820 of the source array to the center of the corresponding detector array 800 , 802 , 804 .
  • a conventional inverted fan beam system has a single detector 802 and corresponding inverted fan 808 which determines the limited FOV 826 .
  • the present embodiment has additional detectors 800 , 804 and corresponding fan beams 806 , 810 providing increased FOV 824 .
  • Fan beams 806 , 810 have respective central rays 812 and 816 which are both offset from the axis of rotation 822 by radial distance D.
  • each of the three inverted fan beams has a set of rays, each having a radial offset distance from the axis of rotation, the central ray providing one example of such a ray and its offset distance D.
  • the radial distances for the rays in all the beams are selected so as to have these three sets of radial distances overlapping slightly.
  • the distribution of radial distances from all the fan beams should be relatively smooth and relatively uniform.
  • the set of radial distances sampled by the set of three detector arrays produces FOV 824 .
  • the FOV has been described as a two dimensional field of view.
  • the present invention is also useful in volumetric or 3D systems.
  • various known 3D CT systems are disclosed in US Patent Application Publication 20030043957 to Pelc, U.S. Pat. No. 6,229,870 to Morgan, U.S. Pat. No. 6,654,440 to Hsieh and U.S. Pat. No. 5,966,422 to Dafni et al., which are incorporated herein by reference.
  • the systems of FIGS. 5, 6 , and 7 could be modified so that the detector is a 2-dimensional detector and the fan beams are cone beams.
  • the systems would be able to collect data to reconstruct a 3D volume, wherein the present invention is being used to increase the field of view in the trans-axial direction (i.e., in the plane of the drawings).
  • the system of FIG. 8 could be a volumetric CT scanner if the source array is a 2D array, having an extent into the plane of the drawing, and each detector array is a 2D array having an extent into the plane of the drawing. In a preferred embodiment of this latter system the extents of the source and detector arrays into the plane of the drawing are approximately the same.
  • the systems described above are used in a manner similar to conventional CT systems.
  • an object of interest is placed within the FOV of the system and x-ray projection data are acquired at various rotational angles.
  • the projection data is then processed by a computer to produce representations (e.g., images) of the object which may be displayed for viewing by a radiologist in the case of medical diagnostic applications.
  • representations e.g., images
  • the systems could also be used for other applications, such as non-destructive testing or baggage inspection.
  • reconstruction algorithms used in CT systems for processing projection data may be adapted to operate with systems employing the principles of the present invention.
  • one possible reconstruction algorithm re-bins the data into parallel ray projections, with the data from all the detector arrays being used together in the re-binning.
  • Forward geometry systems would process data analogously, re-binning the data into parallel ray projections.
  • the present invention also provides the possibility for other modified reconstruction techniques.
  • a system such as shown in FIGS. 5, 6 , or 7
  • two fan beams are produced by two sources that are positioned at the same distance from the axis of rotation (e.g., fan beam pair 504 and 506 in FIG. 5 ) and are mounted with an angle ⁇ between them, so that after the gantry rotates by an angle ⁇ the second source is at the same location that the first source was in prior to the rotation.
  • the fan beam data produced by the first source at gantry angle ⁇ can be combined with the data produced by the second source at gantry angle ⁇ + ⁇ to produce a larger fan beam for reconstruction.
  • Extensions and variations of this approach for the systems of FIGS. 6 or 7 , or for inverse geometry systems, will be evident to those skilled in the art.

Abstract

A volumetric computed tomography system with a large field of view has, in a forward geometry implementation, multiple x-ray point sources emitting corresponding fan beams at a single detector array. The central ray of at least one of the fan beams is radially offset from the axis of rotation of the system by an offset distance D. Consequently, the diameter of the in-plane field of view provided by the fan beams may be larger than in a conventional CT scanner. Any number of point sources may be used. Analogous systems may be implemented with an inverse geometry so that a single source array emits multiple fan beams that converge upon corresponding detectors.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of copending U.S. patent application No. Ser. 11/039716 filed Jan. 19, 2005, which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates generally to systems and methods for computed tomography. More specifically, it relates to improved techniques for increasing the field of view in computed tomography.
  • BACKGROUND OF THE INVENTION
  • In a conventional third-generation computed tomography (CT) system a single x-ray source 100 generates a fan beam 102 directed at an extended detector array 104, as shown in the cross-sectional view of FIG. 1. Fan beam 102 has a collection of rays diverging from source 100 at a divergence angle α, as shown. A system of this type, where the fan beam diverges from a single point source to a large array of detectors, is said to have a forward geometry. In an inverse geometry system, the, point source is exchanged for a small array of detectors (or a single detector) and detector array is exchanged for a source array, so that the set of measurement rays converge at the detectors. In the context of the present invention, forward and inverse geometry systems have similar geometrical properties. Thus, the common geometrical properties of both forward and inverse geometries can be described by considering just the forward geometry case.
  • The rays of the fan beam 102 include a central ray 108 which is defined to be the ray from the point source 100 that intersects a midpoint 110 of the detector array 104. (In the corresponding inverse geometry, the central ray is the ray from the midpoint of the source array to the mid-point of the small detector.) Note that in this conventional system the central ray 108 passes through (or very close to) a rotational axis 106 of the system. During operation of the system, source 100 and detector 104 are rotated around rotational axis 106 to various rotated positions. For example, FIG. 1 shows a rotated position corresponding to a rotation of the central ray 108 by an angle θ. As the source 100 and detector 104 rotate, fan beam 102 also rotates, providing the system with the capability to acquire x-ray transmission data at various angles from which an image is reconstructed. The rotational angles θmust cover a sufficient range so as to allow objects to be properly reconstructed. In this case, the range of θ values must be at least α plus 180 degrees. A field of view (FOV) 114 of the system is the region that is always exposed to the fan beam. Thus, for example, any portion of an object that is positioned within FOV 114 will be viewed from all rotational angles of the system. Outside of FOV 114, however, image data is not available at some rotational angles. As a result, CT systems are designed to reconstruct three-dimensional representations of objects within the FOV of the system. (Here the FOV is the in-plane FOV, i.e., the FOV within the cross-sectional plane of the fan beam which is perpendicular to the rotational axis.)
  • In the conventional CT system shown in FIG. 1 the size of FOV 114 is limited by the size of the detector array 104. In particular, the diameter of FOV 114 is always significantly less than the extent of the detector array. An increased FOV can be provided by increasing the size of the detector array, as shown in FIG. 2. A source 200 emits a fan beam 202 toward a larger detector array 204. Fan beam 202 has a central ray 208 which passes through (or very close to) rotational axis 206 and intersects a midpoint 210 of detector array 204. Due to the increased size of the detector array 204, the system has an increased FOV 214 as compared to the smaller FOV 212 provided by the smaller detector. (Similarly, an inverse geometry system also has an increased FOV if it has an increased source array size.) Although the FOV of a CT system can be increased using a larger detector array, increasing the size of the array often introduces significant technical difficulty and expense.
  • Another drawback of this CT system design is that the source and detector must rotate through a large angle to acquire images from a sufficiently large range of angles. If a patient moves during the rotation, the image data from different angles will not be consistent, resulting in artifacts and errors in the reconstructed three-dimensional representation. Alternative CT system designs (such as U.S. Pat. No. 5,966,422 to Dafni et al. and U.S. Pat. No. 4,196,352 to Berninger et al., which are incorporated herein by reference) have been proposed in an attempt to overcome this disadvantage. For example, FIG. 3 shows a CT system with multiple sources 300, 302, 304 and multiple corresponding detector arrays 306, 308, 310. The sources 300, 302, 304 emit corresponding fan beams 312, 314, 316 having respective central rays 318, 320, 322 all intersecting at a point coincident with (or very close to) an axis of rotation 324. Because the three source and detector pairs simultaneously provide image data at different angles, the required rotational angle is reduced by three, helping to mitigate problems caused by patient movement during scanning. However, the field of view 326 of this system suffers from the same problem as the conventional single source-detector system of FIG. 1. To increase the FOV of this system, the detector array sizes must be increased. In any case, the FOV is always less than the detector size. Moreover, despite the use of three detector arrays and sources, there is no FOV increase compared to the single source-detector system of FIG. 1. (The same disadvantages apply to the analogous inverse geometry system.)
  • An alternative CT system that provides a slight increase in FOV is shown in FIG. 4 (see also U.S. Pat. No. 5,430,297 to Hawman, which is incorporated herein by reference). A single source 400 emits a fan beam 402 directed at a detector array 404. A central ray 406 of fan beam 402 intersects a midpoint 410 of detector 404. In contrast to the conventional system of FIG. 1, however, the fan beam 402 of source 400 is offset from centerline 412 so that the central ray 406 is offset from the rotational axis 408 of the system. Consequently, line 418 from source 400 passing through axis 408 intersects the detector 404 at a point 420 that is far from midpoint 410. As the source 400 and detector 404 rotate around rotational axis 408, the single fan beam also rotates around axis 408. Due to the offset of the fan beam, the FOV 414 of this system is larger than the FOV 416 of a comparable system with no offset, provided the system rotates through at least 360 degrees. The FOV 414, however, while larger than FOV 416, is still substantially limited unless the detector array is quite large. In particular, the diameter of the FOV of this system is always less than twice that of the system of FIG. 1, and generally less than the extent of the detector array. Moreover, the asymmetry of the system geometry requires a rotation of at least 360 degrees, introduces complexities to the data processing required to reconstruct a representation of the object from the data collected at various angles, and in general has non-uniform noise behavior. (The analogous inverted system has similar limitations.)
  • SUMMARY OF THE INVENTION
  • The present invention provides improved CT systems and methods that enjoy substantially increased FOV. The diameter of the in-plane FOV of CT systems according to the present invention can be larger than the in-plane extent of the detector (or source) array. Thus, the invention provides CT systems with increased FOV without the expense and complication of larger detector (or source) array sizes required in the past.
  • According to one aspect of the invention, a method is provided for volumetric computed tomography. In a forward-geometry implementation, multiple x-ray point sources emit corresponding fan beams at a single detector array at different corresponding times. X-ray image data is acquired at the detector array as the x-ray point sources and the detector are both rotated together around a rotational axis. Each of the fan beams has a central ray passing from the source to the midpoint of the detector. Thus, the central rays of at least two fan beams intersect at the detector midpoint, and the central ray of at least one fan beam is offset from the rotational axis by an offset distance. The diameter of the in-plane field of view provided by the combination of the fan beams is preferably larger than an in-plane extent of the detector array.
  • In some embodiments there are two sources, where at least one source has a fan beam whose central ray is offset from the rotational axis. The other source has a fan beam whose central ray may pass through the rotational axis (i.e., have no offset) or may be offset from the rotational axis.
  • In other embodiments, there are three or more sources, where at least one source has a fan beam whose central ray is offset from the rotational axis. The other sources have fan beams whose central rays may pass through the rotational axis or may be offset from the rotational axis. Additional embodiments include inverse geometry analogues and generalizations of the principles to 3D systems.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional illustration of a conventional CT system having an x-ray point source emitting a fan beam toward a detector array.
  • FIG. 2 is a cross-sectional illustration of a conventional CT system similar to the system of FIG. 1 except with a larger detector array to provide an increased field of view.
  • FIG. 3 is a cross-sectional illustration of a known CT system similar to that of FIG. 1 except with multiple sources and multiple corresponding detector arrays providing more efficient scanning, but no increase in field of view.
  • FIG. 4 is a cross-sectional illustration of a known CT system similar to that of FIG. 1 except with the single source offset a small distance off axis, providing up to a factor of two increase in field of view.
  • FIG. 5 is a cross-sectional illustration of a CT system having two sources whose fan beams are both offset from the system's rotational axis according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional illustration of a CT system having three sources, where two of the three fan beams are offset from the system's rotational axis according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional illustration of a CT system having four sources whose fan beams are all offset from the system's rotational axis according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional illustration of an inverse geometry CT system having one source array and two detectors, wherein the two corresponding fan beams are offset from the system's rotational axis according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • A volumetric CT system according to one embodiment of the invention is illustrated in FIG. 5. Two x-ray point sources 500 and 502 emit corresponding fan beams 504 and 506 at a single detector array 508 at different corresponding times. X-ray image data is acquired from the detector array 508 to reconstruct a representation of an object of interest. The x-ray point sources 500 and 502, as well as the detector 508 are rotated together around a rotational axis 520 of the system. Consequently, fan beams 504 and 506 also rotate about axis 520. The fan beams 504 and 506 have corresponding central rays 510 and 512 that bisect the detector array 508 at a midpoint 514. Because the multiple fan beams are directed toward a common detector array from sources having different locations, the central rays 510 and 512 have different angular orientations and are radially offset from the rotational axis 520 by a significant offset distance D, resulting in a FOV 516 for the system which is significantly larger than the limited FOV 518 of prior systems. There are prior art systems that employ a technique called “focal-spot wobbling” to improve in-plane sampling and reduce certain artifacts. In these systems, the focal spot is rapidly moved a short distance, causing a displacement of the central ray of less than 1% of the FOV of a single centered fan beam. With respect to the present invention, the displacement caused by focal spot wobbling is not significant. The offset distance D of a fan beam is considered significant when it is approximately equal to or larger than 25%, and preferably on the order of 50% for the system of FIG. 5, of the width of the fan beam near the rotational axis. Moreover, the diameter of the in-plane field of view provided by the fan beams of this system can be larger than an in-plane extent of the detector array 508. In prior systems, the FOV is smaller than the size of the detector array.
  • Another embodiment of the invention is illustrated in FIG. 6. Three x-ray point sources 600, 602, 604 emit three respective fan beams 606, 608, 610 directed at a single detector array 618. Because a single detector is used with multiple sources, the sources emit their corresponding beams at different corresponding times. Fan beams 606, 608, 610 have three respective central rays 612, 614, 616 with different angular orientations. Although central ray 614 of beam 608 passes through rotational axis 622, central rays 612 and 616 of beams 606 and 610, respectively, are offset from rotational axis 622 by an offset distance D. Central rays 612, 614, 616 intersect the detector array 618 at a midpoint 620. Due to the novel design, FOV 624 can be significantly larger even than the extent of the detector array 618. As evident from the figure, the FOV 624 is nearly three times larger than the FOV 626 of a prior art CT system. To obtain a FOV of comparable size, the prior art CT system would require a significantly larger detector array, increasing the expense and complexity of the system.
  • In another embodiment of the invention, the system of FIG. 6 is modified by eliminating source 604, which yields a system in which fan beam 608 has a central ray that passes through the rotational axis 622, while fan beam 606 has a central ray that is offset from the rotational axis 622. Thus, at least one of the two fan beams (i.e., in this case beam 606) has a central ray that is offset. The FOV 624 for this embodiment is larger than that of the embodiment described above in relation to FIG. 5 even though they both use the same size detector array and fan beam. In addition, the edges of the fan beams in this system do not intersect at the rotational axis as they do in the system of FIG. 5, avoiding problems with discontinuities there. Note, however, that this embodiment with only two fan beams requires a 360 degree rotation to obtain the maximum FOV.
  • In yet another embodiment of the invention, four sources 700, 702, 704, 706 emit four respective fan beams 708, 710, 712, 714 directed at a single detector array 724, as shown in FIG. 7. Fan beams 708, 710, 712, 714 have respective central rays 716, 718, 720, 722 which intersect detector 724 at a midpoint 726 and are offset from the rotational axis 728 by offset distances D1 (for central rays 718 and 720) and D2 (for central rays 716 and 722). Note that the diameter of FOV 730 is almost twice as large as the extent of detector array 724. In contrast, prior art systems such as that shown in FIG. 1 have a FOV diameter on the order of half the size of the detector array.
  • In an alternate embodiment, the system of FIG. 7 is modified by eliminating either one or both of the sources 704 and 706. The system still will have multiple sources, at least one of which has a fan beam whose central ray is offset from the axis of rotation. Elimination of sources, however, may require increased rotation of the system to acquire sufficient data.
  • The system of FIG. 7 can also be modified by adding still more sources, providing a further increase in the FOV of the system. Although providing multiple offset sources increases the FOV, the greatest FOV increase per additional source is obtained when there are fewer sources. Thus, it is preferred that the number of sources is an integer from two to ten. Although not necessary, it is most preferred to have an odd number of sources, where one of the sources has a fan beam whose central ray passes through the rotational axis and all the other sources have fan beams whose central rays are offset from the rotational axis. An odd number of sources is preferred over an even number of sources in order to avoid sampling discontinuities at the center of rotation where edges of two innermost fan beams may intersect. It is possible, however, for a system with an even number of sources to avoid this problem by increasing the overlap between the two innermost fan beams, i.e., slightly decreasing the displacements of their central rays from the rotational axis.
  • The offsets of the central rays of the fan beams provide the system with a diversity of radial samples. In embodiments where N fan beams are symmetrically placed about the center of rotation and are uniformly spaced, the rays in one fan preferably have offset distances from the rotational axis that differ from the offset distances of the rays in an adjacent fan beam by approximately 2R/N, where R is the radius of the FOV. In other embodiments, however, the rays in the fan beams are not necessarily offset uniformly.
  • It should also be noted that in alternate embodiments the distances from the sources to the detector array may be different from each other. In addition, the distances from the sources to the axis of rotation may be different from each other.
  • In view of the above description, those skilled in the art will appreciate that various inverse geometry systems analogous to the systems described above may be provided by replacing the multiple point sources with multiple small detectors (e.g., small detector arrays) and replacing the detector array with a source array whose collimators provide x-rays directed at the multiple detectors. (Examples of inverse geometry systems can be seen in US Patent Application Publication 20030043957 to Pelc and US Patent Application Publication 20030043958 to Mihara et al., which are incorporated herein by reference.) For example, a preferred embodiment of the present invention having an inverse geometry is shown in FIG. 8. A single source array 818 is comprised of a large number of source locations, each with its own collimator within the collimator array 828. The collimators in 828 are designed to limit the x-rays so that they are directed at the three detectors 800, 802, 804. For example, each collimator may be designed to simultaneously illuminate all three detector arrays. An alternative collimator design is to dedicate each source position and corresponding collimator to direct x-rays to just one of the detector arrays, alternating adjacent collimators between the three detectors. In one implementation, the source array has 100 source positions in the lateral direction, separated from each other by 2.5 mm, and the detector has 50 detector elements in the lateral dimension, separated from each other by about 1 mm. The net effect of the source array 818 is to produce three fan beams 806, 808, 810 directing x-rays to converge upon three corresponding detectors 800, 802, 804. As in the forward geometry system, each fan beam 806, 808, 810 has a corresponding central ray 812, 814, 816 that is defined as the line connecting the midpoint 820 of the source array to the center of the corresponding detector array 800, 802, 804. A conventional inverted fan beam system has a single detector 802 and corresponding inverted fan 808 which determines the limited FOV 826. In contrast, the present embodiment has additional detectors 800, 804 and corresponding fan beams 806, 810 providing increased FOV 824. Fan beams 806, 810 have respective central rays 812 and 816 which are both offset from the axis of rotation 822 by radial distance D. More generally, note that each of the three inverted fan beams has a set of rays, each having a radial offset distance from the axis of rotation, the central ray providing one example of such a ray and its offset distance D. Ideally, the radial distances for the rays in all the beams are selected so as to have these three sets of radial distances overlapping slightly. Moreover, ideally the distribution of radial distances from all the fan beams should be relatively smooth and relatively uniform. The set of radial distances sampled by the set of three detector arrays produces FOV 824.
  • In the forward as well as the inverse geometry embodiments described above, the FOV has been described as a two dimensional field of view. As will be clear to one of skill in the art, the present invention is also useful in volumetric or 3D systems. (Examples of various known 3D CT systems are disclosed in US Patent Application Publication 20030043957 to Pelc, U.S. Pat. No. 6,229,870 to Morgan, U.S. Pat. No. 6,654,440 to Hsieh and U.S. Pat. No. 5,966,422 to Dafni et al., which are incorporated herein by reference.) For example, the systems of FIGS. 5, 6, and 7 could be modified so that the detector is a 2-dimensional detector and the fan beams are cone beams. In one rotation of the gantry, the systems would be able to collect data to reconstruct a 3D volume, wherein the present invention is being used to increase the field of view in the trans-axial direction (i.e., in the plane of the drawings). Similarly, the system of FIG. 8 could be a volumetric CT scanner if the source array is a 2D array, having an extent into the plane of the drawing, and each detector array is a 2D array having an extent into the plane of the drawing. In a preferred embodiment of this latter system the extents of the source and detector arrays into the plane of the drawing are approximately the same.
  • In operation, the systems described above are used in a manner similar to conventional CT systems. Thus, an object of interest is placed within the FOV of the system and x-ray projection data are acquired at various rotational angles. The projection data is then processed by a computer to produce representations (e.g., images) of the object which may be displayed for viewing by a radiologist in the case of medical diagnostic applications. The systems could also be used for other applications, such as non-destructive testing or baggage inspection.
  • The reconstruction algorithms used in CT systems for processing projection data (e.g., see U.S. Pat. No. 5,825,842 to Taguchi, which is incorporated herein by reference) may be adapted to operate with systems employing the principles of the present invention. For the inverse geometry system, one possible reconstruction algorithm re-bins the data into parallel ray projections, with the data from all the detector arrays being used together in the re-binning. Forward geometry systems would process data analogously, re-binning the data into parallel ray projections.
  • The present invention also provides the possibility for other modified reconstruction techniques. For example, in a system such as shown in FIGS. 5, 6, or 7, consider the case where two fan beams are produced by two sources that are positioned at the same distance from the axis of rotation (e.g., fan beam pair 504 and 506 in FIG. 5) and are mounted with an angle δ between them, so that after the gantry rotates by an angle δ the second source is at the same location that the first source was in prior to the rotation. As a result, the fan beam data produced by the first source at gantry angle θ can be combined with the data produced by the second source at gantry angle θ+δ to produce a larger fan beam for reconstruction. Extensions and variations of this approach for the systems of FIGS. 6 or 7, or for inverse geometry systems, will be evident to those skilled in the art.

Claims (14)

1. A method of computed tomography comprising:
providing multiple x-ray point sources and a detector array;
emitting from the x-ray point sources corresponding fan beams directed at the detector array;
acquiring x-ray data at the detector array; and
rotating the x-ray point sources and the detector array around a rotational axis;
wherein the fan beams have corresponding central rays connecting the corresponding point sources to a midpoint of the detector array, wherein the central ray of at least one of the fan beams is offset from the rotational axis by a substantial offset distance D.
2. The method of claim 1 wherein the fan beams have corresponding sets of rays, each ray having a radial offset distance from the rotational axis, wherein the radial offset distances of the rays in the sets are selected such that there is an overlap of radial offset distances between the sets.
3. The method of claim 1 wherein at least one of the fan beams has a central ray that is radially offset from the rotational axis by a distance D approximately equal to or greater than a width of the corresponding fan beam near the rotational axis.
4. The method of claim 1 wherein a diameter of a field of view provided by the fan beams is larger than an extent of the detector array.
5. The method of claim 1 wherein none of the central rays passes through the rotational axis.
6. The method of claim 1 wherein the central rays all intersect at a midpoint of the detector array.
7. The method of claim 1 wherein rays in one of the fan beams have offset distances from the rotational axis that differ from offset distances of rays in an adjacent one of the fan beams by approximately 2R/N, where R is a radius of a field of view provided by the fan beams and N is the number of point sources.
8. A computed tomography system comprising:
a detector array;
multiple x-ray point sources for generating corresponding fan beams directed at the detector array;
wherein the x-ray point sources and the detector array are capable of being rotated together around a rotational axis; and
wherein the fan beams have corresponding central rays connecting the corresponding point sources to a midpoint of the detector array, wherein the central ray of at least one of the fan beams is offset from the rotational axis by a substantial offset distance D.
9. The system of claim 8 wherein the fan beams have corresponding sets of rays, each ray having a radial offset distance from the rotational axis, wherein the radial offset distances of the rays in the sets are selected such that there is an overlap of radial offset distances between the sets.
10. The system of claim 8 wherein at least one of the fan beams has a central ray that is radially offset from the rotational axis by a distance D approximately equal to or greater than a width of the corresponding fan beam near the rotational axis.
11. The system of claim 8 wherein a diameter of a field of view provided by the fan beams is larger than an extent of the detector array.
12. The system of claim 8 wherein none of the central rays passes through the rotational axis.
13. The system of claim 8 wherein the central rays all intersect at a midpoint of the detector array.
14. The system of claim 8 wherein rays in one of the fan beams have offset distances from the rotational axis that differ from offset distances of rays in an adjacent one of the fan beams by approximately 2R/N, where R is a radius of a field of view provided by the fan beams and N is the number of point sources.
US11/438,053 2005-01-19 2006-05-18 Computed tomography with increased field of view Abandoned US20060210015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/438,053 US20060210015A1 (en) 2005-01-19 2006-05-18 Computed tomography with increased field of view

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/039,716 US7062006B1 (en) 2005-01-19 2005-01-19 Computed tomography with increased field of view
US11/438,053 US20060210015A1 (en) 2005-01-19 2006-05-18 Computed tomography with increased field of view

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/039,716 Continuation US7062006B1 (en) 2005-01-19 2005-01-19 Computed tomography with increased field of view

Publications (1)

Publication Number Publication Date
US20060210015A1 true US20060210015A1 (en) 2006-09-21

Family

ID=36576552

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/039,716 Active US7062006B1 (en) 2005-01-19 2005-01-19 Computed tomography with increased field of view
US11/438,053 Abandoned US20060210015A1 (en) 2005-01-19 2006-05-18 Computed tomography with increased field of view

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/039,716 Active US7062006B1 (en) 2005-01-19 2005-01-19 Computed tomography with increased field of view

Country Status (1)

Country Link
US (2) US7062006B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080049891A1 (en) * 2006-08-28 2008-02-28 Zhye Yin Methods for analytic reconstruction for mult-source inverse geometry ct
US20080123804A1 (en) * 2006-11-24 2008-05-29 De Man Bruno K B Architectures for cardiac ct based on area x-ray sources
US20080123803A1 (en) * 2006-11-24 2008-05-29 De Man Bruno K B Method and system for ct imaging using multi-spot emission sources
US20100124310A1 (en) * 2008-11-18 2010-05-20 The Board Of Trustees Of The Leland Stanford Junior University Data normalization in inverse geometry computed tomography system
US20110211665A1 (en) * 2010-02-24 2011-09-01 Accuray Incorporated Gantry Image Guided Radiotherapy System And Related Treatment Delivery Methods
US20120075427A1 (en) * 2010-09-24 2012-03-29 Microsoft Corporation Wide angle field of view active illumination imaging system
US8559596B2 (en) 2010-06-08 2013-10-15 Accuray Incorporated Target Tracking for image-guided radiation treatment
US8699657B2 (en) 2008-12-17 2014-04-15 Koninklijke Philips N.V. X-ray examination apparatus and method
US9271689B2 (en) 2010-01-20 2016-03-01 General Electric Company Apparatus for wide coverage computed tomography and method of constructing same
US9687200B2 (en) 2010-06-08 2017-06-27 Accuray Incorporated Radiation treatment delivery system with translatable ring gantry
US10010296B2 (en) 2014-12-30 2018-07-03 Morpho Detection, Llc Systems and methods for x-ray CT scanner with reconfigurable field of view
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10610175B2 (en) 2011-01-20 2020-04-07 Accuray Incorporated Radiation treatment delivery system with translatable ring gantry
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US20220244196A1 (en) * 2021-01-29 2022-08-04 Shandong University Fast industrial ct scanning system and method
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7062006B1 (en) * 2005-01-19 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Computed tomography with increased field of view
DE602006013733D1 (en) * 2005-03-07 2010-06-02 Toshiba Kk X-ray CT device and data detection method of the X-ray CT device
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US9339243B2 (en) 2006-04-14 2016-05-17 William Beaumont Hospital Image guided radiotherapy with dual source and dual detector arrays tetrahedron beam computed tomography
US8983024B2 (en) 2006-04-14 2015-03-17 William Beaumont Hospital Tetrahedron beam computed tomography with multiple detectors and/or source arrays
CN102961159A (en) * 2006-04-14 2013-03-13 威廉博蒙特医院 Scanning slot cone-beam computed tomography and scanning focus spot cone-beam computed tomography
CN102218198A (en) * 2006-05-25 2011-10-19 威廉博蒙特医院 Method for forming a portal image
US7869566B2 (en) * 2007-06-29 2011-01-11 Morpho Detection, Inc. Integrated multi-sensor systems for and methods of explosives detection
JP2010035812A (en) * 2008-08-05 2010-02-18 Toshiba Corp X-ray computerized tomographic apparatus
US8139709B2 (en) * 2008-09-15 2012-03-20 University Of Utah Research Foundation Staggered circular scans for CT imaging
EP2348980A4 (en) 2008-10-13 2012-06-20 George Papaioannou Dynamic biplane roentgen stereophotogrammetric analysis
EP2586374B1 (en) 2009-01-21 2015-03-18 Koninklijke Philips N.V. Method and apparatus for large field of view imaging and detection and compensation of motion artifacts
EP2462562B1 (en) * 2009-08-06 2019-06-19 Koninklijke Philips N.V. Method and apparatus for generating computed tomography images with offset detector geometries
US8670523B2 (en) 2010-01-05 2014-03-11 William Beaumont Hospital Intensity modulated arc therapy with continuous couch rotation/shift and simultaneous cone beam imaging
US8509380B2 (en) 2010-03-19 2013-08-13 The Board Of Trustees Of The Leland Stanford Junior University Inverse geometry volume computed tomography systems
US8520800B2 (en) 2010-08-09 2013-08-27 Triple Ring Technologies, Inc. Method and apparatus for radiation resistant imaging
KR101678664B1 (en) 2010-09-07 2016-11-23 삼성전자주식회사 Apparatus and method for photographing breast
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
US9186524B2 (en) 2011-06-29 2015-11-17 Triple Ring Technologies, Inc. Method and apparatus for localized X-ray radiation treatment
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11896446B2 (en) 2012-06-21 2024-02-13 Globus Medical, Inc Surgical robotic automation with tracking markers
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US10646280B2 (en) 2012-06-21 2020-05-12 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11786324B2 (en) 2012-06-21 2023-10-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US10874466B2 (en) 2012-06-21 2020-12-29 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11589771B2 (en) 2012-06-21 2023-02-28 Globus Medical Inc. Method for recording probe movement and determining an extent of matter removed
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US10842461B2 (en) 2012-06-21 2020-11-24 Globus Medical, Inc. Systems and methods of checking registrations for surgical systems
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US10799298B2 (en) 2012-06-21 2020-10-13 Globus Medical Inc. Robotic fluoroscopic navigation
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
JP2015528713A (en) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド Surgical robot platform
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US9001962B2 (en) 2012-12-20 2015-04-07 Triple Ring Technologies, Inc. Method and apparatus for multiple X-ray imaging applications
US9217719B2 (en) 2013-01-10 2015-12-22 Novaray Medical, Inc. Method and apparatus for improved sampling resolution in X-ray imaging systems
US9520263B2 (en) 2013-02-11 2016-12-13 Novaray Medical Inc. Method and apparatus for generation of a uniform-profile particle beam
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
EP3104803B1 (en) 2014-02-11 2021-09-15 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
US10004562B2 (en) 2014-04-24 2018-06-26 Globus Medical, Inc. Surgical instrument holder for use with a robotic surgical system
US10828120B2 (en) 2014-06-19 2020-11-10 Kb Medical, Sa Systems and methods for performing minimally invasive surgery
US10765438B2 (en) 2014-07-14 2020-09-08 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
CN107072673A (en) 2014-07-14 2017-08-18 Kb医疗公司 Anti-skidding operating theater instruments for preparing hole in bone tissue
EP3226781B1 (en) 2014-12-02 2018-08-01 KB Medical SA Robot assisted volume removal during surgery
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
EP3258872B1 (en) 2015-02-18 2023-04-26 KB Medical SA Systems for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
WO2017037127A1 (en) 2015-08-31 2017-03-09 KB Medical SA Robotic surgical systems and methods
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US11039893B2 (en) 2016-10-21 2021-06-22 Globus Medical, Inc. Robotic surgical systems
JP2018114280A (en) 2017-01-18 2018-07-26 ケービー メディカル エスアー Universal instrument guide for robotic surgical system, surgical instrument system, and method of using them
EP3360502A3 (en) 2017-01-18 2018-10-31 KB Medical SA Robotic navigation of robotic surgical systems
EP3351202B1 (en) 2017-01-18 2021-09-08 KB Medical SA Universal instrument guide for robotic surgical systems
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
JP6778242B2 (en) 2017-11-09 2020-10-28 グローバス メディカル インコーポレイティッド Surgical robot systems for bending surgical rods, and related methods and equipment
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11918313B2 (en) 2019-03-15 2024-03-05 Globus Medical Inc. Active end effectors for surgical robots
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11016042B2 (en) * 2019-08-13 2021-05-25 GE Sensing & Inspection Technologies, GmbH Fast industrial computed tomography for large objects
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11464581B2 (en) 2020-01-28 2022-10-11 Globus Medical, Inc. Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11911115B2 (en) 2021-12-20 2024-02-27 Globus Medical Inc. Flat panel registration fixture and method of using same

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008400A (en) * 1975-03-18 1977-02-15 Picker Corporation Transverse tomography system having multibeam orbital scanning with all beams offset from the center of orbit
US4196352A (en) * 1978-04-28 1980-04-01 General Electric Company Multiple purpose high speed tomographic x-ray scanner
US4637040A (en) * 1983-07-28 1987-01-13 Elscint, Ltd. Plural source computerized tomography device with improved resolution
US4670657A (en) * 1985-03-29 1987-06-02 Siemens Gammasonics, Inc. Astigmatic collimator
US5001347A (en) * 1989-09-27 1991-03-19 Siemens Gammasonics, Inc. Focussing collimators for use in rotational camera transaxial SPECT in which the camera head is inclined with respect to the axis of rotation
US5173852A (en) * 1990-06-20 1992-12-22 General Electric Company Computed tomography system with translatable focal spot
US5265142A (en) * 1992-05-08 1993-11-23 General Electric Company Image reconstruction technique for a computer tomography system
US5430297A (en) * 1993-11-16 1995-07-04 Siemens Medical Systems, Inc. Fan-beam collimator with offset focus and scintillation camera system which uses it
US5825842A (en) * 1995-07-05 1998-10-20 Kabushiki Kaisha Toshiba X-ray computed tomographic imaging device and x-ray computed tomographic method
US5864598A (en) * 1997-04-21 1999-01-26 General Electric Company Methods and apparatus for scanning an object in a computed tomography system
US5966422A (en) * 1992-07-20 1999-10-12 Picker Medical Systems, Ltd. Multiple source CT scanner
US6229870B1 (en) * 1998-11-25 2001-05-08 Picker International, Inc. Multiple fan beam computed tomography system
US6389097B1 (en) * 2000-12-28 2002-05-14 Ge Medical Systems Global Technology Company, Llc Multi-plate volumetric CT scanner gap compensation method and apparatus
US20030043958A1 (en) * 2001-02-23 2003-03-06 Mitsubishi Heavy Industries, Ltd. X-ray CT apparatus
US20030043957A1 (en) * 2001-08-24 2003-03-06 Pelc Norbert J. Volumetric computed tomography (VCT)
US6570951B1 (en) * 2002-05-14 2003-05-27 Ge Medical Systems Global Technology Company, Llc Image space compensation scheme for reducing artifacts
US6654440B1 (en) * 2002-06-29 2003-11-25 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for computed tomography scanning using a two-dimensional radiation source
US20030235265A1 (en) * 2002-06-25 2003-12-25 Clinthorne Neal H. High spatial resolution X-ray computed tomography (CT) system
US20050135550A1 (en) * 2003-12-23 2005-06-23 Man Bruno D. Method and apparatus for employing multiple axial-sources
US20050190878A1 (en) * 2004-02-27 2005-09-01 Bruno De Man Method and system for imaging using multiple offset X-ray emission points
US7062006B1 (en) * 2005-01-19 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Computed tomography with increased field of view
US7082180B2 (en) * 2002-11-26 2006-07-25 General Electric Company Methods and apparatus for computing volumetric perfusion

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008400A (en) * 1975-03-18 1977-02-15 Picker Corporation Transverse tomography system having multibeam orbital scanning with all beams offset from the center of orbit
US4196352A (en) * 1978-04-28 1980-04-01 General Electric Company Multiple purpose high speed tomographic x-ray scanner
US4637040A (en) * 1983-07-28 1987-01-13 Elscint, Ltd. Plural source computerized tomography device with improved resolution
US4670657A (en) * 1985-03-29 1987-06-02 Siemens Gammasonics, Inc. Astigmatic collimator
US5001347A (en) * 1989-09-27 1991-03-19 Siemens Gammasonics, Inc. Focussing collimators for use in rotational camera transaxial SPECT in which the camera head is inclined with respect to the axis of rotation
US5173852A (en) * 1990-06-20 1992-12-22 General Electric Company Computed tomography system with translatable focal spot
US5265142A (en) * 1992-05-08 1993-11-23 General Electric Company Image reconstruction technique for a computer tomography system
US5966422A (en) * 1992-07-20 1999-10-12 Picker Medical Systems, Ltd. Multiple source CT scanner
US5430297A (en) * 1993-11-16 1995-07-04 Siemens Medical Systems, Inc. Fan-beam collimator with offset focus and scintillation camera system which uses it
US5825842A (en) * 1995-07-05 1998-10-20 Kabushiki Kaisha Toshiba X-ray computed tomographic imaging device and x-ray computed tomographic method
US5864598A (en) * 1997-04-21 1999-01-26 General Electric Company Methods and apparatus for scanning an object in a computed tomography system
US6229870B1 (en) * 1998-11-25 2001-05-08 Picker International, Inc. Multiple fan beam computed tomography system
US6389097B1 (en) * 2000-12-28 2002-05-14 Ge Medical Systems Global Technology Company, Llc Multi-plate volumetric CT scanner gap compensation method and apparatus
US20030043958A1 (en) * 2001-02-23 2003-03-06 Mitsubishi Heavy Industries, Ltd. X-ray CT apparatus
US20030043957A1 (en) * 2001-08-24 2003-03-06 Pelc Norbert J. Volumetric computed tomography (VCT)
US6570951B1 (en) * 2002-05-14 2003-05-27 Ge Medical Systems Global Technology Company, Llc Image space compensation scheme for reducing artifacts
US20030235265A1 (en) * 2002-06-25 2003-12-25 Clinthorne Neal H. High spatial resolution X-ray computed tomography (CT) system
US6654440B1 (en) * 2002-06-29 2003-11-25 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for computed tomography scanning using a two-dimensional radiation source
US7082180B2 (en) * 2002-11-26 2006-07-25 General Electric Company Methods and apparatus for computing volumetric perfusion
US20050135550A1 (en) * 2003-12-23 2005-06-23 Man Bruno D. Method and apparatus for employing multiple axial-sources
US20050190878A1 (en) * 2004-02-27 2005-09-01 Bruno De Man Method and system for imaging using multiple offset X-ray emission points
US7062006B1 (en) * 2005-01-19 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Computed tomography with increased field of view

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055158A (en) * 2006-08-28 2008-03-13 General Electric Co <Ge> Analytical reconstruction method for multi-radiation source inverse-geometry type computed tomography
US7778386B2 (en) 2006-08-28 2010-08-17 General Electric Company Methods for analytic reconstruction for mult-source inverse geometry CT
US20080049891A1 (en) * 2006-08-28 2008-02-28 Zhye Yin Methods for analytic reconstruction for mult-source inverse geometry ct
US20080123804A1 (en) * 2006-11-24 2008-05-29 De Man Bruno K B Architectures for cardiac ct based on area x-ray sources
US20080123803A1 (en) * 2006-11-24 2008-05-29 De Man Bruno K B Method and system for ct imaging using multi-spot emission sources
US7388940B1 (en) * 2006-11-24 2008-06-17 General Electric Company Architectures for cardiac CT based on area x-ray sources
US7428292B2 (en) 2006-11-24 2008-09-23 General Electric Company Method and system for CT imaging using multi-spot emission sources
US20100124310A1 (en) * 2008-11-18 2010-05-20 The Board Of Trustees Of The Leland Stanford Junior University Data normalization in inverse geometry computed tomography system
US7860210B2 (en) * 2008-11-18 2010-12-28 The Board Of Trustees Of The Leland Stanford Junior University Data normalization in inverse geometry computed tomography system
US8699657B2 (en) 2008-12-17 2014-04-15 Koninklijke Philips N.V. X-ray examination apparatus and method
US9271689B2 (en) 2010-01-20 2016-03-01 General Electric Company Apparatus for wide coverage computed tomography and method of constructing same
US9327141B2 (en) 2010-02-24 2016-05-03 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US9700740B2 (en) 2010-02-24 2017-07-11 Accuray Incorporated Rotatable gantry radiation treatment system
US10335611B2 (en) 2010-02-24 2019-07-02 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US8917813B2 (en) 2010-02-24 2014-12-23 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US8934605B2 (en) 2010-02-24 2015-01-13 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US10315050B2 (en) 2010-02-24 2019-06-11 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US10709903B2 (en) 2010-02-24 2020-07-14 Accuracy Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US20110211665A1 (en) * 2010-02-24 2011-09-01 Accuray Incorporated Gantry Image Guided Radiotherapy System And Related Treatment Delivery Methods
US9387347B2 (en) 2010-02-24 2016-07-12 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US10500415B2 (en) 2010-02-24 2019-12-10 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US9687200B2 (en) 2010-06-08 2017-06-27 Accuray Incorporated Radiation treatment delivery system with translatable ring gantry
US9895555B2 (en) 2010-06-08 2018-02-20 Accuray Incorporated Imaging methods for image-guided radiation treatment
US9943707B2 (en) 2010-06-08 2018-04-17 Accuray Incorporated Tracking a target structure contained within a target volume using an X-ray tomosynthesis imaging detector
US8559596B2 (en) 2010-06-08 2013-10-15 Accuray Incorporated Target Tracking for image-guided radiation treatment
US10173078B2 (en) 2010-06-08 2019-01-08 Accuray Incorporated Two-dimensional x-ray imaging of a target volume
US8804901B2 (en) 2010-06-08 2014-08-12 Accuray Incorporated Imaging methods for image-guided radiation treatment
US20120075427A1 (en) * 2010-09-24 2012-03-29 Microsoft Corporation Wide angle field of view active illumination imaging system
US8988508B2 (en) * 2010-09-24 2015-03-24 Microsoft Technology Licensing, Llc. Wide angle field of view active illumination imaging system
US10610175B2 (en) 2011-01-20 2020-04-07 Accuray Incorporated Radiation treatment delivery system with translatable ring gantry
US10010296B2 (en) 2014-12-30 2018-07-03 Morpho Detection, Llc Systems and methods for x-ray CT scanner with reconfigurable field of view
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10687779B2 (en) 2016-02-03 2020-06-23 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US20220244196A1 (en) * 2021-01-29 2022-08-04 Shandong University Fast industrial ct scanning system and method
US11821853B2 (en) * 2021-01-29 2023-11-21 Shandong University Fast industrial CT scanning system and method

Also Published As

Publication number Publication date
US7062006B1 (en) 2006-06-13

Similar Documents

Publication Publication Date Title
US7062006B1 (en) Computed tomography with increased field of view
JP5553959B2 (en) Analytical reconstruction method for multi-source IGCT data
US7103138B2 (en) Sampling in volumetric computed tomography
US7903779B2 (en) Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system
US7072436B2 (en) Volumetric computed tomography (VCT)
US7145981B2 (en) Volumetric computed tomography (VCT)
US7062009B2 (en) Helical interpolation for an asymmetric multi-slice scanner
US6665370B2 (en) Computed tomography method and apparatus for acquiring images dependent on a time curve of a periodic motion of the subject
US7945012B2 (en) Computed tomography image acquisition
US7333588B2 (en) Virtual spherical anode computed tomography
EP0500857B1 (en) Cone beam scanning trajectories for three-dimensional computerized tomography data acquisition where object is larger than the field of view
JP2000515411A (en) Reconstruction of CT images of slices with turning motion
US7403587B2 (en) Computer tomography method using a cone-shaped bundle of rays
JP2000093422A (en) Computed tomography using conical radiation beam
JP4813681B2 (en) Computed tomography method
JP4553894B2 (en) System and method for helical cone beam computed tomography with accurate reconstruction
EP1077429A2 (en) Apparatus and method for reconstruction of images in a computed tomography system using oblique slices
JP4440588B2 (en) CT image forming apparatus and CT apparatus for subject moving periodically
WO2001006931A1 (en) Volumetric ct image reconstruction
US7154986B2 (en) Tilted gantry helical cone-beam Feldkamp reconstruction for multislice CT
US20130308747A1 (en) Dose reduction via dynamic collimation adjustment for targeted field of view and/or digital tilt ct
JP2001057976A (en) Method and apparatus for stereoscopic image reconstruction, and ct scanner
US8000433B2 (en) Method of creating images in computed tomography (CT), and CT device
JP2004527324A (en) Computer tomography method and computer tomography apparatus for implementing the method
US9095259B2 (en) Method and system for high resolution nutated slice reconstruction using quarter detector offset

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PELC, NORBERT J.;FAHRIG, REBECCA;REEL/FRAME:017922/0765

Effective date: 20050517

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION