US20060280480A1 - Data processing device and data recording method - Google Patents

Data processing device and data recording method Download PDF

Info

Publication number
US20060280480A1
US20060280480A1 US11/504,151 US50415106A US2006280480A1 US 20060280480 A1 US20060280480 A1 US 20060280480A1 US 50415106 A US50415106 A US 50415106A US 2006280480 A1 US2006280480 A1 US 2006280480A1
Authority
US
United States
Prior art keywords
signal
input
video
circuit
video signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/504,151
Inventor
Hajime Nitta
Toshimichi Hamada
Masashi Ohta
Kiyoshi Ota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to US11/504,151 priority Critical patent/US20060280480A1/en
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OTA, KIYOSHI, HAMADA, TOSHIMICHI, NITTA, HAJIME, OHTA, MASASHI
Publication of US20060280480A1 publication Critical patent/US20060280480A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/78Television signal recording using magnetic recording
    • H04N5/781Television signal recording using magnetic recording on disks or drums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/78Television signal recording using magnetic recording
    • H04N5/782Television signal recording using magnetic recording on tape
    • H04N5/783Adaptations for reproducing at a rate different from the recording rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/7921Processing of colour television signals in connection with recording for more than one processing mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/806Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components with processing of the sound signal
    • H04N9/8063Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components with processing of the sound signal using time division multiplex of the PCM audio and PCM video signals

Definitions

  • This invention relates to a data processing device and a data recording method which are suitable for use in a data recording system for encoding data in accordance with a synchronizing signal.
  • an input standard video signal is encoded in accordance with a predetermined rule.
  • an analog video signal that is actually input is often a nonstandard video signal in the case where a video signal of only one field exists, as in game equipment, or in the case where the temporal length of the frame varies, as in the varying-speed reproduction by a VCR (video cassette recorder), or in the case where the frame is made discontinuous by switching the channel of the input signal. Therefore, when carrying out digital image compression processing by converting an analog video signal to a digital video signal, encoding oftentimes cannot be carried out.
  • encoding may be temporarily interrupted and then resumed from a frame of standard video signal without encoding the frame of the nonstandard video signal. That is, conventionally, an asynchronous video signal can be dealt with by temporarily stopping the encoding process.
  • this technique of temporarily stopping the encoding process has the drawback that video data to be encoded and output becomes discontinuous.
  • an input video signal may be temporarily stored in a frame memory and a master clock which is asynchronous with a synchronizing signal at the time of input may be generated by a crystal oscillator or the like.
  • the input video signal is read out by using the synchronizing signal and the master clock and is then encoded.
  • the quantity of delay of the video signal in the frame memory differs between when the video signal is read out using the synchronizing signal and when the video signal is read out using the master clock.
  • the quantity of delay is not constant as described above, the quantity of delay with respect to an audio signal that is input simultaneously with the video signal is undefined and synchronization between the video signal and the audio signal cannot be achieved.
  • a data processing device which includes a video input/output circuit for inputting an input video signal and outputting an output video signal.
  • a detection circuit is provided for detecting a first synchronizing signal in the input video signal input.
  • the video input/output circuit is operable to use a second synchronizing signal different from the first synchronizing signal to output the output video signal.
  • the data processing device further includes a storage medium, a controller and an audio input circuit for inputting an audio signal using the second synchronizing signal.
  • the controller is operable to control recording of the inputted audio signal input through the audio input circuit and to control recording of the output video signal onto the storage medium, such that the inputted audio signal and the output video signal are synchronized by the second synchronizing signal.
  • the video input/output circuit includes a storage circuit for storing the input video signal, and the video input/output circuit is operable to output the stored input video signal in accordance with the second synchronizing signal to provide the output video signal.
  • a phase-locked loop circuit having a clock for carrying out phase locking with the first synchronizing signal, the signal generation circuit being operable to generate the second synchronizing signal based on the clock, the second synchronizing signal having a delay relative to the first synchronizing signal.
  • the storage medium is selected from the group consisting of a hard disk, a magneto-optical disc, an optical disc, and a semiconductor memory.
  • a data recording method which includes steps of:
  • such method may further include generating the second synchronizing signal to have a delay relative to the detected synchronizing signal based on a clock of a phase-locked loop circuit, the phase-locked loop circuit being phase locked with the detected synchronizing signal.
  • FIG. 1 is a block diagram showing the structure of a recording/reproducing system to which the present invention is applied.
  • FIG. 2 is a block diagram showing the structure of a recording/reproducing device to which the present invention is applied.
  • FIG. 3 is a block diagram showing the structure of an NTSC decoder and a synchronous control circuit of the recording/reproducing device to which the present invention is applied.
  • FIG. 4 is a timing chart for explaining the operation of the synchronous control circuit.
  • FIG. 5 is a timing chart for explaining the operation of the synchronous control circuit in the case where a nonstandard video signal is input.
  • the present invention is applied, for example, to a recording/reproducing system 1 having the structure shown in FIG. 1 .
  • the recording/reproducing system 1 includes a recording/reproducing device 2 , a RAM (random access memory) 3 , a ROM (read only memory) 4 , and a system controller 5 which are connected on a host bus 1 A.
  • a system controller 5 accesses the RAM 3 and ROM 4 via the host bus 1 A, if necessary, thus controlling the whole recording/reproducing system 1 .
  • the recording operation of the recording/reproducing device 2 will be described first.
  • the recording/reproducing device 2 has the structure shown in FIG. 2 .
  • the recording/reproducing device 2 is adapted to receive a video signal at a tuner 14 via an antenna terminal 12 connected to an antenna 11 or video signals input from analog input terminals 13 a , 13 b .
  • the recording/reproducing device 2 records these video signals, as a transport stream, on a recording medium within an HDD (hard disk drive) unit 23 via an input switching section 15 , a YC separation circuit 16 , a switch section 17 , an NTSC (National Television System Committee) decoder 18 , a pre-video signal processing circuit 19 , an MPEG (Moving Picture Experts Group) video encoder 20 , a multiplexing/demultiplexing circuit 21 and a buffer control circuit 22 , all under the control of the system controller 5 .
  • HDD hard disk drive
  • the recording/reproducing device 2 is also adapted to receive an audio signal at the tuner 14 via the antenna terminal 12 connected to the antenna 11 or an audio signal input from an analog input terminal 13 c , and to record the audio signal as a transport stream on the recording medium within the HDD unit 23 via the input switching section 15 , an audio A/D converter 24 , an MPEG audio encoder 25 , the multiplexing/demultiplexing circuit 21 and the buffer control circuit 22 , again under the control of the system controller 5 .
  • the antenna 11 may be, for example, a ground wave receiving antenna.
  • the antenna 11 receives radio waves including a video signal and an audio signal which are superimposed, and outputs the received signal to the tuner 14 .
  • the tuner 14 performs descrambling processing and demodulation processing on the signal received from the antenna 11 , thus extracting the video signal and the audio signal, and outputs the video signal and the audio signal to the input switching section 15 .
  • An external S video signal input from the analog input terminal 13 a , a composite video signal input from the analog input terminal 13 b , and an audio signal input from the analog input terminal 13 c are all output to the input switching section 15 .
  • the input switching section 15 switches and outputs the video signals and the audio signal input thereto in accordance with a control signal from the system controller 5 .
  • the input switching section 15 outputs the video signals to the YC separation circuit 16 and outputs the audio signal to the audio A/D converter 24 .
  • the YC separation circuit 16 performs YC separation processing using the composite video signal, thus generating a video signal made up of a luminance signal (Y) and a color-difference signal (C), and outputs the generated video signal to the switch section 17 .
  • the switch section 17 is supplied with the video signal from the YC separation circuit 16 and the external S video signal input to the analog input terminal 13 a .
  • the switch section 17 outputs the external S video signal or the video signal from the YC separation circuit 16 to the NTSC decoder 18 in accordance with a control signal from the system controller 5 .
  • the NTSC decoder 18 performs A/D conversion processing and chroma encode processing on the video signal from the switch section 17 , thus converting the video signal to a digital component video signal (hereinafter referred to as video data), and outputs the video data to the pre-video signal processing circuit 19 .
  • the NTSC decoder 18 also outputs to a synchronous control circuit 40 a clock generated with reference to a horizontal synchronizing signal of the input video signal, and a horizontal synchronizing signal, a vertical synchronizing signal and a field identification signal obtained by synchronous separation.
  • the synchronous control circuit 40 generates a timing signal for outputting the signal from the NTSC decoder 18 to the pre-video signal processing circuit 19 on the basis of the horizontal synchronizing signal, the vertical synchronizing signal and the field identification signal from the NTSC decoder 18 , and supplies the timing signal to the NTSC decoder 18 .
  • the structure of the synchronous control circuit 40 will be described later.
  • the pre-video signal processing circuit 19 performs various types of video data processing, such as pre-filtering of the video data from the NTSC decoder 18 , and outputs the resultant video data to the MPEG video encoder 20 and a post-video signal processing circuit 32 .
  • the MPEG video encoder 20 performs block DCT (discrete cosine transform) processing and MPEG coding processing, such as motion compensation processing, on the video data from the pre-video signal processing circuit 19 , thus generating an elementary stream made up of the video data (hereinafter referred to as video ES), and outputs the video ES to the multiplexing/demultiplexing circuit 21 .
  • block DCT discrete cosine transform
  • MPEG coding processing such as motion compensation processing
  • the audio A/D converter 24 supplied with the audio signal from the input switching section 15 performs A/D conversion processing on the input audio signal and outputs audio data to the MPEG audio encoder 25 .
  • the MPEG audio encoder 25 compresses the audio data in accordance with the MPEG system, thus generating an elementary stream made up of the audio data (hereinafter referred to as audio ES), and outputs the audio ES to the multiplexing/demultiplexing circuit 21 .
  • audio ES an elementary stream made up of the audio data
  • compression processing employing the MPEG system is carried out in this embodiment, other compression systems may also be employed or compression processing may be omitted.
  • the multiplexing/demultiplexing circuit 21 at the time of data recording, performs multiplex processing using the video ES from the MPEG video encoder 20 , the audio ES from the MPEG audio encoder 25 , and various control signals, thus generating a transport stream, and outputs the transport stream to the buffer control circuit 22 .
  • the buffer control circuit 22 carries out control to intermittently transmit the transport stream, which is continuously input from the multiplexing/demultiplexing circuit 21 , to the HDD unit 23 .
  • the buffer control circuit 22 cannot write the transport stream to the HDD unit 23 , and therefore temporarily stores the transport stream in a built-in buffer.
  • the buffer control circuit 22 carries out writing at a higher rate than the input rate from the multiplexing/demultiplexing circuit 21 , thus controlling the HDD unit 23 to continuously record the transport stream.
  • the HDD unit 23 has a recording medium therein, such as a magnetic disk, and records the transport stream at a predetermined address in accordance with a control signal from the system controller 5 .
  • a recording medium such as a magnetic disk
  • IDE Integrated Drive Electronics
  • the recording medium may be an optical disc, a magneto-optical disc, a solid-state memory or the like.
  • the recording/reproducing device 2 is adapted to decode a transport stream read out from the HDD unit 23 through the buffer control circuit 22 , the multiplexing/demultiplexing circuit 21 and an MPEG AV (audio/video) decoder 31 , thus preparing video data and audio data.
  • the video data is output via the post-video signal processing circuit 32 , an OSD (on-screen display) 33 , an NTSC encoder 34 and video signal output terminals 35 a , 35 b so as to reproduce the video data.
  • the audio data prepared by the MPEG AV decoder 31 is output to the host bus 1 A via a switch section 36 , an audio D/A converter 37 and an audio signal output terminal 38 so as to reproduce the audio data.
  • the HDD unit 23 Upon receiving a control signal from the system controller 5 instructing that the data is to be reproduced, the HDD unit 23 seeks a predetermined address, reads out the transport stream from that address, and outputs the read-out transport stream to the buffer control circuit 22 .
  • the buffer control circuit 22 carries out buffer control so as to continuously output the transport stream, which it receives intermittently from the HDD unit 23 , to the multiplexing/demultiplexing circuit 21 .
  • the multiplexing/demultiplexing circuit 21 extracts a PES (packetized elementary stream) from the transport stream and outputs the extracted PES to the MPEG AV decoder 31 .
  • PES packetized elementary stream
  • the MPEG AV decoder 31 separates the input PES into a video ES and an audio ES and decodes the video ES and the audio ES. The MPEG AV decoder 31 then outputs the decoded video data to the post-video signal processing circuit 32 and outputs the decoded audio data to the switch section 36 .
  • the post-video signal processing circuit 32 is supplied with the video data from the MPEG AV decoder 31 and the pre-video signal processing circuit 19 .
  • the post-video signal processing circuit 32 performs output switching, composition, and filter processing on the video data from the pre-video signal processing circuit 19 and the video data from the MPEG AV decoder 31 in accordance with a control signal from the system controller 5 , and outputs the video data to the OSD 33 .
  • the OSD 33 generates graphics for video display using the video data from the post-video signal processing circuit 32 , and also performs display control processing for composite display and partial display of the video data.
  • the OSD 33 then outputs the video data to the NTSC encoder 34 .
  • the NTSC encoder 34 converts the video data from the OSD 33 to a luminance signal and a color-difference signal and then performs D/A conversion processing, thus obtaining a composite video signal and an S video signal in an analog format.
  • the NTSC encoder 34 outputs the composite video signal to the video signal output terminal 35 a and outputs the S video signal to the video signal output terminal 35 b.
  • the switch section 36 supplied with the audio data from the MPEG AV decoder 31 is also supplied with the audio signal from the MPEG audio encoder 25 .
  • the switch section 36 outputs either one of the audio data to the audio D/A converter 37 in accordance with a control signal from the system controller 5 .
  • the audio D/A converter 37 performs D/A conversion processing on the audio data from the switch section 36 , thus obtaining an audio signal, and outputs the audio signal to the audio signal output terminal 38 .
  • the recording/reproducing device 2 is also adapted to receive video data and audio data input from a digital input/output terminal 26 , and to record the video data and audio data, as a transport stream, on the recording medium within the HDD unit 23 via a digital I/F circuit 27 , the multiplexing/demultiplexing circuit 21 and the buffer control circuit 22 .
  • the digital input/output terminal 26 is connected, for example, with an external IRD (integrated receiver decoder) (not shown) and is supplied with video data and audio data from the external IRD via an IEEE (the Institute of Electrical and Electronics Engineers) 1394 digital interface.
  • the digital input/output terminal 26 outputs the video data and audio data from the external IRD to the digital I/F circuit 27 and also outputs the video data and audio data from the digital I/F circuit 27 to the external IRD.
  • the digital I/F circuit 27 performs processing such as format conversion conformable to the interface connected with the digital input/output terminal 26 , thus generating a transport stream, and outputs the generated transport stream to the multiplexing/demultiplexing circuit 21 .
  • the recording/reproducing device 2 records the transport stream, input from the digital I/F circuit 27 to the multiplexing/demultiplexing circuit 21 , on the recording medium within the HDD unit 23 via the buffer control circuit 22 similarly to the above-described recording.
  • the HDD unit 23 When reproducing data input via the digital input/output terminal 26 , the HDD unit 23 reads out a transport stream from a predetermined address in accordance with a control signal from the system controller 5 , and outputs the read-out transport stream to the digital I/F circuit 27 via the buffer control circuit 22 and the multiplexing/demultiplexing circuit 21 .
  • the digital I/F circuit 27 performs processing such as format conversion for outputting to the digital input/output terminal 26 the data input from the multiplexing/demultiplexing circuit 21 , and outputs the audio data and video data via the digital input/output terminal 26 , thus reproducing the audio data and video data.
  • the synchronous control circuit 40 is connected via switch section 17 to an A/D conversion processing section 18 a , a synchronous detection circuit 18 b and a frame synchronizer 18 c , all provided inside the NTSC decoder 18 .
  • the synchronous control circuit 40 has a PLL (phase-locked loop) circuit 41 connected to the synchronous detection circuit 18 b and to the frame synchronizer 18 c , and an audio PLL circuit 42 connected to the PLL circuit 41 .
  • PLL phase-locked loop
  • the A/D conversion processing section 18 a is supplied with a video signal from the switch section 17 , then performs A/D conversion processing to provide video data, and outputs the video data to the frame synchronizer 18 c.
  • the synchronous detection circuit 18 b is supplied with a video signal from the switch section 17 , detects a horizontal synchronizing signal HSO, a vertical synchronizing signal VS 0 and a field identification signal FD 0 from the video signal, and outputs these signals to the PLL circuit 41 and the frame synchronizer 18 c .
  • the synchronous detection circuit 18 b also detects from the video signal a sampling clock CK 0 for carrying out A/D conversion processing, and outputs the detected sampling clock CK 0 to the A/D conversion processing section 18 a and the frame synchronizer 18 c.
  • the frame synchronizer 18 c includes a memory having a storage capacity of at least one frame and an input/output control circuit. As respective synchronizing signals corresponding to the horizontal and vertical synchronizing signals and the field identification signal of input/output signals and the clock signal are input, the frame synchronizer 18 c can control the delay. The frame synchronizer 18 c temporarily stores the video data from the A/D conversion processing section 18 a .
  • the frame synchronizer 18 c writes the video data which is sampled with the sampling clock CK 0 from synchronous detection circuit 18 b into the internal memory using the synchronizing signals (horizontal synchronizing signal HSO, vertical synchronizing signal VS 0 , field identification signal FD 0 ) output from the synchronous detection circuit 18 b .
  • the frame synchronizer 18 c also outputs the video data to the pre-video signal processing circuit 19 and the MPEG video encoder 20 in subsequent stages in accordance with the synchronizing signal from the PLL circuit 41 .
  • the PLL circuit 41 is formed by connecting a phase comparator 51 , a VCO (voltage controlled oscillator) 52 and a frame counter 53 in a loop shape.
  • the phase comparator 51 is connected with the signal output terminals of the synchronous detection circuit 18 b and the frame counter 53 , and with the signal input terminal of the VCO 52 .
  • the VCO 52 is connected with the signal output terminal of the phase comparator 51 and with the signal input terminals of the frame counter 53 and the frame synchronizer 18 c .
  • the frame counter 53 is connected with the signal output terminal of the VCO 52 and with the signal input terminals of the frame synchronizer 18 c and the phase comparator 51 .
  • the phase comparator 51 is supplied with the field identification signal FD 0 from the synchronous detection circuit 18 b and a field identification signal FD 1 from the frame counter 53 .
  • the phase comparator 51 detects an error in phase between the field identification signal FD 0 and the field identification signal FD 1 and outputs the error signal to the VCO 52 .
  • the VCO 52 generates a sampling clock CK 1 on the basis of the error signal from the phase comparator 51 , and outputs the generated sampling clock CK 1 to the frame counter 53 and the frame synchronizer 18 c .
  • the VCO 52 changes the oscillation frequency.
  • the frame counter 53 generates a horizontal synchronizing signal HS 1 , a vertical synchronizing signal VS 1 and a field identification signal FD 1 using the sampling clock CK 1 from the VCO 52 , and outputs these signals to the frame synchronizer 18 c , and the field identification signal FD 1 to the phase comparator 51 .
  • the audio PLL circuit 42 is supplied with the sampling clock CK 1 from the VCO 52 , which it uses to generate a synchronizing signal for controlling the processing timing of the audio A/D converter 24 and the MPEG audio encoder 25 .
  • the audio PLL circuit 42 produces an audio master clock synchronized with the sampling clock CK 1 (for example, 27 MHZ), which is the video master clock.
  • the PLL circuit 41 When the field identification signal FD 0 detected by the synchronous detection circuit 18 b is a signal such as that shown in FIG. 4A , the PLL circuit 41 generates the field identification signal FD 1 ( FIG. 4C ) which is locked in the opposite phase (opposite field) to that of the field identification signal FD 0 .
  • the vertical synchronizing signal VS 0 and the vertical synchronizing signal VS 1 are generated at the leading timing and the trailing timing of the field identification signal FD 0 and the field identification signal FD 1 , respectively (as shown in FIGS. 4B and 4D ).
  • the audio data is input to the MPEG audio encoder 25 (as shown FIG. 4F ) synchronously with the input timing ( FIG. 4E ) of the audio signal to the audio A/D converter 24 .
  • the frame synchronizer 18 c reads out the video data within a frame in accordance with the synchronizing signals (horizontal synchronizing signal HS 1 , vertical synchronizing signal VS 1 and field identification signal FD 1 ), and also reads out video data of a frame in accordance with the sampling clock CK 1 generated by the VCO 52 , and outputs the read-out video data to the pre-video signal processing circuit 19 and the MPEG video encoder 20 .
  • the timing of input from the audio A/D converter 24 to the MPEG audio encoder 25 is synchronized by the audio PLL circuit 42 with the output timing of the video data from the frame synchronizer 18 c.
  • encoding can be carried out by using video data having the sampling clock CK 1 and the synchronizing signals (horizontal synchronizing signal HS 1 , vertical synchronizing signal VS 1 , field identification signal FD 1 ) synchronized with the field identification signal FD 0 of the input video signal, instead of the video data itself input to the MPEG video encoder 20 from the switch section 17 via the NTSC decoder 18 and the pre-video signal processing circuit 19 .
  • the recording/reproducing device 2 Before the frame of video data becomes discontinuous, the recording/reproducing device 2 carries out the normal operation in which the encoder input timing of video data and of audio data are synchronized, as shown in FIG. 4 .
  • the PLL circuit 41 When video data becomes discontinuous, the PLL circuit 41 is set in a free-run state. The video data and audio data are no longer synchronized and the timing of input to the respective encoders is shifted from one another. In this case, the PLL circuit 41 carries out the resynchronizing operation using the field identification signal FD 1 so as to restore synchronization and normal operation.
  • the influence thereof is moderated by the PLL circuit 41 and the data can be read out and encoded with the accurate horizontal synchronizing signal HS 1 , vertical synchronizing signal VS 1 and field identification signal FD 1 generated by the frame counter 53 . Therefore, in the recording/reproducing device 2 , even where a standard video signal input in accordance with a predetermined rule, as in the MPEG system, is encoded, the influence of a nonstandard video signal on the encoding process can be minimized.
  • the recording/reproducing device 2 by inputting the sampling clock CK 1 to the audio A/D converter 24 or the MPEG audio encoder 25 within the range where the PLL circuit 41 is locked, the output timing of audio data to the MPEG audio encoder 25 and the output timing of video data to the MPEG video encoder 20 can be synchronized with one another, and the delay of video data can be made constant. As the quantity of delay of video data is made constant, the quantity of delay of video data and audio data can be made constant. Therefore, video data and audio data can be accurately synchronized with one another for encoding.
  • the PLL circuit 41 when a video signal that cannot be followed by the PLL circuit 41 is input, the PLL circuit 41 operates in a free-run state and the phase of writing and reading of the frame synchronizer 18 c is not maintained.
  • the frame counter 53 since the frame counter 53 generates accurate synchronizing signals (horizontal synchronizing signal HS 1 , vertical synchronizing signal VS 1 , field identification signal FD 1 ) using the clock in the free-run state, encoding will not be interrupted.

Abstract

A data processing device includes a video input/output circuit for inputting an input video signal and outputting an output video signal. A detection circuit detects a first synchronizing signal in the input video signal input. Using a second synchronizing signal different from the first synchronizing signal, the video input/output circuit outputs the output video signal. The data processing device further includes a storage medium, a controller and an audio input circuit for inputting an audio signal using the second synchronizing signal. The controller controls recording of the inputted audio signal through the audio input circuit and recording of the output video signal onto the storage medium, such that the inputted audio signal and the output video signal are synchronized by the second synchronizing signal.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 09/809,941 filed Mar. 16, 2001, the disclosure of which is hereby incorporated by reference herein. That application claims priority from Japanese Application No. P2000-081856 filed Mar. 17, 2000, the disclosure of which is also hereby incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • This invention relates to a data processing device and a data recording method which are suitable for use in a data recording system for encoding data in accordance with a synchronizing signal.
  • For digital image compression processing represented by the MPEG (Moving Picture Experts Group) standard or the like, it is assumed that an input standard video signal is encoded in accordance with a predetermined rule. Conventionally, an analog video signal that is actually input is often a nonstandard video signal in the case where a video signal of only one field exists, as in game equipment, or in the case where the temporal length of the frame varies, as in the varying-speed reproduction by a VCR (video cassette recorder), or in the case where the frame is made discontinuous by switching the channel of the input signal. Therefore, when carrying out digital image compression processing by converting an analog video signal to a digital video signal, encoding oftentimes cannot be carried out.
  • On the other hand, in a conventional technique, if a nonstandard video signal is detected, encoding may be temporarily interrupted and then resumed from a frame of standard video signal without encoding the frame of the nonstandard video signal. That is, conventionally, an asynchronous video signal can be dealt with by temporarily stopping the encoding process. However, this technique of temporarily stopping the encoding process has the drawback that video data to be encoded and output becomes discontinuous.
  • In another conventional technique, when a field video signal is a nonstandard video signal, processing to reduce or increase the number of lines may be carried out, thus converting the nonstandard video signal to a standard video signal and then encoding the standard video signal. This technique of controlling the number of lines, however, suffers from the drawback that a different image from the original input image is encoded.
  • In a further conventional technique, an input video signal may be temporarily stored in a frame memory and a master clock which is asynchronous with a synchronizing signal at the time of input may be generated by a crystal oscillator or the like. The input video signal is read out by using the synchronizing signal and the master clock and is then encoded. However, in this technique of reading out a video signal using a synchronizing signal and a master clock and thus encoding the video signal, since the video signal is read out from the frame memory using a master clock which is not synchronized with a synchronizing signal at the time of input, the quantity of delay of the video signal in the frame memory differs between when the video signal is read out using the synchronizing signal and when the video signal is read out using the master clock. In the case where the quantity of delay is not constant as described above, the quantity of delay with respect to an audio signal that is input simultaneously with the video signal is undefined and synchronization between the video signal and the audio signal cannot be achieved.
  • SUMMARY OF THE INVENTION
  • Accordingly, a data processing device is provided which includes a video input/output circuit for inputting an input video signal and outputting an output video signal. A detection circuit is provided for detecting a first synchronizing signal in the input video signal input. The video input/output circuit is operable to use a second synchronizing signal different from the first synchronizing signal to output the output video signal. The data processing device further includes a storage medium, a controller and an audio input circuit for inputting an audio signal using the second synchronizing signal. The controller is operable to control recording of the inputted audio signal input through the audio input circuit and to control recording of the output video signal onto the storage medium, such that the inputted audio signal and the output video signal are synchronized by the second synchronizing signal.
  • In a particular embodiment, the video input/output circuit includes a storage circuit for storing the input video signal, and the video input/output circuit is operable to output the stored input video signal in accordance with the second synchronizing signal to provide the output video signal.
  • According to one or more particular aspects of the invention, a phase-locked loop circuit having a clock for carrying out phase locking with the first synchronizing signal, the signal generation circuit being operable to generate the second synchronizing signal based on the clock, the second synchronizing signal having a delay relative to the first synchronizing signal.
  • In addition, in accordance with one or more particular aspects of the invention, the storage medium is selected from the group consisting of a hard disk, a magneto-optical disc, an optical disc, and a semiconductor memory.
  • In accordance with one or more aspects of the invention, a data recording method is provided which includes steps of:
  • detecting a synchronizing signal in a video signal;
  • holding the video signal by using the detected synchronizing signal;
  • outputting the held video signal using the second synchronizing signal different from the detected synchronizing signal;
  • using the second synchronizing signal, synchronizing an audio signal with the outputted video signal; and
  • recording the synchronized audio signal and the outputted video signal on a recording medium as a transport stream.
  • In accordance with one or more particular aspects of the invention, such method may further include generating the second synchronizing signal to have a delay relative to the detected synchronizing signal based on a clock of a phase-locked loop circuit, the phase-locked loop circuit being phase locked with the detected synchronizing signal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram showing the structure of a recording/reproducing system to which the present invention is applied.
  • FIG. 2 is a block diagram showing the structure of a recording/reproducing device to which the present invention is applied.
  • FIG. 3 is a block diagram showing the structure of an NTSC decoder and a synchronous control circuit of the recording/reproducing device to which the present invention is applied.
  • FIG. 4 is a timing chart for explaining the operation of the synchronous control circuit.
  • FIG. 5 is a timing chart for explaining the operation of the synchronous control circuit in the case where a nonstandard video signal is input.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A preferred embodiment of the present invention will now be described in detail with reference to the drawings.
  • The present invention is applied, for example, to a recording/reproducing system 1 having the structure shown in FIG. 1. The recording/reproducing system 1 includes a recording/reproducing device 2, a RAM (random access memory) 3, a ROM (read only memory) 4, and a system controller 5 which are connected on a host bus 1A. In the recording/reproducing system 1, as control signals are input by the system controller 5, the operation of the recording/reproducing device 2 is controlled. The system controller 5 accesses the RAM 3 and ROM 4 via the host bus 1A, if necessary, thus controlling the whole recording/reproducing system 1.
  • The recording operation of the recording/reproducing device 2 will be described first.
  • The recording/reproducing device 2 has the structure shown in FIG. 2. The recording/reproducing device 2 is adapted to receive a video signal at a tuner 14 via an antenna terminal 12 connected to an antenna 11 or video signals input from analog input terminals 13 a, 13 b. The recording/reproducing device 2 records these video signals, as a transport stream, on a recording medium within an HDD (hard disk drive) unit 23 via an input switching section 15, a YC separation circuit 16, a switch section 17, an NTSC (National Television System Committee) decoder 18, a pre-video signal processing circuit 19, an MPEG (Moving Picture Experts Group) video encoder 20, a multiplexing/demultiplexing circuit 21 and a buffer control circuit 22, all under the control of the system controller 5.
  • The recording/reproducing device 2 is also adapted to receive an audio signal at the tuner 14 via the antenna terminal 12 connected to the antenna 11 or an audio signal input from an analog input terminal 13 c, and to record the audio signal as a transport stream on the recording medium within the HDD unit 23 via the input switching section 15, an audio A/D converter 24, an MPEG audio encoder 25, the multiplexing/demultiplexing circuit 21 and the buffer control circuit 22, again under the control of the system controller 5.
  • The antenna 11 may be, for example, a ground wave receiving antenna. The antenna 11 receives radio waves including a video signal and an audio signal which are superimposed, and outputs the received signal to the tuner 14.
  • The tuner 14 performs descrambling processing and demodulation processing on the signal received from the antenna 11, thus extracting the video signal and the audio signal, and outputs the video signal and the audio signal to the input switching section 15. An external S video signal input from the analog input terminal 13 a, a composite video signal input from the analog input terminal 13 b, and an audio signal input from the analog input terminal 13 c are all output to the input switching section 15.
  • The input switching section 15 switches and outputs the video signals and the audio signal input thereto in accordance with a control signal from the system controller 5. The input switching section 15 outputs the video signals to the YC separation circuit 16 and outputs the audio signal to the audio A/D converter 24.
  • The YC separation circuit 16 performs YC separation processing using the composite video signal, thus generating a video signal made up of a luminance signal (Y) and a color-difference signal (C), and outputs the generated video signal to the switch section 17.
  • The switch section 17 is supplied with the video signal from the YC separation circuit 16 and the external S video signal input to the analog input terminal 13 a. The switch section 17 outputs the external S video signal or the video signal from the YC separation circuit 16 to the NTSC decoder 18 in accordance with a control signal from the system controller 5.
  • The NTSC decoder 18 performs A/D conversion processing and chroma encode processing on the video signal from the switch section 17, thus converting the video signal to a digital component video signal (hereinafter referred to as video data), and outputs the video data to the pre-video signal processing circuit 19. The NTSC decoder 18 also outputs to a synchronous control circuit 40 a clock generated with reference to a horizontal synchronizing signal of the input video signal, and a horizontal synchronizing signal, a vertical synchronizing signal and a field identification signal obtained by synchronous separation.
  • The synchronous control circuit 40 generates a timing signal for outputting the signal from the NTSC decoder 18 to the pre-video signal processing circuit 19 on the basis of the horizontal synchronizing signal, the vertical synchronizing signal and the field identification signal from the NTSC decoder 18, and supplies the timing signal to the NTSC decoder 18. The structure of the synchronous control circuit 40 will be described later.
  • The pre-video signal processing circuit 19 performs various types of video data processing, such as pre-filtering of the video data from the NTSC decoder 18, and outputs the resultant video data to the MPEG video encoder 20 and a post-video signal processing circuit 32.
  • The MPEG video encoder 20 performs block DCT (discrete cosine transform) processing and MPEG coding processing, such as motion compensation processing, on the video data from the pre-video signal processing circuit 19, thus generating an elementary stream made up of the video data (hereinafter referred to as video ES), and outputs the video ES to the multiplexing/demultiplexing circuit 21. Although compression processing employing the MPEG system is carried out in this embodiment, other compression systems may also be employed or compression processing may be omitted.
  • Meanwhile, the audio A/D converter 24 supplied with the audio signal from the input switching section 15 performs A/D conversion processing on the input audio signal and outputs audio data to the MPEG audio encoder 25.
  • The MPEG audio encoder 25 compresses the audio data in accordance with the MPEG system, thus generating an elementary stream made up of the audio data (hereinafter referred to as audio ES), and outputs the audio ES to the multiplexing/demultiplexing circuit 21. Although compression processing employing the MPEG system is carried out in this embodiment, other compression systems may also be employed or compression processing may be omitted.
  • The multiplexing/demultiplexing circuit 21, at the time of data recording, performs multiplex processing using the video ES from the MPEG video encoder 20, the audio ES from the MPEG audio encoder 25, and various control signals, thus generating a transport stream, and outputs the transport stream to the buffer control circuit 22.
  • The buffer control circuit 22 carries out control to intermittently transmit the transport stream, which is continuously input from the multiplexing/demultiplexing circuit 21, to the HDD unit 23. When the HDD unit 23 is carrying out a seek operation, the buffer control circuit 22 cannot write the transport stream to the HDD unit 23, and therefore temporarily stores the transport stream in a built-in buffer. When writing becomes possible, the buffer control circuit 22 carries out writing at a higher rate than the input rate from the multiplexing/demultiplexing circuit 21, thus controlling the HDD unit 23 to continuously record the transport stream.
  • The HDD unit 23 has a recording medium therein, such as a magnetic disk, and records the transport stream at a predetermined address in accordance with a control signal from the system controller 5. As a data input/output protocol between the buffer control circuit 22 and the HDD unit 23, for example, IDE (Integrated Drive Electronics) may be used. Although the use of a magnetic disk is described in connection with this embodiment, the recording medium may be an optical disc, a magneto-optical disc, a solid-state memory or the like.
  • The reproducing operation of the recording/reproducing device 2 will now be described.
  • The recording/reproducing device 2 is adapted to decode a transport stream read out from the HDD unit 23 through the buffer control circuit 22, the multiplexing/demultiplexing circuit 21 and an MPEG AV (audio/video) decoder 31, thus preparing video data and audio data. The video data is output via the post-video signal processing circuit 32, an OSD (on-screen display) 33, an NTSC encoder 34 and video signal output terminals 35 a, 35 b so as to reproduce the video data. The audio data prepared by the MPEG AV decoder 31 is output to the host bus 1A via a switch section 36, an audio D/A converter 37 and an audio signal output terminal 38 so as to reproduce the audio data.
  • Upon receiving a control signal from the system controller 5 instructing that the data is to be reproduced, the HDD unit 23 seeks a predetermined address, reads out the transport stream from that address, and outputs the read-out transport stream to the buffer control circuit 22.
  • The buffer control circuit 22 carries out buffer control so as to continuously output the transport stream, which it receives intermittently from the HDD unit 23, to the multiplexing/demultiplexing circuit 21.
  • The multiplexing/demultiplexing circuit 21 extracts a PES (packetized elementary stream) from the transport stream and outputs the extracted PES to the MPEG AV decoder 31.
  • The MPEG AV decoder 31 separates the input PES into a video ES and an audio ES and decodes the video ES and the audio ES. The MPEG AV decoder 31 then outputs the decoded video data to the post-video signal processing circuit 32 and outputs the decoded audio data to the switch section 36.
  • The post-video signal processing circuit 32 is supplied with the video data from the MPEG AV decoder 31 and the pre-video signal processing circuit 19. The post-video signal processing circuit 32 performs output switching, composition, and filter processing on the video data from the pre-video signal processing circuit 19 and the video data from the MPEG AV decoder 31 in accordance with a control signal from the system controller 5, and outputs the video data to the OSD 33.
  • The OSD 33 generates graphics for video display using the video data from the post-video signal processing circuit 32, and also performs display control processing for composite display and partial display of the video data. The OSD 33 then outputs the video data to the NTSC encoder 34.
  • The NTSC encoder 34 converts the video data from the OSD 33 to a luminance signal and a color-difference signal and then performs D/A conversion processing, thus obtaining a composite video signal and an S video signal in an analog format. The NTSC encoder 34 outputs the composite video signal to the video signal output terminal 35 a and outputs the S video signal to the video signal output terminal 35 b.
  • Meanwhile, the switch section 36 supplied with the audio data from the MPEG AV decoder 31 is also supplied with the audio signal from the MPEG audio encoder 25. The switch section 36 outputs either one of the audio data to the audio D/A converter 37 in accordance with a control signal from the system controller 5.
  • The audio D/A converter 37 performs D/A conversion processing on the audio data from the switch section 36, thus obtaining an audio signal, and outputs the audio signal to the audio signal output terminal 38.
  • The recording/reproducing device 2 is also adapted to receive video data and audio data input from a digital input/output terminal 26, and to record the video data and audio data, as a transport stream, on the recording medium within the HDD unit 23 via a digital I/F circuit 27, the multiplexing/demultiplexing circuit 21 and the buffer control circuit 22.
  • The digital input/output terminal 26 is connected, for example, with an external IRD (integrated receiver decoder) (not shown) and is supplied with video data and audio data from the external IRD via an IEEE (the Institute of Electrical and Electronics Engineers) 1394 digital interface. The digital input/output terminal 26 outputs the video data and audio data from the external IRD to the digital I/F circuit 27 and also outputs the video data and audio data from the digital I/F circuit 27 to the external IRD.
  • The digital I/F circuit 27 performs processing such as format conversion conformable to the interface connected with the digital input/output terminal 26, thus generating a transport stream, and outputs the generated transport stream to the multiplexing/demultiplexing circuit 21. The recording/reproducing device 2 records the transport stream, input from the digital I/F circuit 27 to the multiplexing/demultiplexing circuit 21, on the recording medium within the HDD unit 23 via the buffer control circuit 22 similarly to the above-described recording.
  • When reproducing data input via the digital input/output terminal 26, the HDD unit 23 reads out a transport stream from a predetermined address in accordance with a control signal from the system controller 5, and outputs the read-out transport stream to the digital I/F circuit 27 via the buffer control circuit 22 and the multiplexing/demultiplexing circuit 21.
  • The digital I/F circuit 27 performs processing such as format conversion for outputting to the digital input/output terminal 26 the data input from the multiplexing/demultiplexing circuit 21, and outputs the audio data and video data via the digital input/output terminal 26, thus reproducing the audio data and video data.
  • The structure and operation of the synchronous control circuit 40 will now be described with reference to FIGS. 3 and 4.
  • The synchronous control circuit 40 is connected via switch section 17 to an A/D conversion processing section 18 a, a synchronous detection circuit 18 b and a frame synchronizer 18 c, all provided inside the NTSC decoder 18. The synchronous control circuit 40 has a PLL (phase-locked loop) circuit 41 connected to the synchronous detection circuit 18 b and to the frame synchronizer 18 c, and an audio PLL circuit 42 connected to the PLL circuit 41.
  • The A/D conversion processing section 18 a is supplied with a video signal from the switch section 17, then performs A/D conversion processing to provide video data, and outputs the video data to the frame synchronizer 18 c.
  • The synchronous detection circuit 18 b is supplied with a video signal from the switch section 17, detects a horizontal synchronizing signal HSO, a vertical synchronizing signal VS0 and a field identification signal FD0 from the video signal, and outputs these signals to the PLL circuit 41 and the frame synchronizer 18 c. The synchronous detection circuit 18 b also detects from the video signal a sampling clock CK0 for carrying out A/D conversion processing, and outputs the detected sampling clock CK0 to the A/D conversion processing section 18 a and the frame synchronizer 18 c.
  • The frame synchronizer 18 c includes a memory having a storage capacity of at least one frame and an input/output control circuit. As respective synchronizing signals corresponding to the horizontal and vertical synchronizing signals and the field identification signal of input/output signals and the clock signal are input, the frame synchronizer 18 c can control the delay. The frame synchronizer 18 c temporarily stores the video data from the A/D conversion processing section 18 a. In this case, the frame synchronizer 18 c writes the video data which is sampled with the sampling clock CK0 from synchronous detection circuit 18 b into the internal memory using the synchronizing signals (horizontal synchronizing signal HSO, vertical synchronizing signal VS0, field identification signal FD0) output from the synchronous detection circuit 18 b. The frame synchronizer 18 c also outputs the video data to the pre-video signal processing circuit 19 and the MPEG video encoder 20 in subsequent stages in accordance with the synchronizing signal from the PLL circuit 41.
  • The PLL circuit 41 is formed by connecting a phase comparator 51, a VCO (voltage controlled oscillator) 52 and a frame counter 53 in a loop shape. The phase comparator 51 is connected with the signal output terminals of the synchronous detection circuit 18 b and the frame counter 53, and with the signal input terminal of the VCO 52. The VCO 52 is connected with the signal output terminal of the phase comparator 51 and with the signal input terminals of the frame counter 53 and the frame synchronizer 18 c. The frame counter 53 is connected with the signal output terminal of the VCO 52 and with the signal input terminals of the frame synchronizer 18 c and the phase comparator 51.
  • The phase comparator 51 is supplied with the field identification signal FD0 from the synchronous detection circuit 18 b and a field identification signal FD1 from the frame counter 53. The phase comparator 51 detects an error in phase between the field identification signal FD0 and the field identification signal FD1 and outputs the error signal to the VCO 52.
  • The VCO 52 generates a sampling clock CK1 on the basis of the error signal from the phase comparator 51, and outputs the generated sampling clock CK1 to the frame counter 53 and the frame synchronizer 18 c. Thus, the VCO 52 changes the oscillation frequency.
  • The frame counter 53 generates a horizontal synchronizing signal HS1, a vertical synchronizing signal VS1 and a field identification signal FD1 using the sampling clock CK1 from the VCO 52, and outputs these signals to the frame synchronizer 18 c, and the field identification signal FD1 to the phase comparator 51.
  • The audio PLL circuit 42 is supplied with the sampling clock CK1 from the VCO 52, which it uses to generate a synchronizing signal for controlling the processing timing of the audio A/D converter 24 and the MPEG audio encoder 25. The audio PLL circuit 42 produces an audio master clock synchronized with the sampling clock CK1 (for example, 27 MHZ), which is the video master clock.
  • When the field identification signal FD0 detected by the synchronous detection circuit 18 b is a signal such as that shown in FIG. 4A, the PLL circuit 41 generates the field identification signal FD1 (FIG. 4C) which is locked in the opposite phase (opposite field) to that of the field identification signal FD0. The vertical synchronizing signal VS0 and the vertical synchronizing signal VS1 are generated at the leading timing and the trailing timing of the field identification signal FD0 and the field identification signal FD1, respectively (as shown in FIGS. 4B and 4D). The audio data is input to the MPEG audio encoder 25 (as shown FIG. 4F) synchronously with the input timing (FIG. 4E) of the audio signal to the audio A/D converter 24.
  • In FIG. 4, the frame synchronizer 18 c reads out the video data within a frame in accordance with the synchronizing signals (horizontal synchronizing signal HS1, vertical synchronizing signal VS1 and field identification signal FD1), and also reads out video data of a frame in accordance with the sampling clock CK1 generated by the VCO 52, and outputs the read-out video data to the pre-video signal processing circuit 19 and the MPEG video encoder 20. The timing of input from the audio A/D converter 24 to the MPEG audio encoder 25 is synchronized by the audio PLL circuit 42 with the output timing of the video data from the frame synchronizer 18 c.
  • In the recording/reproducing device 2 thus constituted, encoding can be carried out by using video data having the sampling clock CK1 and the synchronizing signals (horizontal synchronizing signal HS1, vertical synchronizing signal VS1, field identification signal FD1) synchronized with the field identification signal FD0 of the input video signal, instead of the video data itself input to the MPEG video encoder 20 from the switch section 17 via the NTSC decoder 18 and the pre-video signal processing circuit 19.
  • The operation of the recording/reproducing device 2 in the case where a discontinuous nonstandard signal is input will now be described with reference to FIG. 5. Before the frame of video data becomes discontinuous, the recording/reproducing device 2 carries out the normal operation in which the encoder input timing of video data and of audio data are synchronized, as shown in FIG. 4. When video data becomes discontinuous, the PLL circuit 41 is set in a free-run state. The video data and audio data are no longer synchronized and the timing of input to the respective encoders is shifted from one another. In this case, the PLL circuit 41 carries out the resynchronizing operation using the field identification signal FD1 so as to restore synchronization and normal operation.
  • Thus, in the recording/reproducing device 2, even where a video signal of only one field exists, or where the temporal length of a frame varies, as in varying-speed reproduction by a VCR, or where a frame is made discontinuous by switching the channel of the input signal, the influence thereof is moderated by the PLL circuit 41 and the data can be read out and encoded with the accurate horizontal synchronizing signal HS1, vertical synchronizing signal VS1 and field identification signal FD1 generated by the frame counter 53. Therefore, in the recording/reproducing device 2, even where a standard video signal input in accordance with a predetermined rule, as in the MPEG system, is encoded, the influence of a nonstandard video signal on the encoding process can be minimized.
  • Also, in the recording/reproducing device 2, by inputting the sampling clock CK1 to the audio A/D converter 24 or the MPEG audio encoder 25 within the range where the PLL circuit 41 is locked, the output timing of audio data to the MPEG audio encoder 25 and the output timing of video data to the MPEG video encoder 20 can be synchronized with one another, and the delay of video data can be made constant. As the quantity of delay of video data is made constant, the quantity of delay of video data and audio data can be made constant. Therefore, video data and audio data can be accurately synchronized with one another for encoding.
  • Since the phase of the writing and reading timing of the frame synchronizer 18 c is maintained by the PLL circuit 41, the delay of video data at the frame synchronizer 18 c becomes constant and synchronization between video data and audio data is maintained. Moreover, overtaking and repetition of the respective signals is eliminated.
  • Furthermore, in the recording/reproducing device 2, when a video signal that cannot be followed by the PLL circuit 41 is input, the PLL circuit 41 operates in a free-run state and the phase of writing and reading of the frame synchronizer 18 c is not maintained. However, since the frame counter 53 generates accurate synchronizing signals (horizontal synchronizing signal HS1, vertical synchronizing signal VS1, field identification signal FD1) using the clock in the free-run state, encoding will not be interrupted.
  • As described above in detail, in the data processing device and the data recording method according to the present invention, an input synchronizing signal is detected from an input video signal, and the input video signal and audio signal are temporarily stored. An output synchronizing signal for outputting the video signal is generated by using the input synchronizing signal, and the stored video signal and audio signal are output in accordance with the output synchronizing signal. Therefore, even when a nonstandard signal is input, encoding and accurate recording of data can be carried out.

Claims (6)

1. A data processing device, comprising:
a video input/output circuit for inputting an input video signal and outputting an output video signal;
a detection circuit for detecting a first synchronizing signal in said input video signal input;
a storage medium;
an audio input circuit for inputting an audio signal using said second synchronizing signal; and
a controller,
wherein said video input/output circuit is operable to use a second synchronizing signal different from said first synchronizing signal to output said output video signal and said controller is operable to control recording of said inputted audio signal input through said audio input circuit and said output video signal onto said storage medium such that said inputted audio signal and said output video signal are synchronized by said second synchronizing signal.
2. The data processing device as claimed in claim 1, wherein said video input/output circuit includes a storage circuit for storing said input video signal, and said video input/output circuit being operable to output said stored input video signal in accordance with said second synchronizing signal to provide said output video signal.
3. The data processing device as claimed in claim 1, further comprising
a phase-locked loop circuit having a clock for carrying out phase locking with said first synchronizing signal, said signal generation circuit being operable to generate said second synchronizing signal based on said clock, said second synchronizing signal having a delay relative to said first synchronizing signal.
4. The data processing device as claimed in claim 1, wherein said storage medium is selected from the group consisting of a hard disk, a magneto-optical disc, an optical disc, and a semiconductor memory.
5. A data recording method, comprising:
detecting a synchronizing signal in a video signal;
holding said video signal by using said detected synchronizing signal;
outputting said held video signal using said second synchronizing signal different from said detected synchronizing signal;
using said second synchronizing signal, synchronizing an audio signal with said outputted video signal; and
recording said synchronized audio signal and said outputted video signal on a recording medium as a transport stream.
6. The data recording method as claimed in claim 5, further comprising generating said second synchronizing signal to have a delay relative to said detected synchronizing signal based on a clock of a phase-locked loop circuit, said phase-locked loop circuit being phase locked with said detected synchronizing signal.
US11/504,151 2000-03-17 2006-08-15 Data processing device and data recording method Abandoned US20060280480A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/504,151 US20060280480A1 (en) 2000-03-17 2006-08-15 Data processing device and data recording method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPP2000-081856 2000-03-17
JP2000081856A JP4352567B2 (en) 2000-03-17 2000-03-17 Data processing apparatus and method
US09/809,941 US7113692B2 (en) 2000-03-17 2001-03-16 Data processing device and data recording method
US11/504,151 US20060280480A1 (en) 2000-03-17 2006-08-15 Data processing device and data recording method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/809,941 Continuation US7113692B2 (en) 2000-03-17 2001-03-16 Data processing device and data recording method

Publications (1)

Publication Number Publication Date
US20060280480A1 true US20060280480A1 (en) 2006-12-14

Family

ID=18598728

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/809,941 Expired - Fee Related US7113692B2 (en) 2000-03-17 2001-03-16 Data processing device and data recording method
US11/504,151 Abandoned US20060280480A1 (en) 2000-03-17 2006-08-15 Data processing device and data recording method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/809,941 Expired - Fee Related US7113692B2 (en) 2000-03-17 2001-03-16 Data processing device and data recording method

Country Status (4)

Country Link
US (2) US7113692B2 (en)
JP (1) JP4352567B2 (en)
KR (1) KR100816964B1 (en)
CN (1) CN1168324C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4352567B2 (en) * 2000-03-17 2009-10-28 ソニー株式会社 Data processing apparatus and method
WO2004028155A2 (en) * 2002-09-19 2004-04-01 Image Stream Medical, Llc Streaming digital recording system
WO2004071080A1 (en) * 2003-02-06 2004-08-19 Matsushita Electric Industrial Co., Ltd. Antenna switching device and method thereof
JP4270084B2 (en) * 2004-09-14 2009-05-27 株式会社日立製作所 Recording / playback device
US8194692B2 (en) * 2004-11-22 2012-06-05 Via Technologies, Inc. Apparatus with and a method for a dynamic interface protocol
US7912149B2 (en) * 2007-05-03 2011-03-22 General Motors Llc Synchronization and segment type detection method for data transmission via an audio communication system
CN101378512B (en) * 2007-08-31 2010-11-03 华为技术有限公司 Method and device for synchronizing audio and video
KR102099914B1 (en) * 2013-10-29 2020-05-15 삼성전자주식회사 Apparatus and method of processing images
JP6307655B1 (en) 2017-10-23 2018-04-04 イメージニクス株式会社 Video signal processing device
EP3474270A1 (en) * 2017-10-23 2019-04-24 Imagenics Co., Ltd. Video signal processing apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138694A (en) * 1976-02-24 1979-02-06 Sony Corporation Video signal recorder/reproducer for recording and reproducing pulse signals
US4703355A (en) * 1985-09-16 1987-10-27 Cooper J Carl Audio to video timing equalizer method and apparatus
US5404248A (en) * 1991-06-04 1995-04-04 Kabushiki Kaisha Toshiba Video data recording/reproducing apparatus with efficient error correction
US5671260A (en) * 1994-09-28 1997-09-23 Matsushita Electric Industrial Co., Ltd. Digital processing apparatus using two synchronization signals
US5923377A (en) * 1995-12-22 1999-07-13 Victor Company Of Japan, Ltd. Jitter reducing circuit
US6445877B1 (en) * 1998-11-19 2002-09-03 Matsushita Electric Industrial Co., Ltd. Information recording medium, apparatus and method for recording or reproducing data thereof
US6535688B1 (en) * 1995-08-04 2003-03-18 Sony Corporation Apparatus and methods for multiplexing, recording and controlling the display of image data, and recording medium therefor
US6778760B1 (en) * 1999-04-26 2004-08-17 Microsoft Corporation Method and apparatus for synchronizing audio recordings with digital still frame images
US6950604B1 (en) * 1999-09-29 2005-09-27 Sony Corporation Transport stream recording apparatus and method, transport stream reproducing apparatus and method, and program recording medium
US7113692B2 (en) * 2000-03-17 2006-09-26 Sony Corporation Data processing device and data recording method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617423B1 (en) * 1993-03-26 1999-06-16 Sony Corporation Apparatus for generating a synchronizing signal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138694A (en) * 1976-02-24 1979-02-06 Sony Corporation Video signal recorder/reproducer for recording and reproducing pulse signals
US4703355A (en) * 1985-09-16 1987-10-27 Cooper J Carl Audio to video timing equalizer method and apparatus
US5404248A (en) * 1991-06-04 1995-04-04 Kabushiki Kaisha Toshiba Video data recording/reproducing apparatus with efficient error correction
US5671260A (en) * 1994-09-28 1997-09-23 Matsushita Electric Industrial Co., Ltd. Digital processing apparatus using two synchronization signals
US6535688B1 (en) * 1995-08-04 2003-03-18 Sony Corporation Apparatus and methods for multiplexing, recording and controlling the display of image data, and recording medium therefor
US5923377A (en) * 1995-12-22 1999-07-13 Victor Company Of Japan, Ltd. Jitter reducing circuit
US6445877B1 (en) * 1998-11-19 2002-09-03 Matsushita Electric Industrial Co., Ltd. Information recording medium, apparatus and method for recording or reproducing data thereof
US6778760B1 (en) * 1999-04-26 2004-08-17 Microsoft Corporation Method and apparatus for synchronizing audio recordings with digital still frame images
US6950604B1 (en) * 1999-09-29 2005-09-27 Sony Corporation Transport stream recording apparatus and method, transport stream reproducing apparatus and method, and program recording medium
US7113692B2 (en) * 2000-03-17 2006-09-26 Sony Corporation Data processing device and data recording method

Also Published As

Publication number Publication date
JP4352567B2 (en) 2009-10-28
CN1330492A (en) 2002-01-09
US7113692B2 (en) 2006-09-26
KR100816964B1 (en) 2008-03-25
KR20010090497A (en) 2001-10-18
US20020006270A1 (en) 2002-01-17
JP2001268520A (en) 2001-09-28
CN1168324C (en) 2004-09-22

Similar Documents

Publication Publication Date Title
US20060280480A1 (en) Data processing device and data recording method
US6097879A (en) Video camera apparatus of digital recording type
US6757484B2 (en) Data recording/reproducing device
JP4257478B2 (en) Recording / playback device
JP3825677B2 (en) Digital signal processing apparatus, DV decoder, recording apparatus using the same, and signal processing method
US20060153323A1 (en) Clock generation device and clock generation method
JP3569205B2 (en) Recording / playback device
US20060092983A1 (en) Clock generating apparatus
JPH06181580A (en) Digital vtr
JPH0877662A (en) Method and apparatus for reproducing digital video signal at variable speed
JP2000316140A (en) Video format converting circuit
JP2000244943A (en) Device for recording and reproducing image information signal
JPH11313284A (en) Tape recorder
JP2001268525A (en) Time base collector circuit
JP3055402B2 (en) Video signal processing device
JPH08265798A (en) Time base corrector circuit
JP2003319338A (en) Signal processor, and recording device and reproducing device employing the same
JP2003284006A (en) Digital signal processing apparatus, dv decoder, and recording apparatus using the same
JP2009100114A (en) Data recording and reproducing method
JP2003244697A (en) Information processing device and method, recording medium and program

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NITTA, HAJIME;HAMADA, TOSHIMICHI;OHTA, MASASHI;AND OTHERS;REEL/FRAME:018252/0964;SIGNING DATES FROM 20010731 TO 20010801

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE