US20060286343A1 - Tufted fibrous web - Google Patents

Tufted fibrous web Download PDF

Info

Publication number
US20060286343A1
US20060286343A1 US11/156,020 US15602005A US2006286343A1 US 20060286343 A1 US20060286343 A1 US 20060286343A1 US 15602005 A US15602005 A US 15602005A US 2006286343 A1 US2006286343 A1 US 2006286343A1
Authority
US
United States
Prior art keywords
web
fibers
roll
fibrous web
tufted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/156,020
Other versions
US7682686B2 (en
Inventor
John Curro
Douglas Benson
Daniel Peck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/737,430 external-priority patent/US7410683B2/en
Priority claimed from US10/737,306 external-priority patent/US7553532B2/en
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US11/156,020 priority Critical patent/US7682686B2/en
Assigned to PROCTER & GAMBLE COMPANY, THE reassignment PROCTER & GAMBLE COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENSON, DOUGLAS HERRIN, PECK, DANIEL CHARLES, CURRO, JOHN JOSEPH
Publication of US20060286343A1 publication Critical patent/US20060286343A1/en
Application granted granted Critical
Publication of US7682686B2 publication Critical patent/US7682686B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • A61F13/51104Topsheet, i.e. the permeable cover or layer facing the skin the top sheet having a three-dimensional cross-section, e.g. corrugations, embossments, recesses or projections
    • A61F13/51108Topsheet, i.e. the permeable cover or layer facing the skin the top sheet having a three-dimensional cross-section, e.g. corrugations, embossments, recesses or projections the top sheet having corrugations or embossments having one axis relatively longer than the other axis, e.g. forming channels or grooves in a longitudinal direction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • A61F13/5116Topsheet, i.e. the permeable cover or layer facing the skin being formed of multiple layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • A61F13/51474Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by its structure
    • A61F13/51476Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by its structure being three-dimensional, e.g. embossed, textured, pleated, or with three-dimensional features, like gathers or loops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H11/00Non-woven pile fabrics
    • D04H11/08Non-woven pile fabrics formed by creation of a pile on at least one surface of a non-woven fabric without addition of pile-forming material, e.g. by needling, by differential shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/12Conjugate fibres, e.g. core/sheath or side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2459/00Nets, e.g. camouflage nets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • B32B2555/02Diapers or napkins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5416Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sea-island
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24281Struck out portion type
    • Y10T428/24289Embedded or interlocked
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24595Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness and varying density
    • Y10T428/24603Fiber containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet

Definitions

  • This invention relates to fibrous webs such as woven and nonwoven webs.
  • this invention relates to fibrous webs treated by mechanical formation to have increased softness or bulk properties.
  • Fibrous webs are well known in the art.
  • woven webs such as textile and knit fabrics are well known as material for clothing, upholstery, drapes, and the like.
  • nonwoven webs such as webs formed from polymer fibers are well known as materials useful for disposable products such as facing layers on absorbent articles such as diapers, for example.
  • a fibrous web having a first surface and a second surface is disclosed.
  • the fibrous web has a first region and at least one discrete second region, the second region being a discontinuity on the second surface and being a tuft comprising a plurality of tufted fibers extending from the first surface.
  • the tufted fibers define a distal portion, the distal portion comprising portions of the tufted fibers being bonded together. Bonding can be thermal melt-bonding.
  • the second surface of the web can have non-intersecting or substantially continuous bonded regions, which also can be thermal melt-bonding.
  • FIG. 1 is a schematic representation of an apparatus for making a web of the present invention.
  • FIG. 2 is an enlarged view of a portion of the apparatus shown in FIG. 1 .
  • FIG. 3 is a partial perspective view of a tufted web.
  • FIG. 4 is an enlarged portion of the web shown in FIG. 3 .
  • FIG. 5 is a cross-sectional view of a portion of the web shown in FIG. 4 .
  • FIG. 6 is a plan view of a portion of the web shown in FIG. 5 .
  • FIG. 7 is a cross-sectional depiction of a portion of the apparatus shown in FIG. 2 .
  • FIG. 8 is a perspective view of a portion of the apparatus for forming one embodiment the web of the present invention.
  • FIG. 9 is an enlarged perspective view of a portion of the apparatus for forming the web of the present invention.
  • FIG. 10 is a photomicrograph of a portion of a web of the present invention.
  • FIG. 11 is a photomicrograph of a portion of a web of the present invention.
  • FIG. 12 is a partial perspective view of a tufted web having melt-bonded portions of tufts.
  • FIG. 13 is an enlarged portion of the web shown in FIG. 12 .
  • FIG. 14 is a plan view of a portion of a web of the present invention.
  • FIG. 15 is a cross-sectional view of a portion of the web shown in FIG. 14 .
  • FIGS. 16-18 are schematic representations of cross-sections of tufts of multi-layer webs of the present invention.
  • FIG. 19 is a partial cut away plan view of a sanitary napkin of the present invention.
  • FIG. 20 is a partial cut away perspective view of a tampon of the present invention.
  • a web 1 of the present invention will be described with respect to a preferred method and apparatus of making.
  • a preferred apparatus 150 of the present invention is shown schematically in FIG. 1 .
  • web 1 can be formed from a generally planar, two dimensional nonwoven precursor web 20 having a first surface 12 and a second surface 14 .
  • Precursor web 20 can be can be, for example, a polymer film, a nonwoven web, a woven fabric, a paper web, a tissue paper web, or a knitted fabric.
  • the precursor web can comprise unbonded fibers, entangled fibers, tow fibers, or the like, as is known in the art for nonwoven webs.
  • Fibers can be. extensible and/or elastic, and may be pre-stretched for processing by apparatus 150 .
  • Fibers of precursor web 20 can be continuous, as those produced by spunbonded methods, or cut to length, such as those typically utilized in a carded process.
  • Fibers can be absorbent, and can include fibrous absorbent gelling materials (fibrous AGM). Fibers can be bicomponent, multiconstituent, shaped, crimped, or in any other formulation or configuration known in the art for nonwoven webs and fibers.
  • Precursor web 20 can be a composite or a laminate of two or more precursor webs, and can comprise, for example, two or more nonwoven webs or a combination of polymer films, nonwoven webs, woven fabrics, paper webs, tissue webs, or knitted fabrics.
  • Precursor web 20 can be supplied from a supply roll 152 (or supply rolls, as needed for multiple web laminates) or any other supply means, such as festooned webs, as is known in the art.
  • precursor web 20 can be supplied directly from a web making apparatus, such as a nonwoven web-making production line.
  • Precursor web 20 is moved in a machine direction (MD) for forming by apparatus 150 into web 1 of the present invention.
  • Machine direction (MD) refers to the direction of travel for precursor web 20 as is commonly known in the art of making or processing web materials.
  • cross machine direction (CD) refers to a direction perpendicular to the MD, in the plane of precursor web 1 .
  • First surface 12 corresponds to first side of precursor web 20 , as well as the first side of web 1 .
  • Second surface 14 corresponds to the second side of precursor web 20 , as well of web 1 .
  • side is used herein in the common usage of the term to describe the two major surfaces of generally two-dimensional webs, such as paper and films.
  • first surface 12 of the web 1 is the first side of one of the outermost webs
  • second surface 14 is the second side of the other outermost web.
  • precursor web (or webs) 20 is a nonwoven web and is comprised of substantially randomly oriented fibers, that is, randomly oriented at least with respect to the MD and CD.
  • substantially randomly oriented is meant random orientation that, due to processing conditions, may exhibit a higher amount of fibers oriented in the MD than the CD, or vice-versa.
  • spunbonding and meltblowing processes continuous strands of fibers are deposited in a random orientation on a support moving in the MD.
  • Such webs can be produced by processes that combine lapping webs at the desired angle, and, if desired carding the web into a finished web.
  • a web having a high percentage of fibers having a predetermined angle can statistically bias more fibers to be formed into tufts in web 1 , as discussed more fully below.
  • Nonwoven precursor webs 20 can be any known nonwoven webs comprising polymer fibers having sufficient elongation properties to be formed into web 1 as described more fully below.
  • the polymeric fibers can be bondable, either by chemical bond, i.e., by latex or adhesive bonding, pressure bonding, or thermal bonding. If thermal bonding techniques are used in the bonding process described below, a certain percentage of thermoplastic material, such as thermoplastic powder or fibers can be utilized as necessary to facilitate thermal bonding of portions of fibers in the web, as discussed more fully below.
  • Nonwoven precursor web 20 can comprise 100% by weight thermoplastic fibers, but it can comprise as low as 10% by weight thermoplastic fibers. Likewise, nonwoven precursor web 20 can comprise any amount by weight thermoplastic fibers in 1% increments between about 10% and 100%.
  • nonwoven web refers to a web having a structure of individual fibers or threads which are interlaid, but not in a repeating pattern as in a woven or knitted fabric, which do not have randomly oriented fibers.
  • Nonwoven webs or fabrics have been formed from many known processes, such as, for example, air laying processes, meltblowing processes, spunbonding processes, hydroentangling processes, spunlacing processes, and bonded carded web processes.
  • multi-layer webs such as spunbond-meltblown-spunbond (SMS) webs and the like (e.g., SMMS, SSMS) made by multiple beam spunbond processes, can be utilized. It is not necessary that each component (i.e., the spunbond or meltblown components) be the same polymer. Therefore, in an SMS web, it is not necessary that the spunbond and the meltblown layers comprise the same polymer.
  • SMS spunbond-meltblown-spunbond
  • the basis weight of nonwoven fabrics is usually expressed in grams per square meter (gsm) (or equivalent, such as oz/sq yard) and the fiber diameters are usually expressed in microns. Fiber size can also be expressed in denier.
  • the total basis weight of precursor web 20 (including laminate or multi-layer precursor webs 20 ) can range from 8 gsm to 500 gsm, depending on the ultimate use of the web 1 , and can be produced in 1 gsm increments between 8 and 500 gsm.
  • a basis weight of precursor web 20 of between 25 gsm and 100 gsm may be appropriate.
  • a basis weight of between 125 gsm and 250 gsm may be appropriate.
  • a basis weight of between 350 gsm and 500 gsm may be appropriate (pleated and ganged, if necessary to increase effective surface area).
  • HEPA High Efficiency Particulate Air
  • the constituent fibers of nonwoven precursor web 20 can be polymer fibers, and can be monocomponent, bicomponent and/or biconstituent fibers, hollow fibers, non-round fibers (e.g., shaped (e.g., trilobal) fibers or capillary channel fibers), and can have major cross-sectional dimensions (e.g., diameter for round fibers, long axis for elliptical shaped fibers, longest straight line dimension for irregular shapes) ranging from 0.1-500 microns in 1 micron increments.
  • major cross-sectional dimensions e.g., diameter for round fibers, long axis for elliptical shaped fibers, longest straight line dimension for irregular shapes
  • spunbond fibers is used in its conventional meaning, and refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced.
  • Spunbond fibers are generally not tacky when they are deposited on a collecting surface.
  • Spunbond fibers are generally continuous and have average diameters (from a sample of at least 10) larger than 7 microns, and more particularly, between about 10 and 40 microns.
  • meltblowing is used in its conventional meaning, and refers to a process in which fibers are formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually heated, gas (for example air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface, often while still tacky, to form a web of randomly dispersed meltblown fibers. Meltblown fibers are microfibers which may be continuous or discontinuous and are generally smaller than 10 microns in average diameter.
  • polymer is used in its conventional meaning, and generally includes, but is not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc., and blends and modifications thereof.
  • polymer includes all possible geometric configurations of the material. The configurations include, but are not limited to, isotactic, atactic, syndiotactic, and random symmetries.
  • any of the known polymer types can be utilized in the present invention, for example, polyolefinic polymers such as polypropylene or polyethylene can be used either as monocomponent fibers or bicomponent fibers.
  • other polymers such as PVA, PET polyesters, metallocene catalyst elastomers, and blends thereof can be used, any or all of which polymers can be cross linked if desired.
  • the term “monocomponent” fiber is used in its conventional meaning, and refers to a fiber formed from one or more extruders using only one polymer. This is not meant to exclude fibers formed from one polymer to which small amounts of additives have been added for coloration, antistatic properties, lubrication, hydrophilicity, etc. These additives, for example titanium dioxide for coloration, are generally present in an amount less than about 5 weight percent and more typically about 2 weight percent.
  • bicomponent fibers is used in its conventional meaning, and refers to fibers which have been formed from at least two different polymers extruded from separate extruders but spun together to form one fiber.
  • Bicomponent fibers are also sometimes referred to as conjugate fibers or multicomponent fibers.
  • the polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the bicomponent fibers and extend continuously along the length of the bicomponent fibers.
  • bicomponent fiber may be, for example, a sheath/core arrangement wherein one polymer (such as polypropylene) is surrounded by another (such as polyethylene), or may be a side-by-side arrangement, a pie arrangement, or an “islands-in-the-sea” arrangement, each as is known in the art of multicomponent, including bicomponent, fibers.
  • Fibers including bicomponent fibers, can be splittable fibers, such fibers being capable of being split lengthwise before or during processing into multiple fibers each having a smaller cross-sectional dimension than the original bicomponent fiber. Splittable fibers have been shown to produce softer nonwoven webs due to their reduced cross-sectional dimensions. Fibers can be nanofibers, i.e., fibers having a diameter in the sub-micron range up to and including the low micron range.
  • biconstituent fibers is used in its conventional meaning, and refers to fibers which have been formed from at least two polymers extruded from the same extruder as a blend. Biconstituent fibers do not have the various polymer components arranged in relatively constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils which start and end at random. Biconstituent fibers are sometimes also referred to as multiconstituent fibers.
  • non-round fibers is used in its conventional meaning, and describes fibers having a non-round cross-section, and include “shaped fibers” and “capillary channel fibers.”
  • Such fibers can be solid or hollow, and they can be tri-lobal, delta-shaped, and are preferably fibers having longitudinally-extending grooves that serve as capillary channels on their outer surfaces.
  • the capillary channels can be of various cross-sectional shapes such as “U-shaped”, “H-shaped”, “C-shaped” and “V-shaped”.
  • One preferred capillary channel fiber is T-401, designated as 4DG fiber available from Fiber Innovation Technologies, Johnson City, Tenn.
  • T401 fiber is a polyethylene terephthalate (PET polyester).
  • Precursor web 20 can be provided either directly from a web making process or indirectly from a supply roll 152 , as shown in FIG. 1 .
  • Precursor web 20 can be preheated by means known in the art, such as by heating over oil-heated rollers.
  • Precursor web 20 can be pre-printed with indicia, designs, logos, or other visible or invisible print pattern. For example, designs and colors can be printed by means known in the art, such as by ink-jet printing, gravure printing, or offset printing, to change the color of at least portions of precursor web 20 .
  • precursor web 20 can be treated with coatings, such as with surfactants, lotions, adhesives, and the like. Treating precursor web 20 can be achieved by means known in the art such as by spraying, slot coating, extruding, or otherwise applying coatings to one or both surfaces.
  • Supply roll 152 rotates in the direction indicated by the arrow as precursor web 20 is moved in the machine direction over roller 154 and to the nip 116 of a first set of counter-rotating intermeshing rolls 102 A and 104 .
  • Rolls 102 A and 104 are the first set of intermeshing rollers of apparatus 150 .
  • the first set of intermeshing rolls 102 A and 104 operate to form tufts in web 1 , to make tufted precursor web 21 . Intermeshing rolls 102 A and 104 are more clearly shown in FIG. 2 .
  • FIG. 2 there is shown in more detail the portion of apparatus 150 for making tufts on tufted precursor web 21 of the present invention.
  • This portion of apparatus 150 is shown as nip rollers 100 in FIG. 2 , and comprises a pair of steel intermeshing rolls 102 and 104 (corresponding to rolls 102 A and 104 , respectively, in FIG. 1 ), each rotating about an axis A, the axes A being parallel in the same plane.
  • the apparatus 150 is designed such that precursor web 20 remains on roll 104 through a certain angle of rotation
  • FIG. 2 shows in principle what happens as precursor web 20 goes through nip 116 on apparatus 150 an exits as tufted precursor web 21 . Therefore, while FIG.
  • tufted precursor web 21 coming straight out of nip 116
  • apparatus 150 tufted precursor web 21 can continue on roll 104 through a predetermined angle of rotation such that the tufts remain resting over, and “fitted” onto, teeth 110 of roll 104 .
  • Roll 102 comprises a plurality of ridges 106 and corresponding grooves 108 which can extend unbroken about the entire circumference of roll 102 .
  • roll 102 (and, likewise, roll 102 A) can comprise ridges 106 wherein portions have been removed, such as by etching, milling or other machining processes, such that some or all of ridges 106 are not circumferentially continuous, but have breaks or gaps.
  • the breaks or gaps can be arranged to form a pattern, including simple geometric patters such as circles or diamonds, but also including complex patterns such as logos and trademarks.
  • roll 102 can have teeth, similar to the teeth on roll 104 , described more fully below.
  • tufts on both sides of tufted precursor web 21 .
  • various out-of-plane macro-areas of tufts of web 21 can be made, including macro-patterns depicting logos and/or designs.
  • Roll 104 is similar to roll 102 , but rather than having ridges that can extend unbroken about the entire circumference, roll 104 comprises a plurality of rows of circumferentially-extending ridges that have been modified to be rows of circumferentially-spaced teeth 110 that extend in spaced relationship about at least a portion of roll 104 .
  • the individual rows of teeth 110 of roll 104 are separated by corresponding grooves 112 .
  • rolls 102 and 104 intermesh such that the ridges 106 of roll 102 extend into the grooves 112 of roll 104 and the teeth 110 of roll 104 extend into the grooves 108 of roll 102 .
  • the intermeshing is shown in greater detail in the cross sectional representation of FIG. 7 , discussed below. Both or either of rolls 102 and 104 can be heated by means known in the art such as by using hot oil filled rollers or electrically-heated rollers.
  • tufted precursor web 21 has a first region 2 defined on both sides of tufted precursor web 21 by the generally planar, two-dimensional configuration of the precursor web 20 , and a plurality of discrete second regions 4 defined by spaced-apart tufts 6 and discontinuities 16 which can result from integral extensions of the fibers of the precursor web 20 .
  • the structure of second regions 4 is differentiated depending on which side of tufted precursor web 21 is considered. For the embodiment of tufted precursor web 21 shown in FIG.
  • second regions 4 comprise tufts 6 , and each tuft 6 can comprise a plurality of tufted, looped, aligned fibers 8 extending outwardly from first surface 12 .
  • Tufts 6 comprise tufts of fibers having a significant orientation in the Z-direction, and each tuft 6 has a base 5 proximal to the first surface 12 , and a distal portion 3 at a maximum distance in the Z-direction from the first surface 12 .
  • second region 4 comprises discontinuities 16 which are defined by fiber orientation discontinuities 16 on the second surface 14 of tufted precursor web 21 , the discontinuities 16 corresponding to the locations where teeth 110 of roll 104 penetrated precursor web 20 .
  • the tufts 6 not comprise looped or aligned fibers.
  • the term “integral” as in “integral extension” when used of the second regions 4 refers to fibers of the second regions 4 having originated from the fibers of the precursor web 20 . Therefore, the looped fibers 8 of tufts 6 , for example, can be plastically deformed and/or extended fibers of the precursor web 20 , and can be, therefore, integral with first regions 2 of tufted precursor web 21 . As used herein, “integral” is to be distinguished from fibers introduced to or added to a separate precursor web for the purpose of making tufts, as is commonly done in conventional carpet making, for example. While some embodiments of web 1 of the present invention may utilize such added fibers, in a preferred embodiment, fibers of tufts 6 are integral to web 1 .
  • a suitable precursor web 20 for a web 1 of the present invention having looped fibers in tufts 6 should comprise fibers capable of experiencing sufficient fiber mobility and/or plastic deformation and tensile elongation such that looped fibers 8 are formed.
  • a certain percentage of fibers urged out of the plane of the first surface 12 of precursor web 20 will not form a loop, but instead will break and form loose ends.
  • Such fibers are shown as loose fiber ends 18 in FIGS. 4 and 5 .
  • Loose fiber ends 18 are not necessarily undesirable for the present invention, but it is believed that web 1 can retain its bulky and soft character more readily when tuft 6 comprises primarily looped fibers 8 .
  • at least 50%, more preferably at least 70% and more preferably at least 90% of the fibers urged in the Z-direction are looped fibers 8 .
  • a representative tuft 6 for the embodiment of tufted precursor web 21 shown in FIG. 2 is shown in a further enlarged view in FIGS. 3-6 .
  • the representative tuft 6 is of the type formed on an elongated tooth 110 on roll 104 , such that the tuft 6 comprises a plurality of looped fibers 8 that are substantially aligned such that tuft 6 has a distinct longitudinal orientation and a longitudinal axis L.
  • Tufts 6 also have a transverse axis T generally orthogonal to longitudinal axis L in the MD-CD plane.
  • longitudinal axis L is parallel to the MD.
  • all the spaced apart tufts 6 have generally parallel longitudinal axes L. While in preferred embodiments tufts 6 will have a longitudinal orientation, in some embodiments such an orientation may not be present. For example, if teeth 110 on roll 104 have a length on the tufts 6 may not display any longitudinal orientation.
  • the number of tufts 6 per unit area of tufted precursor web 21 i.e., the area density of tufts 6
  • the number of tufts 6 per unit area of tufted precursor web 21 can be varied from 1 tuft 6 per square centimeter to as high as 30 tufts 6 per square centimeter. There can be at least 10, or at least 20 tufts 6 per square centimeter, depending on the end use. In general, the area density need not be uniform across the entire area of precursor web 21 , but tufts 6 can be only in certain regions of tufted precursor web 21 , such as in regions having predetermined shapes, such as lines, stripes, bands, circles, and the like.
  • one characteristic of the fibers 8 of tufts 6 in one embodiment of tufted precursor web 21 is the predominant directional alignment of the looped fibers 8 .
  • many of looped fibers 8 can have a substantially uniform alignment with respect to transverse axis T when viewed in plan view, such as in FIG. 6 .
  • looped fibers 8 is meant that fibers 8 begin and end in tufted precursor web 21 .
  • looped fibers 8 of tufts 6 are generally oriented such that, if viewed in plan view as in FIG. 6 , the looped fibers 8 have a significant vector component parallel to the transverse axis T, and preferably a major vector component parallel to the transverse axis T.
  • a looped fiber 8 oriented at an angle of greater than 45 degrees from the longitudinal axis L when viewed in plan view, as in FIG. 6 has a significant vector component parallel to the transverse axis T.
  • fibers 8 of tuft 6 has a major vector component parallel to the transverse axis T.
  • at least 50%, more preferably at least 70%, and more preferably at least 90% of fibers 8 of tuft 6 have a significant, and more preferably, a major, vector component parallel to transverse axis T.
  • Fiber orientation can be determined by use of magnifying means if necessary, such as a microscope fitted with a suitable measurement scale. In general, for a non-linear segment of fiber viewed in plan view, a straight-line approximation for both longitudinal axis L and the looped fibers 8 can be used for determining the angle of looped fibers 8 from longitudinal axis L.
  • the orientation of looped fibers 8 in the tufts 6 of second region 4 is to be contrasted with the fiber composition and orientation of the first region 2 , which, for nonwoven precursor webs 20 is best described as having a substantially randomly-oriented fiber alignment.
  • the orientation of the looped fibers 8 in tufts 6 could be the same as described above, but the fibers of second region 2 would have the orientation associated with the particular weaving process used to make the web, e.g., a square weave pattern.
  • the longitudinal axes L of tufts 6 are generally aligned in the MD. Tufts 6 and, therefore, longitudinal axes L, can, in principle, be aligned in any orientation with respect to the MD or CD, with corresponding modifications to rolls 102 A and 104 . Therefore, in general, it can be said that for each tuft 6 , the looped aligned fibers 8 are aligned generally orthogonal to the longitudinal axis L such that they have a significant vector component parallel to transverse axis T, and more preferably a major vector component parallel to transverse axis T.
  • tufts 6 of tufted precursor web 20 are made by mechanically deforming precursor web 20 that can be described as generally planar and two dimensional.
  • planar and two dimensional is meant simply that the web is flat relative to the finished web 1 that has distinct, out-of-plane, Z-direction three-dimensionality imparted due to the formation of second regions 4 .
  • “Planar” and “two-dimensional” are not meant to imply any particular flatness, smoothness or dimensionality.
  • teeth 110 “push” or “punch” through precursor web 20 .
  • the portions of fibers that are oriented predominantly in the CD and across teeth 110 are urged by the teeth 110 out of the plane of precursor web 20 and are stretched, pulled, and/or plastically deformed in the Z-direction, resulting in formation of second region 4 , including the looped fibers 8 of tufts 6 .
  • Fibers that are predominantly oriented generally parallel to the longitudinal axis L, i.e., in the machine direction of precursor web 20 can be simply spread apart by teeth 110 and remain substantially in the first region 2 of precursor web 20 .
  • the apparatus 100 is shown in one configuration having one patterned roll, e.g., roll 104 , and one non-patterned grooved roll 102 .
  • nip 116 it may be preferable to form nip 116 by use of two patterned rolls having either the same or differing patterns, in the same or different corresponding regions of the respective rolls.
  • Such an apparatus can produce webs with tufts 6 protruding from both sides of the tufted web 21 , as well as macro-patterns embossed into the web 21 .
  • the number, spacing, and size of tufts 6 can be varied by changing the number, spacing, and size of teeth 110 and making corresponding dimensional changes as necessary to roll 104 and/or roll 102 .
  • This variation together with the variation possible in precursor webs 20 and the variation in processing, such as line speeds, permits many varied tufted webs 21 to be made for many purposes.
  • tufted web 21 made from a high basis weight hydrophobic fabric having MD and CD extensible threads could be made into a breathable web 1 as further discussed below for use as a breathable yet water repellent covering for hay to improvement of the forage quality of hay (for cattle feed).
  • a tufted web 21 made from a relatively low basis weight nonwoven web of extensible spunbond polymer fibers could be used as a dusting cloth fabric for use in the home, such as to clean furniture, floors or doorknobs.
  • tufted web 21 and web 1 can also be used in disposable absorbent articles such as bandages, wraps, incontinence devices, diapers, sanitary napkins, pantiliners, and hemorrhoid treatment pads.
  • tufts 6 due to the preferred method of forming tufts 6 , as described below, another characteristic of tufts 6 is their generally open structure characterized by open void area 10 defined interiorly of tufts 6 .
  • void area is not meant completely free of any fibers, but is meant as a general description of its general appearance. Therefore, it may be that in some tufts 6 a loose fiber 8 or a plurality of loose fibers 8 may be present in the void area 10 .
  • open void area is meant that the two longitudinal ends of tuft 6 are generally open and free of fibers, such that tuft 6 forms something like a “tunnel” structure, as shown in FIGS. 4 and 5 .
  • the second regions 4 associated with second surface 14 are discontinuities 16 characterized by a generally linear indentation defined by formerly random fibers of the second surface 14 having been urged directionally (i.e., the “Z -direction” as is commonly understood in the nonwoven art to indicate an “out-of-plane” direction generally orthogonal to the MD-CD plane as shown in FIGS. 3-5 ) into tuft 6 by the teeth of the forming structure, described in detail below.
  • discontinuity 16 The abrupt change of orientation exhibited by the previously randomly-oriented fibers of precursor web 20 defines the discontinuity 16 , which exhibits a linearity such that it can be described as having a longitudinal axis generally parallel to longitudinal axis L of the tuft 6 . Due to the nature of many nonwoven webs useful as precursor webs 20 , discontinuity 16 may not be as distinctly noticeable as tufts 6 . For this reason, the discontinuities 16 on the second side of tufted precursor web 21 can go unnoticed and may be generally undetected unless tufted precursor web 21 is closely inspected. Thus in some embodiments, tufted precursor web 21 can have the look and feel of terry cloth on a first side, and a relatively smooth, soft look and feel on a second side. In other embodiments, discontinuities 16 can appear as apertures, and may be apertures through tufted precursor web 21 via the ends of the tunnel-like looped tufts 6 .
  • the second region 4 would appear as a linear discontinuity on the first surface 12 of precursor web 21 , e.g., as if a linear slit or cut had been made at the location of tuft 6 .
  • This linear web discontinuity corresponds directionally to longitudinal axis L.
  • the looped fibers 8 of tuft 6 can originate and extend from either the first surface 12 or the second surface 14 of precursor web 21 .
  • the fibers 8 of tuft 6 can also extend from the interior 19 of precursor web 21 .
  • the fibers 8 of tufts 6 extend due to having been urged out of the generally two-dimensional plane of precursor web 20 (i.e., urged in the “Z -direction” as shown in FIG. 3 ).
  • the fibers 8 or 18 of the second regions 4 comprise fibers that are integral with and extend from the fibers of the fibrous web first regions 2 .
  • the extension of looped fibers 8 can be accompanied by a general reduction in fiber cross sectional dimension (e.g., diameter for round fibers) due to plastic deformation of the fibers and the effects of Poisson's ratio. Therefore, portions of the fibers 8 of tufts 6 can have an average fiber diameter less than the average fiber diameter of the fibers of precursor web 20 as well as the fibers of first regions 2 . It has been found that the reduction in fiber cross-sectional dimension is greatest intermediate the base 5 and the distal portion 3 of tufts 6 .
  • FIG. 7 shows in cross section a portion of the intermeshing rolls 102 (and 102 A and 102 B, discussed below) and 104 including ridges 106 and teeth 110 .
  • teeth 110 have a tooth height TH (note that TH can also be applied to ridge 106 height; in a preferred embodiment tooth height and ridge height are equal), and a tooth-to-tooth spacing (or ridge-to-ridge spacing) referred to as the pitch P.
  • depth of engagement, (DOE) E is a measure of the level of intermeshing of rolls 102 and 104 and is measured from tip of ridge 106 to tip of tooth 110 .
  • the depth of engagement E, tooth height TH, and pitch P can be varied as desired depending on the properties of precursor web 20 and the desired characteristics of web 1 of the present invention. For example, in general, to obtain looped fibers in tuft 6 , the greater the level of engagement E, the greater the necessary fiber mobility and/or elongation characteristics the fibers of precursor web 20 must possess. Also, the greater the density of second regions 4 desired (second regions 4 per unit area of web 1 ), the smaller the pitch should be, and the smaller the tooth length TL and tooth distance TD should be, as described below.
  • FIG. 8 shows a portion of one embodiment of a roll 104 having a plurality of teeth 110 useful for making a tufted precursor web 21 or web 1 of spunbond nonwoven material from a spunbond nonwoven precursor web 20 having a basis weight of between about 60 gsm and 100 gsm, preferably about 70 gsm, or 80 gsm or 90 gsm.
  • An enlarged view of teeth 110 shown in FIG. 8 is shown in FIG. 9 .
  • teeth 110 have a uniform circumferential length dimension TL of about 1.25 mm measured generally from the leading edge LE to the trailing edge TE at the tooth tip 111 , and are uniformly spaced from one another circumferentially by a distance TD of about 1.5 mm.
  • teeth 110 of roll 104 can have a length TL ranging from about 0.5 mm to about 3 mm and a spacing TD from about 0.5 mm to about 3 mm, a tooth height TH ranging from about 0.5 mm to about 10 mm, and a pitch P between about 1 mm (0.040 inches) and 2.54 mm (0.100 inches).
  • Depth of engagement E can be from about 0.5 mm to about 5 mm (up to a maximum approaching the tooth height TH).
  • E, P, TH, TD and TL can each be varied independently of each other to achieve a desired size, spacing, and area density of tufts 6 (number of tufts 6 per unit area of web 1 ).
  • each tooth 110 has a tip 111 , a leading edge LE and a trailing edge TE.
  • the tooth tip 111 can be rounded to minimize fiber breakage and is preferably elongated and has a generally longitudinal orientation, corresponding to the longitudinal axes L of second regions 4 . It is believed that to get the tufts 6 of the web 1 that can be described as being tufted, the LE and TE should be very nearly orthogonal to the local peripheral surface 120 of roll 104 . As well, the transition from the tip 111 and the LE or TE should be a relatively sharp angle, such as a right angle, having a sufficiently small radius of curvature such that, in use the teeth 110 push through precursor web 20 at the LE and TE.
  • teeth 110 have been described in a preferred embodiment of being elongated, it is recognized that teeth 110 need not be elongated to produce a tufted web 1 .
  • the tooth length TL can be generally equal to the tooth width, which can be varied depending upon the desired pitch P, for example.
  • Such teeth can have an aspect ratio of tooth length to tooth width of 1:1, and can be described as having a generally square or round cross section.
  • the size, shape, orientation and spacing of the teeth 110 can be varied about the circumference and width of roll 104 to provide for varied web 1 properties and characteristics.
  • teeth 110 can be elongated and oriented at an angle from the MD, and can even be placed such that the length dimension of tooth length TL is oriented parallel to the CD on roll 104 .
  • FIGS. 10 and 11 show representative tufts 6 in tufted precursor webs 21 made from the same material with the same process conditions, the only difference being the rotational speed of the rolls 102 and 104 , i.e., line speed (in units of length/time) of the precursor web 20 being processed into tufted precursor webs 21 .
  • the web shown in FIG. 10 was processed through the nip 116 of rolls 102 and 104 having a depth of engagement E of about 3.4 mm (about 0.135 inch), a pitch P of about 1.5 mm (about 0.060 inch), a tooth height TH, of about 3.7 mm (about 0.145 inch), a tooth distance of TD of 1.6 mm (abut 0.063 inch), and a tooth length of TL of about 1.25 mm (about 0.050 inch).
  • the web was run at a line speed of about 15 meters/minute (about 50 feet per minute).
  • the web shown in FIG. 11 is identical to the web shown in FIG. 10 , and was processed under identical conditions except for the line speed, which was about 150 meters per minute (about 500 feet per minute).
  • the tufts 6 shown are noticeably different.
  • the tuft 6 shown in FIG. 10 is similar in structure to the tufts shown in FIGS. 2-6 . That is, it exhibits substantially aligned, looped fibers 8 with very few broken fibers, e.g., fibers 18 as shown in FIG. 5 .
  • the tufts 6 shown in FIG. 1 1 exhibits a very different structure, a structure that appears to be typical of some spunbond nonwoven materials processed to form tufts 6 at relatively high speeds. It is believed that such a structure is typical of highly-bonded spunbond nonwoven materials, such that the high percentage of bonded area inhibits fiber dislocation and movement during processing.
  • Mat 7 comprises and is supported at the top of tufts 6 by unbroken, looped fibers 8 , and also comprises portions of broken fibers 11 that are no longer integral with precursor web 20 . That is, mat 7 comprises fiber portions which were formerly integral with precursor web 20 but which are completely detached from precursor web 20 after processing at sufficiently high line speeds in the process described with reference to FIGS. 1 and 2 .
  • Precursor webs 20 having relatively higher basis weights generally result in tufted precursor webs 21 having relatively more fiber 11 portions in mat 7 .
  • Precursor webs 20 it appears as if most of the fiber content of the precursor web 20 in the immediate vicinity of a tooth tip 110 during manufacture is simply displaced in the Z-direction to the distal portion 3 of tufts 6 , resulting in mat 7 .
  • Fiber-to-fiber mobility can be increased by reducing or eliminating the fiber-to-fiber bonds in precursor web 20 .
  • Thermal bonds can be completely eliminated or significantly reduced in a nonwoven intentional under-bonding in the heated calendar bonding process. This under-bonding may be achieved via lowering of the surface temperature of the heated calendar to less than optimal conditions, and/or use of lower bonding pressures. When such underbonding is performed correctly, most or all fibers are able to detach from the under-bonded site when the nonwoven is subjected to subsequent mechanical strain without significant breakage of fibers. This underbonding increases fiber-to-fiber mobility and permits greater nonwoven extensibility without premature rupture of fibers.
  • a hydroentangled web can be preferably less entangled to increase fiber-to-fiber mobility.
  • lubricating it prior to processing as disclosed herein can also increase fiber-to-fiber mobility by the reduction of coefficient of friction.
  • a mineral oil lubricant can be applied to precursor web 20 prior to it entering the nip 116 of rolls 102 and 104 .
  • Other suitable lubricants or topical treatments applied to the precursor web 20 to increase fiber-to-fiber mobility include, but are not limited to, water, surfactants, silicone containing materials, fiber finishes, fluoropolymers, and combinations thereof.
  • Another way of increasing the fiber-to-fiber mobility is to add a melt additive to the polymer.
  • Suitable melt additives include, but are not limited to, silicones, zinc stearate, magnesium stearate, fatty acid amides, fluoropolymers, polyethylene waxes, mineral fillers, polyethylene glycol oleiyl ethers, and other additives known to modify the coefficient of friction.
  • Bonding roll 156 can facilitate a number of bonding techniques.
  • bonding roll 156 can be a heated steel roller for imparting thermal energy in nip 117 , thereby melt-bonding adjacent fibers of tufted web 21 at the distal ends (tips) of tufts 6 .
  • Bonding roll 156 can also facilitate thermal bonding by means of pressure only, or use of heat and pressure.
  • nip 117 can be set at a width sufficient to compress the distal ends of tufts 6 , which at high rates of processing can cause thermal energy transfer to the fibers, which can then reflow and bond.
  • Bonding roll 156 can also be part of a system for applying and/or curing a bonding agent, such as an adhesive or a latex binder, to the distal ends of tufts 6 .
  • bonding roll 156 can be part of a gravure printing system that prints on such a bonding agent.
  • bonding roll 156 can be a smooth, steel surface, or a relatively soft, flexible surface.
  • bonding roll 156 is a heated roll designed to impart sufficient thermal energy to tufted web 21 so as to thermally bond adjacent fibers of the distal ends of tufts 6 .
  • Thermal bonding can be by melt-bonding adjacent fibers directly, or by melting an intermediate thermoplastic agent, such as polyethylene powder, which in turn, adheres adjacent fibers. Polyethylene powder can be added to precursor web 20 for such purposes.
  • First bonding roll 156 can be heated sufficiently to melt or partially melt fibers 8 or 18 at the distal ends 3 of tufts 6 .
  • the amount of heat or heat capacity necessary in first bonding roll 156 depends on the melt properties of the fibers of tufts 6 and the speed of rotation of roll 104 .
  • the amount of heat necessary in first bonding roll 156 also depends on the pressure induced between first bonding roll 156 and tips of teeth 110 on roll 104 , as well as the degree of melting desired at distal ends 3 of tufts 6 .
  • bonding roll 156 can provide sufficient heat and pressure to not only melt bond fibers at the distal ends 3 of tufts 6 , but also cut through the bonded portion so as to, in effect, cut through the end of tuft 6 .
  • the tuft is divided into two portions, but is not longer looped.
  • pressure alone can cause the looped portion of the tuft to be cut through, thereby rendering the tufts 6 to be un-looped tufts of fiber free ends.
  • Other methods known in the art such as use of a spinning wire brush wheel can also be utilized to cut the loops of looped fibers to form un-looped tufts.
  • first bonding roll 156 is a heated steel cylindrical roll, heated to have a surface temperature sufficient to melt-bond adjacent fibers of tufts 6 .
  • First bonding roll can be heated by internal electrical resistance heaters, by hot oil, or by any other means known in the art for making heated rolls.
  • First bonding roll 156 can be driven by suitable motors and linkages as known in the art.
  • first bonding roll can be mounted on an adjustable support such that nip 117 can be accurately adjusted and set.
  • bonding via bonding roll 156 can be combined with application of lotion, pressure sensitive adhesive, ink, paint, or other coatings as desired.
  • heated bonding roll 156 can be a gravure roll that can apply sufficiently high-temperature inks to impart a printed design on tufted precursor web 21 .
  • a lotion suitable for providing a skin benefit can be applied by bonding roll 156 .
  • a key advantage of applying ink or other coatings in this manner is that the coating can be deposited on the distal ends of tufts 6 , thereby conserving the amount of coating necessary to effectively coat one side of web 1 .
  • application of lotions, coatings, inks, and the like can be added without bonding via bonding roll 156 .
  • FIG. 12 shows a portion of tufted precursor web 21 after being processed through nip 117 to be intermediate web 22 , which, without further processing can be a web 1 of the present invention.
  • Intermediate web 22 is similar to tufted precursor web 21 as described earlier, except that the distal ends 3 of tufts 6 are bonded, and are preferably thermally melt-bonded such that adjacent fibers are at least partially bonded to form distally-disposed melt-bonded portions 9 .
  • intermediate web 22 can be made from a precursor web 20 comprising 80 gsm spunbond nonwoven comprising 100% polyethylene/polypropylene (sheath/core) bicomponent fibers.
  • the distal portions 3 of tufts 6 can be heated to thermally join the polyethylene portions of discrete bicomponent fibers such that adjacent fiber portions are joined to one another to form tufts 6 having melt-bonded portions 9 .
  • the distally-disposed melt-bonded portions 9 can be made by application of thermal energy and pressure to the distal portions of tufts 6 .
  • the size and mass of the distally-disposed melt-bonded portions 9 can be modified by modifying the amount of heat energy imparted to the distal portions of tufts 6 , the line speed of apparatus 150 , and the method of heat application.
  • distally-disposed melt-bonded portions 9 can be made by application of radiant heat. That is, in one embodiment bonding roll 156 can be replaced or supplemented by a radiant heat source, such that radiant heat can be directed toward tufted precursor web 21 at a sufficient distance and corresponding sufficient time to cause fiber portions in the distally-disposed portions of tufts 6 to soften or melt. Radiant heat can be applied by any of known radiant heaters. In one embodiment, radiant heat can be provided by a resistance-heated wire disposed in relation to tufted precursor web 21 such that it is extended in the CD direction at a sufficiently-close, uniformly-spaced distance that as the web is moved in relation to the wire, radiant heat energy at least partially melts the distally-disposed portions of tufts 6 . In another embodiment, a heated flat iron, such as a hand-held iron for ironing clothes, can be held adjacent the distal ends 3 of tufts 6 , such that melting is effected by the iron.
  • a heated flat iron such as a hand-held iron for iron
  • the benefit of processing the intermediate web 22 as described above is that the distal ends 3 of tufts 6 can be melted under a certain amount of pressure in nip 117 without compressing or flattening tufts 6 .
  • a three-dimensional web can be produced and set, or “locked in” to shape, so to speak by providing for thermal bonding after forming. Therefore, a substantially unbonded web can be processed by the apparatus 150 to be bonded and formed in a manner that helps ensure the web maintains its three-dimensionality.
  • Such a set three-dimensional web can have desirable stretch or elastic properties, depending upon the type of web material used and the amount of set induced.
  • distally-disposed bonded or melt-bonded portions 9 can aid in maintaining the tufted, lofty structure of tufts 6 when web 1 is subjected to compression or shearing forces.
  • a web 1 processed as disclosed above to have tufts 6 comprising fibers integral with but extending from first region 2 and having distally-disposed melt-bonded portions 9 can have improved shape retention after compression due to winding onto a supply roll and subsequently unwinding.
  • the tufts experience less random collapse upon compression; that is, the entire structure of tufts 6 tends to move together, thereby permitting better shape retention upon a disordering event such as compression and/or shear forces associated with rubbing the surface of the web.
  • a disordering event such as compression and/or shear forces associated with rubbing the surface of the web.
  • the bonded distal ends of tufts 6 can also reduce or eliminate fuzzing or pilling of web 1 .
  • web 1 can have melt-bonded portions that are not, or not only, at distally-disposed portions of tufts 6 .
  • melt-bonded portions that are not, or not only, at distally-disposed portions of tufts 6 .
  • a mating ridged roller instead of a flat, cylindrical roll for bonding roll 156 other portions of the tuft 6 such as at locations intermediate the base 5 and distal end 3 .
  • continuous lines of melt-bonded material could be made on first surface 12 between rows of tufts 6 .
  • first bonding roll 156 there may be more than one bonding roll at this stage of the process, such that bonding takes place in a series of nips 117 and/or involving different types of bonding rolls 156 .
  • similar rolls can be provided to transfer various substances to precursor web 20 or tufted web 21 , such as various surface treatments to impart functional benefits.
  • first side 12 of tufted web 21 or intermediate web 22 can be printed with ink to impart various designs or indicia.
  • Rolls similar to bonding roll 156 can be, for example, gravure printing rolls.
  • first side 12 of tufted web 21 or intermediate web 22 including the distal ends 3 of tufts 6 can be imparted to first side 12 of tufted web 21 or intermediate web 22 including the distal ends 3 of tufts 6 . Additional rolls for such purposes can be placed in apparatus 150 before and/or after bonding roll 156 . Any processes known in the art for such application of treatments can be utilized.
  • substances such as lotions, ink, surfactants, and the like can be sprayed, coated, slot coated, extruded, or otherwise applied to tufted web 21 or intermediate web 22 before or after bonding roll 156 . Any processes known in the art for such application of treatments can be utilized.
  • an additional web can be introduced (not shown in FIG. 1 ) at nip 117 and bonded onto tufted precursor web 21 in nip 117 . That is, an additional web can be supplied from roll stock, for example, and brought in at nip 117 to form a laminate structure, the laminate being bonded between the distal ends 3 of tufts 6 and the additional web. In this manner, a laminate having substantially flat, smooth outer surfaces and having substantial void volume can be produced. In such an embodiment, the tufts 6 are internal and separate the two outer surfaces of the laminate. By using relatively stiff fibers in tufts 6 , such a laminate can be a soft, compression resistant nonwoven composite web.
  • Intermediate web 22 can be taken up on a supply roll for further processing as web 1 of the present invention.
  • intermediate web 22 is further processed by being removed from roll 104 after nip 118 , as depicted in FIG. 1 .
  • Nip 118 is formed between roll 104 and 102 B, with roll 102 B preferably being identical to roll 102 A.
  • the purpose of going around roll 102 B is to remove intermediate web 22 from roll 104 without disturbing the tufts 6 formed thereon. Because roll 102 B intermeshes with roll 104 just as roll 102 A did, tufts 6 can fit into the grooves 108 of roll 102 B as intermediate web 22 is wrapped around roll 102 B.
  • Second bonding roll 158 can be identical in design to first bonding roll 156 . Second bonding roll 158 can provide sufficient heat to at least partially melt a portion of the second surface 14 of intermediate web 22 to form a plurality of non-intersecting, substantially continuous melt-bonded regions 11 corresponding to the nip pressures between the tips of ridges 106 of roll 102 B and the generally flat, smooth surface of roll 158 .
  • Second bonding roll can be used as the only bonding step in the process (i.e., without first having intermediate web 22 formed by bonding the distal ends of tufts 6 ).
  • web 1 would be a tufted web with bonded portions on the second side 14 thereof.
  • web 1 is preferably a double bonded web 1 having bonded distal ends of tufts 6 and a plurality of non-intersecting, substantially continuous melt-bonded regions 11 on second side 14 thereon.
  • second bonding roll 158 can facilitate bonding by chemical bonding, such as by application of adhesive or latex binder materials, or bonding by pressure alone or in combination with heat.
  • second bonding roll 158 is heated roll, heated to a sufficient temperature to melt-bond adjacent fibers of intermediate web 22 as web 22 goes through nip 119 to form double bonded web 23 , which can be web 1 of the present invention.
  • melt-bonded regions 11 can be generally straight, parallel stripes or bands of melt-bonded material. Note that this description is for heated roll 158 .
  • the same structure of bonded regions can be achieved, but it would not, of course, be “melt-bonded”. In general, it is not necessary that a band or stripe of melt-bonded material be disposed between every row of discontinuities 16 (i.e., between every row of tufts 6 ).
  • Second bonding roll 158 can be designed to only make contact in nip 119 at predetermined locations, such that the number and placement of stripes of melt-bonded material 11 can be varied as desired. Additionally, if ridges 106 of roll 104 are discontinuous, the melt-bonded portions can be discontinuous strips or bands of material that can appear, for example, as dashes or dots in the MD orientation.
  • the melt bonded regions 11 can be in rows which may form a type of perforation for tearing or may mechanically weaken the material. Alternatively, it may be desired to only have intermittent or staggered melt bonded regions 1 1 in some webs 1 . This may be desired where strength of the material is important. The intermittent or staggered melt bonded regions 11 can result from staggering the teeth 10 or through other mechanical adjustments.
  • web 1 of the present invention can have melt-bonded regions on the distal ends of tufts 6 as well as stripes or bands of melt-bonded regions 11 on the second surface 14 .
  • Melt-bonded regions 11 may be substantially only surface bonded, or, depending upon the time, pressure, and temperature relationship in nip 119 , can be substantially bonded throughout web 1 to even bond some fibers on first surface 12 .
  • the heat output of second bonding roll 158 can be adjusted to provide the amount of thermal heat transfer necessary to produce the amount of melt-bonding desired in regions 11 .
  • first side 12 of tufted web 21 or intermediate web 22 can be printed with ink to impart various designs or indicia.
  • Rolls similar to bonding roll 156 can be, for example, gravure printing rolls. Additionally, skin care lotions, surfactants, hydrophobic substances, and the like can be imparted to first side 12 of tufted web 21 or intermediate web 22 including the distal ends 3 of tufts 6 . Additional rolls for such purposes can be placed in apparatus 150 before and/or after bonding roll 156 . Any processes known in the art for such application of treatments can be utilized.
  • substances such as lotions, ink, surfactants, and the like can be sprayed, coated, slot coated, extruded, or otherwise applied to tufted web 21 or intermediate web 22 before or after bonding roll 156 . Any processes known in the art for such application of treatments can be utilized.
  • melt-bonded regions on the distal ends of tufts 6 and the melt-bonded regions 11 on the second surface 14 may be opened or formed into an aperture by utilizing a stretching step after the melt-bonded regions are formed.
  • the stretching step can be ring rolling or any other type of stretching. If apertures are desired at the base of a loop, melt-bonded regions 11 on the second surface 14 can be formed and then the web 11 ring rolled.
  • web 1 After web 1 is formed, it can be taken up on a supply roll 160 for storage and further processing as a component in other products.
  • Webs 1 of the present invention offer many opportunities for producing engineered materials having selected characteristics.
  • a web 1 can be made by selecting the length of staple fibers in a carded precursor web 20 so that the probability of having fiber ends exposed in tufts 6 can be statistically predicted.
  • a carded web of staple fibers can be blended or laminated with a spunbond nonwoven web to produce a hybrid, such that the tufts 6 comprise primarily looped spunbond fibers and the first regions 2 comprise both carded and spunbond fibers.
  • the type of fibers, the length of staple fibers, the layering of fibers, and other variations of precursor web 20 can be varied as desired to produce desired functional characteristics of the web 1 .
  • the precursor web can be a nonwoven web having a pattern of discrete thermal point bonds, as is commonly known in the art for nonwoven webs. In general, however, it is desirable to minimize the number and maximize the spacing of bond points so as to allow for maximum fiber mobility and dislocation.
  • an unbonded precursor web 20 can be utilized, provided proper care and technique is used to present the unbonded web to the nip 116 . Proper care and technique can be achieved, for example, by use of a vacuum conveyor belt from fiber laydown to nip 116 .
  • a web fibers can have maximum fiber mobility, and web bonding can occur at first bonding roller 156 to form a stabilized, tufted web.
  • web bonding can occur at first bonding roller 156 to form a stabilized, tufted web.
  • web 1 is disclosed in preferred embodiments as a single layer web made from a single layer precursor web 20 , it is not necessary that it be so.
  • a laminate or composite precursor web 20 having two or more layers or plies can be used.
  • looped aligned fibers 8 for example, formed from a laminate precursor web could be comprised of fibers from one, or both (or all) layers of the laminate.
  • Multilayer webs 1 can have significant advantages over single layer webs 1 .
  • a tuft 6 from a multilayer web 1 using two precursor webs 20 A and 20 B can comprise fibers in a “nested” relationship that “locks” the two precursor webs together, forming a laminate web without the use or need of adhesives or thermal bonding between the layers.
  • multilayer webs can be chosen such that the fibers in the layers do not have equal extensibility.
  • Such webs can produce tufts 6 by pushing fibers from a lower layer up and through an upper layer which contributes few or no fibers to tuft 6 .
  • the upper layer of a laminate web could be a polymer film which is simply “poked through” when processed by the apparatus of the present invention.
  • second bonding roll 158 may be utilized to melt-bond the polymer film to an upper nonwoven layer, for example.
  • additional layers of material, including additional web layers can be joined, such as by bonding, to web 1 by laminating to either side of web 1 .
  • each precursor web can have different material properties, thereby providing web 1 with beneficial properties.
  • web 1 comprising two (or more) precursor webs, e.g., first and second precursor webs 20 A and 20 B can have beneficial fluid handling properties for use as a topsheet on a disposable absorbent article, as described more fully below.
  • first precursor web 20 A can form an upper layer (i.e., a body-contacting when used as a topsheet on a disposable absorbent article) and be comprised of relatively hydrophobic fibers.
  • Second precursor web 20 B can form a lower layer (i.e., disposed between the topsheet and an absorbent core when used on a disposable absorbent article) comprised of relatively hydrophilic fibers.
  • Fluid deposited upon the upper, relatively hydrophobic layer is quickly transported to the lower, relatively hydrophilic, layer.
  • One reason for the observed rapid fluid transport is the capillary structures formed by the generally aligned fibers 8 , 18 of tufts 6 .
  • the fibers 8 , 18 form directionally-aligned capillaries between adjacent fibers, and the capillary action is enhanced by the general convergence of fibers near proximal portion 5 of tufts 6 .
  • a multilayer web 1 can provide for even greater improvement in fluid handling characteristics.
  • web 1 can be oriented so that first surface 12 is oriented facing toward the body of the wearer or away from the body of the wearer.
  • the tufts would be extending toward the skin of the wearer, and in the other embodiment the tufts would extend away from the wearer and toward other components of the disposable absorbent article, or a garment of the wearer.
  • first precursor web 20 A can be comprised of relatively soft fibers (e.g., polyethylene), while second precursor web 20 B can be comprised of relatively stiff fibers (e.g., polyester).
  • first precursor web 20 A can be comprised of relatively soft fibers (e.g., polyethylene)
  • second precursor web 20 B can be comprised of relatively stiff fibers (e.g., polyester).
  • tufts 6 can retain or recover a certain amount of height h as depicted in FIG. 15 , even after applied pressure.
  • the benefit of such as structure, particularly when combined with a hydrophilicity gradient as described above (fibers can be rendered hydrophobic or hydrophilic by means known in the art), is a web 1 suitable for use as a topsheet in feminine hygiene products that provides for superior fluid acquisition and superior rewet properties (i.e., reduced fluid movement back to the surface of the topsheet).
  • the increased stiffness provided by the relatively stiff fibers of second precursor web 20 B provide for increased compression resistant caliper (thickness) of the web, while the relatively soft fibers of first precursor web 20 A provides for softness at the web/skin interface.
  • This extra caliper together with the ability of the distally-disposed portions 3 of tufts 6 to remain relatively fluid free (due to lack of capillarity because adjacent fibers bonded together), results in a superior, soft, dry (and dry-feeling) topsheet for use in feminine hygiene products, as well as baby diapers, adult incontinence articles, bandages, and the like.
  • FIGS. 16-18 show representative schematic diagrams of possible structures for tufts 6 , depending on the material properties of precursor webs 20 A or 20 B. Other structures, not shown, can be achieved, with the only limitation to various structures being the limitations inherent in the material properties of the precursor webs.
  • web 1 of the present invention can exhibit a wide range of physical properties.
  • the web 1 can exhibit a range of texture subjectively experienced as ranging from softness to roughness, an absorbency ranging from non-absorbent to very absorbent, a bulkiness ranging from relatively low bulk to relatively high bulk; a tear strength ranging from low tear strength to high tear strength; an elasticity ranging from non-elastic to at least 100% elastically extensible, a chemical resistance ranging from relatively low resistance to high resistance, depending on the chemical considered, and many other variable parameters generally described as shielding performance, alkali resistance, opacity, wiping performance, water absorptivity, oil absorptivity, moisture permeability, heat insulating properties, weatherability, high strength, high tear force, abrasion resistance, electrostatic controllability, drape, dye-affinity, safety and the like.
  • the dimensions of apparatus 150 can be varied to produce a web 1 having a wide range of dimensions associated with second regions 4 , including the height h (as shown in FIG. 15 ), and spacing, including the area density of discrete tufts 6 .
  • a two-layer laminate web 1 can be produced by the method and apparatus disclosed herein having a heated roll temperature of 275 degrees F. (135 degrees C.) for first and second heated rolls 156 and 158 .
  • the depth of engagement E in nip 116 can be from about 0.070 inches (about 1.8 mm) to about 0.100 inches (2.54 mm) and can be about 0.130 inches (about 3.4 mm).
  • the tooth height TH can be from about 0.070 inches (about 1.8 mm) to about 0.130 inches (about 3.4 mm and the pitch P can be from about 0.060 inches (about 1.5 mm) to about 0.130 inches (about 3.4 mm).
  • the laminate web can be run at a line speed of from about 50 feet per minute (about 15 meters per minute) to about 500 feet per minute (about 150 meters per minute).
  • one layer can be a 45 gsm 50%/50% 6 denier PET/bicomponent thermal point bonded carded web.
  • the PET fibers can be surfactant treated PET, crimped, 2-inch (50 cm) cut length fibers having a round cross-sectional shape, obtained from Wellman, Inc., Charlotte, N.C. under the designation Type 204.
  • the bicomponent fibers can be relatively hydrophilic 6 denier polyethylene/polypropylene crimped, 2-inch cut length bicomponent binder fibers (higher melting polypropylene core/low melting point polyethylene sheath) obtained from Fibervision LB, Atlanta Ga., under the designation Type T425. All percentages refer to weight percent.
  • Another two-layer embodiment of web 1 can be made like the one described above, but having a heated roll temperature of 295 degrees F. (146 degrees C.) for first and second heated rolls 156 and 158 and a line speed of 500 feet per minute (about 152 meters per minute).
  • first precursor web can be a nonwoven and second precursor web a polymer film, such that when tufts 6 are formed, the polymer film forms a cover, or cap over the tuft.
  • precursor web 20 A can be a polymer film, which can be seen to form a cover over the tufted portion of precursor web 20 B.
  • one of the precursor webs can be a paper web, such as a tissue paper web similar to BOUNTY® paper towels sold by The Procter & Gamble Co.
  • a meltblown or spunbond nonwoven web can be laminated to the paper web and processed by apparatus 150 to form a paper/nonwoven composite laminate.
  • the nonwoven web can be pre-heated, or deposited directly onto paper web while in a heated condition.
  • spunbond or meltblown layer of polymeric fibers having a basis weight of between about 3 to about 20 grams per square meter can be applied from one or more beams of an SMS line directly onto a moving web of tissue paper to form a tissue/nonwoven laminate.
  • the tissue/nonwoven laminate can be further laminated with another tissue layer to form a tissue/nonwoven (e.g., meltblown)/tissue and then processed through the nip 116 of apparatus 150 .
  • tissue/nonwoven e.g., meltblown
  • the resulting tufted web has been found to have excellent integrity for wiping applications, for example.
  • a paper web can be utilized as precursor web 20 in which the paper web comprises thermoplastic fibers.
  • thermoplastic fibers can be added in the pulp furnish during the wet stage of papermaking in a sufficient amount to permit thermal bonding of the thermoplastic fibers to give increased integrity to the tufted web 1 .
  • a sufficient amount can be from about 10 to about 20% polymer fibers by weight of cellulosic fibers in a papermaking furnish.
  • FIG. 19 shows in partial cut away plan view a catamenial article, specifically a sanitary napkin, having as one of its components a web 1 of the present invention.
  • sanitary napkin 200 comprises a backsheet 202 , a topsheet 206 and an absorbent core 204 disposed between the topsheet 206 and backsheet 202 which can be joined about a the periphery 210 .
  • Sanitary napkin 200 can have side extensions, commonly referred to as “wings” 208 designed to wrap the sides of the crotch region of the panties of the user of sanitary napkin 200 .
  • Topsheet 206 of sanitary napkin 200 comprises web 1 having tufts 6 on a body facing side thereof.
  • Sanitary napkins including topsheets for use as the body facing surface thereof, are well known in the art and need no detailed description of various alternative and optional designs.
  • Other catamenial articles such as panty liners, interlabial devices, will also have similar structure as sanitary napkins.
  • web 1 can be used as, or as a component of, one or more of a backsheet, absorbent core material, topsheet, secondary topsheet, or wing material.
  • FIG. 20 shows in partial cut away perspective view a catamenial tampon 300 having as one of its components a web 1 of the present invention.
  • tampon 300 comprises a compressed absorbent core 302 and a fluid permeable cover wrap 304 that covers absorbent core 302 .
  • Cover wrap 304 may extend beyond one end of absorbent core 302 to form a skirt portion 306 .
  • a removal means, such as string 308 can be provided to facilitate removal of the tampon after use.
  • Tampons, including cover wraps for use as the body contacting surface thereof, are well known in the art and need no detailed description of various alternative and optional designs.
  • web 1 can be used as, or as a component of, one or more of a cover wrap, absorbent core material, or removal means material.
  • web 1 can be one of the components of a hook and loop fastener, for example.
  • Web 1 can be either the landing zone of such a fastener, or the hook portion of a tape tab designed to engage such a landing zone.
  • the web of the present invention can also be utilized in wiping articles, such as textured body cloths for cleansing and moisturizing the body.
  • a web 1 can be incorporated into a dual textured lathering article for cleansing the body in a shower.
  • the wipe 1 can include a lathering surfactant component which is prepared from the ingredients shown in Table 1 below.
  • the ingredients can be prepared by mixing the cationic polymer with the glycol and surfactants under heat with continuous stirring to avoid lumps.
  • the perfume can be added during cooling.
  • the lathering surfactant component melts upon heating to about 60 degrees C. or more, and solidifies upon cooling to a hard solid.
  • the percentages are weight percentages of the ingredient including water it may contain.
  • Web 1 can be a 25 gsm nonwoven web comprising polypropylene and available from BBA Nonwovens, Simpsonville, S.C., and sold under the trade name Sofspan 200®, processed by the apparatus of the invention to have melt-bonded regions on the distal ends of tufts 6 as well as stripes or bands of melt-bonded regions 11 on the second surface 14 .
  • the web 1 so prepared is sealed to a batting, which is a lofty, airlaid blend of carded fibers (50% PET, 50% PE/PP core-sheath bicomponent) having a basis weight of 65 gsm and a thickness of 2.7 mm, from Libeltex NV, Belgium.
  • the nonwoven web gives a textured feel and increased stability during use to the article.
  • the lathering surfactant component can be heated until liquid, and slot coated in 3 rows between the nonwoven and airlaid layers at a rate of 4 grams per finished article.
  • the layers can be sealed using an ultrasonic sealer such as a Branson Model 9000 Ultrasonic Sealer, which seals a dot pattern comprising a grid of 4 mm diameter sealing points spaced evenly across the article at 3 cm intervals.
  • the sealed web can be cut into 11.9 cm ⁇ 9.0 cm rectangles to create the finished article.
  • a second example of a layered laminated article using a web 1 of the present invention can incorporate a commercial body wash which has about 16% active surfactants.
  • the body wash is commercially available and distributed by Bath & Body Works and comprises water, sodium laureth sulfate, lauramide DEA, TEA cocoyl glutamate, cocamidopropyl betaine, fragrance, sodium PCA, aloe leaf juice, carica papaya fruit extract, propylene glycol, polyquaternium-10, preservatives, fragrance, PEG-150 distearate, sodium chloride and colors.
  • a layered nonwoven/airlaid web can be prepared as in the example above, and then soaked in the commercial body wash described above, which is preferably added to the web at the rate of 1100 gsm.
  • the webs can be dried in a forced air oven, turning them over when partially dry and wiping excess body wash back onto the web as it is turned. After drying to about 16% moisture, the web can be cut into rectangles measuring 11.9 cm ⁇ 9.0 cm.
  • a third example of a layered laminate article using a web 1 of the present invention can be a makeup removal pad.
  • the following chemical component shown in Table 2 can be prepared, which is useful for removing makeup.
  • the phase A can be prepared in water at 75° C., which can be the surfactant component for this example.
  • the formula shown does not include the added water.
  • Component phase B can be prepared by mixing the ingredients separately and blending into Phase B at room temperature.
  • An article can be prepared by spraying the surfactant component onto a web 1 of made by any of the processes and variations described herein to an add-on rate of about 150% based on the weight of the web.
  • the article can be stored in a sealed container.
  • webs 1 and apparatus 150 of the present invention many various structures of webs 1 can be made without departing from the scope of the present invention as claimed in the appended claims.
  • webs 1 can be coated or treated with lotions, medicaments, cleaning fluids, anti-bacterial solutions, emulsions, fragrances, surfactants.
  • apparatus 150 can be configured to only form tufts 6 on a portion of the web 1 , or to form varying sizes or area densities of tufts 6 .
  • the constituent precursor web(s) 20 can be pre-treated or pre-processed to have apertures, embossments, coatings, or the like prior to processing by apparatus 150 .
  • a film precursor web 20 can be treated by vacuum forming or hydroforming to be a three-dimensional apertured formed film, as described in any of U.S. Pat. No. 4,609,518, or U.S. Pat. No. 4,629,643, or U.S. Pat. No. 4,695,422, or U.S. Pat. No. 4,839,216, or U.S. Pat. No. 4,342,314, or U.S. Pat. No. 4,463,045.
  • precursor web(s) 20 can be overbonded with a plurality of weakened melt-stabilized locations which can be incrementally stretched in nip 116 to provide apertures.
  • precursor web(s) 20 can be overbonded with a plurality of weakened melt-stabilized locations which can be incrementally stretched in nip 116 to provide apertures.
  • a process is described in U.S. Pat. No. 5,628,097.
  • multiple layers having differing elongation characteristics can be processed in a similar manner as described in US 20030028165A1.
  • any of the known processes commonly referred to as “ring rolling,” or “selfing” in the art can be incorporated in apparatus 150 as desired for producing a web 1 for a particular application.
  • Web 1 may be used for a wide variety of applications, including various filter sheets such as air filter, bag filter, liquid filter, vacuum filter, water drain filter, and bacterial shielding filter; sheets for various electric appliances such as capacitor separator paper, and floppy disk packaging material; various industrial sheets such as tacky adhesive tape base cloth, oil absorbing material, and paper felt; various dry or premoistened wipes such as hard surface cleaning, floor care, and other home care uses, various wiper sheets such as wipers for homes, services and medical treatment, printing roll wiper, wiper for cleaning copying machine, baby wipers, and wiper for optical systems; various medicinal and sanitary sheets, such as surgical gown, medical gowns, wound care, covering cloth, cap, mask, sheet, towel, gauze, base cloth for cataplasm, diaper, diaper liner, diaper cover, feminine napkin covers, feminine napkin or diaper acquisition layer (underneath the cover layer), diaper core, tampon liners, base cloth for adhesive plaster, wet towel, paper towels, tissues; various sheets for clothes, such as padding cloth
  • web 1 or a composite comprising web 1 can be utilized as a fecal material storage element.
  • Web 1 can be utilized as a secondary topsheet or sublayer when it is disposed under an apertured web or film to accept and hold low viscosity feces or viscous bodily waste away from a wearer's skin after defecation.
  • Embodiments of the present invention having larger total three dimensional volume within the web or between the tufts generally provide a greater capacity for storage of low viscosity feces.
  • Absorbent articles employing such fecal material storage elements, or sublayers, are described in U.S. Pat. Nos. 5,941,864; 5,957,906; 6,018,093; 6,010,491; 6,186,992; and 6,414,215, among others.

Abstract

A fibrous web having a first surface and a second surface. The fibrous web has a first region and at least one discrete second region, the second region being a discontinuity on the second surface and being a tuft comprising a plurality of tufted fibers extending from the first surface. The tufted fibers define a distal portion, the distal portion comprising portions of the tufted fibers being bonded together. Bonding can be thermal melt-bonding. In another embodiment the second surface of the web can have non-intersecting or substantially continuous bonded regions, which also can be thermal melt-bonding.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. patent application Ser. Nos. 10/737,306 and 10/737,430, both filed on Dec. 16, 2003, and claims the benefit of U.S. Provisional Application No. 60/581,544, filed Jun. 21, 2004.
  • FIELD OF INVENTION
  • This invention relates to fibrous webs such as woven and nonwoven webs. In particular, this invention relates to fibrous webs treated by mechanical formation to have increased softness or bulk properties.
  • BACKGROUND OF THE INVENTION
  • Fibrous webs are well known in the art. For example, woven webs such as textile and knit fabrics are well known as material for clothing, upholstery, drapes, and the like. Also, nonwoven webs such as webs formed from polymer fibers are well known as materials useful for disposable products such as facing layers on absorbent articles such as diapers, for example.
  • In many applications it is desirable that fibrous webs have a bulky texture and/or softness. Also, due to cost limitations, many commercial uses for nonwovens in disposable absorbent products also demand that minimal amounts of material be used. Therefore, there is a continuing demand for technologies and materials capable of producing low basis weight, bulky and soft nonwovens. One very effective way is disclosed in commonly-owned, co-pending U.S. application Ser. Nos. 10/737,306 and 10/737,430 each of which describes nonwoven webs having tufts.
  • However, there is a continuing need for a low cost fibrous web having soft, bulky properties.
  • Additionally, there is a need for a method for relatively inexpensively making a fibrous web having soft, bulky properties.
  • Further, there is a need for a low cost method of making a soft, porous web of woven or nonwoven material that can be commercially used in disposable consumer products.
  • SUMMARY OF THE INVENTION
  • A fibrous web having a first surface and a second surface is disclosed. The fibrous web has a first region and at least one discrete second region, the second region being a discontinuity on the second surface and being a tuft comprising a plurality of tufted fibers extending from the first surface. The tufted fibers define a distal portion, the distal portion comprising portions of the tufted fibers being bonded together. Bonding can be thermal melt-bonding. In another embodiment the second surface of the web can have non-intersecting or substantially continuous bonded regions, which also can be thermal melt-bonding.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic representation of an apparatus for making a web of the present invention.
  • FIG. 2 is an enlarged view of a portion of the apparatus shown in FIG. 1.
  • FIG. 3 is a partial perspective view of a tufted web.
  • FIG. 4 is an enlarged portion of the web shown in FIG. 3.
  • FIG. 5 is a cross-sectional view of a portion of the web shown in FIG. 4.
  • FIG. 6 is a plan view of a portion of the web shown in FIG. 5.
  • FIG. 7 is a cross-sectional depiction of a portion of the apparatus shown in FIG. 2.
  • FIG. 8 is a perspective view of a portion of the apparatus for forming one embodiment the web of the present invention.
  • FIG. 9 is an enlarged perspective view of a portion of the apparatus for forming the web of the present invention.
  • FIG. 10 is a photomicrograph of a portion of a web of the present invention.
  • FIG. 11 is a photomicrograph of a portion of a web of the present invention.
  • FIG. 12 is a partial perspective view of a tufted web having melt-bonded portions of tufts.
  • FIG. 13 is an enlarged portion of the web shown in FIG. 12.
  • FIG. 14 is a plan view of a portion of a web of the present invention.
  • FIG. 15 is a cross-sectional view of a portion of the web shown in FIG. 14.
  • FIGS. 16-18 are schematic representations of cross-sections of tufts of multi-layer webs of the present invention.
  • FIG. 19 is a partial cut away plan view of a sanitary napkin of the present invention.
  • FIG. 20 is a partial cut away perspective view of a tampon of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A web 1 of the present invention will be described with respect to a preferred method and apparatus of making. A preferred apparatus 150 of the present invention is shown schematically in FIG. 1. As shown in FIG. 1, web 1 can be formed from a generally planar, two dimensional nonwoven precursor web 20 having a first surface 12 and a second surface 14. Precursor web 20 can be can be, for example, a polymer film, a nonwoven web, a woven fabric, a paper web, a tissue paper web, or a knitted fabric.
  • For nonwoven precursor webs 20, the precursor web can comprise unbonded fibers, entangled fibers, tow fibers, or the like, as is known in the art for nonwoven webs. Fibers can be. extensible and/or elastic, and may be pre-stretched for processing by apparatus 150. Fibers of precursor web 20 can be continuous, as those produced by spunbonded methods, or cut to length, such as those typically utilized in a carded process. Fibers can be absorbent, and can include fibrous absorbent gelling materials (fibrous AGM). Fibers can be bicomponent, multiconstituent, shaped, crimped, or in any other formulation or configuration known in the art for nonwoven webs and fibers.
  • Precursor web 20 can be a composite or a laminate of two or more precursor webs, and can comprise, for example, two or more nonwoven webs or a combination of polymer films, nonwoven webs, woven fabrics, paper webs, tissue webs, or knitted fabrics. Precursor web 20 can be supplied from a supply roll 152 (or supply rolls, as needed for multiple web laminates) or any other supply means, such as festooned webs, as is known in the art. In one embodiment, precursor web 20 can be supplied directly from a web making apparatus, such as a nonwoven web-making production line. Precursor web 20 is moved in a machine direction (MD) for forming by apparatus 150 into web 1 of the present invention. Machine direction (MD) refers to the direction of travel for precursor web 20 as is commonly known in the art of making or processing web materials. Likewise, cross machine direction (CD) refers to a direction perpendicular to the MD, in the plane of precursor web 1.
  • First surface 12 corresponds to first side of precursor web 20, as well as the first side of web 1. Second surface 14 corresponds to the second side of precursor web 20, as well of web 1. In general, the term “side” is used herein in the common usage of the term to describe the two major surfaces of generally two-dimensional webs, such as paper and films. Of course, in a composite or laminate structure, the first surface 12 of the web 1 is the first side of one of the outermost webs, and the second surface 14 is the second side of the other outermost web.
  • To make fibrous webs 1 or laminates of webs 1, the method of the present invention can be practiced with woven and knitted fabrics. However, in a preferred embodiment precursor web (or webs) 20 is a nonwoven web and is comprised of substantially randomly oriented fibers, that is, randomly oriented at least with respect to the MD and CD. By “substantially randomly oriented” is meant random orientation that, due to processing conditions, may exhibit a higher amount of fibers oriented in the MD than the CD, or vice-versa. For example, in spunbonding and meltblowing processes continuous strands of fibers are deposited in a random orientation on a support moving in the MD. Despite attempts to make the orientation of the fibers of the spunbond or meltblown nonwoven web truly “random,” usually a higher percentage of fibers are oriented in the MD as opposed to the CD.
  • In some embodiments of the present invention it may be desirable to purposely orient a significant percentage of fibers in a predetermined orientation with respect to the MD in the plane of the web. For example, it may be that, due to tooth spacing and placement on roll 104 (as discussed below), it may be desirable to produce a nonwoven web having a predominant fiber orientation at an angle of, for example, 60 degrees off parallel to the longitudinal axis of the web. Such webs can be produced by processes that combine lapping webs at the desired angle, and, if desired carding the web into a finished web. A web having a high percentage of fibers having a predetermined angle can statistically bias more fibers to be formed into tufts in web 1, as discussed more fully below.
  • Nonwoven precursor webs 20 can be any known nonwoven webs comprising polymer fibers having sufficient elongation properties to be formed into web 1 as described more fully below. In general, the polymeric fibers can be bondable, either by chemical bond, i.e., by latex or adhesive bonding, pressure bonding, or thermal bonding. If thermal bonding techniques are used in the bonding process described below, a certain percentage of thermoplastic material, such as thermoplastic powder or fibers can be utilized as necessary to facilitate thermal bonding of portions of fibers in the web, as discussed more fully below. Nonwoven precursor web 20 can comprise 100% by weight thermoplastic fibers, but it can comprise as low as 10% by weight thermoplastic fibers. Likewise, nonwoven precursor web 20 can comprise any amount by weight thermoplastic fibers in 1% increments between about 10% and 100%.
  • As used herein, the term “nonwoven web” refers to a web having a structure of individual fibers or threads which are interlaid, but not in a repeating pattern as in a woven or knitted fabric, which do not have randomly oriented fibers. Nonwoven webs or fabrics have been formed from many known processes, such as, for example, air laying processes, meltblowing processes, spunbonding processes, hydroentangling processes, spunlacing processes, and bonded carded web processes. Also, multi-layer webs, such as spunbond-meltblown-spunbond (SMS) webs and the like (e.g., SMMS, SSMS) made by multiple beam spunbond processes, can be utilized. It is not necessary that each component (i.e., the spunbond or meltblown components) be the same polymer. Therefore, in an SMS web, it is not necessary that the spunbond and the meltblown layers comprise the same polymer.
  • The basis weight of nonwoven fabrics is usually expressed in grams per square meter (gsm) (or equivalent, such as oz/sq yard) and the fiber diameters are usually expressed in microns. Fiber size can also be expressed in denier. The total basis weight of precursor web 20 (including laminate or multi-layer precursor webs 20) can range from 8 gsm to 500 gsm, depending on the ultimate use of the web 1, and can be produced in 1 gsm increments between 8 and 500 gsm. For use as a hand towel, for example, a basis weight of precursor web 20 of between 25 gsm and 100 gsm may be appropriate. For use as a bath towel a basis weight of between 125 gsm and 250 gsm may be appropriate. For use as an air filter, including a High Efficiency Particulate Air (HEPA) filter, useful in air cleaning equipment including dust collectors, nuclear and biological filters, and some types of gas turbine inlet air filtration, a basis weight of between 350 gsm and 500 gsm may be appropriate (pleated and ganged, if necessary to increase effective surface area). The constituent fibers of nonwoven precursor web 20 can be polymer fibers, and can be monocomponent, bicomponent and/or biconstituent fibers, hollow fibers, non-round fibers (e.g., shaped (e.g., trilobal) fibers or capillary channel fibers), and can have major cross-sectional dimensions (e.g., diameter for round fibers, long axis for elliptical shaped fibers, longest straight line dimension for irregular shapes) ranging from 0.1-500 microns in 1 micron increments.
  • As used herein, “spunbond fibers” is used in its conventional meaning, and refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced. Spunbond fibers are generally not tacky when they are deposited on a collecting surface. Spunbond fibers are generally continuous and have average diameters (from a sample of at least 10) larger than 7 microns, and more particularly, between about 10 and 40 microns.
  • As used herein, the term “meltblowing” is used in its conventional meaning, and refers to a process in which fibers are formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually heated, gas (for example air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface, often while still tacky, to form a web of randomly dispersed meltblown fibers. Meltblown fibers are microfibers which may be continuous or discontinuous and are generally smaller than 10 microns in average diameter.
  • As used herein, the term “polymer” is used in its conventional meaning, and generally includes, but is not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc., and blends and modifications thereof. In addition, unless otherwise specifically limited, the term “polymer” includes all possible geometric configurations of the material. The configurations include, but are not limited to, isotactic, atactic, syndiotactic, and random symmetries. In general, any of the known polymer types can be utilized in the present invention, for example, polyolefinic polymers such as polypropylene or polyethylene can be used either as monocomponent fibers or bicomponent fibers. Additionally, other polymers such as PVA, PET polyesters, metallocene catalyst elastomers, and blends thereof can be used, any or all of which polymers can be cross linked if desired.
  • As used herein, the term “monocomponent” fiber is used in its conventional meaning, and refers to a fiber formed from one or more extruders using only one polymer. This is not meant to exclude fibers formed from one polymer to which small amounts of additives have been added for coloration, antistatic properties, lubrication, hydrophilicity, etc. These additives, for example titanium dioxide for coloration, are generally present in an amount less than about 5 weight percent and more typically about 2 weight percent.
  • As used herein, the term “bicomponent fibers” is used in its conventional meaning, and refers to fibers which have been formed from at least two different polymers extruded from separate extruders but spun together to form one fiber. Bicomponent fibers are also sometimes referred to as conjugate fibers or multicomponent fibers. The polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the bicomponent fibers and extend continuously along the length of the bicomponent fibers. The configuration of such a bicomponent fiber may be, for example, a sheath/core arrangement wherein one polymer (such as polypropylene) is surrounded by another (such as polyethylene), or may be a side-by-side arrangement, a pie arrangement, or an “islands-in-the-sea” arrangement, each as is known in the art of multicomponent, including bicomponent, fibers.
  • Fibers, including bicomponent fibers, can be splittable fibers, such fibers being capable of being split lengthwise before or during processing into multiple fibers each having a smaller cross-sectional dimension than the original bicomponent fiber. Splittable fibers have been shown to produce softer nonwoven webs due to their reduced cross-sectional dimensions. Fibers can be nanofibers, i.e., fibers having a diameter in the sub-micron range up to and including the low micron range.
  • As used herein, the term “biconstituent fibers” is used in its conventional meaning, and refers to fibers which have been formed from at least two polymers extruded from the same extruder as a blend. Biconstituent fibers do not have the various polymer components arranged in relatively constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils which start and end at random. Biconstituent fibers are sometimes also referred to as multiconstituent fibers.
  • As used herein, the term “non-round fibers” is used in its conventional meaning, and describes fibers having a non-round cross-section, and include “shaped fibers” and “capillary channel fibers.” Such fibers can be solid or hollow, and they can be tri-lobal, delta-shaped, and are preferably fibers having longitudinally-extending grooves that serve as capillary channels on their outer surfaces. The capillary channels can be of various cross-sectional shapes such as “U-shaped”, “H-shaped”, “C-shaped” and “V-shaped”. One preferred capillary channel fiber is T-401, designated as 4DG fiber available from Fiber Innovation Technologies, Johnson City, Tenn. T401 fiber is a polyethylene terephthalate (PET polyester).
  • Unless otherwise noted, all other terms are used in their conventional, ordinary meaning as used by those skilled in the art.
  • Precursor web 20 can be provided either directly from a web making process or indirectly from a supply roll 152, as shown in FIG. 1. Precursor web 20 can be preheated by means known in the art, such as by heating over oil-heated rollers. Precursor web 20 can be pre-printed with indicia, designs, logos, or other visible or invisible print pattern. For example, designs and colors can be printed by means known in the art, such as by ink-jet printing, gravure printing, or offset printing, to change the color of at least portions of precursor web 20. In addition to printing, precursor web 20 can be treated with coatings, such as with surfactants, lotions, adhesives, and the like. Treating precursor web 20 can be achieved by means known in the art such as by spraying, slot coating, extruding, or otherwise applying coatings to one or both surfaces.
  • Supply roll 152 rotates in the direction indicated by the arrow as precursor web 20 is moved in the machine direction over roller 154 and to the nip 116 of a first set of counter-rotating intermeshing rolls 102A and 104. Rolls 102A and 104 are the first set of intermeshing rollers of apparatus 150. The first set of intermeshing rolls 102A and 104 operate to form tufts in web 1, to make tufted precursor web 21. Intermeshing rolls 102A and 104 are more clearly shown in FIG. 2.
  • Referring to FIG. 2, there is shown in more detail the portion of apparatus 150 for making tufts on tufted precursor web 21 of the present invention. This portion of apparatus 150 is shown as nip rollers 100 in FIG. 2, and comprises a pair of steel intermeshing rolls 102 and 104 (corresponding to rolls 102A and 104, respectively, in FIG. 1), each rotating about an axis A, the axes A being parallel in the same plane. Although the apparatus 150 is designed such that precursor web 20 remains on roll 104 through a certain angle of rotation, FIG. 2 shows in principle what happens as precursor web 20 goes through nip 116 on apparatus 150 an exits as tufted precursor web 21. Therefore, while FIG. 2 shows tufted precursor web 21 coming straight out of nip 116, on apparatus 150 tufted precursor web 21 can continue on roll 104 through a predetermined angle of rotation such that the tufts remain resting over, and “fitted” onto, teeth 110 of roll 104.
  • Roll 102 comprises a plurality of ridges 106 and corresponding grooves 108 which can extend unbroken about the entire circumference of roll 102. In some embodiments, depending on what kind of pattern is desired in precursor web 21, roll 102 (and, likewise, roll 102A) can comprise ridges 106 wherein portions have been removed, such as by etching, milling or other machining processes, such that some or all of ridges 106 are not circumferentially continuous, but have breaks or gaps. The breaks or gaps can be arranged to form a pattern, including simple geometric patters such as circles or diamonds, but also including complex patterns such as logos and trademarks. In one embodiment, roll 102 can have teeth, similar to the teeth on roll 104, described more fully below. In this manner, it is possible to have tufts on both sides of tufted precursor web 21. In addition to tufts, various out-of-plane macro-areas of tufts of web 21 can be made, including macro-patterns depicting logos and/or designs.
  • Roll 104 is similar to roll 102, but rather than having ridges that can extend unbroken about the entire circumference, roll 104 comprises a plurality of rows of circumferentially-extending ridges that have been modified to be rows of circumferentially-spaced teeth 110 that extend in spaced relationship about at least a portion of roll 104. The individual rows of teeth 110 of roll 104 are separated by corresponding grooves 112. In operation, rolls 102 and 104 intermesh such that the ridges 106 of roll 102 extend into the grooves 112 of roll 104 and the teeth 110 of roll 104 extend into the grooves 108 of roll 102. The intermeshing is shown in greater detail in the cross sectional representation of FIG. 7, discussed below. Both or either of rolls 102 and 104 can be heated by means known in the art such as by using hot oil filled rollers or electrically-heated rollers.
  • A portion of tufted precursor web 21 is shown in FIGS. 3-6. As shown, tufted precursor web 21 has a first region 2 defined on both sides of tufted precursor web 21 by the generally planar, two-dimensional configuration of the precursor web 20, and a plurality of discrete second regions 4 defined by spaced-apart tufts 6 and discontinuities 16 which can result from integral extensions of the fibers of the precursor web 20. The structure of second regions 4 is differentiated depending on which side of tufted precursor web 21 is considered. For the embodiment of tufted precursor web 21 shown in FIG. 3, on the side of tufted precursor web 21 associated with first surface 12 of tufted precursor web 21, second regions 4 comprise tufts 6, and each tuft 6 can comprise a plurality of tufted, looped, aligned fibers 8 extending outwardly from first surface 12. Tufts 6 comprise tufts of fibers having a significant orientation in the Z-direction, and each tuft 6 has a base 5 proximal to the first surface 12, and a distal portion 3 at a maximum distance in the Z-direction from the first surface 12. On the side of tufted precursor web 21 associated with second surface 14, second region 4 comprises discontinuities 16 which are defined by fiber orientation discontinuities 16 on the second surface 14 of tufted precursor web 21, the discontinuities 16 corresponding to the locations where teeth 110 of roll 104 penetrated precursor web 20. As shown below, in other embodiments of tufted precursor web 21, it is possible that the tufts 6 not comprise looped or aligned fibers.
  • As used herein, the term “integral” as in “integral extension” when used of the second regions 4 refers to fibers of the second regions 4 having originated from the fibers of the precursor web 20. Therefore, the looped fibers 8 of tufts 6, for example, can be plastically deformed and/or extended fibers of the precursor web 20, and can be, therefore, integral with first regions 2 of tufted precursor web 21. As used herein, “integral” is to be distinguished from fibers introduced to or added to a separate precursor web for the purpose of making tufts, as is commonly done in conventional carpet making, for example. While some embodiments of web 1 of the present invention may utilize such added fibers, in a preferred embodiment, fibers of tufts 6 are integral to web 1.
  • It can be appreciated that a suitable precursor web 20 for a web 1 of the present invention having looped fibers in tufts 6 should comprise fibers capable of experiencing sufficient fiber mobility and/or plastic deformation and tensile elongation such that looped fibers 8 are formed. However, it is recognized that a certain percentage of fibers urged out of the plane of the first surface 12 of precursor web 20 will not form a loop, but instead will break and form loose ends. Such fibers are shown as loose fiber ends 18 in FIGS. 4 and 5. Loose fiber ends 18 are not necessarily undesirable for the present invention, but it is believed that web 1 can retain its bulky and soft character more readily when tuft 6 comprises primarily looped fibers 8. In a preferred embodiment at least 50%, more preferably at least 70% and more preferably at least 90% of the fibers urged in the Z-direction are looped fibers 8.
  • A representative tuft 6 for the embodiment of tufted precursor web 21 shown in FIG. 2 is shown in a further enlarged view in FIGS. 3-6. The representative tuft 6 is of the type formed on an elongated tooth 110 on roll 104, such that the tuft 6 comprises a plurality of looped fibers 8 that are substantially aligned such that tuft 6 has a distinct longitudinal orientation and a longitudinal axis L. Tufts 6 also have a transverse axis T generally orthogonal to longitudinal axis L in the MD-CD plane. In the embodiment shown in FIGS. 2-6, longitudinal axis L is parallel to the MD. In one embodiment, all the spaced apart tufts 6 have generally parallel longitudinal axes L. While in preferred embodiments tufts 6 will have a longitudinal orientation, in some embodiments such an orientation may not be present. For example, if teeth 110 on roll 104 have a length on the tufts 6 may not display any longitudinal orientation.
  • The number of tufts 6 per unit area of tufted precursor web 21, i.e., the area density of tufts 6, can be varied from 1 tuft 6 per square centimeter to as high as 30 tufts 6 per square centimeter. There can be at least 10, or at least 20 tufts 6 per square centimeter, depending on the end use. In general, the area density need not be uniform across the entire area of precursor web 21, but tufts 6 can be only in certain regions of tufted precursor web 21, such as in regions having predetermined shapes, such as lines, stripes, bands, circles, and the like.
  • As shown in FIG. 4, and more clearly in FIGS. 5 and 6, when elongated teeth 110 are utilized on roll 104, one characteristic of the fibers 8 of tufts 6 in one embodiment of tufted precursor web 21 is the predominant directional alignment of the looped fibers 8. As shown in FIGS. 5 and 6, many of looped fibers 8 can have a substantially uniform alignment with respect to transverse axis T when viewed in plan view, such as in FIG. 6. By “looped” fibers 8 is meant that fibers 8 begin and end in tufted precursor web 21. By “aligned” with respect to looped fibers 8 of tufts 6 is meant that looped fibers 8 are generally oriented such that, if viewed in plan view as in FIG. 6, the looped fibers 8 have a significant vector component parallel to the transverse axis T, and preferably a major vector component parallel to the transverse axis T. As used herein, a looped fiber 8 oriented at an angle of greater than 45 degrees from the longitudinal axis L when viewed in plan view, as in FIG. 6, has a significant vector component parallel to the transverse axis T. As used herein, a looped fiber 8 oriented at an angle of greater than 60 degrees from longitudinal axis L when viewed in plan view, as in FIG. 6, has a major vector component parallel to the transverse axis T. In a preferred embodiment, at least 50%, more preferably at least 70%, and more preferably at least 90% of fibers 8 of tuft 6 have a significant, and more preferably, a major, vector component parallel to transverse axis T. Fiber orientation can be determined by use of magnifying means if necessary, such as a microscope fitted with a suitable measurement scale. In general, for a non-linear segment of fiber viewed in plan view, a straight-line approximation for both longitudinal axis L and the looped fibers 8 can be used for determining the angle of looped fibers 8 from longitudinal axis L.
  • The orientation of looped fibers 8 in the tufts 6 of second region 4 is to be contrasted with the fiber composition and orientation of the first region 2, which, for nonwoven precursor webs 20 is best described as having a substantially randomly-oriented fiber alignment. In a woven web embodiment, the orientation of the looped fibers 8 in tufts 6 could be the same as described above, but the fibers of second region 2 would have the orientation associated with the particular weaving process used to make the web, e.g., a square weave pattern.
  • In the embodiment shown in FIG. 2 the longitudinal axes L of tufts 6 are generally aligned in the MD. Tufts 6 and, therefore, longitudinal axes L, can, in principle, be aligned in any orientation with respect to the MD or CD, with corresponding modifications to rolls 102A and 104. Therefore, in general, it can be said that for each tuft 6, the looped aligned fibers 8 are aligned generally orthogonal to the longitudinal axis L such that they have a significant vector component parallel to transverse axis T, and more preferably a major vector component parallel to transverse axis T.
  • As can be understood with respect to apparatus 150, therefore, tufts 6 of tufted precursor web 20 are made by mechanically deforming precursor web 20 that can be described as generally planar and two dimensional. By “planar” and “two dimensional” is meant simply that the web is flat relative to the finished web 1 that has distinct, out-of-plane, Z-direction three-dimensionality imparted due to the formation of second regions 4. “Planar” and “two-dimensional” are not meant to imply any particular flatness, smoothness or dimensionality. As precursor web 20 goes through the nip 116 the teeth 110 of roll 104 enter grooves 108 of roll 102A and simultaneously urge fibers out of the plane of precursor web 20 to form second regions 4, including tufts 6 and discontinuities 16. In effect, teeth 110 “push” or “punch” through precursor web 20. As the tip of teeth 110 push through precursor web 20 the portions of fibers that are oriented predominantly in the CD and across teeth 110 are urged by the teeth 110 out of the plane of precursor web 20 and are stretched, pulled, and/or plastically deformed in the Z-direction, resulting in formation of second region 4, including the looped fibers 8 of tufts 6. Fibers that are predominantly oriented generally parallel to the longitudinal axis L, i.e., in the machine direction of precursor web 20, can be simply spread apart by teeth 110 and remain substantially in the first region 2 of precursor web 20.
  • In FIG. 2, the apparatus 100 is shown in one configuration having one patterned roll, e.g., roll 104, and one non-patterned grooved roll 102. However, in certain embodiments it may be preferable to form nip 116 by use of two patterned rolls having either the same or differing patterns, in the same or different corresponding regions of the respective rolls. Such an apparatus can produce webs with tufts 6 protruding from both sides of the tufted web 21, as well as macro-patterns embossed into the web 21.
  • The number, spacing, and size of tufts 6 can be varied by changing the number, spacing, and size of teeth 110 and making corresponding dimensional changes as necessary to roll 104 and/or roll 102. This variation, together with the variation possible in precursor webs 20 and the variation in processing, such as line speeds, permits many varied tufted webs 21 to be made for many purposes. For example, tufted web 21 made from a high basis weight hydrophobic fabric having MD and CD extensible threads could be made into a breathable web 1 as further discussed below for use as a breathable yet water repellent covering for hay to improvement of the forage quality of hay (for cattle feed). A tufted web 21 made from a relatively low basis weight nonwoven web of extensible spunbond polymer fibers could be used as a dusting cloth fabric for use in the home, such as to clean furniture, floors or doorknobs. As described more fully below, tufted web 21 and web 1 can also be used in disposable absorbent articles such as bandages, wraps, incontinence devices, diapers, sanitary napkins, pantiliners, and hemorrhoid treatment pads.
  • In some embodiments, due to the preferred method of forming tufts 6, as described below, another characteristic of tufts 6 is their generally open structure characterized by open void area 10 defined interiorly of tufts 6. By “void area” is not meant completely free of any fibers, but is meant as a general description of its general appearance. Therefore, it may be that in some tufts 6 a loose fiber 8 or a plurality of loose fibers 8 may be present in the void area 10. By “open” void area is meant that the two longitudinal ends of tuft 6 are generally open and free of fibers, such that tuft 6 forms something like a “tunnel” structure, as shown in FIGS. 4 and 5.
  • Additionally, as a consequence of a preferred method of making tufted web 21, the second regions 4 associated with second surface 14 are discontinuities 16 characterized by a generally linear indentation defined by formerly random fibers of the second surface 14 having been urged directionally (i.e., the “Z -direction” as is commonly understood in the nonwoven art to indicate an “out-of-plane” direction generally orthogonal to the MD-CD plane as shown in FIGS. 3-5) into tuft 6 by the teeth of the forming structure, described in detail below. The abrupt change of orientation exhibited by the previously randomly-oriented fibers of precursor web 20 defines the discontinuity 16, which exhibits a linearity such that it can be described as having a longitudinal axis generally parallel to longitudinal axis L of the tuft 6. Due to the nature of many nonwoven webs useful as precursor webs 20, discontinuity 16 may not be as distinctly noticeable as tufts 6. For this reason, the discontinuities 16 on the second side of tufted precursor web 21 can go unnoticed and may be generally undetected unless tufted precursor web 21 is closely inspected. Thus in some embodiments, tufted precursor web 21 can have the look and feel of terry cloth on a first side, and a relatively smooth, soft look and feel on a second side. In other embodiments, discontinuities 16 can appear as apertures, and may be apertures through tufted precursor web 21 via the ends of the tunnel-like looped tufts 6.
  • Further, as a consequence of a preferred method of making precursor web 21, whether or not the second regions 4 have looped aligned fibers 8, each exhibits a pronounced linearity at or near the first and second surfaces 12, and 14, respectively, of precursor web 21. One can appreciate that, due to the geometry of elongated teeth 110 of roll 104, the second regions 4 of precursor web 20 each have a linear orientation associated therewith. This linear orientation is an inevitable consequence of the method of making precursor web 21 when teeth 110 also have a linear orientation, as described herein below. One way of understanding this linear orientation is to consider the linear orientation of discontinuities 16 on the second surface 14 of precursor web 21. Likewise, if tuft 6 were removed from precursor web 21 at first surface 12, the second region 4 would appear as a linear discontinuity on the first surface 12 of precursor web 21, e.g., as if a linear slit or cut had been made at the location of tuft 6. This linear web discontinuity corresponds directionally to longitudinal axis L.
  • From the description of tufted web 21, it can be seen that the looped fibers 8 of tuft 6 can originate and extend from either the first surface 12 or the second surface 14 of precursor web 21. Of course the fibers 8 of tuft 6 can also extend from the interior 19 of precursor web 21. The fibers 8 of tufts 6 extend due to having been urged out of the generally two-dimensional plane of precursor web 20 (i.e., urged in the “Z -direction” as shown in FIG. 3). In general, the fibers 8 or 18 of the second regions 4 comprise fibers that are integral with and extend from the fibers of the fibrous web first regions 2.
  • The extension of looped fibers 8 can be accompanied by a general reduction in fiber cross sectional dimension (e.g., diameter for round fibers) due to plastic deformation of the fibers and the effects of Poisson's ratio. Therefore, portions of the fibers 8 of tufts 6 can have an average fiber diameter less than the average fiber diameter of the fibers of precursor web 20 as well as the fibers of first regions 2. It has been found that the reduction in fiber cross-sectional dimension is greatest intermediate the base 5 and the distal portion 3 of tufts 6. This is believed to be due to portions of fibers at the base 5 and distal portion 3 of tufts 6 are adjacent the tip of teeth 110 of roll 104, described more fully below, such that they are frictionally locked and immobile during processing; Thus, the intermediate portions of tufts 6 are more free to stretch, or elongate, and accordingly, are freer to experience a corresponding fiber cross sectional dimension reduction.
  • FIG. 7 shows in cross section a portion of the intermeshing rolls 102 (and 102A and 102B, discussed below) and 104 including ridges 106 and teeth 110. As shown teeth 110 have a tooth height TH (note that TH can also be applied to ridge 106 height; in a preferred embodiment tooth height and ridge height are equal), and a tooth-to-tooth spacing (or ridge-to-ridge spacing) referred to as the pitch P. As shown, depth of engagement, (DOE) E is a measure of the level of intermeshing of rolls 102 and 104 and is measured from tip of ridge 106 to tip of tooth 110. The depth of engagement E, tooth height TH, and pitch P can be varied as desired depending on the properties of precursor web 20 and the desired characteristics of web 1 of the present invention. For example, in general, to obtain looped fibers in tuft 6, the greater the level of engagement E, the greater the necessary fiber mobility and/or elongation characteristics the fibers of precursor web 20 must possess. Also, the greater the density of second regions 4 desired (second regions 4 per unit area of web 1), the smaller the pitch should be, and the smaller the tooth length TL and tooth distance TD should be, as described below.
  • FIG. 8 shows a portion of one embodiment of a roll 104 having a plurality of teeth 110 useful for making a tufted precursor web 21 or web 1 of spunbond nonwoven material from a spunbond nonwoven precursor web 20 having a basis weight of between about 60 gsm and 100 gsm, preferably about 70 gsm, or 80 gsm or 90 gsm. An enlarged view of teeth 110 shown in FIG. 8 is shown in FIG. 9. In this embodiment of roll 104, teeth 110 have a uniform circumferential length dimension TL of about 1.25 mm measured generally from the leading edge LE to the trailing edge TE at the tooth tip 111, and are uniformly spaced from one another circumferentially by a distance TD of about 1.5 mm. For making a soft, fibrous web 1 from a precursor web 20 having a basis weight in the range of about 60 to 100 gsm, teeth 110 of roll 104 can have a length TL ranging from about 0.5 mm to about 3 mm and a spacing TD from about 0.5 mm to about 3 mm, a tooth height TH ranging from about 0.5 mm to about 10 mm, and a pitch P between about 1 mm (0.040 inches) and 2.54 mm (0.100 inches). Depth of engagement E can be from about 0.5 mm to about 5 mm (up to a maximum approaching the tooth height TH). Of course, E, P, TH, TD and TL can each be varied independently of each other to achieve a desired size, spacing, and area density of tufts 6 (number of tufts 6 per unit area of web 1).
  • As shown in FIG. 9, each tooth 110 has a tip 111, a leading edge LE and a trailing edge TE. The tooth tip 111 can be rounded to minimize fiber breakage and is preferably elongated and has a generally longitudinal orientation, corresponding to the longitudinal axes L of second regions 4. It is believed that to get the tufts 6 of the web 1 that can be described as being tufted, the LE and TE should be very nearly orthogonal to the local peripheral surface 120 of roll 104. As well, the transition from the tip 111 and the LE or TE should be a relatively sharp angle, such as a right angle, having a sufficiently small radius of curvature such that, in use the teeth 110 push through precursor web 20 at the LE and TE. Without being bound by theory, it is believed that having relatively sharply angled tip transitions between the tip of tooth 110 and the LE and TE permits the teeth 110 to punch through precursor web 20 “cleanly”, that is, locally and distinctly, so that the resulting web 1 can be described as “tufted” in second regions 4 rather than “embossed” for example. When so processed, the web 1 is not imparted with any particular elasticity, beyond what the precursor web 20 may have possessed originally.
  • Although teeth 110 have been described in a preferred embodiment of being elongated, it is recognized that teeth 110 need not be elongated to produce a tufted web 1. For example, the tooth length TL can be generally equal to the tooth width, which can be varied depending upon the desired pitch P, for example. Such teeth can have an aspect ratio of tooth length to tooth width of 1:1, and can be described as having a generally square or round cross section. It is also contemplated that the size, shape, orientation and spacing of the teeth 110 can be varied about the circumference and width of roll 104 to provide for varied web 1 properties and characteristics. For example, teeth 110 can be elongated and oriented at an angle from the MD, and can even be placed such that the length dimension of tooth length TL is oriented parallel to the CD on roll 104.
  • At higher line speeds, i.e., relatively higher rates of processing through the nip of rotating rolls 102 and 104, like materials can exhibit very different structures for tufts 6, i.e., tufts. For example, FIGS. 10 and 11 show representative tufts 6 in tufted precursor webs 21 made from the same material with the same process conditions, the only difference being the rotational speed of the rolls 102 and 104, i.e., line speed (in units of length/time) of the precursor web 20 being processed into tufted precursor webs 21. The precursor web 20 used for each of the webs shown in FIGS. 10 and 11 was a 25 gsm nonwoven web comprising polypropylene and available from BBA Nonwovens, Simpsonville, S.C., and sold under the trade name Sofspan 200®. The web shown in FIG. 10 was processed through the nip 116 of rolls 102 and 104 having a depth of engagement E of about 3.4 mm (about 0.135 inch), a pitch P of about 1.5 mm (about 0.060 inch), a tooth height TH, of about 3.7 mm (about 0.145 inch), a tooth distance of TD of 1.6 mm (abut 0.063 inch), and a tooth length of TL of about 1.25 mm (about 0.050 inch). The web was run at a line speed of about 15 meters/minute (about 50 feet per minute). The web shown in FIG. 11 is identical to the web shown in FIG. 10, and was processed under identical conditions except for the line speed, which was about 150 meters per minute (about 500 feet per minute).
  • As can be seen from an inspection of FIGS. 10 and 11, the tufts 6 shown are noticeably different. The tuft 6 shown in FIG. 10 is similar in structure to the tufts shown in FIGS. 2-6. That is, it exhibits substantially aligned, looped fibers 8 with very few broken fibers, e.g., fibers 18 as shown in FIG. 5. The tufts 6 shown in FIG. 1 1, however, exhibits a very different structure, a structure that appears to be typical of some spunbond nonwoven materials processed to form tufts 6 at relatively high speeds. It is believed that such a structure is typical of highly-bonded spunbond nonwoven materials, such that the high percentage of bonded area inhibits fiber dislocation and movement during processing. This structure exhibits broken fibers between the proximal portion, i.e., base 5, of tufts 6 and the distal portion, i.e., the top 3, of tufts 6, and what appears to be a “mat” 7 of fibers at the top of the tufts 6. Mat 7 comprises and is supported at the top of tufts 6 by unbroken, looped fibers 8, and also comprises portions of broken fibers 11 that are no longer integral with precursor web 20. That is, mat 7 comprises fiber portions which were formerly integral with precursor web 20 but which are completely detached from precursor web 20 after processing at sufficiently high line speeds in the process described with reference to FIGS. 1 and 2.
  • Precursor webs 20 having relatively higher basis weights generally result in tufted precursor webs 21 having relatively more fiber 11 portions in mat 7. In one sense, for some precursor webs 20 it appears as if most of the fiber content of the precursor web 20 in the immediate vicinity of a tooth tip 110 during manufacture is simply displaced in the Z-direction to the distal portion 3 of tufts 6, resulting in mat 7.
  • Fiber-to-fiber mobility can be increased by reducing or eliminating the fiber-to-fiber bonds in precursor web 20. Thermal bonds can be completely eliminated or significantly reduced in a nonwoven intentional under-bonding in the heated calendar bonding process. This under-bonding may be achieved via lowering of the surface temperature of the heated calendar to less than optimal conditions, and/or use of lower bonding pressures. When such underbonding is performed correctly, most or all fibers are able to detach from the under-bonded site when the nonwoven is subjected to subsequent mechanical strain without significant breakage of fibers. This underbonding increases fiber-to-fiber mobility and permits greater nonwoven extensibility without premature rupture of fibers. Similarly, a hydroentangled web can be preferably less entangled to increase fiber-to-fiber mobility. For any precursor web 20, lubricating it prior to processing as disclosed herein can also increase fiber-to-fiber mobility by the reduction of coefficient of friction. For example, a mineral oil lubricant can be applied to precursor web 20 prior to it entering the nip 116 of rolls 102 and 104. Other suitable lubricants or topical treatments applied to the precursor web 20 to increase fiber-to-fiber mobility include, but are not limited to, water, surfactants, silicone containing materials, fiber finishes, fluoropolymers, and combinations thereof. Another way of increasing the fiber-to-fiber mobility is to add a melt additive to the polymer. Suitable melt additives include, but are not limited to, silicones, zinc stearate, magnesium stearate, fatty acid amides, fluoropolymers, polyethylene waxes, mineral fillers, polyethylene glycol oleiyl ethers, and other additives known to modify the coefficient of friction.
  • Referring back to FIG. 1, after tufts 6 are formed, tufted precursor web 21 travels on rotating roll 104 to nip 117 between roll 104 and a first bonding roll 156. Bonding roll 156 can facilitate a number of bonding techniques. For example, bonding roll 156 can be a heated steel roller for imparting thermal energy in nip 117, thereby melt-bonding adjacent fibers of tufted web 21 at the distal ends (tips) of tufts 6. Bonding roll 156 can also facilitate thermal bonding by means of pressure only, or use of heat and pressure. In one embodiment, for example, nip 117 can be set at a width sufficient to compress the distal ends of tufts 6, which at high rates of processing can cause thermal energy transfer to the fibers, which can then reflow and bond.
  • Bonding roll 156 can also be part of a system for applying and/or curing a bonding agent, such as an adhesive or a latex binder, to the distal ends of tufts 6. For example, bonding roll 156 can be part of a gravure printing system that prints on such a bonding agent. Depending on the type of bonding being facilitated, bonding roll 156 can be a smooth, steel surface, or a relatively soft, flexible surface. In a preferred embodiment, as discussed in the context of a preferred web below, bonding roll 156 is a heated roll designed to impart sufficient thermal energy to tufted web 21 so as to thermally bond adjacent fibers of the distal ends of tufts 6. Thermal bonding can be by melt-bonding adjacent fibers directly, or by melting an intermediate thermoplastic agent, such as polyethylene powder, which in turn, adheres adjacent fibers. Polyethylene powder can be added to precursor web 20 for such purposes.
  • First bonding roll 156 can be heated sufficiently to melt or partially melt fibers 8 or 18 at the distal ends 3 of tufts 6. The amount of heat or heat capacity necessary in first bonding roll 156 depends on the melt properties of the fibers of tufts 6 and the speed of rotation of roll 104. The amount of heat necessary in first bonding roll 156 also depends on the pressure induced between first bonding roll 156 and tips of teeth 110 on roll 104, as well as the degree of melting desired at distal ends 3 of tufts 6. In one embodiment, bonding roll 156 can provide sufficient heat and pressure to not only melt bond fibers at the distal ends 3 of tufts 6, but also cut through the bonded portion so as to, in effect, cut through the end of tuft 6. In such an embodiment, the tuft is divided into two portions, but is not longer looped. In one embodiment, pressure alone can cause the looped portion of the tuft to be cut through, thereby rendering the tufts 6 to be un-looped tufts of fiber free ends. Other methods known in the art, such as use of a spinning wire brush wheel can also be utilized to cut the loops of looped fibers to form un-looped tufts.
  • In one embodiment, first bonding roll 156 is a heated steel cylindrical roll, heated to have a surface temperature sufficient to melt-bond adjacent fibers of tufts 6. First bonding roll can be heated by internal electrical resistance heaters, by hot oil, or by any other means known in the art for making heated rolls. First bonding roll 156 can be driven by suitable motors and linkages as known in the art. Likewise, first bonding roll can be mounted on an adjustable support such that nip 117 can be accurately adjusted and set.
  • In one embodiment, bonding via bonding roll 156 can be combined with application of lotion, pressure sensitive adhesive, ink, paint, or other coatings as desired. For example, heated bonding roll 156 can be a gravure roll that can apply sufficiently high-temperature inks to impart a printed design on tufted precursor web 21. Likewise, a lotion suitable for providing a skin benefit can be applied by bonding roll 156. A key advantage of applying ink or other coatings in this manner is that the coating can be deposited on the distal ends of tufts 6, thereby conserving the amount of coating necessary to effectively coat one side of web 1. In another embodiment, application of lotions, coatings, inks, and the like, can be added without bonding via bonding roll 156.
  • FIG. 12 shows a portion of tufted precursor web 21 after being processed through nip 117 to be intermediate web 22, which, without further processing can be a web 1 of the present invention. Intermediate web 22 is similar to tufted precursor web 21 as described earlier, except that the distal ends 3 of tufts 6 are bonded, and are preferably thermally melt-bonded such that adjacent fibers are at least partially bonded to form distally-disposed melt-bonded portions 9. In one embodiment, intermediate web 22 can be made from a precursor web 20 comprising 80 gsm spunbond nonwoven comprising 100% polyethylene/polypropylene (sheath/core) bicomponent fibers. After forming tufts 6 by the process described above, the distal portions 3 of tufts 6 can be heated to thermally join the polyethylene portions of discrete bicomponent fibers such that adjacent fiber portions are joined to one another to form tufts 6 having melt-bonded portions 9.
  • The distally-disposed melt-bonded portions 9 can be made by application of thermal energy and pressure to the distal portions of tufts 6. The size and mass of the distally-disposed melt-bonded portions 9 can be modified by modifying the amount of heat energy imparted to the distal portions of tufts 6, the line speed of apparatus 150, and the method of heat application.
  • In another embodiment, distally-disposed melt-bonded portions 9 can be made by application of radiant heat. That is, in one embodiment bonding roll 156 can be replaced or supplemented by a radiant heat source, such that radiant heat can be directed toward tufted precursor web 21 at a sufficient distance and corresponding sufficient time to cause fiber portions in the distally-disposed portions of tufts 6 to soften or melt. Radiant heat can be applied by any of known radiant heaters. In one embodiment, radiant heat can be provided by a resistance-heated wire disposed in relation to tufted precursor web 21 such that it is extended in the CD direction at a sufficiently-close, uniformly-spaced distance that as the web is moved in relation to the wire, radiant heat energy at least partially melts the distally-disposed portions of tufts 6. In another embodiment, a heated flat iron, such as a hand-held iron for ironing clothes, can be held adjacent the distal ends 3 of tufts 6, such that melting is effected by the iron.
  • The benefit of processing the intermediate web 22 as described above is that the distal ends 3 of tufts 6 can be melted under a certain amount of pressure in nip 117 without compressing or flattening tufts 6. As such, a three-dimensional web can be produced and set, or “locked in” to shape, so to speak by providing for thermal bonding after forming. Therefore, a substantially unbonded web can be processed by the apparatus 150 to be bonded and formed in a manner that helps ensure the web maintains its three-dimensionality. Such a set three-dimensional web can have desirable stretch or elastic properties, depending upon the type of web material used and the amount of set induced. Moreover, the distally-disposed bonded or melt-bonded portions 9 can aid in maintaining the tufted, lofty structure of tufts 6 when web 1 is subjected to compression or shearing forces. For example, a web 1 processed as disclosed above to have tufts 6 comprising fibers integral with but extending from first region 2 and having distally-disposed melt-bonded portions 9 can have improved shape retention after compression due to winding onto a supply roll and subsequently unwinding. It is believed that by bonding together adjacent fibers at distal portions of tufts 6, the tufts experience less random collapse upon compression; that is, the entire structure of tufts 6 tends to move together, thereby permitting better shape retention upon a disordering event such as compression and/or shear forces associated with rubbing the surface of the web. When used in a wiping or rubbing application, the bonded distal ends of tufts 6 can also reduce or eliminate fuzzing or pilling of web 1.
  • In another embodiment web 1 can have melt-bonded portions that are not, or not only, at distally-disposed portions of tufts 6. For example, by using a mating ridged roller instead of a flat, cylindrical roll for bonding roll 156 other portions of the tuft 6 such as at locations intermediate the base 5 and distal end 3. Likewise, continuous lines of melt-bonded material could be made on first surface 12 between rows of tufts 6.
  • In general, while one first bonding roll 156 is illustrated, there may be more than one bonding roll at this stage of the process, such that bonding takes place in a series of nips 117 and/or involving different types of bonding rolls 156. Further, rather than being only a bonding roll, similar rolls can be provided to transfer various substances to precursor web 20 or tufted web 21, such as various surface treatments to impart functional benefits. For example, first side 12 of tufted web 21 or intermediate web 22 can be printed with ink to impart various designs or indicia. Rolls similar to bonding roll 156 can be, for example, gravure printing rolls. Additionally, skin care lotions, surfactants, hydrophobic substances, and the like can be imparted to first side 12 of tufted web 21 or intermediate web 22 including the distal ends 3 of tufts 6. Additional rolls for such purposes can be placed in apparatus 150 before and/or after bonding roll 156. Any processes known in the art for such application of treatments can be utilized.
  • Additionally, substances such as lotions, ink, surfactants, and the like can be sprayed, coated, slot coated, extruded, or otherwise applied to tufted web 21 or intermediate web 22 before or after bonding roll 156. Any processes known in the art for such application of treatments can be utilized.
  • Further, in one embodiment an additional web can be introduced (not shown in FIG. 1) at nip 117 and bonded onto tufted precursor web 21 in nip 117. That is, an additional web can be supplied from roll stock, for example, and brought in at nip 117 to form a laminate structure, the laminate being bonded between the distal ends 3 of tufts 6 and the additional web. In this manner, a laminate having substantially flat, smooth outer surfaces and having substantial void volume can be produced. In such an embodiment, the tufts 6 are internal and separate the two outer surfaces of the laminate. By using relatively stiff fibers in tufts 6, such a laminate can be a soft, compression resistant nonwoven composite web.
  • Intermediate web 22 can be taken up on a supply roll for further processing as web 1 of the present invention. However, in a preferred embodiment of web 1, intermediate web 22 is further processed by being removed from roll 104 after nip 118, as depicted in FIG. 1. Nip 118 is formed between roll 104 and 102B, with roll 102B preferably being identical to roll 102A. The purpose of going around roll 102B is to remove intermediate web 22 from roll 104 without disturbing the tufts 6 formed thereon. Because roll 102B intermeshes with roll 104 just as roll 102A did, tufts 6 can fit into the grooves 108 of roll 102B as intermediate web 22 is wrapped around roll 102B.
  • Intermediate web 22 can be processed through nip 119 between roll 102B and second bonding roll 158. Second bonding roll 158 can be identical in design to first bonding roll 156. Second bonding roll 158 can provide sufficient heat to at least partially melt a portion of the second surface 14 of intermediate web 22 to form a plurality of non-intersecting, substantially continuous melt-bonded regions 11 corresponding to the nip pressures between the tips of ridges 106 of roll 102B and the generally flat, smooth surface of roll 158.
  • Second bonding roll can be used as the only bonding step in the process (i.e., without first having intermediate web 22 formed by bonding the distal ends of tufts 6). In such a case web 1 would be a tufted web with bonded portions on the second side 14 thereof. However, in general, web 1 is preferably a double bonded web 1 having bonded distal ends of tufts 6 and a plurality of non-intersecting, substantially continuous melt-bonded regions 11 on second side 14 thereon.
  • In general, as with first bonding roll 156, second bonding roll 158 can facilitate bonding by chemical bonding, such as by application of adhesive or latex binder materials, or bonding by pressure alone or in combination with heat. Likewise, as with first bonding roll 156, in a preferred embodiment, second bonding roll 158 is heated roll, heated to a sufficient temperature to melt-bond adjacent fibers of intermediate web 22 as web 22 goes through nip 119 to form double bonded web 23, which can be web 1 of the present invention.
  • As shown in FIG. 14, melt-bonded regions 11 can be generally straight, parallel stripes or bands of melt-bonded material. Note that this description is for heated roll 158. For adhesive bonded embodiments, the same structure of bonded regions can be achieved, but it would not, of course, be “melt-bonded”. In general, it is not necessary that a band or stripe of melt-bonded material be disposed between every row of discontinuities 16 (i.e., between every row of tufts 6). Second bonding roll 158 can be designed to only make contact in nip 119 at predetermined locations, such that the number and placement of stripes of melt-bonded material 11 can be varied as desired. Additionally, if ridges 106 of roll 104 are discontinuous, the melt-bonded portions can be discontinuous strips or bands of material that can appear, for example, as dashes or dots in the MD orientation.
  • There are many variations that can result based on the use of the web 1. The melt bonded regions 11 can be in rows which may form a type of perforation for tearing or may mechanically weaken the material. Alternatively, it may be desired to only have intermittent or staggered melt bonded regions 1 1 in some webs 1. This may be desired where strength of the material is important. The intermittent or staggered melt bonded regions 11 can result from staggering the teeth 10 or through other mechanical adjustments.
  • As shown in the cross-section of FIG. 15, web 1 of the present invention can have melt-bonded regions on the distal ends of tufts 6 as well as stripes or bands of melt-bonded regions 11 on the second surface 14. Melt-bonded regions 11 may be substantially only surface bonded, or, depending upon the time, pressure, and temperature relationship in nip 119, can be substantially bonded throughout web 1 to even bond some fibers on first surface 12. As with first bonding roll 156, the heat output of second bonding roll 158 can be adjusted to provide the amount of thermal heat transfer necessary to produce the amount of melt-bonding desired in regions 11.
  • In general, while one second bonding roll 158 is illustrated in FIG. 1, there may be more than one bonding roll at this stage of the process, such that bonding takes place in a series of nips 119 and/or involving different types of bonding rolls 158. In such a case, it may be that the circumference of rolls 102B and 158 be adjusted accordingly such that multiple rolls 158 can form nips 119 around circumference of roll 102B. Further, rather than being only a bonding roll, similar rolls can be provided to transfer various substances to web 1, such as various surface treatments to impart functional benefits. For example, first side 12 of tufted web 21 or intermediate web 22 can be printed with ink to impart various designs or indicia. Rolls similar to bonding roll 156 can be, for example, gravure printing rolls. Additionally, skin care lotions, surfactants, hydrophobic substances, and the like can be imparted to first side 12 of tufted web 21 or intermediate web 22 including the distal ends 3 of tufts 6. Additional rolls for such purposes can be placed in apparatus 150 before and/or after bonding roll 156. Any processes known in the art for such application of treatments can be utilized.
  • Additionally, substances such as lotions, ink, surfactants, and the like can be sprayed, coated, slot coated, extruded, or otherwise applied to tufted web 21 or intermediate web 22 before or after bonding roll 156. Any processes known in the art for such application of treatments can be utilized.
  • In some embodiments, it may be desired to form apertures at the melt-bonded regions. The melt-bonded regions on the distal ends of tufts 6 and the melt-bonded regions 11 on the second surface 14 may be opened or formed into an aperture by utilizing a stretching step after the melt-bonded regions are formed. The stretching step can be ring rolling or any other type of stretching. If apertures are desired at the base of a loop, melt-bonded regions 11 on the second surface 14 can be formed and then the web 11 ring rolled.
  • After web 1 is formed, it can be taken up on a supply roll 160 for storage and further processing as a component in other products.
  • Webs 1 of the present invention offer many opportunities for producing engineered materials having selected characteristics. For example, a web 1 can be made by selecting the length of staple fibers in a carded precursor web 20 so that the probability of having fiber ends exposed in tufts 6 can be statistically predicted. Also, a carded web of staple fibers can be blended or laminated with a spunbond nonwoven web to produce a hybrid, such that the tufts 6 comprise primarily looped spunbond fibers and the first regions 2 comprise both carded and spunbond fibers. The type of fibers, the length of staple fibers, the layering of fibers, and other variations of precursor web 20 can be varied as desired to produce desired functional characteristics of the web 1.
  • One of the advantages of the process and apparatus of the present invention is the production of bonded nonwoven webs from precursor web (or webs) 20 in which there are minimal fiber-to-fiber bonds. For example, the precursor web can be a nonwoven web having a pattern of discrete thermal point bonds, as is commonly known in the art for nonwoven webs. In general, however, it is desirable to minimize the number and maximize the spacing of bond points so as to allow for maximum fiber mobility and dislocation. Alternately, an unbonded precursor web 20 can be utilized, provided proper care and technique is used to present the unbonded web to the nip 116. Proper care and technique can be achieved, for example, by use of a vacuum conveyor belt from fiber laydown to nip 116. In such a web fibers can have maximum fiber mobility, and web bonding can occur at first bonding roller 156 to form a stabilized, tufted web. In general, utilizing fibers having relatively high diameters, and/or relatively high extension to break, and/or relatively high fiber mobility, results in better and more distinctly formed tufts 6.
  • Although web 1 is disclosed in preferred embodiments as a single layer web made from a single layer precursor web 20, it is not necessary that it be so. For example, a laminate or composite precursor web 20 having two or more layers or plies can be used. In general, the above description for web 1 holds, recognizing that looped aligned fibers 8, for example, formed from a laminate precursor web could be comprised of fibers from one, or both (or all) layers of the laminate. In such a web structure, it can be important, therefore, that fibers of all the layers have sufficient diameter, elongation characteristics, and fiber mobility, so as not to break prior to extension and tuft if it is desirable that fibers from all the layers of the laminate contribute to the tufts 6.
  • Multilayer webs 1 can have significant advantages over single layer webs 1. For example, a tuft 6 from a multilayer web 1 using two precursor webs 20A and 20B, can comprise fibers in a “nested” relationship that “locks” the two precursor webs together, forming a laminate web without the use or need of adhesives or thermal bonding between the layers. In other embodiments, multilayer webs can be chosen such that the fibers in the layers do not have equal extensibility. Such webs can produce tufts 6 by pushing fibers from a lower layer up and through an upper layer which contributes few or no fibers to tuft 6. For example, the upper layer of a laminate web could be a polymer film which is simply “poked through” when processed by the apparatus of the present invention. In such a web, second bonding roll 158 may be utilized to melt-bond the polymer film to an upper nonwoven layer, for example. In general, additional layers of material, including additional web layers can be joined, such as by bonding, to web 1 by laminating to either side of web 1.
  • In a multilayer web 1 each precursor web can have different material properties, thereby providing web 1 with beneficial properties. For example, web 1 comprising two (or more) precursor webs, e.g., first and second precursor webs 20A and 20B can have beneficial fluid handling properties for use as a topsheet on a disposable absorbent article, as described more fully below. For superior fluid handling, for example, first precursor web 20A can form an upper layer (i.e., a body-contacting when used as a topsheet on a disposable absorbent article) and be comprised of relatively hydrophobic fibers. Second precursor web 20B can form a lower layer (i.e., disposed between the topsheet and an absorbent core when used on a disposable absorbent article) comprised of relatively hydrophilic fibers. Fluid deposited upon the upper, relatively hydrophobic layer is quickly transported to the lower, relatively hydrophilic, layer. One reason for the observed rapid fluid transport is the capillary structures formed by the generally aligned fibers 8, 18 of tufts 6. The fibers 8, 18 form directionally-aligned capillaries between adjacent fibers, and the capillary action is enhanced by the general convergence of fibers near proximal portion 5 of tufts 6.
  • It is believed that the rapid fluid transport is further increased due to the ability of fluid to enter the web 1 via the voids 10 created by tufts 6. This “lateral entry” capability and/or capillary action, and/or the hydrophilicity gradient afforded by the structure of web 1 makes web 1 an ideal material for optimal fluid handling for disposable absorbent articles. In particular, a multilayer web 1 can provide for even greater improvement in fluid handling characteristics. When web 1 is used as a fluid handling member in a disposable absorbent product, web 1 can be oriented so that first surface 12 is oriented facing toward the body of the wearer or away from the body of the wearer. Thus, in one embodiment the tufts would be extending toward the skin of the wearer, and in the other embodiment the tufts would extend away from the wearer and toward other components of the disposable absorbent article, or a garment of the wearer.
  • In another embodiment, first precursor web 20A can be comprised of relatively soft fibers (e.g., polyethylene), while second precursor web 20B can be comprised of relatively stiff fibers (e.g., polyester). In such a multilayer web 1, tufts 6 can retain or recover a certain amount of height h as depicted in FIG. 15, even after applied pressure. The benefit of such as structure, particularly when combined with a hydrophilicity gradient as described above (fibers can be rendered hydrophobic or hydrophilic by means known in the art), is a web 1 suitable for use as a topsheet in feminine hygiene products that provides for superior fluid acquisition and superior rewet properties (i.e., reduced fluid movement back to the surface of the topsheet). It is believed that the increased stiffness provided by the relatively stiff fibers of second precursor web 20B provide for increased compression resistant caliper (thickness) of the web, while the relatively soft fibers of first precursor web 20A provides for softness at the web/skin interface. This extra caliper, together with the ability of the distally-disposed portions 3 of tufts 6 to remain relatively fluid free (due to lack of capillarity because adjacent fibers bonded together), results in a superior, soft, dry (and dry-feeling) topsheet for use in feminine hygiene products, as well as baby diapers, adult incontinence articles, bandages, and the like.
  • FIGS. 16-18 show representative schematic diagrams of possible structures for tufts 6, depending on the material properties of precursor webs 20A or 20B. Other structures, not shown, can be achieved, with the only limitation to various structures being the limitations inherent in the material properties of the precursor webs.
  • Therefore, as can be seen from the above description, depending on the precursor web 20 (or webs) utilized and the dimensional parameters of rolls 102 and 104, including teeth 110, and heating properties of first and/or second bonding rolls 156 and 158, web 1 of the present invention can exhibit a wide range of physical properties. The web 1 can exhibit a range of texture subjectively experienced as ranging from softness to roughness, an absorbency ranging from non-absorbent to very absorbent, a bulkiness ranging from relatively low bulk to relatively high bulk; a tear strength ranging from low tear strength to high tear strength; an elasticity ranging from non-elastic to at least 100% elastically extensible, a chemical resistance ranging from relatively low resistance to high resistance, depending on the chemical considered, and many other variable parameters generally described as shielding performance, alkali resistance, opacity, wiping performance, water absorptivity, oil absorptivity, moisture permeability, heat insulating properties, weatherability, high strength, high tear force, abrasion resistance, electrostatic controllability, drape, dye-affinity, safety and the like. In general, depending on the elongation properties of the fibers of precursor web 20, the dimensions of apparatus 150 can be varied to produce a web 1 having a wide range of dimensions associated with second regions 4, including the height h (as shown in FIG. 15), and spacing, including the area density of discrete tufts 6.
  • In one embodiment, a two-layer laminate web 1 can be produced by the method and apparatus disclosed herein having a heated roll temperature of 275 degrees F. (135 degrees C.) for first and second heated rolls 156 and 158. The depth of engagement E in nip 116 can be from about 0.070 inches (about 1.8 mm) to about 0.100 inches (2.54 mm) and can be about 0.130 inches (about 3.4 mm). The tooth height TH can be from about 0.070 inches (about 1.8 mm) to about 0.130 inches (about 3.4 mm and the pitch P can be from about 0.060 inches (about 1.5 mm) to about 0.130 inches (about 3.4 mm). The laminate web can be run at a line speed of from about 50 feet per minute (about 15 meters per minute) to about 500 feet per minute (about 150 meters per minute).
  • In multilayer embodiments, one layer can be a 45 gsm 50%/50% 6 denier PET/bicomponent thermal point bonded carded web. The PET fibers can be surfactant treated PET, crimped, 2-inch (50 cm) cut length fibers having a round cross-sectional shape, obtained from Wellman, Inc., Charlotte, N.C. under the designation Type 204. The bicomponent fibers can be relatively hydrophilic 6 denier polyethylene/polypropylene crimped, 2-inch cut length bicomponent binder fibers (higher melting polypropylene core/low melting point polyethylene sheath) obtained from Fibervision LB, Atlanta Ga., under the designation Type T425. All percentages refer to weight percent.
  • Another two-layer embodiment of web 1 can be made like the one described above, but having a heated roll temperature of 295 degrees F. (146 degrees C.) for first and second heated rolls 156 and 158 and a line speed of 500 feet per minute (about 152 meters per minute).
  • Both of the two layer embodiments of web 1 described above utilize nonwoven precursor webs having differences at least in their relative hydrophilicity and are suitable for use in a catamenial products, particularly as a cover sheet (e.g., topsheet) for sanitary napkins, as described more fully below. In another embodiment, first precursor web can be a nonwoven and second precursor web a polymer film, such that when tufts 6 are formed, the polymer film forms a cover, or cap over the tuft. For example, in the embodiment shown schematically in FIG. 16, precursor web 20A can be a polymer film, which can be seen to form a cover over the tufted portion of precursor web 20B.
  • In another embodiment, one of the precursor webs can be a paper web, such as a tissue paper web similar to BOUNTY® paper towels sold by The Procter & Gamble Co. In one embodiment, a meltblown or spunbond nonwoven web can be laminated to the paper web and processed by apparatus 150 to form a paper/nonwoven composite laminate. The nonwoven web can be pre-heated, or deposited directly onto paper web while in a heated condition. In one embodiment, spunbond or meltblown layer of polymeric fibers having a basis weight of between about 3 to about 20 grams per square meter can be applied from one or more beams of an SMS line directly onto a moving web of tissue paper to form a tissue/nonwoven laminate. The tissue/nonwoven laminate can be further laminated with another tissue layer to form a tissue/nonwoven (e.g., meltblown)/tissue and then processed through the nip 116 of apparatus 150. Even without subsequent heating of the web as disclosed above, the resulting tufted web has been found to have excellent integrity for wiping applications, for example.
  • In another embodiment, a paper web can be utilized as precursor web 20 in which the paper web comprises thermoplastic fibers. For example, thermoplastic fibers can be added in the pulp furnish during the wet stage of papermaking in a sufficient amount to permit thermal bonding of the thermoplastic fibers to give increased integrity to the tufted web 1. For example, a sufficient amount can be from about 10 to about 20% polymer fibers by weight of cellulosic fibers in a papermaking furnish.
  • FIG. 19 shows in partial cut away plan view a catamenial article, specifically a sanitary napkin, having as one of its components a web 1 of the present invention. In general, sanitary napkin 200 comprises a backsheet 202, a topsheet 206 and an absorbent core 204 disposed between the topsheet 206 and backsheet 202 which can be joined about a the periphery 210. Sanitary napkin 200 can have side extensions, commonly referred to as “wings” 208 designed to wrap the sides of the crotch region of the panties of the user of sanitary napkin 200. Topsheet 206 of sanitary napkin 200 comprises web 1 having tufts 6 on a body facing side thereof. Sanitary napkins, including topsheets for use as the body facing surface thereof, are well known in the art and need no detailed description of various alternative and optional designs. Other catamenial articles, such as panty liners, interlabial devices, will also have similar structure as sanitary napkins. It is noted that web 1 can be used as, or as a component of, one or more of a backsheet, absorbent core material, topsheet, secondary topsheet, or wing material.
  • FIG. 20 shows in partial cut away perspective view a catamenial tampon 300 having as one of its components a web 1 of the present invention. In general, tampon 300 comprises a compressed absorbent core 302 and a fluid permeable cover wrap 304 that covers absorbent core 302. Cover wrap 304 may extend beyond one end of absorbent core 302 to form a skirt portion 306. A removal means, such as string 308 can be provided to facilitate removal of the tampon after use. Tampons, including cover wraps for use as the body contacting surface thereof, are well known in the art and need no detailed description of various alternative and optional designs. However, it is noted that web 1 can be used as, or as a component of, one or more of a cover wrap, absorbent core material, or removal means material. On other disposable absorbent articles, such as baby diapers having mechanical fasteners, web 1 can be one of the components of a hook and loop fastener, for example. Web 1 can be either the landing zone of such a fastener, or the hook portion of a tape tab designed to engage such a landing zone.
  • The web of the present invention can also be utilized in wiping articles, such as textured body cloths for cleansing and moisturizing the body. In one embodiment, a web 1 can be incorporated into a dual textured lathering article for cleansing the body in a shower. The wipe 1 can include a lathering surfactant component which is prepared from the ingredients shown in Table 1 below.
    TABLE 1
    Surfactant ingredients
    Amount
    Ingredient Supplier or common CTFA name added
    Alkyl Glyceryl Sulfonate (Procter & Gamble Co., Iowa 62.8%
    (AGS) 47.5% solids paste City, Iowa, USA)
    Lauramidopropyl Betaine, Colonial Chemical Inc., USA 19.7%
    30-35% active
    Citric Acid Anhydrous Citric acid  0.2%
    Propylene Glycol Propylene glycol 15.2%
    Polyox WSR-301 (Amerchol) PEG 90M 0.20%
    JR30M (Amerchol) Polyquaternium-10 0.50%
    Perfume  1.0%
    Preservative & misc.  0.4%
  • The ingredients can be prepared by mixing the cationic polymer with the glycol and surfactants under heat with continuous stirring to avoid lumps. The perfume can be added during cooling. The lathering surfactant component melts upon heating to about 60 degrees C. or more, and solidifies upon cooling to a hard solid. The percentages are weight percentages of the ingredient including water it may contain.
  • The ingredients above can be applied to a layered, laminated web 1 prepared by the process described above with respect to the apparatus of FIG. 1. Web 1 can be a 25 gsm nonwoven web comprising polypropylene and available from BBA Nonwovens, Simpsonville, S.C., and sold under the trade name Sofspan 200®, processed by the apparatus of the invention to have melt-bonded regions on the distal ends of tufts 6 as well as stripes or bands of melt-bonded regions 11 on the second surface 14. The web 1 so prepared is sealed to a batting, which is a lofty, airlaid blend of carded fibers (50% PET, 50% PE/PP core-sheath bicomponent) having a basis weight of 65 gsm and a thickness of 2.7 mm, from Libeltex NV, Belgium. The nonwoven web gives a textured feel and increased stability during use to the article. The lathering surfactant component can be heated until liquid, and slot coated in 3 rows between the nonwoven and airlaid layers at a rate of 4 grams per finished article. The layers can be sealed using an ultrasonic sealer such as a Branson Model 9000 Ultrasonic Sealer, which seals a dot pattern comprising a grid of 4 mm diameter sealing points spaced evenly across the article at 3 cm intervals. The sealed web can be cut into 11.9 cm×9.0 cm rectangles to create the finished article.
  • A second example of a layered laminated article using a web 1 of the present invention can incorporate a commercial body wash which has about 16% active surfactants. The body wash is commercially available and distributed by Bath & Body Works and comprises water, sodium laureth sulfate, lauramide DEA, TEA cocoyl glutamate, cocamidopropyl betaine, fragrance, sodium PCA, aloe leaf juice, carica papaya fruit extract, propylene glycol, polyquaternium-10, preservatives, fragrance, PEG-150 distearate, sodium chloride and colors. A layered nonwoven/airlaid web can be prepared as in the example above, and then soaked in the commercial body wash described above, which is preferably added to the web at the rate of 1100 gsm. The webs can be dried in a forced air oven, turning them over when partially dry and wiping excess body wash back onto the web as it is turned. After drying to about 16% moisture, the web can be cut into rectangles measuring 11.9 cm×9.0 cm.
  • A third example of a layered laminate article using a web 1 of the present invention can be a makeup removal pad. The following chemical component shown in Table 2 can be prepared, which is useful for removing makeup. The phase A can be prepared in water at 75° C., which can be the surfactant component for this example. The formula shown does not include the added water. Component phase B can be prepared by mixing the ingredients separately and blending into Phase B at room temperature.
    TABLE 2
    Chemical component
    % active
    Ingredient common Ingredient CTFA chemical
    name or trade name name CAS # added Phase
    Carbowax PEG Polyethylene 25322-68-3 25.8 B
    4600 flake (Dow Glycol 4600
    Chemicals, USA)
    Cocamidopropyl Cocamidopropyl 68139-30-0 17.3 A
    Hydroxysultaine Hydroxysultaine
    (Stepan)
    Hamposyl L-30 Sodium Lauroyl 137-16-6 17.3 A
    (Hampshire Chem) Sarcosinate
    Plantaren 2000 N Decyl Glucoside mixture 17.3 A
    UP (Cognis Care
    Chemicals, NJ,
    USA)
    Beta CycloDextrin Beta 7585-39-9 7.4 B
    CycloDextrin
    Butylene Glycol Butylene Glycol 107-88-0 5.3 A
    Polyox WSR N3000 PEG 14M 25322-68-3 2.7 A
    (Amerchol)
    Ucare Polymer Polyquaternium- 53568-66-4 1.3 A
    JR30M (Amerchol) 10
    Perfume Fragrance 1.2 B
    D-Panthenol Panthenol 81-13-0 0.9 A
    Salicylic Acid Salicylic Acid 69-72-7 0.3 A
    Menthol Menthol 89-78-1 0.1 B
    Acusol 460N Water & Sodium 0.09 B
    (Robin & Haas) MA/
    Diisobutylene
    Copolymer
    Misc. preservatives, mixture QS A
    vitamins
  • An article can be prepared by spraying the surfactant component onto a web 1 of made by any of the processes and variations described herein to an add-on rate of about 150% based on the weight of the web. The article can be stored in a sealed container.
  • As can be understood from the above description of webs 1 and apparatus 150 of the present invention, many various structures of webs 1 can be made without departing from the scope of the present invention as claimed in the appended claims. For example, webs 1 can be coated or treated with lotions, medicaments, cleaning fluids, anti-bacterial solutions, emulsions, fragrances, surfactants. Likewise, apparatus 150 can be configured to only form tufts 6 on a portion of the web 1, or to form varying sizes or area densities of tufts 6. Additionally, the constituent precursor web(s) 20 can be pre-treated or pre-processed to have apertures, embossments, coatings, or the like prior to processing by apparatus 150. For example, a film precursor web 20 can be treated by vacuum forming or hydroforming to be a three-dimensional apertured formed film, as described in any of U.S. Pat. No. 4,609,518, or U.S. Pat. No. 4,629,643, or U.S. Pat. No. 4,695,422, or U.S. Pat. No. 4,839,216, or U.S. Pat. No. 4,342,314, or U.S. Pat. No. 4,463,045.
  • Further, as can be understood from the above description of webs 1 and apparatus 150 of the present invention, one skilled in the art can recognize that various additional processes known in the art can be combined with the process described to provide various additional structures. For example, prior to entering first nip 116, precursor web(s) 20 can be overbonded with a plurality of weakened melt-stabilized locations which can be incrementally stretched in nip 116 to provide apertures. Such a process is described in U.S. Pat. No. 5,628,097. Further, multiple layers having differing elongation characteristics can be processed in a similar manner as described in US 20030028165A1. In general, any of the known processes commonly referred to as “ring rolling,” or “selfing” in the art can be incorporated in apparatus 150 as desired for producing a web 1 for a particular application.
  • Web 1 may be used for a wide variety of applications, including various filter sheets such as air filter, bag filter, liquid filter, vacuum filter, water drain filter, and bacterial shielding filter; sheets for various electric appliances such as capacitor separator paper, and floppy disk packaging material; various industrial sheets such as tacky adhesive tape base cloth, oil absorbing material, and paper felt; various dry or premoistened wipes such as hard surface cleaning, floor care, and other home care uses, various wiper sheets such as wipers for homes, services and medical treatment, printing roll wiper, wiper for cleaning copying machine, baby wipers, and wiper for optical systems; various medicinal and sanitary sheets, such as surgical gown, medical gowns, wound care, covering cloth, cap, mask, sheet, towel, gauze, base cloth for cataplasm, diaper, diaper liner, diaper cover, feminine napkin covers, feminine napkin or diaper acquisition layer (underneath the cover layer), diaper core, tampon liners, base cloth for adhesive plaster, wet towel, paper towels, tissues; various sheets for clothes, such as padding cloth, pad, jumper liner, and disposable underwear; various life material sheets such as base cloth for artificial leather and synthetic leather, table top, wall paper, blind, wrapping, and packages for drying agents, shopping bag, suit cover, and pillow cover; various agricultural sheets, such as ground covers and erosion control devices, cooling and sun light-shielding cloth, lining curtain, sheet for overall covering, light-shielding sheet, wrapping materials of pesticides, underlining paper of pots for seeding growth; various protection sheets such as fume prevention mask and dust prevention mask, laboratory gown, and dust preventive clothes; various sheets for civil engineering building, such as house wrap, drain material, filtering medium, separation material, overlay, roofing, tuft and carpet base cloth, wall interior material, soundproof or vibration reducing sheet, and curing sheet; and various automobile interior sheets, such as floor mat and trunk mat, molded ceiling material, head rest, and lining cloth, in addition to a separator sheet in alkaline batteries. Other uses include utilizing web 1 as a wipe for personal cleansing or hygiene, such as for a baby wipe, facial cloth or wipe, or body cloth.
  • In one embodiment, web 1 or a composite comprising web 1 can be utilized as a fecal material storage element. Web 1 can be utilized as a secondary topsheet or sublayer when it is disposed under an apertured web or film to accept and hold low viscosity feces or viscous bodily waste away from a wearer's skin after defecation. Embodiments of the present invention having larger total three dimensional volume within the web or between the tufts generally provide a greater capacity for storage of low viscosity feces. Absorbent articles employing such fecal material storage elements, or sublayers, are described in U.S. Pat. Nos. 5,941,864; 5,957,906; 6,018,093; 6,010,491; 6,186,992; and 6,414,215, among others.
  • All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.
  • While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims (34)

1. A fibrous web (1) having a first surface (12) and a second surface (14), said fibrous web further comprising a first region (2) and at least one discrete second region (4), the second region (4) being a discontinuity (16) on said second surface (14) and being a tuft (6) comprising a plurality of tufted fibers (8, 18) extending from said first surface (12), said tufted fibers defining a distal portion (3), said distal portion (3) comprising portions of said tufted fibers (8, 18) being bonded together.
2. The fibrous web of claim 1, wherein said web comprises a plurality of discrete integral second regions.
3. The fibrous web of claim 2, wherein said plurality of discrete integral second regions is uniformly distributed on said fibrous web.
4. The fibrous web of claim 1, wherein said fibrous web comprises a nonwoven web of substantially randomly oriented fibers.
5. The fibrous web of claim 1, where said fibrous web comprises a nonwoven web having a substantial number of fibers having a predetermined orientation measured as a predetermined angle from the machine direction.
6. The fibrous web of claim 2, wherein said fibers comprise polymers selected from the group consisting of polyethylene, polypropylene, polyester, and blends thereof.
7. The fibrous web of claim 2, wherein said fibers comprise fibers chosen from the group consisting of bicomponent fibers, hollow fibers, non-round fibers, and capillary channel fibers.
8. The fibrous web of claim 1, wherein said precursor web comprises a laminate of at last two precursor webs.
9. The fibrous web of claim 8, wherein a said laminate comprises a polymer film.
10. A fibrous web (1) having a first surface (12) and a second surface (14), said fibrous web further comprising a first region (2) and a plurality of discrete second regions (4), each said second region (4) comprising a discontinuity (16) on said second surface (14) and a tuft (6) comprising a plurality of tufted fibers (8, 18) integral with but extending from said first surface (12), said tufted fibers defining a distal portion (3), said second surface (14) having thereon a plurality of non-intersecting, segmented bonded regions.
11. The fibrous web of claim 10, wherein said second surface has thereon a plurality of non-intersecting, substantially continuous bonded regions.
12. The fibrous web of claim 10, wherein said fibers comprise polymers selected from the group consisting of polyethylene, polypropylene, polyester, and blends thereof.
13. The fibrous web of claim 10, wherein said fibers comprise fibers chosen from the group consisting of bicomponent fibers, hollow fibers, non-round fibers, and capillary channel fibers.
14. The fibrous web of claim 10, wherein said precursor web comprises a laminate of at last two precursor webs.
15. The fibrous web of claim 14, wherein said laminate comprises a polymer film.
16. A fibrous web (1) having a first surface (12) and a second surface (14), said fibrous web further comprising a first region (2) and a plurality of discrete second regions (4), each said second region (4) comprising a discontinuity (16) on said second surface (14) and a tuft (6) comprising a plurality of tufted fibers (8, 18) integral with but extending from said first surface (12), said tufted fibers defining a distal portion (3), said distal portion (3) comprising portions of said tufted fibers (8, 18) being bonded together, and wherein said second surface (14) comprises thereon a plurality of non-intersecting, substantially continuous bonded regions.
17. The fibrous web of claim 16, wherein said fibers comprise polymers selected from the group consisting of polyethylene, polypropylene, polyester, and blends thereof.
18. The fibrous web of claim 16, wherein said fibers comprise fibers chosen from the group consisting of bicomponent fibers, hollow fibers, non-round fibers, and capillary channel fibers.
19. The fibrous web of claim 16, wherein said portions of tufts bonded together comprise adhesive-bonded portions.
20. The fibrous web of claim 16, wherein said portions of tufts bonded together comprise distally-disposed melt-bonded portions.
21. A disposable absorbent article, the article having at least one component comprising a fibrous web (1) comprising a first region (2) and a plurality of discrete integral second regions (4), the second regions (4) having at least one portion being a region of fiber discontinuity (16) and at least another portion being a tuft (6) comprising a plurality of tufted fibers (8, 18) integral with but extending from the first region (2), wherein said web (1) comprises bonded regions on distal portions of said tufts (6).
22. The article of claim 21, wherein said article is selected from the group consisting of a catamenial article, a tampon, an incontinence article, and a diaper.
23. A multilayer tufted web (1) comprising at least a first and second precursor webs, said multilayer fibrous web further comprising a first surface (12) and a second surface (14), and a first region (2) and a plurality of discrete integral second regions (4), the second regions (4) having at least one portion being a region of fiber discontinuity (16) and at least another portion being a tuft (6) comprising a plurality of tufted fibers (8, 18) integral with but extending from the first surface (12), wherein the tufted fibers (8, 18) comprise fibers from at least one of said first or second precursor webs, and said tufted fibers defining a distal portion (3), said distal portion (3) comprising portions of said tufted fibers (8, 18) being bonded together.
24. The fibrous web of claim 23, wherein said first and second precursor webs each comprise a nonwoven web of substantially randomly oriented fibers.
25. The fibrous web of claim 23, wherein one of said first or second precursor webs comprise a polymer film web.
26. An apparatus for forming a fibrous web of material, said apparatus comprising:
a. a first roll having a plurality of spaced apart toothed ridges separated by circumferentially-extending grooves;
b. a second roll comprising a plurality of ridges and corresponding grooves extending unbroken about the entire circumference thereof and being disposed in an intermeshing relationship to form a nip with said first roll;
c. a first bonding roll disposed to form a nip with said first roll; and
d. a third roll comprising a plurality of ridges and corresponding grooves extending unbroken about the entire circumference thereof and being disposed in an intermeshing relationship with to form a nip said first roll.
27. The apparatus of claim 26, wherein said first bonding roll is a heated roll.
28. The apparatus of claim 26, further comprising a second bonding roller disposed to form a nip with said third roll.
29. The apparatus of claim 28, wherein said second bonding roll is a heated roll.
30. The apparatus of claim 29 further comprising web handling rolls to facilitate continuous web processing.
31. A method of making a tufted web having bonded portions on the tufts, the method comprising the steps of:
a. providing a first roll having a plurality of spaced apart toothed ridges separated by circumferentially-extending grooves;
b. providing a second roll comprising a plurality of ridges and corresponding grooves extending unbroken about the entire circumference thereof and being disposed in an intermeshing relationship to form a nip with said first roll;
c. providing a first bonding roll disposed to form a nip with said first roll;
d. providing a third roll comprising a plurality of ridges and corresponding grooves extending unbroken about the entire circumference thereof and being disposed in an intermeshing relationship to form a nip with said first roll;
e. providing a web material comprising at least a web of fibrous material;
f. counter-rotating said first roll with respect to said second roll and said first bonding roll and said third roll;
g. passing said web through said nip between said counter-rotating first and second rolls;
h. without removing said web from said first roll, passing said web through said nip between said counter-rotating first roll and said first bonding roll; and
i. removing said web from said first roll.
32. The method of claim 31, wherein before said web is removed, the method further comprising the steps of:
j. providing a second bonding roll disposed to form a nip with said third roll;
k. providing a take-up roll;
1. passing said web through said nip between said first roll and said third roll;
m. without removing said web from said third roll, passing said web through a nip between said third roll and said second bonding roll;
n. winding said web on said take-up roll.
33. The method of claim 31, wherein said first bonding roll is a heated roll, and said step (h) forms melt-bonded regions of said web.
34. The method of claim 32, wherein said second bonding roll is a heated roll, and said step (m) forms melt-bonded regions of said web.
US11/156,020 2002-12-20 2005-06-17 Tufted fibrous web Expired - Lifetime US7682686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/156,020 US7682686B2 (en) 2002-12-20 2005-06-17 Tufted fibrous web

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US32466102A 2002-12-20 2002-12-20
US43599603A 2003-05-12 2003-05-12
US61029903A 2003-06-30 2003-06-30
US10/737,430 US7410683B2 (en) 2002-12-20 2003-12-16 Tufted laminate web
US10/737,306 US7553532B2 (en) 2002-12-20 2003-12-16 Tufted fibrous web
US11/156,020 US7682686B2 (en) 2002-12-20 2005-06-17 Tufted fibrous web

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/737,306 Continuation-In-Part US7553532B2 (en) 2002-12-20 2003-12-16 Tufted fibrous web

Publications (2)

Publication Number Publication Date
US20060286343A1 true US20060286343A1 (en) 2006-12-21
US7682686B2 US7682686B2 (en) 2010-03-23

Family

ID=37573694

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/156,020 Expired - Lifetime US7682686B2 (en) 2002-12-20 2005-06-17 Tufted fibrous web

Country Status (1)

Country Link
US (1) US7682686B2 (en)

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080008853A1 (en) * 2006-07-05 2008-01-10 The Procter & Gamble Company Web comprising a tuft
US20080102261A1 (en) * 2006-10-27 2008-05-01 The Procter & Gamble Company Clothlike non-woven fibrous structures and processes for making same
US20080221539A1 (en) * 2007-03-05 2008-09-11 Jean Jianqun Zhao Absorbent core for disposable absorbent article
WO2008107846A1 (en) 2007-03-05 2008-09-12 The Procter & Gamble Company Absorbent core, disposable absorbent article, and method of making
US20090064618A1 (en) * 2007-09-11 2009-03-12 Dan Ben-Daat Insulating and waterproofing membrane
US20100011562A1 (en) * 2008-07-17 2010-01-21 Freudenberg Nonwovens, L.P. Non-woven with selected locations/regions of joined fibers for mechanical attachment
US20100035014A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Zoned Topsheet
US20100036347A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Absorbent article having a tufted topsheet
US20100036346A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Regionalized Topsheet
US20100036349A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Zoned Topsheet
US20100036339A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Absorbent article having a tufted topsheet
US20100036338A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Regionalized Topsheet
US7670665B2 (en) 2002-12-20 2010-03-02 The Procter & Gamble Company Tufted laminate web
US7682686B2 (en) 2002-12-20 2010-03-23 The Procter & Gamble Company Tufted fibrous web
US20100101199A1 (en) * 2007-03-07 2010-04-29 Carl Freudenberg Kg Layer for use in a hepa filter element
US7718243B2 (en) 2002-12-20 2010-05-18 The Procter & Gamble Company Tufted laminate web
US7785690B2 (en) 2002-12-20 2010-08-31 The Procter & Gamble Company Compression resistant nonwovens
US20100227112A1 (en) * 2006-10-27 2010-09-09 Nanlin Han Composite Ply with Adhered Groupings of Fiber Fasteners
US20100230867A1 (en) * 2009-03-13 2010-09-16 Brian Francis Gray Process for making an embossed web
US20100233428A1 (en) * 2009-03-13 2010-09-16 Keith Joseph Stone Article having a seal and process for forming the same
US20100233439A1 (en) * 2009-03-13 2010-09-16 Keith Joseph Stone Web material exhibiting viewing-angle dependent color and comprising a plurality of discrete extended elements
US20100230857A1 (en) * 2009-03-13 2010-09-16 Kevin Gerard Muhs Process for making an embossed web
US20100247844A1 (en) * 2009-03-31 2010-09-30 John Joseph Curro Capped tufted laminate web
US7829173B2 (en) 2002-12-20 2010-11-09 The Procter & Gamble Company Tufted fibrous web
US7838099B2 (en) 2002-12-20 2010-11-23 The Procter & Gamble Company Looped nonwoven web
US20100312211A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Structured Fibrous Web
US20100312212A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Fluid Permeable Structured Fibrous Web
US20100310837A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Structured fibrous web
US20100312208A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Fluid Permeable Structured Fibrous Web
US20100310810A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Structured Fibrous Web
US20100310845A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Fluid permeable structured fibrous web
US20110041325A1 (en) * 2009-08-20 2011-02-24 Patrick John Healey Modular Converting Line for Fabricating Absorbent Articles
US20110041417A1 (en) * 2009-08-20 2011-02-24 Patrick John Healey Reconfigurable Converting Line for Fabricating Absorbent Articles
US20110042012A1 (en) * 2009-08-20 2011-02-24 James Jay Benner Systems and Methods for Continuous Delivery of Web Materials
US20110046772A1 (en) * 2009-08-20 2011-02-24 Patrick John Healey Flexible Manufacturing Systems and Methods
JP2011038211A (en) * 2009-08-11 2011-02-24 Uni Charm Corp Non-woven fabric and method for manufacturing the same
US20110094669A1 (en) * 2008-08-08 2011-04-28 David Christopher Oetjen Method of Producing a Composite Multi-Layered Printed Absorbent Article
US7935207B2 (en) 2007-03-05 2011-05-03 Procter And Gamble Company Absorbent core for disposable absorbent article
US20110223388A1 (en) * 2010-03-11 2011-09-15 Keith Joseph Stone Process for making a film/nonwoven laminate
US20110221094A1 (en) * 2010-03-11 2011-09-15 Sarah Beth Gross Process for making an embossed web
WO2011133622A1 (en) 2010-04-23 2011-10-27 The Procter & Gamble Company Method of producing color change in a web substrate
WO2011133464A1 (en) 2010-04-23 2011-10-27 The Procter & Gamble Company Method of producing a web substrate having activated color regions in deformed regions
WO2011133439A1 (en) 2010-04-23 2011-10-27 The Procter & Gamble Company Web substrate having activated color regions in deformed regions
WO2011133329A1 (en) 2010-04-23 2011-10-27 The Procter & Gamble Company Web substrate having activated color regions in topical additive regions
US20110300350A1 (en) * 2010-06-08 2011-12-08 Wen Wen-Tsao Performance textile having gas permeable and protective functions
CN102275347A (en) * 2010-06-08 2011-12-14 隆芳兴业股份有限公司 Functional cloth integrating high air permeability and protectiveness
US8158043B2 (en) 2009-02-06 2012-04-17 The Procter & Gamble Company Method for making an apertured web
WO2012052333A1 (en) * 2010-10-21 2012-04-26 Karl Otto Braun Gmbh & Co. Kg Bandage for applying to a human or animal body
CN102482817A (en) * 2009-05-14 2012-05-30 尤妮佳股份有限公司 Liquid-permeable nonwoven fibrous fabric
US20120237718A1 (en) * 2011-03-15 2012-09-20 Paul Thomas Weisman Structured Fibrous Web
WO2012129026A1 (en) 2011-03-22 2012-09-27 The Procter & Gamble Company Method of producing color change in a substrate
WO2012148944A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Absorbent members having density profile
WO2012148935A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Method for deforming a web
US20120276238A1 (en) * 2011-04-26 2012-11-01 John Brian Strube Apparatus for Deforming a Web
WO2012148973A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making absorbent members having skewed density profile
WO2012149073A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making bulked absorbent members
WO2012148978A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Absorbent members having skewed density profile
WO2012148980A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Deformed web materials
WO2012148974A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making absorbent members having density profile
WO2012149074A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Method and apparatus for deforming a web
US20130069276A1 (en) * 2010-06-22 2013-03-21 Boegli-Gravures S.A. Foil embossing device
US20130068388A1 (en) * 2009-02-24 2013-03-21 Uni-Charm Corporation Method and apparatus for manufacturing a roll of sheet
US8502013B2 (en) 2007-03-05 2013-08-06 The Procter And Gamble Company Disposable absorbent article
US8585958B2 (en) 2009-03-13 2013-11-19 The Procter & Gamble Company Process for making an embossed web
US8679391B2 (en) 2003-08-07 2014-03-25 The Procter & Gamble Company Method and apparatus for making an apertured web
EP2717818A2 (en) * 2011-06-13 2014-04-16 The Procter and Gamble Company Disposable absorbent article with topsheet having a continuous, bonded pattern
EP2777662A1 (en) * 2013-03-11 2014-09-17 Carl Freudenberg KG Use of a velvet fibrebonded fabric substance
US20140358101A1 (en) * 2013-05-30 2014-12-04 The Procter & Gamble Company Nonwoven Web Material Having Enhanced Glide Softness And Good Strength Attributes, And Method For Manufacturing
US20140366293A1 (en) * 2013-06-18 2014-12-18 The Procter & Gamble Company Laminate cleaning implement
US8986584B2 (en) 2009-03-13 2015-03-24 The Procter & Gamble Company Process for making an embossed web
CN104499183A (en) * 2015-01-06 2015-04-08 常州众杰复合材料有限公司 Production method and application of PP acupuncture cotton
US9028652B2 (en) 2011-04-26 2015-05-12 The Procter & Gamble Company Methods of making bulked absorbent members
WO2016040109A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings that are tip bonded to additional layer
WO2016040101A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings
WO2016040104A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations forming protrusions having a varying width and wide base openings
WO2016040120A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Method of making nonwoven material having discrete three-dimensional deformations with wide base openings that are tip bonded to additional layer
US20160074240A1 (en) * 2014-09-12 2016-03-17 The Procter & Gamble Company Absorbent articles having delta e*
WO2016040103A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations that are configured to collapse in a controlled manner
WO2016040105A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Method of making nonwoven material having discrete three-dimensional deformations with wide base openings
WO2016133757A1 (en) 2015-02-17 2016-08-25 The Procter & Gamble Company Method for deforming a web
WO2016133756A1 (en) 2015-02-17 2016-08-25 The Procter & Gamble Company Method for deforming a web
US9439815B2 (en) 2011-04-26 2016-09-13 The Procter & Gamble Company Absorbent members having skewed density profile
US9440394B2 (en) 2011-04-26 2016-09-13 The Procter & Gamble Company Methods of mechanically deforming materials
US9452089B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Methods of making absorbent members having density profile
US9452094B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Absorbent members having density profile
US9498794B2 (en) 2002-12-20 2016-11-22 The Procter & Gamble Company Process for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto
US9724245B2 (en) 2011-04-26 2017-08-08 The Procter & Gamble Company Formed web comprising chads
US20170225449A1 (en) * 2016-02-05 2017-08-10 The Procter & Gamble Company Systems and Methods Of Applying Compositions To Webs
WO2017156203A1 (en) * 2016-03-11 2017-09-14 The Procter & Gamble Company A three-dimensional substrate comprising a tissue layer
US20170258649A1 (en) * 2016-03-11 2017-09-14 The Procter & Gamble Company Multi-component topsheets having three-dimensional materials
US20170258955A1 (en) * 2016-03-09 2017-09-14 The Procter & Gamble Company Absorbent article with activatable material
US20170259550A1 (en) * 2016-03-11 2017-09-14 The Procter & Gamble Company Method Of Making Nonwoven Material Having Discrete Three-Dimensional Deformations With Holes In Selected Portions Of The Protrusions
WO2017155912A1 (en) 2016-03-11 2017-09-14 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with improved protrusion dimensions after compression
US20170348165A1 (en) * 2016-03-11 2017-12-07 The Procter & Gamble Company Three-dimensional materials
US20180043668A1 (en) * 2015-03-19 2018-02-15 Zeon Corporation Laminate for automotive interior material
US20180071151A1 (en) * 2016-09-09 2018-03-15 The Procter & Gamble Company Systems And Methods Of Applying Compositions To Webs And Webs Thereof
US20180078429A1 (en) * 2015-03-30 2018-03-22 Daio Paper Corporation Absorbent Article and Method for Producing Same
US10011953B2 (en) 2011-04-26 2018-07-03 The Procter & Gamble Company Bulked absorbent members
US20180214321A1 (en) * 2017-01-31 2018-08-02 The Procter & Gamble Company Shaped nonwoven fabrics and articles including the same
US10064766B2 (en) 2014-09-12 2018-09-04 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations that are configured to collapse in a controlled manner
CN108618550A (en) * 2017-03-24 2018-10-09 天津巨越地毯有限公司 A kind of residential carpet with automatic sterilizing system
US20190380887A1 (en) * 2018-06-19 2019-12-19 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US10577722B2 (en) 2017-06-30 2020-03-03 The Procter & Gamble Company Method for making a shaped nonwoven
US10596499B2 (en) * 2015-02-24 2020-03-24 Kureha Ltd. Pre-air-filter for internal combustion engine
US10610423B2 (en) 2016-03-08 2020-04-07 The Procter & Gamble Company Absorbent article comprising a topsheet/acquisition web laminate
US20200397629A1 (en) * 2019-06-19 2020-12-24 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US20200397630A1 (en) * 2019-06-19 2020-12-24 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
CN113290992A (en) * 2021-05-12 2021-08-24 盐城神力制绳有限公司 Splicing aramid fiber flame-retardant net
CN113473953A (en) * 2019-03-18 2021-10-01 宝洁公司 Forming belt for producing formed non-woven fabric with high visual resolution
US11173078B2 (en) 2015-11-04 2021-11-16 The Procter & Gamble Company Absorbent structure
US11192327B2 (en) * 2017-07-03 2021-12-07 Axel Nickel Voluminous meltblown nonwoven fabric with improved stackability and storability
US11214893B2 (en) 2017-06-30 2022-01-04 The Procter & Gamble Company Shaped nonwoven
US11285056B2 (en) 2017-10-19 2022-03-29 The Procter & Gamble Company Topsheet comprising natural fibers with good mechanical strength
US11291595B2 (en) * 2017-10-19 2022-04-05 The Procter & Gamble Company Topsheet comprising natural fibers
US11376168B2 (en) 2015-11-04 2022-07-05 The Procter & Gamble Company Absorbent article with absorbent structure having anisotropic rigidity
US11505884B2 (en) 2019-03-18 2022-11-22 The Procter & Gamble Company Shaped nonwovens that exhibit high visual resolution
US11547613B2 (en) 2017-12-05 2023-01-10 The Procter & Gamble Company Stretch laminate with beamed elastics and formed nonwoven layer
US11696856B2 (en) 2017-03-09 2023-07-11 The Procter & Gamble Comoany Three-dimensional materials having apertures and voids
US11850128B2 (en) 2018-09-27 2023-12-26 The Procter And Gamble Company Garment-like absorbent articles
US11918442B2 (en) 2019-09-19 2024-03-05 The Procter & Gamble Company Garment-like absorbent articles

Families Citing this family (447)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795716B2 (en) * 2001-10-01 2014-08-05 The Procter & Gamble Company Skin care compositions on a thin sanitary napkin
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7910195B2 (en) 2003-12-16 2011-03-22 The Procter & Gamble Company Absorbent article with lotion-containing topsheet
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7434717B2 (en) 2007-01-11 2008-10-14 Ethicon Endo-Surgery, Inc. Apparatus for closing a curved anvil of a surgical stapling device
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
ITMI20072444A1 (en) * 2007-12-28 2009-06-29 Union Ind Spa PROCEDURE FOR THE IMPLEMENTATION OF NON-WOVEN FABRIC FABRICS.
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8141505B2 (en) 2008-02-15 2012-03-27 Card-Monroe Corp. Yarn color placement system
US8359989B2 (en) 2008-02-15 2013-01-29 Card-Monroe Corp. Stitch distribution control system for tufting machines
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
RU2525225C2 (en) 2009-02-06 2014-08-10 Этикон Эндо-Серджери, Инк. Improvement of drive surgical suturing instrument
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8969652B2 (en) 2010-09-21 2015-03-03 The Procter & Gamble Company Disposable absorbent article
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CN103153250B (en) 2010-10-15 2016-09-28 宝洁公司 There is the absorbent article of surface visual texture
MX345441B (en) 2010-12-02 2017-01-31 Procter & Gamble Absorbent article having improved bonding.
US9211122B2 (en) 2011-03-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical access devices with anvil introduction and specimen retrieval structures
JP6104825B2 (en) 2011-03-18 2017-03-29 ドナルドソン カンパニー,インコーポレイティド Medium processed at high temperature
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
EP2720862B1 (en) 2011-06-17 2016-08-24 Fiberweb, Inc. Vapor permeable, substantially water impermeable multilayer article
US10369769B2 (en) 2011-06-23 2019-08-06 Fiberweb, Inc. Vapor-permeable, substantially water-impermeable multilayer article
WO2012177996A2 (en) 2011-06-23 2012-12-27 Fiberweb, Inc. Vapor permeable, substantially water impermeable multilayer article
US9765459B2 (en) 2011-06-24 2017-09-19 Fiberweb, Llc Vapor-permeable, substantially water-impermeable multilayer article
US8685194B2 (en) 2011-09-19 2014-04-01 Velcro Industries B.V. Laminated touch fasteners
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
MX350846B (en) 2012-03-28 2017-09-22 Ethicon Endo Surgery Inc Tissue thickness compensator comprising capsules defining a low pressure environment.
MX358135B (en) 2012-03-28 2018-08-06 Ethicon Endo Surgery Inc Tissue thickness compensator comprising a plurality of layers.
RU2604586C2 (en) 2012-04-25 2016-12-10 Дзе Проктер Энд Гэмбл Компани Apparatus and process for perforating and stretching web
KR20140137449A (en) 2012-04-25 2014-12-02 더 프록터 앤드 갬블 캄파니 Corrugated and apertured web
MX344063B (en) * 2012-05-15 2016-12-02 Procter & Gamble Absorbent articles having texture zones forming background patterns and macro patterns.
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US20140005678A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary drive arrangements for surgical instruments
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
JP6109935B2 (en) 2012-07-13 2017-04-05 ザ プロクター アンド ギャンブル カンパニー Stretchable laminate for absorbent articles and method for producing the same
US9474660B2 (en) 2012-10-31 2016-10-25 Kimberly-Clark Worldwide, Inc. Absorbent article with a fluid-entangled body facing material including a plurality of hollow projections
US10070999B2 (en) 2012-10-31 2018-09-11 Kimberly-Clark Worldwide, Inc. Absorbent article
US9480608B2 (en) 2012-10-31 2016-11-01 Kimberly-Clark Worldwide, Inc. Absorbent article with a fluid-entangled body facing material including a plurality of hollow projections
US9327473B2 (en) 2012-10-31 2016-05-03 Kimberly-Clark Worldwide, Inc. Fluid-entangled laminate webs having hollow projections and a process and apparatus for making the same
US9480609B2 (en) 2012-10-31 2016-11-01 Kimberly-Clark Worldwide, Inc. Absorbent article with a fluid-entangled body facing material including a plurality of hollow projections
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
MX364729B (en) 2013-03-01 2019-05-06 Ethicon Endo Surgery Inc Surgical instrument with a soft stop.
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9539608B2 (en) * 2013-03-15 2017-01-10 John A. Kenney Paint roller
JP5946487B2 (en) 2013-04-01 2016-07-06 花王株式会社 Hair cosmetics, hair treatment method using the same, and scalp wiping method
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
CN105705122B (en) 2013-11-05 2019-07-19 宝洁公司 Absorbent article with waistband
US10219558B2 (en) * 2013-12-03 2019-03-05 Encompass Group, Llc Medical gown
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
US10271997B2 (en) 2014-04-08 2019-04-30 The Procter & Gamble Company Absorbent articles having substrates having zonal treatments
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6612256B2 (en) 2014-04-16 2019-11-27 エシコン エルエルシー Fastener cartridge with non-uniform fastener
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
CN106604710A (en) 2014-09-10 2017-04-26 宝洁公司 Nonwoven web
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
JP2017535333A (en) 2014-11-06 2017-11-30 ザ プロクター アンド ギャンブル カンパニー Method for making patterned perforated web
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
EP3020380B1 (en) 2014-11-14 2018-07-25 The Procter and Gamble Company Method for producing composite structures with a plurality of absorbent foam particulates
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US20160175751A1 (en) 2014-12-19 2016-06-23 The Procter & Gamble Company Composite filter substrate comprising a mixture of fibers
US10300420B2 (en) 2014-12-19 2019-05-28 The Procter & Gamble Company Method of filtering particulates from the air using a composite filter substrate comprising a mixture of fibers
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
JP2019507641A (en) 2016-03-09 2019-03-22 ザ プロクター アンド ギャンブル カンパニー Absorbent articles
US10233578B2 (en) 2016-03-17 2019-03-19 Card-Monroe Corp. Tufting machine and method of tufting
US11193225B2 (en) 2016-03-17 2021-12-07 Card-Monroe Corp. Tufting machine and method of tufting
US10709446B2 (en) 2016-04-01 2020-07-14 Ethicon Llc Staple cartridges with atraumatic features
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
WO2017192987A1 (en) 2016-05-05 2017-11-09 The Procter & Gamble Company Topsheets integrated with heterogenous mass layer
GB2554651B (en) 2016-09-30 2019-08-28 Adv Med Solutions Ltd Nonwoven Fabric Comprising Gelling Fibres
RU2730218C1 (en) 2016-12-20 2020-08-19 Колгейт-Палмолив Компани Personal hygiene appliance
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
KR102119072B1 (en) 2017-02-28 2020-06-05 킴벌리-클라크 월드와이드, 인크. Process for manufacturing a fluid-entangled laminate web with hollow protrusions and openings
US11007093B2 (en) 2017-03-30 2021-05-18 Kimberly-Clark Worldwide, Inc. Incorporation of apertured area into an absorbent article
CN110612086B (en) 2017-05-03 2023-04-21 宝洁公司 Absorbent article having multiple zones
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
CN110709234B (en) 2017-06-30 2022-03-22 宝洁公司 Film end-bonded laminate
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
EP3453305B1 (en) 2017-09-11 2022-11-02 The Procter & Gamble Company Method of making a tufted laminated cleaning article
US10730081B2 (en) 2017-09-11 2020-08-04 The Procter & Gamble Company Method of making a cleaning article having cutouts
US11253128B2 (en) 2017-09-11 2022-02-22 The Procter & Gamble Company Cleaning article with differential pitch tow tufts
US20190075994A1 (en) 2017-09-11 2019-03-14 The Procter & Gamble Company Cleaning article with irregularly spaced tow tufts
US11045061B2 (en) 2017-09-11 2021-06-29 The Procter & Gamble Company Method of making a tufted laminated cleaning article
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10653286B2 (en) 2017-10-06 2020-05-19 The Procter & Gamble Company Cleaning article with preferential coating
US10722091B2 (en) 2017-10-06 2020-07-28 The Procter & Gamble Company Cleaning article with preferentially coated tow fibers
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11857397B2 (en) 2017-11-06 2024-01-02 The Procter And Gamble Company Absorbent article with conforming features
JP2021500173A (en) 2017-11-06 2021-01-07 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Structure with nodes and stanchions
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11375867B2 (en) 2018-04-03 2022-07-05 The Procter & Gamble Company Cleaning article with differential sized tow tufts
US20190298141A1 (en) 2018-04-03 2019-10-03 The Procter & Gamble Company Cleaning article with irregularly spaced tow tufts
US11903542B2 (en) 2018-04-03 2024-02-20 The Procter & Gamble Company Cleaning article with double bonded tow tufts
US20190314218A1 (en) 2018-04-17 2019-10-17 The Procter & Gamble Company Webs for absorbent articles and methods of making the same
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11585029B2 (en) 2021-02-16 2023-02-21 Card-Monroe Corp. Tufting maching and method of tufting
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2068456A (en) * 1935-11-19 1937-01-19 Edward J Hooper Elastic ventilated fabric
US2275425A (en) * 1934-08-25 1942-03-10 Adalbert Ledofsky Composite distensible sheet material
US2404758A (en) * 1940-12-10 1946-07-23 Us Rubber Co Laminated porous elastic fabric
US2633441A (en) * 1950-08-07 1953-03-31 George A Buttress Method of making perforated composition plasterboard
US2748863A (en) * 1953-03-02 1956-06-05 Harold Z Benton Perforating machine for thermoplastic films
US2924863A (en) * 1955-01-04 1960-02-16 Morris J Fellner Sheet material perforation
US3073304A (en) * 1960-08-08 1963-01-15 Kendall & Co Perforated adhesive tape and bandage formed therewith
US3081500A (en) * 1954-06-16 1963-03-19 Johnson & Johnson Method and apparatus for producing apertured nonwoven fabric
US3081512A (en) * 1954-06-16 1963-03-19 Johnson & Johnson Method of producing apertured nonwoven fabric
US3097787A (en) * 1961-09-15 1963-07-16 Olin Mathieson Packaging film
US3137893A (en) * 1954-12-06 1964-06-23 Kendall & Co Apparatus and process for making apertured non-woven fabrics
US3566726A (en) * 1968-06-13 1971-03-02 Pantasote Co Of New York Inc T Method of making perforated film
US3718059A (en) * 1969-12-18 1973-02-27 Mobil Oil Corp Permeable thermoplastic film product and method
US3881987A (en) * 1969-12-31 1975-05-06 Scott Paper Co Method for forming apertured fibrous webs
US3949127A (en) * 1973-05-14 1976-04-06 Kimberly-Clark Corporation Apertured nonwoven webs
US3965906A (en) * 1975-02-24 1976-06-29 Colgate-Palmolive Company Absorbent article with pattern and method
US4035881A (en) * 1974-03-12 1977-07-19 Josef Zocher Method and apparatus for producing non-woven textile product
US4135021A (en) * 1975-06-16 1979-01-16 Smith & Nephew Plastics Ltd. Net-like product produced by stretching a film composed of two incompatible polymers
US4588630A (en) * 1984-06-13 1986-05-13 Chicopee Apertured fusible fabrics
US4596567A (en) * 1984-08-17 1986-06-24 Personal Products Company Perf-embossed absorbent structure
US4741941A (en) * 1985-11-04 1988-05-03 Kimberly-Clark Corporation Nonwoven web with projections
US4758297A (en) * 1986-06-03 1988-07-19 Fmc Corporation Hot pin laminated fabric
US4798604A (en) * 1985-08-24 1989-01-17 Smith And Nephew Associated Companies P.L.C. Contoured film
US4820294A (en) * 1986-05-22 1989-04-11 Chicopee Apertured film facing and method of making the same
US4840829A (en) * 1986-12-31 1989-06-20 Uni-Charm Corporation Nonwoven fabric patterned with apertures
US4935087A (en) * 1987-12-14 1990-06-19 The Kendall Company Method of making an absorbent dressing
US5019062A (en) * 1988-06-23 1991-05-28 The Procter & Gamble Company Bicomponent material
US5180620A (en) * 1989-07-18 1993-01-19 Mitsui Petrochemical Industries, Ltd. Nonwoven fabric comprising meltblown fibers having projections extending from the fabric base
US5188625A (en) * 1985-09-09 1993-02-23 Kimberly-Clark Corporation Sanitary napkin having a cover formed from a nonwoven web
US5223319A (en) * 1990-08-10 1993-06-29 Kimberly-Clark Corporation Nonwoven wiper having high oil capacity
US5276336A (en) * 1991-05-21 1994-01-04 Herion-Werke Kg Method of and arrangement for individually activating valves
US5383870A (en) * 1992-09-07 1995-01-24 Mitsui Petrochemical Industries, Ltd. Liquid-permeable topsheet for body fluid absorptive goods
US5387209A (en) * 1991-12-04 1995-02-07 Uni-Charm Corporation Body fluid absorbent article
US5414914A (en) * 1985-09-20 1995-05-16 Uni-Charm Corporation Process for producing apertured nonwoven fabric
US5415640A (en) * 1991-07-17 1995-05-16 Kimberly-Clark Corporation Bodyside cover for an absorbent article
US5429854A (en) * 1992-06-02 1995-07-04 Kimberly-Clark Corporation Apertured abrasive absorbent composite nonwoven web
US5518801A (en) * 1993-08-03 1996-05-21 The Procter & Gamble Company Web materials exhibiting elastic-like behavior
US5599420A (en) * 1993-04-06 1997-02-04 Kimberly-Clark Corporation Patterned embossed nonwoven fabric, cloth-like liquid barrier material and method for making same
US5626571A (en) * 1995-11-30 1997-05-06 The Procter & Gamble Company Absorbent articles having soft, strong nonwoven component
US5628097A (en) * 1995-09-29 1997-05-13 The Procter & Gamble Company Method for selectively aperturing a nonwoven web
US5648142A (en) * 1995-10-19 1997-07-15 Eastman Chemical Company Perforated films having channels with cutout portions capable of spontaneous fluid inversion
US5650214A (en) * 1996-05-31 1997-07-22 The Procter & Gamble Company Web materials exhibiting elastic-like behavior and soft, cloth-like texture
US5704101A (en) * 1995-06-05 1998-01-06 Kimberly-Clark Worldwide, Inc. Creped and/or apertured webs and process for producing the same
US5709829A (en) * 1992-11-17 1998-01-20 Pantex S.R.L. Method for manufacturing product in membrane or film form
US5714107A (en) * 1994-05-20 1998-02-03 Kimberly-Clark Worldwide, Inc. Perforated nonwoven fabrics
US5725927A (en) * 1995-05-23 1998-03-10 Firma Carl Freudenberg Cleaning cloth
US5730738A (en) * 1995-12-04 1998-03-24 The Procter & Gamble Company Absorbent article with angled band structural elastic-like film cuffs
US5743776A (en) * 1993-02-12 1998-04-28 Uni-Charm Corporation Topsheet for use in body fluids absorptive goods
US5858504A (en) * 1994-11-30 1999-01-12 Kimberly-Clark Worldwide, Inc. Highly absorbent nonwoven fabric
US5876391A (en) * 1993-11-19 1999-03-02 The Procter & Gamble Company Absorbent article with structural elastic-like film web waist belt
US5879494A (en) * 1996-09-23 1999-03-09 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
US5891544A (en) * 1993-08-03 1999-04-06 The Procter & Gamble Company Web materials exhibiting elastic-like behavior
US5895623A (en) * 1994-11-02 1999-04-20 The Procter & Gamble Company Method of producing apertured fabric using fluid streams
US5914084A (en) * 1997-04-04 1999-06-22 The Procter & Gamble Company Method of making a stabilized extensible nonwoven web
US5919177A (en) * 1997-03-28 1999-07-06 Kimberly-Clark Worldwide, Inc. Permeable fiber-like film coated nonwoven
US5925026A (en) * 1997-03-10 1999-07-20 Kimberly-Clark Worldwide, Inc. Apertured absorbent pads for use in absorbent articles
US6025050A (en) * 1994-06-15 2000-02-15 Bba Nonwovens Simpsonville, Inc. Thermally appertured nonwoven laminates for wipes and coverstock for hygienic articles
US6039555A (en) * 1996-02-29 2000-03-21 Uni-Charm Corporation Liquid-permeable topsheet for body exudates absorbent article, apparatus and method for manufacturing same
US6048600A (en) * 1996-04-30 2000-04-11 Sca Hygience Products Aktiebolag Liquid permeable casing sheet for absorbent sanitary articles
US6168849B1 (en) * 1997-11-14 2001-01-02 Kimberly-Clark Worldwide, Inc. Multilayer cover system and method for producing same
US6247914B1 (en) * 1994-12-30 2001-06-19 Sca Hygiene Products Ab Casing material and a method and apparatus for its manufacture
USD444631S1 (en) * 2000-05-02 2001-07-10 Hunt Technology Limited Sheet material
US6264872B1 (en) * 1997-12-30 2001-07-24 Kimberly-Clark Worldwide, Inc. Method of forming thin, embossed, textured barrier films
US20020029445A1 (en) * 1997-07-02 2002-03-14 Karlheinz Stein Structure textile material made of at least two base nonwoven fabrics and method for its manufacture
US20020039867A1 (en) * 1999-12-21 2002-04-04 The Procter & Gamble Company Substance encapsulating laminate web
US6383431B1 (en) * 1997-04-04 2002-05-07 The Procter & Gamble Company Method of modifying a nonwoven fibrous web for use as component of a disposable absorbent article
US6395211B1 (en) * 1997-11-14 2002-05-28 Eduard Kusters Maschinenfabrik Gmbh & Co. Kg Method and calender for treating a sheet
US6395122B1 (en) * 1997-11-26 2002-05-28 Uni-Charm Corporation Apertured web for disposable body exudates absorbent garments and method for making same
US6410823B1 (en) * 1998-06-30 2002-06-25 Kimberly-Clark Worldwide, Inc. Apertured film covers with localized wettability and method for making the same
US20020082574A1 (en) * 2000-12-25 2002-06-27 Masashi Nakashita Body fluid absorbent wearing article
US6420625B1 (en) * 1997-09-12 2002-07-16 Kimberly-Clark Worldwide, Inc. Breathable, liquid-impermeable, apertured film/nonwoven laminate and process for making same
US6423884B1 (en) * 1996-10-11 2002-07-23 Kimberly-Clark Worldwide, Inc. Absorbent article having apertures for fecal material
US6506329B1 (en) * 1998-01-23 2003-01-14 The Procter & Gamble Company Method for making a stable nonwoven web having enhanced extensibility in multiple direction
US20030021951A1 (en) * 2001-07-20 2003-01-30 The Procter & Gamble Company High-elongation apertured nonwoven web and method for making
US20030085213A1 (en) * 1999-04-22 2003-05-08 Christoph Burckhardt Apparatus for perforating and deforming a sheet-like structure
US20040022993A1 (en) * 2002-08-05 2004-02-05 Martin Wildeman Fastener fabric and related method
US6716498B2 (en) * 1999-12-21 2004-04-06 The Procter & Gamble Company Applications for substance encapsulating laminate web
US6726870B1 (en) * 1998-01-23 2004-04-27 The Procter & Gamble Company Method for making a bulked web
US6736916B2 (en) * 2000-12-20 2004-05-18 Kimberly-Clark Worldwide, Inc. Hydraulically arranged nonwoven webs and method of making same
US20040122396A1 (en) * 2002-12-24 2004-06-24 Maldonado Jose E. Apertured, film-coated nonwoven material
US20040121686A1 (en) * 2002-08-29 2004-06-24 The Procter & Gamble Company Low density, high loft nonwoven substrates
US20040126531A1 (en) * 2000-11-20 2004-07-01 Harvey Erol Craig Method for the treating films
US6837956B2 (en) * 2001-11-30 2005-01-04 Kimberly-Clark Worldwide, Inc. System for aperturing and coaperturing webs and web assemblies
US6863960B2 (en) * 1999-12-21 2005-03-08 The Procter & Gamble Company User-activatible substance delivery system
US20050064136A1 (en) * 2003-08-07 2005-03-24 Turner Robert Haines Apertured film
US6872274B2 (en) * 1999-08-13 2005-03-29 First Quality Nonwovens, Inc. Method of making nonwoven with non-symmetrical bonding configuration
US6878433B2 (en) * 1999-12-21 2005-04-12 The Procter & Gamble Company Applications for laminate web
US6884494B1 (en) * 1999-12-21 2005-04-26 The Procter & Gamble Company Laminate web
US20050096614A1 (en) * 2003-10-29 2005-05-05 Perez Roberto C. Cover layer for an absorbent article
US20050123726A1 (en) * 2002-12-20 2005-06-09 Broering Shaun T. Laminated structurally elastic-like film web substrate
US20060019056A1 (en) * 2002-12-20 2006-01-26 Turner Robert H Compression resistant nonwovens
US7005558B1 (en) * 1996-05-02 2006-02-28 Sca Hygiene Products Ab Apertured covering sheet for an absorbent article and a method of producing the covering sheet
US20060087053A1 (en) * 2003-08-07 2006-04-27 O'donnell Hugh J Method and apparatus for making an apertured web
US7037569B2 (en) * 1999-12-21 2006-05-02 The Procter & Gamble Company Laminate web comprising an apertured layer and method for manufacturing thereof

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1095656A (en) 1964-09-08 1967-12-20 Ici Ltd Nonwoven fabrics and methods of making them
US3355974A (en) 1965-08-23 1967-12-05 Du Pont Film-perforating apparatus
FR1558265A (en) 1966-04-27 1969-02-28
US3542634A (en) 1969-06-17 1970-11-24 Kendall & Co Apertured,bonded,and differentially embossed non-woven fabrics
US3695270A (en) 1970-01-22 1972-10-03 Int Playtex Corp Sanitary tampon
US3681182A (en) 1970-03-24 1972-08-01 Johnson & Johnson Nonwoven fabric comprising discontinuous large holes connected by fiber bundles defining small holes
US3681183A (en) 1970-03-24 1972-08-01 Johnson & Johnson Nonwoven fabric comprising rosebuds connected by bundles
US3684284A (en) 1970-09-18 1972-08-15 Chas W House & Sons Inc Pile fabric method and product
US3760671A (en) 1972-06-01 1973-09-25 H Jenkins Punching apparatus
US4042453A (en) 1974-07-17 1977-08-16 The Dexter Corporation Tufted nonwoven fibrous web
US4276336A (en) 1979-04-23 1981-06-30 Sabee Products, Inc. Multi-apertured web with incremental orientation in one or more directions
US4379799A (en) 1981-02-20 1983-04-12 Chicopee Nonwoven fabric having the appearance of apertured, ribbed terry cloth
DE3275438D1 (en) 1981-11-24 1987-03-19 Kimberly Clark Ltd Microfibre web product
US4397644A (en) 1982-02-04 1983-08-09 Kimberly-Clark Corporation Sanitary napkin with improved comfort
US4465726A (en) 1983-06-23 1984-08-14 Chicopee Ribbed terry cloth-like nonwoven fabric and process and apparatus for making same
US4886632A (en) 1985-09-09 1989-12-12 Kimberly-Clark Corporation Method of perforating a nonwoven web and use of the web as a cover for a feminine pad
US4781962A (en) 1986-09-09 1988-11-01 Kimberly-Clark Corporation Composite cover material for absorbent articles and the like
US4859519A (en) 1987-09-03 1989-08-22 Cabe Jr Alex W Method and apparatus for preparing textured apertured film
US4953270A (en) 1987-09-04 1990-09-04 Milliken Research Corporation Method for marking textile substrates
US5062418A (en) 1989-01-31 1991-11-05 Johnson & Johnson Medical, Inc. Napped nonwoven fabric having high bulk and absorbency
US5171238A (en) 1989-03-16 1992-12-15 The Transzonic Companies Absorbent pad with fibrous facing sheet
US5242632A (en) 1989-07-18 1993-09-07 Mitsui Petrochemical Industries, Ltd. Nonwoven fabric and a method of manufacturing the same
DE4022891A1 (en) 1989-08-03 1991-02-07 Dilo Kg Maschf Oskar Patterned needled nonwoven material prepn. - by forming needled material into velour web and overlaying layer(s) of textile fibres
GB9000573D0 (en) 1990-01-10 1990-03-14 Smith & Nephew Coverstock
US5165979A (en) 1990-05-04 1992-11-24 Kimberly-Clark Corporation Three-dimensional polymer webs with improved physical properties
US5382245A (en) 1991-07-23 1995-01-17 The Procter & Gamble Company Absorbent articles, especially catamenials, having improved fluid directionality
GR1002212B (en) 1991-07-26 1996-03-28 Mcneil Ppc Inc Clean dry facing needled composite.
GB9213265D0 (en) 1992-06-23 1992-08-05 Fra Mo Snc Sheet perforation
US5370764A (en) 1992-11-06 1994-12-06 Kimberly-Clark Corporation Apparatus for making film laminated material
MX9300424A (en) 1992-11-06 1994-05-31 Kimberly Clark Co FIBROUS LAMINATED FABRIC AND METHOD AND APPARATUS FOR THE MANUFACTURE OF THE SAME.
US6007468A (en) 1992-11-17 1999-12-28 Pantex S.R.L. Apparatus for manufacturing a product in membrane or film form for covering sanitary towels or nappies or for filtering systems
CA2105026C (en) * 1993-04-29 2003-12-16 Henry Louis Griesbach Iii Shaped nonwoven fabric and method for making the same
US5437653A (en) 1993-05-12 1995-08-01 Kimberly-Clark Corporation Absorbent article having two coapertured layers and a method of making the article
US5968029A (en) 1993-08-03 1999-10-19 The Procter & Gamble Company Web materials exhibiting elastic-like behavior
WO1995005793A2 (en) 1993-08-25 1995-03-02 The Procter & Gamble Company Absorbent article having composite elasticized member
US5817394A (en) 1993-11-08 1998-10-06 Kimberly-Clark Corporation Fibrous laminated web and method and apparatus for making the same and absorbent articles incorporating the same
FR2713083B1 (en) 1993-12-03 1996-01-19 Kaysersberg Sa Feminine hygiene article fitted with menstrual flow sensors.
US5508080A (en) 1994-02-17 1996-04-16 Takashimaya Nippatsu Kogyo Co. Ltd. Flexible laminated surface material and method of producing the same
US5554145A (en) 1994-02-28 1996-09-10 The Procter & Gamble Company Absorbent article with multiple zone structural elastic-like film web extensible waist feature
DE69511540T3 (en) 1994-04-29 2003-01-30 Kimberly Clark Co SLIT ELASTIC FLEECE LAMINATE
US5567501A (en) 1994-06-15 1996-10-22 International Paper Company Thermally apertured nonwoven product
USD375844S (en) 1994-11-23 1996-11-26 Kimberly-Clark Corporation Nonwoven fabric
US5624427A (en) 1995-01-18 1997-04-29 The Procter & Gamble Company Female component for refastenable fastening device
US5658639A (en) 1995-09-29 1997-08-19 The Proctor & Gamble Company Method for selectively aperturing a nonwoven web exhibiting surface energy gradients
US5792404A (en) 1995-09-29 1998-08-11 The Procter & Gamble Company Method for forming a nonwoven web exhibiting surface energy gradients and increased caliper
HU221758B1 (en) 1995-12-04 2003-01-28 The Procter & Gamble Co. Web material having elastic-like and expansive zones
DE19705737C2 (en) 1997-02-14 2000-04-27 Spinnerei C B Goeldner Gmbh & Medical absorbent and process for its manufacture
AU6464698A (en) 1997-03-21 1998-10-20 Kimberly-Clark Worldwide, Inc. Dual-zoned absorbent webs
US6129801A (en) 1997-04-23 2000-10-10 The Procter & Gamble Company Method for making a stable web having enhanced extensibility in multiple directions
SE513169C2 (en) 1997-06-27 2000-07-17 Sca Hygiene Prod Ab Methods of manufacturing a hollowed casing layer for an absorbent article, such fabricated material, and an absorbent article with such casing layer
US6620485B1 (en) 1997-08-21 2003-09-16 The Procter & Gamble Company Stable web having enhanced extensibility and method for making the same
US5964742A (en) 1997-09-15 1999-10-12 Kimberly-Clark Worldwide, Inc. Nonwoven bonding patterns producing fabrics with improved strength and abrasion resistance
SG83698A1 (en) 1998-01-16 2001-10-16 Uni Charm Corp Method of manufacturing a water disintegratable non-woven fabric and the water disintegratable non-woven fabric
US6537936B1 (en) 1998-04-02 2003-03-25 The Procter & Gamble Company Multiple zone member
US6458447B1 (en) 1998-04-16 2002-10-01 The Proctor & Gamble Company Extensible paper web and method of forming
EP0955159A1 (en) 1998-04-28 1999-11-10 The Procter & Gamble Company Method for forming apertured laminate web
EP0963747A1 (en) 1998-06-04 1999-12-15 The Procter & Gamble Company Disposable absorbent article having fecal management member
US6120718A (en) 1998-07-31 2000-09-19 Basf Corporation Process of making hollow filaments
EP1004412A1 (en) 1998-11-24 2000-05-31 The Procter & Gamble Company Process and apparatus for making selectively apertured web materials
US6258075B1 (en) 1999-04-08 2001-07-10 The Procter & Gamble Company Tampon with enhanced leakage protection
US6808791B2 (en) 1999-12-21 2004-10-26 The Procter & Gamble Company Applications for laminate web
US6830800B2 (en) 1999-12-21 2004-12-14 The Procter & Gamble Company Elastic laminate web
US6632504B1 (en) 2000-03-17 2003-10-14 Bba Nonwovens Simpsonville, Inc. Multicomponent apertured nonwoven
US6647549B2 (en) 2000-04-06 2003-11-18 Kimberly-Clark Worldwide, Inc. Finger glove
CN1420730A (en) 2000-04-06 2003-05-28 金伯利-克拉克环球有限公司 Disposable finger sleeve for appendages
US20030191442A1 (en) 2000-08-11 2003-10-09 The Procter & Gamble Company Topsheet for contacting hydrous body tissues and absorbent device with such a topsheet
US20020119720A1 (en) 2000-10-13 2002-08-29 Arora Kelyn Anne Abrasion resistant, soft nonwoven
JP3877953B2 (en) 2000-10-31 2007-02-07 ユニ・チャーム株式会社 Non-woven surface sheet for disposable wearing articles
JP2002339221A (en) 2001-03-13 2002-11-27 Toyoda Spinning & Weaving Co Ltd 3-d nonwoven fabric and method for producing the same
JP4187532B2 (en) 2001-03-26 2008-11-26 マイクレックス コーポレーション Wiping using non-woven fabric
USD466702S1 (en) 2001-05-15 2002-12-10 Polymer Group, Inc. Apertured nonwoven fabric
SE0102035L (en) 2001-06-08 2002-12-09 Sca Hygiene Prod Ab Laminate of fibrous layers
US6794626B2 (en) 2002-01-15 2004-09-21 Agfa Corporation Method and system for verifying correct mounting of a printing plate on an external drum imaging machine
USD481872S1 (en) 2002-09-30 2003-11-11 Polymer Group, Inc. Apertured nonwoven fabric
US20040137200A1 (en) 2002-11-13 2004-07-15 The Procter & Gamble Company Nonwoven wipe with resilient wet thickness
US7156937B2 (en) 2002-12-03 2007-01-02 Velcro Industries B.V. Needling through carrier sheets to form loops
BR0317609B1 (en) 2002-12-20 2013-10-08 Tufted laminate texture
JP4308822B2 (en) 2002-12-20 2009-08-05 ザ プロクター アンド ギャンブル カンパニー Tufted fiber web
US7838099B2 (en) 2002-12-20 2010-11-23 The Procter & Gamble Company Looped nonwoven web
US7682686B2 (en) 2002-12-20 2010-03-23 The Procter & Gamble Company Tufted fibrous web
US7732657B2 (en) 2002-12-20 2010-06-08 The Procter & Gamble Company Absorbent article with lotion-containing topsheet
US8877316B2 (en) 2002-12-20 2014-11-04 The Procter & Gamble Company Cloth-like personal care articles
US7648752B2 (en) 2002-12-20 2010-01-19 The Procter & Gamble Company Inverse textured web
AU2003253308A1 (en) 2003-08-04 2005-02-15 Pantex Sud S.R.L. Device and method for perforating web-like materials______

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2275425A (en) * 1934-08-25 1942-03-10 Adalbert Ledofsky Composite distensible sheet material
US2068456A (en) * 1935-11-19 1937-01-19 Edward J Hooper Elastic ventilated fabric
US2404758A (en) * 1940-12-10 1946-07-23 Us Rubber Co Laminated porous elastic fabric
US2633441A (en) * 1950-08-07 1953-03-31 George A Buttress Method of making perforated composition plasterboard
US2748863A (en) * 1953-03-02 1956-06-05 Harold Z Benton Perforating machine for thermoplastic films
US3081500A (en) * 1954-06-16 1963-03-19 Johnson & Johnson Method and apparatus for producing apertured nonwoven fabric
US3081512A (en) * 1954-06-16 1963-03-19 Johnson & Johnson Method of producing apertured nonwoven fabric
US3137893A (en) * 1954-12-06 1964-06-23 Kendall & Co Apparatus and process for making apertured non-woven fabrics
US2924863A (en) * 1955-01-04 1960-02-16 Morris J Fellner Sheet material perforation
US3073304A (en) * 1960-08-08 1963-01-15 Kendall & Co Perforated adhesive tape and bandage formed therewith
US3097787A (en) * 1961-09-15 1963-07-16 Olin Mathieson Packaging film
US3566726A (en) * 1968-06-13 1971-03-02 Pantasote Co Of New York Inc T Method of making perforated film
US3718059A (en) * 1969-12-18 1973-02-27 Mobil Oil Corp Permeable thermoplastic film product and method
US3881987A (en) * 1969-12-31 1975-05-06 Scott Paper Co Method for forming apertured fibrous webs
US3949127A (en) * 1973-05-14 1976-04-06 Kimberly-Clark Corporation Apertured nonwoven webs
US4035881A (en) * 1974-03-12 1977-07-19 Josef Zocher Method and apparatus for producing non-woven textile product
US3965906A (en) * 1975-02-24 1976-06-29 Colgate-Palmolive Company Absorbent article with pattern and method
US4135021A (en) * 1975-06-16 1979-01-16 Smith & Nephew Plastics Ltd. Net-like product produced by stretching a film composed of two incompatible polymers
US4588630A (en) * 1984-06-13 1986-05-13 Chicopee Apertured fusible fabrics
US4596567A (en) * 1984-08-17 1986-06-24 Personal Products Company Perf-embossed absorbent structure
US4798604A (en) * 1985-08-24 1989-01-17 Smith And Nephew Associated Companies P.L.C. Contoured film
US5188625A (en) * 1985-09-09 1993-02-23 Kimberly-Clark Corporation Sanitary napkin having a cover formed from a nonwoven web
US5414914A (en) * 1985-09-20 1995-05-16 Uni-Charm Corporation Process for producing apertured nonwoven fabric
US4741941A (en) * 1985-11-04 1988-05-03 Kimberly-Clark Corporation Nonwoven web with projections
US4820294A (en) * 1986-05-22 1989-04-11 Chicopee Apertured film facing and method of making the same
US4758297A (en) * 1986-06-03 1988-07-19 Fmc Corporation Hot pin laminated fabric
US4840829A (en) * 1986-12-31 1989-06-20 Uni-Charm Corporation Nonwoven fabric patterned with apertures
US4935087A (en) * 1987-12-14 1990-06-19 The Kendall Company Method of making an absorbent dressing
US5019062A (en) * 1988-06-23 1991-05-28 The Procter & Gamble Company Bicomponent material
US5180620A (en) * 1989-07-18 1993-01-19 Mitsui Petrochemical Industries, Ltd. Nonwoven fabric comprising meltblown fibers having projections extending from the fabric base
US5223319A (en) * 1990-08-10 1993-06-29 Kimberly-Clark Corporation Nonwoven wiper having high oil capacity
US5276336A (en) * 1991-05-21 1994-01-04 Herion-Werke Kg Method of and arrangement for individually activating valves
US5415640A (en) * 1991-07-17 1995-05-16 Kimberly-Clark Corporation Bodyside cover for an absorbent article
US5533991A (en) * 1991-07-17 1996-07-09 Kimberly-Clark Corporation Bodyside cover for an absorbent article
US5387209A (en) * 1991-12-04 1995-02-07 Uni-Charm Corporation Body fluid absorbent article
US5429854A (en) * 1992-06-02 1995-07-04 Kimberly-Clark Corporation Apertured abrasive absorbent composite nonwoven web
US5383870A (en) * 1992-09-07 1995-01-24 Mitsui Petrochemical Industries, Ltd. Liquid-permeable topsheet for body fluid absorptive goods
US5709829A (en) * 1992-11-17 1998-01-20 Pantex S.R.L. Method for manufacturing product in membrane or film form
US5743776A (en) * 1993-02-12 1998-04-28 Uni-Charm Corporation Topsheet for use in body fluids absorptive goods
US5599420A (en) * 1993-04-06 1997-02-04 Kimberly-Clark Corporation Patterned embossed nonwoven fabric, cloth-like liquid barrier material and method for making same
US6027483A (en) * 1993-08-03 2000-02-22 Chappell; Charles W. Web materials exhibiting elastic-like behavior
US5891544A (en) * 1993-08-03 1999-04-06 The Procter & Gamble Company Web materials exhibiting elastic-like behavior
US5723087A (en) * 1993-08-03 1998-03-03 The Procter & Gamble Company Web materials exhibiting elastic-like behavior
US5518801A (en) * 1993-08-03 1996-05-21 The Procter & Gamble Company Web materials exhibiting elastic-like behavior
US5876391A (en) * 1993-11-19 1999-03-02 The Procter & Gamble Company Absorbent article with structural elastic-like film web waist belt
US5714107A (en) * 1994-05-20 1998-02-03 Kimberly-Clark Worldwide, Inc. Perforated nonwoven fabrics
US6025050A (en) * 1994-06-15 2000-02-15 Bba Nonwovens Simpsonville, Inc. Thermally appertured nonwoven laminates for wipes and coverstock for hygienic articles
US5895623A (en) * 1994-11-02 1999-04-20 The Procter & Gamble Company Method of producing apertured fabric using fluid streams
US5858504A (en) * 1994-11-30 1999-01-12 Kimberly-Clark Worldwide, Inc. Highly absorbent nonwoven fabric
US6247914B1 (en) * 1994-12-30 2001-06-19 Sca Hygiene Products Ab Casing material and a method and apparatus for its manufacture
US5725927A (en) * 1995-05-23 1998-03-10 Firma Carl Freudenberg Cleaning cloth
US5704101A (en) * 1995-06-05 1998-01-06 Kimberly-Clark Worldwide, Inc. Creped and/or apertured webs and process for producing the same
US5916661A (en) * 1995-09-29 1999-06-29 The Procter & Gamble Company Selectively apertured nonwoven web
US5628097A (en) * 1995-09-29 1997-05-13 The Procter & Gamble Company Method for selectively aperturing a nonwoven web
US5648142A (en) * 1995-10-19 1997-07-15 Eastman Chemical Company Perforated films having channels with cutout portions capable of spontaneous fluid inversion
US5626571A (en) * 1995-11-30 1997-05-06 The Procter & Gamble Company Absorbent articles having soft, strong nonwoven component
US5730738A (en) * 1995-12-04 1998-03-24 The Procter & Gamble Company Absorbent article with angled band structural elastic-like film cuffs
US6039555A (en) * 1996-02-29 2000-03-21 Uni-Charm Corporation Liquid-permeable topsheet for body exudates absorbent article, apparatus and method for manufacturing same
US6176954B1 (en) * 1996-02-29 2001-01-23 Uni-Charm Corporation Liquid-permeable topsheet for body exudates absorbent article, apparatus and method for manufacturing same
US6048600A (en) * 1996-04-30 2000-04-11 Sca Hygience Products Aktiebolag Liquid permeable casing sheet for absorbent sanitary articles
US7005558B1 (en) * 1996-05-02 2006-02-28 Sca Hygiene Products Ab Apertured covering sheet for an absorbent article and a method of producing the covering sheet
US5650214A (en) * 1996-05-31 1997-07-22 The Procter & Gamble Company Web materials exhibiting elastic-like behavior and soft, cloth-like texture
US5879494A (en) * 1996-09-23 1999-03-09 Minnesota Mining And Manufacturing Company Method of aperturing thin sheet materials
US6423884B1 (en) * 1996-10-11 2002-07-23 Kimberly-Clark Worldwide, Inc. Absorbent article having apertures for fecal material
US5925026A (en) * 1997-03-10 1999-07-20 Kimberly-Clark Worldwide, Inc. Apertured absorbent pads for use in absorbent articles
US5919177A (en) * 1997-03-28 1999-07-06 Kimberly-Clark Worldwide, Inc. Permeable fiber-like film coated nonwoven
US6383431B1 (en) * 1997-04-04 2002-05-07 The Procter & Gamble Company Method of modifying a nonwoven fibrous web for use as component of a disposable absorbent article
US5914084A (en) * 1997-04-04 1999-06-22 The Procter & Gamble Company Method of making a stabilized extensible nonwoven web
US20020029445A1 (en) * 1997-07-02 2002-03-14 Karlheinz Stein Structure textile material made of at least two base nonwoven fabrics and method for its manufacture
US6420625B1 (en) * 1997-09-12 2002-07-16 Kimberly-Clark Worldwide, Inc. Breathable, liquid-impermeable, apertured film/nonwoven laminate and process for making same
US6168849B1 (en) * 1997-11-14 2001-01-02 Kimberly-Clark Worldwide, Inc. Multilayer cover system and method for producing same
US6395211B1 (en) * 1997-11-14 2002-05-28 Eduard Kusters Maschinenfabrik Gmbh & Co. Kg Method and calender for treating a sheet
US6395122B1 (en) * 1997-11-26 2002-05-28 Uni-Charm Corporation Apertured web for disposable body exudates absorbent garments and method for making same
US6264872B1 (en) * 1997-12-30 2001-07-24 Kimberly-Clark Worldwide, Inc. Method of forming thin, embossed, textured barrier films
US6726870B1 (en) * 1998-01-23 2004-04-27 The Procter & Gamble Company Method for making a bulked web
US6506329B1 (en) * 1998-01-23 2003-01-14 The Procter & Gamble Company Method for making a stable nonwoven web having enhanced extensibility in multiple direction
US6410823B1 (en) * 1998-06-30 2002-06-25 Kimberly-Clark Worldwide, Inc. Apertured film covers with localized wettability and method for making the same
US20030085213A1 (en) * 1999-04-22 2003-05-08 Christoph Burckhardt Apparatus for perforating and deforming a sheet-like structure
US6872274B2 (en) * 1999-08-13 2005-03-29 First Quality Nonwovens, Inc. Method of making nonwoven with non-symmetrical bonding configuration
US20020039867A1 (en) * 1999-12-21 2002-04-04 The Procter & Gamble Company Substance encapsulating laminate web
US7037569B2 (en) * 1999-12-21 2006-05-02 The Procter & Gamble Company Laminate web comprising an apertured layer and method for manufacturing thereof
US6716498B2 (en) * 1999-12-21 2004-04-06 The Procter & Gamble Company Applications for substance encapsulating laminate web
US6884494B1 (en) * 1999-12-21 2005-04-26 The Procter & Gamble Company Laminate web
US6878433B2 (en) * 1999-12-21 2005-04-12 The Procter & Gamble Company Applications for laminate web
US6863960B2 (en) * 1999-12-21 2005-03-08 The Procter & Gamble Company User-activatible substance delivery system
USD444631S1 (en) * 2000-05-02 2001-07-10 Hunt Technology Limited Sheet material
US20040126531A1 (en) * 2000-11-20 2004-07-01 Harvey Erol Craig Method for the treating films
US6736916B2 (en) * 2000-12-20 2004-05-18 Kimberly-Clark Worldwide, Inc. Hydraulically arranged nonwoven webs and method of making same
US20020082574A1 (en) * 2000-12-25 2002-06-27 Masashi Nakashita Body fluid absorbent wearing article
US20030021951A1 (en) * 2001-07-20 2003-01-30 The Procter & Gamble Company High-elongation apertured nonwoven web and method for making
US6837956B2 (en) * 2001-11-30 2005-01-04 Kimberly-Clark Worldwide, Inc. System for aperturing and coaperturing webs and web assemblies
US20040022993A1 (en) * 2002-08-05 2004-02-05 Martin Wildeman Fastener fabric and related method
US20040121686A1 (en) * 2002-08-29 2004-06-24 The Procter & Gamble Company Low density, high loft nonwoven substrates
US20050123726A1 (en) * 2002-12-20 2005-06-09 Broering Shaun T. Laminated structurally elastic-like film web substrate
US20060019056A1 (en) * 2002-12-20 2006-01-26 Turner Robert H Compression resistant nonwovens
US20040122396A1 (en) * 2002-12-24 2004-06-24 Maldonado Jose E. Apertured, film-coated nonwoven material
US20050064136A1 (en) * 2003-08-07 2005-03-24 Turner Robert Haines Apertured film
US20060087053A1 (en) * 2003-08-07 2006-04-27 O'donnell Hugh J Method and apparatus for making an apertured web
US20050096614A1 (en) * 2003-10-29 2005-05-05 Perez Roberto C. Cover layer for an absorbent article

Cited By (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718243B2 (en) 2002-12-20 2010-05-18 The Procter & Gamble Company Tufted laminate web
US9498794B2 (en) 2002-12-20 2016-11-22 The Procter & Gamble Company Process for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto
US8697218B2 (en) 2002-12-20 2014-04-15 The Procter & Gamble Company Tufted fibrous web
US7829173B2 (en) 2002-12-20 2010-11-09 The Procter & Gamble Company Tufted fibrous web
US7785690B2 (en) 2002-12-20 2010-08-31 The Procter & Gamble Company Compression resistant nonwovens
US9694556B2 (en) 2002-12-20 2017-07-04 The Procter & Gamble Company Tufted fibrous web
US8153225B2 (en) 2002-12-20 2012-04-10 The Procter & Gamble Company Tufted fibrous web
US9957361B2 (en) 2002-12-20 2018-05-01 The Procter & Gamble Company Process for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto
US7670665B2 (en) 2002-12-20 2010-03-02 The Procter & Gamble Company Tufted laminate web
US7838099B2 (en) 2002-12-20 2010-11-23 The Procter & Gamble Company Looped nonwoven web
US7682686B2 (en) 2002-12-20 2010-03-23 The Procter & Gamble Company Tufted fibrous web
US8075977B2 (en) 2002-12-20 2011-12-13 The Procter & Gamble Company Tufted laminate web
US10322038B2 (en) 2003-08-07 2019-06-18 The Procter & Gamble Company Method and apparatus for making an apertured web
US9308133B2 (en) 2003-08-07 2016-04-12 The Procter & Gamble Company Method and apparatus for making an apertured web
US10583051B2 (en) 2003-08-07 2020-03-10 The Procter & Gamble Company Method and apparatus for making an apertured web
US9023261B2 (en) 2003-08-07 2015-05-05 The Procter & Gamble Company Method and apparatus for making an apertured web
US8679391B2 (en) 2003-08-07 2014-03-25 The Procter & Gamble Company Method and apparatus for making an apertured web
US20080008853A1 (en) * 2006-07-05 2008-01-10 The Procter & Gamble Company Web comprising a tuft
US20080102261A1 (en) * 2006-10-27 2008-05-01 The Procter & Gamble Company Clothlike non-woven fibrous structures and processes for making same
US7789994B2 (en) * 2006-10-27 2010-09-07 The Procter & Gamble Company Clothlike non-woven fibrous structures and processes for making same
US20100227112A1 (en) * 2006-10-27 2010-09-09 Nanlin Han Composite Ply with Adhered Groupings of Fiber Fasteners
US20100326612A1 (en) * 2006-10-27 2010-12-30 Matthew Todd Hupp Clothlike non-woven fibrous structures and processes for making same
US8502013B2 (en) 2007-03-05 2013-08-06 The Procter And Gamble Company Disposable absorbent article
US20160338879A1 (en) * 2007-03-05 2016-11-24 The Procter & Gamble Company Absorbent core for disposable absorbent article
US10766186B2 (en) 2007-03-05 2020-09-08 The Procter & Gamble Company Method of making an absorbent core for disposable absorbent article
US11364156B2 (en) 2007-03-05 2022-06-21 The Procter & Gamble Company Disposable absorbent article
US9358705B2 (en) * 2007-03-05 2016-06-07 The Procter & Gamble Company Absorbent core for disposable absorbent article
US20110174430A1 (en) * 2007-03-05 2011-07-21 Jean Jianqun Zhao Absorbent core for disposable absorbent article
US20080221539A1 (en) * 2007-03-05 2008-09-11 Jean Jianqun Zhao Absorbent core for disposable absorbent article
US7935207B2 (en) 2007-03-05 2011-05-03 Procter And Gamble Company Absorbent core for disposable absorbent article
WO2008107846A1 (en) 2007-03-05 2008-09-12 The Procter & Gamble Company Absorbent core, disposable absorbent article, and method of making
US8709139B2 (en) * 2007-03-07 2014-04-29 Carl Freudenberg Kg Layer for use in a HEPA filter element
US20100101199A1 (en) * 2007-03-07 2010-04-29 Carl Freudenberg Kg Layer for use in a hepa filter element
US20090064618A1 (en) * 2007-09-11 2009-03-12 Dan Ben-Daat Insulating and waterproofing membrane
US8122664B2 (en) * 2007-09-11 2012-02-28 Sika Technology Ag Insulating and waterproofing membrane
US20100011562A1 (en) * 2008-07-17 2010-01-21 Freudenberg Nonwovens, L.P. Non-woven with selected locations/regions of joined fibers for mechanical attachment
US9872801B2 (en) 2008-08-08 2018-01-23 The Procter & Gamble Company Zoned topsheet
US8728049B2 (en) 2008-08-08 2014-05-20 The Procter & Gamble Company Absorbent article having a tufted topsheet
US20100035014A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Zoned Topsheet
US20110094669A1 (en) * 2008-08-08 2011-04-28 David Christopher Oetjen Method of Producing a Composite Multi-Layered Printed Absorbent Article
US20100036347A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Absorbent article having a tufted topsheet
US7967801B2 (en) 2008-08-08 2011-06-28 The Procter & Gamble Company Regionalized topsheet
US20100036346A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Regionalized Topsheet
US7993317B2 (en) 2008-08-08 2011-08-09 The Procter & Gamble Company Zoned topsheet
US20100036349A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Zoned Topsheet
US9345628B2 (en) 2008-08-08 2016-05-24 The Procter & Gamble Company Absorbent article having a tufted topsheet
US10729598B2 (en) 2008-08-08 2020-08-04 The Procter & Gamble Company Zoned topsheet
US20100036338A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Regionalized Topsheet
US8691041B2 (en) 2008-08-08 2014-04-08 The Procter And Gamble Company Method of producing a composite multi-layered printed absorbent article
US20100036339A1 (en) * 2008-08-08 2010-02-11 John Lee Hammons Absorbent article having a tufted topsheet
US8058501B2 (en) 2008-08-08 2011-11-15 The Procter & Gamble Company Regionalized topsheet
US10307942B2 (en) 2009-02-06 2019-06-04 The Procter & Gamble Company Method for making an apertured web
US9962867B2 (en) 2009-02-06 2018-05-08 The Procter & Gamble Company Method for making an apertured web
US8158043B2 (en) 2009-02-06 2012-04-17 The Procter & Gamble Company Method for making an apertured web
US9550309B2 (en) 2009-02-06 2017-01-24 The Procter & Gamble Company Method for making an apertured web
US20130068388A1 (en) * 2009-02-24 2013-03-21 Uni-Charm Corporation Method and apparatus for manufacturing a roll of sheet
US9012014B2 (en) 2009-03-13 2015-04-21 The Procter & Gamble Company Web material exhibiting viewing-angle dependent color and comprising a plurality of discrete extended elements
US9271879B2 (en) 2009-03-13 2016-03-01 The Procter & Gamble Company Article having a seal and process for forming the same
US20100230867A1 (en) * 2009-03-13 2010-09-16 Brian Francis Gray Process for making an embossed web
US8926890B2 (en) 2009-03-13 2015-01-06 The Procter & Gamble Company Process for making an embossed web
US8940384B2 (en) 2009-03-13 2015-01-27 The Procter & Gamble Company Colored web material comprising a plurality of discrete extended elements
US8968631B2 (en) 2009-03-13 2015-03-03 The Procter & Gamble Company Process for making an embossed web
US20100233428A1 (en) * 2009-03-13 2010-09-16 Keith Joseph Stone Article having a seal and process for forming the same
US20100233439A1 (en) * 2009-03-13 2010-09-16 Keith Joseph Stone Web material exhibiting viewing-angle dependent color and comprising a plurality of discrete extended elements
US20100230857A1 (en) * 2009-03-13 2010-09-16 Kevin Gerard Muhs Process for making an embossed web
US10543637B2 (en) 2009-03-13 2020-01-28 The Procter & Gamble Company Article having a seal and process for forming the same
US8986584B2 (en) 2009-03-13 2015-03-24 The Procter & Gamble Company Process for making an embossed web
US8613995B2 (en) 2009-03-13 2013-12-24 The Procter & Gamble Company Colored web material comprising a plurality of discrete extended elements
US8585958B2 (en) 2009-03-13 2013-11-19 The Procter & Gamble Company Process for making an embossed web
US8585951B2 (en) 2009-03-13 2013-11-19 The Proctor & Gamble Company Process for making an embossed web
US9017592B2 (en) 2009-03-13 2015-04-28 The Procter & Gamble Company Process for making an embossed web
US20100255258A1 (en) * 2009-03-31 2010-10-07 John Joseph Curro Capped tufted laminate web
US8440286B2 (en) 2009-03-31 2013-05-14 The Procter & Gamble Company Capped tufted laminate web
US8153226B2 (en) 2009-03-31 2012-04-10 The Procter & Gamble Company Capped tufted laminate web
US20100247844A1 (en) * 2009-03-31 2010-09-30 John Joseph Curro Capped tufted laminate web
US8318284B2 (en) 2009-03-31 2012-11-27 The Procter & Gamble Company Capped tufted laminate web
CN102482817A (en) * 2009-05-14 2012-05-30 尤妮佳股份有限公司 Liquid-permeable nonwoven fibrous fabric
US9439816B2 (en) 2009-06-03 2016-09-13 The Procter & Gamble Company Structured fibrous web
US20100310837A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Structured fibrous web
US20100310810A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Structured Fibrous Web
US8759606B2 (en) 2009-06-03 2014-06-24 The Procter & Gamble Company Structured fibrous web
US20100312208A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Fluid Permeable Structured Fibrous Web
US20100310845A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Fluid permeable structured fibrous web
US20100312211A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Structured Fibrous Web
US20100312212A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Fluid Permeable Structured Fibrous Web
EP2465988A4 (en) * 2009-08-11 2014-01-01 Unicharm Corp Nonwoven fabric and method for manufacturing same
JP2011038211A (en) * 2009-08-11 2011-02-24 Uni Charm Corp Non-woven fabric and method for manufacturing the same
US9222206B2 (en) 2009-08-11 2015-12-29 Unicharm Corporation Nonwoven fabric and method for manufacturing same
EP2465988A1 (en) * 2009-08-11 2012-06-20 Unicharm Corporation Nonwoven fabric and method for manufacturing same
US8607836B2 (en) 2009-08-20 2013-12-17 The Procter & Gamble Company Reconfigurable converting line for fabricating absorbent articles
US20110046772A1 (en) * 2009-08-20 2011-02-24 Patrick John Healey Flexible Manufacturing Systems and Methods
US20110042012A1 (en) * 2009-08-20 2011-02-24 James Jay Benner Systems and Methods for Continuous Delivery of Web Materials
US20110041417A1 (en) * 2009-08-20 2011-02-24 Patrick John Healey Reconfigurable Converting Line for Fabricating Absorbent Articles
US8245384B2 (en) 2009-08-20 2012-08-21 The Procter & Gamble Company Modular converting line for fabricating absorbent articles
US8321049B2 (en) 2009-08-20 2012-11-27 The Procter & Gamble Company Flexible manufacturing systems and methods
US8839835B2 (en) 2009-08-20 2014-09-23 The Procter & Gamble Company Systems and methods for continuous delivery of web materials
US20110041325A1 (en) * 2009-08-20 2011-02-24 Patrick John Healey Modular Converting Line for Fabricating Absorbent Articles
US20110221094A1 (en) * 2010-03-11 2011-09-15 Sarah Beth Gross Process for making an embossed web
US20110223388A1 (en) * 2010-03-11 2011-09-15 Keith Joseph Stone Process for making a film/nonwoven laminate
US9079324B2 (en) 2010-03-11 2015-07-14 The Procter & Gamble Company Process for making a film/nonwoven laminate
US8557169B2 (en) 2010-03-11 2013-10-15 The Procter & Gamble Company Process for making an embossed web
WO2011133439A1 (en) 2010-04-23 2011-10-27 The Procter & Gamble Company Web substrate having activated color regions in deformed regions
US8440587B2 (en) 2010-04-23 2013-05-14 The Procter & Gamble Company Method of producing color change in a web substrate
WO2011133329A1 (en) 2010-04-23 2011-10-27 The Procter & Gamble Company Web substrate having activated color regions in topical additive regions
US8975210B2 (en) 2010-04-23 2015-03-10 The Procter & Gamble Co. Web substrate having activated color regions in deformed regions
US8637430B2 (en) 2010-04-23 2014-01-28 The Procter & Gamble Company Web substrate having activated color regions in topical additive regions
WO2011133622A1 (en) 2010-04-23 2011-10-27 The Procter & Gamble Company Method of producing color change in a web substrate
WO2011133464A1 (en) 2010-04-23 2011-10-27 The Procter & Gamble Company Method of producing a web substrate having activated color regions in deformed regions
US8343411B2 (en) 2010-04-23 2013-01-01 The Procter & Gamble Company Method of producing a web substrate having activated color regions in deformed regions
US20110300350A1 (en) * 2010-06-08 2011-12-08 Wen Wen-Tsao Performance textile having gas permeable and protective functions
CN102275347A (en) * 2010-06-08 2011-12-14 隆芳兴业股份有限公司 Functional cloth integrating high air permeability and protectiveness
US20130069276A1 (en) * 2010-06-22 2013-03-21 Boegli-Gravures S.A. Foil embossing device
US8932044B2 (en) * 2010-06-22 2015-01-13 Boegli-Gravures S.A. Foil embossing device
US9415538B2 (en) 2010-09-10 2016-08-16 The Procter & Gamble Company Method for deforming a web
US9067357B2 (en) 2010-09-10 2015-06-30 The Procter & Gamble Company Method for deforming a web
US9623602B2 (en) 2010-09-10 2017-04-18 The Procter & Gamble Company Method for deforming a web
US10633775B2 (en) 2010-09-10 2020-04-28 The Procter & Gamble Company Deformed web materials
US9220638B2 (en) 2010-09-10 2015-12-29 The Procter & Gamble Company Deformed web materials
WO2012052333A1 (en) * 2010-10-21 2012-04-26 Karl Otto Braun Gmbh & Co. Kg Bandage for applying to a human or animal body
US20120237718A1 (en) * 2011-03-15 2012-09-20 Paul Thomas Weisman Structured Fibrous Web
US8460597B2 (en) 2011-03-22 2013-06-11 The Procter & Gamble Company Method of producing color change in a substrate
WO2012129026A1 (en) 2011-03-22 2012-09-27 The Procter & Gamble Company Method of producing color change in a substrate
WO2012148944A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Absorbent members having density profile
WO2012149073A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making bulked absorbent members
RU2641491C2 (en) * 2011-04-26 2018-01-17 Дзе Проктер Энд Гэмбл Компани Deformed thin-sheet materials
WO2012148935A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Method for deforming a web
US20120276238A1 (en) * 2011-04-26 2012-11-01 John Brian Strube Apparatus for Deforming a Web
WO2012148973A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making absorbent members having skewed density profile
US10279535B2 (en) 2011-04-26 2019-05-07 The Procter & Gamble Company Method and apparatus for deforming a web
US9028652B2 (en) 2011-04-26 2015-05-12 The Procter & Gamble Company Methods of making bulked absorbent members
US10011953B2 (en) 2011-04-26 2018-07-03 The Procter & Gamble Company Bulked absorbent members
US8657596B2 (en) 2011-04-26 2014-02-25 The Procter & Gamble Company Method and apparatus for deforming a web
WO2012149000A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of mechanically deforming materials
CN105624921A (en) * 2011-04-26 2016-06-01 宝洁公司 Method for deforming a web
WO2012148999A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Bulked absorbent members
US9724245B2 (en) 2011-04-26 2017-08-08 The Procter & Gamble Company Formed web comprising chads
WO2012148978A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Absorbent members having skewed density profile
US9120268B2 (en) 2011-04-26 2015-09-01 The Procter & Gamble Company Method and apparatus for deforming a web
US9439815B2 (en) 2011-04-26 2016-09-13 The Procter & Gamble Company Absorbent members having skewed density profile
US9440394B2 (en) 2011-04-26 2016-09-13 The Procter & Gamble Company Methods of mechanically deforming materials
WO2012148946A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Apparatus for deforming a web
US9452089B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Methods of making absorbent members having density profile
US9452094B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Absorbent members having density profile
US9452093B2 (en) 2011-04-26 2016-09-27 The Procter & Gamble Company Absorbent members having density profile
WO2012149074A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Method and apparatus for deforming a web
WO2012148974A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Methods of making absorbent members having density profile
US9534325B2 (en) 2011-04-26 2017-01-03 The Procter & Gamble Company Methods of making absorbent members having skewed density profile
WO2012148980A1 (en) 2011-04-26 2012-11-01 The Procter & Gamble Company Deformed web materials
EP2717818A2 (en) * 2011-06-13 2014-04-16 The Procter and Gamble Company Disposable absorbent article with topsheet having a continuous, bonded pattern
EP2777662A1 (en) * 2013-03-11 2014-09-17 Carl Freudenberg KG Use of a velvet fibrebonded fabric substance
US20140358101A1 (en) * 2013-05-30 2014-12-04 The Procter & Gamble Company Nonwoven Web Material Having Enhanced Glide Softness And Good Strength Attributes, And Method For Manufacturing
US9974424B2 (en) * 2013-06-18 2018-05-22 The Procter & Gamble Company Laminate cleaning implement
US20140366293A1 (en) * 2013-06-18 2014-12-18 The Procter & Gamble Company Laminate cleaning implement
WO2016040122A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with differential opacity regions
US20160076182A1 (en) * 2014-09-12 2016-03-17 The Procter & Gamble Company Method Of Making Nonwoven Material Having Discrete Three-Dimensional Deformations With Wide Base Openings Using Forming Members With Surface Texture
US20160074240A1 (en) * 2014-09-12 2016-03-17 The Procter & Gamble Company Absorbent articles having delta e*
US10500826B2 (en) 2014-09-12 2019-12-10 The Procter & Gamble Company Method of making nonwoven material having discrete three-dimensional deformations with wide base openings
WO2016040112A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Method of making nonwoven material having discrete three-dimensional deformations with wide base openings that are bonded to additional layer
US11154428B2 (en) 2014-09-12 2021-10-26 The Procter & Gamble Company Absorbent articles with indicia and/or color
US10993845B2 (en) 2014-09-12 2021-05-04 The Procter & Gamble Company Process for making an absorbent article comprising a topsheet/acquisition layer laminate
WO2016040103A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations that are configured to collapse in a controlled manner
WO2016040109A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings that are tip bonded to additional layer
WO2016040105A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Method of making nonwoven material having discrete three-dimensional deformations with wide base openings
WO2016040101A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings
US10226385B2 (en) 2014-09-12 2019-03-12 The Procter & Gamble Company Process for making an absorbent article comprising a topsheet/acquisition layer laminate
US10182949B2 (en) 2014-09-12 2019-01-22 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings that are base bonded to additional layer
US10105268B2 (en) 2014-09-12 2018-10-23 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with differential opacity regions
WO2016040104A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations forming protrusions having a varying width and wide base openings
WO2016040120A1 (en) 2014-09-12 2016-03-17 The Procter & Gamble Company Method of making nonwoven material having discrete three-dimensional deformations with wide base openings that are tip bonded to additional layer
US10687987B2 (en) 2014-09-12 2020-06-23 The Procter & Gamble Company Process for making an absorbent article comprising a topsheet/acquisition layer laminate
US10045889B2 (en) 2014-09-12 2018-08-14 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings and specific fiber concentrations
US10045888B2 (en) 2014-09-12 2018-08-14 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings
US10064766B2 (en) 2014-09-12 2018-09-04 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations that are configured to collapse in a controlled manner
US10076898B2 (en) 2014-09-12 2018-09-18 The Procter & Gamble Company Apparatus having forming members with surface texture for making nonwoven material having discrete three-dimensional deformations with wide base openings
CN104499183A (en) * 2015-01-06 2015-04-08 常州众杰复合材料有限公司 Production method and application of PP acupuncture cotton
WO2016133757A1 (en) 2015-02-17 2016-08-25 The Procter & Gamble Company Method for deforming a web
WO2016133756A1 (en) 2015-02-17 2016-08-25 The Procter & Gamble Company Method for deforming a web
US10596499B2 (en) * 2015-02-24 2020-03-24 Kureha Ltd. Pre-air-filter for internal combustion engine
US10688762B2 (en) * 2015-03-19 2020-06-23 Zeon Corporation Laminate for automotive interior material
US20180043668A1 (en) * 2015-03-19 2018-02-15 Zeon Corporation Laminate for automotive interior material
US20180078429A1 (en) * 2015-03-30 2018-03-22 Daio Paper Corporation Absorbent Article and Method for Producing Same
US10799401B2 (en) * 2015-03-30 2020-10-13 Daio Paper Corporation Absorbent article and method for producing same
US11173078B2 (en) 2015-11-04 2021-11-16 The Procter & Gamble Company Absorbent structure
US11376168B2 (en) 2015-11-04 2022-07-05 The Procter & Gamble Company Absorbent article with absorbent structure having anisotropic rigidity
US10632736B2 (en) * 2016-02-05 2020-04-28 The Procter & Gamble Company Systems and methods of applying compositions to webs
US20170225449A1 (en) * 2016-02-05 2017-08-10 The Procter & Gamble Company Systems and Methods Of Applying Compositions To Webs
US11571884B2 (en) 2016-02-05 2023-02-07 The Procter & Gamble Company Systems and methods of applying compositions to webs
US11292242B2 (en) 2016-02-05 2022-04-05 The Procter & Gamble Company Systems and methods of applying compositions to webs
US10610423B2 (en) 2016-03-08 2020-04-07 The Procter & Gamble Company Absorbent article comprising a topsheet/acquisition web laminate
US20170258955A1 (en) * 2016-03-09 2017-09-14 The Procter & Gamble Company Absorbent article with activatable material
US11129919B2 (en) * 2016-03-09 2021-09-28 The Procter & Gamble Company Absorbent article with activatable material
WO2017156357A1 (en) 2016-03-11 2017-09-14 The Procter & Gamble Company Method of making nonwoven material having discrete three-dimensional deformations with holes in selected portions of the protrusions
US20170259550A1 (en) * 2016-03-11 2017-09-14 The Procter & Gamble Company Method Of Making Nonwoven Material Having Discrete Three-Dimensional Deformations With Holes In Selected Portions Of The Protrusions
WO2017156203A1 (en) * 2016-03-11 2017-09-14 The Procter & Gamble Company A three-dimensional substrate comprising a tissue layer
US20170258649A1 (en) * 2016-03-11 2017-09-14 The Procter & Gamble Company Multi-component topsheets having three-dimensional materials
WO2017155912A1 (en) 2016-03-11 2017-09-14 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with improved protrusion dimensions after compression
US20170348165A1 (en) * 2016-03-11 2017-12-07 The Procter & Gamble Company Three-dimensional materials
US11000428B2 (en) 2016-03-11 2021-05-11 The Procter & Gamble Company Three-dimensional substrate comprising a tissue layer
US20170258645A1 (en) * 2016-03-11 2017-09-14 The Procter & Gamble Company Three-dimensional materials having apertures
US20180071151A1 (en) * 2016-09-09 2018-03-15 The Procter & Gamble Company Systems And Methods Of Applying Compositions To Webs And Webs Thereof
US11160694B2 (en) * 2017-01-31 2021-11-02 The Procter & Gamble Company Three-dimensional substrates and absorbent articles having the same
US20180214321A1 (en) * 2017-01-31 2018-08-02 The Procter & Gamble Company Shaped nonwoven fabrics and articles including the same
US11696856B2 (en) 2017-03-09 2023-07-11 The Procter & Gamble Comoany Three-dimensional materials having apertures and voids
CN108618550A (en) * 2017-03-24 2018-10-09 天津巨越地毯有限公司 A kind of residential carpet with automatic sterilizing system
US11149360B2 (en) 2017-06-30 2021-10-19 The Procter & Gamble Company Method for making a shaped nonwoven
US10577722B2 (en) 2017-06-30 2020-03-03 The Procter & Gamble Company Method for making a shaped nonwoven
US11634838B2 (en) 2017-06-30 2023-04-25 The Procter & Gamble Company Shaped nonwoven
US11214893B2 (en) 2017-06-30 2022-01-04 The Procter & Gamble Company Shaped nonwoven
US11746441B2 (en) 2017-06-30 2023-09-05 The Procter & Gamble Company Method for making a shaped nonwoven
US11192327B2 (en) * 2017-07-03 2021-12-07 Axel Nickel Voluminous meltblown nonwoven fabric with improved stackability and storability
US11285056B2 (en) 2017-10-19 2022-03-29 The Procter & Gamble Company Topsheet comprising natural fibers with good mechanical strength
US11291595B2 (en) * 2017-10-19 2022-04-05 The Procter & Gamble Company Topsheet comprising natural fibers
US11369527B2 (en) * 2017-10-19 2022-06-28 The Procter & Gamble Company Topsheet comprising natural fibers
US11547613B2 (en) 2017-12-05 2023-01-10 The Procter & Gamble Company Stretch laminate with beamed elastics and formed nonwoven layer
US20190380887A1 (en) * 2018-06-19 2019-12-19 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US11850128B2 (en) 2018-09-27 2023-12-26 The Procter And Gamble Company Garment-like absorbent articles
CN113473953A (en) * 2019-03-18 2021-10-01 宝洁公司 Forming belt for producing formed non-woven fabric with high visual resolution
US11505884B2 (en) 2019-03-18 2022-11-22 The Procter & Gamble Company Shaped nonwovens that exhibit high visual resolution
US11819393B2 (en) * 2019-06-19 2023-11-21 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US20200397629A1 (en) * 2019-06-19 2020-12-24 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US20200397630A1 (en) * 2019-06-19 2020-12-24 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US11925539B2 (en) 2019-08-22 2024-03-12 The Procter & Gamble Company Disposable absorbent article
US11918442B2 (en) 2019-09-19 2024-03-05 The Procter & Gamble Company Garment-like absorbent articles
CN113290992A (en) * 2021-05-12 2021-08-24 盐城神力制绳有限公司 Splicing aramid fiber flame-retardant net

Also Published As

Publication number Publication date
US7682686B2 (en) 2010-03-23

Similar Documents

Publication Publication Date Title
US7682686B2 (en) Tufted fibrous web
CA2611314C (en) Tufted fibrous web
EP1572050B1 (en) Tufted fibrous web
US7410683B2 (en) Tufted laminate web
AU2006209374B9 (en) Tufted fibrous web

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROCTER & GAMBLE COMPANY, THE,OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CURRO, JOHN JOSEPH;BENSON, DOUGLAS HERRIN;PECK, DANIEL CHARLES;SIGNING DATES FROM 20050624 TO 20050628;REEL/FRAME:016724/0094

Owner name: PROCTER & GAMBLE COMPANY, THE, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CURRO, JOHN JOSEPH;BENSON, DOUGLAS HERRIN;PECK, DANIEL CHARLES;REEL/FRAME:016724/0094;SIGNING DATES FROM 20050624 TO 20050628

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12