Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.


  1. Búsqueda avanzada de patentes
Número de publicaciónUS20060294016 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 11/514,772
Fecha de publicación28 Dic 2006
Fecha de presentación31 Ago 2006
Fecha de prioridad27 Ago 1999
También publicado comoUS6952685, US8019688, US20050182730
Número de publicación11514772, 514772, US 2006/0294016 A1, US 2006/294016 A1, US 20060294016 A1, US 20060294016A1, US 2006294016 A1, US 2006294016A1, US-A1-20060294016, US-A1-2006294016, US2006/0294016A1, US2006/294016A1, US20060294016 A1, US20060294016A1, US2006294016 A1, US2006294016A1
InventoresCharles Hunter, John Hebrank, Kelly Sparks
Cesionario originalOchoa Optics Llc
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Music distribution system and associated antipiracy protections
US 20060294016 A1
Music is blanket transmitted (for example, via satellite downlink transmission) to each customer's computer-based user station. Customers preselect from a list of available music in advance using an interactive screen selector, and pay only for music that they choose to have recorded for unlimited playback, for example, by a “CD burner”. An “ID tag” is woven into the recorded music so that any illegal copies therefrom may be traced to the purchase transaction.
Previous page
Next page
1. A data transmission device comprising:
a general population cluster preference database;
a consumer catalog generator module;
an individual consumer preference information storage module; and
a payload scheduler.
2. The device of claim 1 wherein said individual consumer preference information storage module comprises an interface that obtains said consumer preferred music styles of each consumer.
3. The device of claim 1 wherein said general population cluster preference database comprises an information collector mechanism that collects said consumer preferred music styles of a plurality of consumer locations.
4. The device of claim 1 wherein said consumer catalog generator module comprises:
a catalog generator that generates an individual consumer catalog based on an analysis of said consumer preferred music styles of a plurality of consumer locations from said general population cluster preference database and said consumer preferred music styles from said individual consumer preference information storage module.
5. A system for distributing music or video content to consumers comprising:
receiving an order to purchase a music CD or video DVD though the Internet;
placing an ID tag in the music or video selected;
archiving the ID tag information with the purchaser's identity;
sending the ID tag information to a third party for tracking;
compressing the selection;
sending the selection over the Internet to the purchaser; and
enabling the purchaser to de-compress the selection and store it on storage media.
  • [0001]
    This application is a continuation of U.S. patent application Ser. No. 11/085,944, filed Mar. 21, 2005 entitled “Music Distribution System and Associated Antipiracy Protections,” which is a continuation of U.S. patent application Ser. No. 09/487,978, filed Jan. 20, 2000 entitled “Music Distribution System and Associated Antipiracy Protection,” which is a continuation-in-part of U.S. patent application Ser. No. 09/476,078 filed Dec. 30, 1999 entitled “Video and Music Distribution System”, which is a continuation-in-part of U.S. patent application Ser. No. 09/436,281 filed Nov. 8, 1999 entitled “Video Distribution System”, which is a continuation-in-part U.S. patent application Ser. No. 09/385,671 filed Aug. 27, 1999 entitled “Video Distribution System.”
  • [0002]
    The invention relates to music distribution and, more particularly, to music distribution systems with built-in safeguards for the prevention of piracy. In certain embodiments, music is blanket transmitted (for example, via satellite downlink transmission) to each customer's computer-based user station. Customers preselect from a list of available music in advance using an interactive screen selector, and pay only for music that they choose to record for unlimited playback. An “ID tag” is woven into the recorded music so that any illegal copies therefrom may be traced to the purchase transaction.
  • [0003]
    Throughout the world today, piracy of software, music and video materials causes significant economic losses to the originators and distributors of these art forms.
  • [0004]
    Issues of music and video piracy are strongly influenced by the available recording technology. Early forms of music distribution utilized plastic records. The manufacture of records was relatively expensive, requiring the capital expense of record presses and creating metallic master molds. Mold costs had to be amortized over large numbers of copies. The cost of mold masters limited the potential profit from making and selling illegal copies.
  • [0005]
    With the development of magnetic tape recording, the cost of manufacturing copies became primarily the cost of the raw materials. Copies could be made directly from an original with costs split between the manufacture of a blank tape and the time required to record music on to each tape copy. The manufacture of lower numbers of copies for specialty music was possible and the costs of manufacturing (a pair of tape recorders and some blank tapes) made copying feasible for an individual. However, the degradation in quality from generation to generation of copies was a deterrent as well as the time required to record each copy. The degradation of the sound consisted of loss of high frequencies, a relatively poor signal-to-noise ratio of the recording (“hiss”) and tonal or volume variations due to mechanical transport of the tape across the recording head (“wow” and “flutter”).
  • [0006]
    Digital compact disk technology (CD's) again changed the piracy situation by making available high-quality copies of music to consumers in digital form that could potentially be copied with no change or degradation of sound quality. CD's use 16-bit, 44 KHz digital technology so that music recorded on a CD has excellent signal-to-noise ratio, flat frequency response that is wider than human hearing, and no constant or varying pitch distortion. The introduction of CD technology caused significant concern among content providers about the risks of circulating library-quality copies of their music. Small-scale piracy of CD's became common as consumer music “boxes” were sold 5 that had CD players feeding tape recorders. These units allowed CD's to be easily copied although without the full sound quality and convenience of the original CD. On a larger scale, bulk pirate copies of CD's were available, particularly in foreign countries, by companies using relatively expensive CD presses. The presses allowed exact copies of CD's to be made from originals using inexpensive blanks. These same presses also allowed low-cost copying and duplication of software CD's.
  • [0007]
    Very recently, concerns about music piracy have 15 increased as low-cost CD “burners” became available to consumers making it possible for personal computers not only to read and play music CD's, but also to make copies using relatively inexpensive blank write-once CD's. Today burners are available for under $200 and CD blanks for about $120 each. Coupled with multi giga-byte hard disks, copying and editing CD's is widely available.
  • [0008]
    Today, the threat of copyright violation limits CD piracy. However, due to the cost of prosecution and the difficulty of tracing and confirming the origin of copies, 25 this threat is only practically enforceable against major producers who are caught importing large quantities of CD's, and not individuals or small-scale pirates (e.g., teenagers with computers). As the price of CD burners and writeable CD's continues to fall, music piracy may result in increasing losses in revenue to content providers, especially if the teenage culture (that buys so many CD's) 5 embraces piracy and kids get used to seeing CD's without boxes or colorful paintings on the CD's.
  • [0009]
    A second technological revolution is also influencing piracy. This is the ability to “compress” the amount of digital data needed to store or communicate music 10 (or video). A one-hour music CD requires about 600 megabytes of data (16 bits/sample*44100 samples/sec* 3600 sec*2 channels). This large amount of data has discouraged communication of CD's over the Internet, and storage of the CD in hard drives. However, MPEG 115 compression technology reduces the data capacity by a factor of 8 for CD music, making it easier and cheaper to communicate and store. As a result of compression technology it is now economically feasible to communicate music with CD quality over the Internet or to transmit it 20 directly to consumer receivers from satellites. (Similar technology allows a 100-fold compression of video signals making direct-satellite TV and DVD recordings possible.) Furthermore, businesses that sell CD's by shipping them as compressed data streams to a customer's PC with a CD writer 25 to make a final copy will make it common for CD's not to have the elaborate paint jobs of store-sold CD's and the potential to cause a sudden rise in piracy. It also should also be noted that compression depends upon and has caused powerful digital processing engines to be placed at reception sites for compressed audio or video. These engines make possible the running of protected software 5 (protected software is software that runs the engine but can not be analyzed by outsiders to see how it works or does the encoding or decoding) that can be used for de-encryption or be capable of performing the spectral analysis to add the more complex ID tags that can be used as an aspect of this invention.
  • [0010]
    Content providers are reluctant to make full-quality music available to consumers via direct satellite broadcasting or the Internet because of the risk that exact copies of their materials, their core asset, will leave their control and freely circulate among consumers resulting in huge losses in revenue to distributors and artists. This financial threat could weaken the recording and entertainment industry in the United States.
  • [0011]
    The present invention provides music distribution systems that are beneficial to all involved parties, namely consumers, content providers and data transmission providers. In preferred embodiments, consumers are able to 25 preselect music selections from as many as 400,000 to 500,000 song titles (30,000 to 40,000 CD's) that are transmitted daily. Customers of the music distribution system utilize a menu driven, graphical user interface with simplified controls that provide music selection by title and category (e.g., jazz, classical, rock, etc.). Music content is transmitted via direct broadcast satellite (DBS) 5 in an encoded format directly to each customer's receiving dish or antenna which is linked to the customer's user station where it is initially stored on a suitable storage medium such as a disk drive. The customer may “preview” the stored music for free and thereafter decide whether to purchase a permanent copy. If the purchase decision is made, a full quality CD is recorded via a CD burner that is part of the user station. The customer is billed by the music distribution system operator. Antipiracy protection is provided by weaving an ID tag into the recorded music so that any illegal copies therefrom may be traced to the purchase transaction.
  • [0012]
    Some of the features of the invention having been stated, other features will appear as the description proceeds, when taken in connection with the accompanying drawings, in which—
  • [0013]
    FIG. 1 is a schematic representation of a satellite-based music distribution system.
  • [0014]
    FIG. 2 shows the operational sequence for use of the music distribution system of FIG. 1 by a customer.
  • [0015]
    FIG. 3 shows another music distribution system wherein the user station includes an Internet browser and processor enabling customers to access the system operator's music Internet site via phone line or Internet connection.
  • [0016]
    FIG. 4 shows yet another music distribution system depicting optional content/programming transmission links.
  • [0017]
    FIG. 5 is a block diagram of one simplified embodiment of a business model for commercializing a music 10 distribution system.
  • [0018]
    While the present invention will be described more fully hereinafter with reference to the accompanying drawings, in which aspects of the preferred manner of practicing the present invention are shown, it is to be understood at the outset of the description which follows that persons of skill in the appropriate arts may modify the invention herein described while still achieving the favorable results of this invention. Accordingly, the description which follows is to be understood as being a broad, teaching disclosure directed to persons of skill in the appropriate arts, and not as limiting upon the present invention.
  • [0019]
    The Overall Music Distribution System, generally Referring to FIG. 1, there is shown a simple schematic of one embodiment of a music distribution system 10 of the invention. System 10 utilizes direct broadcast satellite (DBS) transmission via satellite 20 as the means 5 for blanket transmitting encoded data, either in real time or in time compressed format (discussed below). The program data is received at each customer household by a receiving antenna or dish 110. Dish 110 is linked to a dedicated “box” or user station 28 by a satellite receiver link 30.
  • [0020]
    User station 28 is an interactive device permitting customers to preselect desired music selections for recording through the user station. Station 28 communicates at appropriate times with a central controller system 36 via a phone/modem connection 38 (land, Internet or cellular). Central controller system 36 stores a discrete address (e.g., telephone number, credit card number or billing address) for each customer household and receives information via connection 38 to verify that a preselected music selection has been recorded. Central controller system 36 utilizes this information to bill customer households and also to credit the accounts of content providers. The satellite link (or alternatively the central controller system 36) periodically communicates with each customer household to provide information on available music and program/pricing information.
  • [0021]
    Further details of the distribution system are provided below and in commonly owned U.S. patent application Ser. Nos. 09/385,671; 09/436,281 and 09/476,078, the teachings of which are fully incorporated herein by reference.
  • [0022]
    The Satellite(s): According to preferred embodiments of the present invention, data transmission is achieved utilizing geostationary satellites operating in the KU band that are downlinked to conventional receiving antennae or dishes located at the customer households.
  • [0023]
    Following the recent acquisition of PrimeStar's assets by Hughes, there are now two digital broadcast satellite providers in the United States, Hughes (DSS) and EchoStar (DISH Network). EchoStar's DISH network launched an additional satellite in September 1999 (its fifth satellite) that, in combination with its previous satellites, provides continuous transmission of greater than five hundred channels to substantially the entire continental United States. EchoStar now has satellites located in the 119, 110, 61.5 and 148 positions within the Clark Belt.
  • [0024]
    With the above satellite orientations, EchoStar's new “DISH 500” system utilizes an elliptical twenty inch antenna or dish containing two LMBS heads that can receive information from two different satellites simultaneously. As mentioned above, this system permits greater than five hundred channels to be directly broadcast to each customer household.
  • [0025]
    Currently preferred embodiments of the present invention utilize the EchoStar system, most preferably the DISH 500 system, for data transmission at either real time or time-compressed transmission rates, discussed below. In alternative embodiments, the invention may be implemented utilizing the Hughes (DSS) system, or a combination of both the Hughes and EchoStar systems (resulting in a relatively smaller portion of each system's total capacity being devoted to the invention's video distribution).
  • [0026]
    Data Transmission Parameters: EchoStar's DISH 500 system provides a very high band width of approximately 4 megabits/sec for each channel (23 megabits/sec per transponder), for a total transmission capacity of approximately 2000 megabits/sec for five hundred channels.
  • [0027]
    It will be appreciated that instead of using more typical 120 watt DBS transponders, implementation of the present invention may be carried out with higher power transponders (e.g., 240 watt transponders) to increase the effective transponder capacity (e.g., from 23 megabits/sec to 30 megabits/sec) by reducing much of the capacity 25 allotted for forward error correction and system management inherent in lower power transponders. Also, along with the use of higher power transponders, the invention may be carried out with quanternary (QPSK) polarization to double the effective bit transfer rate for each transponder over that which may be obtained by using current orthogonal polarization—with a sacrifice in bit error rate that is 5 acceptable for those applications of the invention where lower video and audio resolution is not an important consideration to the customer. Thus, the use of high power transponders (e.g., 240 watts or higher) in conjunction with higher level polarization (e.g., quanternary) permits music distribution systems of the invention to be implemented utilizing less of the DBS system's total transmission capacity, permits the transmission of a greater number of music selections or other content and permits greater time compression of the transmitted data, or a combination of the above, all to the benefit of consumers.
  • [0028]
    Details of the User Station and Operation: Referring again to FIG. 1, music content providers deliver music in digital form to the central controller 36 of the music distribution system. The content is encoded utilizing an encoding technology that is well known in the art, such as interlaced coding techniques in combination with a unique header code that identifies each title. In certain embodiments, only the unique header coding is employed to identify each specific title. It is also understood that the header code can also identify the exact transmission time of each title. The header code containing transmission times can be digitally communicated to the operating system of the user stations 28 to prevent unauthorized reception and subsequent duplication of digital music content. In addition, it is also understood that 5 selection of a specific title by the user can require a completed payment before activation of initial reception and storage of the digital music content, or before the digital music content is recorded on any other device or media.
  • [0029]
    The encoded music content is scheduled and transmitted to the direct broadcast satellite up-link facility 100 by the system operator through central controller 36. In addition, periodic digital program/pricing information is transmitted to the up-link facility, for example, every ten minutes. While it is understood that direct broadcast satellite transmission currently operates in the KU Band, other frequencies can also be employed to achieve similar results. It is understood that the music content can be transmitted at real or time compressed speeds. In preferred embodiments, music content is transmitted at faster than real time speeds, where real time speeds refer to the playback speed of the recorded music. For example, a single satellite transponder capable of 23 megabits/sec transmission can transmit a typical 4 minute song in less than 4 seconds. Thus, EchoStar's DBS programming capacity (discussed above) allows transmission of 400,000 to 500,000 song titles (approximately 30,000 to 40,000 CD's) during a four hour period, most preferably curing a period of low viewership, e.g., 1:00 AM to 5:00 AM.
  • [0030]
    The digital music content and program/pricing information, once received by the appropriate satellite, are then transmitted down broadly (i.e., “blanket transmitted”) to geographic coverage areas where the user stations can receive the downlink transmissions.
  • [0031]
    The music program and pricing information are received by the home user's satellite dish 110 and transmitted to download module 120 contained in the user station where it is decoded and stored digitally in storage module 130 also contained in the user station.
  • [0032]
    The customer preselects music content to be downloaded by selecting the content utilizing the graphical user interface 135 shown on the TV screen. The order is communicated to central controller 36 by Internet or modem. Pricing information for the preselected music content is then transmitted to the billing module 140 contained in the user station where it is stored in nonvolatile memory such as SRAM for subsequent querying via the phone line by central controller 36.
  • [0033]
    The music content preselected by the customer is blanket transmitted by satellite 20 at the scheduled time and is received by the home user's satellite dish 110. This music content is transmitted to download module 120 where it is decoded and stored digitally in storage module 130.
  • [0034]
    In certain embodiments, the user station 28 will also contain an audio speaker system (not shown) to allow the customer to “preview” the stored music before it is recorded permanently on a CD or other recordable medium and 5 subsequently paid for. In this embodiment, the preselected pricing information stored in billing module 140 will not be transmitted for payment to the system operator until the customer has either listened to the music content a set number of times, for example, 3 times, or the customer indicates via the graphical user interface that he wishes to permanently record it. As an alternative, previewing may be accomplished by playing a highly compressed “preview” copy through the customer's speaker system or headphones. Highly compressed material lacks richness, signal to noise ratio, stereo channels and high-frequency bandwidth. Preview can be communicated in perhaps 1% to 10% of the final copy depending upon the compression schemes used. Each preview has a brief section (20 seconds) of the real sound of the selection to allow the customer to really sample the material as well as generate interest in paying for a “good copy”. If desired, the preview material may be further hobbled with some simple distortion, added noise, limited low end, crackles and pops, voice overlay, missing sections, sliding notches, amplitude compression. Content providers may be given choice as to the nature of the hobbling beyond the heavy transmission compression.
  • [0035]
    When the customer decides to purchase the music, the graphical user interface prompts the customer to insert a recordable medium such as a writeable CD into the user station, or attach other recording device to the user 5 station's output connectors. (In certain cases, the customer may choose to record preselected music content multiple times. In such cases the music content provider may offer pricing discounts for multiple recordings.) The user station records the preselected music content stored in the user station and then either deletes the music contained in storage module 130 once the recording has been completed or allows the customer to manually delete content no longer desired.
  • [0036]
    The customer accesses (or navigates) the graphical user interface via a hand held remote. In preferred embodiments, the remote control communicates via infrared LED transmitter to an infrared sensor contained on the user station. An optional keyboard can be utilized by the customer to access (or navigate) the graphical user interface via the same infrared sensor contained on the user station.
  • [0037]
    The above sequence of operation is summarized in FIG. 2, which is largely self explanatory. The illustrated modes of operation, following account setup, are identified as:
  • [0038]
    1. Selection
  • [0039]
    2. Ordering
  • [0040]
    3. Downloading
  • [0041]
    4. Decoding
  • [0042]
    5. Previewing
  • [0043]
    6. Playing
  • [0044]
    7. CD Delivery
  • [0045]
    FIG. 3 illustrates another embodiment wherein the user station contains an Internet browser and processor that enables the customer to access the system operator's music Internet site via phone line or other Internet connection.
  • [0046]
    Optional digital content/programming transmission links are shown in FIG. 4. These include, but are not limited to, cable, optical fiber, DSL and the Internet.
  • [0047]
    Piracy Protection: The threat of piracy can be controlled through a music distribution system that uniquely labels every legal CD copy of music (or video) with an “ID tag”. Thus, if a customer sells copies of a CD that he purchased, that copy and any copies of it can be traced to his original purchase. Such identification serves as the basis of a legal deterrent for large or small-scale piracy. Furthermore, the ID tag may be contained in each song of a CD protecting each complete piece of artistic material. The ID tag may be as simple as an inaudible millisecond blip at the start of each selection or may be “woven” into the music so that it survives re-recording and compression schemes by being integral to the music, but not noticeable to the listener or easily discovered by potential pirates. Multiple hidden tags may be used to discourage attempts to remove the code 5 by comparing multiple legal copies of the music. Similarly, multiple tags also provide the advantage of identifying illegal copies in those cases where a pirate successfully removes some, but not all, of the tags. At worst, a pirate may successfully remove part of the tags making it possible to determine that the music copy is illegal, but without identifying the original purchaser.
  • [0048]
    Distributing music that contains unique ID tags limits piracy by making it possible to prove that a CD is an illegal copy and makes the legal source of the copy identifiable. This technology makes it financially feasible to distribute full-quality CD music (or video) to consumers via direct satellite connections in the manner described above in connection with FIGS. 1-4. Furthermore, by placing tags in each song, it makes it possible to have a protected system of allowing consumers to create unique assortments of songs on a CD, and for artists and distributors (content providers) to receive revenues for each song used. Thus, each home can become a “CD or music factory” where a person can create their own collection of 25 songs by artists, through a system in which the original artist and distributor are properly paid for their materials. Furthermore, the decline in piracy resulting from the threat of legal prosecution could result in more legal copies of music being purchased so that providers can charge less per legal copy so that this art is more widely available.
  • [0049]
    The two major venues for distribution of protected CD's are the Internet and satellite. In the Internet case, a customer contacts an Internet site where they purchase the CD. The site places ID Tags in the music or video selected, then compresses the selection and sends it to the purchaser. The purchaser then de-compresses (inflates) the selection and stores it on his hard drive or writes it to a blank CD for later playing. In the case of satellite distribution, a customer contracts over a phone or Internet connection to purchase a particular CD. At regular intervals, perhaps once a day, the satellite company compresses this CD, encrypts it and then blanket broadcasts it. The customer's receiver (e.g., user station 28, above) stores the transmission and then de-encrypts it using a system and key supplied by the satellite company, and then that same system encodes an ID TAG in the music (or soundtrack) using a TAG number downloaded from the satellite company during the purchasing transaction. Both the Internet delivery system and the satellite delivery system create a customer CD that may be played on any conventional CD player. Both the Internet and satellite distribution systems archive the ID Tag information with the customer's identity and perhaps other aspects of the transaction. This data may be sent back to the original content provider or to another company specializing in detecting and prosecuting pirates.
  • [0050]
    The above scheme may also be applied to CD's sold in stores. In this case, each CD has a unique ID tag 5 encoded before it is distributed to the store. The CD case has a bar code associated with the ID Tag. At the time of purchase the bar code is associated with a customer's charge card or identity. This information is then sent back to the CD manufacturer.
  • [0051]
    It will be appreciated that it is possible to encode an ID TAG into a music selection so that it will not be heard during normal playback, but could remain and be detectable in a recording made from a selection played over the radio.
  • [0052]
    The description will now turn to a detailed discussion of representative ID tags. As stated above, an ID tag uniquely identifies each copy of music or video. In its most simple form, a 10 digit (37 bit) tag may be stored in three 16-bit samples ( 1/12,000 of a second long) on a CD. A three-byte tag number equivalent to full volume is a barely perceptible pop to young, sensitive ears and is completely inaudible to the majority of the population. In a more complex form, the tag may be woven into the frequency or time spectrum of the music, where it is both inaudible and survives compression and transmission, or even serious attempts by hackers to remove the tag. While the simple tag may be appropriate for certain applications, more complex tags may be desired for other applications, especially for high-profit, piracy-prone contemporary music (or video).
  • [0053]
    A simple tag, as discussed immediately above, may consist of three 16-bit numbers placed at the start and/or 5 end instant of a CD or each of its songs. To limit audibility, the 37 bits may be carried by the 64 bits of the first four samples at the beginning of the CD and encoded to have low amplitude or alternating polarity to further hide its audible presence from consumers. Such a tag may be easily read by a computer and is not difficult to eliminate when making copies. However, the technical nature of tag removal coupled with the legal implications of distributing software capable of destroying the tag serves as a significant deterrent to general piracy.
  • [0054]
    The complex ID tag is inaudible by humans, yet is sufficiently integral to the music (or video) that it remains during simple filtering or compression operations. The ID tag may be a multidigit number (or collection of bits) that can be read or recovered from the CD by those who originally placed the tag. Examples of tags are low bit-rate encoding in low amplitude, high frequency music content, short-duration ratios of harmonic components, background sounds, slight shortening or lengthening of sustained sounds, or even small shifts in localization cues for a sound object. Key to “hiding” the sounds is to encode the bits as short duration shifts in the sounds, shifts that are preserved during compression but that are not detectable by normal human hearing or attention. In other words, it is desirable to take advantage of the parts of the music that have “excess information” coded during sound compression that is not noticed by humans.
  • [0055]
    To make the complex tag hidden and recoverable additional information must be used in reading the tag that is not contained in the CD. This information describes where the real (or perhaps false) ID tags are to be placed, and what the nature of the bit encoding is at that location. The simplest form of location would be milliseconds from the start or end of the song for each bit. Similarly, time from a particular feature in a song, like milliseconds after the attack greater than 20 dB about 23 seconds into the song, could be used to identify the location of one bit of an ID tag. Obviously many bits are also encoded that obscure the actual tag bits. Real and actual bits may be different or interchanged among different legal copies of a song.
  • [0056]
    It should be expected that as music (or video) compression techniques evolve, methods for placing and retrieving ID tags will also evolve.
  • [0057]
    How and where is the ID tag placed? In its simplest form, the ID tag is a unique identifying number, ID NUMBER, that is placed at the start, end or between selections on a copy of the CD when it is produced for the consumer. As stated above, a unique ID NUMBER might be placed on each CD as it is manufactured and later associated with a customer name or credit card during a store purchase. Or, in one preferred manner of carrying out the inventions, the ID NUMBER might be inserted during the process of writing a CD with music that is downloaded from a satellite or the Internet. In this case, the software accomplishing 5 the transaction to purchase the music also sees that the ID NUMBER is obtained from the seller and places this ID NUMBER at appropriate places in the CD during the recording process.
  • [0058]
    Looking at a more complex form of the ID tag, when a legal CD is distributed over the Internet, via direct satellite transmission or even CD's that are manufactured for sale in CD stores, preferably two blocks of information are involved. The first block, called the “location data”, is an encrypted description of all the locations in the music to contain the entire or part of the ID tag, and the encoding techniques used for each location in which false or real bits of the ID tag will be placed. The LOCATION DATA is used in creating or reading the ID NUMBER but is not stored on the CD. The second block of information, called the ID number, is a unique number identifying the legal transaction. The ID number may be a customer identification number, like a credit card or phone number, or customer purchasing account number, or may be a seller generated transaction number. There are many different schemes for filling redundant ID tags encoded on a CD so that tampering or removal of any tag or part of a tag is noticed.
  • [0059]
    Some types of tags may be placed in the time domain and others in the frequency domain. Time domain tags may involve changing an aspect of a time-domain feature like the decay time for a note, whereas frequency domain features 5 such as amplitude of an overtone would be better inserted in a frequency domain transform like the fast Fourier transform used to do MPEG 1 compression. The amount of computer speed needed to insert frequency domain tags has only been recently available in consumer computers.
  • [0060]
    LOCATION DATA is communicated to a “home music factory” (e.g., user station 28) as encrypted information sent with the compressed music. If an ID NUMBER were 10 digits (about 33 bits) long then perhaps just 33 or several hundred locations would be contained in the LOCATION DATA. Software may accomplish this task at the site of music distribution, picking regions of the sound that are suitable for hiding bits within, or trial bits may be encoded by software with trained observers, perhaps the person who mixed or originated the music confirming that the music was not degraded by the inclusion of the bits.
  • [0061]
    ID NUMBER would be contained in the music factory as a standard ID number or as a number securely given to the purchaser during the purchase transaction. One number might be given for a whole CD or individual numbers for each song on the CD might be given.
  • [0062]
    The customer's security information should not only contain the LOCATION DATA and ID TAG but instructions for creating each type of encoding of a bit in the fabric of the music. Types and encoding of bits needs to be kept a secret so that the search and removal of encoded ID'S will be more difficult. It is also likely that types of encoded 5 cues will evolve over time.
  • [0063]
    Note that a unique ID tag can be encoded in the manufacture of a CD for sales in a store as well as a bar coded copy on the CD box allowing association of a purchaser's identity (or credit card number) with that legal copy. Similarly CD's delivered in compressed form over the Internet can have the complex tags woven into the audio at the delivery end. Complex tags can be designed that are not affected by the compression-decompression process.
  • [0064]
    How are the ID tags immune from destruction? The simple ID TAG consisting of three two-byte samples could easily, but illegally, be eliminated during a piracy operation with the proper software. However the more complex encoding schemes are very difficult to find in order to eliminate or change it.
  • [0065]
    To be immune from destruction the encoded bits should not affect a person's perception of the music. This is not difficult since the information content of even compressed music is orders of magnitude beyond the capacity of humans to take in information. However, since humans attend to different aspects of music at different times, encoding must be carefully done.
  • [0066]
    Hints of types of acceptable encoding come from knowledge of what aspects of sound are most carefully attended by humans. For example, quick rise-times or strong attacks are carefully processed for localization cues, and frequency or pitch can be sensed with great accuracy by some persons. The literature on the development of music compression algorithms contains discussions of what aspects of music must be carefully preserved and what is less noticed but nevertheless kept due to the need to preserve other, similar, features in the encoding.
  • [0067]
    It will be appreciated that it is possible to place both a simple and a complex ID number on a CD as a method to determine the purchaser of a CD that was subsequently altered and copied.
  • [0068]
    Business Models: The present invention provides significant flexibility with respect to the business model to be used to commercialize the invention. In one simplified embodiment, shown in block diagram form in FIG. 5, the music distribution system operator interfaces with three parties, the data transmission provider, the content providers, and consumers. The content providers provide content to the data transmission provider which, in turn, blanket transmits the content to the consumers, preferably by direct broadcast satellite. The satellite transmission also includes content availability/scheduling data and content pricing data, updated periodically. The content providers also provide copyright license and pricing requirements to the video distribution system operator. Both the data transmission provider and the content providers receive payments directly 5 from the music distribution system operator. Lastly, the music distribution system operator periodically receives information for billing, while also sending enabling commands to the consumers.
  • [0069]
    While the present invention has been described in connection with certain illustrated embodiments, it will be appreciated that modifications may be made without departing from the true spirit and scope of the invention.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3373517 *1 Abr 196619 Mar 1968Halperin Jack SChangeable billboard sign
US3376465 *16 Oct 19642 Abr 1968Stromberg Carlson CorpColor character display
US3941926 *8 Abr 19742 Mar 1976Stewart-Warner CorporationVariable intensity display device
US4155042 *31 Oct 197715 May 1979Permut Alan RDisaster alert system
US4332022 *17 Mar 198025 May 1982Discovision AssociatesTracking system and method for video disc player
US4368485 *13 Abr 198111 Ene 1983Zenith Radio CorporationBillboard large screen TV
US4575750 *31 May 198411 Mar 1986Marty CallahanCommunications apparatus for use with cable television systems
US4654482 *7 Nov 198431 Mar 1987Deangelis Lawrence JHome merchandise ordering telecommunications terminal
US4734779 *8 Jun 198729 Mar 1988Video Matrix CorporationVideo projection system
US4734858 *26 Nov 198429 Mar 1988Portel Services Network, Inc.Data terminal and system for placing orders
US4797913 *4 Ago 198710 Ene 1989Science Dynamics CorporationDirect telephone dial ordering service
US4809325 *5 Ago 198728 Feb 1989Sony CorporationReceiver for pay television
US4812843 *11 Ago 198714 Mar 1989Champion Iii C PaulTelephone accessible information system
US4829569 *8 Jul 19869 May 1989Scientific-Atlanta, Inc.Communication of individual messages to subscribers in a subscription television system
US4908713 *29 Jun 198813 Mar 1990Levine Michael RVCR Programmer
US5107107 *30 Mar 199021 Abr 1992The United States Of America As Represented By The Administarator Of The National Aeronautics And Space AdministrationLaser optical disk position encoder with active heads
US5182669 *24 Jun 199226 Ene 1993Pioneer Electronic CorporationHigh density optical disk and method of making
US5191573 *18 Sep 19902 Mar 1993Hair Arthur RMethod for transmitting a desired digital video or audio signal
US5214793 *15 Mar 199125 May 1993Pulse-Com CorporationElectronic billboard and vehicle traffic control communication system
US5283731 *23 Dic 19921 Feb 1994Ec CorporationComputer-based classified ad system and method
US5297204 *10 Dic 199122 Mar 1994Smart Vcr Limited PartnershipVCR with cable tuner control
US5311423 *7 Ene 199110 May 1994Gte Service CorporationSchedule management method
US5410344 *22 Sep 199325 Abr 1995Arrowsmith Technologies, Inc.Apparatus and method of selecting video programs based on viewers' preferences
US5414756 *21 Ene 19949 May 1995Smart Vcr Limited PartnershipTelephonically programmable apparatus
US5418713 *5 Ago 199323 May 1995Allen; RichardApparatus and method for an on demand data delivery system for the preview, selection, retrieval and reproduction at a remote location of previously recorded or programmed materials
US5420647 *19 Ene 199330 May 1995Smart Vcr Limited PartnershipT.V. viewing and recording system
US5420923 *22 Abr 199330 May 1995Scientific-Atlanta, Inc.Addressed messaging in a cable television system
US5483535 *17 Ene 19959 Ene 1996Zeta Music PartnersCommunications network interface, and adapter and method therefor
US5486819 *22 May 199523 Ene 1996Matsushita Electric Industrial Co., Ltd.Road obstacle monitoring device
US5495283 *13 Sep 199327 Feb 1996Albrit Technologies Ltd.Cable television video messaging system and headend facility incorporating same
US5497186 *14 Jul 19925 Mar 1996Pioneer Electronic CorporationCATV system in which message reception can be confirmed by a viewer
US5497479 *28 Feb 19955 Mar 1996Softel, Inc.Method and apparatus for remotely controlling and monitoring the use of computer software
US5508815 *13 Sep 199516 Abr 1996Smart Vcr Limited PartnershipSchedule display system for video recorder programming
US5512935 *31 Mar 199430 Abr 1996At&T Corp.Apparatus and method for diplaying an alert to an individual personal computer user via the user's television connected to a cable television system
US5513260 *29 Jun 199430 Abr 1996Macrovision CorporationMethod and apparatus for copy protection for various recording media
US5592511 *29 Ene 19967 Ene 1997Schoen; Neil C.Digital customized audio products with user created data and associated distribution and production system
US5592551 *19 Abr 19947 Ene 1997Scientific-Atlanta, Inc.Method and apparatus for providing interactive electronic programming guide
US5592626 *19 May 19947 Ene 1997The Regents Of The University Of CaliforniaSystem and method for selecting cache server based on transmission and storage factors for efficient delivery of multimedia information in a hierarchical network of servers
US5600839 *1 Oct 19934 Feb 1997Advanced Micro Devices, Inc.System and method for controlling assertion of a peripheral bus clock signal through a slave device
US5610653 *24 Abr 199511 Mar 1997Abecassis; MaxMethod and system for automatically tracking a zoomed video image
US5612741 *5 Nov 199318 Mar 1997Curtis Mathes Marketing CorporationVideo billboard
US5619247 *24 Feb 19958 Abr 1997Smart Vcr Limited PartnershipStored program pay-per-play
US5621840 *21 Sep 199415 Abr 1997Sony CorporationData transmission method and apparatus, data decoding apparatus, and data recording medium
US5621863 *7 Jun 199515 Abr 1997International Business Machines CorporationNeuron circuit
US5627895 *5 Sep 19946 May 1997Sega Enterprises, Ltd.Electronic device for detecting selected visually perceptible indication information on an information storage medium for security comparison
US5710869 *7 Jun 199520 Ene 1998International Business Machines CorporationDaisy chain circuit for serial connection of neuron circuits
US5717814 *16 Sep 199410 Feb 1998Max AbecassisVariable-content video retriever
US5717832 *7 Jun 199510 Feb 1998International Business Machines CorporationNeural semiconductor chip and neural networks incorporated therein
US5721827 *2 Oct 199624 Feb 1998James LoganSystem for electrically distributing personalized information
US5721951 *24 Feb 199524 Feb 1998Digital Interactive Corporation Systems, Ltd.Home entertainment system for playing software designed for play in home computer
US5724062 *21 Sep 19943 Mar 1998Cree Research, Inc.High resolution, high brightness light emitting diode display and method and producing the same
US5724091 *18 May 19953 Mar 1998Actv, Inc.Compressed digital data interactive program system
US5724525 *28 Mar 19953 Mar 1998Scientific-Atlanta, Inc.System and method for remotely selecting subscribers and controlling messages to subscribers in a cable television system
US5729214 *2 Ene 199617 Mar 1998Moore; Steven JeromeCondition reactive display medium
US5734413 *30 Nov 199331 Mar 1998Thomson Multimedia S.A.Transaction based interactive television system
US5734720 *7 Jun 199531 Mar 1998Salganicoff; MarcosSystem and method for providing digital communications between a head end and a set top terminal
US5734781 *2 Oct 199531 Mar 1998Lucent Technologies Inc.Videocassette device with digital storage and videotape loop for analog playback
US5740326 *7 Jun 199514 Abr 1998International Business Machines CorporationCircuit for searching/sorting data in neural networks
US5857020 *4 Dic 19955 Ene 1999Northern Telecom Ltd.Timed availability of secured content provisioned on a storage medium
US5860068 *4 Dic 199712 Ene 1999Petabyte CorporationMethod and system for custom manufacture and delivery of a data product
US5862260 *16 May 199619 Ene 1999Digimarc CorporationMethods for surveying dissemination of proprietary empirical data
US5870717 *13 Nov 19959 Feb 1999International Business Machines CorporationSystem for ordering items over computer network using an electronic catalog
US5874985 *12 Nov 199723 Feb 1999Microsoft CorporationMessage delivery method for interactive televideo system
US5884284 *6 Ago 199716 Mar 1999Continental Cablevision, Inc.Telecommunication user account management system and method
US5889868 *2 Jul 199630 Mar 1999The Dice CompanyOptimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US5890136 *12 Mar 199730 Mar 1999Kipp; LudwigQuick stop mass retail system
US5897622 *16 Oct 199627 Abr 1999Microsoft CorporationElectronic shopping and merchandising system
US5898384 *22 Dic 199527 Abr 1999Profile Systems, LlcProgrammable remote control systems for electrical apparatuses
US6012086 *24 Jun 19974 Ene 2000Sony CorporationInternet event timer recording for video and/or audio
US6013007 *26 Mar 199811 Ene 2000Liquid Spark, LlcAthlete's GPS-based performance monitor
US6014491 *4 Mar 199711 Ene 2000Parsec Sight/Sound, Inc.Method and system for manipulation of audio or video signals
US6025868 *7 Abr 199715 Feb 2000Smart Vcr Limited PartnershipStored program pay-per-play
US6029045 *9 Dic 199722 Feb 2000Cogent Technology, Inc.System and method for inserting local content into programming content
US6029141 *27 Jun 199722 Feb 2000Amazon.Com, Inc.Internet-based customer referral system
US6032130 *22 Oct 199729 Feb 2000Video Road Digital Inc.Multimedia product catalog and electronic purchasing system
US6044047 *21 Oct 199728 Mar 2000Sony CorporationStoring CD Segments for quick scanning in multi-CD players
US6052554 *10 Sep 199618 Abr 2000Discovery Communications, Inc.Television program delivery system
US6175840 *31 Oct 199716 Ene 2001International Business Machines CorporationMethod for indicating the location of video hot links
US6177931 *21 Jul 199823 Ene 2001Index Systems, Inc.Systems and methods for displaying and recording control interface with television programs, video, advertising information and program scheduling information
US6198875 *19 Dic 19976 Mar 2001Texas Instruments IncorporatedTiris based bios for protection of “copyrighted” program material
US6209787 *1 Jul 19983 Abr 2001Takahito IidaGlobal access system of multi-media related information
US6363356 *16 Jul 199826 Mar 2002Preview SoftwareReferrer-based system for try/buy electronic software distribution
US6504798 *20 Oct 19987 Ene 2003Micron Technology, Inc.Apparatus and method for providing uninterrupted continuous play during a change of sides of a dual-sided optical disk
US6519341 *18 Jun 199911 Feb 2003Canon Kabushiki KaishaMethod and apparatus for outputting a high definition image
US6522769 *18 May 200018 Feb 2003Digimarc CorporationReconfiguring a watermark detector
US6549719 *30 Abr 200115 Abr 2003Gemstar Development CorporationTelevision program record scheduling and satellite receiver control using compressed codes
US6681326 *7 May 200120 Ene 2004Diva Systems CorporationSecure distribution of video on-demand
US6697948 *5 May 199924 Feb 2004Michael O. RabinMethods and apparatus for protecting information
US6708157 *7 Feb 200116 Mar 2004Contentguard Holdings Inc.System for controlling the distribution and use of digital works using digital tickets
US6718551 *21 Dic 19996 Abr 2004Bellsouth Intellectual Property CorporationMethod and system for providing targeted advertisements
US6728713 *20 Oct 199927 Abr 2004Tivo, Inc.Distributed database management system
US6850901 *24 Ago 20001 Feb 2005World Theatre, Inc.System and method permitting customers to order products from multiple participating merchants
US6990678 *20 Feb 200124 Ene 2006Microsoft CorporationCombining real-time and batch mode logical address links
US6999946 *10 Ene 200114 Feb 2006Macrovision CorporationMethod for computer network operation providing basis for usage fees
US7032237 *18 Ene 200118 Abr 2006Sony CorporationData communication system and receiving apparatus to be used for such system
US20030028888 *7 Feb 20026 Feb 2003Hunter Charles EricSystems and methods for providing consumers with entertainment content and associated periodically updated advertising
US20030061607 *2 Ago 200227 Mar 2003Hunter Charles EricSystems and methods for providing consumers with entertainment content and associated periodically updated advertising
US20040083492 *20 Oct 200329 Abr 2004Christopher GoodeMethod and apparatus for providing dynamic pricing services for an interactive information distribution system
US20050010949 *27 Jul 200413 Ene 2005Ward Thomas E.System and method for modifying advertisement responsive to EPG information
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US7394519 *8 Feb 20071 Jul 2008Deluxe Laboratories, Inc.System and method for audio encoding and counterfeit tracking a motion picture
US764761828 Sep 200012 Ene 2010Charles Eric HunterVideo distribution system
US796000516 Sep 200214 Jun 2011Ochoa Optics LlcBroadcast distribution of content for storage on hardware protected optical storage media
US801968821 Mar 200513 Sep 2011Ochoa Optics LlcMusic distribution system and associated antipiracy protections
US80906196 Nov 20003 Ene 2012Ochoa Optics LlcMethod and system for music distribution
US81123114 Ene 20027 Feb 2012Ochoa Optics LlcSystems and methods for distribution of entertainment and advertising content
US865642324 Feb 200618 Feb 2014Ochoa Optics LlcVideo distribution system
US871987831 Ago 20066 May 2014Ochoa Optics LlcVideo distribution system
US925289810 Oct 20082 Feb 2016Zarbaña Digital Fund LlcMusic distribution systems
US96592857 Jun 200623 May 2017Zarbaña Digital Fund LlcMusic distribution systems
US20030133692 *8 Nov 199917 Jul 2003Charles Eric HunterVideo distribution system
US20100312810 *9 Jun 20099 Dic 2010Christopher HortonSecure identification of music files
USRE411377 May 200716 Feb 2010Charles Eric HunterMusic distribution systems
Clasificación de EE.UU.705/58
Clasificación internacionalG07F17/16, H04N7/16, G06Q30/00, H04H60/27, H04H60/17, H04H60/21, G11B27/031, G11B27/034, G06Q99/00
Clasificación cooperativaH04N7/165, H04H60/27, G06Q20/145, H04H2201/50, G11B2220/2562, G06F2221/0742, H04N21/262, H04N21/63345, G11B27/031, G06Q20/123, H04N21/8355, G11B27/034, H04H60/17, H04N21/44204, G06Q30/0603, H04N21/2543, H04N21/6143, G11B2220/41, H04H60/21, G06F2221/2135, G06F2221/0737, G11B2220/2529, H04N21/8106, G11B2220/2545, G06Q20/1235, G06F21/10, G06Q30/06
Clasificación europeaG06Q30/0603, G06Q20/145, H04H60/27, H04N21/81A, H04N21/6334K, H04N21/262, G11B27/031, G06Q30/06, H04N21/8355, H04N7/16E3, H04N21/61D6, G06F21/10, H04N21/2543, H04N21/442C, G06Q20/123, G06Q20/1235
Eventos legales
5 Feb 2008ASAssignment
Effective date: 20041116