US20060285033A1 - Optical Filters and Method of Manufacturing the Same - Google Patents

Optical Filters and Method of Manufacturing the Same Download PDF

Info

Publication number
US20060285033A1
US20060285033A1 US11/530,813 US53081306A US2006285033A1 US 20060285033 A1 US20060285033 A1 US 20060285033A1 US 53081306 A US53081306 A US 53081306A US 2006285033 A1 US2006285033 A1 US 2006285033A1
Authority
US
United States
Prior art keywords
optical filter
polarizing element
filter according
light
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/530,813
Inventor
Gary Sharp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colorlink Inc
Original Assignee
Colorlink Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colorlink Inc filed Critical Colorlink Inc
Priority to US11/530,813 priority Critical patent/US20060285033A1/en
Publication of US20060285033A1 publication Critical patent/US20060285033A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/288Filters employing polarising elements, e.g. Lyot or Solc filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks

Definitions

  • the present invention relates generally to filters with light filtering to enhance vision and/or protect the eyes and to a method of making the filters.
  • Sunglasses which suppress glare, may be made with films having moderate neutral polarizing efficiency.
  • Sunglasses which selectively filter transmitted light, may be made with multilayer thin-films, diffractive structures that selectively reflect light or dyes with chromatic absorption.
  • Most of these sunglasses have spectral profiles with a small first derivative such that the slope at any point in the transmission spectrum is shallow. Such spectra are generally suitable to produce a desired hue and photopic transmission.
  • Other sunglasses have spectral profiles with more aggressive slopes. For example, certain blue blocking sunglasses made from suitable dyes strongly suppress blue transmission, improving sharpness at the expense of color balance.
  • Other sunglasses block one band of inter-primary light (500 nm cyan or 580 nm yellow light) and may partially block the other band of inter-primary light with rare-earth doped glass or with multi-layer coating technology.
  • rare-earth doped sunglasses have a fixed spectrum and multi-layer coating sunglasses may have an objectionable image due to light reflection.
  • Multi-layer sunglasses may also suffer from angle sensitivity effects.
  • Glasses including dielectric mirrors to enhance the vision of those with color vision deficiency are known. As with other multiple layer coatings, glasses with dielectric mirrors may have an objectionable image due to light reflection and may suffer from angle sensitivity effects.
  • Disclosed embodiments provide an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element.
  • the input polarizing element, the output polarizing element, and the retarder stack filter at least one inter-primary band of light.
  • at least two inter-primary bands of light are filtered and the input polarizing element, the output polarizing element, and the retarder stack, filter light so as to maintain a color neutral appearance.
  • the eyewear may be a pair of sunglasses or a visor.
  • Disclosed embodiment also provide an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element.
  • the input polarizing element, the output polarizing element, and the retarder stack filter light so as to improve color deficient vision.
  • an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element.
  • the input polarizing element, the output polarizing element, and the retarder stack filter light so as to protect the eyes from harmful light rays such as laser light rays.
  • This application further describes an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element.
  • the input polarizing element, the output polarizing element, and the retarder stack filter light such that at least two bands of light are substantially attenuated
  • an optical filter for enhancing human or animal vision and/or protecting the eyes from harmful light rays that includes a pair of polarizing elements that sandwich a retarder stack.
  • the optical filter may have a spectral transmission that enhances color vision, corrects for a color vision deficiency and/or protects the eyes from harmful light rays.
  • the optical filter may be a double-notch filter that blocks inter-primary light to maintain a color neutral appearance while enhancing the saturation of colored objects.
  • the optical filter may be a lens, a pair of sunglasses, corrective eyewear, protective eyewear, and visor.
  • an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element.
  • the retarder stack, the input polarizing element and the output polarizing element have a light transmittancy at 450 nm, 540 nm and 610 nm that is greater than a light transmittancy at 500 nm or 580 nm.
  • an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element.
  • the input polarizing element, the output polarizing element, and the retarder stack filter light to substantially reduce at least one near zero chromaticity response band of light.
  • FIG. 1 illustrates an exemplary filter for eyewear based on polarization interference according to an embodiment of the present invention
  • FIG. 2 illustrates the transmission spectrum of a seven-layer stack based on a retardation film with 2.0 waves of retardation at 432 nm;
  • FIG. 3 illustrates transmission spectrum that shows both notching and green suppression in eyewear with a design similar to that of FIG. 2 .
  • the selective filtering of light by polarization interference may be used to enhance human or animal vision and/or protect the eyes from harmful light rays.
  • such filtering may be used in sunglasses, color corrective eyewear or protective eyewear.
  • the selective filtering of incident light may provide any desired spectral transmission (including visible light and light not visible to the human or animal eye) and is performed by a pair of polarizing elements that sandwich a retarder stack.
  • the filtering structure may be formed by multi-layer polarizing structures and may be formed by fabricating sheet laminates that are die cut to form inexpensive laminates. The laminates may be flat or curved in one (e.g., wrap-around) or more dimensions.
  • One exemplary embodiment of the present invention provides an optical filter for eyewear with a laminated polarizing filter having a spectral transmission that enhances color vision via polarization interference.
  • single or double-notch filters block inter-primary light (580 nm yellow and/or 500 nm cyan) to maintain a color neutral appearance (e.g., white objects appear white) while enhancing the saturation of colored objects.
  • This selective filtration reduces the overall transmission while maintaining a neutral appearance.
  • glare may be filtered by vertically aligning the initial polarizer.
  • this exemplary embodiment acts just like common sunglasses while enhancing the appearance and contrast of colored objects.
  • Another exemplary embodiment of the present invention provides eyewear with a laminated polarizing filter that improves the color vision of individuals with color blindness, color vision deficiency, or high sensitivity to one or more colors.
  • Polarization interference may be used to provide a color balance function in the presence of reduced sensitivity to one or more additive primary colors (e.g., red or green).
  • the improvement in color vision is achieved by adjusting the light transmittancy at bands or notches that correspond to the wavelengths where the eye's chromatic response falls nearly to zero. These near-zero chromatic responses occur in the blue-green near 500 nm, in the yellow near 580 nm, in the violet at or beyond 400 nm and in the deep red at or beyond 700 nm.
  • the wavelengths near 450, 540, and 610 nm have the best chromatic response.
  • a filter resulting in a relatively high light transmittancy at 450 nm, 540 nm, and 610 nm, and a relatively low light transmittancy at 500 nm and at 580 nm will maintain color balance while producing color enhancement.
  • the filter can substantially attenuate the light transmittancy at 500 nm and at 580 nm to maintain the color balance while producing color enhancement.
  • low transmission bands or notches in the violet at or beyond 400 nm range and/or in the deep red at or beyond 700 nm may be included for eye protection without substantially adversely impacting the color balance or color enhancement functionalities otherwise provided.
  • Some vision problems include high sensitivity to one or more bands of light.
  • the polarization interference can be used to adjust the light transmittancy at those bands without impacting the color balance or color enhancement functionalities otherwise provided.
  • the color balance and color enhancement functionality may be combined in a single retarder stack according to the present invention or may be provided by separate stacks.
  • the laminated polarizing filter may have a lens geometry or other suitable geometry, and may include other functionalities such as protection from high light levels.
  • Another exemplary embodiment of the present invention provides wavelength selective polarizing filter for active (sports) eyewear that enhances performance and comfort in applications with more defined input parameters.
  • active sports
  • Such applications include fishing, SCUBA diving, golfing, and skiing and others.
  • Another exemplary embodiment of the present invention provides wavelength selective polarizing filters in eyewear for eye protection that enhances performance and comfort in applications with more defined input parameters.
  • Such applications include laser laboratory goggles, laser blocking visors or canopies for helmet and others. Other environments and uses are also possible.
  • an initial spectral profile and a desired spectral profile for eyes are determined.
  • an appropriate filter can be designed to compensate for the difference between the initial spectral profile and the desired spectral profile.
  • An exemplary method of generating desired filtering spectrum can be found in U.S. patent application Ser. No. 09/754,091 which is hereby incorporated by reference herein.
  • FIG. 1 illustrates an exemplary filter 100 based on polarization interference according to an embodiment of the present invention.
  • Incident light 102 is coupled into the filter 100 by an antireflective film 104 .
  • the incident light 102 is then polarized by an input polarizer 106 for transmission through a retarder stack 108 .
  • the retarder stack 108 wavelength selectively rotates the polarization of the incident light 102 such that an analyzing polarizer 110 will produce a desired filtering effect upon the incident light 102 .
  • Another antireflective film 112 then couples out the filtered light 114 .
  • the input polarizer 106 may be aligned vertically to filter glare.
  • the input polarizer 106 and the analyzing polarizer 110 may be parallel or perpendicular to each other.
  • the input polarizer 106 and the analyzing polarizer 110 may have some other orientation relative to each other.
  • the retarder stack 108 positioned between the input polarizer 106 and analyzing polarizer 110 , selectively manipulates the polarization such that, the analyzing polarizer 110 controls the transmission at each wavelength.
  • the power transmission at a particular wavelength depends upon the projection of the state of polarization (SOP) onto the polarizer transmission axis. This projection depends upon the orientation of the polarization ellipse, and the ellipticity.
  • SOP state of polarization
  • FIG. 2 illustrates the transmission spectrum of a seven-layer stack based on a retardation film with 2.0 waves of retardation at 432 nm.
  • This is a color enhancement filter, which transmits the primary bands (e.g., red, green and blue), while suppressing the cyan and yellow portions of the spectrum.
  • the retardation film has a full-wave retardance in the blue and red bands, so the flat response is obtained using a stack design that preserves this behavior throughout the magenta portion of the spectrum.
  • the green band is centered in the half-wave band, where more pronounced incremental polarization transformations occur.
  • the half-wave band is returned to the input SOP, with a resultant flattening of the passband about the half-wave wavelength.
  • This series of transformations converts the cyan/yellow portions of the spectrum into the orthogonal SOP such that they are absorbed by the analyzing polarizer.
  • FIG. 3 illustrates transmission spectrum that shows both notching and green suppression in eyewear filter with a design similar to that of FIG. 2 , which may be used to compensate for color vision deficiency.
  • the green passband is fairly flat, but the peak transmission is selected to be 50%.
  • Arbitrary suppression of a particular primary is achieved by designing a stack that projects prescribed amplitude onto the analyzing polarizer transmission axis.
  • Polarizer films may be protected by an optional protection film such as, cellulose triacetate.
  • the polarizing films may be bonded to the retarder stack using conventional methods, solvent bonding as is described in copending U.S. patent application Ser. No. 09/559,267, or any other suitable method.
  • External coatings such as broadband antireflection coatings may be applied using vacuum coating, wet coating, or any other suitable method.
  • Antiglare coatings also may be applied in order to reduce unwanted specular reflection at the air-lens interface that produces an objectionable image.
  • Fabrication of a filter according to the present invention may include laminates formed using pinch rollers in conjunction with pressure sensitive adhesives (PSAs), acrylics, urethanes, silicones, or solvent bonding methods.
  • Flat stock may be generated using a pinch roller with a planar translation stage. Curvature in one dimension may be obtained by laminating it onto a rotating drum with diameter selected to achieve the desired curvature. Lamination with two-dimensional curvature can be more challenging, due to spectral distortion that occurs via stresses formed when the film is kinked.
  • the laminated sheet may be cast in a polymer substrate to achieve other filter geometries.
  • the filter may be cast between two substrates with common curvature to form a curved lens. Filters formed with lens geometries may be die cut from planar/curved sheet stock and mounted into frames. Other methods to form lens geometries may also be used.
  • the input polarizer 106 and analyzing polarizer 110 may be color polarizers.
  • the filters of the present invention may include other elements such as support substrates, protective layers or other elements.

Abstract

The selective filtering of light by polarization interference may be used to enhance vision and/or protect eyes from harmful light rays. For example, such filtering may be used in sunglasses, color corrective eyewear or protective eyewear. The selective filtering of incident light may provide any desired spectral transmission (including visible light and light not visible to the eye) and is performed by a pair of polarizing elements that sandwich a retarder stack. The filtering structure may be formed by multi-layer polarizing structures and may be formed by fabricating sheet laminates that are die cut to form inexpensive laminates. The laminates may be flat or curved in one (e.g., wrap-around) or more dimensions.

Description

    PRIORITY CLAIM AND RELATED APPLICATION
  • This application is a continuation of U.S. Pat. App. Ser. No. 10/655,858, filed Sep. 5, 2003, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional App. entitled “Filter for Enhancing Human Vision and/or Protecting the Eyes and Method of Making a Filter,” Ser. No. 60/408,754 filed Sep. 6, 2002, having Gary D. Sharp, as inventor, and having as assignee ColorLink, Inc., the assignee of the present application. The provisional application is incorporated herein by reference in its entirety for all purposes.
  • FIELD OF THE INVENTION
  • The present invention relates generally to filters with light filtering to enhance vision and/or protect the eyes and to a method of making the filters.
  • BACKGROUND
  • Sunglasses, which suppress glare, may be made with films having moderate neutral polarizing efficiency. Sunglasses, which selectively filter transmitted light, may be made with multilayer thin-films, diffractive structures that selectively reflect light or dyes with chromatic absorption. Most of these sunglasses have spectral profiles with a small first derivative such that the slope at any point in the transmission spectrum is shallow. Such spectra are generally suitable to produce a desired hue and photopic transmission. Other sunglasses have spectral profiles with more aggressive slopes. For example, certain blue blocking sunglasses made from suitable dyes strongly suppress blue transmission, improving sharpness at the expense of color balance. Other sunglasses block one band of inter-primary light (500 nm cyan or 580 nm yellow light) and may partially block the other band of inter-primary light with rare-earth doped glass or with multi-layer coating technology. Unfortunately, rare-earth doped sunglasses have a fixed spectrum and multi-layer coating sunglasses may have an objectionable image due to light reflection. Multi-layer sunglasses may also suffer from angle sensitivity effects.
  • Glasses including dielectric mirrors to enhance the vision of those with color vision deficiency are known. As with other multiple layer coatings, glasses with dielectric mirrors may have an objectionable image due to light reflection and may suffer from angle sensitivity effects.
  • SUMMARY OF THE INVENTION
  • Disclosed embodiments provide an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element. The input polarizing element, the output polarizing element, and the retarder stack, filter at least one inter-primary band of light. Alternatively, at least two inter-primary bands of light are filtered and the input polarizing element, the output polarizing element, and the retarder stack, filter light so as to maintain a color neutral appearance. The eyewear may be a pair of sunglasses or a visor.
  • Disclosed embodiment also provide an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element. The input polarizing element, the output polarizing element, and the retarder stack, filter light so as to improve color deficient vision.
  • Further provided in the disclosed embodiments is an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element. The input polarizing element, the output polarizing element, and the retarder stack, filter light so as to protect the eyes from harmful light rays such as laser light rays.
  • This application further describes an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element. The input polarizing element, the output polarizing element, and the retarder stack, filter light such that at least two bands of light are substantially attenuated
  • Also described is an optical filter for enhancing human or animal vision and/or protecting the eyes from harmful light rays that includes a pair of polarizing elements that sandwich a retarder stack. The optical filter may have a spectral transmission that enhances color vision, corrects for a color vision deficiency and/or protects the eyes from harmful light rays. The optical filter may be a double-notch filter that blocks inter-primary light to maintain a color neutral appearance while enhancing the saturation of colored objects. The optical filter may be a lens, a pair of sunglasses, corrective eyewear, protective eyewear, and visor.
  • Further embodiments provide a method of filtering light in eyewear for color vision enhancement, color vision deficiency compensation, or attenuation of harmful light rays including polarizing input light to form polarized light, rotating the polarization of the polarized light to form rotated light, and analyzing the rotated light. The rotation of light is determined in accordance with one or both of predetermined lighting conditions of an environment and a person's vision.
  • Included in the described embodiments is an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element. The retarder stack, the input polarizing element and the output polarizing element have a light transmittancy at 450 nm, 540 nm and 610 nm that is greater than a light transmittancy at 500 nm or 580 nm.
  • Further described is an optical filter including an input polarizing element, an output polarizing element, and a retarder stack between the input polarizing element and the output polarizing element. The input polarizing element, the output polarizing element, and the retarder stack, filter light to substantially reduce at least one near zero chromaticity response band of light.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an exemplary filter for eyewear based on polarization interference according to an embodiment of the present invention;
  • FIG. 2 illustrates the transmission spectrum of a seven-layer stack based on a retardation film with 2.0 waves of retardation at 432 nm; and
  • FIG. 3 illustrates transmission spectrum that shows both notching and green suppression in eyewear with a design similar to that of FIG. 2.
  • DETAILED DESCRIPTION
  • The selective filtering of light by polarization interference may be used to enhance human or animal vision and/or protect the eyes from harmful light rays. For example, such filtering may be used in sunglasses, color corrective eyewear or protective eyewear. The selective filtering of incident light may provide any desired spectral transmission (including visible light and light not visible to the human or animal eye) and is performed by a pair of polarizing elements that sandwich a retarder stack. The filtering structure may be formed by multi-layer polarizing structures and may be formed by fabricating sheet laminates that are die cut to form inexpensive laminates. The laminates may be flat or curved in one (e.g., wrap-around) or more dimensions.
  • One exemplary embodiment of the present invention provides an optical filter for eyewear with a laminated polarizing filter having a spectral transmission that enhances color vision via polarization interference. For example, single or double-notch filters block inter-primary light (580 nm yellow and/or 500 nm cyan) to maintain a color neutral appearance (e.g., white objects appear white) while enhancing the saturation of colored objects. This selective filtration reduces the overall transmission while maintaining a neutral appearance. Additionally, glare may be filtered by vertically aligning the initial polarizer. Thus, this exemplary embodiment acts just like common sunglasses while enhancing the appearance and contrast of colored objects.
  • Another exemplary embodiment of the present invention provides eyewear with a laminated polarizing filter that improves the color vision of individuals with color blindness, color vision deficiency, or high sensitivity to one or more colors. Polarization interference may be used to provide a color balance function in the presence of reduced sensitivity to one or more additive primary colors (e.g., red or green). Specifically, the improvement in color vision is achieved by adjusting the light transmittancy at bands or notches that correspond to the wavelengths where the eye's chromatic response falls nearly to zero. These near-zero chromatic responses occur in the blue-green near 500 nm, in the yellow near 580 nm, in the violet at or beyond 400 nm and in the deep red at or beyond 700 nm. Conversely, the wavelengths near 450, 540, and 610 nm have the best chromatic response. Thus, a filter resulting in a relatively high light transmittancy at 450 nm, 540 nm, and 610 nm, and a relatively low light transmittancy at 500 nm and at 580 nm will maintain color balance while producing color enhancement. The filter can substantially attenuate the light transmittancy at 500 nm and at 580 nm to maintain the color balance while producing color enhancement. Optionally, low transmission bands or notches in the violet at or beyond 400 nm range and/or in the deep red at or beyond 700 nm may be included for eye protection without substantially adversely impacting the color balance or color enhancement functionalities otherwise provided. Some vision problems include high sensitivity to one or more bands of light. In such cases, the polarization interference can be used to adjust the light transmittancy at those bands without impacting the color balance or color enhancement functionalities otherwise provided. The color balance and color enhancement functionality may be combined in a single retarder stack according to the present invention or may be provided by separate stacks. The laminated polarizing filter may have a lens geometry or other suitable geometry, and may include other functionalities such as protection from high light levels.
  • Another exemplary embodiment of the present invention provides wavelength selective polarizing filter for active (sports) eyewear that enhances performance and comfort in applications with more defined input parameters. Such applications include fishing, SCUBA diving, golfing, and skiing and others.
  • Another exemplary embodiment of the present invention provides wavelength selective polarizing filters in eyewear for eye protection that enhances performance and comfort in applications with more defined input parameters. Such applications include laser laboratory goggles, laser blocking visors or canopies for helmet and others. Other environments and uses are also possible. To provide such eye protection that enhances performance and comfort, an initial spectral profile and a desired spectral profile for eyes are determined. Then, an appropriate filter can be designed to compensate for the difference between the initial spectral profile and the desired spectral profile. An exemplary method of generating desired filtering spectrum can be found in U.S. patent application Ser. No. 09/754,091 which is hereby incorporated by reference herein.
  • FIG. 1 illustrates an exemplary filter 100 based on polarization interference according to an embodiment of the present invention. Incident light 102 is coupled into the filter 100 by an antireflective film 104. The incident light 102 is then polarized by an input polarizer 106 for transmission through a retarder stack 108. The retarder stack 108 wavelength selectively rotates the polarization of the incident light 102 such that an analyzing polarizer 110 will produce a desired filtering effect upon the incident light 102. Another antireflective film 112 then couples out the filtered light 114. The input polarizer 106 may be aligned vertically to filter glare. The input polarizer 106 and the analyzing polarizer 110 may be parallel or perpendicular to each other. Alternatively, the input polarizer 106 and the analyzing polarizer 110 may have some other orientation relative to each other. The retarder stack 108, positioned between the input polarizer 106 and analyzing polarizer 110, selectively manipulates the polarization such that, the analyzing polarizer 110 controls the transmission at each wavelength. The power transmission at a particular wavelength depends upon the projection of the state of polarization (SOP) onto the polarizer transmission axis. This projection depends upon the orientation of the polarization ellipse, and the ellipticity.
  • FIG. 2 illustrates the transmission spectrum of a seven-layer stack based on a retardation film with 2.0 waves of retardation at 432 nm. This is a color enhancement filter, which transmits the primary bands (e.g., red, green and blue), while suppressing the cyan and yellow portions of the spectrum. In this parallel polarizer design, the retardation film has a full-wave retardance in the blue and red bands, so the flat response is obtained using a stack design that preserves this behavior throughout the magenta portion of the spectrum. Conversely, the green band is centered in the half-wave band, where more pronounced incremental polarization transformations occur. Ultimately, the half-wave band is returned to the input SOP, with a resultant flattening of the passband about the half-wave wavelength. This series of transformations converts the cyan/yellow portions of the spectrum into the orthogonal SOP such that they are absorbed by the analyzing polarizer.
  • FIG. 3 illustrates transmission spectrum that shows both notching and green suppression in eyewear filter with a design similar to that of FIG. 2, which may be used to compensate for color vision deficiency. In FIG. 3, the green passband is fairly flat, but the peak transmission is selected to be 50%. Arbitrary suppression of a particular primary is achieved by designing a stack that projects prescribed amplitude onto the analyzing polarizer transmission axis.
  • Retarder films that form the retarder stack 108 may be fabricated from polymers such as polycarbonate, cellulose diacetate, polysulphone or polyvinyl alcohol, or other suitable materials. Fewer laminations may be used when the chromatic effects are preferably produced using a base film with significant retardation. Biaxial stretched (Nz=0.5) films may be used to reduce angular color shift effects.
  • Polarizer films may be protected by an optional protection film such as, cellulose triacetate. The polarizing films may be bonded to the retarder stack using conventional methods, solvent bonding as is described in copending U.S. patent application Ser. No. 09/559,267, or any other suitable method. External coatings, such as broadband antireflection coatings may be applied using vacuum coating, wet coating, or any other suitable method. Antiglare coatings also may be applied in order to reduce unwanted specular reflection at the air-lens interface that produces an objectionable image.
  • Fabrication of a filter according to the present invention may include laminates formed using pinch rollers in conjunction with pressure sensitive adhesives (PSAs), acrylics, urethanes, silicones, or solvent bonding methods. Flat stock may be generated using a pinch roller with a planar translation stage. Curvature in one dimension may be obtained by laminating it onto a rotating drum with diameter selected to achieve the desired curvature. Lamination with two-dimensional curvature can be more challenging, due to spectral distortion that occurs via stresses formed when the film is kinked. Alternatively, the laminated sheet may be cast in a polymer substrate to achieve other filter geometries. For example, the filter may be cast between two substrates with common curvature to form a curved lens. Filters formed with lens geometries may be die cut from planar/curved sheet stock and mounted into frames. Other methods to form lens geometries may also be used.
  • The input polarizer 106 and analyzing polarizer 110 may be color polarizers. The filters of the present invention may include other elements such as support substrates, protective layers or other elements. Although several embodiments and advantages of the present invention have been described in detail, it should be understood that changes, substitutions, transformations, modifications, variations, permutations and alterations might be made therein without departing from the teachings of the present invention.
  • Realizations in accordance with the present invention have been described in the context of particular embodiments. These embodiments are meant to be illustrative and not limiting. Many variations, modifications, additions, and improvements are possible. Accordingly, plural instances may be provided for components described herein as a single instance. Boundaries between various components, operations and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of claims that follow. Finally, structures and functionality presented as discrete components in the exemplary configurations may be implemented as a combined structure or component. These and other variations, modifications, additions, and improvements may fall within the scope of the invention as defined in the claims that follow.
  • The section headings in this application are provided for consistency with the parts of an application suggested under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any patent claims that may issue from this application. Specifically and by way of example, although the headings refer to a “Field of the Invention,” the claims should not be limited by the language chosen under this heading to describe the so-called field of the invention. Further, a description of a technology in the “Description of Related Art” is not be construed as an admission that technology is prior art to the present application. Neither is the “Summary of the Invention” to be considered as a characterization of the invention(s) set forth in the claims to this application. Further, the reference in these headings to “Invention” in the singular should not be used to argue that there is a single point of novelty claimed in this application. Multiple inventions may be set forth according to the limitations of the multiple claims associated with this patent specification, and the claims accordingly define the invention(s) that are protected thereby. In all instances, the scope of the claims shall be considered on their own merits in light of the specification but should not be constrained by the headings included in this application.

Claims (32)

1. An optical filter comprising:
an input polarizing element;
an output polarizing element; and
a retarder stack between the input polarizing element and the output polarizing element, the retarder stack comprising N≧2 retarder films;
wherein the input polarizing element, the output polarizing element, and the retarder stack are collectively designed to comprise an FIR filter, and thereby are operable to generate at least N+1 spatially offset light pulses in response to a linearly polarized light impulse input, the FIR filter operable to substantially filter at least one band of light,
wherein the optical filter is curved.
2. An optical filter according to claim 1, wherein the curvature of the optical filter is in a first dimension.
3. An optical filter according to claim 2, wherein the curvature of the optical filter is in a second dimension.
4. An optical filter according to claim 2, wherein the curvature of the optical filter in the first dimension is obtained by laminating the output polarizing element, the retarder stack and the input polarizing element using a rotating drum.
5. An optical filter according to claim 4, wherein the rotating drum has a radius selected to achieve a predetermined curvature of the optical filter.
6. An optical filter according to claim 3, wherein the curvature of the optical filter in the first and second dimensions is obtained by casting.
7. An optical filter according to claim 6, wherein the casting comprises forming a laminated sheet over a mold, the mold comprising a predetermined curvature in the first and second dimensions, the laminated sheet comprising the input polarizing element, the retarder stack, and the output polarizing element.
8. An optical filter according to claim 6, wherein the optical filter is cast between two substrates.
9. An optical filter according to claim 6, wherein the curvature of the optical filter provides a lens.
10. An optical filter according to claim 9, wherein the lens is die cut from sheet stock.
11. An optical filter according to claim 10, wherein the lens is mounted in a frame.
12. An optical filter according to claim 1,
wherein the optical filter is configured for human vision; and
the input polarizing element, the output polarizing element, and the retarder stack are adapted to be positioned at least partially in a human's field of view.
13. An optical filter according to claim 1, wherein
the optical filter is configured for animal vision; and
the input polarizing element, the output polarizing element, and the retarder stack are adapted to be positioned at least partially in an animal's field of view.
14. An optical filter according to claim 1, wherein the at least one band of light is an inter-primary band of light.
15. An optical filter according to claim 1, wherein the at least one band of light has a wavelength that is smaller than or equal to about 400 nm.
16. An optical filter according to claim 1, wherein the at least one band of light has a wavelength that is greater than or equal to about 700 nm.
17. An optical filter according to claim 1, wherein the at least one band of light has a wavelength of about 500 nm.
18. An optical filter according to claim 1, wherein the at least one band of light has a wavelength of about 580 nm.
19. An optical filter according to claim 1, wherein the FIR filter is operable to filter at least two inter-primary bands of light.
20. An optical filter according to claim 1, wherein the input polarizing element, the output polarizing element, and the retarder stack filter light so as to maintain a color neutral appearance.
21. An optical filter according to claim 1, wherein the optical filter is one of a pair of sunglasses, a canopy for a helmet, or a visor.
22. A method for manufacturing an optical filter, the method comprising:
providing a flat stock comprising:
an input polarizing element,
an output polarizing element, and
a retarder stack between the input polarizing element and the output polarizing element, the retarder stack comprising N≧2 retarder films; and
forming the flat stock to provide curvature to the optical filter,
wherein the input polarizing element, the output polarizing element, and the retarder stack are collectively designed to comprise an FIR filter, and thereby are operable to generate at least N+1 spatially offset light pulses in response to a linearly polarized light impulse input, the FIR filter operable to substantially filter at least one band of light.
23. A method for manufacturing an optical filter according to claim 22, the method further comprising:
generating the flat stock by laminating the input polarization filter to a first side of the retarder stack, and laminating the output polarization filter to a second side of the retarder stack.
24. A method for manufacturing an optical filter according to claim 22, wherein the curvature of the optical filter is in a first dimension.
25. A method for manufacturing an optical filter according to claim 24, wherein the curvature of the optical filter is in a second dimension.
26. A method for manufacturing an optical filter according to claim 22, further comprising forming the flatstock by laminating the output polarizing element, the retarder stack and the input polarizing element using a rotating drum.
27. A method for manufacturing an optical filter according to claim 26, wherein the rotating drum has a radius selected to achieve a predetermined curvature of the optical filter.
28. A method for manufacturing an optical filter according to claim 25, wherein the curvature of the optical filter in the first and second dimensions is obtained by casting.
29. A method for manufacturing an optical filter according to claim 28, wherein the casting comprises casting between two substrates.
30. A method for manufacturing an optical filter according to claim 22, wherein the curvature of the optical filter comprises a lens.
31. A method for manufacturing an optical filter according to claim 30, wherein the lens is die cut from a sheet stock.
33. A method for manufacturing an optical filter according to claim 30, wherein the lens is mounted in a frame.
US11/530,813 2002-09-06 2006-09-11 Optical Filters and Method of Manufacturing the Same Abandoned US20060285033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/530,813 US20060285033A1 (en) 2002-09-06 2006-09-11 Optical Filters and Method of Manufacturing the Same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40875402P 2002-09-06 2002-09-06
US10/655,858 US7106509B2 (en) 2002-09-06 2003-09-05 Filter for enhancing vision and/or protecting the eyes and method of making a filter
US11/530,813 US20060285033A1 (en) 2002-09-06 2006-09-11 Optical Filters and Method of Manufacturing the Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/655,858 Continuation US7106509B2 (en) 2002-09-06 2003-09-05 Filter for enhancing vision and/or protecting the eyes and method of making a filter

Publications (1)

Publication Number Publication Date
US20060285033A1 true US20060285033A1 (en) 2006-12-21

Family

ID=32511248

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/655,858 Expired - Lifetime US7106509B2 (en) 2002-09-06 2003-09-05 Filter for enhancing vision and/or protecting the eyes and method of making a filter
US11/530,813 Abandoned US20060285033A1 (en) 2002-09-06 2006-09-11 Optical Filters and Method of Manufacturing the Same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/655,858 Expired - Lifetime US7106509B2 (en) 2002-09-06 2003-09-05 Filter for enhancing vision and/or protecting the eyes and method of making a filter

Country Status (1)

Country Link
US (2) US7106509B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929384B1 (en) * 2008-02-22 2009-12-02 삼성정밀화학 주식회사 Polarizing plate of multi-layered polarizing film structure with improved dichroic ratio and liquid crystal display device having the same
US8547635B2 (en) 2010-01-22 2013-10-01 Oakley, Inc. Lenses for 3D eyewear
WO2016161007A1 (en) * 2015-03-30 2016-10-06 Reald Inc. Optical eyewear with reduced reflectivity for scattered light
WO2017070552A1 (en) * 2015-10-23 2017-04-27 Sharp Gary D Optical filter with color enhancement

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7106509B2 (en) * 2002-09-06 2006-09-12 Colorlink, Inc. Filter for enhancing vision and/or protecting the eyes and method of making a filter
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7911428B2 (en) 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US8031133B2 (en) * 2004-09-27 2011-10-04 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US8362987B2 (en) * 2004-09-27 2013-01-29 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7525730B2 (en) 2004-09-27 2009-04-28 Idc, Llc Method and device for generating white in an interferometric modulator display
US8102407B2 (en) * 2004-09-27 2012-01-24 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7898521B2 (en) * 2004-09-27 2011-03-01 Qualcomm Mems Technologies, Inc. Device and method for wavelength filtering
US20060077148A1 (en) * 2004-09-27 2006-04-13 Gally Brian J Method and device for manipulating color in a display
US7710632B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Display device having an array of spatial light modulators with integrated color filters
JP4811701B2 (en) * 2004-12-28 2011-11-09 山本光学株式会社 Protective eyeglass lenses
US7510280B2 (en) * 2005-08-30 2009-03-31 Real D High yield bonding process for manufacturing polycarbonate polarized lenses
WO2007095476A2 (en) * 2006-02-10 2007-08-23 Colorlink, Inc. Multi-functional active matrix liquid crystal displays
US8004743B2 (en) 2006-04-21 2011-08-23 Qualcomm Mems Technologies, Inc. Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display
WO2008045207A2 (en) 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Light guide
EP2366945A1 (en) 2006-10-06 2011-09-21 Qualcomm Mems Technologies, Inc. Optical loss layer integrated in an illumination apparatus of a display
CN101657751B (en) * 2007-02-26 2012-11-14 亨特道格拉斯工业瑞士有限责任公司 Formable fused polymer panels containing light refracting films
ES2298089B2 (en) * 2007-07-19 2010-03-08 Universidad Complutense De Madrid SAFETY HELMET VISOR AND PREVENTION WITH SURFACE TREATED FOR EYE PROTECTION AND THERAPY.
AU2015200351B2 (en) * 2007-10-11 2017-03-09 Reald Inc. Curved optical filters
CN101889236B (en) * 2007-10-11 2015-03-25 瑞尔D股份有限公司 Curved optical filters
GB2453751B (en) * 2007-10-17 2012-09-26 Au Optronics Corp Stereoscopic display apparatus
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US20100149483A1 (en) * 2008-12-12 2010-06-17 Chiavetta Iii Stephen V Optical Filter for Selectively Blocking Light
US8780285B1 (en) * 2009-09-25 2014-07-15 Rockwell Collins, Inc. Apparatus for viewing 3D LCD displays
WO2011094761A2 (en) * 2010-02-01 2011-08-04 Reald Inc. Compound curved stereoscopic eyewear
US9005493B2 (en) * 2010-02-09 2015-04-14 Roger Wen-Yi Hsu Method and apparatus for making retarder in stereoscopic glasses
US8379159B2 (en) 2010-03-12 2013-02-19 Roger Wen-Yi Hsu Method and apparatus for improved retarder of 3D glasses
EP2552267A4 (en) * 2010-03-26 2014-07-09 Nat Oilwell Varco Lp Headgear and method of using same
US8770749B2 (en) 2010-04-15 2014-07-08 Oakley, Inc. Eyewear with chroma enhancement
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
KR101367656B1 (en) * 2011-02-21 2014-02-28 송영철 3 Sunglasses combined use three dimensions spectacles lens
EP2681522A1 (en) * 2011-03-03 2014-01-08 Enchroma, Inc. Multi-band color vision filters and method by lp-optimization
US9759850B2 (en) 2011-04-15 2017-09-12 Safilo S.P.A. Curved lenses and related methods
ES2730977T3 (en) 2011-04-15 2019-11-13 Safilo Spa Curved lenses and related procedures
ES2689402T3 (en) 2011-04-15 2018-11-13 Safilo S.P.A. Method for curved lenses
US20140157576A1 (en) * 2011-07-21 2014-06-12 Essilor International (Compagnie Generale D'optique Production of an ophthalmic lens suitable for stereoscopic vision
US9022562B2 (en) 2011-08-05 2015-05-05 Nitto Denko Corporation Optical element for correcting color blindness
AU2012336204B2 (en) 2011-10-20 2016-08-25 Oakley, Inc. Eyewear with chroma enhancement
WO2013169987A1 (en) 2012-05-10 2013-11-14 Oakley, Inc. Eyewear with laminated functional layers
WO2013188825A1 (en) * 2012-06-15 2013-12-19 The Regents Of The University Of California Optical filters and methods for reducing glare from glare-producing light
WO2014107616A1 (en) 2013-01-04 2014-07-10 Reald Inc. Multi-primary backlight for multi-functional active-matrix liquid crystal displays
US10054803B2 (en) 2013-01-14 2018-08-21 3M Innovative Properties Company Filters to enhance color discrimination for color vision deficient individuals
US8931930B2 (en) 2013-01-29 2015-01-13 Nitto Denko Corporation Optical element for correcting color blindness
US8911082B2 (en) 2013-03-14 2014-12-16 Indizen Optical Technologies, SLL. Eyewear lenses with controlled filters for night driving
US9885885B2 (en) 2013-11-27 2018-02-06 3M Innovative Properties Company Blue edge filter optical lens
US9841598B2 (en) 2013-12-31 2017-12-12 3M Innovative Properties Company Lens with embedded multilayer optical film for near-eye display systems
US9575335B1 (en) 2014-01-10 2017-02-21 Oakley, Inc. Eyewear with chroma enhancement for specific activities
US9739916B2 (en) * 2014-03-20 2017-08-22 3M Innovative Properties Company Circadian rhythm optical film
EP3129821A1 (en) 2014-04-09 2017-02-15 3M Innovative Properties Company Near-eye display system having a pellicle as a combiner
US10642087B2 (en) 2014-05-23 2020-05-05 Eyesafe, Llc Light emission reducing compounds for electronic devices
US10901125B2 (en) 2014-05-23 2021-01-26 Eyesafe, Llc Light emission reducing compounds for electronic devices
US10871661B2 (en) 2014-05-23 2020-12-22 Oakley, Inc. Eyewear and lenses with multiple molded lens components
US9891448B2 (en) 2014-08-08 2018-02-13 Smith Optics, Inc. Tinted polarized lenses having selective frequency filtering
CN207704150U (en) 2014-11-13 2018-08-07 奥克利有限公司 Variable optical attenuation eyewear with color enhancing
US9905022B1 (en) 2015-01-16 2018-02-27 Oakley, Inc. Electronic display for demonstrating eyewear functionality
WO2016148984A1 (en) 2015-03-13 2016-09-22 Enchroma, Inc. Optical filters affecting color vision in a desired manner and design method thereof by non-linear optimization
KR102634148B1 (en) 2015-03-16 2024-02-05 매직 립, 인코포레이티드 Methods and system for diagnosing and treating health ailments
WO2017048726A1 (en) 2015-09-15 2017-03-23 Enchroma, Inc. Optical filters and methods for making the same
US9720237B1 (en) 2016-01-27 2017-08-01 Microsoft Technology Licensing, Llc. Mixed environment display device and waveguide cross-coupling suppressors
JP6923552B2 (en) 2016-04-08 2021-08-18 マジック リープ, インコーポレイテッドMagic Leap,Inc. Augmented reality systems and methods with varifocal lens elements
WO2018022735A1 (en) * 2016-07-28 2018-02-01 Ace Ronald S Spectrally sculpted multiple narrowband filtration for improved human vision
EP3507087A4 (en) 2016-08-30 2020-04-29 HUE.Al, LLC Optical device for enhancing human color vision
CN109890342A (en) 2016-10-07 2019-06-14 英克罗马公司 For simulating color defect condition and showing that colour blindness compensates the lighting system of glasses validity
CN109983367B (en) * 2016-11-15 2021-06-25 3M创新有限公司 Optical lens and goggle comprising the same
KR102601052B1 (en) 2017-02-23 2023-11-09 매직 립, 인코포레이티드 Display system with variable power reflector
WO2018165476A1 (en) 2017-03-08 2018-09-13 Sharp Gary D Wide angle variable neutral density filter
TWI653486B (en) * 2017-05-08 2019-03-11 華美光學科技股份有限公司 Predefined reflective appearance eyewear lens with neutral balance visual perception
TWI647512B (en) * 2017-05-08 2019-01-11 華美光學科技股份有限公司 Predefined reflective appearance eyewear lens with chroma enhancement visual perception
US11294113B2 (en) 2017-07-17 2022-04-05 Gary Sharp Innovations, Llc Wide-angle compensation of uniaxial retarder stacks
US11269123B2 (en) 2018-01-29 2022-03-08 Gary Sharp Innovations, Llc Hollow triple-pass optical elements
US11249355B2 (en) 2018-01-29 2022-02-15 Gary Sharp Innovations, Llc Color switch for reduced color cross-talk
US11112622B2 (en) 2018-02-01 2021-09-07 Luxottica S.R.L. Eyewear and lenses with multiple molded lens components
JP7284182B2 (en) 2018-03-02 2023-05-30 メタ プラットフォームズ テクノロジーズ, リミテッド ライアビリティ カンパニー Retarder Stack Pairs for Conversion of Polarization Basis Vectors
JP2020000287A (en) * 2018-06-25 2020-01-09 ネオ・ダルトン株式会社 Color vision correction lens
GB201811317D0 (en) * 2018-07-10 2018-08-29 City Univ Of London Lens
US11810532B2 (en) 2018-11-28 2023-11-07 Eyesafe Inc. Systems for monitoring and regulating harmful blue light exposure from digital devices
US11347099B2 (en) 2018-11-28 2022-05-31 Eyesafe Inc. Light management filter and related software
US11592701B2 (en) 2018-11-28 2023-02-28 Eyesafe Inc. Backlight unit with emission modification
US11126033B2 (en) 2018-11-28 2021-09-21 Eyesafe Inc. Backlight unit with emission modification
US10971660B2 (en) 2019-08-09 2021-04-06 Eyesafe Inc. White LED light source and method of making same
CA3193791A1 (en) 2020-09-04 2022-03-10 Enchroma, Inc. Spectral glare control eyewear for color blindness and low vision assistance

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2184999A (en) * 1938-02-24 1939-12-26 Polaroid Corp Light filter
US4536063A (en) * 1982-12-14 1985-08-20 Rockwell International Corporation Transmissive phase retarder
US4595262A (en) * 1984-08-23 1986-06-17 Lockheed Missiles & Space Company, Inc. Tunable birefringent safety goggles for laser beams
US4826286A (en) * 1988-05-06 1989-05-02 Thornton Jr William A Filter with three-band transmission for good seeing
US5382986A (en) * 1992-11-04 1995-01-17 Reliant Laser Corporation Liquid-crystal sunglasses indicating overexposure to UV-radiation
US5472538A (en) * 1993-12-22 1995-12-05 Sumitomo Chemical Co., Ltd. Process for producing phase retarder film
US5571567A (en) * 1993-11-29 1996-11-05 Polygenex International, Inc Dip molded polyurethane film methods
US5751384A (en) * 1995-05-23 1998-05-12 The Board Of Regents Of The University Of Colorado Color polarizers for polarizing an additive color spectrum along a first axis and it's compliment along a second axis
US5774202A (en) * 1993-08-18 1998-06-30 Coloryte Hungary Optikai Kutato, Fejleszto Es Gyarto Reszvenytarsasag Method and optical means for improving or modifying color vision and method for making said optical means
US5888603A (en) * 1996-04-24 1999-03-30 Fergason; James L. Stacked films birefringent device and method of making same
US5990996A (en) * 1996-05-14 1999-11-23 Colorlink, Inc. Color selective light modulators employing birefringent stacks
US6004417A (en) * 1995-12-08 1999-12-21 The Lamson & Sessions Co. Method for coupling conduits using microencapsulatable solvent adhesive composition
US6096375A (en) * 1993-12-21 2000-08-01 3M Innovative Properties Company Optical polarizer
US6156433A (en) * 1996-01-26 2000-12-05 Dai Nippon Printing Co., Ltd. Electrode for plasma display panel and process for producing the same
US6334680B1 (en) * 1998-02-23 2002-01-01 Optimieyes Limited Partnership Polarized lens with oxide additive
US6638583B1 (en) * 2000-03-16 2003-10-28 Colorlink, Inc. Method and apparatus for laminating stacks of polycarbonate films
US20040114242A1 (en) * 2002-09-06 2004-06-17 Sharp Gary D. Filter for enhancing vision and/or protecting the eyes and method of making a filter

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2184999A (en) * 1938-02-24 1939-12-26 Polaroid Corp Light filter
US4536063A (en) * 1982-12-14 1985-08-20 Rockwell International Corporation Transmissive phase retarder
US4595262A (en) * 1984-08-23 1986-06-17 Lockheed Missiles & Space Company, Inc. Tunable birefringent safety goggles for laser beams
US4826286A (en) * 1988-05-06 1989-05-02 Thornton Jr William A Filter with three-band transmission for good seeing
US5382986A (en) * 1992-11-04 1995-01-17 Reliant Laser Corporation Liquid-crystal sunglasses indicating overexposure to UV-radiation
US5774202A (en) * 1993-08-18 1998-06-30 Coloryte Hungary Optikai Kutato, Fejleszto Es Gyarto Reszvenytarsasag Method and optical means for improving or modifying color vision and method for making said optical means
US5571567A (en) * 1993-11-29 1996-11-05 Polygenex International, Inc Dip molded polyurethane film methods
US6096375A (en) * 1993-12-21 2000-08-01 3M Innovative Properties Company Optical polarizer
US5472538A (en) * 1993-12-22 1995-12-05 Sumitomo Chemical Co., Ltd. Process for producing phase retarder film
US5751384A (en) * 1995-05-23 1998-05-12 The Board Of Regents Of The University Of Colorado Color polarizers for polarizing an additive color spectrum along a first axis and it's compliment along a second axis
US6004417A (en) * 1995-12-08 1999-12-21 The Lamson & Sessions Co. Method for coupling conduits using microencapsulatable solvent adhesive composition
US6156433A (en) * 1996-01-26 2000-12-05 Dai Nippon Printing Co., Ltd. Electrode for plasma display panel and process for producing the same
US5888603A (en) * 1996-04-24 1999-03-30 Fergason; James L. Stacked films birefringent device and method of making same
US5990996A (en) * 1996-05-14 1999-11-23 Colorlink, Inc. Color selective light modulators employing birefringent stacks
US6334680B1 (en) * 1998-02-23 2002-01-01 Optimieyes Limited Partnership Polarized lens with oxide additive
US6638583B1 (en) * 2000-03-16 2003-10-28 Colorlink, Inc. Method and apparatus for laminating stacks of polycarbonate films
US20040114242A1 (en) * 2002-09-06 2004-06-17 Sharp Gary D. Filter for enhancing vision and/or protecting the eyes and method of making a filter
US7106509B2 (en) * 2002-09-06 2006-09-12 Colorlink, Inc. Filter for enhancing vision and/or protecting the eyes and method of making a filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929384B1 (en) * 2008-02-22 2009-12-02 삼성정밀화학 주식회사 Polarizing plate of multi-layered polarizing film structure with improved dichroic ratio and liquid crystal display device having the same
US8547635B2 (en) 2010-01-22 2013-10-01 Oakley, Inc. Lenses for 3D eyewear
WO2016161007A1 (en) * 2015-03-30 2016-10-06 Reald Inc. Optical eyewear with reduced reflectivity for scattered light
WO2017070552A1 (en) * 2015-10-23 2017-04-27 Sharp Gary D Optical filter with color enhancement
US9933636B2 (en) 2015-10-23 2018-04-03 Gary D. Sharp Optical filter with color enhancement
AU2016342348B2 (en) * 2015-10-23 2019-04-11 Gary Sharp Innovations, Inc. Optical filter with color enhancement
US10502981B2 (en) 2015-10-23 2019-12-10 Gary Sharp Innovations, Llc Optical filter with color enhancement

Also Published As

Publication number Publication date
US20040114242A1 (en) 2004-06-17
US7106509B2 (en) 2006-09-12

Similar Documents

Publication Publication Date Title
US7106509B2 (en) Filter for enhancing vision and/or protecting the eyes and method of making a filter
CN108474886B (en) Optical filter with color enhancement
US10962806B2 (en) Blue edge filter optical lens
US10642071B2 (en) Tinted polarized lenses having selective frequency filtering
US10054803B2 (en) Filters to enhance color discrimination for color vision deficient individuals
US8210678B1 (en) Multiband contrast-enhancing light filter and polarized sunglass lens comprising same
CN110892309B (en) Wide-angle variable neutral density filter
WO2016118193A1 (en) Ophthalmic spectacle lenses, materials and method
US11892714B2 (en) Using binocular rivalry for expanding color perception
US11934046B2 (en) Laser protection eyewear lenses
US7397604B2 (en) Narrow bandpass filter assemblies for solar telescopes
EP3141936B1 (en) 3d lens with reduced back reflectance
EP4300143A1 (en) Polarized lens with color enhancing properties
CN117501169A (en) Ophthalmic article

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION