US20060283864A1 - Shipping container and method of use - Google Patents

Shipping container and method of use Download PDF

Info

Publication number
US20060283864A1
US20060283864A1 US11/351,920 US35192006A US2006283864A1 US 20060283864 A1 US20060283864 A1 US 20060283864A1 US 35192006 A US35192006 A US 35192006A US 2006283864 A1 US2006283864 A1 US 2006283864A1
Authority
US
United States
Prior art keywords
shipping container
pressure
chamber
dangerous
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/351,920
Inventor
Joerg Zimmermann
Anna Stukas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angstrom Power Inc
Original Assignee
Angstrom Power Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angstrom Power Inc filed Critical Angstrom Power Inc
Priority to US11/351,920 priority Critical patent/US20060283864A1/en
Assigned to ANSTROM POWER reassignment ANSTROM POWER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STUKAS, ANNA, ZIMMERMANN, JOERG
Assigned to ANGSTROM POWER reassignment ANGSTROM POWER CORRECTIVE ASSIGNMENT TO CORRECT THE THE ASSIGNEE NAME FROM ANSTROM POWER TO ANGSTROM POWER PREVIOUSLY RECORDED ON REEL 017567 FRAME 0548. ASSIGNOR(S) HEREBY CONFIRMS THE COVERSHEET WAS INCORRECT; ACTUAL ASSIGNMENT DOCUMENT ANGSTROM POWER WAS CORRECT. Assignors: STUKAS, ANNA, ZIMMERMANN, JOERG
Publication of US20060283864A1 publication Critical patent/US20060283864A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • FIG. 3 depicts an embodiment of a frame usable to enclose the embodied shipping container.
  • an explosion-proof shipping container might be selected; to transport substances classified as Class 2 (gases), Class 3 (flammable liquids), or Class 4 (flammable solids, substances liable to spontaneous combustion, or substances which, on contact with water, emit flammable gases) a shipping container capable of withstanding high pressures and high temperatures might be selected; to transport substances classified as Class 5 (oxidizers and organic peroxides), a shipping container with a suitable inert inner coating might be selected; to transport substances classified as Class 8 (corrosive), a corrosion-resistant shipping container might be selected.
  • the shipping container can be selected such that the shipping container is appropriate for transporting one or more uncertified devices (for example, a device comprising hydrogen stored in a metal hydride storage system).
  • uncertified devices for example, a device comprising hydrogen stored in a metal hydride storage system.
  • hydrogen storage materials for example, carbon, chemical hydrides, and hydrocarbon fuels.
  • Other embodiments can be suitable for other dangerous goods that might also be suitable for use as fuel for a fuel cell, such as methanol, ethanol, formic acid, butane, or borohydride compounds.
  • Possible shipping modes for the embodied shipping containers include rail, truck, cargo ship, cargo airplane, cargo compartments of passenger airplanes, combinations thereof, and similar types of transport.
  • the selection and guidelines for transport are governed by the relevant authority having jurisdiction.
  • the at least one object containing a substance classified as a dangerous good can be a device containing a fuel cell system, wherein the substance may be used as fuel for the fuel cell system.
  • the substance which may be used as fuel for the fuel cell system could be selected from the group comprising: methanol, ethanol, formic acid, compressed hydrogen gas, liquid hydrogen, hydrogen in a metal hydride storage system, hydrogen occluded in a hydrogen storage material (such as activated carbon, carbon nanotubes, carbon nanofibres, chemical hydrides), borohydride compounds, butane, or combinations thereof.
  • the at least one uncertified device can be a container containing at least some metal hydride.
  • the shipping container ( 10 ) can have a pressure relief device ( 24 ) that is installed through the pressure resistant shell ( 12 ) for providing emergency pressure relief if pressures in the vessel or temperatures inside the vessel exceed a preset limit.
  • limits may include a pressure limit of around 1000 psig and a temperature limit of 100 degrees Celsius for the same vessel.
  • limits may include a pressure of between 1800 psig and 3600 psig, and a temperature of about 100° C.
  • a pressure vessel such as the embodied shipping container discussed herein, can be used if the pressure vessel can be shown to provide an equivalent level of safety under the requirements of the governing authority having jurisdiction.
  • One or more dangerous goods or objects containing dangerous goods may be inserted into the one or more chambers in the pressure vessel through the closable access lid on the pressure vessel.
  • the access lid is closed forming a closed certified pressure vessel and the closed certified pressure vessel is delivered to a common carrier for transport.

Abstract

A shipping container for transportation of metal hydrides includes a sealable certified outer pressure vessel comprising: a pressure resistant shell capable of sustaining a pressure from within of at least 5000 psig. The shipping container has one or more chambers within a pressure resistant shell defining one or more chambers. One or more uncertified devices or dangerous goods can be inserted in to the chambers through a closable access lid. The shipping container can include a pressure relief device installed through the pressure resistant shell for providing emergency pressure relief. The shipping container is in accordance with the relevant governing authorities for shipment of Dangerous Goods classified under UN 3468, according to the United Nations Recommendations on the Transport of Dangerous Goods, Model Regulations.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority from co-pending U.S. Provisional Patent Application Ser. No. 60/651,708, filed on Feb. 10, 2005.
  • FIELD
  • The embodiments relate to transport systems for devices and containers containing dangerous goods. The embodied systems can be used for dangerous goods in cases where packing instructions have not yet been developed for a dangerous good. As one example, the embodied systems can be used to transport hydrogen in a metal hydride storage system. The embodied systems can be used for transport of dangerous goods in cases where the substances are packaged in non-specification packaging.
  • The embodiments relate to transport systems for devices and containers for dangerous goods that are faster to use and easier to ship than traditional shipping systems.
  • BACKGROUND
  • In order to transport substances classified as dangerous goods (herein interchangeably referred to as ‘dangerous goods’), a consignor must either package the substances in packaging that has been approved as Packaging by the authority having jurisdiction following the United Nations Recommendations on the Transport of Dangerous Goods, Model Regulations, or, special permission must be obtained from the authority having jurisdiction. For example, to transport dangerous goods in a way not prescribed by the regulations in Canada, a Permit of Equivalent Level of Safety must be obtained from Transport Canada; in the United States, a Special Permit (formerly called an Exemption and herein used interchangeably) or Approval must be obtained from the Office of Hazardous Materials Safety in the US Department of Transportation. Typically, the approval process to obtain a permit in Canada takes from 1 month to several years to obtain. For the United States, the approval process can take from 4 months to several years. Similar mechanisms of providing permission exist in other countries throughout the world.
  • The need for an Exemption/Special Permit, Approval, or Permit of Equivalent Level of Safety can exist for various reasons. The two most prevalent reasons are a) situations in which the consignor wishes to use non-specification packaging to transport a dangerous good; and, b) situations in which a packing instruction does not exist—common when a substance has been newly regulated.
  • Both of the prevalent reasons for needing of the Exemption/Special Permit, Approval, or Permit of Equivalent Level of Safety occur in the case of fuel cell technology. New ways of packaging dangerous goods are always emerging; in addition, new fuels are being developed. The lengthy period of time required to obtain necessary approvals has caused major setbacks in development of fuel cell technology because of the time needed to wait for approval to transport these devices. At present, every device design that either does not qualify as specification packaging or contains a dangerous good that does not yet have a packing instruction must be approved individually prior to being transported. In addition, there is a need to prove the new materials and devices are compliant with shipping safety requirements. This means devices which have been designed to be safe must still be proven to be safe before they can be granted permission to be transported. Therefore, the requirements of shipping place very difficult requirements on the development and sharing of prototypes and early demonstration devices. The requirements force developers to take devices many steps down the road to distribution prematurely in the product development cycle.
  • Metal hydrides are a popular means of storing hydrogen fuel in some types of fuel cell technology. Traditionally, uncertified devices with metal hydrides cannot be shipped. Only certified and/or approved vessels, such as DOT 3AL certified cylinders, containing the metal hydride material have received the requisite permissions required for shipping metal hydride material. In addition to being limited to storing the metal hydride in a certified or approved cylinder, it has taken a long time to obtain shipping permits for these devices. This method of shipping is particularly not feasible when considering the transport of pre-production metal hydride containing devices.
  • A need exists for a method of transporting that does not necessitate recertification of every iteration of device, which is faster than the one month to several years encountered to obtain a permit to transport devices.
  • The embodiments meet these needs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The detailed description will be better understood in conjunction with the accompanying drawings as follows:
  • FIG. 1 depicts an embodiment of the shipping container usable in the inventive system.
  • FIG. 2 depicts an embodiment of the shipping container usable in the inventive system with two chambers.
  • FIG. 3 depicts an embodiment of a frame usable to enclose the embodied shipping container.
  • The embodiments are detailed below with reference to the listed Figures.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Before explaining the embodiments in detail, it is to be understood that the embodiments are not limited to the particular embodiments and that the invention can be practiced or carried out in various ways.
  • Special permission from a governing authority having jurisdiction is required in order to transport substances classified as dangerous goods, unless those substances are being transported within the guidelines of existing transport regulations. Often, the dangerous goods are contained in objects which may not yet have been approved by the relevant governing authority for transport of the substance. These objects may be devices, for example portable electronic devices, or they may simply be a means of containing the substance. If the object is not approved under the existing transport regulations, special permission from the governing authority having jurisdiction must be obtained prior to transport.
  • The embodied shipping containers and methods of use entail selecting a shipping container with suitable properties, such that the shipping container could safely contain any worst-case failure event involving the dangerous goods intended to be shipped inside the container. In order to obtain permission from relevant governing authorities, the proposed means of transporting the goods (including selected packaging) must be shown to provide a level of safety acceptable to the relevant governing authority. In an embodiment, the shipping container is designed to be pre-approved by the governing authority having jurisdiction so that the shipping container is recognized as able to safely contain the device or material no matter what might happen to the shipping container during transport. The design of the shipping container places limits on the amount and type of objects, dangerous goods or devices that can be transported by the container. As long as those limits are conformed to, a great deal of flexibility can be afforded in the use of (potentially) uncertified devices containing the dangerous goods when transported within the shipping container.
  • The embodied shipping containers and methods of use may be used for transport of any substance classified as a dangerous good (according to the United Nations Recommendations on the Transport of Dangerous Goods, Model Regulations) or which could be classified as a dangerous good when tested according to the United Nations Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria. It is possible to tailor the properties of the shipping container such that its properties are particularly suitable for ensuring safe transport of the dangerous good in question. For example, to transport substances classified as Class 1, Explosive, an explosion-proof shipping container might be selected; to transport substances classified as Class 2 (gases), Class 3 (flammable liquids), or Class 4 (flammable solids, substances liable to spontaneous combustion, or substances which, on contact with water, emit flammable gases) a shipping container capable of withstanding high pressures and high temperatures might be selected; to transport substances classified as Class 5 (oxidizers and organic peroxides), a shipping container with a suitable inert inner coating might be selected; to transport substances classified as Class 8 (corrosive), a corrosion-resistant shipping container might be selected.
  • For example, in one embodiment, the shipping container may be a sealable certified outer pressure vessel having a pressure resistant shell capable of withstanding high pressures as well as high temperatures. Once approved for use with a dangerous good, the shipping container can be used to transport uncertified devices containing the dangerous good, within the limits prescribed by the relevant authority, wherein the means of containing the dangerous good or uncertified device is not yet approved by a competent authority having jurisdiction. By virtue of fitting the device containing the dangerous goods within the shipping container, safe transport is assured. The embodied shipping containers can have a chamber within the pressure resistant shell defining a chamber for containing one or more uncertified devices or dangerous goods. The embodied shipping containers can have a closable access lid that allows the uncertified device or dangerous good to be inserted into the chamber of the shipping container for transport. The shipping container can have a pressure relief device installed through the pressure resistant shell for providing emergency pressure relief.
  • In one embodiment, the shipping container can be selected such that the shipping container is appropriate for transporting one or more uncertified devices (for example, a device comprising hydrogen stored in a metal hydride storage system). These embodiments can be suitable for other dangerous goods such as hydrogen, or substances that can be described as hydrogen storage materials (for example, carbon, chemical hydrides, and hydrocarbon fuels). These embodiments can be suitable for other dangerous goods that might also be suitable for use as fuel for a fuel cell, such as methanol, ethanol, formic acid, butane, or borohydride compounds. In these embodiments, selection criteria for the shipping container can comprise: ability to withstand the pressure that could be generated if the device inside were to be compromised and release all hydrogen gas into the shipping container; ability to withstand the temperature that might be created inside the shipping container if the devices inside were to catch fire; ability to withstand the pressure and force that could be generated if the devices inside were to explode; ability to withstand an external fire such that the effects of said fire would not result in an event inside the shipping container that could result in escape of dangerous goods into the surroundings; ability to contain the dangerous goods contained within the devices inside the shipping container regardless of external conditions (within reasonable limits).
  • Other examples of objects optionally comprising substances classified as dangerous goods transportable by the embodied shipping container include, but are not limited to: sealable containers (such as plastic bags), screw top tubes, glass bottles, metal canisters, or combinations of these items. Other examples of objects comprising substances classified as dangerous goods may include laboratory sample containers containing a measured amount of the substance, components of an electrical device using a substance classified as a dangerous good as a fuel; components of a fuel cell with a fuel plenum containing a substance classified as a dangerous good (optionally for use as fuel), components of a fuel cell system with a fuel cartridge containing a substance classified as a dangerous good for use as fuel, components of a compact chemical reactor with a plenum containing a substance classified as a dangerous good, portions of a fuel plenum for a fuel cell containing a substance classified as a dangerous good, portions of fuel plenums for fuel cell layers containing a substance classified as a dangerous good and combinations of these items.
  • For example, substances classified as dangerous goods that may be appropriate for use as fuel include, but are not limited to: methanol, ethanol, formic acid, hydrogen in a metal hydride storage system, compressed hydrogen, liquid hydrogen, hydrogen stored in a hydrogen storage material (for instance, carbon), hydrogen stored in a chemical hydride, borohydride compounds, butane, or combinations thereof.
  • The metal hydride, with or without hydrogen, either in the uncertified device or as a separate dangerous good, can optionally be maintained in an inert atmosphere within the shipping container during transport. Examples of inert atmospheres include argon, nitrogen, helium, combinations of these gases, and oil (such as food grade white mineral oil). Examples of metal hydrides are elemental hydride (such as vanadium hydride or magnesium hydride); intermetallic hydride with crystal structure (such as A2B, AB, AB2, AB3, AB5, A2B7, or A2B17); solid solution hydride; multiphase hydride; composite hydrides; and combinations thereof.
  • In order to transport substances classified as dangerous goods, one must comply with applicable national and international law. These laws are generally developed based on the United Nations Recommendations on the Transport of Dangerous Goods. As mentioned above, special permission may be granted by the relevant governing authority to provide relief from certain sections of the laws. Regardless of relief provided, all other sections of the laws must be adhered to. These sections, which may include requirements for documentation and other transport procedures, are known to those skilled in the art, and will not be further discussed.
  • Possible shipping modes for the embodied shipping containers include rail, truck, cargo ship, cargo airplane, cargo compartments of passenger airplanes, combinations thereof, and similar types of transport. The selection and guidelines for transport are governed by the relevant authority having jurisdiction.
  • The embodied shipping containers can be used to safely transport substances classified as dangerous goods, and objects containing substances classified as dangerous goods (also referred to as ‘dangerous goods’). The embodied shipping containers can ensure that an adequate level of safety is maintained throughout the transport process, thereby providing a process of transport that does not compromise the safety of the public.
  • The embodied shipping containers support commerce by improving the ability to ship dangerous goods and objects containing dangerous goods, thereby enabling shipping of the material itself or a component containing substances classified as dangerous goods without requiring the object containing the substance to be approved or certified by any regulatory body. The use of the embodied shipping container allows system developers to share prototype devices and components with other developers or potential customers in a timely manner without the expense and time delay of certifying a particular device that may not have any commercial value. The embodied shipping container, therefore, serves to accelerate the process of product development, streamline costs, and order operations in a manner that ensures the highest level of safety.
  • With reference to the figures, FIG. 1 depicts an embodiment of the shipping container usable in the inventive system. The shipping container (10) can be used to transport any dangerous good or object containing dangerous goods, as long as the goods and objects contained conform to basic limits (for example, quantity of dangerous good, pressure within device, and such) provided for in the permission granted. The embodied shipping containers have advantages over the means because in some cases the means may exist, but be unwieldy, expensive and un-timely. For example, the shipping container can be used to transport a substance which could be classified as a dangerous good, wherein packing instructions or other necessary regulations have not yet been developed for the particular substance. Alternately, the shipping container can be used to transport a prototype device so as to avoid the need to certify prototype devices against required testing criteria, thus accelerating the development cycle and reducing costs associated with product development.
  • In one embodiment, the shipping container includes a shell (12). In some embodiments, it may be suitable for the shell to be a pressure resistant shell. In some embodiments, the shell may comprise a pressure relief device installed through the pressure resistant shell. The pressure relief device could be selected from the group comprising: fusible trigger, fusible plugs, rupture disks, diaphragms, or re-sealable type pressure relief devices such as spring-loaded pressure relief valves, or combinations thereof.
  • In one embodiment, the shipping containers can be used to transport hydrogen in a metal hydride storage system. The shipping container (10) is a sealable certified pressure vessel. The shipping container (10) includes a pressure resistant shell (12). A closable access port (22) allows the object, device or a good to be transported to be inserted into the chamber (16) in the shipping container (10). The closable access port (22) can be closed using a lid. In this embodiment, the shipping container (10) and/or pressure resistant shell (12) can be constructed of durable materials that can withstand pressures of at least 1800 psig (130 bar) and operating temperature above 500 degrees Celsius. Examples of materials include stainless steel, steel, composite material over steel, aluminum, composite material over aluminum, or composite material over polymer, among other things.
  • As shown in FIG. 1, the pressure resistant shell (12) can be cylindrical with the overall dimensions ranging from about 0.1 meters to about 1 meter in length and from about 0.01 meters to about 0.5 meters in diameter. In alterative embodiments, the pressure resistant shell (12) can have other shapes (such as, rectangular or elliptical) in order to suit the transport need.
  • The pressure resistant shell (12) can have one or more chambers located inside the pressure resistant shell (12) in order to transport one or more objects, devices or goods. A separate object, device or goods can be placed in each chamber or, alternatively, two or more objects, devices or goods can be shipped in each chamber. FIG. 1 depicts the embodiment wherein the pressure resistant shell (12) has one chamber (16). FIG. 2 depicts the embodiment wherein the pressure resistant shell (12) has more than one chamber (14 and 16). The chamber sizes can vary, but should be of an appropriate size to contain the object (20) in a secure engagement. The chamber can be large enough to hold two or more such uncertified devices or goods with a metal hydride (20 and 21), as illustrated in FIG. 2. As an example, the volume of the chambers can range from about 0.1 cubic centimeters to about 150,000 cubic centimeters. One or more access ports can be used with each chamber. FIG. 2 depicts an embodiment of the shipping container usable in the inventive system with two chambers. FIG. 2 depicts an embodiment similar to the shipping container (10) shown in FIG. 1 with the addition of a second access port (32) in communication with the chamber (14). The chamber (14) can contain a second uncertified object, device or good (21). Note that the dual chamber design allows materials of different and potentially antagonistic types to be shipped concurrently. The access ports can be closed using attached or removable lids. The embodiment in FIG. 3 depicts access ports being secured to the pressure resistant shell with a clamp (35).
  • In an embodiment, the at least one object containing a substance classified as a dangerous good can be a device containing a fuel cell system, wherein the substance may be used as fuel for the fuel cell system. In this embodiment, the substance which may be used as fuel for the fuel cell system could be selected from the group comprising: methanol, ethanol, formic acid, compressed hydrogen gas, liquid hydrogen, hydrogen in a metal hydride storage system, hydrogen occluded in a hydrogen storage material (such as activated carbon, carbon nanotubes, carbon nanofibres, chemical hydrides), borohydride compounds, butane, or combinations thereof. In another embodiment, the at least one uncertified device can be a container containing at least some metal hydride.
  • Returning to FIG. 1, an object, device or good can fit snugly within the chamber of the pressure resistant shell (12) so that the uncertified device or good does not rattle during transport. If a device or a good does not fit snugly or securely in the chamber, a cushioning material (such as Styrofoam™ or peanuts) can be used. Examples of other fillers that can be used to aid the transport include vermiculite, bubble wrap, other standard packaging material, or a support element. An internal support element (for example, the frame (34) shown in FIG. 3) can be used to secure the device or a good in the chamber so that the device or a good does not jar or rattle during transport. As an example, the support element can be a frame designed to hold a specific number of uncertified devices in a secure configuration.
  • The shipping container (10) can have a pressure relief device (24) that is installed through the pressure resistant shell (12) for providing emergency pressure relief if pressures in the vessel or temperatures inside the vessel exceed a preset limit. For example, limits may include a pressure limit of around 1000 psig and a temperature limit of 100 degrees Celsius for the same vessel. In another example, limits may include a pressure of between 1800 psig and 3600 psig, and a temperature of about 100° C.
  • The embodied shipping container (10) is not limited to the permissions from the United States and Canada; the shipping containers (10) can be used for shipping dangerous goods, or objects containing dangerous goods, to, from, or in any country which has in its transport regulations, provisions of similar processes for requesting special permission to transport dangerous goods outside the existing regulations.
  • An identification number (40) can be added to the outside of the shipping container (10). The identification number (40) can be a unique identifier for the particular container. The identification number (40) can be an identifier that links the shipping container to the Approval, Permit, Special Permit/Exemption, or other permission under which the shipping container is being transported. The identification number (40) can be permanent and non-removable.
  • FIG. 3 depicts an embodiment of a frame (34) usable to enclose a shipping container (10). The frame (34) can be positioned inside of one or more of the chambers for removably holding an object (20). The frame (34) may be used to ensure that the object is securely disposed within the chamber, such that the object will not shake or rattle around inside the chamber during transport. A frame can be used in each chamber with each frame holding a separate uncertified device. Alternatively, a frame can extend through all the chambers and hold two or more uncertified devices. As examples, the frame can be a tubular frame extending from a wall of the chamber or simply a set of clamps secured to a portion of a wall of the chamber for removably engaging the uncertified device in the chamber. The frame can be constructed from a set of interlocking substantially planar pieces of material. Examples of materials for the frame include wood, fiberboard, metal, ceramic, composite, or a polymer. The frame can be constructed of durable material so that the frame does not deform at temperatures below the preset limit of the pressure relief valve. Further, the frame can be constructed of durable material so that the frame does deform at pressure below the preset limit of the pressure relief valve. As examples of shape, the frame can be a lattice type structure, a solid square frame, a single beam, a triangular frame, a frame with a polygon shape, or similar constructions.
  • As an example of use of the embodied shipping container, a pressure vessel, such as the embodied shipping container discussed herein, can be used if the pressure vessel can be shown to provide an equivalent level of safety under the requirements of the governing authority having jurisdiction. One or more dangerous goods or objects containing dangerous goods may be inserted into the one or more chambers in the pressure vessel through the closable access lid on the pressure vessel. The access lid is closed forming a closed certified pressure vessel and the closed certified pressure vessel is delivered to a common carrier for transport.
  • As an example embodiment, the shipping container can have a 3¼″ or 4-9nch inside diameter, which is large enough to permit multiple attachments or openings into the lid of the shipping container. The size is small enough, though, to be conveniently handled without auxiliary equipment, such as fork lifts or other lifting means. The shipping container is available in standard pressure vessel materials. The closable lid can come in various styles: a blank lid; a lid with a threaded socket, and a lid with an installed thermowell or temperature sensor. The shipping container can be customized to a user's need by adding additional ports or openings, or additional inlet and outlet vales, or safety vales, rupture disks, sensors, dip tubes, electrical leads, and similar fittings.
  • While these embodiments have been described with emphasis on the embodiments, it should be understood that within the scope of the appended claims, the embodiments might be practiced other than as specifically described herein.

Claims (20)

1. A shipping container comprising:
a. a shell with at least one chamber to contain an object;
b. at least one closable access port secured to the shell providing access into the chamber; and
wherein the shipping container is adapted to contain a worst case failure of the object in the pressure resistant shell.
2. The shipping container of claim 1, wherein the shell is a pressure resistant shell.
3. The shipping container of claim 2, further comprising a pressure relief device installed through the pressure resistant shell.
4. The shipping container of claim 3, wherein the pressure relief device is selected from the group comprising: fusible trigger, fusible plugs, rupture disks, diaphragms, or re-sealable type pressure relief devices such as spring-loaded pressure relief valves, or combinations thereof.
5. The shipping container of claim 1, wherein the object comprises a substance with is either classified as a dangerous good according to United Nations Recommendations on the Transport of Dangerous Goods, Model Regulations, or would be classified as a dangerous good if tested according to United Nations Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria.
6. The shipping container of claim 1, wherein the object comprises: a device, an uncertified device, an uncertified device containing a substance classified as a dangerous good, a substance classified as a dangerous good, a device comprising a dangerous good, or combinations thereof.
7. The shipping container of claim 1, wherein the object comprises: a sealable container containing a dangerous good in the container; a laboratory sample container containing a measured amount of a dangerous good, a component of an electrical device using a dangerous good as a fuel; a component of a fuel cell with a fuel plenum containing a dangerous good; a component of a fuel cell with a dangerous good in communication with the fuel plenum; a component of a compact chemical reactor with a plenum containing a dangerous good; a portion of a fuel plenum for a fuel cell containing a dangerous good; a portion of a fuel plenum for a fuel cell layer containing a dangerous good; or combinations thereof.
8. The shipping container of claim 1, wherein the object contains a substance selected from the group comprising: methanol, ethanol, formic acid, compressed hydrogen gas, liquid hydrogen, hydrogen in a metal hydride storage system, hydrogen occluded in a hydrogen storage material, chemical hydrides, borohydride compounds, butane, or combinations thereof.
9. The shipping container of claim 1, wherein at least one chamber is maintained in an inert environment during use.
10. The shipping container of claim 1, further comprising at least one frame disposed within the chamber for removably holding at least one object securely within the chamber.
11. The shipping container of claim 1, further comprising a plurality of closable access ports each in communication with a chamber within the shell.
12. The shipping container of claim 2, wherein the pressure resistant shell is capable of sustaining a pressure from within of at least 1800 psig.
13. The shipping container of claim 1, wherein the closable access port is closed using a lid clamped to the shell, threadably attached to the shell, or bolted to the shell, or combinations thereof.
14. The shipping container of claim 1, wherein the shipping container is transportable by rail, road, air, or sea or combinations thereof.
15. The shipping container of claim 1, further comprising an identification number disposed on the shipping container.
16. A shipping container comprising:
a. a sealable outer pressure vessel comprising:
i. a pressure resistant shell;
ii. at least one chamber within the pressure resistant shell to contain at least one object;
iii. at least one closable access port that provides access to the chamber for inserting the uncertified object into the chamber; and
iv. a pressure relief device installed through the pressure resistant shell operable to provide emergency pressure relief when temperature or pressure inside the chamber exceed preset limits,
wherein the shipping container is adapted to contain a worst case failure of the object in the pressure resistant shell.
17. A shipping container for transportation of metal hydrides comprising:
a. a sealable certified outer pressure vessel comprising:
i. a pressure resistant shell capable of sustaining a pressure from within of at least 1800 psig;
ii. at least one chamber within the pressure resistant shell comprising at least some metal hydride;
iii. at least one closable access port secured to the chamber through which the at least one uncertified device with at least some metal hydride is inserted; and
iv. a pressure relief device installed through the pressure resistant shell for providing emergency pressure relief when temperatures, pressures or both temperatures and pressures inside the chamber exceed preset limits;
wherein the shipping container is adapted to contain a worst case failure of the device in the pressure resistant shell.
18. The shipping container of claim 17, further comprising an identification number on the sealable certified outer pressure vessel.
19. A method for transporting substances classified as dangerous goods using a pressure vessel comprising:
a. acquiring a pressure vessel approved by the relevant governing body to use as a shipping container;
b. inserting at least one object comprising a substance classified as a dangerous good into the pressure vessel;
c. closing the pressure vessel with at least one object inside;
d. delivering the pressure vessel to a common carrier for transport.
20. The method of claim 19, wherein the substance classified as a dangerous good is hydrogen in a metal hydride storage system
US11/351,920 2005-02-10 2006-02-10 Shipping container and method of use Abandoned US20060283864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/351,920 US20060283864A1 (en) 2005-02-10 2006-02-10 Shipping container and method of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65170805P 2005-02-10 2005-02-10
US11/351,920 US20060283864A1 (en) 2005-02-10 2006-02-10 Shipping container and method of use

Publications (1)

Publication Number Publication Date
US20060283864A1 true US20060283864A1 (en) 2006-12-21

Family

ID=37572359

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/351,920 Abandoned US20060283864A1 (en) 2005-02-10 2006-02-10 Shipping container and method of use

Country Status (1)

Country Link
US (1) US20060283864A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000357A3 (en) * 2007-06-27 2009-06-11 Bluecher Gmbh Storage tank for gaseous fuels, and use thereof
US20090169972A1 (en) * 2007-12-28 2009-07-02 Sony Corporation Fuel cartridge
US20110296984A1 (en) * 2010-06-04 2011-12-08 Chiquita Brands International, Inc. Carbon dioxide (co2) scrubber for controlled atmosphere sea van container

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1073983A (en) * 1912-07-09 1913-09-23 John W Harrison Double-walled vessel with metallic end closure.
US2624451A (en) * 1949-08-10 1953-01-06 R C Wood Portable food and beverage container
US2927711A (en) * 1954-01-12 1960-03-08 Naggiar Joseph Yervant Tank structure for alternative transportation of liquids and solid goods
US4135621A (en) * 1978-02-24 1979-01-23 The International Nickel Company, Inc. Hydrogen storage module
US4496073A (en) * 1983-02-24 1985-01-29 The Johns Hopkins University Cryogenic tank support system
US4715186A (en) * 1984-11-19 1987-12-29 Seiko Instruments & Electronics Ltd. Coolant preservation container
US4762224A (en) * 1987-12-21 1988-08-09 Hall John E Mixing container with segregated ingredient compartments
US4911326A (en) * 1988-08-11 1990-03-27 Mcgouran Jr Frances J Containment system
US4998667A (en) * 1989-10-19 1991-03-12 Georgia-Pacific Corporation Multi-cell container
US5179971A (en) * 1992-04-01 1993-01-19 Jackson Melvin D Sidewall support for dual containment vessels
US5595319A (en) * 1991-06-26 1997-01-21 Nuclear Containers, Inc., A Tennesse Corporation Reusable container unit having spaced protective housings
US5723067A (en) * 1993-09-08 1998-03-03 Europaeische Wirtschaftsgemeinschaft Tris-(cyanoto)-s-triazines and anisotropic duroplastic networks obtained with them
US5829594A (en) * 1997-06-27 1998-11-03 Pro-Tech-Tube, Inc. Protective enclosure for shipping and storing hazardous materials
US5871148A (en) * 1996-02-05 1999-02-16 Hafer; Harold Franklin Bulk box container with supporting side beams
US5996799A (en) * 1998-01-22 1999-12-07 Exakt Technologies, Inc. Shipping container and method
US20020006534A1 (en) * 1998-12-01 2002-01-17 Wilkinson David P. Method and apparatus for controlling the temperature within an electrochemical fuel cell
US20020088723A1 (en) * 2001-01-11 2002-07-11 Sonoco Development, Inc. Shipping package for hazardous material vials and other fragile items
US6467642B2 (en) * 2000-12-29 2002-10-22 Patrick L. Mullens Cryogenic shipping container
US20030014994A1 (en) * 2001-06-06 2003-01-23 Smith Douglas M. Temperature controlled shipping containers
US6543491B1 (en) * 1999-11-04 2003-04-08 Chung Jing-Yau Design package for temperature-controlled packaging
US20030084679A1 (en) * 2001-07-23 2003-05-08 Charlton Kim E Shipping containers and methods for the transportation of materials at stable temperatures
US20030129473A1 (en) * 2002-01-04 2003-07-10 Alvin Lee Separator with fluid distribution features for use with a membrane electrode assembly in a fuel cell
US6651307B2 (en) * 2000-09-12 2003-11-25 Dynetek Industries Ltd. Process for manufacturing a pre-stressed fiber-reinforced high pressure vessel
US6674076B1 (en) * 2002-12-12 2004-01-06 Ballard Power Systems Inc. Humidified imaging with an environmental scanning electron microscope
US20040058222A1 (en) * 2002-06-28 2004-03-25 Joerg Zimmermann Passive control of fuel concentration in a liquid feed fuel cell
US20040126530A1 (en) * 2002-10-02 2004-07-01 John Finger Durable laminate and method of making and using same
US20040182869A1 (en) * 2003-01-24 2004-09-23 Hidehito Kubo High pressure tank
US20040245144A1 (en) * 2003-06-03 2004-12-09 Hurst William E. Preformed mixing bag for dry powder, apparatus, method and system for using same
US6842665B2 (en) * 2000-12-21 2005-01-11 James P. Karlen Stowage and retrieval system
US20050013110A1 (en) * 2003-07-16 2005-01-20 Olixir Technolologies Corporation Ruggedized host module
US20050029255A1 (en) * 2000-09-08 2005-02-10 Rutledge Arthur G. Package and method of packaging dangerous goods for transport
US20050181262A1 (en) * 2002-05-30 2005-08-18 Vanderleeden Olen R. Membrane electrode assembly for an electrochemical fuel cell
US20050250004A1 (en) * 2004-05-04 2005-11-10 Angstrom Power Incorporated Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
US20050249994A1 (en) * 2004-05-04 2005-11-10 Angstrom Power Incorporated Membranes and electrochemical cells incorporating such membranes
US20060141326A1 (en) * 2004-12-28 2006-06-29 Artibise Robert H Integrated current collector and electrical component plate for a fuel cell stack
US20060237688A1 (en) * 2005-04-22 2006-10-26 Joerg Zimmermann Composite hydrogen storage material and methods related thereto
US20070077470A1 (en) * 2005-10-05 2007-04-05 Paul Adams Fuel cartridge for fuel cells
US7305836B2 (en) * 2004-05-19 2007-12-11 Eden Innovations Ltd. Cryogenic container and superconductivity magnetic energy storage (SMES) system
US7344045B2 (en) * 2003-09-23 2008-03-18 Westport Power Inc. Container for holding a cryogenic fluid
US20080164251A1 (en) * 2007-01-08 2008-07-10 Ncf Industries, Inc. Intermodal container for transporting natural gas
US7651554B2 (en) * 2007-10-26 2010-01-26 Ovonic Hydrogen Systems Llc Hydrogen storage system

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1073983A (en) * 1912-07-09 1913-09-23 John W Harrison Double-walled vessel with metallic end closure.
US2624451A (en) * 1949-08-10 1953-01-06 R C Wood Portable food and beverage container
US2927711A (en) * 1954-01-12 1960-03-08 Naggiar Joseph Yervant Tank structure for alternative transportation of liquids and solid goods
US4135621A (en) * 1978-02-24 1979-01-23 The International Nickel Company, Inc. Hydrogen storage module
US4496073A (en) * 1983-02-24 1985-01-29 The Johns Hopkins University Cryogenic tank support system
US4715186A (en) * 1984-11-19 1987-12-29 Seiko Instruments & Electronics Ltd. Coolant preservation container
US4762224A (en) * 1987-12-21 1988-08-09 Hall John E Mixing container with segregated ingredient compartments
US4911326A (en) * 1988-08-11 1990-03-27 Mcgouran Jr Frances J Containment system
US4998667A (en) * 1989-10-19 1991-03-12 Georgia-Pacific Corporation Multi-cell container
US5595319A (en) * 1991-06-26 1997-01-21 Nuclear Containers, Inc., A Tennesse Corporation Reusable container unit having spaced protective housings
US5179971A (en) * 1992-04-01 1993-01-19 Jackson Melvin D Sidewall support for dual containment vessels
US5723067A (en) * 1993-09-08 1998-03-03 Europaeische Wirtschaftsgemeinschaft Tris-(cyanoto)-s-triazines and anisotropic duroplastic networks obtained with them
US6062469A (en) * 1996-02-05 2000-05-16 Hafer; Harold Franklin Bulk box container with supporting side beams
US5871148A (en) * 1996-02-05 1999-02-16 Hafer; Harold Franklin Bulk box container with supporting side beams
US6129267A (en) * 1996-02-05 2000-10-10 Hafer; Harold Franklin Bulk box container with supporting side beams
US5829594A (en) * 1997-06-27 1998-11-03 Pro-Tech-Tube, Inc. Protective enclosure for shipping and storing hazardous materials
US5996799A (en) * 1998-01-22 1999-12-07 Exakt Technologies, Inc. Shipping container and method
US20020006534A1 (en) * 1998-12-01 2002-01-17 Wilkinson David P. Method and apparatus for controlling the temperature within an electrochemical fuel cell
US6682839B2 (en) * 1998-12-01 2004-01-27 Ballard Power Systems Inc. Method and apparatus for controlling the temperature within an electrochemical fuel cell
US6543491B1 (en) * 1999-11-04 2003-04-08 Chung Jing-Yau Design package for temperature-controlled packaging
US20050029255A1 (en) * 2000-09-08 2005-02-10 Rutledge Arthur G. Package and method of packaging dangerous goods for transport
US6651307B2 (en) * 2000-09-12 2003-11-25 Dynetek Industries Ltd. Process for manufacturing a pre-stressed fiber-reinforced high pressure vessel
US6842665B2 (en) * 2000-12-21 2005-01-11 James P. Karlen Stowage and retrieval system
US6467642B2 (en) * 2000-12-29 2002-10-22 Patrick L. Mullens Cryogenic shipping container
US6662941B2 (en) * 2001-01-11 2003-12-16 Sonoco Absorbent Technologies, Llc Shipping package for hazardous material vials and other fragile items
US20020088723A1 (en) * 2001-01-11 2002-07-11 Sonoco Development, Inc. Shipping package for hazardous material vials and other fragile items
US20030014994A1 (en) * 2001-06-06 2003-01-23 Smith Douglas M. Temperature controlled shipping containers
US20030014982A1 (en) * 2001-06-06 2003-01-23 Smith Douglas M. Sorption cooling devices
US6701724B2 (en) * 2001-06-06 2004-03-09 Nanopore, Inc. Sorption cooling devices
US6968711B2 (en) * 2001-06-06 2005-11-29 Nanopore, Inc. Temperature controlled shipping containers
US20040231346A1 (en) * 2001-06-06 2004-11-25 Smith Douglas M. Sorption cooling devices
US20030084679A1 (en) * 2001-07-23 2003-05-08 Charlton Kim E Shipping containers and methods for the transportation of materials at stable temperatures
US6844101B2 (en) * 2002-01-04 2005-01-18 Ballard Power Systems Inc. Separator with fluid distribution features for use with a membrane electrode assembly in a fuel cell
US20030129473A1 (en) * 2002-01-04 2003-07-10 Alvin Lee Separator with fluid distribution features for use with a membrane electrode assembly in a fuel cell
US20050181262A1 (en) * 2002-05-30 2005-08-18 Vanderleeden Olen R. Membrane electrode assembly for an electrochemical fuel cell
US7041404B2 (en) * 2002-06-28 2006-05-09 Ballard Power Systems Inc. Passive control of fuel concentration in a liquid feed fuel cell
US20040058222A1 (en) * 2002-06-28 2004-03-25 Joerg Zimmermann Passive control of fuel concentration in a liquid feed fuel cell
US20040126530A1 (en) * 2002-10-02 2004-07-01 John Finger Durable laminate and method of making and using same
US6674076B1 (en) * 2002-12-12 2004-01-06 Ballard Power Systems Inc. Humidified imaging with an environmental scanning electron microscope
US20040182869A1 (en) * 2003-01-24 2004-09-23 Hidehito Kubo High pressure tank
US20040245144A1 (en) * 2003-06-03 2004-12-09 Hurst William E. Preformed mixing bag for dry powder, apparatus, method and system for using same
US20050013110A1 (en) * 2003-07-16 2005-01-20 Olixir Technolologies Corporation Ruggedized host module
US7344045B2 (en) * 2003-09-23 2008-03-18 Westport Power Inc. Container for holding a cryogenic fluid
US20050250004A1 (en) * 2004-05-04 2005-11-10 Angstrom Power Incorporated Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
US20050249994A1 (en) * 2004-05-04 2005-11-10 Angstrom Power Incorporated Membranes and electrochemical cells incorporating such membranes
US20060083973A1 (en) * 2004-05-04 2006-04-20 Angstrom Power Incorporated Fuel cells incorporating membranes
US20060083972A1 (en) * 2004-05-04 2006-04-20 Angstrom Power Incorporated Membranes and electrochemical cells incorporating such membranes
US7305836B2 (en) * 2004-05-19 2007-12-11 Eden Innovations Ltd. Cryogenic container and superconductivity magnetic energy storage (SMES) system
US20060141326A1 (en) * 2004-12-28 2006-06-29 Artibise Robert H Integrated current collector and electrical component plate for a fuel cell stack
US20060237688A1 (en) * 2005-04-22 2006-10-26 Joerg Zimmermann Composite hydrogen storage material and methods related thereto
US20070077470A1 (en) * 2005-10-05 2007-04-05 Paul Adams Fuel cartridge for fuel cells
US20080164251A1 (en) * 2007-01-08 2008-07-10 Ncf Industries, Inc. Intermodal container for transporting natural gas
US7651554B2 (en) * 2007-10-26 2010-01-26 Ovonic Hydrogen Systems Llc Hydrogen storage system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009000357A3 (en) * 2007-06-27 2009-06-11 Bluecher Gmbh Storage tank for gaseous fuels, and use thereof
US20090169972A1 (en) * 2007-12-28 2009-07-02 Sony Corporation Fuel cartridge
US8002137B2 (en) * 2007-12-28 2011-08-23 Sony Corporation Fuel cartridge
US20110296984A1 (en) * 2010-06-04 2011-12-08 Chiquita Brands International, Inc. Carbon dioxide (co2) scrubber for controlled atmosphere sea van container

Similar Documents

Publication Publication Date Title
JP2009506276A (en) Material confinement system
EP1522786B1 (en) Tank comprising a valve-box
TWI584842B (en) Methods and apparatus for fire suppressant panel
WO2008048889A2 (en) Freight container
US20060283864A1 (en) Shipping container and method of use
US6634156B1 (en) Package and method of packaging dangerous goods for transport
JP2004517007A (en) Cryogenic cargo container
RU2466075C2 (en) Emergency container for dangerous chemicals automatically operating at leaks
CN104114929A (en) System for containing and transporting compressed natural gas in inspectable cylindrical containers, combined in modules
EP2823488A1 (en) System for storage and transport of uranium hexafluoride
KR101271332B1 (en) Rescue Device for Leakage of Dangerous chemicals
CN215862884U (en) Sample storage device for natural gas exploration
WO2004072985A1 (en) Method and apparatus for shipping uranium hexafluoride
WO2007024988A2 (en) Material containment system
WO2006126162A3 (en) Filling elements for securing explosion in shafts, cavities, casings
KR101530151B1 (en) Bulk vessel for hazardous material
RU2222749C2 (en) Gas storage vessel
CN219140480U (en) Liquid ammonia storage tank
Code et al. Department of Transportation
Jena et al. ISO Tank Containers for Inland Transportation of Petroleum: Safety Review in Indian Perspective
Manual COMPLIANCE WITH THIS PUBLICATION IS MANDATORY
Osborn Transportation of Hazardous Evidentiary Material.
Kongboonma The transportation of hazardous materials
Singh Package performance for liquid hazardous materials in high-altitude shipments
DANGEROUS ANNEX A

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANSTROM POWER, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZIMMERMANN, JOERG;STUKAS, ANNA;REEL/FRAME:017567/0548

Effective date: 20060210

AS Assignment

Owner name: ANGSTROM POWER, CANADA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE ASSIGNEE NAME FROM ANSTROM POWER TO ANGSTROM POWER PREVIOUSLY RECORDED ON REEL 017567 FRAME 0548;ASSIGNORS:ZIMMERMANN, JOERG;STUKAS, ANNA;REEL/FRAME:017618/0563

Effective date: 20060210

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION