US20060293488A1 - Polyurethane composition containing a property-enhancing agent - Google Patents

Polyurethane composition containing a property-enhancing agent Download PDF

Info

Publication number
US20060293488A1
US20060293488A1 US11/511,655 US51165506A US2006293488A1 US 20060293488 A1 US20060293488 A1 US 20060293488A1 US 51165506 A US51165506 A US 51165506A US 2006293488 A1 US2006293488 A1 US 2006293488A1
Authority
US
United States
Prior art keywords
composition
impact absorption
isocyanate
absorption enhancer
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/511,655
Inventor
Albert Giorgini
Charles Torborg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HB Fuller Licensing and Financing Inc
Original Assignee
HB Fuller Licensing and Financing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HB Fuller Licensing and Financing Inc filed Critical HB Fuller Licensing and Financing Inc
Priority to US11/511,655 priority Critical patent/US20060293488A1/en
Assigned to H.B. FULLER LICENSING & FINANCING, INC. reassignment H.B. FULLER LICENSING & FINANCING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIORGINI, ALBERT M., TORBORG, CHARLES J.
Publication of US20060293488A1 publication Critical patent/US20060293488A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch

Definitions

  • This invention relates to a composition
  • a composition comprising at least a part A and a part B.
  • the part A comprises at least one polyol and the part B comprises at least one isocyanate.
  • At least one part further comprises at least one of the following: a strength enhancer having a softening point of from about 120° F. to about 400° F.; a non-reactive hydrophobic enhancer; and/or an impact absorption enhancer. These enhancers provide, among optional other benefits, enhanced pull strength.
  • a mass can be prepared by a method of combining part A with part B and applying the mixture to a void.
  • the composition may also be used in the repair of surface defects or for the reinforcement of structural members such as spike holes left after spike removal from railroad ties during roadbed maintenance or repair.
  • Materials used to repair defects in structural members should have certain characteristics.
  • the material should be easily applied and should form high strength bonds to structural members made of varying materials.
  • the repair materials should be usable in many environments including environments having extremes of heat and cold and having the presence of substantial quantities of environmental water.
  • polyurethane foam in filling spike holes in used railroad ties has come a long way, but still can present significant problems.
  • the polyurethane foam compositions do not appear to consistently adhere to a spike hole with sufficient adhesion to prevent the accidental removal of the foam repair mass during the repair and subsequent mechanical rail installation.
  • most urethane foams of the prior art tended to foam uncontrollably in the presence of substantial environment moisture. Since moisture tends to accelerate the foaming properties of the urethane composition, the presence of water can cause too rapid of cell expansion resulting in a foam mass of low strength and low density that can result in the formation of an incomplete or unreliable repair of structural members.
  • compositions that employ non-carcinogenic ingredients and that can be used to repair surface defects on structural components such as railroad ties to provide a repair mass having strong adhesion to the substrate structural member and strong pulling strength, which can be used in the presence of substantial quantities of environmental water and can be used in automatic application equipment in all temperatures.
  • compositions of the present invention comprise at least a part A and a part B.
  • the part A comprises at least one polyol and the part B comprises at least one isocyanate.
  • At least one part further comprises at least one of the following: a strength enhancer having a softening point of from about 120° F. to about 400° F., a non-reactive hydrophobic enhancer, and/or an impact absorption enhancer. These enhancers provide, among optional other benefits, enhanced pull strength. Methods of using these compositions are also disclosed.
  • the composition of the present invention comprises at least two parts—part A and part B. Generally, each part is provided separately and mixed immediately prior to application. However, the invention also contemplates encapsulated ingredients which release, e.g., upon exposure to pressure and/or heat, particularly encapsulated catalysts, isocyanates and/or gelling agents. Thus, part B could be encapsulated discrete particles dispersed in a liquid part A (e.g. at 80 F) or vise verse. Solid particles dispersed in a liquid medium however are considered the same “part”.
  • the polyurethane composition is formulated as a foamable composition. That is, the composition foams, upon mixing the two parts and exposing the mixture to the environmental pressures and temperatures.
  • the density of the compositions does not typically change substantially when the composition is cured in the wet environments in comparison to the dry environments.
  • the difference in the wet density from the dry density is no greater than about 20 lbs./ft 3 (0.32 kg/dm 3 ) more preferably no greater than about 10 lbs./ft 3 (0.16 kg/dm 3 )
  • Part A of the composition comprises at least one polyol.
  • a “polyol” is an ingredient having at least two active hydrogen atoms.
  • active hydrogen atom refers to hydrogen which displays activity according to the Zerewitnoff test as described by Kohlerin, Journal of American Chemical Society, Vol. 49, pp 31-81 (1927).
  • a “polyol” does not include water, although water may be included in the composition.
  • Polyols are typically present in part A at from about 5% to about 100% by weight of the part.
  • the phrase “by weight of the part” means that the weight percentage is based upon the weight of the part that contains the ingredient (or in this case the polyol). In other words, if part A comprises the ingredient, the weight percentage of “from about 5% to about 50% by weight of the part” means from about 5% to about 50% by weight of Part A.
  • the polyol(s) in part A in general, have a number average molecular weight of from about 50 to about 8000, a functionality of from about 2 to about 8, and a hydroxyl number of from about 14 to about 1800, or from about 24 to about 500, as determined by ASTM designation E-222-67 (Method B).
  • Useful polyols include polyethers, polyesteramides, polythioethers, polycarbonates, polyacetals, polyolefins, polysiloxanes, various grades of caster oils, hydroxy-terminated prepolymers.
  • Polyether polyols are used more often.
  • Suitable polyether polyols (or polyoxyalkylene polyols) are prepared by reaction of any of the following polyhydroxy compounds with an alkylene oxide such as ethylene oxide, 1,2-propylene oxide, 1,3-propylene oxide, epichlorohydrin, epibromohydrin, 1,2-butene oxide and tetrahydrofuran.
  • Suitable polyhydroxy compounds for reaction with the alkylene oxides include simple aliphatic polyols such as ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, 2,2-dimethyltrimethylene glycol, glycerin.
  • Trimethylolethane trimethylolpropane, pentaerythritol, sorbitol, 1,6-hexanediol, 1,2,6-hexanetriol, 2-ethyl-1,3-hexanediol, castor oil, polyvinyl alcohol and partially hydrolyzed polyvinyl acetate; carbohydrates containing 5 to 8 hydroxyl groups such as sucrose, dextrose, and methylglucoside, ether polyols such as diethylene glycol and dipropylene glycol; aromatic polyols such as diphenylene glycol; and mixtures thereof are also useful. These polyether polyols include polyethylene glycol and polytetramethylene ether glycol.
  • polystyrene resin examples include, such as, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, hydroxy terminated prepolymers, glycerol, trimethylolpropane, 1,2,4-butanetriol, 1,2,6-hexanetriol and mixtures thereof.
  • Polyols described in U.S. Pat. No. 4,661,532, U.S. Pat. No. 6,288,133 B1 and U.S. Pat. No. 6,455,605 may also be employed.
  • Part A of the composition may further comprise at least one thixotropic gelling agent.
  • thixotropic gelling agent Any material that will thicken the mixture, particularly at the interface that contacts the substrate or water, to the extent that the isocyanate component is substantially prevented from reacting with excess environmental water, is suitable for use as the thixotropic gelling agent.
  • Suitable thixotropic gelling agents include peroxides, polyamides, and preferably polyamines.
  • the polyamine is typically a primary or secondary amine and present in the part A component in a range from about 0.1% to about 10% by weight of the part, and preferably from about 0.5% by weight to about 5% by weight of the part.
  • the composition typically thixotropically gels fast within 1 minute or even within about 5 seconds or less when mixed and applied by meter-mix application equipment.
  • a thixotropic gel enhances the sealing characteristics of the resultant foam.
  • vacant spike holes often create voids within a railway tie that can pass completely through the tie.
  • the fast or instant thixotropic gelling action provided by the thixotropic gelling agent such as polyamines, preferably, polyamines which could provide the desired thixotropic gelling, allows the composition to more rapidly adhere to the inner surface of the hole, as well as more adequately seal the hole upon foaming within the void.
  • the composition In the absence of the appropriate thixtropic gelling agent, the composition is more likely to flow through the hole and/or cracks and provide an inadequate seal once foamed.
  • the ingredients for each part may be selected such that the composition is sufficiently high enough in viscosity upon mixing the part A with the part B. However, this is much less desirable since the initial high viscosity causes the composition to be more difficult to apply consistently, particularly at low application temperatures.
  • part A may also comprises at least one blowing agent.
  • a common blowing agent is water, which may be present in an amount of from about 0.05% by weight to about 1% by weight of the part or even 0.15% to 0.5% by weight of the part.
  • the polyol(s) and/or the other ingredients in part A may contain a small concentration of residual moisture or water that may be sufficient to act as a blowing agent. Accordingly, the blowing agent may be inherently present, and thus need not be separately added.
  • Part B of the composition of the present invention comprises at least one isocyanate.
  • organic polyisocyanates compositions may be employed in the isocyanate component, including monomeric and/or polymeric polyisocyanates which may be linear, branched, cyclic aliphatic polyisocyanates, cycloaliphatic polyisocyanates, aromatic polyisocyanates, isocyanate-terminated prepolymers, isocyanurates and mixtures thereof.
  • TDI 2,4-toluene diisocyanate
  • MDI diphenyl methane diisocyanate
  • m-phenylene diisocyanate 4-chlor-1,3-phenylene diisocyanate
  • 4,4′-biphenyl diisocyanate 1,5-naphthalene diisocyanate
  • 1,4-tetramethylene diisocyanate 6-hexamethylene diisocyanate
  • 1,10-decamethylene diisocyanate 1,10 decamethylene diisocyanate
  • 1,4-cyclohexylene diisocyanate 1,4′-methylene-bis(cyclohexyl isocyanate) and others.
  • the isocyanate compound may contain other substituents that do not substantially detract from the reactive natures of the isocyanate groups.
  • a blend of two or more isocyanates wherein at least one of the isocyanates is aromatic may be employed.
  • Aromatic diisocyanates those that have at least two isocyanate groups directly attached to an aromatic ring, react in the urethane reaction more rapidly with polyols than the aliphatic isocyanates.
  • Some other particularly useful isocyanates are polymeric MDIs s including polymethylene polyphenyl isocyanates containing 4,4′methylene bisphenyl isocyanate commercially available from The Dow Chemical Company, Midland, Mich.
  • Isocyanate-terminated prepolymers can also be used.
  • Isocyanate-terminated prepolymers are known from U.S. Pat. Nos. 3,073,802 and 3,054,755 and are generally prepared by reacting an excess of polyisocyanates, such as an aromatic diisocyanate with polyalkylene ether glycols, or polyester glycols.
  • the isocyanate can also be used in the form of a blocked isocyanate.
  • the isocyanate is present in part B in an amount of up to about 100% by weight of the part.
  • the isocyanate is employed at a concentration from about 50% to about 95% by weight of the part, and in other embodiments, from about 70% to about 90% by weight of the part.
  • Part A and/or part B of the composition may further comprises at least one diluent to reduce the viscosity of the composition, thereby enhancing the flow characteristics, especially during the railroad tie repair operation.
  • Suitable diluents include polymeric resins, elastomers, waxes, oils and mixtures thereof. Specific examples include phthalate esters, alkyl phosphates, polyphenyls, di- and triphenyl compounds as well as partially hydrogenated versions, aromatic oils, chlorinated waxes or paraffins, adipate esters, synthetic rubber polymer, natural oils, rosin and rosin derivatives, and polysulfide rubber.
  • diluents are not the same as those synthetic rubber polymers useful as enhancers in the present invention.
  • a key difference readily apparent is the viscosity of the synthetic rubber polymers as their viscosity directly impacts the viscosity of the part.
  • One diluent is Eastman TXIB Plasticizer, which is 2,2,4-trimethyl-1,3-pentanediol diisobutyrate from Eastman Chemical Company (Kingsport, Tenn.).
  • the diluent may be present in either part in a range of from about 1% to about 50% by weight of the part, and may be from about 5% to about 20% by weight of the part.
  • the ingredients may be selected to lower the crystallization temperature of each of part A and/or part B components to improve the freeze-thaw stability.
  • the isocyanate used in the part B component may tend to crystallize under cooler temperatures so the addition of a diluent allows enhanced processing characteristics.
  • Part A and/or part B of the composition may further comprise at least one catalyst.
  • the reaction rate of part A with part B can be accelerated by incorporating an effective amount of at least one catalyst that promotes the active hydrogen atom/isocyanate reaction.
  • Suitable catalysts are those known to enhance the polyol/isocyanate reaction, water/isocyanate reaction, urethane/isocyanate reaction and urea/isocyanate reaction.
  • a combination of the catalysts is employed to accelerate the formation of the urethane linkages as well as the isocyanurate linkages.
  • the final cured product is comprised of a variety of linkages including isocyanurate, biuret and urea linkages rather than predominantly urethane linkages when using a combination of the catalysts.
  • the amount of catalyst(s) may be from about 0.1% by weight to about 5% by weight of the part, or from about 0.3% by weight to about 3% by weight of the part.
  • catalysts may be employed in combination with various accelerators and/or curing agents such as Lewis Base catalysts including, e.g., ANCAMINE K.54 (Pacific Anchor Chemical Corporation, Los Angeles, Calif.), a tris-(dimethylaminomethyl) phenol.
  • Other useful catalysts include organic amine compounds and organo metallic compounds and mixtures thereof. The amine based catalysts differ from the polyamine gelling agent with respect to the number of reactive sites present in the molecule as well as to the concentration employed.
  • the polyamine gelling agent is typically a primary or secondary amine.
  • useful catalysts to promote the urethane reaction include dibutyltindilaurate, stannous octoate, tertiary aliphatic and tertiary alicyclic amines including triethylamine, triethanolamine, tri-n-butylamine, triethylenediamine, alkylmorpholene, etc. Complex mixtures of such catalysts and modified forms may also be employed.
  • Cat 41 N,N,N′,N′,N′′,N′′-hexamethyl-1,3,5-triazine 1,3,5 (2H, 4H, 6H tripropanamine
  • Polycat 43 a proprietary tertiary amine
  • various catalysts based on potassium salts of organic acids including DABCO T-45 (potassium octonate in dipropylene glycol (DPB) (60/40), DABCO K-15 (potassium octonate in DPG (70/30), METACURE T-120 (organo tin catalyst (17.5% tin) exhibiting high catalytic activity), and Polycat 46 (potassium acetate in ethylene glycol).
  • the Polycat and DABCO catalysts are available from Air Products & Chemicals, Inc. (Allentown, Pa.). Most preferred are combinations of isocyanurate reaction catalysts.
  • a slower reacting trimer catalyst such as DABCO TMR-2 and DABCO TMR-3 (quaternary ammonium salts) and DABCO TMR-30 (2,4,6-tris(dimethylaminomethyl)phenol may be employed and preferably in combination with a stronger trimer catalyst.
  • urethane catalysts such as DABCO 33 LV (triethylene diamine in DPG (33/67) and a metal based catalyst like DABCO T-12 (dibutyltin dilaurate) may also be employed.
  • DABCO 33 LV triethylene diamine in DPG (33/67)
  • DABCO T-12 dibutyltin dilaurate
  • compositions of the present invention also comprise at least one property-enhancing agent in at least one of the parts.
  • the phrase “in at least one of the parts” means that the property enhancing agent may be found in part A, in part B, or in both parts.
  • the phrase “property-enhancing agent” refers to strength enhancers, non-reactive hydrophobic enhancers, and/or impact absorption enhancers.
  • the compositions of the present invention may comprise a strength enhancer in at least one of the parts. It has been found that particularly useful strength enhancers have a softening point of from about 120° F. (49° C.) to about 400° F. (204° C.) or even from about 140° F. (60° C.) to about 300° F. (149° C.). As used herein, the phrase “softening point” is defined as stated in ASTM D6493-99.
  • pull strength refers, in general to the quality of the bond between the compositions of the present invention and the structure(s) with which they interface. Quantitatively, the pull strength can be measured by one of the pull strength tests, which are described in greater detail in the Test Methods section below. Particularly useful strength enhancers typically exhibit pull strengths from at least about 1000 or at least about 1200 or even 1400 pounds according to the Pull Strength Test Method A.
  • Strength enhancers useful in the present invention include but are not limited to asphalt, PVC resins, natural and synthetic rubbers and thermoplastic polyurethane resins.
  • the term “asphalt” as used herein refers to solid or semi-solid natural or mechanical mixtures of bitumen obtained from native deposits or as petroleum byproducts. Specific examples include gilsonite, glance pitch and grahamite. “Asphalt” does not encompass bitumen that is obtained by distillation from coal, which, in addition to other problems, often includes carcinogens.
  • the strength enhancers useful in the present invention are solid or semi-solid at 80° F. in order to exhibit the desired pull strength characteristics.
  • the strength enhancers are dispersed in at least one of the parts. Strength enhancers may be included at from about 5% to about 50% by weight of the part, or even from about 10% to about 30% by weight of the part.
  • the softening points of these ingredients may vary depending upon their source. For example two sources of gilsonite have different softening points. Zecol LLMP available from Ziegler Chemical and Mineral Corporation has a softening point range of 248° F. to 290° F. while Lexco multipurpose grade from Lexco has a softening point of 330° F. to 350° F. Thus, when formulating with pull strength as a key criteria, it is recommended that the softening points mentioned above are targeted. However, as will be seen below, these enhancers may be useful in the present invention even when their softening points do not meet these limitations when one considers an ancillary beneficial property the enhancer brings to the compositions. In those situations where the softening points are not met, other criteria will be met.
  • Non-reactive hydrophobic enhancers The strength enhancers mentioned above in section A may or may not have some additional desirable hydrophobic characteristics. Similarly, the non-reactive hydrophobic enhancers useful in the present invention may or may not meet the softening point criteria set forth in section A. Nevertheless, they do contribute to improved pull strengths of the final compositions and, moreover, have added benefits of hydrophobicity which results in more resilient, better performing compositions. These hydrophobic characteristics are particularly useful when dealing in situations where there may be an abundance of water or moisture. For example, vacant spike holes often contain pooled water, which increases the foaming and decreases the density, which can be detrimental.
  • non-reactive hydrophobic enhancers do not detrimentally react chemically with other components in the system and therefore result in more stable individual parts.
  • “non-reactive” means that the enhancer does not substantially react chemically with other components in the part thereby detrimentally affecting the stability of the part.
  • non-reactive hydrophobic enhancers results in compositions having increased hydrophobicity which are stable and less likely to emulsify, absorb, and/or entrap water which can result in reducing the materials' density, rigidity and adhesion characteristics.
  • “Hydrophobic” refers to those enhancers having a concentration of water at ambient temperature of less than 1% after being conditioned for 14 days at 100° F. (38° C.) and 95% relative humidity in a cylindrical container about 4 cm in height having an inside diameter of about 3 cm.
  • non-reactive hydrophobic enhancers include but are not limited to asphalt such as gilsonite and some hydrocarbon resins. When used, the non-reactive hydrophobic enhancers are included at from about 1% to about 50% by weight of the part, or even from about 5% to about 30% by weight of the part.
  • Impact absorption enhancers The strength enhancers mentioned above in section A may or may not have some additional desirable impact absorption characteristics. Similarly, the impact absorption enhancers useful in the present invention may or may not meet the softening point criteria set forth in section A, yet they do contribute to improved pull strengths of the final compositions and, moreover, have additional benefits of impact absorption which may be useful in some applications. The ability of the composition to absorb some vibrations or occasional jolts may preserve existing bonds between the structure and the compositions which otherwise would weaken the overall system and “true” pull strengths in a real setting.
  • impact absorption enhancers refer to enhancers that improve pull strengths and provide desirable impact absorption characteristics.
  • the “impact absorption enhancers” do not reduce the viscosity of the part they are incorporated in nor the viscosity of the final composition as it has been found that reducing viscosity generally diminishes the desired characteristics.
  • the “impact absorption enhancers” used herein often have viscosities themselves of more than about 100,000 centipoises (cps).
  • Specific examples of useful impact absorption enhancers include but are not limited to PVC, ground rubber, and glass or polymeric microspheres that do not reduce the viscosities as mentioned above.
  • the impact absorption enhancers are included at from about 1% to about 30% by weight of the part, or even from about 5% to about 10% by weight of the part.
  • polyurethane composition of the present invention can be modified with commonly used additives including fillers, extenders, ultraviolet (UV) stabilizers, antioxidants, fungicides, bactericides, surfactants, dyes, and mixtures thereof.
  • UV ultraviolet
  • additives including fillers, extenders, ultraviolet (UV) stabilizers, antioxidants, fungicides, bactericides, surfactants, dyes, and mixtures thereof.
  • the polyurethane compositions of the present invention can be made in accordance with known manufacturing methods.
  • the polyol component and isocyanate component can be individually prepared using commonly available blending and mixing techniques.
  • the composition may be effectively mixed and applied by using an automated meter mix equipment that blends the two packages at an appropriate ratio.
  • the two parts are meter-mixed together at a ratio of active hydrogen atoms (from Part A) to isocyanate group (from Part B) in a range of from about 1:0.8 to about 1:4, or from about 1:0.9 to about 1:4, and preferably at a ratio of from about 1:1 to about 1:2.
  • excess isocyanate is usually preferred.
  • the composition of the invention may be formulated to be foamable.
  • the composition may be preheated to a temperature ranging from about 60° F. (27° C.) to about 120° F. (49° C.) and applied into the spike hole using an automatic mixing and application unit that is part of a track repair process, followed by replacement of the spike plate and rail and re-spiking the assembly together.
  • composition of the present invention is also useful for reinforcement of composite structural members including building materials such as doors, windows, furniture and cabinets and for well and concrete repair.
  • the composition can be used to fill any unintended gaps, particularly to increase the strength.
  • Structural components are formed from a variety of materials such as wood, plastic, concrete and others, whereas the defect to be repaired or reinforced can appear as cuts, gaps, deep holes, cracks, etc.
  • Density or Dry Density is determined by dispensing the composition directly into an empty cup of a known mass and volume at 77° F. (25° C.).
  • Wet Density is determined by the same method as the dry density except the compositions is dispensed directly into a 150 ml cup containing 20 ml water.
  • a one (1) inch (25.4 mm) diameter hole is filled with the appropriate polyol/isocyanate mixture and allowed to cure for 30 minutes.
  • a 3.5 inches (89 mm) hard cut masonry nail is then pounded into the cured dry plug to a depth of 2.0 inches (50.8 mm).
  • the nail is removed from the plug using an Instron at a constant rate of 2.0 inch/min (50.8 mm/min). The maximum force exerted during the removal is reported as the “pull strength”.
  • a one (1) inch (25.4 mm) diameter hole is filled with the appropriate polyol/isocyanate mixture and allowed to cure for 30 minutes.
  • a 4.5 inches (114 mm) 30D Common nail is then pounded into the cured dry plug to a depth of 2.4 inches (60 mm).
  • the nail is removed from the plug using an Instron at a constant rate of 2.0 inch/min (50.8 mm/min). The maximum force exerted during the removal is reported as the “pull strength”.
  • Part A of the composition is prepared by adding the polyol(s) and filler(s), if any, to a Cowles dissolver at room temperature and agitating until the mixture is completely homogeneous.
  • the moisture content of the material is then measure via Karl Fisher titration. Additional water is added, if necessary, to bring the overall moisture content up to the desired range.
  • the remaining ingredients are then added and the mixture is agitated until the mixture is completely homogeneous. If a single isocyanate is employed as part B without any further ingredient no additional preparation is required.
  • part B also comprises other ingredient(s), e.g., PVC, diluent(s), polyols to make a pre-polymer, etc. all the ingredients are added to a Cowles dissolver and agitated until the mixture is completely homogeneous.
  • Table I represent various part A components whereas Table II represents several Part B components.
  • the present invention encompasses all possible combinations of Part A components and Part B components in accordance with the claims.
  • the dry/wet densities and the pull strength were tested upon combining the Part A component and Part B component at a 1 to 1 mix ratio by volume.
  • Part A1 is reacted with Part B4 resulting in a foam having a wet density of 58 lbs, a dry density of 72 lbs./ft 3 , and a pull strength of about 872 pounds measured according to Pull Strength Test Method A.
  • Part A 2 is reacted with Part B4 resulting in a foam having a wet density of 70 lbs./ft 3 , a dry density of 73 lbs./ft 3 , and a pull strength of about 1470 pounds measured according to Pull Strength Test Method A.
  • Part A3 is reacted with Part B4 resulting in a foam having a wet density at of 65 lbs./ft 3 , a dry density of 73 lbs./ft 3 , a pull strength of about 1,160 pounds measured according to Pull Strength Test Method A.
  • Part A4 is reacted with Part B1 resulting in a foam having a wet density of 61 lbs./ft 3 , a dry density of 72 lbs./ft 3 , and a pull strength of about 384 pounds measured according to Pull Strength Test Method B.
  • Part A4 is reacted with Part B2 resulting in a foam having a wet density of 56 lbs./ft 3 , a dry density of 65.5 lbs./ft 3 and a pull strength of about 271 pounds measured according to Pull Strength Test Method B.
  • Part A4 is reacted with Part B3 resulting in a foam having a wet density of 62 lbs./ft 3 , a dry density of 64 lbs./ft 3 and a pull strength of about 430 pounds measured according to Pull Strength Test Method B.
  • Part A5 is reacted with Part B1 resulting in a foam having a wet density of 64 lbs./ft 3 , a dry density of 74 lbs./ft 3 , and a pull strength of about 419 pounds measured according to Pull Strength Test Method B.
  • a railroad tie in need of repair is provided.
  • a mixture according to Example 2 is applied to a void in the railroad tie. After allowing the mixture to cure, a spike is nailed into at least a portion of the filled area and holds.

Abstract

A composition comprising at least a part A and a part B is disclosed. The part A comprises at least one polyol and the part B comprises at least one isocyanate. At least one part further comprises at least one of the following: a strength enhancer having a softening point of from about 120° F. to about 400° F.; a non-reactive hydrophobic enhancer; and/or an impact absorption enhancer. These enhancers provide, among optional other benefits, enhanced pull strength. Additionally, a mass can be prepared by a method of combining part A with part B and applying the mixture to a void. The compositions may also be used in the repair of surface defects or for the reinforcement of structural members such as spike holes left after spike removal from railroad ties during road bed maintenance or repair.

Description

    FIELD OF THE INVENTION
  • This invention relates to a composition comprising at least a part A and a part B. The part A comprises at least one polyol and the part B comprises at least one isocyanate. At least one part further comprises at least one of the following: a strength enhancer having a softening point of from about 120° F. to about 400° F.; a non-reactive hydrophobic enhancer; and/or an impact absorption enhancer. These enhancers provide, among optional other benefits, enhanced pull strength. Additionally, a mass can be prepared by a method of combining part A with part B and applying the mixture to a void. The composition may also be used in the repair of surface defects or for the reinforcement of structural members such as spike holes left after spike removal from railroad ties during roadbed maintenance or repair.
  • BACKGROUND OF THE INVENTION
  • Materials used to repair defects in structural members should have certain characteristics. The material should be easily applied and should form high strength bonds to structural members made of varying materials. Particularly for outdoor repairs, the repair materials should be usable in many environments including environments having extremes of heat and cold and having the presence of substantial quantities of environmental water.
  • One particularly important end use for such repair compositions is in the recycle or reuse of railroad ties. Typically in the maintenance of the railroad right of way, the rails along with the tie plates and spikes are removed from railroad ties, which remain in the roadbed. If a new rail is to be spiked to the old tie, it is critical that the railroad tie spike holes be repaired prior to laying the new rail. The presence of spike holes in an old tie can cause problems since if a spike is driven into a portion of the tie near an old spike hole, the driving force of the spike can displace the spike from its intended location into an old hole, displacing the rail, tie plate and spike. In the instance that the spike is driven into an incorrect location substantial economic loss can result in repairing the misaligned rail. If a misaligned rail is not repaired, the defect can cause derailment or other problems. Further, the spike holes can be the source of structural weakness in the tie, allowing water to enter the core of the tie accelerating the degradation.
  • The use of polyurethane foam in filling spike holes in used railroad ties has come a long way, but still can present significant problems. The polyurethane foam compositions do not appear to consistently adhere to a spike hole with sufficient adhesion to prevent the accidental removal of the foam repair mass during the repair and subsequent mechanical rail installation. Further, most urethane foams of the prior art tended to foam uncontrollably in the presence of substantial environment moisture. Since moisture tends to accelerate the foaming properties of the urethane composition, the presence of water can cause too rapid of cell expansion resulting in a foam mass of low strength and low density that can result in the formation of an incomplete or unreliable repair of structural members.
  • Various polyurethane compositions and improvements have been suggested. However, there is still a substantial need in the art for repairing compositions that employ non-carcinogenic ingredients and that can be used to repair surface defects on structural components such as railroad ties to provide a repair mass having strong adhesion to the substrate structural member and strong pulling strength, which can be used in the presence of substantial quantities of environmental water and can be used in automatic application equipment in all temperatures.
  • SUMMARY OF THE INVENTION
  • The compositions of the present invention comprise at least a part A and a part B. The part A comprises at least one polyol and the part B comprises at least one isocyanate. At least one part further comprises at least one of the following: a strength enhancer having a softening point of from about 120° F. to about 400° F., a non-reactive hydrophobic enhancer, and/or an impact absorption enhancer. These enhancers provide, among optional other benefits, enhanced pull strength. Methods of using these compositions are also disclosed.
  • DETAILED DESCRIPTION OF THE INVENTION I. The Compositions
  • The composition of the present invention comprises at least two parts—part A and part B. Generally, each part is provided separately and mixed immediately prior to application. However, the invention also contemplates encapsulated ingredients which release, e.g., upon exposure to pressure and/or heat, particularly encapsulated catalysts, isocyanates and/or gelling agents. Thus, part B could be encapsulated discrete particles dispersed in a liquid part A (e.g. at 80 F) or vise verse. Solid particles dispersed in a liquid medium however are considered the same “part”. In some embodiments, the polyurethane composition is formulated as a foamable composition. That is, the composition foams, upon mixing the two parts and exposing the mixture to the environmental pressures and temperatures. The density of the compositions does not typically change substantially when the composition is cured in the wet environments in comparison to the dry environments. In some embodiments, the difference in the wet density from the dry density is no greater than about 20 lbs./ft3 (0.32 kg/dm3) more preferably no greater than about 10 lbs./ft3 (0.16 kg/dm3)
  • A. Part A.: Part A of the composition comprises at least one polyol.
  • Polyols and methods for their preparation are known. For the purpose of the present invention, a “polyol” is an ingredient having at least two active hydrogen atoms. The term “active hydrogen atom” refers to hydrogen which displays activity according to the Zerewitnoff test as described by Kohlerin, Journal of American Chemical Society, Vol. 49, pp 31-81 (1927). For the purpose of the present invention, a “polyol” does not include water, although water may be included in the composition. Polyols are typically present in part A at from about 5% to about 100% by weight of the part. As used herein, the phrase “by weight of the part” means that the weight percentage is based upon the weight of the part that contains the ingredient (or in this case the polyol). In other words, if part A comprises the ingredient, the weight percentage of “from about 5% to about 50% by weight of the part” means from about 5% to about 50% by weight of Part A.
  • The polyol(s) in part A, in general, have a number average molecular weight of from about 50 to about 8000, a functionality of from about 2 to about 8, and a hydroxyl number of from about 14 to about 1800, or from about 24 to about 500, as determined by ASTM designation E-222-67 (Method B).
  • Useful polyols include polyethers, polyesteramides, polythioethers, polycarbonates, polyacetals, polyolefins, polysiloxanes, various grades of caster oils, hydroxy-terminated prepolymers. Polyether polyols are used more often. Suitable polyether polyols (or polyoxyalkylene polyols) are prepared by reaction of any of the following polyhydroxy compounds with an alkylene oxide such as ethylene oxide, 1,2-propylene oxide, 1,3-propylene oxide, epichlorohydrin, epibromohydrin, 1,2-butene oxide and tetrahydrofuran. Suitable polyhydroxy compounds for reaction with the alkylene oxides include simple aliphatic polyols such as ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, 2,2-dimethyltrimethylene glycol, glycerin. Trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, 1,6-hexanediol, 1,2,6-hexanetriol, 2-ethyl-1,3-hexanediol, castor oil, polyvinyl alcohol and partially hydrolyzed polyvinyl acetate; carbohydrates containing 5 to 8 hydroxyl groups such as sucrose, dextrose, and methylglucoside, ether polyols such as diethylene glycol and dipropylene glycol; aromatic polyols such as diphenylene glycol; and mixtures thereof are also useful. These polyether polyols include polyethylene glycol and polytetramethylene ether glycol.
  • Other suitable polyols include, such as, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, hydroxy terminated prepolymers, glycerol, trimethylolpropane, 1,2,4-butanetriol, 1,2,6-hexanetriol and mixtures thereof. Polyols described in U.S. Pat. No. 4,661,532, U.S. Pat. No. 6,288,133 B1 and U.S. Pat. No. 6,455,605 may also be employed.
  • Part A of the composition may further comprise at least one thixotropic gelling agent. Any material that will thicken the mixture, particularly at the interface that contacts the substrate or water, to the extent that the isocyanate component is substantially prevented from reacting with excess environmental water, is suitable for use as the thixotropic gelling agent. Preferably, any material that could provide fast or instant thixotropic gelling reaction with the isocyanate in, such as, preferably no greater than about 5 seconds, is more suitable for the application of the invention. Suitable thixotropic gelling agents include peroxides, polyamides, and preferably polyamines. The polyamine is typically a primary or secondary amine and present in the part A component in a range from about 0.1% to about 10% by weight of the part, and preferably from about 0.5% by weight to about 5% by weight of the part. Upon mixing the polyol and isocyanate component, the composition typically thixotropically gels fast within 1 minute or even within about 5 seconds or less when mixed and applied by meter-mix application equipment.
  • It is surmised that in the absence of a thixotropic gelling agent, there tends to be a substantial difference in the foam density achieved at dry conditions in contrast to wet conditions. Since water is a common blowing agent, the rate of expansion of foamable compositions typically directly relates to the concentration of water present. Hence, as the concentration of water increases, polyurethane compositions in the absence of the thixotropic gelling agent tend to froth, rather than produce a consistent foam. It is also surmised that the polyamine acts as a chemical thixotrope to provide an instant thixotropic gel once the two parts are blended together. It is further surmised that the instant formation of a thixotropic gel, e.g., within a few seconds, enhances the sealing characteristics of the resultant foam. For example, vacant spike holes often create voids within a railway tie that can pass completely through the tie. As the two parts of the foamable composition are mixing and simultaneously injecting into the hole, the fast or instant thixotropic gelling action provided by the thixotropic gelling agent such as polyamines, preferably, polyamines which could provide the desired thixotropic gelling, allows the composition to more rapidly adhere to the inner surface of the hole, as well as more adequately seal the hole upon foaming within the void. In the absence of the appropriate thixtropic gelling agent, the composition is more likely to flow through the hole and/or cracks and provide an inadequate seal once foamed. Alternatively, in the absence of a thixotropic gelling agent, the ingredients for each part may be selected such that the composition is sufficiently high enough in viscosity upon mixing the part A with the part B. However, this is much less desirable since the initial high viscosity causes the composition to be more difficult to apply consistently, particularly at low application temperatures.
  • In the embodiments where a polyurethane foam is formed, part A may also comprises at least one blowing agent. A common blowing agent is water, which may be present in an amount of from about 0.05% by weight to about 1% by weight of the part or even 0.15% to 0.5% by weight of the part. In many instances, the polyol(s) and/or the other ingredients in part A may contain a small concentration of residual moisture or water that may be sufficient to act as a blowing agent. Accordingly, the blowing agent may be inherently present, and thus need not be separately added.
  • B. Part B: Part B of the composition of the present invention comprises at least one isocyanate.
  • Any of a wide variety of organic polyisocyanates compositions may be employed in the isocyanate component, including monomeric and/or polymeric polyisocyanates which may be linear, branched, cyclic aliphatic polyisocyanates, cycloaliphatic polyisocyanates, aromatic polyisocyanates, isocyanate-terminated prepolymers, isocyanurates and mixtures thereof. Representative examples include 2,4-toluene diisocyanate (TDI), diphenyl methane diisocyanate (MDI), m-phenylene diisocyanate, 4-chlor-1,3-phenylene diisocyanate, 4,4′-biphenyl diisocyanate, 1,5-naphthalene diisocyanate, 1,4-tetramethylene diisocyanate, 6-hexamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,10 decamethylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4′-methylene-bis(cyclohexyl isocyanate) and others. Further, the isocyanate compound may contain other substituents that do not substantially detract from the reactive natures of the isocyanate groups. In some embodiments, a blend of two or more isocyanates wherein at least one of the isocyanates is aromatic may be employed. Aromatic diisocyanates, those that have at least two isocyanate groups directly attached to an aromatic ring, react in the urethane reaction more rapidly with polyols than the aliphatic isocyanates. Some other particularly useful isocyanates are polymeric MDIs s including polymethylene polyphenyl isocyanates containing 4,4′methylene bisphenyl isocyanate commercially available from The Dow Chemical Company, Midland, Mich. as PAPI 27, PAPI 20 and PAPI 94; from Huntsman as Rubinate M, Rubinate 9257, and Rubinate 9258; and from Bayer as Modur MR, MR-200 and MRS-10. Isocyanates described in U.S. Pat. No. 4,661,532, U.S. Pat. No. 6,288,133 B1, and U.S. Pat. No. 6,455,605 may also be employed.
  • Isocyanate-terminated prepolymers can also be used. Isocyanate-terminated prepolymers are known from U.S. Pat. Nos. 3,073,802 and 3,054,755 and are generally prepared by reacting an excess of polyisocyanates, such as an aromatic diisocyanate with polyalkylene ether glycols, or polyester glycols. The isocyanate can also be used in the form of a blocked isocyanate.
  • The isocyanate is present in part B in an amount of up to about 100% by weight of the part. In some embodiments, the isocyanate is employed at a concentration from about 50% to about 95% by weight of the part, and in other embodiments, from about 70% to about 90% by weight of the part.
  • C. Optional Ingredients: Part A and/or part B of the composition may further comprises at least one diluent to reduce the viscosity of the composition, thereby enhancing the flow characteristics, especially during the railroad tie repair operation. Suitable diluents include polymeric resins, elastomers, waxes, oils and mixtures thereof. Specific examples include phthalate esters, alkyl phosphates, polyphenyls, di- and triphenyl compounds as well as partially hydrogenated versions, aromatic oils, chlorinated waxes or paraffins, adipate esters, synthetic rubber polymer, natural oils, rosin and rosin derivatives, and polysulfide rubber. One of ordinary skill in the art will readily recognize that, e.g., synthetic rubber polymers that are useful as diluents are not the same as those synthetic rubber polymers useful as enhancers in the present invention. A key difference readily apparent is the viscosity of the synthetic rubber polymers as their viscosity directly impacts the viscosity of the part. One diluent is Eastman TXIB Plasticizer, which is 2,2,4-trimethyl-1,3-pentanediol diisobutyrate from Eastman Chemical Company (Kingsport, Tenn.). The diluent may be present in either part in a range of from about 1% to about 50% by weight of the part, and may be from about 5% to about 20% by weight of the part.
  • Advantageously, the ingredients may be selected to lower the crystallization temperature of each of part A and/or part B components to improve the freeze-thaw stability. For example, the railroad industry repairs tracks year round, and fluctuations in temperature, especially during low temperatures, prefer that each part flow without additional heat at reduced temperatures. Additionally, the isocyanate used in the part B component may tend to crystallize under cooler temperatures so the addition of a diluent allows enhanced processing characteristics.
  • Part A and/or part B of the composition may further comprise at least one catalyst. The reaction rate of part A with part B can be accelerated by incorporating an effective amount of at least one catalyst that promotes the active hydrogen atom/isocyanate reaction. Suitable catalysts are those known to enhance the polyol/isocyanate reaction, water/isocyanate reaction, urethane/isocyanate reaction and urea/isocyanate reaction. In some embodiments, a combination of the catalysts is employed to accelerate the formation of the urethane linkages as well as the isocyanurate linkages. Applicants surmise that the final cured product is comprised of a variety of linkages including isocyanurate, biuret and urea linkages rather than predominantly urethane linkages when using a combination of the catalysts. If present, the amount of catalyst(s) may be from about 0.1% by weight to about 5% by weight of the part, or from about 0.3% by weight to about 3% by weight of the part. Further, catalysts may be employed in combination with various accelerators and/or curing agents such as Lewis Base catalysts including, e.g., ANCAMINE K.54 (Pacific Anchor Chemical Corporation, Los Angeles, Calif.), a tris-(dimethylaminomethyl) phenol. Other useful catalysts include organic amine compounds and organo metallic compounds and mixtures thereof. The amine based catalysts differ from the polyamine gelling agent with respect to the number of reactive sites present in the molecule as well as to the concentration employed.
  • Whereas amine based catalysts are typically tertiary amines, the polyamine gelling agent is typically a primary or secondary amine.
  • Specific examples of useful catalysts to promote the urethane reaction include dibutyltindilaurate, stannous octoate, tertiary aliphatic and tertiary alicyclic amines including triethylamine, triethanolamine, tri-n-butylamine, triethylenediamine, alkylmorpholene, etc. Complex mixtures of such catalysts and modified forms may also be employed.
  • For the promotion of the isocyanurate reaction, specific types of catalysts are used such as Polycat 41 (N,N,N′,N′,N″,N″-hexamethyl-1,3,5-triazine 1,3,5 (2H, 4H, 6H tripropanamine), Polycat 43 (a proprietary tertiary amine) and various catalysts based on potassium salts of organic acids including DABCO T-45 (potassium octonate in dipropylene glycol (DPB) (60/40), DABCO K-15 (potassium octonate in DPG (70/30), METACURE T-120 (organo tin catalyst (17.5% tin) exhibiting high catalytic activity), and Polycat 46 (potassium acetate in ethylene glycol). The Polycat and DABCO catalysts are available from Air Products & Chemicals, Inc. (Allentown, Pa.). Most preferred are combinations of isocyanurate reaction catalysts. For example, a slower reacting trimer catalyst such as DABCO TMR-2 and DABCO TMR-3 (quaternary ammonium salts) and DABCO TMR-30 (2,4,6-tris(dimethylaminomethyl)phenol) may be employed and preferably in combination with a stronger trimer catalyst. Alternatively, combinations of suitable strong trimer catalysts and a small amount of urethane catalyst, such as DABCO 33 LV (triethylene diamine in DPG (33/67) and a metal based catalyst like DABCO T-12 (dibutyltin dilaurate) may also be employed. These catalyst systems are preferred to minimize initial foaming as described in U.S. Pat. No. 5,556,934 issued Sep. 17, 1996.
  • II. Property Enhancing Agents
  • The compositions of the present invention also comprise at least one property-enhancing agent in at least one of the parts. As used herein, the phrase “in at least one of the parts” means that the property enhancing agent may be found in part A, in part B, or in both parts. The phrase “property-enhancing agent” refers to strength enhancers, non-reactive hydrophobic enhancers, and/or impact absorption enhancers. As used herein, the term “enhancer”, when used without a preceding adjective, refers to strength enhancers, non-reactive hydrophobic strength enhancers, and/or impact absorption enhancers. As will be discussed in greater detail below, these enhancers have been found to impart beneficial properties such as increased pull strength and sometimes hydrophobicity and/or increased impact absorption.
  • A. Strength Enhancers: The compositions of the present invention may comprise a strength enhancer in at least one of the parts. It has been found that particularly useful strength enhancers have a softening point of from about 120° F. (49° C.) to about 400° F. (204° C.) or even from about 140° F. (60° C.) to about 300° F. (149° C.). As used herein, the phrase “softening point” is defined as stated in ASTM D6493-99. Not wishing to be bound in theory, it is believed that when the compositions of the present invention are used for applications such as rail road tie repair, the heat generated from driving a spike into the hole plugged with the compositions of the present invention causes these strength enhancers to melt to a degree and re-fuse, resulting in better pull strength. The term “pull strength” as used herein refers, in general to the quality of the bond between the compositions of the present invention and the structure(s) with which they interface. Quantitatively, the pull strength can be measured by one of the pull strength tests, which are described in greater detail in the Test Methods section below. Particularly useful strength enhancers typically exhibit pull strengths from at least about 1000 or at least about 1200 or even 1400 pounds according to the Pull Strength Test Method A. Strength enhancers useful in the present invention include but are not limited to asphalt, PVC resins, natural and synthetic rubbers and thermoplastic polyurethane resins. The term “asphalt” as used herein refers to solid or semi-solid natural or mechanical mixtures of bitumen obtained from native deposits or as petroleum byproducts. Specific examples include gilsonite, glance pitch and grahamite. “Asphalt” does not encompass bitumen that is obtained by distillation from coal, which, in addition to other problems, often includes carcinogens. The strength enhancers useful in the present invention are solid or semi-solid at 80° F. in order to exhibit the desired pull strength characteristics. The strength enhancers are dispersed in at least one of the parts. Strength enhancers may be included at from about 5% to about 50% by weight of the part, or even from about 10% to about 30% by weight of the part.
  • One of ordinary skill in the art will readily recognize that the softening points of these ingredients may vary depending upon their source. For example two sources of gilsonite have different softening points. Zecol LLMP available from Ziegler Chemical and Mineral Corporation has a softening point range of 248° F. to 290° F. while Lexco multipurpose grade from Lexco has a softening point of 330° F. to 350° F. Thus, when formulating with pull strength as a key criteria, it is recommended that the softening points mentioned above are targeted. However, as will be seen below, these enhancers may be useful in the present invention even when their softening points do not meet these limitations when one considers an ancillary beneficial property the enhancer brings to the compositions. In those situations where the softening points are not met, other criteria will be met.
  • B. Non-reactive hydrophobic enhancers. The strength enhancers mentioned above in section A may or may not have some additional desirable hydrophobic characteristics. Similarly, the non-reactive hydrophobic enhancers useful in the present invention may or may not meet the softening point criteria set forth in section A. Nevertheless, they do contribute to improved pull strengths of the final compositions and, moreover, have added benefits of hydrophobicity which results in more resilient, better performing compositions. These hydrophobic characteristics are particularly useful when dealing in situations where there may be an abundance of water or moisture. For example, vacant spike holes often contain pooled water, which increases the foaming and decreases the density, which can be detrimental. Additionally, these non-reactive hydrophobic enhancers do not detrimentally react chemically with other components in the system and therefore result in more stable individual parts. Thus, “non-reactive” means that the enhancer does not substantially react chemically with other components in the part thereby detrimentally affecting the stability of the part. Thus, it has been found that the use of enhancers which are also non-reactive and hydrophobic (“non-reactive hydrophobic enhancers”) results in compositions having increased hydrophobicity which are stable and less likely to emulsify, absorb, and/or entrap water which can result in reducing the materials' density, rigidity and adhesion characteristics. “Hydrophobic” refers to those enhancers having a concentration of water at ambient temperature of less than 1% after being conditioned for 14 days at 100° F. (38° C.) and 95% relative humidity in a cylindrical container about 4 cm in height having an inside diameter of about 3 cm. Examples of non-reactive hydrophobic enhancers include but are not limited to asphalt such as gilsonite and some hydrocarbon resins. When used, the non-reactive hydrophobic enhancers are included at from about 1% to about 50% by weight of the part, or even from about 5% to about 30% by weight of the part.
  • C. Impact absorption enhancers. The strength enhancers mentioned above in section A may or may not have some additional desirable impact absorption characteristics. Similarly, the impact absorption enhancers useful in the present invention may or may not meet the softening point criteria set forth in section A, yet they do contribute to improved pull strengths of the final compositions and, moreover, have additional benefits of impact absorption which may be useful in some applications. The ability of the composition to absorb some vibrations or occasional jolts may preserve existing bonds between the structure and the compositions which otherwise would weaken the overall system and “true” pull strengths in a real setting. The phrase “impact absorption enhancers” refer to enhancers that improve pull strengths and provide desirable impact absorption characteristics. It is important that the “impact absorption enhancers” do not reduce the viscosity of the part they are incorporated in nor the viscosity of the final composition as it has been found that reducing viscosity generally diminishes the desired characteristics. Thus, the “impact absorption enhancers” used herein often have viscosities themselves of more than about 100,000 centipoises (cps). Specific examples of useful impact absorption enhancers include but are not limited to PVC, ground rubber, and glass or polymeric microspheres that do not reduce the viscosities as mentioned above. When used, the impact absorption enhancers are included at from about 1% to about 30% by weight of the part, or even from about 5% to about 10% by weight of the part.
  • Other characteristics of the polyurethane composition of the present invention can be modified with commonly used additives including fillers, extenders, ultraviolet (UV) stabilizers, antioxidants, fungicides, bactericides, surfactants, dyes, and mixtures thereof.
  • III. Methods of Making and Using
  • The polyurethane compositions of the present invention can be made in accordance with known manufacturing methods. The polyol component and isocyanate component can be individually prepared using commonly available blending and mixing techniques. The composition may be effectively mixed and applied by using an automated meter mix equipment that blends the two packages at an appropriate ratio. In such processes, the two parts are meter-mixed together at a ratio of active hydrogen atoms (from Part A) to isocyanate group (from Part B) in a range of from about 1:0.8 to about 1:4, or from about 1:0.9 to about 1:4, and preferably at a ratio of from about 1:1 to about 1:2. Hence, excess isocyanate is usually preferred.
  • For repairing a railroad tie, the composition of the invention may be formulated to be foamable. During the application, the composition may be preheated to a temperature ranging from about 60° F. (27° C.) to about 120° F. (49° C.) and applied into the spike hole using an automatic mixing and application unit that is part of a track repair process, followed by replacement of the spike plate and rail and re-spiking the assembly together.
  • The composition of the present invention is also useful for reinforcement of composite structural members including building materials such as doors, windows, furniture and cabinets and for well and concrete repair. The composition can be used to fill any unintended gaps, particularly to increase the strength. Structural components are formed from a variety of materials such as wood, plastic, concrete and others, whereas the defect to be repaired or reinforced can appear as cuts, gaps, deep holes, cracks, etc.
  • IV. Test Methods
  • A. Density or Dry Density is determined by dispensing the composition directly into an empty cup of a known mass and volume at 77° F. (25° C.).
  • B. Wet Density is determined by the same method as the dry density except the compositions is dispensed directly into a 150 ml cup containing 20 ml water.
  • C. Pull Strength Test Method A:
  • A one (1) inch (25.4 mm) diameter hole is filled with the appropriate polyol/isocyanate mixture and allowed to cure for 30 minutes. A 3.5 inches (89 mm) hard cut masonry nail is then pounded into the cured dry plug to a depth of 2.0 inches (50.8 mm). After one (1) hour, the nail is removed from the plug using an Instron at a constant rate of 2.0 inch/min (50.8 mm/min). The maximum force exerted during the removal is reported as the “pull strength”.
  • D. Pull Strength Test Method B:
  • A one (1) inch (25.4 mm) diameter hole is filled with the appropriate polyol/isocyanate mixture and allowed to cure for 30 minutes. A 4.5 inches (114 mm) 30D Common nail is then pounded into the cured dry plug to a depth of 2.4 inches (60 mm). After one (1) hour, the nail is removed from the plug using an Instron at a constant rate of 2.0 inch/min (50.8 mm/min). The maximum force exerted during the removal is reported as the “pull strength”.
  • V. Examples
  • The following examples were prepared in accordance with the following general procedure:
  • Part A of the composition is prepared by adding the polyol(s) and filler(s), if any, to a Cowles dissolver at room temperature and agitating until the mixture is completely homogeneous. The moisture content of the material is then measure via Karl Fisher titration. Additional water is added, if necessary, to bring the overall moisture content up to the desired range. The remaining ingredients are then added and the mixture is agitated until the mixture is completely homogeneous. If a single isocyanate is employed as part B without any further ingredient no additional preparation is required. In the instances when part B also comprises other ingredient(s), e.g., PVC, diluent(s), polyols to make a pre-polymer, etc. all the ingredients are added to a Cowles dissolver and agitated until the mixture is completely homogeneous.
  • Each part is packaged separately in an appropriate manner.
  • Table I represent various part A components whereas Table II represents several Part B components. The present invention encompasses all possible combinations of Part A components and Part B components in accordance with the claims. The dry/wet densities and the pull strength were tested upon combining the Part A component and Part B component at a 1 to 1 mix ratio by volume.
    TABLE I
    Part A Component
    Ingredient Product Name Chemical Description A1 A2 A3 A4 A5
    Polyol Desmophen 550U1 Polyether triol 46.79 46.79 46.54
    Polyol Poly-G 85-292 Polyether triol 24.0 14.0 14.0 14.0 14.0
    Polyol Poly-G 30-400T2 Polyether triol 46.79
    Polyol Carpol GP-7007 Polyether polyol 46.54
    Blowing Water Water 0.1 0.1 0.1 0.06 0.04
    Agent (target
    amount)
    Catalyst Dabco T-453 Tertiary Amine in DPG 0.5 0.5 0.5 0.5 0.5
    Catalyst Dabco 1203 Tin Catalyst 0.5 0.5 0.5 0.5 0.5
    Catalyst Polycat 433 Tertiary Amine 0.7 0.7 0.7 0.7 0.7
    Asphalt Gilsonite4 Natural asphalt 10.0 10.0 10.0 10.0
    Filler Vicron 25-115 Calcium carbonate 25.0 25.0 25.0 25.0 25.0
    Defoamer Foamkill 8D6 Silicone 0.01 0.01 0.01 0.01 0.01
    Surfactants LK-4433 (proprietary) 0.5 0.5 0.5 0.5 0.5
    Gelling Agent Amicure PACM3 Cycloaliphatic Amine 2.0 2.0 2.0 2.25 2.25
    Viscosity 1550 2850 2600 3700 2200
    (cps at 77° F.)

    1Available from Bayer Corp., Pittsburgh, PA;

    2Available from Arch Chemical, Inc.;

    3Available from Air Products and Chemicals, Inc, Allentown, PA;

    4Available from Ziegler Chemical & Mineral Corp., Jericho, NY;

    5Available from Specialty Mineral Inc., Lucerne Valley, CA;

    6Available from Crucible Chemical Co., Greenville, SC;

    7Available from Carpenter Co., Richmond, VA.
  • TABLE II
    Part B Component
    Ingredient Product Name Chemical Description B1 B2 B3 B4
    Polyol Carpol PGP-40001 Polyether polyol 11.18
    Polyol Voranol 220-1102 Polyether diol 4.22
    Isocyanate PAPI 272 Polymeric MDI 50.0 50.0 50.0 55.0
    Isocyanate PAPI 942 Polymeric MDI 9.6
    Isocyanate PAPI 202 Polymeric MDI 5.0 5.0 5.0
    Diluent EASTMAN TXIB3 2,2-dimethyl-1-methylethyl)- 20.0 15.0 15.0
    1,3-propanediyl bis(2-
    methylpropanoate)
    Impact Geon 1984 Polyvinyl chloride 5.0 5.0
    absorption
    enhancer
    Isocyanate UR228MF5 MDI prepolymer 25.0 25.0 25.0
    Diluent Santisizer 2617 C7 to C9 alkyl benzyl 20.0
    phthalate
    Viscosity (cps 1900 1425 2200
    at 77° F.)

    1Available from Carpenter Co., Pasadena, TX;

    2Available from The Dow Chemical Company, Midland, MI;

    3Available from Eastman Chemical Co.;

    4Available from PolyOne Corporation;

    5Available from H.B. Fuller Company

    6Available from Ferro Corporation, Bridgeport, NJ.
  • Example 1
  • Part A1 is reacted with Part B4 resulting in a foam having a wet density of 58 lbs, a dry density of 72 lbs./ft3, and a pull strength of about 872 pounds measured according to Pull Strength Test Method A.
  • Example 2
  • Part A 2 is reacted with Part B4 resulting in a foam having a wet density of 70 lbs./ft3, a dry density of 73 lbs./ft3, and a pull strength of about 1470 pounds measured according to Pull Strength Test Method A.
  • Example 3
  • Part A3 is reacted with Part B4 resulting in a foam having a wet density at of 65 lbs./ft3, a dry density of 73 lbs./ft3, a pull strength of about 1,160 pounds measured according to Pull Strength Test Method A.
  • Example 4
  • Part A4 is reacted with Part B1 resulting in a foam having a wet density of 61 lbs./ft3, a dry density of 72 lbs./ft3, and a pull strength of about 384 pounds measured according to Pull Strength Test Method B.
  • Example 5
  • Part A4 is reacted with Part B2 resulting in a foam having a wet density of 56 lbs./ft3, a dry density of 65.5 lbs./ft3 and a pull strength of about 271 pounds measured according to Pull Strength Test Method B.
  • Example 6
  • Part A4 is reacted with Part B3 resulting in a foam having a wet density of 62 lbs./ft3, a dry density of 64 lbs./ft3 and a pull strength of about 430 pounds measured according to Pull Strength Test Method B.
  • Example 7
  • Part A5 is reacted with Part B1 resulting in a foam having a wet density of 64 lbs./ft3, a dry density of 74 lbs./ft3, and a pull strength of about 419 pounds measured according to Pull Strength Test Method B.
  • Example 8
  • A railroad tie in need of repair is provided. A mixture according to Example 2 is applied to a void in the railroad tie. After allowing the mixture to cure, a spike is nailed into at least a portion of the filled area and holds.
  • The examples provided are not meant to limit the scope of the invention, but rather to provide detail helpful to teach one of ordinary skill in the art how to make and use the present invention. While numerous embodiments and examples have been disclosed herein, it should be apparent that modifications can be made without departing from the spirit and scope of the invention. Therefore, the appended claims are intended to cover all such modifications that are within the scope of this invention. The relevant portions of all documents disclosed herein are hereby incorporated by reference in their entirety. Reference to a document is not to be construed as an admission that such document is prior art. The abbreviations “lbs” means pounds, “ft3” means cubic feet, “mm” is millimeters, “cm” is centimeters, “cps” is centipoises. “ml” is milliliters.

Claims (19)

1. A composition comprising at least a part A and a part B,
the part A comprising at least one polyol and at least one thixotropic gelling agent; and
the part B comprising at least one isocyanate,
wherein at least one part further comprises at least one impact absorption enhancer.
2. The composition according to claim 1, wherein the impact absorption enhancer is present in an amount of from about 1% to about 30% by weight of the part.
3. The composition according to claim 1, wherein the impact absorption enhancer comprises PVC.
4. The composition according to claim 3, wherein the part B comprises the impact absorption enhancer.
5. The composition of claim 1, further comprising a blowing agent, wherein the composition is foamable.
6. The composition according to claim 1, wherein the impact absorption enhancer is present in an amount of from about 5% to about 30% by weight of the part.
7. The composition according to claim 1 wherein the composition exhibits a pull strength of at least about 1400 pounds according to Pull Strength Test Method A.
8. The composition according to claim 1, wherein the impact absorption enhancer has a viscosity of at least about 100,000 centipoises.
9. A composition comprising at least a part A and a part B,
the part A comprising at least one polyol, and
the part B comprising at least one isocyanate,
wherein a ratio of active hydrogen atoms in part A to isocyanate group in part B is from about 1:0.9 to about 1:4, and wherein at least one part further comprises at least one impact absorption enhancer.
10. The composition according to claim 9, wherein the impact absorption enhancer is present in an amount of from about 1% to about 30% by weight of the part.
11. The composition according to claim 9, wherein the impact absorption enhancer comprises PVC.
12. The composition according to claim 9, wherein the part B comprises the impact absorption enhancer.
13. The composition according to claim 9, wherein the ratio of active hydrogen atoms in part A to isocyanate group in part B being from about 1:1 to about 1:2
14. A method of repair or reinforcement of a structural member subject to routine vibrations comprising the steps of:
a) providing a structural member having a void;
b) providing a mixture of the composition of claim 1; and
c) applying the mixture to the void creating a filled area.
15. The method of claim 14, wherein the structural member is a railroad tie.
16. A method of improving pull strength and impact absorption of a railroad tie comprising the steps of:
a) providing the railroad tie having a void;
b) providing a mixture of the composition of claim 1; and
c) applying the mixture to the void creating a filled area.
17. The method according to claim 16, further comprising a step of nailing a spike into at least a portion of the filled area.
18. A railroad tie comprising a composition of claim 1.
19. A railroad tie comprising a composition of claim 9.
US11/511,655 2003-03-04 2006-08-29 Polyurethane composition containing a property-enhancing agent Abandoned US20060293488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/511,655 US20060293488A1 (en) 2003-03-04 2006-08-29 Polyurethane composition containing a property-enhancing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/379,625 US7138437B2 (en) 2003-03-04 2003-03-04 Polyurethane composition containing a property-enhancing agent
US11/511,655 US20060293488A1 (en) 2003-03-04 2006-08-29 Polyurethane composition containing a property-enhancing agent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/379,625 Continuation US7138437B2 (en) 2003-03-04 2003-03-04 Polyurethane composition containing a property-enhancing agent

Publications (1)

Publication Number Publication Date
US20060293488A1 true US20060293488A1 (en) 2006-12-28

Family

ID=32926714

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/379,625 Expired - Fee Related US7138437B2 (en) 2003-03-04 2003-03-04 Polyurethane composition containing a property-enhancing agent
US11/511,655 Abandoned US20060293488A1 (en) 2003-03-04 2006-08-29 Polyurethane composition containing a property-enhancing agent

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/379,625 Expired - Fee Related US7138437B2 (en) 2003-03-04 2003-03-04 Polyurethane composition containing a property-enhancing agent

Country Status (3)

Country Link
US (2) US7138437B2 (en)
CA (1) CA2420777A1 (en)
MX (1) MXPA03001931A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070093513A1 (en) * 2003-04-18 2007-04-26 Senju Pharmaceutical Co., Ltd. Agent for repairing corneal perception
US20090163637A1 (en) * 2007-12-21 2009-06-25 Zhifeng Li Filler system including densed fumed metal oxide
WO2011097033A1 (en) * 2010-02-03 2011-08-11 Encore Rail Systems, Inc. Borate and polymer compositions for the repair and maintenance of railroad ties
JP2018096140A (en) * 2016-12-14 2018-06-21 積水化学工業株式会社 Sleeper repair method and sleeper repair structure
RU2669718C1 (en) * 2018-02-08 2018-10-15 Ханлар Шахлар оглы Бабаханов Polymeric composition for rails repair

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045966A2 (en) * 2001-11-29 2003-06-05 Irm Llc Nucleoside analog libraries
US7138437B2 (en) * 2003-03-04 2006-11-21 H. B. Fuller Licensing & Financing Inc. Polyurethane composition containing a property-enhancing agent
US8277705B2 (en) * 2004-03-24 2012-10-02 Willamette Valley Company Restoring damaged rail seats located on concrete rail ties
EP1843797B1 (en) * 2005-02-04 2014-01-22 The Procter and Gamble Company Absorbent structure with improved water-absorbing material
US20060189782A1 (en) * 2005-02-18 2006-08-24 Peters David D Elastomeric material
US7632557B2 (en) * 2006-05-17 2009-12-15 Williamette Valley Company Method for restoring used railroad ties and the restored railroad ties formed thereby
US20080149023A1 (en) * 2006-12-21 2008-06-26 H.B. Fuller Licensing & Financing, Inc. Apparatus and system used to apply curable material having selectable density and related methods
US8430334B1 (en) 2007-04-25 2013-04-30 Jonathan Jaffe Railroad tie of non-homogeneous cross section useful in environments deleterious to timber
US7942342B2 (en) 2007-04-25 2011-05-17 Scott Powers Railway tie of non-homogeneous cross section useful in environments deleterious to timber
US20090212452A1 (en) * 2008-02-21 2009-08-27 Willamette Valley Company Restoring worn rail clip shoulders on concrete rail ties
US8673991B2 (en) * 2010-04-22 2014-03-18 Dic Corporation Two-part curable polyurethane foam resin composition, molded article using the same, and shoe sole
CN103709367B (en) * 2012-09-29 2018-09-04 科思创聚合物(中国)有限公司 The method for maintaining of urethane composition and polyurethane ballast railway roadbed
CN110105911B (en) * 2019-05-05 2021-11-16 河北德瑞公路工程有限公司 Bi-component liquid crack pouring adhesive for normal-temperature pavement and preparation method thereof
CN110028924B (en) * 2019-05-05 2021-11-16 河北德瑞公路工程有限公司 Polyurethane single-component liquid crack pouring adhesive for roads and preparation method thereof

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886774A (en) * 1955-10-05 1959-05-12 James H Probus Vector locus plotters
US3073802A (en) * 1951-05-10 1963-01-15 Bayer Ag Polyether urethanes prepared in the presence of stannic chloride
US3350332A (en) * 1962-10-05 1967-10-31 Monsanto Co Rigid polyvinyl chloride blends having improved impact strength
US3968657A (en) * 1974-07-19 1976-07-13 Hannay Richard C Method for setting or resetting poles in the ground with foamed polyurethane resin
US3984493A (en) * 1974-01-28 1976-10-05 Kao Soap Co., Ltd. Homogeneous blend of vinyl chloride polymer with thermoplastic polyester-urethane
US4080357A (en) * 1976-06-07 1978-03-21 Shell Oil Company Multicomponent halogenated thermoplastic-block copolymer-polymer blends
US4134546A (en) * 1976-12-09 1979-01-16 The Dow Chemical Company Wood crossties with cellular plastic inserts
US4156440A (en) * 1976-07-23 1979-05-29 Japanese National Railways Railroad track bed using injection materials and method therefor
US4295259A (en) * 1978-10-13 1981-10-20 Canron Corp. Method of filling spike holes in railway ties
US4394462A (en) * 1978-12-15 1983-07-19 Hospal-Sodip, S.A. Mixtures of polymers for medical use
US4567236A (en) * 1983-07-18 1986-01-28 The Upjohn Co. Novel polymer blends
US4584233A (en) * 1983-12-12 1986-04-22 Chevron Research Company Patch for urethane-based membrane and method
US4661532A (en) * 1985-06-25 1987-04-28 H. B. Fuller Company Coal tar containing foaming urethane composition and a method for repairing defects in structural components
US5360871A (en) * 1989-07-18 1994-11-01 Tosoh Corporation Vinyl chloride resin-based composition and packings made therefrom
US5556934A (en) * 1993-09-03 1996-09-17 H. B. Fuller Licensing & Financing Inc. Isocyanurate embedment compound
US5929153A (en) * 1994-12-15 1999-07-27 Tosoh Corporation Vinyl chloride-based polymer-polyurethane composite and method of producing the same
US5952072A (en) * 1997-06-09 1999-09-14 Willamette Valley Company Method for restoring used railroad ties and the restored railroad ties formed thereby
US5952053A (en) * 1997-09-26 1999-09-14 Willamette Valley Company Process for producing filled polyurethane elastomers
US6054755A (en) * 1997-10-14 2000-04-25 Sumitomo Metal (Smi) Electronics Devices Inc. Semiconductor package with improved moisture vapor relief function and method of fabricating the same
US6140420A (en) * 1996-10-31 2000-10-31 The Dow Chemical Company Impact-modified thermoplastic polyolefins and articles fabricated therefrom
US6288133B1 (en) * 1997-09-10 2001-09-11 H. B. Fuller Licensing & Financing Inc. Foaming urethane composition and methods of using such compositions
US6423755B1 (en) * 2000-02-25 2002-07-23 Essex Specialty Products, Inc Rigid polyurethane foams
US6455605B1 (en) * 1997-09-10 2002-09-24 H. B. Fuller Licensing & Financing Inc. Foamable composition exhibiting instant thixotropic gelling
US7138437B2 (en) * 2003-03-04 2006-11-21 H. B. Fuller Licensing & Financing Inc. Polyurethane composition containing a property-enhancing agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US556934A (en) * 1896-03-24 Sectional chute for coal-wagons
GB865726A (en) * 1957-08-13 1961-04-19 Bayer Ag Process for the manufacture of plastics from polyhydroxy compounds and polyisocyanates
FR2444064A1 (en) * 1978-12-15 1980-07-11 Sodip Sa MIXTURE OF VINYL CHLORIDE POLYMER AND POLYETHERURETHANE WITH A TERTIARY AND / OR AMMONIUM AMINE GROUP, IN PARTICULAR FOR A CONFORMED OBJECT FOR MEDICAL USE

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073802A (en) * 1951-05-10 1963-01-15 Bayer Ag Polyether urethanes prepared in the presence of stannic chloride
US2886774A (en) * 1955-10-05 1959-05-12 James H Probus Vector locus plotters
US3350332A (en) * 1962-10-05 1967-10-31 Monsanto Co Rigid polyvinyl chloride blends having improved impact strength
US3984493A (en) * 1974-01-28 1976-10-05 Kao Soap Co., Ltd. Homogeneous blend of vinyl chloride polymer with thermoplastic polyester-urethane
US3968657A (en) * 1974-07-19 1976-07-13 Hannay Richard C Method for setting or resetting poles in the ground with foamed polyurethane resin
US4080357A (en) * 1976-06-07 1978-03-21 Shell Oil Company Multicomponent halogenated thermoplastic-block copolymer-polymer blends
US4156440A (en) * 1976-07-23 1979-05-29 Japanese National Railways Railroad track bed using injection materials and method therefor
US4134546A (en) * 1976-12-09 1979-01-16 The Dow Chemical Company Wood crossties with cellular plastic inserts
US4295259A (en) * 1978-10-13 1981-10-20 Canron Corp. Method of filling spike holes in railway ties
US4394462A (en) * 1978-12-15 1983-07-19 Hospal-Sodip, S.A. Mixtures of polymers for medical use
US4567236A (en) * 1983-07-18 1986-01-28 The Upjohn Co. Novel polymer blends
US4584233A (en) * 1983-12-12 1986-04-22 Chevron Research Company Patch for urethane-based membrane and method
US4661532A (en) * 1985-06-25 1987-04-28 H. B. Fuller Company Coal tar containing foaming urethane composition and a method for repairing defects in structural components
US5360871A (en) * 1989-07-18 1994-11-01 Tosoh Corporation Vinyl chloride resin-based composition and packings made therefrom
US5556934A (en) * 1993-09-03 1996-09-17 H. B. Fuller Licensing & Financing Inc. Isocyanurate embedment compound
US5929153A (en) * 1994-12-15 1999-07-27 Tosoh Corporation Vinyl chloride-based polymer-polyurethane composite and method of producing the same
US6140420A (en) * 1996-10-31 2000-10-31 The Dow Chemical Company Impact-modified thermoplastic polyolefins and articles fabricated therefrom
US5952072A (en) * 1997-06-09 1999-09-14 Willamette Valley Company Method for restoring used railroad ties and the restored railroad ties formed thereby
US6288133B1 (en) * 1997-09-10 2001-09-11 H. B. Fuller Licensing & Financing Inc. Foaming urethane composition and methods of using such compositions
US6455605B1 (en) * 1997-09-10 2002-09-24 H. B. Fuller Licensing & Financing Inc. Foamable composition exhibiting instant thixotropic gelling
US5952053A (en) * 1997-09-26 1999-09-14 Willamette Valley Company Process for producing filled polyurethane elastomers
US6054755A (en) * 1997-10-14 2000-04-25 Sumitomo Metal (Smi) Electronics Devices Inc. Semiconductor package with improved moisture vapor relief function and method of fabricating the same
US6423755B1 (en) * 2000-02-25 2002-07-23 Essex Specialty Products, Inc Rigid polyurethane foams
US7138437B2 (en) * 2003-03-04 2006-11-21 H. B. Fuller Licensing & Financing Inc. Polyurethane composition containing a property-enhancing agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070093513A1 (en) * 2003-04-18 2007-04-26 Senju Pharmaceutical Co., Ltd. Agent for repairing corneal perception
US20090163637A1 (en) * 2007-12-21 2009-06-25 Zhifeng Li Filler system including densed fumed metal oxide
WO2009082416A1 (en) * 2007-12-21 2009-07-02 Cabot Corporation Filler system including densed fumed metal oxide
WO2011097033A1 (en) * 2010-02-03 2011-08-11 Encore Rail Systems, Inc. Borate and polymer compositions for the repair and maintenance of railroad ties
US20110206835A1 (en) * 2010-02-03 2011-08-25 Doug Delmonico Borate and polymer compositions for the repair and maintenance of railroad ties
JP2018096140A (en) * 2016-12-14 2018-06-21 積水化学工業株式会社 Sleeper repair method and sleeper repair structure
RU2669718C1 (en) * 2018-02-08 2018-10-15 Ханлар Шахлар оглы Бабаханов Polymeric composition for rails repair

Also Published As

Publication number Publication date
US7138437B2 (en) 2006-11-21
CA2420777A1 (en) 2004-09-04
MXPA03001931A (en) 2004-10-29
US20040176490A1 (en) 2004-09-09

Similar Documents

Publication Publication Date Title
US20060293488A1 (en) Polyurethane composition containing a property-enhancing agent
US6288133B1 (en) Foaming urethane composition and methods of using such compositions
US6455605B1 (en) Foamable composition exhibiting instant thixotropic gelling
US20070093602A1 (en) Solid polyurethane compositions, infrastucture repair and geo-stabilization processes
US8715778B2 (en) Ballast and process for the production of ballast
AU594374B2 (en) Process for strengthening geological formations
US8785570B2 (en) Process for preparing a polyisocyanurate polyurethane material
US20070093566A1 (en) Infrastructure repair and geo-stabilization processes
KR101288266B1 (en) Process for preparing polyisocyanurate polyurethane material
US6521673B1 (en) Composition and method for preparing polyurethanes and polyurethane foams
US4452551A (en) Process for stabilizing rock and coal formations by bonding these formations to themselves or other geological formations
US5560736A (en) Process for sealing out water leakage from geological rock formations
US4661532A (en) Coal tar containing foaming urethane composition and a method for repairing defects in structural components
CA1115891A (en) Cartridge for securing stay bars in bore holes
US4659748A (en) Method and composition for repairing cementitious surfaces
CA1317449C (en) Process for strengthening geological formations
US6639010B2 (en) Elastic, thixotropic organo-mineral systems
CA2381872A1 (en) Foamable composition exhibiting instant thixotrophic gelling
JP4092838B2 (en) Injection chemical composition for stabilization of bedrock, ground, etc. and stable strengthened water stop method using the same
CA1318735C (en) Coal tar containing foaming urethane composition and a method for repairing defects in structural components
MXPA00002142A (en) Foaming urethane composition and methods of using such compositions
DE19728252A1 (en) Process for the production of elastic, thixotropic organominerals, the products obtained therewith and their use
AU2005201273B2 (en) Composition and method for preparing polyurethanes and polyurethane foams
JPH07238284A (en) Agent for consolidating natural ground
JPH0925483A (en) Injection chemical solution composition for stabilizing artificial structure and technique for stabilization, reinforcement and water-stoppage of artificial structure with the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: H.B. FULLER LICENSING & FINANCING, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GIORGINI, ALBERT M.;TORBORG, CHARLES J.;REEL/FRAME:018255/0080

Effective date: 20030402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION