Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20060259095 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 11/491,023
Fecha de publicación16 Nov 2006
Fecha de presentación20 Jul 2006
Fecha de prioridad12 Nov 2004
También publicado comoUS7437196, US7565200, US7742820, US7908009, US7917225, US20060106431, US20060253168, US20060253169, US20060253170, US20060253171, WO2006053143A2, WO2006053143A3
Número de publicación11491023, 491023, US 2006/0259095 A1, US 2006/259095 A1, US 20060259095 A1, US 20060259095A1, US 2006259095 A1, US 2006259095A1, US-A1-20060259095, US-A1-2006259095, US2006/0259095A1, US2006/259095A1, US20060259095 A1, US20060259095A1, US2006259095 A1, US2006259095A1
InventoresAllen Wyler, Brad Fowler
Cesionario originalNorthstar Neuroscience, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US 20060259095 A1
Resumen
Methods and systems for treating movement disorders are disclosed. A method in accordance with one embodiment can include determining that the movement disorder affects the patient's gait, oral functioning, and/or other functioning, and applying electrical stimulation proximate to the interhemispheric fissure, the Sylvian fissure, or between the two fissures, respectively. In another embodiment, the method can include selecting at least one neural process from among a plurality of processes sequentially carried out by a patient to cause a muscle movement in the patient (e.g., a planning process, an initiation process, and an execution process), and applying electrical stimulation to a location of the patient's brain associated with the at least one neural process.
Imágenes(5)
Previous page
Next page
Reclamaciones(13)
1-17. (canceled)
18. A method for treating movement disorders, comprising:
determining that the movement disorder affects a patient's oral functioning; and
applying electrical stimulation to a region of the patient's brain that is proximate to the Sylvian fissure of the patient's brain.
19. The method of claim 18 wherein applying electrical stimulation includes at least reducing effects of the movement disorder on the patient's oral functioning.
20. The method of claim 18 wherein applying electrical stimulation includes applying electrical stimulation to a region of the patient's brain that is closer to the Sylvian fissure of the patient's brain than to the interhemispheric fissure of the patient's brain.
21. The method of claim 18 wherein applying electrical stimulation includes applying electrical stimulation at a first site located on a first side of the central sulcus of the patient's brain, and at a second site located on a second side of the central sulcus.
22. The method of claim 18 wherein applying electrical stimulation includes applying electrical stimulation at a first site and a second site, with both the first and second sites located on the same side of the central sulcus of the patient's brain.
23. The method of claim 18, further comprising determining a hemisphere of the brain from which signals related to the patient's oral functioning are transmitted, and wherein applying electrical stimulation includes applying electrical stimulation to the opposite hemisphere.
24. The method of claim 18 wherein applying electrical stimulation includes applying unipolar electrical stimulation.
25. The method of claim 18 wherein applying stimulation includes applying bipolar stimulation.
26. The method of claim 18 wherein applying stimulation includes applying stimulation at multiple sites located within the region of the patient's brain.
27. The method of claim 18 wherein applying stimulation includes applying stimulation at a frequency of 0.5 Hz or above.
28. The method of claim 18 wherein applying stimulation includes applying stimulation with a frequency that varies in at least one of a random, pseudorandom and aperiodic manner.
29-67. (canceled)
Descripción
    TECHNICAL FIELD
  • [0001]
    The present invention is directed generally toward systems and methods for selecting stimulation sites and treating symptoms of Parkinson's disease and other movement disorders, and/or drug side effects, for example, via electrical stimulation at the selected sites.
  • BACKGROUND
  • [0002]
    A wide variety of mental and physical processes are controlled or influenced by neural activity in particular regions of the brain. For example, various physical or cognitive functions are directed or affected by neural activity within the sensory or motor cortices. Across most individuals, particular areas of the brain appear to have distinct functions. In the majority of people, for example, the areas of the occipital lobes relate to vision; the regions of the left interior frontal lobes relate to language; portions of the cerebral cortex appear to be consistently involved with conscious awareness, memory, and intellect; and particular regions of the cerebral cortex, the basal ganglia, the thalamus, and the motor cortex cooperatively interact to facilitate motor function control.
  • [0003]
    Many problems or abnormalities with body functions can be caused by damage, disease, and/or disorders in the brain. For example, Parkinson's Disease (PD) is related to the degeneration or death of dopamine producing neurons in the substantia nigra region of the basal ganglia in the brain. Dopamine is a neurotransmitter that transmits signals between areas of the brain. As the neurons in the substantia nigra deteriorate, the reduction in dopamine causes abnormal neural activity that results in a chronic, progressive deterioration of motor function control. Conservative estimates indicate that PD may affect more than one million individuals in the United States alone.
  • [0004]
    PD patients typically exhibit one or more of four primary symptoms. One primary symptom is a tremor in an extremity (e.g., a hand) that occurs while the extremity is at rest. Other primary symptoms include a generalized slowness of movement (bradykinesia); increased muscle rigidity or stiffness (rigidity); and gait or balance problems (postural dysfunction). In addition to or in lieu of these primary symptoms, PD patients may exhibit secondary symptoms including: difficulty initiating or resuming movements; loss of fine motor skills; lack of arm swing on the affected side of the body while walking; foot drag on the affected side of the body; decreased facial expression; voice and/or speech changes; cognitive disorders; feelings of depression or anxiety; and/or other symptoms.
  • [0005]
    Effectively treating PD or other movement disorders related to neurological conditions can be very difficult. Current treatments for PD symptoms include drugs, ablative surgical intervention, and/or neural stimulation. Drug treatments or therapies may involve, for example, the administration of a dopamine precursor that is converted to dopamine within the central nervous system (i.e., Levodopa (L-dopa)). Other types of drug therapies are also available. Unfortunately, drug therapies frequently become less effective or ineffective over time for an undesirably large patient population. A PD patient may require multiple drugs in combination to extend the time period of efficacy of drug therapies. Drug treatments additionally have a significant likelihood of inducing undesirable physical side effects; motor function complications such as uncontrollable involuntary movements (dyskinesias) are a particularly common side effect. Furthermore, drug treatments may induce undesirable cognitive side effects such as confusion and/or hallucinations.
  • [0006]
    Ablative surgical intervention for PD typically involves the destruction of one or more neural structures within the basal ganglia or thalamus that have become overactive because of the lack of dopamine. Unfortunately, such neural structures reside deep within the brain, and hence ablative surgical intervention is a very time consuming and highly invasive procedure. Potential complications associated with the procedure include risk of hemorrhage, stroke, and/or paralysis. Moreover, because PD is a progressive disease, multiple deep brain surgeries may be required as symptoms progressively worsen over time. Although ablative surgical intervention may improve a PD patient's motor function, it is not likely to completely restore normal motor function. Furthermore, since ablative surgical intervention permanently destroys neural tissue, the effects of such intervention cannot be readily adjusted or “fine tuned” over time.
  • [0007]
    Neural stimulation treatments have shown promising results for reducing some of the symptoms associated with PD. Neural activity is governed by electrical impulses or “action potentials” generated in and propagated by neurons. While in a quiescent state, a neuron is negatively polarized and exhibits a resting membrane potential that is typically between −70 and −60 mV. Through chemical connections known as synapses, any given neuron receives excitatory and inhibitory input signals or stimuli from other neurons. A neuron integrates the excitatory and inhibitory input signals it receives, and generates or fires a series of action potentials in the event that the integration exceeds a threshold potential. A neural firing threshold, for example, may be approximately −55 mV. Action potentials propagate to the neuron's synapses and are then conveyed to other synaptically connected neurons.
  • [0008]
    Neural activity in the brain can be influenced by neural stimulation, which involves the application of electrical and/or magnetic stimuli to one or more target neural populations within a patient using a waveform generator or other type of device. Various neural functions can thus be promoted or disrupted by applying an electrical current to one or more regions of the brain. As a result, researchers have attempted to treat certain neurological conditions, including PD, using electrical or magnetic stimulation signals to control or affect brain functions.
  • [0009]
    Deep Brain Stimulation (DBS) is a stimulation therapy that has been used as an alternative to drug treatments and ablative surgical therapies. In DBS, one or more electrodes are surgically implanted into the brain proximate to deep brain or subcortical neural structures. For treating PD or other movement disorders, the electrodes are positioned in or proximate to the ventrointermediate nucleus of the thalamus; basal ganglia structures such as the globus pallidus internalis (GPi); or the Subthalamic Nucleus (STN). The location of the stimulation site for the electrodes depends upon the symptoms that a patient exhibits and the severity of the symptoms.
  • [0010]
    In a typical DBS system, a pulse generator delivers a continuous or essentially continuous electrical stimulation signal having a pulse repetition frequency of approximately 100 Hz to each of two deep brain electrodes. The electrodes are may be positioned bilaterally on the left and right sides of the brain relative to particular neural structures such as those indicated above. U.S. Pat. No. 5,883,709 discloses one conventional DBS system for treating movement disorders.
  • [0011]
    Although DBS therapies may significantly reduce one or more PD symptoms, particularly when combined with drug treatments, they are highly invasive procedures. In general, configuring a DBS system to properly function within a patient requires two time consuming, highly invasive surgical procedures for implanting the DBS electrodes. Each such surgical procedure has essentially the same risks as those described above for ablative surgical intervention. Moreover, DBS may not provide relief from some movement disorders.
  • [0012]
    Motor Cortex Stimulation (MCS) is another type of brain stimulation treatment that has been proposed for treating Parkinson's Disease. MCS involves the application of stimulation signals to the motor cortex of a patient. One MCS system includes a pulse generator connected to a strip electrode that is surgically implanted over a portion of only the motor cortex (precentral gyrus). The use of MCS to treat PD symptoms is described in Canavero, Sergio, Extradural Motor Cortex Stimulation for Advanced Parkinson's Disease: Case Report, Movement Disorders (Vol. 15, No. 1, 2000).
  • [0013]
    Because MCS involves the application of stimulation signals to surface regions of the brain rather than deep neural structures, electrode implantation procedures for MCS are significantly less invasive and time consuming than those for DBS. As a result, MCS may be a safer and simpler alternative to DBS for treating PD symptoms. Present MCS techniques, however, fail to address or adequately consider a variety of factors that may enhance or optimize the extent to which a patient experiences short term and/or long term relief from PD symptoms.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    FIGS. 1A-1B are flow charts illustrating methods for treating movement disorders in accordance with an embodiment of the invention.
  • [0015]
    FIG. 1C is a flow chart illustrating a method for treating drug side effects, in accordance with another embodiment of the invention.
  • [0016]
    FIG. 2 is a partially schematic, left side illustration of a human brain indicating stimulation areas associated with addressing gait-related movement disorder symptoms in accordance with an embodiment of the invention.
  • [0017]
    FIG. 3 is a partially schematic, left side illustration of the human brain indicating stimulation areas for addressing oral-related movement disorder symptoms, in accordance with another embodiment of the invention.
  • [0018]
    FIG. 4 is a partially schematic, left side illustration of the human brain illustrating stimulation locations for addressing movement disorder symptoms other than those related to a patient's gait and oral activity.
  • [0019]
    FIG. 5 is a flow chart illustrating a method for addressing dysfunction in sequentially-related processes associated with patient movement, in accordance with an embodiment of the invention.
  • [0020]
    FIG. 6 is a partially schematic, left side illustration of the human brain illustrating sites at which electrical stimulation is provided to address dysfunctions associated with planning, initiating, and executing movements, in accordance with an embodiment of the invention.
  • [0021]
    FIG. 7 is a left side illustration of the brain illustrating another arrangement of electrodes for stimulating brain regions associated with sequentially-related movement processes.
  • DETAILED DESCRIPTION
  • [0022]
    The following disclosure describes several embodiments of methods and systems for treating movement disorders (e.g., Parkinson's Disease (PD)) and/or associated symptoms, and/or symptoms associated with drug side effects, using cortical stimulation. Several methods and systems for applying treatment in accordance with embodiments of the invention are set forth and described in FIGS. 1A-7. It will be appreciated that other embodiments can include additional procedures and/or different features than those shown in FIGS. 1A-7. Additionally, methods and systems in accordance with several embodiments of the invention may not include all of the features shown in these Figures.
  • [0023]
    A method for treating movement disorders in accordance with one embodiment of the invention includes determining that the movement disorder affects a patient's gait, and applying electrical stimulation to a region of the patient's brain that is proximate to the interhemispheric fissure of the patient's brain. In another embodiment, the method can include determining that the movement disorder affects the patient's oral functioning, and can further include applying electrical stimulation to a region of the patient's brain that is proximate to the Sylvian fissure of the patient's brain. In still another embodiment, the method can include determining that the movement disorder affects an aspect of the patient's movement other than the patient's gait and oral functioning, and can further include applying electrical stimulation to a region of the patient's brain that is located between the interhemispheric fissure and the Sylvian fissure of the patient's brain.
  • [0024]
    Methods in accordance with further aspects of the invention can further include applying electrical stimulation to both sides of the central sulcus of the patient's brain, or on a single side of the central sulcus of the patient's brain. Stimulation can be applied ipsilaterally or contralaterally, in a unipolar manner, and/or in a bipolar manner.
  • [0025]
    In a still a further aspect of the invention, a method for treating movement disorders includes selecting at least one neural process from among a plurality of processes sequentially carried out by a patient to cause a muscle movement in the patient. The method can further include applying electrical stimulation to a location of the patient's brain associated with the at least one neural process. For example, the method can include selecting the at least one neural process from among a planning process, an initiation process, and an execution process. The method can further include applying electrical stimulation to the patient's dorsolateral prefrontal cortex, interhemispheric fissure, primary motor strip, or premotor cortex of the patient's brain.
  • [0026]
    In yet another embodiment, electrical stimulation can be used to address aspects of a patient's functioning that are attributed to drug intake (e.g., drug side effects). A method in accordance with one such embodiment includes determining what aspect of a patient's functioning is affected by the patient's drug intake, and applying electrical stimulation to a region of the brain that is associated with the aspect of the patient's functioning. In particular embodiments, this method can be used to address cognitive and/or motor dysfunctions resulting as side effects from the patient's intake of drugs that target Parkinson's disease and/or other movement disorders.
  • [0027]
    FIG. 1A is a block diagram illustrating a method 100 for treating a patient's movement disorder(s) and/or associated symptoms. The movement disorder may be associated with Parkinson's disease (PD) and/or other conditions, including other pathological conditions. In process portion 102, the method 100 includes determining what aspect of a patient's motion the movement disorder affects. For example, the movement disorder may primarily affect the patient's gait, or the patient's oral functions, (e.g., the patient's speech, chewing, and/or swallowing activities). Other patients may have other aspects of their motion affected. For example, other patients may experience tremors at an extremity, and/or difficulties with arm movement, and/or midline symptoms, including difficulties with postural stability. Most, if not all, of the foregoing symptoms can be diagnosed and distinguished from each other in a relatively straightforward manner using clinical examinations and/or patient reports.
  • [0028]
    In process portion 104, the method 100 includes applying electrical stimulation to a region of the patient's brain that is associated with the particular aspect of the patient's motion identified in process portion 102. In particular, different parts of the brain may be associated with different aspects of the patient's movements, and the method 100 can include stimulating or preferentially stimulating those areas most closely associated with the particular symptoms experienced by the patient. Further details of the brain areas that can be stimulated in accordance with embodiments of the invention are described below with reference to FIG. 1B.
  • [0029]
    Referring now to FIG. 1B, process portion 102 can include determining whether or not the patient's gait is affected (process portion 106) and, if it is, stimulating the patient's brain closer to the interhemispheric fissure than to the Sylvian fissure (process portion 108). In process portion 110, the process 100 can include determining if the patient's oral activity is affected and, if it is, stimulating the patient's brain closer to the Sylvian fissure than to the interhemispheric fissure (process portion 112). If a practitioner determines that activities other than the patient's gait and oral functions are affected (process portion 114), the practitioner can stimulate the patient's brain between the Sylvian fissure and the interhemispheric fissure, with a reduced preference for proximity to either fissure.
  • [0030]
    In other embodiments, methods similar in part to those described above with reference to FIGS. 1A and 1B can be used to address additional and/or other types of symptoms. For example, FIG. 1C illustrates a process 117 that includes determining what aspect of a patient's functioning is affected by the patient's chemical substance or drug intake (process portion 118). The process can further include applying electrical stimulation to one or more regions of the patient's brain that are associated with the aspect of the patient's functioning (process portion 119).
  • [0031]
    In further particular examples, the drug or drugs taken by the patient can include drugs taken to address movement disorders (e.g., PD) but that have side effects on the patient's cognitive and/or motor functioning. L-dopa is one such drug that can induce unwanted dyskinesias (e.g., chorea and/or dystonia). The dyskinesias can include peak-doses dyskinesias (associated with peak levels of L-dopa in the brain), “off” dyskinesias (which occurs when the effects of L-dopa wear off), and/or diphasic dyskinesias (associated with changes in the plasma level of L-dopa, typically at the beginning and/or end of a dose). Other drugs or chemical substances that may produce unwanted side effects can include Sinemet, Mirapex and glial-derived neurotrophic factor (GDNF).
  • [0032]
    The site(s) of the patient's brain selected for stimulation can depend on the aspects of the patient's functioning to be addressed. For example, if the effects of the drug are related to the patient's motion, the stimulation can be applied to the primary motor cortex, premotor cortex and/or supplemental motor area. If the effects relate to the patient's cognitive abilities, the stimulation can be applied to the prefrontal cortex. Illustrations of representative stimulation systems and stimulation sites associated with the foregoing method are described below with reference to FIGS. 2-4.
  • [0033]
    FIG. 2 is a schematic illustration of a neural stimulation system 230 for treating symptoms of PD and/or other neurologic dysfunction (e.g., movement, cognitive and/or emotional dysfunction) in accordance with an embodiment of the invention. The neural stimulation system 230 can include a pulse generator 235 configured to deliver stimulation signals to a patient 200 via one or more electrode devices 231 implanted in the patient 200. Accordingly, the pulse generator 235 can be coupled to the electrode device 231 by one or more leads 233. The pulse generator 235 may further be configured for wireless and/or wire-based communication with a control system 234, which can in turn include one or more controllers 240 (shown in FIG. 2 as a first controller 240 a and a second controller 240 b). Depending upon embodiment details, the system 230 may further include one or more patient monitoring units 250 configured to detect, monitor, indicate, measure, and/or assess the severity of particular types of patient symptoms or deficits. Further details of the foregoing system components are described below.
  • [0034]
    The electrode device 231 may include one or more electrically conductive contacts 232 carried by one or more substrates 236, for example, in a manner described in U.S. application Ser. No. 10/742,579, entitled “Methods and Apparatus for Applying Electrical Stimulation and Manufacturing Same,” filed on Dec. 18, 2003, and incorporated herein by reference. The contacts 232 are configured to provide, deliver, and/or apply stimulation signals to particular cortical regions of the patient's brain 210 and/or neural populations synaptically connected and/or proximate thereto. The electrode device 231 may alternatively or additionally include one or more penetrating, depth, deep brain, and/or nerve cuff electrodes. One or more of the contacts 232 may be configured as a signal return contact (i.e., a contact that provides a current return path for electrical continuity), and may be positioned relative to a variety of locations within and/or upon the patient's body to facilitate unipolar stimulation. This function may also be provided by other structures (e.g., a housing or other portion of the electrode device 231). In another embodiment, one or more of the contacts 232 can be configured to provide bipolar signals (e.g., the return contact can be positioned at or proximate to the stimulation site).
  • [0035]
    The characteristics and/or placement of the electrode device 231 may depend upon the nature of patient's underlying disorder(s), functional deficit(s), and/or the type and/or severity of symptoms that the patient 200 experiences or exhibits. In a particular embodiment, one or more portions of the electrode device 231 may be surgically implanted to apply, deliver, and/or direct stimulation signals to target neural populations within the patient's brain, for example, in a manner identical, essentially identical, or analogous to that described in U.S. application Ser. No. 10/732,731, entitled “System and Method for Treating Parkinson's Disease and Other Movement Disorders,” filed on Dec. 9, 2003, and/or U.S. application Ser. No. 09/802,808, filed on Mar. 8, 2001, both incorporated herein by reference.
  • [0036]
    The electrode device 231 receives stimulation signals from the pulse generator 235, which may include hardware and/or software for generating and outputting stimulation signals in accordance with internal instruction sequences and/or in response to control signals, commands, instructions, and/or other information received from the controller(s) 240. The pulse generator 235 may include a power supply and a pulse unit, a programmable computer medium, and a communication unit. The power supply may include a battery or other type of power storage device. The pulse unit may include circuitry for generating pulse sequences that may be defined or characterized in accordance with various stimulation signal parameters. Stimulation can be provided at a current of from between 2 and 20 milliamps and at a frequency of 0.5 Hz, 1-2 Hz, or higher. In some embodiments, a generally low frequency signal (e.g., from about 0.5-10 Hz) can result in longer lasting beneficial effects and/or greater relief from adverse symptoms. In some embodiments, it is also beneficial to have a “reset” period. For example, the patient can undergo stimulation for a period of seconds, minutes, hours or days, followed by a period of no stimulation (e.g., for a number of seconds, minutes or hours) before stimulation begins again.
  • [0037]
    In a particular embodiment, the frequency of the stimulation signal can be varied in a random, aperiodic manner centered, for example, at a mean frequency of 5 Hz. The voltage or amplitude of the signal can be constant or can be varied in a variety of manners, including random variation and/or occasional high amplitude bursts. The range of frequencies may focus on the lower frequency ranges (e.g., from 1-2 Hz) and, for biphasic pulses, the first phase pulse width can be varied. In particular embodiments, the frequency can be varied in a manner indicated to break up oscillatory patterns that may exist between cortical and subcortical structures. Such signal patterns have been associated with Parkinson's disease and may be associated with other movement disorders as well. Aspects of these patterns are described by Timmermann et al. in an article titled, “The Cerebral Oscillatory Network of Parkinsonian Resting Tremor” (Brain (2003), 126, 199-212), incorporated herein in its entirety by reference. Further aspects of applicable signal parameters are described in co-pending U.S. application Ser. No. 10/782,526, filed Feb. 19, 2004 and incorporated herein in its entirety by reference.
  • [0038]
    Each element of the pulse generator 235 may be incorporated or embedded in a surgically implantable case or housing. Depending upon embodiment details, the pulse generator 235 may be surgically implanted in the patient 200 at a subclavicular location 202. Alternatively, the pulse generator 235 may be surgically implanted above the patient's neck, for example, in the patient's skull at a location posterior to the patient's ear and/or proximate to an electrode implantation site. A surgically formed tunnel or path may route the lead or leads 233 that couple the pulse generator 235 to the electrode device 231, in a manner understood by those skilled in the art. Additionally, one or more electrically conductive portions of the pulse generator case or housing may serve as a return electrode for electrical current.
  • [0039]
    The controllers 240 may comprise hardware and/or software configured to direct and/or manage the local operation of the pulse generator 235. For example, the controllers may be configured to communicate control signals, commands, instructions, parameter settings and/or ranges, and/or other information to the pulse generator 235. Accordingly, the controllers 240 may each include a processing unit 241, a programmable or other computer-readable medium 242, and a communications unit 243. The communications unit 243 may include a user interface that facilitates communication with devices external to the pulse generator 235, for example, through telemetric signal transfer. The computer-readable medium 242 may comprise hardware and/or memory resident software. The computer-readable medium 242 may store operational mode information and/or program instruction sequences that may be selected and/or specified by a practitioner. The pulse generator 235 may be configured to deliver stimulation signals to particular electrode devices 231 and/or to specific electrical contacts 232 of the electrode device 231 on a selective basis at any given time, e.g., in a manner identical, essentially identical, or analogous to that described in U.S. application Ser. No. 09/978,134, entitled “Systems and Methods for Automatically Optimizing Stimulation Parameters and Electrode Configurations for Neuro-Stimulators,” filed on Oct. 15, 2001, and incorporated herein by reference.
  • [0040]
    The first controller 240 a can include a “full functionality” controller, configured for operation by a medical professional. The second controller 240 b can include a limited or “partial functionality” controller configured for operation by a patient. The second controller 240 b may facilitate patient-based selection and/or adjustment of particular preprogrammed operating modes and/or neural stimulation settings. In some embodiments, the first and second controllers 240 a, 240 b may be configured for wire-based or wireless communication with each other. One or both of the controllers 240 may be configured to receive information from the pulse generator 235 (e.g., the overall status and/or performance level of the pulse generator 235). Communication between the control system 234 and the pulse generator 235 may facilitate or effectuate specification, selection, and/or identification of operational modes, instruction sequences, and/or procedures for treating one or more patient conditions, states, and/or symptoms associated with PD, other movement disorders, and/or other types of neurologic dysfunction in a variety of manners.
  • [0041]
    The patient monitoring unit 250 may be used to determine the effects of the stimulation signals provided by the controller(s) 240, the pulse generator 235, and the electrode device(s) 231. Accordingly, the patient monitoring unit can include any type of device configured to detect, monitor, indicate, estimate, characterize, measure, calculate, and/or assess neural pathway characteristics and/or the nature, level, intensity, magnitude and/or severity of one or more types of patient states, conditions, deficits, and/or symptoms associated with PD and/or other neurological dysfunctions. For example, a patient monitoring unit 250 may include a motion detection system configured to detect patient movement associated with tremor. A motion detection system may include light emitting and/or detecting devices and/or accelerometers coupled to particular patient extremities. In another example, the patient monitoring unit 250 includes an Electromyography (EMG) system that has one or more sets of surface or depth electrodes positioned relative to particular muscle groups for detecting electrical signals corresponding to muscle fiber innervation. In still another example, the patient monitoring unit 250 includes an Electroencephalography (EEG), an Electrocorticography (ECoG) system, and/or a Magnetoencephalography (MEG) system. In yet another embodiment, the patient monitoring unit 250 includes one or more electrode contacts 232 and, optionally, software and/or hardware (e.g., signal processing software and/or circuitry) within the pulse generator 235.
  • [0042]
    In other arrangements, the patient monitoring unit 250 includes a neural imaging system, for example, a Magnetic Resonance Imaging (MRI), a functional MRI (fMRI), a Positron Emission Tomography (PET), and/or other type of system. As another example, the patient monitoring unit 250 may include one or more electrodes and/or probes (e.g., cerebral bloodflow monitors) positioned upon, proximate, and/or within given target neural populations, and associated hardware and/or software for detecting, presenting, and/or analyzing signals received therefrom. Still further examples of patient monitoring units are described in co-pending U.S. application Ser. No. 10/782,526, previously incorporated herein by reference.
  • [0043]
    In addition to illustrating a representative stimulation system 230, FIG. 2 also illustrates a representative placement for the electrode device 231. The electrode device 231 shown in FIG. 2 is positioned to provide stimulation to a patient 200 experiencing a gait-related neural dysfunction symptom (e.g., foot dragging). In one aspect of this embodiment, the electrode device 231 is positioned at a selected region 217 of the brain 210 located closer to the interhemispheric fissure 211 (located behind the plane of FIG. 2) than to the Sylvian fissure 212. The contacts 232 of the electrode device 231 can be located at the precentral gyrus 214 and/or the postcentral gyrus 215. In some cases, it may be advantageous to position the electrode device 231 to span the central sulcus 213, allowing the practitioner to selectively stimulate either or both of the precentral gyrus 214 and the postcentral gyrus 215. In other cases, the electrode device 231 can be positioned to extend posterior to the post-central sulcus 216. In any of these cases, the contacts 232 can be positioned subdurally or epidurally, depending on which is most effective for the patient 200. The contacts 232 can be located ipsilaterally and/or contralaterally with regard to the side of the patient 200 exhibiting the targeted symptoms. In at least one embodiment (e.g., when the patient 200 exhibits gait-related symptoms on both sides of the body), the practitioner can identify the brain hemisphere primarily associated with the patient's speech, and then stimulate that hemisphere so as to reduce or even prevent speech-related symptoms while at the same time addressing gait-related symptoms.
  • [0044]
    The electrode device 231 can include a plurality of contacts 232 that provide stimulation at one or more stimulation sites 218. Accordingly, the practitioner can sequentially stimulate at a different site (a) when it is not clearly evident, except by trial, where stimulation is most effective, and/or (b) when the patient 200 benefits from stimulation at multiple sites. In the latter case, stimulation may also be applied simultaneously to multiple sites.
  • [0045]
    In one aspect of this embodiment, the contacts 232 can be arranged in a 2×3 array, and in other embodiments, the contacts 232 can be arranged in arrays having other dimensions, including a single row of contacts 232. Each contact 232 can have a surface area and spacing selected to provide stimulation in the desired fashion. For example, in one embodiment, the contacts 232 have a surface area of about 5 mm2, and each contact 232 can be spaced apart from its nearest neighbor by about 2.5 mm. In other embodiments, the size of the contacts 232 and the spacing between the contacts 232 can be different.
  • [0046]
    In any of the foregoing embodiments, the electrical stimulation provided by the electrode device 231 can reduce and/or eliminate gait-related symptoms experienced by the patient 200. The electrical stimulation provided by the electrode device 231 can be selected by the practitioner to provide unipolar and/or bipolar stimulation. As used herein, unipolar stimulation refers generally to stimulation provided by one or more contacts proximate to a given stimulation site 218 while all the contacts 232 are at or near the same electrical potential. In this case, a return electrode or contact is provided at a site distal the stimulation site 218, for example, at the implanted pulse generator 235. Conversely, bipolar stimulation, as used herein, refers generally to stimulation provided by at least two contacts 232 positioned proximate to the stimulation site 218, with one of the contacts at a higher electrical potential than the other. Multiple contacts 232 can be arranged in bipolar pairs, with each pair including one contact 232 at a higher potential than its pair mate. The pulse control system 234 can be configured to provide both unipolar and bipolar stimulation signals to the electrode device 231. Accordingly, the same electrode device 231 and pulse control system 234 can be used for patients receiving bipolar and unipolar stimulation. Furthermore, the pulse control system 234 can be programmed or reprogrammed during treatment to switch between bipolar and unipolar stimulation, when this type of alternation provides or is expected to provide an additional benefit to the patient.
  • [0047]
    FIG. 3 is an illustration of the brain 210 with the electrode device 231 positioned at a selected region 317 to address oral-related movement disorder symptoms. Accordingly, the selected region 317 is positioned closer to the Sylvian fissure 212 than to the interhemispheric fissure 211. The contacts 232 can be located proximate to multiple stimulation sites 318, and can provide bipolar and/or unipolar stimulation, in a manner generally similar to that described above. As was also described above, the electrode device 231 can be sized, shaped and positioned in a manner that allows the practitioner to selectively stimulate multiple sites, sequentially and/or simultaneously. In one aspect of this embodiment, the electrode device 231 positioned at or near the Sylvian fissure 212 can have the same size and shape as the electrode device 231 positioned at or near the interhemispheric fissure 211 (FIG. 2). In other embodiments, the size and/or shape of the electrode device 231, and/or the arrangement of contacts 232 can be different depending on whether the electrode device 231 is selected to address primarily gait-related or oral-related symptoms.
  • [0048]
    FIG. 4 is an illustration of the brain 210 with the electrode device 231 positioned at a selected region 417 to address symptoms other than gait-related symptoms and oral-related symptoms. Accordingly, the electrode device 231 can be positioned between the interhemispheric fissure 211 and the Sylvian fissure 212. In a particular aspect of this embodiment, the electrode device 231 and the contacts 232 it carries can be located approximately midway between the interhemispheric fissure 211 and the Sylvian fissure 212, and in other embodiments, the contacts 232 can be located more toward one fissure than the other. In any of these embodiments, the contacts 232 tend not to be located as close to the interhemispheric fissure 211 as was shown in FIG. 2, or as dose to the Sylvian fissure 212 as was shown in FIG. 3.
  • [0049]
    In still further embodiments, aspects of the arrangements described above with reference to FIGS. 2-4 can be combined. For example, if the patient 200 suffers from multiple symptoms (e.g., gait-related symptoms, oral-related symptoms and other symptoms), then a single electrode device 231 can be located over multiple selected regions. In another embodiment, the practitioner can implant multiple electrode devices 231 at each of the corresponding regions expected to provide aid to the patient 200. In either arrangement, the electrode(s) 231 expected to be necessary for addressing the patient's symptoms can be implanted in a single procedure, whether or not all the associated contacts 232 are ultimately used.
  • [0050]
    FIGS. 5-7 illustrate methods for applying electrical stimulation to a patient's brain in accordance with further aspects of the invention. Referring first to FIG. 5, a method 500 in accordance with one embodiment of the invention includes selecting at least one neural process from among a plurality of sequential neural processes associated with causing a muscle movement in the patient (block 502). The neural processes can include a planning process, an initiation process, and/or an execution process. As used herein, the planning process refers generally to the neurological process of forming instructions for carrying out a movement. Initiation refers generally to beginning the planned movement, and execution refers to fully carrying out the planned movement. Each movement executed by a patient generally results from the patient performing the foregoing three processes in sequence.
  • [0051]
    In block 504, electrical stimulation is applied to a location of the patient's brain associated with the at least one neural process selected in block 502. For example, in many cases, a different specific area of the brain is associated with each of the planning, initiation, and execution processes. Accordingly, the electrical stimulation can be applied to the location of the patient's brain associated with one or more of the foregoing processes.
  • [0052]
    Once the (at least one) target neural process has been selected, the practitioner can implant an electrode device at least proximate to the area of the patient's brain associated with the target neural process. FIG. 6 illustrates the brain 210 along with three selected regions 617 (shown as a first selected region 617 a, second selected region 617 b, and third selected region 617 c), each associated with one of the target neural processes. For example, the first selected region 617 a can include the dorsal lateral prefrontal cortex 619, which has been shown to be associated with motor task planning. The second selected region 617 b can include areas proximate to the interhemispheric fissure 211 and anterior to the motor strip 620 (e.g., the supplementary motor area 621). In a particular embodiment, the second selected region 617 b can extend into the interhemispheric fissure 211. The third selected region 617 c can include the motor strip 620 and can accordingly extend laterally from the interhemispheric fissure 211 to the Sylvian fissure 212. The third selected region 617 c can also include the premotor cortex, a portion of the supplementary motor area 621. The motor strip 620 may be stimulated to address symptoms associated with fine motor control, and the premotor cortex may be stimulated to address symptoms associated with general motor control.
  • [0053]
    A stimulation system 630 for stimulating the brain 210 can include a pulse generator 635 coupled to one or more pulse control systems (not shown in FIG. 6) generally similar to those described above with reference to FIG. 2. In a particular embodiment in which it is desired to stimulate areas associated with all three neural processes (planning, initiation, and execution), the stimulation system 630 can include electrode devices 631 (shown as first, second, and third electrode devices 631 a, 631 b, and 631 c, respectively) having electrical contacts 632 located at each of the three selected regions 617 a-617 c, respectively. When the second selected region 617 b extends into the interhemispheric fissure 211, the second electrode device 631 b can be placed in the interhemispheric fissure 211 as well. Alternatively, the second electrode device 631 b can be located external, (but proximate to) the interhemispheric fissure 211, while still providing stimulation to neural structures located within the interhemispheric fissure 211, e.g., in a manner generally similar to that described in U.S. application Ser. No. ______, entitled “Electrode Configurations for Reducing Invasiveness and/or Enhancing Neural Stimulation Efficacy,” filed concurrently herewith and incorporated herein by reference. Corresponding leads 633 a-633 c can be coupled between the pulse generator 635 and the electrode devices 631 a-631 c. In other embodiments, for example, when it is clear that only one or two of the regions 617 a-617 c would benefit from stimulation, fewer electrode devices 631 can be implanted in a single procedure at fewer than three regions.
  • [0054]
    Stimulation signals may be provided to the brain 210 in accordance with any of the parameters described above with reference to FIGS. 2-4. For example, the stimulation site can be located on the ipsilateral or contralateral side of the brain 210 with respect to the location of the impediment. In some embodiments, the practitioner can stimulate sites at both hemispheres, either sequentially or simultaneously, depending (for example) on the particular symptoms exhibited by the patient, and/or the particular process (e.g., planning, initiation, and/or execution) the practitioner wishes to address. The frequency, amplitude, pulse width and other signal parameters can also be varied in manners generally similar to those described above to provide effective treatment for the patient.
  • [0055]
    In some patients, a defect associated with one of the foregoing sequential processes may predominate. Once the defect associated with this process has been addressed, defects associated with other processes may become more evident. In other cases, it may be impossible or impracticable to identify which process is primarily responsible for the patient's symptoms, for example, because the processes are typically executed by the patient in very rapid succession. In any of these cases, the practitioner may implant multiple electrode devices and/or multiple contacts covering a range of target regions of the brain, and then stimulate a particular region until the problem with that region is addressed (or eliminated as a source of symptoms), then move to another region if symptoms associated with that region become evident, or if stimulation at the first region does not have the desired effect. Stimulation can be provided at multiple sites in a sequential, simultaneous, alternating, random, pseudorandom, and/or intermittent manner. The multiple electrode devices can be implanted simultaneously or serially (e.g., after stimulation with an initial electrode device has been completed or determined to be ineffective).
  • [0056]
    As described above with reference to FIG. 1C, stimulation can also be applied to the brain to address side effects associated with the patient's drug intake. Stimulation can be applied to the premotor cortex 622, the supplemental motor area 621, and/or the primary motor cortex 623 (for motion-related symptoms), and/or the prefrontal cortex 619 (for cognitive symptoms). The benefits of stimulation in these areas can include a reduction in drug side effects and/or a reduction in conventional drug doses (so as to produce essentially the same, the same, or greater therapeutic effect with fewer side effects). The patient may also have an increased “on time” (e.g., an increased period of time during which the drug is providing therapeutic effects) while exhibiting no side effects or reduced side effects.
  • [0057]
    FIG. 7 illustrates another arrangement of electrode devices that may be suitable for use when it is not certain which of the foregoing processes the patient has the most difficulty with, and/or when it is known that the patient has difficulty with more than one process. The arrangement can include two strip-type electrode devices, shown as a first electrode device 717 a and a second electrode device 717 b. The first electrode device 717 a can be positioned to extend over both the dorsal lateral prefrontal cortex 619 (e.g., the first selected region 617 a), and the supplementary motor area 621 (e.g., the second selected region 617 b). The second electrode device 717 b can extend over the motor strip 620 (e.g., the third selected region 617 c). In one aspect of this embodiment, each electrode device 717 a, 717 b can include a single row of contacts 732, and in other embodiments, each electrode device 717 a, 717 b can include multiple rows or other arrangements of contacts 732. In any of these embodiments, both electrode devices 717 a, 717 b can be coupled to one or more pulse generators and controllers (not shown in FIG. 7) to selectively provide electrical stimulation to target areas either simultaneously or sequentially, depending, for example, on whether the patient exhibits symptoms sequentially or simultaneously.
  • [0058]
    In other embodiments, the systems described above can be implanted and operated in still further manners. For example, one or more electrode devices can be implanted in a manner that places first and second electrical contacts proximate to different areas of the patients brain. Electrical stimulation can then be applied simultaneously or sequentially to these areas to treat one or more neural dysfunctions, and the implantation site can be selected in a manner that does not necessarily require identifying the functional manifestation of the neural dysfunction. In a particular embodiment, the stimulation can be applied to any two (or more) of the motor cortex, the prefrontal cortex and the supplementary motor area. As used herein, the term motor cortex can include the primary motor cortex and/or the premotor cortex. The stimulation can be applied to one or both of the patient's brain hemispheres. In other embodiments, the stimulation can be applied to other multiple locations.
  • [0059]
    From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, aspects of the invention described in the context of particular embodiments can be combined or eliminated in other embodiments. Many of the steps are described above in a particular order for purposes of illustration, but can be carried out in other orders as well. Further details of electrode system, techniques for visualizing target implant areas, and techniques for implanting electrodes are disclosed in the following corresponding U.S. Applications, all of which are incorporated herein by reference: Ser. No. 10/731,731, filed Dec. 9, 2003; Ser. No. 10/910,775, filed Aug. 2, 2004; Ser. No. 10/877,830, filed Jun. 25, 2004; and Ser. No. 10/731,852, filed Dec. 9, 2003. Accordingly, the invention is not limited except as by the appended claims.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3650276 *25 Mar 196921 Mar 1972Inst Demedicina Si FarmacieMethod and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder
US4030509 *30 Sep 197521 Jun 1977Mieczyslaw MirowskiImplantable electrodes for accomplishing ventricular defibrillation and pacing and method of electrode implantation and utilization
US4140133 *26 Abr 197720 Feb 1979Moskovsky Oblastnoi Nauchno-Issledovatelsky Institut Akusherstva I Ginekolog IiDevice for pulse current action on central nervous system
US4245645 *20 Jul 197820 Ene 1981Arseneault Pierre MichelSelf-locking cerebral electrical probe
US4328813 *20 Oct 198011 May 1982Medtronic, Inc.Brain lead anchoring system
US4431000 *23 May 198014 Feb 1984Gatron CorporationTranscutaneous nerve stimulator with pseusorandom pulse generator
US4590946 *14 Jun 198427 May 1986Biomed Concepts, Inc.Surgically implantable electrode for nerve bundles
US4646744 *29 Jun 19843 Mar 1987Zion FoundationMethod and treatment with transcranially applied electrical signals
US5002053 *21 Abr 198926 Mar 1991University Of ArkansasMethod of and device for inducing locomotion by electrical stimulation of the spinal cord
US5024226 *17 Ago 198918 Jun 1991Critikon, Inc.Epidural oxygen sensor
US5092835 *6 Jul 19903 Mar 1992Schurig Janet L SBrain and nerve healing power apparatus and method
US5121754 *21 Ago 199016 Jun 1992Medtronic, Inc.Lateral displacement percutaneously inserted epidural lead
US5184620 *26 Dic 19919 Feb 1993Marquette Electronics, Inc.Method of using a multiple electrode pad assembly
US5215086 *3 May 19911 Jun 1993Cyberonics, Inc.Therapeutic treatment of migraine symptoms by stimulation
US5282468 *8 Ene 19921 Feb 1994Medtronic, Inc.Implantable neural electrode
US5299569 *3 May 19915 Abr 1994Cyberonics, Inc.Treatment of neuropsychiatric disorders by nerve stimulation
US5304206 *18 Nov 199119 Abr 1994Cyberonics, Inc.Activation techniques for implantable medical device
US5314458 *24 May 199324 May 1994University Of MichiganSingle channel microstimulator
US5405375 *21 Ene 199411 Abr 1995Incontrol, Inc.Combined mapping, pacing, and defibrillating catheter
US5406957 *14 Sep 199318 Abr 1995Tansey; Michael A.Electroencephalic neurofeedback apparatus for training and tracking of cognitive states
US5411540 *3 Jun 19932 May 1995Massachusetts Institute Of TechnologyMethod and apparatus for preferential neuron stimulation
US5417719 *25 Ago 199323 May 1995Medtronic, Inc.Method of using a spinal cord stimulation lead
US5520190 *31 Oct 199428 May 1996Ventritex, Inc.Cardiac blood flow sensor and method
US5591216 *19 May 19957 Ene 1997Medtronic, Inc.Method for treatment of sleep apnea by electrical stimulation
US5593432 *23 Jun 199314 Ene 1997Neuroware Therapy International, Inc.Method for neurostimulation for pain alleviation
US5601611 *5 Ago 199411 Feb 1997Ventritex, Inc.Optical blood flow measurement apparatus and method and implantable defibrillator incorporating same
US5611350 *8 Feb 199618 Mar 1997John; Michael S.Method and apparatus for facilitating recovery of patients in deep coma
US5628317 *4 Abr 199613 May 1997Medtronic, Inc.Ultrasonic techniques for neurostimulator control
US5711316 *30 Abr 199627 Ene 1998Medtronic, Inc.Method of treating movement disorders by brain infusion
US5713922 *25 Abr 19963 Feb 1998Medtronic, Inc.Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain
US5713923 *13 May 19963 Feb 1998Medtronic, Inc.Techniques for treating epilepsy by brain stimulation and drug infusion
US5716377 *25 Abr 199610 Feb 1998Medtronic, Inc.Method of treating movement disorders by brain stimulation
US5722401 *13 Nov 19953 Mar 1998Cardiac Pathways CorporationEndocardial mapping and/or ablation catheter probe
US5735814 *30 Abr 19967 Abr 1998Medtronic, Inc.Techniques of treating neurodegenerative disorders by brain infusion
US5750376 *7 Jun 199512 May 1998Neurospheres Holdings Ltd.In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny
US5752591 *26 Mar 199619 May 1998Meritor Heavy Vehicle Systems, LlcPlug-in hydraulic cylinder housing for hydraulically actuated clutch
US5885976 *25 Nov 199723 Mar 1999Sandyk; ReuvenMethods useful for the treatment of neurological and mental disorders related to deficient serotonin neurotransmission and impaired pineal melatonin functions
US5886769 *18 May 199823 Mar 1999Zolten; A. J.Method of training and rehabilitating brain function using hemi-lenses
US5893883 *30 Abr 199713 Abr 1999Medtronic, Inc.Portable stimulation screening device for screening therapeutic effect of electrical stimulation on a patient user during normal activities of the patient user
US5904916 *5 Mar 199618 May 1999Hirsch; Alan R.Use of odorants to alter learning capacity
US6011996 *20 Ene 19984 Ene 2000Medtronic, IncDual electrode lead and method for brain target localization in functional stereotactic brain surgery
US6016449 *27 Oct 199718 Ene 2000Neuropace, Inc.System for treatment of neurological disorders
US6018682 *30 Abr 199825 Ene 2000Medtronic, Inc.Implantable seizure warning system
US6021352 *26 Jun 19961 Feb 2000Medtronic, Inc,Diagnostic testing methods and apparatus for implantable therapy devices
US6026326 *13 Ene 199715 Feb 2000Medtronic, Inc.Apparatus and method for treating chronic constipation
US6035236 *13 Jul 19987 Mar 2000Bionergy Therapeutics, Inc.Methods and apparatus for electrical microcurrent stimulation therapy
US6040180 *7 May 199721 Mar 2000Neuralstem Biopharmaceuticals, Ltd.In vitro generation of differentiated neurons from cultures of mammalian multipotential CNS stem cells
US6042579 *30 Abr 199728 Mar 2000Medtronic, Inc.Techniques for treating neurodegenerative disorders by infusion of nerve growth factors into the brain
US6052624 *7 Ene 199918 Abr 2000Advanced Bionics CorporationDirectional programming for implantable electrode arrays
US6055456 *29 Abr 199925 Abr 2000Medtronic, Inc.Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6057846 *30 Oct 19972 May 2000Sever, Jr.; FrankVirtual reality psychophysiological conditioning medium
US6057847 *9 May 19972 May 2000Jenkins; BarrySystem and method of image generation and encoding using primitive reprojection
US6058331 *27 Abr 19982 May 2000Medtronic, Inc.Apparatus and method for treating peripheral vascular disease and organ ischemia by electrical stimulation with closed loop feedback control
US6060048 *2 Jun 19959 May 2000New York UniversityMethod for transplanting cells into the brain and therapeutic uses therefor
US6061593 *24 Abr 19989 May 2000Neuropace, Inc.EEG d-c voltage shift as a means for detecting the onset of a neurological event
US6066163 *2 Feb 199623 May 2000John; Michael SashaAdaptive brain stimulation method and system
US6176242 *30 Abr 199923 Ene 2001Medtronic IncMethod of treating manic depression by brain infusion
US6198958 *11 Jun 19986 Mar 2001Beth Israel Deaconess Medical Center, Inc.Method and apparatus for monitoring a magnetic resonance image during transcranial magnetic stimulation
US6205360 *6 Sep 199620 Mar 2001Cochlear LimitedApparatus and method for automatically determining stimulation parameters
US6210417 *29 Abr 19993 Abr 2001Medtronic, Inc.Medical lead positioning and anchoring system
US6221908 *31 Dic 199824 Abr 2001Scientific Learning CorporationSystem for stimulating brain plasticity
US6230049 *13 Ago 19998 May 2001Neuro Pace, Inc.Integrated system for EEG monitoring and electrical stimulation with a multiplicity of electrodes
US6236892 *7 Oct 199922 May 2001Claudio A. FelerSpinal cord stimulation lead
US6339725 *10 Jul 200015 Ene 2002The Board Of Trustees Of Southern Illinois UniversityMethods of modulating aspects of brain neural plasticity by vagus nerve stimulation
US6353754 *24 Abr 20005 Mar 2002Neuropace, Inc.System for the creation of patient specific templates for epileptiform activity detection
US6354299 *30 Jun 200012 Mar 2002Neuropace, Inc.Implantable device for patient communication
US6356792 *20 Ene 200012 Mar 2002Electro Core Technologies, LlcSkull mounted electrode lead securing assembly
US6360122 *2 Ago 200019 Mar 2002Neuropace, Inc.Data recording methods for an implantable device
US6366813 *25 Jun 19992 Abr 2002Dilorenzo Daniel J.Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US6375666 *9 Dic 199923 Abr 2002Hans Alois MischeMethods and devices for treatment of neurological disorders
US6529774 *9 Nov 20004 Mar 2003Neuropace, Inc.Extradural leads, neurostimulator assemblies, and processes of using them for somatosensory and brain stimulation
US6684105 *31 Ago 200127 Ene 2004Biocontrol Medical, Ltd.Treatment of disorders by unidirectional nerve stimulation
US6708064 *24 Dic 200116 Mar 2004Ali R. RezaiModulation of the brain to affect psychiatric disorders
US7006859 *18 Jul 200328 Feb 2006Flint Hills Scientific, L.L.C.Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes
US20030074032 *15 Oct 200217 Abr 2003Gliner Bradford EvanNeural stimulation system and method responsive to collateral neural activity
US20030078633 *30 Sep 200224 Abr 2003Firlik Andrew D.Methods and implantable apparatus for electrical therapy
US20030088274 *30 Sep 20028 May 2003Vertis Neuroscience, Inc.Method and apparatus for electrically stimulating cells implanted in the nervous system
US20030097161 *12 Nov 200222 May 2003Firlik Andrew D.Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20040073270 *8 Abr 200315 Abr 2004Firlik Andrew D.Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20040082847 *21 Oct 200329 Abr 2004Mcdermott Kathleen B.System and methods for identifying brain regions supporting language
US20040088024 *24 Jun 20036 May 2004Firlik Andrew D.Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20040092809 *28 Jul 200313 May 2004Neurion Inc.Methods for measurement and analysis of brain activity
US20040102828 *18 Abr 200327 May 2004Lowry David WarrenMethods and systems employing intracranial electrodes for neurostimulation and/or electroencephalography
US20050004620 *30 Abr 20046 Ene 2005Medtronic, Inc.Implantable medical device with anti-infection agent
US20050015129 *11 May 200420 Ene 2005Mische Hans A.Methods and devices for the treatment of neurological and physiological disorders
US20050021104 *5 Abr 200427 Ene 2005Dilorenzo Daniel JohnApparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US20050021105 *6 Ago 200427 Ene 2005Firlik Andrew D.Methods and apparatus for effectuating a change in a neural-function of a patient
US20050021106 *6 Ago 200427 Ene 2005Firlik Andrew D.Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20050021107 *6 Ago 200427 Ene 2005Firlik Andrew D.Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20050021118 *25 Jun 200427 Ene 2005Chris GenauApparatuses and systems for applying electrical stimulation to a patient
US20050033378 *9 Dic 200310 Feb 2005Sheffield Warren DouglasMethods for treating and/or collecting information regarding neurological disorders, including language disorders
US20050070971 *2 Ago 200431 Mar 2005Brad FowlerApparatus and methods for applying neural stimulation to a patient
US20050075679 *7 May 20047 Abr 2005Gliner Bradford E.Methods and apparatuses for treating neurological disorders by electrically stimulating cells implanted in the nervous system
US20050075680 *15 Jul 20047 Abr 2005Lowry David WarrenMethods and systems for intracranial neurostimulation and/or sensing
US20050096701 *13 Ago 20045 May 2005Medtronic, Inc.Stimulation for delivery of molecular therapy
US20050113882 *18 Nov 200426 May 2005Advanced Neuromodulation Systems, Inc.Electrical stimulation system, lead, and method providing reduced neuroplasticity effects
US20060015153 *15 Jul 200519 Ene 2006Gliner Bradford ESystems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US20060106430 *12 Nov 200418 May 2006Brad FowlerElectrode configurations for reducing invasiveness and/or enhancing neural stimulation efficacy, and associated methods
US20060106431 *12 Nov 200418 May 2006Allen WylerSystems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US765731026 Ene 20062 Feb 2010Cyberonics, Inc.Treatment of reproductive endocrine disorders by vagus nerve stimulation
US770687525 Ene 200727 Abr 2010Cyberonics, Inc.Modulation of drug effects by vagus nerve stimulation
US780160127 Ene 200621 Sep 2010Cyberonics, Inc.Controlling neuromodulation using stimulus modalities
US786986727 Oct 200611 Ene 2011Cyberonics, Inc.Implantable neurostimulator with refractory stimulation
US786988528 Abr 200611 Ene 2011Cyberonics, IncThreshold optimization for tissue stimulation therapy
US796222028 Abr 200614 Jun 2011Cyberonics, Inc.Compensation reduction in tissue stimulation therapy
US797470127 Abr 20075 Jul 2011Cyberonics, Inc.Dosing limitation for an implantable medical device
US799607924 Ene 20069 Ago 2011Cyberonics, Inc.Input response override for an implantable medical device
US815050829 Mar 20073 Abr 2012Catholic Healthcare WestVagus nerve stimulation method
US820460325 Abr 200819 Jun 2012Cyberonics, Inc.Blocking exogenous action potentials by an implantable medical device
US821918829 Mar 200710 Jul 2012Catholic Healthcare WestSynchronization of vagus nerve stimulation with the cardiac cycle of a patient
US826042625 Ene 20084 Sep 2012Cyberonics, Inc.Method, apparatus and system for bipolar charge utilization during stimulation by an implantable medical device
US828050510 Mar 20092 Oct 2012Catholic Healthcare WestVagus nerve stimulation method
US830662723 May 20116 Nov 2012Cyberonics, Inc.Dosing limitation for an implantable medical device
US845774720 Oct 20084 Jun 2013Cyberonics, Inc.Neurostimulation with signal duration determined by a cardiac cycle
US856586725 Ene 200822 Oct 2013Cyberonics, Inc.Changeable electrode polarity stimulation by an implantable medical device
US861530929 Mar 200724 Dic 2013Catholic Healthcare WestMicroburst electrical stimulation of cranial nerves for the treatment of medical conditions
US866066610 Mar 200925 Feb 2014Catholic Healthcare WestMicroburst electrical stimulation of cranial nerves for the treatment of medical conditions
US873812610 Mar 200927 May 2014Catholic Healthcare WestSynchronization of vagus nerve stimulation with the cardiac cycle of a patient
US880551930 Sep 201012 Ago 2014Nevro CorporationSystems and methods for detecting intrathecal penetration
US887421823 Abr 201328 Oct 2014Cyberonics, Inc.Neurostimulation with signal duration determined by a cardiac cycle
US910804125 Nov 201318 Ago 2015Dignity HealthMicroburst electrical stimulation of cranial nerves for the treatment of medical conditions
US92895993 Abr 201222 Mar 2016Dignity HealthVagus nerve stimulation method
US931463331 Ago 201219 Abr 2016Cyberonics, Inc.Contingent cardio-protection for epilepsy patients
US93583888 Jul 20147 Jun 2016Nevro CorporationSystems and methods for detecting intrathecal penetration
US20060161216 *18 Oct 200520 Jul 2006John Constance MDevice for neuromuscular peripheral body stimulation and electrical stimulation (ES) for wound healing using RF energy harvesting
US20060184209 *2 Sep 200517 Ago 2006John Constance MDevice for brain stimulation using RF energy harvesting
US20080154331 *21 Dic 200626 Jun 2008Varghese JohnDevice for multicentric brain modulation, repair and interface
US20090105786 *21 Oct 200823 Abr 2009University Of WashingtonMethod and device for strengthening synaptic connections
US20090121989 *20 Oct 200814 May 2009Seiko Epson CorporationActive matrix device, electrooptic display, and electronic apparatus
Clasificaciones
Clasificación de EE.UU.607/48
Clasificación internacionalA61N1/36
Clasificación cooperativaA61N1/0531, A61N1/0534, A61N1/36067
Clasificación europeaA61N1/36Z3B
Eventos legales
FechaCódigoEventoDescripción
17 Oct 2006ASAssignment
Owner name: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISHIKAWA, MITSUYO;TAKEMOTO, SHOJI;BANNO, TOSHIYUKI;AND OTHERS;REEL/FRAME:018423/0042
Effective date: 20060801
12 Jun 2009ASAssignment
Owner name: ADVANCED NEUROMODULATION SYSTEMS, INC., TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHSTAR NEUROSCIENCE, INC.;REEL/FRAME:022813/0542
Effective date: 20090521
Owner name: ADVANCED NEUROMODULATION SYSTEMS, INC.,TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHSTAR NEUROSCIENCE, INC.;REEL/FRAME:022813/0542
Effective date: 20090521