US20060255444A1 - System and method for vertically stacking computer memory components - Google Patents

System and method for vertically stacking computer memory components Download PDF

Info

Publication number
US20060255444A1
US20060255444A1 US11/404,464 US40446406A US2006255444A1 US 20060255444 A1 US20060255444 A1 US 20060255444A1 US 40446406 A US40446406 A US 40446406A US 2006255444 A1 US2006255444 A1 US 2006255444A1
Authority
US
United States
Prior art keywords
chip
contacts
chips
pattern
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/404,464
Inventor
Mark Moshayedi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Technologies Santa Ana Inc
Original Assignee
Simpletech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Simpletech Inc filed Critical Simpletech Inc
Priority to US11/404,464 priority Critical patent/US20060255444A1/en
Publication of US20060255444A1 publication Critical patent/US20060255444A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0652Bump or bump-like direct electrical connections from substrate to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06551Conductive connections on the side of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06572Auxiliary carrier between devices, the carrier having an electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • H01L2225/06586Housing with external bump or bump-like connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA

Definitions

  • the invention relates to the field of integrated circuit interconnections and, in particular, to structures and methods for vertically stacking chips for increased volume density without increased footprint.
  • Chips are generally planar structures and typically include a plurality of conducting pads disposed as surface contacts about a surface of the chip and/or “pins” along an edge thereof.
  • the conducting pads generally interconnect to a plurality of interconnecting conductive traces that extend from the pads to the electronic devices within the chip and allow interconnection of the electronic devices to external circuits to allow a system level circuit.
  • chips are generally planar structures with relatively thin, flat profile.
  • a common practice has been to interconnect chips on another generally planar support structure often referred to as a “mother board”.
  • the desire to provide the capability of integrated circuits to relatively small devices limits the extent to which multiple chips can be laterally interconnected while still fitting within the device.
  • lateral extension and interconnection of chips tends to lead to relatively long interconnects between chips and thus between circuit components thus introducing propagation delays that can limit the practical speed of operation of the system level circuits.
  • the invention which in one aspect is various structures and methods for interconnecting a plurality of generally planar chips in a vertical stack such that the stack chips define interstitial spaces that provide clearance for additional chips to be placed therein.
  • the various structures and methods include the aspect that the total footprint of the stack does not exceed the footprint of the single largest component chip.
  • a certain aspect of the invention is a chip stack of a preformed support structure vertically interconnecting a first chip to a second chip with a third chip interposed therebetween
  • the support structure comprises a rigid annular housing defining an opening adapted to provide clearance for the third chip and a plurality of conductor cavities disposed about the periphery of the housing and extending between a first face and an opposite second face of the housing and a plurality of conductive elements positioned within the conductor cavities such that a portion of each conductive element extends slightly beyond the first and second faces of the housing so as to interconnect the first and second chips and such that each of the conductive element extends substantially flush with the edges of the conductor cavities on the first and second faces of the housing so as to substantially fill the corresponding conductor cavity.
  • the conductor cavities of the support structure are substantially rectangular in horizontal cross-section or more particularly wherein the conductor cavities of the support structure are substantially square in horizontal cross-section.
  • walls of the conductor cavities are substantially parallel to other conductor cavity walls along their adjacency to the adjacent conductor cavities and/or wherein the conductor cavities define first opposing walls facing adjacent conductor cavities and second opposing walls between the first walls wherein the first walls are generally planar and parallel to the first walls of adjacent conductor cavities and wherein the second walls are generally convexly curved.
  • the invention also includes the aspects of a preformed support structure for vertically interconnecting a first chip to a second chip with a third chip interposed therebetween
  • the support structure comprises a rigid annular housing defining an opening adapted to provide clearance for the third chip and a plurality of conductor cavities disposed about the periphery of the housing and extending between a first face and an opposite second face of the housing and a plurality of conductive elements positioned within the conductor cavities such that a portion of each conductive element extends slightly beyond the first and second faces of the housing and such that each of the conductive element extends substantially flush with the edges of the conductor cavities on the first and second faces of the housing so as to substantially fill the corresponding conductor cavity.
  • the conductor cavities of the support structure are substantially rectangular in horizontal cross-section and more particularly wherein the conductor cavities of the support structure are substantially square in horizontal cross-section.
  • the invention further includes the aspect wherein walls of the conductor cavities are substantially parallel to other conductor cavity walls along their adjacency to the adjacent conductor cavities and wherein the conductor cavities define first opposing walls facing adjacent conductor cavities and second opposing walls between the first walls wherein the first walls are generally planar and parallel to the first walls of adjacent conductor cavities and wherein the second walls are generally convexly curved.
  • the invention is also a method of interconnecting chips having surface contacts comprising forming a generally annular support structure with a plurality of conductor cavities extending between opposite faces of the support structure and aligned with the surface contacts, filling the conductor cavities with conductive material such that the conductive material substantially fills the conductor cavities and extends slightly beyond the opposite faces of the support structure, placing chips on the support structure such that the surface contacts are adjacent and aligned with the conductor cavities so as to form a stack of the chips and the support structure, and processing the stack so as to induce the conductive material to connect to the surface contacts.
  • Yet another aspect of the invention is a chip stack of at least a first, a second, and a third chip and conductive interconnecting structures of at least a first size and a second smaller size interconnecting the chips wherein the third chip has a smaller footprint than either of the first or second chips and wherein the first conductive structures interconnect the first and second chips so as to define an interstitial space therebetween and the third chip is connected to at least one of the first and the second chips via the second conductive structures and is positioned within the interstitial space such that the vertical extent of the first conductive support structures is greater than the combined vertical extent of the third chip and the second conductive support structures.
  • the invention includes wherein the third chip is connected to one of the first or the second chips via the second conductive structures.
  • An additional aspect of the invention is a chip stack of at least a first, a second, and a third chip and conductive interconnecting structures of a first size interconnecting the first and second chips to the third chip wherein the third chip has a larger footprint than either of the first or second chips and further comprising second conductive support structures connected to the third chip such that the vertical extent of the second conductive support structures is greater than the combined vertical extent of either the first or second chips and the associated first conductive support structures.
  • FIG. 1 is an exploded, perspective view of one embodiment of a preformed support structure vertically interconnecting a first chip to a second chip with a third chip interposed therebetween;
  • FIG. 2 is a detail, perspective view of a portion of one embodiment of the preformed support structure of FIG. I wherein conductor cavities of the support have a generally square cross-section;
  • FIG. 3 is a detail, perspective view of a portion of another embodiment of the preformed support structure of FIG. I wherein conductor cavities of the support have generally planar walls generally parallel to the walls of adjacent cavities and a generally convex outward curve on the sides between the planar sides;
  • FIG. 4 is a side view of one embodiment of a preformed support structure vertically interconnecting a first chip to a second chip with a third chip interposed therebetween;
  • FIG. 5 is a side view of another embodiment of a preformed support structure vertically interconnecting a first chip to a second chip with a third chip interposed therebetween;
  • FIG. 6 is an exploded perspective view of one embodiment of a chip stack of at least a first, a second, and a third chip and conductive interconnecting structures of at least a first size and a second smaller size interconnecting the chips;
  • FIG. 7 is a side view of the chip stack of FIG. 6 ;
  • FIG. 8 is an exploded perspective view of one embodiment of a chip stack of at least a first, a second, and a third chip and conductive interconnecting structures of a first size interconnecting the first and second chips to the third chip;
  • FIG. 9 is a side view of the chip stack of FIG. 8 .
  • FIG. 1 is an exploded, perspective view of one embodiment of a chip stack 100 of the invention.
  • the chip stack 100 in this embodiment, comprises a first chip 102 , a second chip 104 and a third chip 106 .
  • the chip stack 100 as illustrated in FIG. 1 further comprises a fourth chip 110 .
  • the chips 102 , 104 , 106 , 110 comprise packaged integrated circuits with exposed contacts of types generally well known in the art.
  • the chip stack 100 also comprises a preformed support 112 vertically interconnecting the first chip 102 and the second chip 104 .
  • the support 112 in this particular embodiment is generally rectangular and is sized to generally match the shape and size of the first 102 and second 104 chips.
  • the support 112 is also annular, defining an internal opening 114 .
  • the opening 114 in this particular embodiment is also generally rectangular and sized to provide clearance for the third chip 106 within the opening 114 .
  • the support 112 is made of a rigid, non-conducting material.
  • the support 112 also includes a plurality of conductor cavities 116 .
  • the conductor cavities 116 extend generally vertically between a first face 120 and an opposite second face 122 of the support 112 .
  • the conductor cavities 116 are substantially filled with a conductive material 124 .
  • the conductive material 124 comprises a metal of relatively low melting point, such as solder and in alternative embodiments, the conductive material 124 comprises a conductive adhesive material, such as epoxy.
  • An advantageous aspect of this embodiment is that the support 112 is provided in a preformed manner with the conductor cavities 116 substantially filled with the conductive material 124 . This aspect of this embodiment facilitates alignment of the conductive material 124 within the rigid support 112 and maintains the alignment as the first 102 and second 104 chips are interconnected via the support 112 in a manner that will be described in greater detail below.
  • the conductor cavities 116 are disposed mutually aligned with contacts 142 of the first 102 and second 104 chips arrayed in a first pattern about the periphery of the support 112 (corresponding to the periphery of the first 102 and second 104 chips) with a spacing 126 as shown in FIGS. 2 and 3 .
  • the spacing 126 is the lateral separation between adjacent conductor cavities 116 as filled with the conductive material 124 as considered generally orthogonal to the generally vertical orientation of the conductor cavities 116 .
  • the terms “vertical” and “vertically” as used herein refer to a generally orthogonal orientation with respect to the major plane of the chips.
  • the conductor cavities 116 extend generally along the y-axis and have generally planar first walls 130 aligned generally along the y-z plane.
  • the conductor cavities 116 also have second walls 132 between the first walls 130 .
  • the first walls 130 and second walls 132 are generally planar and respectively parallel to each other.
  • the first walls 130 are also perpendicular to the second walls 132 such that the conductor cavities 116 are generally rectangular in cross-section as considered along the horizontal x-z plane.
  • the conductor cavities 116 are square in cross-section. It should also be understood that in further embodiments, the conductor cavities 116 can be circular, oval, or other cross-sectional shapes without detracting from the spirit of the invention.
  • the conductor cavities 116 filled with the conductive material 124 define signal lines conducting signals between the various electronic devices of the various chips 102 , 104 , 106 , 110 . It is generally essential to proper circuit operation that each of the plurality of conductive cavities 116 filled with conductive material 124 maintain signal integrity. Cross-talk between the conductor cavities 116 should preferably be inhibited. Cross-talk can arise because of conductive material 124 bridging across conductor cavities or excessive electric field intensity causing arcing across adjacent conductor cavities. Thus, the spacing 126 between adjacent conductor cavities 116 as filled with the conductive material 124 is subject to lower limits. In particular, a lower limit to the spacing 126 will be imposed by process limitations to forming smaller conductor cavities 116 or closer spacing 126 while maintaining reliable conductive integrity therethrough.
  • One manner of increasing the conductivity is to increase the cross-sectional area of the conductor cavities 116 , thereby increasing the available volume for filling the cavities 116 with the conductive material 124 .
  • a square cross-sectional aspect of the conductor cavities 116 as shown in FIG. 2 will increase the available conductive material 124 for signal transmission and thus increase the conductance thereof.
  • FIG. 3 illustrates an alternative embodiment of configuration for the conductor cavities 116 that may be advantageous in certain applications.
  • the conductor cavities 116 of FIG. 3 have first walls 130 that are generally planar and mutually parallel.
  • the second walls 132 positioned between the first walls 130 , in this embodiment, are convexly curved.
  • This embodiment offers the advantage that the junction between the first 130 and second 132 walls has a larger radius of curvature, i.e. is less sharp.
  • a potential difference between conductor cavities 116 filled with conductive material 124 will result in a lower electric field intensity adjacent the conductor cavities 116 than an otherwise equivalent case with sharper corners thus reducing the likelihood of arcing across conductor cavities 116 of reduced dimensions and smaller spacing 126 .
  • the embodiment of conductor cavities illustrated in FIG. 3 may also offer advantages in manufacturing ease as opposed to embodiments with sharper comers between first 130 and second 132 walls.
  • the chips 102 , 104 , 106 , 110 are preferably provided with a plurality of surface mount contacts 142 , 144 comprising solder balls or bumps of types generally well known in the art such that the solder balls or bumps are positioned mutually aligned with respect to each other such that the third chip 106 is generally centered on a face of the first chip 102 and that contacts 144 of the first 102 and third 106 chips are aligned in a second pattern as well as contacts 142 of the first 102 and second 104 chips aligned in a first pattern.
  • the third chip 106 is attached to the first chip 102 by positioning the first chip 102 adjacent the third chip 106 so as to achieve alignment between the plurality of solder balls/bumps thereof.
  • the first 102 and third 106 chips are then processed to induce the solder balls/bumps to partially liquefy and reflow and subsequently the first 102 and third 106 chips are further processed to induce the solder to resolidify thereby mutually affixing and interconnecting the first 102 and third 106 chips via the contacts 144 .
  • the support 112 is then placed between the first 102 and second 104 chips such that the third chip 106 is positioned within the internal opening 114 of the support 112 and such that the contacts 142 disposed about the periphery of the first 102 and second 104 chips are aligned with the conductor cavities 116 .
  • the conductive material 124 is solder
  • the support 112 and first 102 and second 104 chips are then exposed to a heat process to induce the solder to partially liquefy and then allowed to cool to form a solder joint between the first 102 and second 104 chips at the contacts 142 via the support 112 with the preformed conductive material 124 in the conductor cavities 116 .
  • the conductive material 124 comprises a conductive adhesive
  • the support 112 and first 102 and second 104 chips are maintained in alignment until the adhesive components of the conductive material 124 set.
  • FIG. 4 illustrates an embodiment of the invention wherein the fourth chip 110 is attached to the second chip 104 in a similar manner to the connection of the third chip 106 to the first chip 102 .
  • the fourth chip 100 can be attached to the second chip 104 in the manner previously described for the first 102 and third 106 chips either before or after the interconnection of the first 102 and second 104 chips. It will be appreciated that in additional embodiments, additional layers of supports 112 and chips could be formed to extend the height of and number of chips in the chip stack 100 in the manner previously described.
  • FIG. 5 illustrates a further embodiment of the invention otherwise similar to the embodiments described with respect to FIGS. 1-4 and further comprising a plurality of conductive supports 134 are attached to a lower face 136 of the first chip 102 at contacts 146 .
  • the conductive supports 134 comprise balls or bumps of solder and, in other embodiments, a conductive, adhesive material such as conductive epoxy 138 .
  • the conductive supports 134 extend beyond the lower face 136 a vertical distance.
  • the conductive supports 136 define an interstitial space 140 .
  • the interstitial space 140 provides clearance for the attachment of additional chips to the lower face 136 of the first chip 102 in a similar manner to that in which the internal opening 114 of the support 112 provides clearance for the third chip 106 on an upper face 142 of the first chip 102 .
  • the conductive supports 134 also provide mechanism for attaching the lower face of the first chip 102 to other chips or structures that have a footprint at least generally as large as that of the first chip 102 . It will be appreciated that the various electronic devices of the chips 102 , 104 , 106 , 110 can thus be interconnected to underlying circuits or structures without exceeding the footprint of the single first chip 102 . These aspects of the invention facilitate efficient attachment of the first chip 102 and thus the chip stack 100 to other electronic structures or devices.
  • FIG. 6 is an exploded, perspective view of another embodiment of a chip stack 200 .
  • the chip stack 200 comprises a first chip 202 , a second chip 204 , and a third chip 206 .
  • the chips 202 , 204 , and 206 are similar to the chips 102 , 104 , 106 , 110 previously described being encapsulated integrated circuits of types generally well known in the art.
  • the chips 202 , 204 , 206 are also provided with a plurality of contacts 220 , 222 of types well known in the art as previously described for the chip stack 100 .
  • the contacts 220 of the first 202 and second 204 chips are arrayed in a first pattern aligned with contacts 220 on a lower 210 and an upper 212 face respectively of the third chip 206 .
  • the first 202 and second 204 chips have smaller footprints than that of the third chip 206 .
  • the first contacts 220 of the third 206 chips are positioned generally centrally on the lower 210 and upper 212 faces of the third chip 206 .
  • the chip stack 200 also comprises a plurality of first conductive interconnecting structures 214 .
  • the first interconnecting structures 214 in this embodiment comprise balls/bumps of solder arrayed about a face of the first 202 and second 204 chips and aligned with the contacts 222 thereof.
  • the first interconnecting structures 214 are aligned between the contacts 220 of the first chip 202 and the first contacts 220 on the lower face 210 of the third chip 206 and between the contacts 220 of the second chip 204 and the first contacts 220 on the upper face 212 of the third chip 206 .
  • the first interconnecting structures 214 and the chips 202 , 204 , 206 are processed to induce the first interconnecting structures 214 to partially liquefy and then allowed to cool so as to form a solder joint between the first 202 and third 206 and the second 204 and third 206 chips at the contacts 220 .
  • the third chip 206 also comprises a plurality of second contacts 222 disposed about the lower face 210 and positioned outside the attachment of the first chip 202 to the third chip 206 .
  • the chip stack 200 also comprises a plurality of second interconnecting structures 216 similar in composition and form to the first interconnecting structures 214 .
  • the first interconnecting structures 214 are of a first size and the second interconnecting structures 216 are of a larger second size.
  • the vertical dimension of the second interconnecting structures 216 is greater than the combined vertical dimension of the first chip 202 and the first interconnecting structures 214 as interconnecting the first 202 and the third 206 chips.
  • the second interconnecting structures extend vertically beyond the first chip 202 as interconnected to the third chip 206 .
  • the second interconnecting structures 216 facilitate interconnection of the third chip 206 , and thus as desired, the first 202 and second 204 chips, via the third chip 206 , to an underlying chip or structure.
  • FIGS. 8 and 9 illustrate an additional alternative embodiment of a chip stack 300 .
  • the chip stack 300 comprises a first chip 302 , a second chip 304 , a third chip 306 , and a fourth chip 310 .
  • the chips 302 , 304 , 306 , 310 are generally planar encapsulated integrated circuits of types well known in the art. In this embodiment, the first 302 and the third 306 chips and the second 304 and the fourth 310 chips respectively have substantially similar footprints.
  • the chip stack 300 also comprises first 312 and second 314 interconnecting structures.
  • the interconnecting structures 312 , 314 comprise solder balls/bumps and the first interconnecting structures 312 are of a first size and the second interconnecting structures 314 are of a second larger size.
  • the second interconnecting structures 314 are larger in vertical dimension than the combined vertical dimension of the first interconnecting structures 312 and one of the chips 304 and 310 .
  • the chips 302 , 304 , 306 , 310 comprise contacts 320 , 322 disposed about faces of the chips 302 , 304 , 306 , 310 .
  • first contacts 320 are disposed on upper faces of the first 302 and third 306 chips and on lower faces of the second 304 and fourth 310 chips such that the first contacts 320 are aligned between the respective faces of the first 302 and second 304 chips and between the third 306 and fourth 310 chips.
  • the chips 302 , 306 also comprise second contacts 322 disposed on vertically corresponding positions on opposing upper and lower faces of the chips 302 , 306 .
  • the second contacts 322 are disposed generally about the periphery of the chips 302 , 306 and outside the footprint of the chips 304 and 310 .
  • the chip stack 300 is formed by positioning first interconnecting structures 312 so as to be aligned between the first contacts 320 of the first 302 and second 304 chips as well as between the third 304 and the fourth 310 chips. Second interconnecting structures 314 are further positioned so as to be aligned between the second contacts 322 of the first 302 and third 306 chips. The chips 302 , 304 , 306 , 310 and first 312 and second 314 interconnecting structures are then processed so as to induce the first 312 and second 314 interconnecting structures to partial liquefy and then allowed to cool so as to resolidify and form solder joints between the chips 302 , 304 , 306 , 310 via the contacts 320 , 322 .
  • the attachment of the first 302 and third 306 chips via the second interconnecting structures 314 defines an interstitial space 316 .
  • the interstitial space 316 provides clearance for the second chip 304 between the first 302 and third 306 chips. It can be appreciated that additional layers of chips and first 312 and second 314 interconnecting structures can be added to the chip stack 300 creating additional interstitial spaces 316 in alternative embodiments of the invention.

Abstract

System and method for vertically interconnecting a plurality of chips to provide increased volume circuit density for a given surface chip footprint. One embodiment provides a chip stack where two smaller chips are interconnected to a larger third chip on both sides thereof with the lower smaller chip flipped and connected below the larger chip. Further, in another embodiment, interconnecting structures extend from the larger chip beyond the extent of the lower smaller chip to facilitate the electronic connection of the chip stack with other computer components or circuit board. Another embodiment provides a method for stacking chips where two smaller chips are interconnected to a larger third chip on both sides thereof with the lower smaller chip flipped and connected below the larger chip.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application No. 10/853,865, filed May 25, 2004, which is a continuation of U.S. application No. 10/127,343, filed Apr. 19, 2002, which claimed the benefit of U.S. Provisional Application No. 60/285,089 filed Apr. 19, 2001.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to the field of integrated circuit interconnections and, in particular, to structures and methods for vertically stacking chips for increased volume density without increased footprint.
  • 2. Description of the Related Art
  • Modern electronic devices, such as computers and the like, typically include integrated circuits encapsulated in packages generally referred to generically as “chips”. Chips are generally planar structures and typically include a plurality of conducting pads disposed as surface contacts about a surface of the chip and/or “pins” along an edge thereof. The conducting pads generally interconnect to a plurality of interconnecting conductive traces that extend from the pads to the electronic devices within the chip and allow interconnection of the electronic devices to external circuits to allow a system level circuit.
  • With advances in semiconductor device processing has come a continuing increase in device count and density within chips and this has driven a corresponding increase in the count and density of the external conducting pads. Current technology places a limit on how small external contacts can be made and how closely they can be placed adjacent one another while still maintaining circuit integrity. Limits are imposed both by the limitations of machinery to form ever smaller conductive elements and the reduction in production yield as the limits are pushed.
  • An additional concern is an overall system level consideration of packaging. As previously mentioned, chips are generally planar structures with relatively thin, flat profile. A common practice has been to interconnect chips on another generally planar support structure often referred to as a “mother board”. However, the desire to provide the capability of integrated circuits to relatively small devices limits the extent to which multiple chips can be laterally interconnected while still fitting within the device. In addition, lateral extension and interconnection of chips tends to lead to relatively long interconnects between chips and thus between circuit components thus introducing propagation delays that can limit the practical speed of operation of the system level circuits.
  • From the foregoing, it can be appreciated that there is an ongoing need for structures and methods for interconnecting chips to increase circuit density without increasing the chip footprint and with minimal increase in interconnection length.
  • SUMMARY OF THE INVENTION
  • The aforementioned needs are satisfied by the invention which in one aspect is various structures and methods for interconnecting a plurality of generally planar chips in a vertical stack such that the stack chips define interstitial spaces that provide clearance for additional chips to be placed therein. The various structures and methods include the aspect that the total footprint of the stack does not exceed the footprint of the single largest component chip.
  • A certain aspect of the invention is a chip stack of a preformed support structure vertically interconnecting a first chip to a second chip with a third chip interposed therebetween wherein the support structure comprises a rigid annular housing defining an opening adapted to provide clearance for the third chip and a plurality of conductor cavities disposed about the periphery of the housing and extending between a first face and an opposite second face of the housing and a plurality of conductive elements positioned within the conductor cavities such that a portion of each conductive element extends slightly beyond the first and second faces of the housing so as to interconnect the first and second chips and such that each of the conductive element extends substantially flush with the edges of the conductor cavities on the first and second faces of the housing so as to substantially fill the corresponding conductor cavity. A particular aspect therein is wherein the conductor cavities of the support structure are substantially rectangular in horizontal cross-section or more particularly wherein the conductor cavities of the support structure are substantially square in horizontal cross-section.
  • Other aspects of the invention are wherein walls of the conductor cavities are substantially parallel to other conductor cavity walls along their adjacency to the adjacent conductor cavities and/or wherein the conductor cavities define first opposing walls facing adjacent conductor cavities and second opposing walls between the first walls wherein the first walls are generally planar and parallel to the first walls of adjacent conductor cavities and wherein the second walls are generally convexly curved.
  • The invention also includes the aspects of a preformed support structure for vertically interconnecting a first chip to a second chip with a third chip interposed therebetween wherein the support structure comprises a rigid annular housing defining an opening adapted to provide clearance for the third chip and a plurality of conductor cavities disposed about the periphery of the housing and extending between a first face and an opposite second face of the housing and a plurality of conductive elements positioned within the conductor cavities such that a portion of each conductive element extends slightly beyond the first and second faces of the housing and such that each of the conductive element extends substantially flush with the edges of the conductor cavities on the first and second faces of the housing so as to substantially fill the corresponding conductor cavity. A particular aspect therein is wherein the conductor cavities of the support structure are substantially rectangular in horizontal cross-section and more particularly wherein the conductor cavities of the support structure are substantially square in horizontal cross-section.
  • The invention further includes the aspect wherein walls of the conductor cavities are substantially parallel to other conductor cavity walls along their adjacency to the adjacent conductor cavities and wherein the conductor cavities define first opposing walls facing adjacent conductor cavities and second opposing walls between the first walls wherein the first walls are generally planar and parallel to the first walls of adjacent conductor cavities and wherein the second walls are generally convexly curved.
  • The invention is also a method of interconnecting chips having surface contacts comprising forming a generally annular support structure with a plurality of conductor cavities extending between opposite faces of the support structure and aligned with the surface contacts, filling the conductor cavities with conductive material such that the conductive material substantially fills the conductor cavities and extends slightly beyond the opposite faces of the support structure, placing chips on the support structure such that the surface contacts are adjacent and aligned with the conductor cavities so as to form a stack of the chips and the support structure, and processing the stack so as to induce the conductive material to connect to the surface contacts.
  • Yet another aspect of the invention is a chip stack of at least a first, a second, and a third chip and conductive interconnecting structures of at least a first size and a second smaller size interconnecting the chips wherein the third chip has a smaller footprint than either of the first or second chips and wherein the first conductive structures interconnect the first and second chips so as to define an interstitial space therebetween and the third chip is connected to at least one of the first and the second chips via the second conductive structures and is positioned within the interstitial space such that the vertical extent of the first conductive support structures is greater than the combined vertical extent of the third chip and the second conductive support structures. Particularly therein, the invention includes wherein the third chip is connected to one of the first or the second chips via the second conductive structures.
  • An additional aspect of the invention is a chip stack of at least a first, a second, and a third chip and conductive interconnecting structures of a first size interconnecting the first and second chips to the third chip wherein the third chip has a larger footprint than either of the first or second chips and further comprising second conductive support structures connected to the third chip such that the vertical extent of the second conductive support structures is greater than the combined vertical extent of either the first or second chips and the associated first conductive support structures.
  • These and other objects and advantages of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded, perspective view of one embodiment of a preformed support structure vertically interconnecting a first chip to a second chip with a third chip interposed therebetween;
  • FIG. 2 is a detail, perspective view of a portion of one embodiment of the preformed support structure of FIG. I wherein conductor cavities of the support have a generally square cross-section;
  • FIG. 3 is a detail, perspective view of a portion of another embodiment of the preformed support structure of FIG. I wherein conductor cavities of the support have generally planar walls generally parallel to the walls of adjacent cavities and a generally convex outward curve on the sides between the planar sides;
  • FIG. 4 is a side view of one embodiment of a preformed support structure vertically interconnecting a first chip to a second chip with a third chip interposed therebetween;
  • FIG. 5 is a side view of another embodiment of a preformed support structure vertically interconnecting a first chip to a second chip with a third chip interposed therebetween;
  • FIG. 6 is an exploded perspective view of one embodiment of a chip stack of at least a first, a second, and a third chip and conductive interconnecting structures of at least a first size and a second smaller size interconnecting the chips;
  • FIG. 7 is a side view of the chip stack of FIG. 6;
  • FIG. 8 is an exploded perspective view of one embodiment of a chip stack of at least a first, a second, and a third chip and conductive interconnecting structures of a first size interconnecting the first and second chips to the third chip; and
  • FIG. 9 is a side view of the chip stack of FIG. 8.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Reference will now be made to the drawings wherein like numerals refer to like parts throughout. FIG. 1 is an exploded, perspective view of one embodiment of a chip stack 100 of the invention. The chip stack 100, in this embodiment, comprises a first chip 102, a second chip 104 and a third chip 106. The chip stack 100 as illustrated in FIG. 1 further comprises a fourth chip 110. The chips 102, 104, 106, 110 comprise packaged integrated circuits with exposed contacts of types generally well known in the art.
  • The chip stack 100 also comprises a preformed support 112 vertically interconnecting the first chip 102 and the second chip 104. The support 112 in this particular embodiment is generally rectangular and is sized to generally match the shape and size of the first 102 and second 104 chips. The support 112 is also annular, defining an internal opening 114. The opening 114 in this particular embodiment is also generally rectangular and sized to provide clearance for the third chip 106 within the opening 114. The support 112 is made of a rigid, non-conducting material.
  • The support 112 also includes a plurality of conductor cavities 116. The conductor cavities 116 extend generally vertically between a first face 120 and an opposite second face 122 of the support 112. The conductor cavities 116 are substantially filled with a conductive material 124. In certain embodiments, the conductive material 124 comprises a metal of relatively low melting point, such as solder and in alternative embodiments, the conductive material 124 comprises a conductive adhesive material, such as epoxy. An advantageous aspect of this embodiment is that the support 112 is provided in a preformed manner with the conductor cavities 116 substantially filled with the conductive material 124. This aspect of this embodiment facilitates alignment of the conductive material 124 within the rigid support 112 and maintains the alignment as the first 102 and second 104 chips are interconnected via the support 112 in a manner that will be described in greater detail below.
  • The conductor cavities 116 are disposed mutually aligned with contacts 142 of the first 102 and second 104 chips arrayed in a first pattern about the periphery of the support 112 (corresponding to the periphery of the first 102 and second 104 chips) with a spacing 126 as shown in FIGS. 2 and 3. As understood herein, the spacing 126 is the lateral separation between adjacent conductor cavities 116 as filled with the conductive material 124 as considered generally orthogonal to the generally vertical orientation of the conductor cavities 116. It is to be understood that the terms “vertical” and “vertically” as used herein refer to a generally orthogonal orientation with respect to the major plane of the chips.
  • As shown in FIGS. 2 and 3, the conductor cavities 116 extend generally along the y-axis and have generally planar first walls 130 aligned generally along the y-z plane. The conductor cavities 116 also have second walls 132 between the first walls 130. In the embodiment shown in FIG. 2, the first walls 130 and second walls 132 are generally planar and respectively parallel to each other. The first walls 130 are also perpendicular to the second walls 132 such that the conductor cavities 116 are generally rectangular in cross-section as considered along the horizontal x-z plane. In certain embodiments, the conductor cavities 116 are square in cross-section. It should also be understood that in further embodiments, the conductor cavities 116 can be circular, oval, or other cross-sectional shapes without detracting from the spirit of the invention.
  • It will be understood that the conductor cavities 116 filled with the conductive material 124 define signal lines conducting signals between the various electronic devices of the various chips 102, 104, 106, 110. It is generally essential to proper circuit operation that each of the plurality of conductive cavities 116 filled with conductive material 124 maintain signal integrity. Cross-talk between the conductor cavities 116 should preferably be inhibited. Cross-talk can arise because of conductive material 124 bridging across conductor cavities or excessive electric field intensity causing arcing across adjacent conductor cavities. Thus, the spacing 126 between adjacent conductor cavities 116 as filled with the conductive material 124 is subject to lower limits. In particular, a lower limit to the spacing 126 will be imposed by process limitations to forming smaller conductor cavities 116 or closer spacing 126 while maintaining reliable conductive integrity therethrough.
  • However, there is also a desire to increase conductivity of the conductor cavities 116 filled with conductive material 124 to reduce signal loss. One manner of increasing the conductivity is to increase the cross-sectional area of the conductor cavities 116, thereby increasing the available volume for filling the cavities 116 with the conductive material 124. Within a given width and thickness envelope, i.e. along the x and z directions, for placement of the conductor cavities 116, a square cross-sectional aspect of the conductor cavities 116 as shown in FIG. 2 will increase the available conductive material 124 for signal transmission and thus increase the conductance thereof.
  • FIG. 3 illustrates an alternative embodiment of configuration for the conductor cavities 116 that may be advantageous in certain applications. In particular, the conductor cavities 116 of FIG. 3 have first walls 130 that are generally planar and mutually parallel. The second walls 132, positioned between the first walls 130, in this embodiment, are convexly curved. This embodiment offers the advantage that the junction between the first 130 and second 132 walls has a larger radius of curvature, i.e. is less sharp. Thus a potential difference between conductor cavities 116 filled with conductive material 124 will result in a lower electric field intensity adjacent the conductor cavities 116 than an otherwise equivalent case with sharper corners thus reducing the likelihood of arcing across conductor cavities 116 of reduced dimensions and smaller spacing 126. In certain applications, the embodiment of conductor cavities illustrated in FIG. 3 may also offer advantages in manufacturing ease as opposed to embodiments with sharper comers between first 130 and second 132 walls.
  • In order to form the chip stack 100, the chips 102, 104, 106, 110 are preferably provided with a plurality of surface mount contacts 142, 144 comprising solder balls or bumps of types generally well known in the art such that the solder balls or bumps are positioned mutually aligned with respect to each other such that the third chip 106 is generally centered on a face of the first chip 102 and that contacts 144 of the first 102 and third 106 chips are aligned in a second pattern as well as contacts 142 of the first 102 and second 104 chips aligned in a first pattern. The third chip 106 is attached to the first chip 102 by positioning the first chip 102 adjacent the third chip 106 so as to achieve alignment between the plurality of solder balls/bumps thereof. The first 102 and third 106 chips are then processed to induce the solder balls/bumps to partially liquefy and reflow and subsequently the first 102 and third 106 chips are further processed to induce the solder to resolidify thereby mutually affixing and interconnecting the first 102 and third 106 chips via the contacts 144.
  • The support 112 is then placed between the first 102 and second 104 chips such that the third chip 106 is positioned within the internal opening 114 of the support 112 and such that the contacts 142 disposed about the periphery of the first 102 and second 104 chips are aligned with the conductor cavities 116. In embodiments wherein the conductive material 124 is solder, the support 112 and first 102 and second 104 chips are then exposed to a heat process to induce the solder to partially liquefy and then allowed to cool to form a solder joint between the first 102 and second 104 chips at the contacts 142 via the support 112 with the preformed conductive material 124 in the conductor cavities 116. In embodiments wherein the conductive material 124 comprises a conductive adhesive, the support 112 and first 102 and second 104 chips are maintained in alignment until the adhesive components of the conductive material 124 set.
  • FIG. 4 illustrates an embodiment of the invention wherein the fourth chip 110 is attached to the second chip 104 in a similar manner to the connection of the third chip 106 to the first chip 102. The fourth chip 100 can be attached to the second chip 104 in the manner previously described for the first 102 and third 106 chips either before or after the interconnection of the first 102 and second 104 chips. It will be appreciated that in additional embodiments, additional layers of supports 112 and chips could be formed to extend the height of and number of chips in the chip stack 100 in the manner previously described.
  • FIG. 5 illustrates a further embodiment of the invention otherwise similar to the embodiments described with respect to FIGS. 1-4 and further comprising a plurality of conductive supports 134 are attached to a lower face 136 of the first chip 102 at contacts 146. In certain embodiments, the conductive supports 134 comprise balls or bumps of solder and, in other embodiments, a conductive, adhesive material such as conductive epoxy 138. As can be seen in FIG. 5, the conductive supports 134 extend beyond the lower face 136 a vertical distance. In embodiments wherein the conductive supports 134 are generally positioned about the periphery of the lower face 136 of the first chip 102, the conductive supports 136 define an interstitial space 140. The interstitial space 140 provides clearance for the attachment of additional chips to the lower face 136 of the first chip 102 in a similar manner to that in which the internal opening 114 of the support 112 provides clearance for the third chip 106 on an upper face 142 of the first chip 102.
  • The conductive supports 134 also provide mechanism for attaching the lower face of the first chip 102 to other chips or structures that have a footprint at least generally as large as that of the first chip 102. It will be appreciated that the various electronic devices of the chips 102, 104, 106, 110 can thus be interconnected to underlying circuits or structures without exceeding the footprint of the single first chip 102. These aspects of the invention facilitate efficient attachment of the first chip 102 and thus the chip stack 100 to other electronic structures or devices.
  • FIG. 6 is an exploded, perspective view of another embodiment of a chip stack 200. The chip stack 200 comprises a first chip 202, a second chip 204, and a third chip 206. The chips 202, 204, and 206 are similar to the chips 102, 104, 106, 110 previously described being encapsulated integrated circuits of types generally well known in the art. The chips 202, 204, 206 are also provided with a plurality of contacts 220, 222 of types well known in the art as previously described for the chip stack 100. The contacts 220 of the first 202 and second 204 chips are arrayed in a first pattern aligned with contacts 220 on a lower 210 and an upper 212 face respectively of the third chip 206.
  • In this embodiment, the first 202 and second 204 chips have smaller footprints than that of the third chip 206. The first contacts 220 of the third 206 chips are positioned generally centrally on the lower 210 and upper 212 faces of the third chip 206.
  • The chip stack 200 also comprises a plurality of first conductive interconnecting structures 214. The first interconnecting structures 214 in this embodiment comprise balls/bumps of solder arrayed about a face of the first 202 and second 204 chips and aligned with the contacts 222 thereof. The first interconnecting structures 214 are aligned between the contacts 220 of the first chip 202 and the first contacts 220 on the lower face 210 of the third chip 206 and between the contacts 220 of the second chip 204 and the first contacts 220 on the upper face 212 of the third chip 206. The first interconnecting structures 214 and the chips 202, 204, 206 are processed to induce the first interconnecting structures 214 to partially liquefy and then allowed to cool so as to form a solder joint between the first 202 and third 206 and the second 204 and third 206 chips at the contacts 220.
  • The third chip 206 also comprises a plurality of second contacts 222 disposed about the lower face 210 and positioned outside the attachment of the first chip 202 to the third chip 206. The chip stack 200 also comprises a plurality of second interconnecting structures 216 similar in composition and form to the first interconnecting structures 214. However, the first interconnecting structures 214 are of a first size and the second interconnecting structures 216 are of a larger second size. In particular, the vertical dimension of the second interconnecting structures 216 is greater than the combined vertical dimension of the first chip 202 and the first interconnecting structures 214 as interconnecting the first 202 and the third 206 chips.
  • Thus, as can be seen in FIG. 7, the second interconnecting structures extend vertically beyond the first chip 202 as interconnected to the third chip 206. The second interconnecting structures 216 facilitate interconnection of the third chip 206, and thus as desired, the first 202 and second 204 chips, via the third chip 206, to an underlying chip or structure. These aspects provide alternative efficient interconnection mechanism for connecting a plurality of chips 202, 204, 206 to an underlying structure without exceeding the footprint of the largest single (third 206) chip.
  • FIGS. 8 and 9 illustrate an additional alternative embodiment of a chip stack 300. The chip stack 300 comprises a first chip 302, a second chip 304, a third chip 306, and a fourth chip 310. The chips 302, 304, 306, 310 are generally planar encapsulated integrated circuits of types well known in the art. In this embodiment, the first 302 and the third 306 chips and the second 304 and the fourth 310 chips respectively have substantially similar footprints. The chip stack 300 also comprises first 312 and second 314 interconnecting structures. The interconnecting structures 312, 314 comprise solder balls/bumps and the first interconnecting structures 312 are of a first size and the second interconnecting structures 314 are of a second larger size. In particular, the second interconnecting structures 314 are larger in vertical dimension than the combined vertical dimension of the first interconnecting structures 312 and one of the chips 304 and 310.
  • The chips 302, 304, 306, 310 comprise contacts 320, 322 disposed about faces of the chips 302, 304, 306, 310. In this embodiment, first contacts 320 are disposed on upper faces of the first 302 and third 306 chips and on lower faces of the second 304 and fourth 310 chips such that the first contacts 320 are aligned between the respective faces of the first 302 and second 304 chips and between the third 306 and fourth 310 chips.
  • The chips 302, 306 also comprise second contacts 322 disposed on vertically corresponding positions on opposing upper and lower faces of the chips 302, 306. The second contacts 322 are disposed generally about the periphery of the chips 302, 306 and outside the footprint of the chips 304 and 310.
  • The chip stack 300 is formed by positioning first interconnecting structures 312 so as to be aligned between the first contacts 320 of the first 302 and second 304 chips as well as between the third 304 and the fourth 310 chips. Second interconnecting structures 314 are further positioned so as to be aligned between the second contacts 322 of the first 302 and third 306 chips. The chips 302, 304, 306, 310 and first 312 and second 314 interconnecting structures are then processed so as to induce the first 312 and second 314 interconnecting structures to partial liquefy and then allowed to cool so as to resolidify and form solder joints between the chips 302, 304, 306, 310 via the contacts 320, 322.
  • It can be seen in FIG. 9, that as the second interconnecting structures 314 are greater in vertical dimension than the combined vertical dimension of either the second 304 or fourth 310 chips plus the vertical dimension of a first interconnecting structure 312, the attachment of the first 302 and third 306 chips via the second interconnecting structures 314 defines an interstitial space 316. The interstitial space 316 provides clearance for the second chip 304 between the first 302 and third 306 chips. It can be appreciated that additional layers of chips and first 312 and second 314 interconnecting structures can be added to the chip stack 300 creating additional interstitial spaces 316 in alternative embodiments of the invention.
  • Although the foregoing description of the preferred embodiment of the present invention has shown, described, and pointed out the fundamental novel features of the invention, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated, as well as the uses thereof, may be made by those skilled in the art without departing from the spirit of the present invention.

Claims (21)

1-21. (canceled)
43. A chip stack comprising:
a first chip having a first and a second side, wherein a first plurality of contacts are formed on the first side in a first pattern and a second plurality of contacts are formed on the second side in a second pattern;
a second chip having a first and a second side, wherein the first side of the second chip includes a first plurality of contacts arranged in the first pattern, wherein the second chip is located proximate the first side of the first chip, and wherein the second chip is positioned so that the first plurality of contacts on the second chip are aligned with the first plurality of contacts on the first chip;
a third chip having a first and a second side wherein the third chip includes a first plurality of contacts arranged in the second pattern on the first side wherein the third chip is located proximate the second side of the first chip such that the first chip is interposed between the second and third chips and so that the first plurality of contacts on the third chip are aligned with the second plurality of contacts on the first chip;
a first set of interconnecting structures having a first length that are interposed between the first plurality of contacts on the first chip and the first plurality of contacts on the second chip so as to interconnect the first plurality of contacts on the first chip and the first plurality of contacts on the second chip; and
a second set of interconnecting structures having a second length that are interposed between the second plurality of contacts on the first chip and the first plurality of contacts on the third chip so as to interconnect the second plurality of contacts on the first chip and the first plurality of contacts on the third chip.
44. The chip stack of claim 43, wherein the first pattern is a substantially similar pattern as the second pattern.
45. The chip stack of claim 43, wherein the first chip further comprises a third plurality of contacts arranged in a third pattern on the second side.
46. The chip stack of claim 45, further comprising a third set of interconnecting structures having the second length interconnected to the third plurality of contacts.
47. The chip stack of claim 46, wherein the first chip and the third set of interconnecting structures are arranged in a modular unit defining an interstitial space around the third chip.
48. The chip stack of claim 46, wherein the first chip defines a platform over the third chip and wherein the third set of interconnecting structures define side struts supporting the platform.
49. The chip stack of claim 46, wherein the first chip and the third set of interconnecting structures are arranged in contiguous non-conductive material.
50. The chip stack of claim 46, wherein the first chip and the third set of interconnecting structures define a carrier for positioning one or more chips above the second chip.
51. The chip stack of claim 46, wherein the first chip and the third set of interconnecting structures are arranged within a modular unit that can accept one or more chips, and the modular unit further provides an interstitial space around the third chip.
52. The chip stack of claim 46, wherein the first chip comprises a preformed support structure.
53. A method of stacking chips comprising:
providing a first chip having a first and a second side, wherein a first plurality of contacts are formed on the first side in a first pattern and a second plurality of contacts are formed on the second side in a second pattern;
providing a second chip having a first and a second side, wherein the first side of the second chip includes a first plurality of contacts arranged in the first pattern, wherein the second chip is located proximate the first side of the first chip, and wherein the second chip is positioned so that the first plurality of contacts on the second chip are aligned with the first plurality of contacts on the first chip;
providing a third chip having a first and a second side wherein the third chip includes a first plurality of contacts arranged in the second pattern on the first side, and wherein the third chip is located proximate the second side of the first chip such that the first chip is interposed between the second and third chips and so that the first plurality of contacts on the third chip are aligned with the second plurality of contacts on the first chip;
providing a first set of interconnecting structures having a first length that are interposed between the first plurality of contacts on the first chip and the first plurality of contacts on the second chip so as to interconnect the first plurality of contacts on the first chip and the first plurality of contacts on the second chip; and
providing a second set of interconnecting structures having a second length that are interposed between the second plurality of contacts on the first chip and the first plurality of contacts on the third chip so as to interconnect the second plurality of contacts on the first chip and the first plurality of contacts on the third chip.
54. The method of stacking chips of claim 53, wherein the first pattern is a substantially similar pattern as the second pattern.
55. The method of stacking chips of claim 53, wherein the first chip further comprises a third plurality of contacts arranged in a third pattern on the second side.
56. The method of stacking chips of claim 55, further comprising providing a third set of interconnecting structures having a third length interconnected to the third plurality of contacts.
57. The method of stacking chips of claim 56, wherein the first chip and the third set of interconnecting structures are arranged in a modular unit defining an interstitial space around the third chip.
58. The method of stacking chips of claim 56, wherein the first chip defines a platform over the third chip and wherein the third set of interconnecting structures define side struts supporting the platform.
59. The method of stacking chips of claim 56, wherein the first chip and the third set of interconnecting structures are arranged in contiguous non-conductive material.
60. The method of stacking chips of claim 56, wherein the first chip and the third set of interconnecting structures define a carrier for positioning one or more chips above the second chip.
61. The method of stacking chips of claim 56, wherein the first chip and the third set of interconnecting structures are arranged within a modular unit that can accept one or more chips, and the modular unit further provides an interstitial space around the third chip.
62. A chip stack comprising:
a first chip having a first and a second side, wherein a first plurality of contacts are formed on the first side in a first pattern and a second plurality of contacts are formed on the second side in a second pattern;
a second chip having a first and a second side and a selected thickness, wherein the first side of the second chip includes a first plurality of contacts arranged in the first pattern, wherein the second chip is located proximate the first side of the first chip, and wherein the second chip is positioned so that the first plurality of contacts on the second chip are aligned with the first plurality of contacts on the first chip;
a third chip having a first and a second side wherein the third chip includes a first plurality of contacts arranged in the second pattern on the first side wherein the third chip is located proximate the second side of the first chip such that the first chip is interposed between the second and third chips and so that the first plurality of contacts on the third chip are aligned with the second plurality of contacts on the first chip;
means for interconnecting the first plurality of contacts on the first chip and the first plurality of contacts on the second chip; and
means for interconnecting the second plurality of contacts on the first chip and the first plurality of contacts on the third chip, wherein the first chip is interposed between the first side of the second chip and the first side of the third.
US11/404,464 2001-04-19 2006-04-13 System and method for vertically stacking computer memory components Abandoned US20060255444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/404,464 US20060255444A1 (en) 2001-04-19 2006-04-13 System and method for vertically stacking computer memory components

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US28508901P 2001-04-19 2001-04-19
US10/127,343 US6762487B2 (en) 2001-04-19 2002-04-19 Stack arrangements of chips and interconnecting members
US10/853,865 US7057270B2 (en) 2001-04-19 2004-05-25 Systems and methods for stacking chip components
US11/404,464 US20060255444A1 (en) 2001-04-19 2006-04-13 System and method for vertically stacking computer memory components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/853,865 Continuation US7057270B2 (en) 2001-04-19 2004-05-25 Systems and methods for stacking chip components

Publications (1)

Publication Number Publication Date
US20060255444A1 true US20060255444A1 (en) 2006-11-16

Family

ID=26825558

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/127,343 Expired - Lifetime US6762487B2 (en) 2001-04-19 2002-04-19 Stack arrangements of chips and interconnecting members
US10/853,865 Expired - Lifetime US7057270B2 (en) 2001-04-19 2004-05-25 Systems and methods for stacking chip components
US11/404,464 Abandoned US20060255444A1 (en) 2001-04-19 2006-04-13 System and method for vertically stacking computer memory components

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/127,343 Expired - Lifetime US6762487B2 (en) 2001-04-19 2002-04-19 Stack arrangements of chips and interconnecting members
US10/853,865 Expired - Lifetime US7057270B2 (en) 2001-04-19 2004-05-25 Systems and methods for stacking chip components

Country Status (1)

Country Link
US (3) US6762487B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016485A1 (en) * 2011-07-13 2013-01-17 Motorola Mobility, Inc. Mobile electronic device with enhanced laminate construction
US9124676B2 (en) 2011-07-13 2015-09-01 Google Technology Holdings LLC Mobile electronic device with enhanced impact mitigation
US9350840B2 (en) 2011-07-13 2016-05-24 Google Technology Holdings LLC Mobile electronic device with enhanced tolerance accumulator

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667746B1 (en) * 2002-07-15 2007-01-11 삼성전자주식회사 Information storage medium recorded drive information and method of recording the same
KR20040022063A (en) * 2002-09-06 2004-03-11 주식회사 유니세미콘 A stack semiconductor package and it's manufacture method
JP4110992B2 (en) * 2003-02-07 2008-07-02 セイコーエプソン株式会社 Semiconductor device, electronic device, electronic apparatus, semiconductor device manufacturing method, and electronic device manufacturing method
US7183643B2 (en) * 2003-11-04 2007-02-27 Tessera, Inc. Stacked packages and systems incorporating the same
US7126829B1 (en) * 2004-02-09 2006-10-24 Pericom Semiconductor Corp. Adapter board for stacking Ball-Grid-Array (BGA) chips
US6943057B1 (en) * 2004-08-31 2005-09-13 Stats Chippac Ltd. Multichip module package and fabrication method
US7521788B2 (en) * 2004-11-15 2009-04-21 Samsung Electronics Co., Ltd. Semiconductor module with conductive element between chip packages
FR2895924B1 (en) * 2006-01-10 2009-09-25 Valeo Electronique Sys Liaison METHOD FOR BRAKING BETWEEN AT LEAST TWO STACKED BODIES
US20070290333A1 (en) * 2006-06-16 2007-12-20 Intel Corporation Chip stack with a higher power chip on the outside of the stack
KR100975654B1 (en) * 2008-02-26 2010-08-17 한국과학기술원 Improvement of the Joint Reliability between Sn-3.5Ag Solder and Ni-P Under Bump Metallization by Co addition
TWI416700B (en) * 2009-12-29 2013-11-21 Chipmos Technologies Inc Chip-stacked package structure and method for manufacturing the same
US9343436B2 (en) 2010-09-09 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked package and method of manufacturing the same
US8611090B2 (en) 2010-09-09 2013-12-17 International Business Machines Corporation Electronic module with laterally-conducting heat distributor layer
US20120063090A1 (en) * 2010-09-09 2012-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling mechanism for stacked die package and method of manufacturing the same
US20130020702A1 (en) * 2011-07-21 2013-01-24 Jun Zhai Double-sided flip chip package
US8653658B2 (en) 2011-11-30 2014-02-18 Taiwan Semiconductor Manufacturing Company, Ltd. Planarized bumps for underfill control
US9646942B2 (en) 2012-02-23 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for controlling bump height variation
US8970035B2 (en) 2012-08-31 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structures for semiconductor package
US9679862B2 (en) * 2014-11-28 2017-06-13 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device having conductive bumps of varying heights

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089880A (en) * 1989-06-07 1992-02-18 Amdahl Corporation Pressurized interconnection system for semiconductor chips
US5117282A (en) * 1990-10-29 1992-05-26 Harris Corporation Stacked configuration for integrated circuit devices
US5977640A (en) * 1998-06-26 1999-11-02 International Business Machines Corporation Highly integrated chip-on-chip packaging
US6025648A (en) * 1997-04-17 2000-02-15 Nec Corporation Shock resistant semiconductor device and method for producing same
US6323546B2 (en) * 1999-01-14 2001-11-27 United Microelectronics Corp. Direct contact through hole type wafer structure
US6339254B1 (en) * 1998-09-01 2002-01-15 Texas Instruments Incorporated Stacked flip-chip integrated circuit assemblage
US20020030261A1 (en) * 1999-12-17 2002-03-14 Rolda Ruben A. Multi-flip-chip semiconductor assembly
US20020079568A1 (en) * 2000-12-27 2002-06-27 Yinon Degani Stacked module package
US6414391B1 (en) * 1998-06-30 2002-07-02 Micron Technology, Inc. Module assembly for stacked BGA packages with a common bus bar in the assembly
US6417027B1 (en) * 1999-06-10 2002-07-09 Micron Technology, Inc. High density stackable and flexible substrate-based devices and systems and methods of fabricating
US20020153602A1 (en) * 2000-05-16 2002-10-24 Tay Wuu Yean Ball grid array chip packages having improved testing and stacking characteristics
US6492726B1 (en) * 2000-09-22 2002-12-10 Chartered Semiconductor Manufacturing Ltd. Chip scale packaging with multi-layer flip chip arrangement and ball grid array interconnection
US6580169B2 (en) * 1999-12-27 2003-06-17 Fujitsu Limited Method for forming bumps, semiconductor device, and solder paste
US20030205826A1 (en) * 2000-05-19 2003-11-06 Megic Corporation Multiple chips bonded to packaging structure with low noise and multiple selectable functions
US20040036164A1 (en) * 2001-07-31 2004-02-26 Toshihiko Koike Semiconductor device and its manufacturing method
US6717812B1 (en) * 2002-11-21 2004-04-06 Institute Of Microelectronics Apparatus and method for fluid-based cooling of heat-generating devices

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128831A (en) 1991-10-31 1992-07-07 Micron Technology, Inc. High-density electronic package comprising stacked sub-modules which are electrically interconnected by solder-filled vias
US5222014A (en) 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
JPH0677644A (en) 1992-08-27 1994-03-18 Fujitsu Ltd Formation of terminal part for electronic component having three-dimensional structure
US5362679A (en) 1993-07-26 1994-11-08 Vlsi Packaging Corporation Plastic package with solder grid array
US5400904C1 (en) 1993-10-15 2001-01-16 Murphy R H Co Inc Tray for ball terminal integrated circuits
US5591941A (en) 1993-10-28 1997-01-07 International Business Machines Corporation Solder ball interconnected assembly
US5444296A (en) 1993-11-22 1995-08-22 Sun Microsystems, Inc. Ball grid array packages for high speed applications
US5713744A (en) 1994-09-28 1998-02-03 The Whitaker Corporation Integrated circuit socket for ball grid array and land grid array lead styles
US5509200A (en) 1994-11-21 1996-04-23 International Business Machines Corporation Method of making laminar stackable circuit board structure
US5514907A (en) 1995-03-21 1996-05-07 Simple Technology Incorporated Apparatus for stacking semiconductor chips
US5612570A (en) 1995-04-13 1997-03-18 Dense-Pac Microsystems, Inc. Chip stack and method of making same
US5844168A (en) 1995-08-01 1998-12-01 Minnesota Mining And Manufacturing Company Multi-layer interconnect sutructure for ball grid arrays
US5861666A (en) 1995-08-30 1999-01-19 Tessera, Inc. Stacked chip assembly
JP2914242B2 (en) 1995-09-18 1999-06-28 日本電気株式会社 Multi-chip module and manufacturing method thereof
US5699613A (en) 1995-09-25 1997-12-23 International Business Machines Corporation Fine dimension stacked vias for a multiple layer circuit board structure
US5783461A (en) 1996-10-03 1998-07-21 Micron Technology, Inc. Temporary semiconductor package having hard-metal, dense-array ball contacts and method of fabrication
US6225688B1 (en) 1997-12-11 2001-05-01 Tessera, Inc. Stacked microelectronic assembly and method therefor
US6121676A (en) 1996-12-13 2000-09-19 Tessera, Inc. Stacked microelectronic assembly and method therefor
JPH10242384A (en) * 1997-02-27 1998-09-11 Oki Electric Ind Co Ltd Multichip module of multistage type and its manufacture
US6014316A (en) 1997-06-13 2000-01-11 Irvine Sensors Corporation IC stack utilizing BGA contacts
US6180881B1 (en) 1998-05-05 2001-01-30 Harlan Ruben Isaak Chip stack and method of making same
US6130823A (en) 1999-02-01 2000-10-10 Raytheon E-Systems, Inc. Stackable ball grid array module and method
TW411540B (en) 1999-03-04 2000-11-11 Chipmos Technologies Inc Stacked MCM micro ball grid array package
US6262895B1 (en) * 2000-01-13 2001-07-17 John A. Forthun Stackable chip package with flex carrier

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089880A (en) * 1989-06-07 1992-02-18 Amdahl Corporation Pressurized interconnection system for semiconductor chips
US5117282A (en) * 1990-10-29 1992-05-26 Harris Corporation Stacked configuration for integrated circuit devices
US6025648A (en) * 1997-04-17 2000-02-15 Nec Corporation Shock resistant semiconductor device and method for producing same
US5977640A (en) * 1998-06-26 1999-11-02 International Business Machines Corporation Highly integrated chip-on-chip packaging
US6414391B1 (en) * 1998-06-30 2002-07-02 Micron Technology, Inc. Module assembly for stacked BGA packages with a common bus bar in the assembly
US6339254B1 (en) * 1998-09-01 2002-01-15 Texas Instruments Incorporated Stacked flip-chip integrated circuit assemblage
US6323546B2 (en) * 1999-01-14 2001-11-27 United Microelectronics Corp. Direct contact through hole type wafer structure
US6417027B1 (en) * 1999-06-10 2002-07-09 Micron Technology, Inc. High density stackable and flexible substrate-based devices and systems and methods of fabricating
US20020030261A1 (en) * 1999-12-17 2002-03-14 Rolda Ruben A. Multi-flip-chip semiconductor assembly
US6580169B2 (en) * 1999-12-27 2003-06-17 Fujitsu Limited Method for forming bumps, semiconductor device, and solder paste
US20020153602A1 (en) * 2000-05-16 2002-10-24 Tay Wuu Yean Ball grid array chip packages having improved testing and stacking characteristics
US20030205826A1 (en) * 2000-05-19 2003-11-06 Megic Corporation Multiple chips bonded to packaging structure with low noise and multiple selectable functions
US6492726B1 (en) * 2000-09-22 2002-12-10 Chartered Semiconductor Manufacturing Ltd. Chip scale packaging with multi-layer flip chip arrangement and ball grid array interconnection
US20020079568A1 (en) * 2000-12-27 2002-06-27 Yinon Degani Stacked module package
US20040036164A1 (en) * 2001-07-31 2004-02-26 Toshihiko Koike Semiconductor device and its manufacturing method
US6717812B1 (en) * 2002-11-21 2004-04-06 Institute Of Microelectronics Apparatus and method for fluid-based cooling of heat-generating devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016485A1 (en) * 2011-07-13 2013-01-17 Motorola Mobility, Inc. Mobile electronic device with enhanced laminate construction
US9124676B2 (en) 2011-07-13 2015-09-01 Google Technology Holdings LLC Mobile electronic device with enhanced impact mitigation
US9143586B2 (en) * 2011-07-13 2015-09-22 Google Technology Holdings LLC Mobile electronic device with enhanced laminate construction
US9350840B2 (en) 2011-07-13 2016-05-24 Google Technology Holdings LLC Mobile electronic device with enhanced tolerance accumulator

Also Published As

Publication number Publication date
US7057270B2 (en) 2006-06-06
US20040212071A1 (en) 2004-10-28
US20020163786A1 (en) 2002-11-07
US6762487B2 (en) 2004-07-13

Similar Documents

Publication Publication Date Title
US20060255444A1 (en) System and method for vertically stacking computer memory components
US6730543B2 (en) Methods for multiple die stack apparatus employing
US5444296A (en) Ball grid array packages for high speed applications
US4616406A (en) Process of making a semiconductor device having parallel leads directly connected perpendicular to integrated circuit layers therein
US7078818B2 (en) Semiconductor device
US5640760A (en) Method for the 3D interconnection of packages of electronic components using printed circuit boards
EP0461753A2 (en) Modular electronic packaging system
KR101409946B1 (en) Stacked microelectronic packages
US6410861B1 (en) Low profile interconnect structure
US6541847B1 (en) Packaging for multi-processor shared-memory system
EP3343608A1 (en) Packaged chip and signal transmission method based on packaged chip
EP2081226A1 (en) Multi-channel stackable semiconductor device and method for fabricating the same, and stacking substrate applied to the semiconductor device
JP2015523740A (en) Reconfigured wafer level microelectronic package
JPH03295266A (en) High integrated semiconductor device
JPH0613535A (en) Electronic part mounting apparatus
JP3064379U (en) Three-dimensional assembly structure of integrated circuit package
JPH02244753A (en) Integrated circuit device
US20050121227A1 (en) Method for electrical interconnection of angularly disposed conductive patterns and a cornerbond assembly made from the method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION