US20060234026A1 - Non-combustible high pressure laminate - Google Patents

Non-combustible high pressure laminate Download PDF

Info

Publication number
US20060234026A1
US20060234026A1 US11/108,340 US10834005A US2006234026A1 US 20060234026 A1 US20060234026 A1 US 20060234026A1 US 10834005 A US10834005 A US 10834005A US 2006234026 A1 US2006234026 A1 US 2006234026A1
Authority
US
United States
Prior art keywords
laminate
layer
resin
fiber reinforced
veil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/108,340
Inventor
Robert Huusken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning Intellectual Capital LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/108,340 priority Critical patent/US20060234026A1/en
Priority to US11/370,607 priority patent/US20060234027A1/en
Priority to MX2007012967A priority patent/MX2007012967A/en
Priority to CA002605155A priority patent/CA2605155A1/en
Priority to EP06725442A priority patent/EP1874533A1/en
Priority to CNA2006800164734A priority patent/CN101175634A/en
Priority to KR1020077026767A priority patent/KR20080027229A/en
Priority to PCT/EP2006/061194 priority patent/WO2006111458A1/en
Priority to JP2008507043A priority patent/JP2008536721A/en
Publication of US20060234026A1 publication Critical patent/US20060234026A1/en
Assigned to OWENS CORNING INTELLECTUAL CAPITAL, LLC reassignment OWENS CORNING INTELLECTUAL CAPITAL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OWENS-CORNING VEIL NETHERLANDS B.V.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • B44C5/0469Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/06Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/028Paper layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2317/00Animal or vegetable based
    • B32B2317/12Paper, e.g. cardboard
    • B32B2317/125Paper, e.g. cardboard impregnated with thermosetting resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2601/00Upholstery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • B32B2607/02Wall papers, wall coverings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Definitions

  • This invention relates generally to high pressure laminates and more particularly to a high pressure laminate complying with prEN 13823 and having a caloric value of lower than 3.0 MJ/kg when tested in accordance with ISO 1716.
  • High pressure laminates are well known in the art and HPL panels are used, for example, as wall linings, for furniture, facade cladding, bench tops and the like.
  • HPL panels are made fire retardant by using fire retardant kraft paper or by using a fire retardant phenol-formaldehyde resin.
  • State of the art FR-HPL products have achieved an SBI classification of as high as B (above 3.0 MJ/kg when tested under ISO 1716).
  • HPL manufacturers have a strong desire for an SBI A2 classified HPL panel. Such a classification would allow the manufacturers to expand the application range for their products and thereby penetrate additional markets. To date, this hasn't been achieved because no one has been able to meet the caloric value requirement and still achieve the desired mechanical properties and fire propagation characteristics.
  • the present invention relates to the first HPL panel meeting all these requirements including those for A2 classification (below 3.0 MJ/kg when tested under ISO 1716).
  • the high pressure laminate of the present invention comprises a first layer of resin impregnated paper and at least one layer of fiber reinforced veil.
  • Each layer of fiber reinforced veil includes both a secondary binder and a filler.
  • the high pressure laminate is characterized by having a caloric value of lower than about 3.0 MJ/kg when tested in accordance with ISO 1716.
  • the laminate may further include a second layer of resin impregnated paper.
  • the layer or layers of fiber reinforced veil are sandwiched between the first and second layers of resin impregnated paper.
  • the secondary binder is a heat curable resin.
  • the binder is selected from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof.
  • the filler is typically selected from a group consisting of metal hydroxides, metal carbonates, titanium dioxide, calcined clay, barium sulfate, magnesium sulfate, aluminum sulfate, zinc oxide, kaolin clay, chlorite, diatomite, feldspar, mica, nepheline syenite, pyrophyllite (aluminum silicate), silica, talc, wollastonite, montmorillonite (bentonite), hectorite, saponite, calcium carbonate, magnesium carbonate, aluminum oxide, iron oxide, magnesium hydroxide, glass micro beads and mixtures thereof.
  • the filler is selected from a group consisting of metal hydroxides, metal carbonates and mixtures thereof.
  • a mixture of calcium carbonate and aluminum hydroxide is a particularly useful filler for the present invention. This is particularly true when the binder is melamine-formaldehyde.
  • each layer of fiber reinforced veil includes between about 1 and about 95 weight percent reinforcement fibers about 5 and about 50 weight percent melamine-formaldehyde, between about 10 and about 80 weight percent calcium carbonate and about 20 and about 90 weight percent aluminum hydroxide.
  • each fiber reinforced veil includes reinforcing fibers that may be selected from a group consisting of glass fibers, basalt fibers, inorganic fibers and mixtures thereof.
  • the fibers are chopped.
  • the veil includes chopped glass fibers.
  • the chopped fibers may include strands, rovings and individual chopped glass fibers or mixtures thereof.
  • the glass fibers may, for example, be made from E-glass, ECR-glass, AR-glass, C-glass, M-glass, S-glass, S2-glass and mixtures thereof
  • the fiber reinforced veil may be woven or nonwoven. Where multiple layers of fiber reinforced veil are provided, they may all be woven, they may all be nonwoven or the layers may be a mixture of woven and nonwoven.
  • the high pressure laminate of the present invention may be made more aesthetically appealing when the first layer of resin impregnated paper is a melamine impregnated decor paper.
  • the product may include a radiation cured paint film or coating such as a UV cured paint film or an electron beam cured paint film on an exposed face of the first layer of resin impregnated paper.
  • the product may include a thermally cross-linked urethane acrylate paint layer on an exposed face of the first layer of the resin impregnated paper.
  • a method for making a high pressure laminate comprises pressing a first layer of resin impregnated paper and at least one layer of fiber reinforced veil together at a pressure of between about 525 N/m 2 and about 15,750 N/m 2 while simultaneously heating the layers to a temperature of between about 120 degrees C. and about 220 degrees C. to form a laminate.
  • the method includes the step of using a combination of secondary binder and filler to provide a caloric value of lower than 3.0 MJ/kg when the laminate is tested in accordance with ISO 1716.
  • the method may further include the selecting of the secondary binder from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof.
  • the filler may be selected from a group consisting of metal hydroxides, metal carbonates and mixtures thereof. In a particularly useful embodiment the filler is selected from a mixture of calcium carbonate and aluminum hydroxide.
  • the method includes the forming of the first layer of resin impregnated paper from melamine impregnated decor paper.
  • the method may include the painting of an exposed face of the first layer of resin impregnated paper with a radiation cured paint.
  • the method may include the painting of an exposed face of the first layer of resin impregnated paper with a thermally crosslinked urethane acrylate paint.
  • FIG. 1 is a side elevational view of one possible embodiment of the present invention
  • FIG. 2 is a side elevational view of a first alternative embodiment of the present invention
  • FIG. 3 is a side elevational view of yet another possible embodiment of the present invention.
  • FIG. 4 a is a total heat release graph comparing two representative examples of the present invention with two representative state of the art products.
  • FIG. 4 b is a heat release rate graph comparing the same two representative examples of the present invention with two representative state of the art products.
  • the high pressure laminate 10 may be generally described as comprising a first layer of resin impregnated paper and at least one layer of fiber reinforced veil, Each layer of fiber reinforced veil further includes a secondary binder and filler so that the high pressure laminate is characterized by having a caloric value of lower than 3.0 MJ/kg when tested in accordance with ISO 1716.
  • secondary binder is defined as a binder which is applied in a second processing step which is discussed in more detail below.
  • the high pressure laminate 10 includes a first layer 12 of resin impregnated paper, such as melamine impregnated decor paper.
  • the laminate 10 includes two layers 14 , 16 of fiber reinforced veil.
  • the secondary binder is a heat curable resin.
  • the secondary binder is selected from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof.
  • the filler is selected from a group consisting of metal hydroxides, metal carbonates, titanium dioxide, calcined clay, barium sulfate, magnesium sulfate, aluminum sulfate, zinc oxide, kaolin clay, chlorite, diatomite, feldspar, mica, nepheline syenite, pyrophyllite (aluminum silicate), silica, talc, wollastonite, montmorillonite (bentonite), hectorite, saponite, calcium carbonate, magnesium carbonate, aluminum oxide, iron oxide, magnesium hydroxide, glass micro beads and mixtures thereof.
  • the filler is selected from a group consisting of metal hydroxides, metal carbonates and mixtures thereof.
  • a mixture of calcium carbonate and aluminum hydroxide is particularly useful in the present invention. This is particularly true when used in conjunction with a melamine-formaldehyde binder.
  • the particle size of the fillers typically ranges from about 0.3 ⁇ m to about 150 ⁇ m, more preferably between about 1 ⁇ m to about 75 ⁇ m, and most preferably between about 4 ⁇ m to about 50 ⁇ m.
  • the fiber reinforced veil includes reinforcing fibers selected from a group consisting of glass fibers, basalt fibers, inorganic fibers (carbide, nitride, etc.) and mixtures thereof.
  • Glass fibers particularly useful in the present invention include E-glass (such as Advantex glass), ECR-glass, AR-glass, C-glass, M-glass, D-glass, S-glass, S2-glass and mixtures thereof.
  • the fibers are typically chopped in lengths of between about 0.1 mm and 100 mm and may be in the forms of chopped strands, chopped rovings or chopped individual fibers or mixtures thereof. Where individual fibers are utilized, the diameter of those fibers is typically between about 3 and about 50 microns.
  • the fiber reinforced veils prior to impregnation of the secondary binder and fillers, contain up to about 95 weight percent glass fibers, preferably between about 75 to about 95 weight percent glass fibers, more preferably between about 78 to about 93 weight percent glass fibers, and most preferably between about 80 to about 92.5 weight percent glass fibers.
  • the fiber reinforced veil layer includes E-glass fibers.
  • the fiber reinforced veil prior to impregnation of the secondary binder composition and fillers, may include a binder, as mentioned above, preferably the binder is a polyvinyl alcohol.
  • the binder is present in the veil at a content of about 5 to about 25 percent by weight.
  • the laminate 10 incorporates two layers 14 , 16 of veil.
  • Each veil layer 14 , 16 may be woven or nonwoven.
  • both veil layers 14 , 16 may be woven, both may be nonwoven or one may be woven while the other is nonwoven.
  • a particularly useful embodiment of the present invention incorporates one or more veil layers 14 , 16 including between about 1 and about 95 weight percent reinforcement fibers, preferably between about 75 weight percent to about 95 weight percent reinforcement fibers, more preferably between about 78 to about 93 weight percent reinforcement fibers, most preferably between about 80 to about 92.5 weight percent reinforcement fibers, prior to impregnation of the secondary binder composition and fillers.
  • the veil layers also contain between about 2 to about 50 weight percent, preferably between about 5 to about 25 weight percent melamine-formaldehyde secondary binder and at least one filler in the amount of between about 10 and about 80 weight percent, preferably between about 17.5 to about 65 weight percent calcium carbonate and about 20 to about 90 weight percent, preferably about 35 to about 70 weight percent aluminum hydroxide.
  • the laminate 10 may be made more aesthetically pleasing by including a radiation curable paint such as an electron beam cured or UV cured paint film 18 on an otherwise exposed face of the first layer of resin impregnated paper 12 .
  • a radiation curable paint such as an electron beam cured or UV cured paint film 18
  • the layer 18 may comprise a thermally cross-linked urethane acrylate paint.
  • the high pressure laminate 10 includes a single fiber reinforced veil layer 20 sandwiched between first and second layers 22 , 24 of resin impregnated paper.
  • the laminate 10 of FIG. 2 may also include a layer 26 of radiation cured paint such as an electron beam cured or UV cured paint film or a thermally cross-linked urethane acrylate paint.
  • the layer 26 is, however, optional.
  • the laminate 10 may include a first layer 28 of resin impregnated paper, six intermediate layers 30 , 32 , 34 , 36 , 38 , 40 of fiber reinforced veil and a second layer 42 of resin impregnated paper.
  • the FIG. 3 embodiment may also include an optional layer 44 comprising a radiation cured paint such as an electron beam or UV cured paint film or a thermally cross-linked urethane acrylate paint layer for enhanced aesthetic appearance.
  • the resin impregnated paper layers 22 , 24 , 28 and 42 of the embodiments illustrated in FIGS. 2 and 3 are similar or identical to the resin impregnated paper layer 12 of the first embodiment illustrated in FIG. 1 .
  • the fiber reinforced veil layers 20 , 30 , 32 , 34 , 36 , 38 , 40 of the embodiments illustrated in FIGS. 2 and 3 are also identical or similar to the veil layers 14 , 16 of the FIG. 1 embodiment.
  • the laminate 10 of the present invention may include any number of fiber reinforced veil layers while still meeting the fire propagation, caloric value and mechanical properties of any particular end product application.
  • each fiber reinforced veil layer is a prepreg or ready-to-mold sheet of woven or nonwoven reinforcement fibers impregnated with a resin binder and stored for subsequent use such as the final construction of the laminate product by a manufacturer. Any water-based, wet strength binder known in the art could be used.
  • Useful binders include but are not limited to the following polyvinyl alcohol, (partially hydrolyzed) polyvinyl acetate, acrylic polymers and copolymers, crosslinkable acrylic polymers and copolymers, polymerizable polyfunctional N-methylol compounds, notably N-methylol ureas such as dimethylol urea and N-methylol melamine type resins, melamine formaldehyde, phenol formaldehyde, furfuryl formaldehyde, resorcinol formaldehyde, styrene butadiene copolymer latices, cationic polyamideepichlorohydrin, aminoresins, epoxyresins, polystyrene emulsion binder, polycarboxylic acid based binders, other latices and/or acrylic polymers or copolymers like acrylamide, ethylene vinyl acetate/vinyl chloride, alkyl acrylate polymer,s
  • the prepreg is impregnated with the secondary binder and filler composition.
  • the secondary binder and filler composition preferably includes between about 2 to about 30 weight percent glass, in addition to the glass already present in the prepreg, more preferably between about 3 to about 25 weight percent glass, and most preferably between about 4 to about 20 weight percent glass.
  • the prepreg also contains between about 5 to about 25 weight percent secondary binder, preferably between about 7 to about 20 weight percent secondary binder, most preferably between about 8 to about 18 weight percent secondary binder.
  • the prepreg also contains between about 50 to about 93 weight percent fillers, more preferably between about 55 to about 90 weight percent fillers and most preferably between about 60 to about 88 weight percent total fillers.
  • the filler is a mixture of metal hydroxide and metal carbonate at a ratio of between about 1:0.01 and about 1:100.
  • the metal hydroxide aluminum hydroxide and is present in the prepreg the amount of between about 20 to about 90 weight percent, more preferably between about 30 to about 80 weight percent, and most preferably between about 35 to about 70 weight percent.
  • the preferred metal carbonate is calcium carbonate and is present in the prepreg in the amount of about 10 to about 80 weight percent, more preferably about 15 to about 70 weight percent and most preferably between about 17.5 to about 65 weight percent.
  • the particle size of the fillers typically ranges from about 0.3 ⁇ m to about 150 ⁇ m, more preferably between about 1 ⁇ m to about 75 ⁇ m, and most preferably between about 4 ⁇ m to about 50 ⁇ m.
  • a typical fiber reinforced veil prepreg will have a total weight per unit area of between about 250 g/m 2 and about 2000 g/m 2 , a density of between about 500 kg/m 3 and about 2000 kg/m 3
  • the high pressure laminate 10 is constructed by pressing a first layer of resin impregnated paper and at least one layer of fiber reinforced veil together at a pressure of between about 525 N/m 2 and about 15,750 N/m 2 (about 5 and about 150 bar) while simultaneously heating the layers to a temperature of between about 120 degrees C. and about 220 degrees C. to form the laminate.
  • the method includes the step of using a combination of binder and filler to provide a caloric value of lower than 3.0 MJ/kg when the laminate is tested in accordance with ISO 1716. This allows one to produce an HPL panel or product with an SBI A2 classification.
  • the secondary binder is selected from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof.
  • the filler is selected from a group of materials consisting of metal hydroxides, metal carbonates, titanium dioxide, calcined clay, barium sulfate, magnesium sulfate, aluminum sulfate, zinc oxide, kaolin clay, chlorite, diatomite, feldspar, mica, nepheline syenite, pyrophyllite (aluminum silicate), silica, talc, wollastonite, montmorillonite (bentonite), hectorite, saponite, calcium carbonate, magnesium carbonate, aluminum oxide, iron oxide, magnesium hydroxide, glass micro beads and mixtures thereof.
  • the filler is selected from a group consisting of metal hydroxides, metal carbonates and mixtures thereof. Calcium carbonate and aluminum hydroxide are particularly useful in this method.
  • the method may also include forming the first layer of resin impregnated paper from melamine impregnated decor paper. Further, the method may include painting an exposed face of the first layer of resin impregnated paper with electron beam cured paint. Alternatively the method may include painting an exposed face of the first layer of resin impregnated paper with a thermally crosslinked urethane acrylate paint.
  • Example 1 Five examples of a high pressure laminate of the present invention were prepared. In the first (Example 1), five fiber reinforced glass veils were sandwiched between two layers of melamine formaldehyde impregnated decorative paper.
  • the glass fiber utilized in the glass veils was E-glass having a fiber diameter of 11 microns and a length of 10 mm.
  • the glass veils each had a weight per unit area of 100 g/m 2 .
  • the glass veils included a poly vinyl alcohol binder at a content of 16 weight percent.
  • the decorative paper layers each had a weight per unit area of 160 g/m 2 including 80 g/m 2 base weight paper and 80 g/m 2 melamine formaldehyde resin.
  • the stacked layers of glass veil were then impregnated with a secondary binder and filler formulation including 21 weight percent phenol formaldehyde, 26 weight percent calcium carbonate and 53 weight percent aluminum hydroxide.
  • the final glass veil weight was 1000 g/m 2 .
  • the stacked layers were pressed together at a pressure of 100 kg/cm 2 at a temperature of 150 degrees C. for 20 minutes to produce a 2.96 mm thick laminate.
  • Example 2 Five fiber reinforced glass veils were sandwiched between a layer of melamine formaldehyde decorative paper and a layer of phenol formaldehyde impregnated kraft paper.
  • the glass fibers utilized in the Example 2 product were E-glass having a fiber diameter of 13 microns and a length of 11 mm.
  • the glass veils each had a weight per unit area of 50 g/m 2 and included a poly vinyl alcohol binder at a content of 14 weight percent.
  • the stacked layers of glass veil were impregnated with a secondary binder and filler formulation of 15 weight percent melamine formaldehyde, 20 weight percent calcium carbonate and 65 weight percent aluminum hydroxide.
  • the final glass veil weight was 900 g/m 2 .
  • Example 2 product The stacked layers of the Example 2 product were pressed together at a pressure of 50 kg/cm 2 at a temperature of 145 degrees C. for 20 minutes in order to produce a 3 mm thick laminate.
  • Table 1 Additional Examples 3, 4 and 5 of the present invention are presented in Table 1 below along with Examples 1 and 2. Additionally, the Table includes corresponding measurements for representative state of the art HPL (std HPL) and state of the art FR-HPL (fire retardant HPL) products for purposes of comparison. Test results for each of these Examples 1-5 and the state of the art products std HPL and FR-HPL are presented (where available) in Table 2. Relevant total heat release (THR) and heat release rate (HRR) curves are illustrated respectively in FIGS. 4 a and 4 b.
  • THRR heat release rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A high pressure laminate includes a first layer of resin impregnated paper and at least one layer of fiber reinforced veil. Each layer of fiber reinforced veil includes binder and filler. The laminate is characterized by having a caloric value of lower than 3.0 MJ/kg when tested in accordance with ISO 1716. A method for producing this high pressure laminate is also provided.

Description

    TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY OF THE INVENTION
  • This invention relates generally to high pressure laminates and more particularly to a high pressure laminate complying with prEN 13823 and having a caloric value of lower than 3.0 MJ/kg when tested in accordance with ISO 1716.
  • BACKGROUND OF THE INVENTION
  • High pressure laminates (HPL) are well known in the art and HPL panels are used, for example, as wall linings, for furniture, facade cladding, bench tops and the like.
  • One of the most important parameters of HPL panels, especially in the building industry, is fire performance. Since 2003, all building materials in Europe must comply with prEN 13823 (reaction to fire tests for building products). This norm describes the Single Burning Item (SBI) test. A1 and A2 classification of additional caloric value measurement according to ISO 1716 is required.
  • State of the art HPL panels are made fire retardant by using fire retardant kraft paper or by using a fire retardant phenol-formaldehyde resin. State of the art FR-HPL products have achieved an SBI classification of as high as B (above 3.0 MJ/kg when tested under ISO 1716).
  • HPL manufacturers have a strong desire for an SBI A2 classified HPL panel. Such a classification would allow the manufacturers to expand the application range for their products and thereby penetrate additional markets. To date, this hasn't been achieved because no one has been able to meet the caloric value requirement and still achieve the desired mechanical properties and fire propagation characteristics. The present invention relates to the first HPL panel meeting all these requirements including those for A2 classification (below 3.0 MJ/kg when tested under ISO 1716).
  • SUMMARY OF THE INVENTION
  • The high pressure laminate of the present invention comprises a first layer of resin impregnated paper and at least one layer of fiber reinforced veil. Each layer of fiber reinforced veil includes both a secondary binder and a filler. The high pressure laminate is characterized by having a caloric value of lower than about 3.0 MJ/kg when tested in accordance with ISO 1716.
  • The laminate may further include a second layer of resin impregnated paper. In such an embodiment the layer or layers of fiber reinforced veil are sandwiched between the first and second layers of resin impregnated paper.
  • In any of the possible embodiments the secondary binder is a heat curable resin. Typically the binder is selected from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof. The filler is typically selected from a group consisting of metal hydroxides, metal carbonates, titanium dioxide, calcined clay, barium sulfate, magnesium sulfate, aluminum sulfate, zinc oxide, kaolin clay, chlorite, diatomite, feldspar, mica, nepheline syenite, pyrophyllite (aluminum silicate), silica, talc, wollastonite, montmorillonite (bentonite), hectorite, saponite, calcium carbonate, magnesium carbonate, aluminum oxide, iron oxide, magnesium hydroxide, glass micro beads and mixtures thereof.
  • In a particularly preferred embodiment the filler is selected from a group consisting of metal hydroxides, metal carbonates and mixtures thereof. A mixture of calcium carbonate and aluminum hydroxide is a particularly useful filler for the present invention. This is particularly true when the binder is melamine-formaldehyde.
  • In one possible embodiment each layer of fiber reinforced veil includes between about 1 and about 95 weight percent reinforcement fibers about 5 and about 50 weight percent melamine-formaldehyde, between about 10 and about 80 weight percent calcium carbonate and about 20 and about 90 weight percent aluminum hydroxide.
  • Still further describing the invention, each fiber reinforced veil includes reinforcing fibers that may be selected from a group consisting of glass fibers, basalt fibers, inorganic fibers and mixtures thereof. Typically the fibers are chopped. In a particularly useful embodiment the veil includes chopped glass fibers. The chopped fibers may include strands, rovings and individual chopped glass fibers or mixtures thereof. The glass fibers may, for example, be made from E-glass, ECR-glass, AR-glass, C-glass, M-glass, S-glass, S2-glass and mixtures thereof
  • The fiber reinforced veil may be woven or nonwoven. Where multiple layers of fiber reinforced veil are provided, they may all be woven, they may all be nonwoven or the layers may be a mixture of woven and nonwoven.
  • The high pressure laminate of the present invention may be made more aesthetically appealing when the first layer of resin impregnated paper is a melamine impregnated decor paper. Further, the product may include a radiation cured paint film or coating such as a UV cured paint film or an electron beam cured paint film on an exposed face of the first layer of resin impregnated paper. In yet another alternative the product may include a thermally cross-linked urethane acrylate paint layer on an exposed face of the first layer of the resin impregnated paper.
  • In accordance with yet another aspect of the present invention a method is provided for making a high pressure laminate. That method comprises pressing a first layer of resin impregnated paper and at least one layer of fiber reinforced veil together at a pressure of between about 525 N/m2 and about 15,750 N/m2 while simultaneously heating the layers to a temperature of between about 120 degrees C. and about 220 degrees C. to form a laminate. In addition the method includes the step of using a combination of secondary binder and filler to provide a caloric value of lower than 3.0 MJ/kg when the laminate is tested in accordance with ISO 1716.
  • The method may further include the selecting of the secondary binder from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof. The filler may be selected from a group consisting of metal hydroxides, metal carbonates and mixtures thereof. In a particularly useful embodiment the filler is selected from a mixture of calcium carbonate and aluminum hydroxide.
  • In one possible embodiment the method includes the forming of the first layer of resin impregnated paper from melamine impregnated decor paper. In addition, the method may include the painting of an exposed face of the first layer of resin impregnated paper with a radiation cured paint. In yet another possible embodiment the method may include the painting of an exposed face of the first layer of resin impregnated paper with a thermally crosslinked urethane acrylate paint.
  • In the following description there is shown and described several different embodiments of this invention, simply by way of illustration of some of the modes best suited to carry out the invention. As it will be realized, the invention is capable of other different embodiments and its several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present invention, and together with the description serve to explain certain principles of the invention. In the drawings:
  • FIG. 1 is a side elevational view of one possible embodiment of the present invention;
  • FIG. 2 is a side elevational view of a first alternative embodiment of the present invention;
  • FIG. 3 is a side elevational view of yet another possible embodiment of the present invention;
  • FIG. 4 a is a total heat release graph comparing two representative examples of the present invention with two representative state of the art products; and
  • FIG. 4 b is a heat release rate graph comparing the same two representative examples of the present invention with two representative state of the art products.
  • Reference will now be made in detail to the present preferred embodiment of the invention, an example of which is illustrated in the accompanying drawings.
  • Detailed Description and Preferred Embodiments of the Invention
  • Three possible embodiments of the high pressure laminate 10 of the present invention are illustrated in FIGS. 1-3. The high pressure laminate 10 may be generally described as comprising a first layer of resin impregnated paper and at least one layer of fiber reinforced veil, Each layer of fiber reinforced veil further includes a secondary binder and filler so that the high pressure laminate is characterized by having a caloric value of lower than 3.0 MJ/kg when tested in accordance with ISO 1716. The term “secondary binder” is defined as a binder which is applied in a second processing step which is discussed in more detail below.
  • As illustrated in the FIG. 1 embodiment, the high pressure laminate 10 includes a first layer 12 of resin impregnated paper, such as melamine impregnated decor paper. In addition, the laminate 10 includes two layers 14, 16 of fiber reinforced veil.
  • Each layer 14, 16 of fiber reinforced veil is impregnated with a secondary binder and filler composition. The secondary binder is a heat curable resin. Typically, the secondary binder is selected from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof.
  • The filler is selected from a group consisting of metal hydroxides, metal carbonates, titanium dioxide, calcined clay, barium sulfate, magnesium sulfate, aluminum sulfate, zinc oxide, kaolin clay, chlorite, diatomite, feldspar, mica, nepheline syenite, pyrophyllite (aluminum silicate), silica, talc, wollastonite, montmorillonite (bentonite), hectorite, saponite, calcium carbonate, magnesium carbonate, aluminum oxide, iron oxide, magnesium hydroxide, glass micro beads and mixtures thereof. Typically the filler is selected from a group consisting of metal hydroxides, metal carbonates and mixtures thereof. A mixture of calcium carbonate and aluminum hydroxide is particularly useful in the present invention. This is particularly true when used in conjunction with a melamine-formaldehyde binder. The particle size of the fillers typically ranges from about 0.3 μm to about 150 μm, more preferably between about 1 μm to about 75 μm, and most preferably between about 4 μm to about 50 μm.
  • The fiber reinforced veil includes reinforcing fibers selected from a group consisting of glass fibers, basalt fibers, inorganic fibers (carbide, nitride, etc.) and mixtures thereof. Glass fibers particularly useful in the present invention include E-glass (such as Advantex glass), ECR-glass, AR-glass, C-glass, M-glass, D-glass, S-glass, S2-glass and mixtures thereof. The fibers are typically chopped in lengths of between about 0.1 mm and 100 mm and may be in the forms of chopped strands, chopped rovings or chopped individual fibers or mixtures thereof. Where individual fibers are utilized, the diameter of those fibers is typically between about 3 and about 50 microns.
  • The fiber reinforced veils, prior to impregnation of the secondary binder and fillers, contain up to about 95 weight percent glass fibers, preferably between about 75 to about 95 weight percent glass fibers, more preferably between about 78 to about 93 weight percent glass fibers, and most preferably between about 80 to about 92.5 weight percent glass fibers. Preferably, the fiber reinforced veil layer includes E-glass fibers.
  • The fiber reinforced veil, prior to impregnation of the secondary binder composition and fillers, may include a binder, as mentioned above, preferably the binder is a polyvinyl alcohol. Preferably, the binder is present in the veil at a content of about 5 to about 25 percent by weight.
  • In the embodiment illustrated in FIG. 1, the laminate 10 incorporates two layers 14, 16 of veil. Each veil layer 14, 16 may be woven or nonwoven. In the embodiment illustrated in FIG. 1, both veil layers 14, 16 may be woven, both may be nonwoven or one may be woven while the other is nonwoven.
  • A particularly useful embodiment of the present invention incorporates one or more veil layers 14, 16 including between about 1 and about 95 weight percent reinforcement fibers, preferably between about 75 weight percent to about 95 weight percent reinforcement fibers, more preferably between about 78 to about 93 weight percent reinforcement fibers, most preferably between about 80 to about 92.5 weight percent reinforcement fibers, prior to impregnation of the secondary binder composition and fillers. The veil layers also contain between about 2 to about 50 weight percent, preferably between about 5 to about 25 weight percent melamine-formaldehyde secondary binder and at least one filler in the amount of between about 10 and about 80 weight percent, preferably between about 17.5 to about 65 weight percent calcium carbonate and about 20 to about 90 weight percent, preferably about 35 to about 70 weight percent aluminum hydroxide.
  • As further illustrated in FIG. 1, the laminate 10 may be made more aesthetically pleasing by including a radiation curable paint such as an electron beam cured or UV cured paint film 18 on an otherwise exposed face of the first layer of resin impregnated paper 12. Alternatively, the layer 18 may comprise a thermally cross-linked urethane acrylate paint.
  • An alternative embodiment of the present invention is illustrated in FIG. 2. In this embodiment, the high pressure laminate 10 includes a single fiber reinforced veil layer 20 sandwiched between first and second layers 22, 24 of resin impregnated paper. The laminate 10 of FIG. 2 may also include a layer 26 of radiation cured paint such as an electron beam cured or UV cured paint film or a thermally cross-linked urethane acrylate paint. The layer 26 is, however, optional.
  • In still another embodiment illustrated in FIG. 3, the laminate 10 may include a first layer 28 of resin impregnated paper, six intermediate layers 30, 32, 34, 36, 38, 40 of fiber reinforced veil and a second layer 42 of resin impregnated paper. The FIG. 3 embodiment may also include an optional layer 44 comprising a radiation cured paint such as an electron beam or UV cured paint film or a thermally cross-linked urethane acrylate paint layer for enhanced aesthetic appearance.
  • It should be appreciated that the resin impregnated paper layers 22, 24, 28 and 42 of the embodiments illustrated in FIGS. 2 and 3 are similar or identical to the resin impregnated paper layer 12 of the first embodiment illustrated in FIG. 1. Similarly, the fiber reinforced veil layers 20, 30, 32, 34, 36, 38, 40 of the embodiments illustrated in FIGS. 2 and 3 are also identical or similar to the veil layers 14, 16 of the FIG. 1 embodiment. As illustrated, the laminate 10 of the present invention may include any number of fiber reinforced veil layers while still meeting the fire propagation, caloric value and mechanical properties of any particular end product application.
  • Typically, each fiber reinforced veil layer is a prepreg or ready-to-mold sheet of woven or nonwoven reinforcement fibers impregnated with a resin binder and stored for subsequent use such as the final construction of the laminate product by a manufacturer. Any water-based, wet strength binder known in the art could be used. Useful binders include but are not limited to the following polyvinyl alcohol, (partially hydrolyzed) polyvinyl acetate, acrylic polymers and copolymers, crosslinkable acrylic polymers and copolymers, polymerizable polyfunctional N-methylol compounds, notably N-methylol ureas such as dimethylol urea and N-methylol melamine type resins, melamine formaldehyde, phenol formaldehyde, furfuryl formaldehyde, resorcinol formaldehyde, styrene butadiene copolymer latices, cationic polyamideepichlorohydrin, aminoresins, epoxyresins, polystyrene emulsion binder, polycarboxylic acid based binders, other latices and/or acrylic polymers or copolymers like acrylamide, ethylene vinyl acetate/vinyl chloride, alkyl acrylate polymer,styrene-butadiene rubber, acrylonitrile polymer, polyurethane resins, polyvinyl chloride, polyvinylidene chloride, copolymers of vinylidene chloride with other monomers, polyvinyl acetate, polyvinyl pyrrolidone, polyester resins, acrylate emulsion resin, styrene acrylate. More preferably, the binder is polyvinyl alcohol.
  • The prepreg is impregnated with the secondary binder and filler composition. The secondary binder and filler composition preferably includes between about 2 to about 30 weight percent glass, in addition to the glass already present in the prepreg, more preferably between about 3 to about 25 weight percent glass, and most preferably between about 4 to about 20 weight percent glass. The prepreg also contains between about 5 to about 25 weight percent secondary binder, preferably between about 7 to about 20 weight percent secondary binder, most preferably between about 8 to about 18 weight percent secondary binder. The prepreg also contains between about 50 to about 93 weight percent fillers, more preferably between about 55 to about 90 weight percent fillers and most preferably between about 60 to about 88 weight percent total fillers.
  • Typically the filler is a mixture of metal hydroxide and metal carbonate at a ratio of between about 1:0.01 and about 1:100. Preferably, the metal hydroxide aluminum hydroxide and is present in the prepreg the amount of between about 20 to about 90 weight percent, more preferably between about 30 to about 80 weight percent, and most preferably between about 35 to about 70 weight percent. The preferred metal carbonate is calcium carbonate and is present in the prepreg in the amount of about 10 to about 80 weight percent, more preferably about 15 to about 70 weight percent and most preferably between about 17.5 to about 65 weight percent.
  • The particle size of the fillers typically ranges from about 0.3 μm to about 150 μm, more preferably between about 1 μm to about 75 μm, and most preferably between about 4 μm to about 50 μm.
  • Following impregnation, and before pressing, a typical fiber reinforced veil prepreg will have a total weight per unit area of between about 250 g/m2 and about 2000 g/m2, a density of between about 500 kg/m3 and about 2000 kg/m3 The high pressure laminate 10 is constructed by pressing a first layer of resin impregnated paper and at least one layer of fiber reinforced veil together at a pressure of between about 525 N/m2 and about 15,750 N/m2 (about 5 and about 150 bar) while simultaneously heating the layers to a temperature of between about 120 degrees C. and about 220 degrees C. to form the laminate. In addition the method includes the step of using a combination of binder and filler to provide a caloric value of lower than 3.0 MJ/kg when the laminate is tested in accordance with ISO 1716. This allows one to produce an HPL panel or product with an SBI A2 classification.
  • In order to achieve this end, the secondary binder is selected from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof. The filler is selected from a group of materials consisting of metal hydroxides, metal carbonates, titanium dioxide, calcined clay, barium sulfate, magnesium sulfate, aluminum sulfate, zinc oxide, kaolin clay, chlorite, diatomite, feldspar, mica, nepheline syenite, pyrophyllite (aluminum silicate), silica, talc, wollastonite, montmorillonite (bentonite), hectorite, saponite, calcium carbonate, magnesium carbonate, aluminum oxide, iron oxide, magnesium hydroxide, glass micro beads and mixtures thereof.
  • Typically, the filler is selected from a group consisting of metal hydroxides, metal carbonates and mixtures thereof. Calcium carbonate and aluminum hydroxide are particularly useful in this method.
  • In order to further enhance the aesthetic appeal of the product, the method may also include forming the first layer of resin impregnated paper from melamine impregnated decor paper. Further, the method may include painting an exposed face of the first layer of resin impregnated paper with electron beam cured paint. Alternatively the method may include painting an exposed face of the first layer of resin impregnated paper with a thermally crosslinked urethane acrylate paint.
  • The following example is presented to further illustrate the invention, but it is not to be considered as limited thereto.
  • EXAMPLE
  • Five examples of a high pressure laminate of the present invention were prepared. In the first (Example 1), five fiber reinforced glass veils were sandwiched between two layers of melamine formaldehyde impregnated decorative paper.
  • The glass fiber utilized in the glass veils was E-glass having a fiber diameter of 11 microns and a length of 10 mm. The glass veils each had a weight per unit area of 100 g/m2. The glass veils included a poly vinyl alcohol binder at a content of 16 weight percent.
  • The decorative paper layers each had a weight per unit area of 160 g/m2 including 80 g/m2 base weight paper and 80 g/m2 melamine formaldehyde resin.
  • The stacked layers of glass veil were then impregnated with a secondary binder and filler formulation including 21 weight percent phenol formaldehyde, 26 weight percent calcium carbonate and 53 weight percent aluminum hydroxide. The final glass veil weight was 1000 g/m2.
  • The stacked layers were pressed together at a pressure of 100 kg/cm2 at a temperature of 150 degrees C. for 20 minutes to produce a 2.96 mm thick laminate.
  • In the second (Example 2), five fiber reinforced glass veils were sandwiched between a layer of melamine formaldehyde decorative paper and a layer of phenol formaldehyde impregnated kraft paper.
  • The glass fibers utilized in the Example 2 product were E-glass having a fiber diameter of 13 microns and a length of 11 mm. The glass veils each had a weight per unit area of 50 g/m2 and included a poly vinyl alcohol binder at a content of 14 weight percent.
  • The stacked layers of glass veil were impregnated with a secondary binder and filler formulation of 15 weight percent melamine formaldehyde, 20 weight percent calcium carbonate and 65 weight percent aluminum hydroxide. The final glass veil weight was 900 g/m2.
  • The stacked layers of the Example 2 product were pressed together at a pressure of 50 kg/cm2 at a temperature of 145 degrees C. for 20 minutes in order to produce a 3 mm thick laminate.
  • Additional Examples 3, 4 and 5 of the present invention are presented in Table 1 below along with Examples 1 and 2. Additionally, the Table includes corresponding measurements for representative state of the art HPL (std HPL) and state of the art FR-HPL (fire retardant HPL) products for purposes of comparison. Test results for each of these Examples 1-5 and the state of the art products std HPL and FR-HPL are presented (where available) in Table 2. Relevant total heat release (THR) and heat release rate (HRR) curves are illustrated respectively in FIGS. 4 a and 4 b.
  • The foregoing description of the preferred embodiments of the invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings.
  • The embodiments were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled. The drawings and preferred embodiment do not and are not intended to limit the ordinary meaning of the claims and their fair and broad interpretation in any way.

Claims (37)

1. A high pressure laminate, comprising:
a first layer of resin impregnated paper; and
at least one layer of fiber reinforced veil, each layer of fiber reinforced veil being impregnated with a secondary binder and at least one filler;
said high pressure laminate being characterized by having a caloric value of lower than about 3.0 MJ/kg when tested in accordance with ISO 1716.
2. The laminate of claim 1 including a second layer of resin impregnated paper, said at least one layer of fiber reinforced veil being sandwiched between said first and second layers of resin impregnated paper.
3. The laminate of claim 1, wherein said secondary binder is a heat curable resin.
4. The laminate of claim 3 wherein said secondary binder is selected from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof.
5. The laminate of claim 3, wherein said filler is selected from a group consisting of metal hydroxides, metal carbonates, titanium dioxide, calcined clay, barium sulfate, magnesium sulfate, aluminum sulfate, zinc oxide, kaolin clay, chlorite, diatomite, feldspar, mica, nepheline syenite, pyrophyllite, silica, talc, wollastonite, montmorillonite, hectorite, saponite, calcium carbonate, magnesium carbonate, aluminum oxide, iron oxide, magnesium hydroxide, glass micro beads and mixtures thereof.
6. The laminate of claim 1, wherein said filler is selected from a group consisting of metal hydroxides, metal carbonates and mixtures thereof.
7. The laminate of claim 6, wherein said mixtures of metal hydroxides to metal carbonates are provided at a ratio of between about 1:0.01 and about 1:100.
8. The laminate of claim 1, wherein said filler is selected from a mixture of calcium carbonate and aluminum hydroxide.
9. The laminate of claim 8 wherein said secondary binder is melamine-formaldehyde.
10. The laminate of claim 9, wherein each said layer of fiber reinforced veil following impregnation includes between about 1 and about 95 weight percent reinforcement fibers, about 2 and about 50 weight percent melamine-formaldehyde, between about 1 and about 85 weight percent calcium carbonate and about 1 and about 85 weight percent aluminum hydroxide.
11. The laminate of claim 10 wherein each said layer of fiber reinforced veil following impregnation and prior to pressing has a weight per unit area of between about 250 g/m2 and about 2000 g/m2 and a density of between about 500 kg/m3 and about 2000 kg/m3.
12. The laminate of claim 10, wherein said reinforcement fibers are glass fibers selected from a group consisting of E-glass, ECR-glass, AR-glass, M-glass, D-glass, C-glass, S-glass, S2-glass and mixtures thereof.
13. The laminate of claim 1 wherein said at least one layer of fiber reinforced veil is woven.
14. The laminate of claim 1, wherein said at least one layer of fiber reinforced veil is nonwoven.
15. The laminate of claim 1, including at least two layers of fiber reinforced veil wherein a first layer of said two layers is woven and a second layer of said two layers is nonwoven.
16. The laminate of claim 1, wherein said at least one fiber reinforced veil includes reinforcing fibers selected from a group consisting of glass fibers, basalt fibers, inorganic fibers and mixtures thereof.
17. The laminate of claim 1, wherein said at least one fiber reinforced veil includes chopped glass fibers
18. The laminate of claim 17, wherein said chopped glass fibers include chopped glass strands, chopped glass rovings, individual chopped glass fibers and mixtures thereof.
19. The laminate of claim 1, wherein said first layer of resin impregnated paper is a melamine impregnated decor paper.
20. The laminate of claim 1, further including a radiation cured paint film on an exposed face of said first layer of resin impregnated paper.
21. The laminate of claim 1, further including a thermally cross-linked urethane acrylate paint layer on an exposed face of said first layer of resin impregnated paper.
22. A fiber reinforced veil comprising a secondary binder and at least one filler; wherein said veil has a caloric value of lower than about 3.0 MJ/kg when tested in accordance with ISO 1716.
23. The fiber reinforced veil of claim 22, wherein said secondary binder is selected from the group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof.
24. The fiber reinforced veil of claim 22, further comprising a binder selected from the group consisting of polyvinyl alcohol, (partially hydrolyzed) polyvinyl acetate, acrylic polymers and copolymers, crosslinkable acrylic polymers and copolymers, polymerizable polyfunctional N-methylol compounds, notably N-methylol ureas such as dimethylol urea and N-methylol melamine type resins, melamine formaldehyde, phenol formaldehyde, furfuryl formaldehyde, resorcinol formaldehyde, styrene butadiene copolymer latices, cationic polyamideepichlorohydrin, aminoresins, epoxyresins, polystyrene emulsion binder, polycarboxylic acid based binders, other latices and/or acrylic polymers or copolymers like acrylamide, ethylene vinyl acetate/vinyl chloride, alkyl acrylate polymer,styrene-butadiene rubber, acrylonitrile polymer, polyurethane resins, polyvinyl chloride, polyvinylidene chloride, copolymers of vinylidene chloride with other monomers, polyvinyl acetate, polyvinyl pyrrolidone, polyester resins, acrylate emulsion resin, and styrene acrylate.
25. The fiber reinforced veil of claim 22, wherein said filler is selected from a group consisting of metal hydroxides, metal carbonates, titanium dioxide, calcined clay, barium sulfate, magnesium sulfate, aluminum sulfate, zinc oxide, kaolin clay, chlorite, diatomite, feldspar, mica, nepheline syenite, pyrophyllite, silica, talc, wollastonite, montmorillonite, hectorite, saponite, calcium carbonate, magnesium carbonate, aluminum oxide, iron oxide, magnesium hydroxide, glass micro beads and mixtures thereof.
26. The fiber reinforced veil of claim 22, wherein said fiber reinforced veil includes reinforcing fibers selected from a group consisting of glass fibers, basalt fibers, inorganic fibers and mixtures thereof.
27. A method of making a high pressure laminate, comprising:
pressing a first layer of resin impregnated paper and at least one layer of fiber reinforced veil together at a pressure and temperature sufficient to laminate said paper and said at least one layer of veil together; and
impregnating said paper and said fiber reinforcing veil with a secondary binder and at least one filler to provide a caloric value of lower than 3.0 MJ/kg when said laminate is tested in accordance with ISO 1716.
28. The method of claim 27 wherein said step of pressing said paper and said veil together further includes pressing said paper and said veil together at a pressure of between about 525 N/N/m2 and about 15,750 N/m2 and simultaneously heating said paper and said veil at a temperature of between about 120 degrees C. and about 220 degrees C.
29. The method of claim 27 including selecting said secondary binder from a group consisting of melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, epoxy resin, unsaturated polyesters, cross-linkable acrylic resin, polyurethane resin, an epichlorohydrin-polyaminopolyamide resin, an epichlorohydrin-polyamine resin, an epichlorohydrin-polyamide resin and mixtures thereof.
30. The method of claim 29, including selecting said filler from a group consisting of metal hydroxides, metal carbonates, titanium dioxide, calcined clay, barium sulfate, magnesium sulfate, aluminum sulfate, zinc oxide, kaolin clay, chlorite, diatomite, feldspar, mica, nepheline syenite, pyrophyllite, silica, talc, wollastonite, montmorillonite, hectorite, saponite, calcium carbonate, magnesium carbonate, aluminum oxide, iron oxide, magnesium hydroxide, glass micro beads and mixtures thereof.
31. The method of claim 29, including selecting said filler from a group consisting of metal hydroxides, metal carbonates and mixtures thereof.
32. The method of claim 29, including selecting said filler from a mixture of calcium carbonate and aluminum hydroxide.
33. The method of claim 27, including selecting said filler from a group consisting of metal hydroxides, metal carbonates and mixtures thereof.
34. The method of claim 27, including selecting said filler from a mixture of calcium carbonate and aluminum hydroxide.
35. The method of claim 27, further including forming said first layer of resin impregnated paper from melamine impregnated decor paper.
36. The method of claim 27, further including painting an exposed face of said first layer of resin impregnated paper with radiation cured paint.
37. The method of claim 27 further including painting an exposed face of said first layer of resin impregnated paper with a thermally crosslinked urethane acrylate paint.
US11/108,340 2005-04-18 2005-04-18 Non-combustible high pressure laminate Abandoned US20060234026A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US11/108,340 US20060234026A1 (en) 2005-04-18 2005-04-18 Non-combustible high pressure laminate
US11/370,607 US20060234027A1 (en) 2005-04-18 2006-03-08 Fire retardant laminate
MX2007012967A MX2007012967A (en) 2005-04-18 2006-03-30 Fire retardant laminate.
CA002605155A CA2605155A1 (en) 2005-04-18 2006-03-30 Fire retardent laminate
EP06725442A EP1874533A1 (en) 2005-04-18 2006-03-30 Fire retardant laminate
CNA2006800164734A CN101175634A (en) 2005-04-18 2006-03-30 Non-combustible high pressure laminate
KR1020077026767A KR20080027229A (en) 2005-04-18 2006-03-30 Fire retardant laminate
PCT/EP2006/061194 WO2006111458A1 (en) 2005-04-18 2006-03-30 Fire retardant laminate
JP2008507043A JP2008536721A (en) 2005-04-18 2006-03-30 Flame retardant laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/108,340 US20060234026A1 (en) 2005-04-18 2005-04-18 Non-combustible high pressure laminate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/370,607 Continuation-In-Part US20060234027A1 (en) 2005-04-18 2006-03-08 Fire retardant laminate

Publications (1)

Publication Number Publication Date
US20060234026A1 true US20060234026A1 (en) 2006-10-19

Family

ID=36353670

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/108,340 Abandoned US20060234026A1 (en) 2005-04-18 2005-04-18 Non-combustible high pressure laminate

Country Status (2)

Country Link
US (1) US20060234026A1 (en)
CN (1) CN101175634A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070028545A1 (en) * 2005-08-02 2007-02-08 Fredericus Schreuder Method for renovating ceiling tile
US20080011190A1 (en) * 2006-07-13 2008-01-17 Unimin Corporation Ultra fine nepheline syenite powder and products for using same
WO2008101678A2 (en) * 2007-02-21 2008-08-28 Johns Manville Europe Gmbh New composite materials, method for their manufacture and their use
US20090013905A1 (en) * 2007-05-11 2009-01-15 Unimin Corporation Nepheline syenite powder with controlled particle size and novel method of making same
US20090260541A1 (en) * 2008-04-17 2009-10-22 Kragten David D Powder formed from mineral or rock material with controlled particle size distribution for thermal films
US20100297414A1 (en) * 2007-09-11 2010-11-25 Quadrant Plastic Composites Ag Composite sheet based on high pressure laminate sheets (hpl sheets)
US20100304952A1 (en) * 2006-07-13 2010-12-02 Unimin Corporation Method of processing nepheline syenite
US20110123804A1 (en) * 2006-07-13 2011-05-26 Unimin Corporation Ultrafine nepheline syenite
US20110159208A1 (en) * 2007-05-07 2011-06-30 Depco-Trh Pty Ltd Improvements in the manufacture of b-stage resin impregnated papers or non-wovens
US20110165421A1 (en) * 2007-02-07 2011-07-07 Unimin Corporation Method of processing nepheline syenite powder to produce an ultra-fine grain size product
CN104760120A (en) * 2014-01-07 2015-07-08 宽甸满族自治县志华化工有限公司 Novel light fireproof wall board and manufacturing method thereof
US9238912B1 (en) * 2015-03-10 2016-01-19 Awi Licensing Company Method for installing acoustic panel
CN105593016A (en) * 2013-04-18 2016-05-18 一都公司 Burnthrough resistant laminate film
CN105599419A (en) * 2015-12-22 2016-05-25 江苏中欧生态环境科技有限公司 Production method for formaldehyde-removing and antibacterial melamine impregnated paper composite material
CN106042124A (en) * 2016-06-08 2016-10-26 安徽汇力建筑工程有限公司 Production method of light heat-preservation curtain wall material
CN106320652A (en) * 2016-09-27 2017-01-11 湖州维细高分子材料有限公司 Microcrystalline wood floor structure
CN107057288A (en) * 2017-05-22 2017-08-18 安徽三义和能源科技有限公司 A kind of preparation method of Pressure-resistant fireproof plate
US20170328063A1 (en) * 2014-11-20 2017-11-16 Dekodur Gmbh & Co. Kg Non-flammable laminate
US20190091983A1 (en) * 2017-09-28 2019-03-28 Wilsonart Llc High pressure decorative laminate having a top layer of energy cured acrylated urethane polymer
CN110078878A (en) * 2019-04-28 2019-08-02 福建农林大学 The preparation method of radiation modification melamine urea-formaldehyde resin
US10449748B2 (en) 2011-10-13 2019-10-22 Aica Kogyo Co., Ltd. Decorative board
WO2022109118A1 (en) * 2020-11-18 2022-05-27 Material Innovations Llc Composite building materials and methods of manufacture
US20220251779A1 (en) * 2019-06-13 2022-08-11 Owens Corning Intellectual Capital, Llc Walkable facer mats for roof insulation
US11773592B2 (en) 2006-01-20 2023-10-03 Material Innovations Llc Carpet waste composite

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA107799C2 (en) * 2009-07-06 2015-02-25 Strohlos Produktentwicklung Kg Continuous method of making letters from renewable raw materials and a letter from renewable raw materials
CN101736589B (en) * 2009-12-08 2012-01-25 南京信息工程大学 Heat-resisting flame-retardant fiberglass product for industrial heat preservation and preparation method thereof
CN101954768A (en) * 2010-08-02 2011-01-26 庄启程 Flexible thermosetting resin impregnated paper high-pressure laminated plate
EP2431173A1 (en) * 2010-09-21 2012-03-21 FunderMax GmbH Fire-resistant laminate
EP2657015B1 (en) 2010-12-22 2017-06-14 Sumitomo Bakelite Company, Ltd. Surface layer material and melamine decorative laminate
US8512814B2 (en) * 2011-02-14 2013-08-20 Blue Angel Paint and Coatings, Ltd. Coating material for achieving sound dampening and method for the same
CN102476488A (en) * 2011-07-29 2012-05-30 深圳光启高等理工研究院 Nonuniform high-strength substrate and manufacturing method thereof
KR102079481B1 (en) 2011-09-21 2020-04-07 도널드선 컴파니 인코포레이티드 Fine fibers made from polymer crosslinked with resinous aldehyde composition
US20140322473A1 (en) * 2011-09-30 2014-10-30 3M Innovative Properties Company Decorative film having low gross heat of combustion
KR101171711B1 (en) * 2011-11-17 2012-08-10 신용순 Insulating and nonflammable sheet and apparatus for manufacturing the same and method for manufacturing the same
CN102601910B (en) * 2012-03-01 2014-11-26 四川长虹电器股份有限公司 Method for manufacturing heat-insulating plate by adopting hard polyurethane
CN102926471A (en) * 2012-11-05 2013-02-13 卞修清 Modified fireproofing inorganic fiber heat-insulation board
CN103897389A (en) * 2012-12-26 2014-07-02 钦焕宇 Aramid fiber fire retardation plate and preparation method thereof
KR102139254B1 (en) 2013-03-09 2020-07-29 도널드선 컴파니 인코포레이티드 Fine fibers made from reactive additives
PL2821536T3 (en) * 2013-07-02 2017-08-31 Saint-Gobain Adfors Coated glass fibre mesh fabric with reduced gross heat of combustion
CN103468014A (en) * 2013-09-27 2013-12-25 徐州安联木业有限公司 Fireproof plywood and manufacture technology thereof
CN103467876A (en) * 2013-10-08 2013-12-25 苏州新区华士达工程塑胶有限公司 Plastic formula with insulation function
CN103626456B (en) * 2013-10-22 2016-05-18 江苏博思源防火材料科技有限公司 A kind of anti-folding heat preservation plate material
CN104196194B (en) * 2014-09-25 2016-08-24 广州市致盛建筑材料有限公司 Architectural decoration bending HPL plate and manufacture method thereof
CA2990867A1 (en) * 2015-06-30 2017-01-05 Dow Global Technologies Llc Permeable liner
SI3189952T1 (en) * 2016-01-08 2019-02-28 Omya International Ag In-line coated wood-based boards
CN106848862B (en) * 2017-01-19 2019-07-16 厦门弘诚复合材料有限公司 A kind of composite flame-proof cardboard and preparation method thereof
CN107604743B (en) * 2017-08-31 2020-04-21 苏州仲勉装饰有限公司 Polyurethane modified decorative plate and preparation method thereof
CN107574503A (en) * 2017-09-30 2018-01-12 成都新柯力化工科技有限公司 A kind of low cost is anti-stab to cut flame-resistant terylene textile fabric and preparation method thereof
EP3827447A1 (en) * 2018-07-26 2021-06-02 3M Innovative Properties Company Flame resistant materials for electric vehicle battery applications
CN112852360B (en) * 2021-01-12 2022-07-29 天津市盛世德新材料科技有限公司 Nano magnesium hydroxide reinforced phenolic resin adhesive for impregnated paper and preparation method thereof
BE1029969B1 (en) * 2021-11-30 2023-06-28 Flooring Ind Ltd Sarl Flame retardant laminate

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3018206A (en) * 1957-12-31 1962-01-23 Westinghouse Electric Corp Fire-resistant decorated composite laminate members and method of producing same
US3600249A (en) * 1966-07-28 1971-08-17 Hexcel Corp Reinforced plastic honeycomb method and apparatus
US3663720A (en) * 1965-09-10 1972-05-16 Thompson Chemicals Inc Article of manufacture having high temperature resistant properties and method of making the same
US4207282A (en) * 1978-06-01 1980-06-10 Armco Inc. Method for molding reinforced polymeric articles
US4251590A (en) * 1979-06-18 1981-02-17 Johns-Manville Corporation High temperature pipe insulation
US4264671A (en) * 1978-08-02 1981-04-28 Weyerhaeuser Company Phenol formaldehyde resoles and laminates
US4310585A (en) * 1979-06-15 1982-01-12 Owens-Corning Fiberglas Corporation Fibrous product formed of layers of compressed fibers
US4371579A (en) * 1980-10-09 1983-02-01 Westinghouse Electric Corp. Fire-resistant filler sheet laminates
US4600634A (en) * 1983-07-21 1986-07-15 Minnesota Mining And Manufacturing Company Flexible fibrous endothermic sheet material for fire protection
US4689102A (en) * 1985-01-25 1987-08-25 Technographics Fitchburg Coated Products, Inc. Method for the production of abrasion-resistant decorative laminates
US4714650A (en) * 1985-01-29 1987-12-22 Hiraoka & Co., Ltd. Stainproof, flame-resistant composite sheet material
US4746565A (en) * 1986-09-26 1988-05-24 United Merchants And Manufacturers, Inc. Fire barrier fabrics
US4756955A (en) * 1983-07-05 1988-07-12 Isover Saint-Gobain Recherche High density composite based on discontinuous mineral fibers
US4842923A (en) * 1987-07-27 1989-06-27 Owens-Corning Fiberglas Corporation Ballistic materials
US5079078A (en) * 1990-01-29 1992-01-07 Owens-Corning Fiberglas Corp. Fire-resistant panel system
US5527598A (en) * 1993-05-05 1996-06-18 Albany International Research Co. Composite sandwich element
US5837620A (en) * 1996-10-10 1998-11-17 Johns Manville International, Inc. Fiber glass mats and method of making
US5905045A (en) * 1996-04-11 1999-05-18 Precision Fabrics Group, Inc. Treated veil for use in the manufacture of a fiber reinforced plastic
US5972272A (en) * 1994-06-30 1999-10-26 Nippon Zeon Co., Ltd. Unsaturated polyester resin composition and process for molding the composition
US6008147A (en) * 1998-05-28 1999-12-28 Johns Manville International, Inc. Fiber glass mat for laminating to foam, foam laminate precursor, foam laminate, and methods of making the mat and the foam laminate
US6187415B1 (en) * 1998-09-26 2001-02-13 Premark Rwp Holdings, Inc. Solid surfacing dimensional laminate, and methods for making and using same
US6333280B1 (en) * 1996-09-04 2001-12-25 Sumitomo Bakelite Company, Ltd. Flame-retardant or incombustible decorative laminated sheet
US20020013391A1 (en) * 2000-06-23 2002-01-31 Robert Huusken Flame retardant resin coating
US20020136862A1 (en) * 2000-12-11 2002-09-26 Daojie Dong Decorative and/or flame retardant laminates and processes of manufacture thereof
US20020168503A1 (en) * 2000-12-11 2002-11-14 Daojie Dong Decorative and/or flame retardant laminates and/or polyolefin laminates and processes of manufacture thereof
US20030008586A1 (en) * 1999-10-27 2003-01-09 Johns Manville International, Inc. Low binder nonwoven fiber mats, laminates containing fibrous mat and methods of making
US20030022577A1 (en) * 2000-12-29 2003-01-30 Kwang-Min Kim Fire-resistant panel comprising loess and fire-resistant decorative panel using the same
US20030124397A1 (en) * 2000-12-29 2003-07-03 Kwang-Min Kim Fire-resistant composite panel and fire-resistant decorative composite panel using the same
US20030213931A1 (en) * 2000-08-14 2003-11-20 Gisele Baudin Process for producing coatings using surface-active photoinitiators
US6670291B1 (en) * 2000-10-18 2003-12-30 3M Innovative Properties Company Laminate sheet material for fire barrier applications
US20040163571A1 (en) * 2003-01-30 2004-08-26 Dorset Firedoor Systems, Inc. Fire door core assembly
US20040192148A1 (en) * 2003-03-28 2004-09-30 Kajander Richard Emil Nonwoven fiber mats with good hiding properties, laminates and method
US20040197468A1 (en) * 2002-12-19 2004-10-07 Paul Geel Methods of forming flexible decorative veils
US20050025949A1 (en) * 2002-12-19 2005-02-03 Grove Dale A. Deformable veil and process for manufacturing same
US20050227104A1 (en) * 2002-04-04 2005-10-13 Kim Young-Gi Wood flooring with laminated wood and plastic layers using symmetric structure and method of manufacturing the same
US20050229518A1 (en) * 2004-03-11 2005-10-20 Ruid John O Faced fiberglass board with improved surface toughness
US20050266221A1 (en) * 2004-05-28 2005-12-01 Panolam Industries International, Inc. Fiber-reinforced decorative laminate
US20070042168A1 (en) * 2003-11-25 2007-02-22 Nitto Denko Corporation Resin sheet, liquid crystal cell substrate, liquid crystal display device, substrate for an electroluminescence display device, electroluminescence display device, and a substrate for a solar cell
US7199065B1 (en) * 1999-07-30 2007-04-03 Johns Manville Non-woven laminate composite
US7294363B2 (en) * 2002-12-19 2007-11-13 Owens Corning Intellectual Capital, Llc Methods of forming decorative veils

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3018206A (en) * 1957-12-31 1962-01-23 Westinghouse Electric Corp Fire-resistant decorated composite laminate members and method of producing same
US3663720A (en) * 1965-09-10 1972-05-16 Thompson Chemicals Inc Article of manufacture having high temperature resistant properties and method of making the same
US3600249A (en) * 1966-07-28 1971-08-17 Hexcel Corp Reinforced plastic honeycomb method and apparatus
US4207282A (en) * 1978-06-01 1980-06-10 Armco Inc. Method for molding reinforced polymeric articles
US4264671A (en) * 1978-08-02 1981-04-28 Weyerhaeuser Company Phenol formaldehyde resoles and laminates
US4310585A (en) * 1979-06-15 1982-01-12 Owens-Corning Fiberglas Corporation Fibrous product formed of layers of compressed fibers
US4251590A (en) * 1979-06-18 1981-02-17 Johns-Manville Corporation High temperature pipe insulation
US4371579A (en) * 1980-10-09 1983-02-01 Westinghouse Electric Corp. Fire-resistant filler sheet laminates
US4756955A (en) * 1983-07-05 1988-07-12 Isover Saint-Gobain Recherche High density composite based on discontinuous mineral fibers
US4600634A (en) * 1983-07-21 1986-07-15 Minnesota Mining And Manufacturing Company Flexible fibrous endothermic sheet material for fire protection
US4689102A (en) * 1985-01-25 1987-08-25 Technographics Fitchburg Coated Products, Inc. Method for the production of abrasion-resistant decorative laminates
US4714650A (en) * 1985-01-29 1987-12-22 Hiraoka & Co., Ltd. Stainproof, flame-resistant composite sheet material
US4746565A (en) * 1986-09-26 1988-05-24 United Merchants And Manufacturers, Inc. Fire barrier fabrics
US4842923A (en) * 1987-07-27 1989-06-27 Owens-Corning Fiberglas Corporation Ballistic materials
US5079078A (en) * 1990-01-29 1992-01-07 Owens-Corning Fiberglas Corp. Fire-resistant panel system
US5527598A (en) * 1993-05-05 1996-06-18 Albany International Research Co. Composite sandwich element
US5972272A (en) * 1994-06-30 1999-10-26 Nippon Zeon Co., Ltd. Unsaturated polyester resin composition and process for molding the composition
US5905045A (en) * 1996-04-11 1999-05-18 Precision Fabrics Group, Inc. Treated veil for use in the manufacture of a fiber reinforced plastic
US6333280B1 (en) * 1996-09-04 2001-12-25 Sumitomo Bakelite Company, Ltd. Flame-retardant or incombustible decorative laminated sheet
US20010021448A1 (en) * 1996-10-10 2001-09-13 Johns Manville International, Inc. Method of making improved fiber glass mat, laminates made with the mat, and method of making laminates
US6303207B1 (en) * 1996-10-10 2001-10-16 Johns Manville International, Inc. Wood laminates
US6331339B1 (en) * 1996-10-10 2001-12-18 Johns Manville International, Inc. Wood laminate and method of making
US5837620A (en) * 1996-10-10 1998-11-17 Johns Manville International, Inc. Fiber glass mats and method of making
US6008147A (en) * 1998-05-28 1999-12-28 Johns Manville International, Inc. Fiber glass mat for laminating to foam, foam laminate precursor, foam laminate, and methods of making the mat and the foam laminate
US6093485A (en) * 1998-05-28 2000-07-25 Johns Manville International, Inc. Fiber glass mat for laminating to foam, foam laminate precursor, foam laminate, and methods of making the mat and the foam laminate
US6187415B1 (en) * 1998-09-26 2001-02-13 Premark Rwp Holdings, Inc. Solid surfacing dimensional laminate, and methods for making and using same
US7199065B1 (en) * 1999-07-30 2007-04-03 Johns Manville Non-woven laminate composite
US20030008586A1 (en) * 1999-10-27 2003-01-09 Johns Manville International, Inc. Low binder nonwoven fiber mats, laminates containing fibrous mat and methods of making
US20020013391A1 (en) * 2000-06-23 2002-01-31 Robert Huusken Flame retardant resin coating
US20030213931A1 (en) * 2000-08-14 2003-11-20 Gisele Baudin Process for producing coatings using surface-active photoinitiators
US6670291B1 (en) * 2000-10-18 2003-12-30 3M Innovative Properties Company Laminate sheet material for fire barrier applications
US20020168503A1 (en) * 2000-12-11 2002-11-14 Daojie Dong Decorative and/or flame retardant laminates and/or polyolefin laminates and processes of manufacture thereof
US20020136862A1 (en) * 2000-12-11 2002-09-26 Daojie Dong Decorative and/or flame retardant laminates and processes of manufacture thereof
US6835676B2 (en) * 2000-12-29 2004-12-28 Lg Chem, Ltd. Fire-resistant composite panel and fire-resistant decorative composite panel using the same
US20030124397A1 (en) * 2000-12-29 2003-07-03 Kwang-Min Kim Fire-resistant composite panel and fire-resistant decorative composite panel using the same
US20030022577A1 (en) * 2000-12-29 2003-01-30 Kwang-Min Kim Fire-resistant panel comprising loess and fire-resistant decorative panel using the same
US20050227104A1 (en) * 2002-04-04 2005-10-13 Kim Young-Gi Wood flooring with laminated wood and plastic layers using symmetric structure and method of manufacturing the same
US20040197468A1 (en) * 2002-12-19 2004-10-07 Paul Geel Methods of forming flexible decorative veils
US20050025949A1 (en) * 2002-12-19 2005-02-03 Grove Dale A. Deformable veil and process for manufacturing same
US7294363B2 (en) * 2002-12-19 2007-11-13 Owens Corning Intellectual Capital, Llc Methods of forming decorative veils
US20040163571A1 (en) * 2003-01-30 2004-08-26 Dorset Firedoor Systems, Inc. Fire door core assembly
US20040192148A1 (en) * 2003-03-28 2004-09-30 Kajander Richard Emil Nonwoven fiber mats with good hiding properties, laminates and method
US20070042168A1 (en) * 2003-11-25 2007-02-22 Nitto Denko Corporation Resin sheet, liquid crystal cell substrate, liquid crystal display device, substrate for an electroluminescence display device, electroluminescence display device, and a substrate for a solar cell
US20050229518A1 (en) * 2004-03-11 2005-10-20 Ruid John O Faced fiberglass board with improved surface toughness
US20050266221A1 (en) * 2004-05-28 2005-12-01 Panolam Industries International, Inc. Fiber-reinforced decorative laminate

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070028545A1 (en) * 2005-08-02 2007-02-08 Fredericus Schreuder Method for renovating ceiling tile
US11773592B2 (en) 2006-01-20 2023-10-03 Material Innovations Llc Carpet waste composite
US20080011190A1 (en) * 2006-07-13 2008-01-17 Unimin Corporation Ultra fine nepheline syenite powder and products for using same
US10294377B2 (en) 2006-07-13 2019-05-21 Covia Holdings Corporation Ultra fine nepheline syenite powder and products for using same
US8864900B2 (en) 2006-07-13 2014-10-21 Unimin Corporation Ultrafine nepheline syenite
US10065194B2 (en) 2006-07-13 2018-09-04 Covia Holdings Corporation Ultrafine nepheline syenite
US8858699B2 (en) * 2006-07-13 2014-10-14 Unimin Corporation Ultra fine nepheline syenite powder and products for using same
US20100304952A1 (en) * 2006-07-13 2010-12-02 Unimin Corporation Method of processing nepheline syenite
US20110123804A1 (en) * 2006-07-13 2011-05-26 Unimin Corporation Ultrafine nepheline syenite
US20110165421A1 (en) * 2007-02-07 2011-07-07 Unimin Corporation Method of processing nepheline syenite powder to produce an ultra-fine grain size product
US8070080B2 (en) 2007-02-07 2011-12-06 Unimin Corporation Method of processing nepheline syenite powder to produce an ultra-fine grain size product
US20110163192A1 (en) * 2007-02-07 2011-07-07 Unimin Corporation Method of processing nepheline syenite powder to produce an ultra-fine grain size product
WO2008101679A3 (en) * 2007-02-21 2009-07-16 Johns Manville Europe Gmbh Directly decoratable composite materials, method for their manufacture and their use
WO2008101679A2 (en) * 2007-02-21 2008-08-28 Johns Manville Europe Gmbh Directly decoratable composite materials, method for their manufacture and their use
US20100221973A1 (en) * 2007-02-21 2010-09-02 Johns Manville composite materials, method for their manufacture and their use
WO2008101678A2 (en) * 2007-02-21 2008-08-28 Johns Manville Europe Gmbh New composite materials, method for their manufacture and their use
WO2008101678A3 (en) * 2007-02-21 2009-07-16 Johns Manville Europe Gmbh New composite materials, method for their manufacture and their use
US20110159208A1 (en) * 2007-05-07 2011-06-30 Depco-Trh Pty Ltd Improvements in the manufacture of b-stage resin impregnated papers or non-wovens
US9034096B2 (en) 2007-05-11 2015-05-19 Unimin Corporation Nepheline syenite powder with controlled particle size and novel method of making same
US20090013905A1 (en) * 2007-05-11 2009-01-15 Unimin Corporation Nepheline syenite powder with controlled particle size and novel method of making same
US20100297414A1 (en) * 2007-09-11 2010-11-25 Quadrant Plastic Composites Ag Composite sheet based on high pressure laminate sheets (hpl sheets)
US8182601B2 (en) 2008-04-17 2012-05-22 Unimin Corporation Powder formed from mineral or rock material with controlled particle size distribution for thermal films
US9266115B2 (en) 2008-04-17 2016-02-23 Unimin Corporation Powder formed from mineral or rock material with controlled particle size distribution for thermal films
US20090260541A1 (en) * 2008-04-17 2009-10-22 Kragten David D Powder formed from mineral or rock material with controlled particle size distribution for thermal films
US10449748B2 (en) 2011-10-13 2019-10-22 Aica Kogyo Co., Ltd. Decorative board
CN105593016A (en) * 2013-04-18 2016-05-18 一都公司 Burnthrough resistant laminate film
CN104760120A (en) * 2014-01-07 2015-07-08 宽甸满族自治县志华化工有限公司 Novel light fireproof wall board and manufacturing method thereof
DE102014116984B4 (en) 2014-11-20 2019-10-24 DI Dekodur International GmbH & Co. KG Non-combustible laminate and process for producing a laminate
US20170328063A1 (en) * 2014-11-20 2017-11-16 Dekodur Gmbh & Co. Kg Non-flammable laminate
US10920421B2 (en) * 2014-11-20 2021-02-16 Di Dekodurinternational Gmbh & Co. Kg Non-flammable laminate
AU2015348364B2 (en) * 2014-11-20 2019-12-12 DI Dekodur International GmbH & Co. KG Non-flammable laminate
US9238912B1 (en) * 2015-03-10 2016-01-19 Awi Licensing Company Method for installing acoustic panel
CN105599419A (en) * 2015-12-22 2016-05-25 江苏中欧生态环境科技有限公司 Production method for formaldehyde-removing and antibacterial melamine impregnated paper composite material
CN106042124A (en) * 2016-06-08 2016-10-26 安徽汇力建筑工程有限公司 Production method of light heat-preservation curtain wall material
CN106320652A (en) * 2016-09-27 2017-01-11 湖州维细高分子材料有限公司 Microcrystalline wood floor structure
CN107057288A (en) * 2017-05-22 2017-08-18 安徽三义和能源科技有限公司 A kind of preparation method of Pressure-resistant fireproof plate
US20190091983A1 (en) * 2017-09-28 2019-03-28 Wilsonart Llc High pressure decorative laminate having a top layer of energy cured acrylated urethane polymer
US11020948B2 (en) * 2017-09-28 2021-06-01 Wilsonart Llc High pressure decorative laminate having a top layer of energy cured acrylated urethane polymer
CN110078878A (en) * 2019-04-28 2019-08-02 福建农林大学 The preparation method of radiation modification melamine urea-formaldehyde resin
US20220251779A1 (en) * 2019-06-13 2022-08-11 Owens Corning Intellectual Capital, Llc Walkable facer mats for roof insulation
WO2022109118A1 (en) * 2020-11-18 2022-05-27 Material Innovations Llc Composite building materials and methods of manufacture
US11572646B2 (en) 2020-11-18 2023-02-07 Material Innovations Llc Composite building materials and methods of manufacture

Also Published As

Publication number Publication date
CN101175634A (en) 2008-05-07

Similar Documents

Publication Publication Date Title
US20060234026A1 (en) Non-combustible high pressure laminate
WO2006111458A1 (en) Fire retardant laminate
US20070193683A1 (en) Continuous pressed laminates
US10954421B2 (en) Binder composition
EP2690217B1 (en) Glass fiber reinforced facer mat
AU2008246823B2 (en) Decorative board
US20110263174A1 (en) Novel composite materials, method for their production and their use for the flooring sector
KR20140053805A (en) Fire-resistant laminate
US10920421B2 (en) Non-flammable laminate
US10589315B2 (en) Coated mat of inorganic fibers, and functional decorative layers, manufactured therefrom, in floor, ceiling and wall coverings
AU763345B2 (en) Radiation shielded laminate
KR101622302B1 (en) High pressurized decorative laminate with thermosetting resin and non-flammable property for decoration floor panel
JPH11300868A (en) Composite building material

Legal Events

Date Code Title Description
AS Assignment

Owner name: OWENS CORNING INTELLECTUAL CAPITAL, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-CORNING VEIL NETHERLANDS B.V.;REEL/FRAME:019674/0070

Effective date: 20070808

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION