US20070017612A1 - Ignition mixtures - Google Patents

Ignition mixtures Download PDF

Info

Publication number
US20070017612A1
US20070017612A1 US11/168,462 US16846205A US2007017612A1 US 20070017612 A1 US20070017612 A1 US 20070017612A1 US 16846205 A US16846205 A US 16846205A US 2007017612 A1 US2007017612 A1 US 2007017612A1
Authority
US
United States
Prior art keywords
ignition mixture
metals
ignition
group
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/168,462
Inventor
Rainer Hagel
Dieter Hofman
Bodo Preis
Klaus Redecker
Wolfram Seebeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/168,462 priority Critical patent/US20070017612A1/en
Publication of US20070017612A1 publication Critical patent/US20070017612A1/en
Priority to US12/750,643 priority patent/US20100180787A1/en
Priority to US12/963,794 priority patent/US20110162547A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/113Initiators therefor activated by optical means, e.g. laser, flashlight
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C7/00Non-electric detonators; Blasting caps; Primers
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C9/00Chemical contact igniters; Chemical lighters

Definitions

  • the present invention relates to ignition mixtures and manufacture and use thereof.
  • Ignition mixtures and primers are used to ignite pyrotechnic mixtures or primers as well as propellant charges.
  • the pyrotechnic mixtures or primers can represent the single charge or a booster charge or a gas-generating primer.
  • Propellant charges and primers convert into primarily gaseous components which can be used to trigger rapid-acting processes such as acceleration of projectiles, driving in fastening materials, for example with the aid of bolt setters, or inflating air bags or triggering belt tighteners in vehicle safety.
  • One variant is represented by the use of liquid primers instead of solid primers. These exploit the reaction of liquid fuel with oxidizers to generate gases.
  • Ignition mixtures are generally triggered mechanically so that they must be sensitive to the action of friction and impact. They generally consist of initial or primary explosives such as lead trinitroresorcinate or diazodinitrophenol, reducing agents such as metal powder, or oxidizers such as barium nitrate or zinc peroxide. Sensitizers such as tetrazene or friction agents such as powdered glass, which increase the sensitivity of the initial explosive materials, are also used. For electrically ignitable systems, the rapid-reacting initial explosives are primarily used. However, the high mechanical sensitivity of the components required for perfect function is a disadvantage when handling the raw materials and mixtures. Handling requires special safety measures. Other types of ignition such as ignition by heat or by coupling high-frequency electromagnetic waves do not solve this problem or are suitable only for highly specialized and sharply limited applications.
  • the goal of the present invention is to provide new ignition mixtures.
  • the problem is solved by ignition mixtures that can be ignited by the laser light.
  • the explosives contained in the ignition mixtures according to the invention can be primary or initial explosives, secondary explosives, or mixtures of these explosives.
  • the primary or initial explosives that can be used may for example be lead trinitroresorcinate, diazodinitrophenol, tetrazene, or potassium dinitrobenzofuroxanate, or mixtures of these explosives.
  • Appropriate secondary explosives are chosen from nitrocellulose, hexanitrostilbene, nitrided aromatic compounds, and/or nitrided aromatic compounds with a polymer structure such as polynitropolyphenylether or plynitropolyphenylenes, from specific heterocycles such as nitrotriazolone, from the derivatives of tetrazoles such as aminotetrazole, ditetrazole, or diaminoguanidine azotetrazole, and from hexagene or octagene. Secondary explosives derived from urea and its derivatives can also be used.
  • urea derivatives biuret guanidine, nitroguanidine, guanidine nitrate, aminoguanidine, aminoguanidine nitrate, thiourea, triaminoguanidine nitrate, aminoguanidine hydrogen carbonate, azodicarboxylic acid diamide, tetrazene, semicarbazide nitrate, as well as urethanes, ureides such as barbituric acid, and their derivatives.
  • These explosives can be used alone or in a mixture.
  • secondary explosives are preferred, and nitrided aromatic compounds with a polymer structure, in particular polynitropolyphenylether and the polynitropolyphenylenes or mixtures of these secondary explosives are particularly preferred.
  • the igniters according to the invention also contain oxidizers and reducing agents which are common per se. Binders, processing agents, and pressing agents can also be used.
  • Oxidizers that may be used can be the peroxides of alkali metals and alkaline earth metals, zinc peroxide, and the peroxodisulfates of the aforesaid elements and of ammonium, nitrates of alkali metals, and alkaline earth metals, in particular lithium, sodium, potassium, or strontium nitrate, as well as ammonium nitrate, oxohalogen compounds of alkali metals or alkaline earth metals or of ammonium, and particularly preferably potassium perchlorate or ammonium perchlorate.
  • Sulfur is also suitable as an oxidizer. These oxidizers can be used alone or in a mixture.
  • the reducing agents used according to the invention are metals such as titanium, zirconium, aluminum, magnesium, and cerium in the finely powdered form. Alloys of these metals as well such as titanium/aluminum or cerium/magnesium can be used according to the invention. Other reducing agents are carbon or boron. These reducing agents can be used alone or in a mixture.
  • binders Compounds from the group of polyesters or polyurethanes can be used as binders.
  • Processing agents and pressing agents can be substances which for example improve flowability such as Aerosil or substances which impede dust formation and improve slip or meterability, such as graphite or boron nitride.
  • the ignition mixtures according to the invention can also be dyed or reacted with dye pigments.
  • Heat stability can also be improved if necessary by adding stabilizers.
  • Substances used to stabilize nitrocellulose can for example be used for this purpose.
  • combustion moderates that affect the rate of combustion can be added to the ignition mixtures according to the invention.
  • Moderators that participate in the reaction in the form of heterogenous catalysis are metals, metal oxides, and/or metal carbonates and/or metal sulfides.
  • the metals that can preferably be used are boron, silicon, copper, iron, titanium, zinc, or molybdenum. Calcium carbonate can also be used. Mixtures of these moderators can also be used.
  • Moderators that react in the form of homogenous catalysis are for example sulfur, copper resorcilates, or ferrocene and its derivatives. These moderators are evaporated by the temperatures produced by the reaction and can thus affect the reaction themselves or as secondary products.
  • the ignition mixtures according to the invention can also be treated with protective agents or be coated.
  • the ignition mixtures according to the invention have multiple potential uses. For example, they are used to ignite pyrotechnic mixtures or primers as well as propellant charges that trigger rapid processes such as acceleration of projectiles, driving in fastening materials, for example with the aid of bolt setters, or inflating air bags or triggering belt tighteners in vehicle safety.
  • thermodynamic computer program for the ignition mixtures according to the invention at constant volume and a loading density of 0.1 g/cm 3 . Table 3 shows the most important data in the thermodynamic calculation. The ignition energy necessary for triggering a reaction was determined experimentally.
  • the ignition mixtures according to the invention were produced by methods known of themselves.
  • the individual components were sifted through a sieve with a small mesh size of 0.2 mm as shown in Table 1 and mixed in a tumble mixer for 30 minutes. 200 mg portions of these mixtures were pressed into pellets with a diameter of 6 mm with a pressing force of 71 N/mm 2 .
  • the pellets so produced were ignited with a laser beam (wavelength 1,060 nm) with an energy of approximately 200 mJ and a pulse length of 2.5 ms.
  • the ignition behavior is shown in Table 1.

Abstract

A firing mixture which contains explosives, oxidizing and reducing agents is characterized in that it contains one or several explosives which can be fired by laser light. Also disclosed is a process for producing the same and its use.

Description

  • This is a continuation of application of Ser. No. 09/873,422, filed Jun. 5, 2001, which is a continuation of application Ser. No. 09/639,071, filed Aug. 16, 2000, which is a continuation of application Ser. No. 09/171,805, filed Oct. 14, 1999 (now abandoned).
  • The present invention relates to ignition mixtures and manufacture and use thereof.
  • Ignition mixtures and primers are used to ignite pyrotechnic mixtures or primers as well as propellant charges. The pyrotechnic mixtures or primers can represent the single charge or a booster charge or a gas-generating primer. Propellant charges and primers convert into primarily gaseous components which can be used to trigger rapid-acting processes such as acceleration of projectiles, driving in fastening materials, for example with the aid of bolt setters, or inflating air bags or triggering belt tighteners in vehicle safety. One variant is represented by the use of liquid primers instead of solid primers. These exploit the reaction of liquid fuel with oxidizers to generate gases.
  • Ignition mixtures are generally triggered mechanically so that they must be sensitive to the action of friction and impact. They generally consist of initial or primary explosives such as lead trinitroresorcinate or diazodinitrophenol, reducing agents such as metal powder, or oxidizers such as barium nitrate or zinc peroxide. Sensitizers such as tetrazene or friction agents such as powdered glass, which increase the sensitivity of the initial explosive materials, are also used. For electrically ignitable systems, the rapid-reacting initial explosives are primarily used. However, the high mechanical sensitivity of the components required for perfect function is a disadvantage when handling the raw materials and mixtures. Handling requires special safety measures. Other types of ignition such as ignition by heat or by coupling high-frequency electromagnetic waves do not solve this problem or are suitable only for highly specialized and sharply limited applications.
  • The goal of the present invention is to provide new ignition mixtures.
  • In a first embodiment of the invention, the problem is solved by ignition mixtures that can be ignited by the laser light. The explosives contained in the ignition mixtures according to the invention can be primary or initial explosives, secondary explosives, or mixtures of these explosives. The primary or initial explosives that can be used may for example be lead trinitroresorcinate, diazodinitrophenol, tetrazene, or potassium dinitrobenzofuroxanate, or mixtures of these explosives. Appropriate secondary explosives are chosen from nitrocellulose, hexanitrostilbene, nitrided aromatic compounds, and/or nitrided aromatic compounds with a polymer structure such as polynitropolyphenylether or plynitropolyphenylenes, from specific heterocycles such as nitrotriazolone, from the derivatives of tetrazoles such as aminotetrazole, ditetrazole, or diaminoguanidine azotetrazole, and from hexagene or octagene. Secondary explosives derived from urea and its derivatives can also be used. Examples of these are the urea derivatives biuret, guanidine, nitroguanidine, guanidine nitrate, aminoguanidine, aminoguanidine nitrate, thiourea, triaminoguanidine nitrate, aminoguanidine hydrogen carbonate, azodicarboxylic acid diamide, tetrazene, semicarbazide nitrate, as well as urethanes, ureides such as barbituric acid, and their derivatives. These explosives can be used alone or in a mixture. According to the invention, secondary explosives are preferred, and nitrided aromatic compounds with a polymer structure, in particular polynitropolyphenylether and the polynitropolyphenylenes or mixtures of these secondary explosives are particularly preferred.
  • In addition to the explosives, the igniters according to the invention also contain oxidizers and reducing agents which are common per se. Binders, processing agents, and pressing agents can also be used.
  • Oxidizers that may be used can be the peroxides of alkali metals and alkaline earth metals, zinc peroxide, and the peroxodisulfates of the aforesaid elements and of ammonium, nitrates of alkali metals, and alkaline earth metals, in particular lithium, sodium, potassium, or strontium nitrate, as well as ammonium nitrate, oxohalogen compounds of alkali metals or alkaline earth metals or of ammonium, and particularly preferably potassium perchlorate or ammonium perchlorate. Sulfur is also suitable as an oxidizer. These oxidizers can be used alone or in a mixture.
  • The reducing agents used according to the invention are metals such as titanium, zirconium, aluminum, magnesium, and cerium in the finely powdered form. Alloys of these metals as well such as titanium/aluminum or cerium/magnesium can be used according to the invention. Other reducing agents are carbon or boron. These reducing agents can be used alone or in a mixture.
  • Compounds from the group of polyesters or polyurethanes can be used as binders. Compounds with binding properties that contribute to the heat of explosion and/or the oxygen balance, for example nitrocellulose or polynitropolyphenylene, can also be used as binders.
  • Processing agents and pressing agents can be substances which for example improve flowability such as Aerosil or substances which impede dust formation and improve slip or meterability, such as graphite or boron nitride.
  • For improved absorption of laser light, the ignition mixtures according to the invention can also be dyed or reacted with dye pigments. Heat stability can also be improved if necessary by adding stabilizers. Substances used to stabilize nitrocellulose can for example be used for this purpose.
  • In addition, combustion moderates that affect the rate of combustion can be added to the ignition mixtures according to the invention.
  • Substances or mixtures thereof able to affect combustion and combustion rate by heterogenous or homogenous catalysis are used as combustion moderates. Moderator that participate in the reaction in the form of heterogenous catalysis are metals, metal oxides, and/or metal carbonates and/or metal sulfides. The metals that can preferably be used are boron, silicon, copper, iron, titanium, zinc, or molybdenum. Calcium carbonate can also be used. Mixtures of these moderators can also be used.
  • Moderators that react in the form of homogenous catalysis are for example sulfur, copper resorcilates, or ferrocene and its derivatives. These moderators are evaporated by the temperatures produced by the reaction and can thus affect the reaction themselves or as secondary products.
  • For protection against environmental influences, the ignition mixtures according to the invention can also be treated with protective agents or be coated.
  • The ignition mixtures according to the invention have multiple potential uses. For example, they are used to ignite pyrotechnic mixtures or primers as well as propellant charges that trigger rapid processes such as acceleration of projectiles, driving in fastening materials, for example with the aid of bolt setters, or inflating air bags or triggering belt tighteners in vehicle safety.
  • The safety data on some of the ignition mixtures according to the invention are provided in Table 2. The data were derived by the methods of the Bundesanstalt für Materialprüfung [Federal Institute for Materials Testing]. By comparison to the primary explosive lead nitroresorcinate, sensitivity to friction and impact are significantly improved with the igniting agents according to the invention.
  • In estimating important parameters of the ignition mixtures according to the invention such as the energy released by the reaction (heat of explosion), pressure, explosion temperature, and reaction products produced at this temperature, an adiabatic reaction was calculated with a thermodynamic computer program for the ignition mixtures according to the invention at constant volume and a loading density of 0.1 g/cm3. Table 3 shows the most important data in the thermodynamic calculation. The ignition energy necessary for triggering a reaction was determined experimentally.
  • The examples below are intended to illustrate the invention without restricting it.
  • EXAMPLES 1 to 16
  • The ignition mixtures according to the invention were produced by methods known of themselves. The individual components were sifted through a sieve with a small mesh size of 0.2 mm as shown in Table 1 and mixed in a tumble mixer for 30 minutes. 200 mg portions of these mixtures were pressed into pellets with a diameter of 6 mm with a pressing force of 71 N/mm2. The pellets so produced were ignited with a laser beam (wavelength 1,060 nm) with an energy of approximately 200 mJ and a pulse length of 2.5 ms. The ignition behavior is shown in Table 1.
    TABLE 1
    Examples
    Components 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
    KNO3 52.5 52.5 33.3 32.3 33.3 40 40
    B 18.8 18.8  2.9  2.9 10 10
    binder 3.7 3.7
    NPE 25 45 44.7 44.5 44.1 66.7 64.8 66.7 64.8 25 50
    PNP 25 100 66.7 50 25
    ZnO2 50 49.8 49.8 49 33.3 32.3
    Ti  5 4.9 4.9 4.9
    graphite 0.5 1 2
    black powder 75 75
    ignition behavior +++ + + + + + + ++ + + + +++ +++ + + +++
    + = ignition
    ++ = good ignition
    +++ = very good ignition
    Components Used:
    KNO3 potassium nitrate <200 μm
    B amorphous boron
    Ti titanium metal powder <40 μm
    binder polyurethane
    NPE polynitropolyphenylether
    PNP polynitropolyphenylene
    ZnO2 zinc peroxide, mean grain size 6.5 μ, oxygen content 13.5%
  • TABLE 2
    Ex. Condensate Ignition
    Pressure T Heat Percentage Energy
    Specimen (atm) (K) (cal/g) (%/mol) (mJ)
    NPE 1109 2932 686 0 ≈10
    NPE/KNO3 907.4 3073.5 672 7.5 160
    66.7/33.3
    NPE/ZnO2Ti 1198 4146 978 14.6 ≈200
    45/50/5
    black powder/ 430 2290 −179 11.6 ≈200
    NPE
    75/25
    AZM O 622 3265 615 52 ≈200
    9531/NPE
    75/25
    NPE/KNO3/B 843 3374 673 29 ≈90
    50/40/10
    NPE/ZnO2 1341 4044 1016 7 >200
    66.7/33.3
    NPE/ZnO2/B 1194 3731 991 14 >200
    64.8/32.3/2.9
    NPE/KNO3/B 1002 3382 752 2 ≈100
    64.8/32.3/2.9
    NC/KNO3 872 3282 883 11 no ignition
    66.7/33.3
    lead 683 3639 550 10 ≈5
    trinitroresorcinate
  • TABLE 3
    Friction
    Sensitivity Impact Sensitivity Detonation Point
    Explosive (N) (J) (° C.)
    lead trinitroresorcinate 2 ≦0.025 280
    AZM O 2956 ≧360 5 >400
    AZM O 9531 ≧360 4 >400
    black powder ≧360 5 >400
    HITP ≧360 15-50 >400
    (aminotetrazole
    base)
    NPE ≧360 7.5 >260
    NPE/ZnO2/Ti ≧360 15 230
    NPE/ZnO2 240 20 235
    NPE/KNO3 + 3% B 160 4 decomposition
    starting at 230
    PNP/KNO3 ≧360 10 293
    PNP/KNO3/B ≧360 10 293

Claims (12)

1. Ignition mixture that is ignitable by laser light and that contains a secondary explosive, wherein the secondary explosive is selected from the group consisting of polynitrophenylether, polynitropolyphenylenes, nitrocellulose, hexanitrostilbene, nitrotriazolone, aminotetrazoles, ditetrazoles, diaminoguanidine azotetrazoles, hexagene, octagene, biuret, guanidine, nitroguanidine, guanidine nitrate, aminoguanidine, aminoguanidine nitrate, thiourea, triaminoguanidine nitrate, aminoguanidine hydrogen carbonate, azodicarboxylic acid diamide, tetrazene, semicarbazidenitrate, urethanes, barbituric acids and mixtures thereof.
2. Ignition mixture according to claim 1, characterized in that the secondary explosive is selected from the group consisting of polynitropolyphenylethers and polynitropolyphenylenes.
3. Ignition mixture according to claim 1, characterized in that the ignition mixture further contains an oxidizer, wherein the oxidizer is selected from the group consisting of sulfur, the peroxides of alkali metals or alkaline earth metals, zinc peroxide, peroxodisulfates of alkali metals or alkaline earth metals, ammonium from the nitrates of alkali metals and alkaline earth metals, oxohalogen compounds of alkali metals or alkaline earth metals, ammonium, and mixtures thereof.
4. Ignition mixture according to claim 1, characterized in that the mixture further contains a reducing agent, wherein the reducing agent is selected from the group consisting of a metal selected from the group consisting of titanium, zirconium, aluminum, magnesium, cerium, and a mixture of these metals, an alloy of these metals carbon, boron, and mixtures thereof.
5. Ignition mixture according to claim 1, characterized in that the ignition mixture further contains binders and/or processing agents and/or pressing agents and/or combustion moderators.
6. Ignition mixture according to claim 1, characterized in that the ignition mixture is dyed or reacted with dye pigments.
7. Ignition mixture according to claim 1, characterized in that the ignition mixture further contains combustion moderators that are appropriate for affecting combustion and the rate thereof by heterogeneous or homogenous catalysis.
8. Method for manufacturing the ignition mixture according to claim 1, characterized in that the individual components are mixed then pressed.
9. An ignition mixture that is ignitable by laser light and that contains a secondary explosive, an oxidizer, a reducing agent and a binder, wherein
the secondary explosive is selected from the group consisting of polynitrophenylether, polynitropolyphenylenes, nitrocellulose, hexanitrostilbene, nitrotriazolone, aminotetrazoles, ditetrazoles, diaminoguanidine azotetrazoles, hexagene, octagene, biuret, guanidine, nitroguanidine, guanidine nitrate, aminoguanidine, aminoguanidine nitrate, thiourea, triaminoguanidine nitrate, aminoguanidine hydrogen carbonate, azodicarboxylic acid diamide, tetrazene, semicarbazidenitrate, urethanes, barbituric acids and mixtures thereof,
the oxidizer is selected from the group consisting of sulfur, the peroxides of alkali metals or alkaline earth metals, zinc peroxide, peroxodisulfates of alkali metals or alkaline earth metals, ammonium from the nitrates of alkali metals and alkaline earth metals, oxohalogen compounds of alkali metals or alkaline earth metals, ammonium, and mixtures thereof, and
the reducing agent is selected from the group consisting of a metal selected from the group consisting of titanium, zirconium, aluminum, magnesium, cerium, and a mixture of these metals, an alloy of these metals, carbon, boron, and mixtures thereof.
10. The ignition mixture according to claim 9, wherein
the secondary explosive is polynitrophenylether,
the oxidizer is potassium nitrate,
the reducing agent is boron, and
the binder is polyurethane.
11. A method for igniting an ignition mixture, comprising igniting an ignition mixture with laser light, the ignition mixture comprising the ignition mixture according to claim 1.
12. A method for igniting an ignition mixture, comprising igniting an ignition mixture with laser light, the ignition mixture comprising the ignition mixture according to claim 9.
US11/168,462 1996-04-26 2005-06-29 Ignition mixtures Abandoned US20070017612A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/168,462 US20070017612A1 (en) 1996-04-26 2005-06-29 Ignition mixtures
US12/750,643 US20100180787A1 (en) 1996-04-26 2010-03-30 Ignition mixtures
US12/963,794 US20110162547A1 (en) 1996-04-26 2010-12-09 Ignition mixtures

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19616627.6 1996-04-26
DE19616627A DE19616627A1 (en) 1996-04-26 1996-04-26 Kindling mixtures
US17180599A 1999-10-14 1999-10-14
US63907100A 2000-08-16 2000-08-16
US09/873,422 US20010054462A1 (en) 1996-04-26 2001-06-05 Ignition Mixtures
US11/168,462 US20070017612A1 (en) 1996-04-26 2005-06-29 Ignition mixtures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/873,422 Continuation US20010054462A1 (en) 1996-04-26 2001-06-05 Ignition Mixtures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/750,643 Division US20100180787A1 (en) 1996-04-26 2010-03-30 Ignition mixtures

Publications (1)

Publication Number Publication Date
US20070017612A1 true US20070017612A1 (en) 2007-01-25

Family

ID=7792474

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/873,422 Abandoned US20010054462A1 (en) 1996-04-26 2001-06-05 Ignition Mixtures
US11/168,462 Abandoned US20070017612A1 (en) 1996-04-26 2005-06-29 Ignition mixtures
US12/750,643 Abandoned US20100180787A1 (en) 1996-04-26 2010-03-30 Ignition mixtures
US12/963,794 Abandoned US20110162547A1 (en) 1996-04-26 2010-12-09 Ignition mixtures

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/873,422 Abandoned US20010054462A1 (en) 1996-04-26 2001-06-05 Ignition Mixtures

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/750,643 Abandoned US20100180787A1 (en) 1996-04-26 2010-03-30 Ignition mixtures
US12/963,794 Abandoned US20110162547A1 (en) 1996-04-26 2010-12-09 Ignition mixtures

Country Status (6)

Country Link
US (4) US20010054462A1 (en)
EP (1) EP0894235B1 (en)
AT (1) ATE304156T1 (en)
DE (2) DE19616627A1 (en)
ES (1) ES2249799T3 (en)
WO (1) WO1997041403A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090151825A1 (en) * 2006-02-24 2009-06-18 Cheddite France Ignition Composition and Applications
US20120132099A1 (en) * 2008-08-19 2012-05-31 Busky Randall T Nontoxic, noncorrosive phosphorus-based primer compositions and an ordnance element including the same
RU2522611C2 (en) * 2012-10-18 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Light sensitive explosive composition
US9199887B2 (en) 2006-03-02 2015-12-01 Orbital Atk, Inc. Propellant compositions including stabilized red phosphorus and methods of forming same
RU2637016C1 (en) * 2017-03-20 2017-11-29 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for manufacturing heat-resistant light-sensitive explosive compositions and light detonator on their basis
US20180130659A1 (en) * 2016-11-08 2018-05-10 Varian Semiconductor Equipment Associates, Inc. Plasma Doping Using A Solid Dopant Source
RU2729490C1 (en) * 2019-06-14 2020-08-07 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Initiating composition and method for production thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19805976C1 (en) * 1998-02-13 1999-04-29 Nigu Chemie Gmbh Pre-ignition powder for thermal safety device for car air-bags
DE19912622A1 (en) * 1998-03-20 1999-09-23 Dynamit Nobel Ag Electrically ignited initiating explosive for igniting boosters or propellant charges or for generating compressed gas
US6165296A (en) * 1999-02-02 2000-12-26 Autoliv Development As Gas generant igniter composition and method
US6132480A (en) * 1999-04-22 2000-10-17 Autoliv Asp, Inc. Gas forming igniter composition for a gas generant
ATA75099A (en) * 1999-04-28 2001-03-15 Hirtenberger Ag IGNITION BLOCK
DE10058705C1 (en) * 2000-11-25 2002-02-28 Rheinmetall W & M Gmbh Pourable bursting charge consisting of crystalline explosive embedded in a polymer matrix, containing finely divided metal powder, e.g. vanadium, as solid lubricant to provide low viscosity at high solids content
WO2003000624A2 (en) * 2001-05-10 2003-01-03 Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik Igniting agents
AT410315B (en) * 2001-11-14 2003-03-25 Josef Koehler Low signature pyrotechnic product, used as electrically-ignitable bullet-hit for special effects or in cable cutter, pelican hook, glass breaker or trunnion gun, contains atoxic metal diazinate, passivator and nitro compounds
KR100561952B1 (en) * 2002-09-13 2006-03-21 주식회사 한화 Slight-shock blasting composition
US20040089383A1 (en) * 2003-02-06 2004-05-13 Mendenhall Ivan V. Gas generant igniter coating materials and methods
DE102004001980A1 (en) * 2003-01-14 2004-07-22 Ruag Ammotec Gmbh Propellant charge useful in weapons training systems comprises a soft friction material
ES2370395T3 (en) 2003-05-21 2011-12-15 Alexza Pharmaceuticals, Inc. USE OF A SOLID FUEL LAYER, MANUFACTURING PROCEDURE AND CORRESPONDING HEATING UNIT.
US7402777B2 (en) 2004-05-20 2008-07-22 Alexza Pharmaceuticals, Inc. Stable initiator compositions and igniters
US20130333815A1 (en) * 2012-06-13 2013-12-19 Alliant Techsystems Inc. Non-lethal payloads and methods of producing same
CA2743063C (en) 2008-11-07 2018-01-16 Ruag Ammotec Gmbh Ignition sets with improved ignition performance
US8465606B1 (en) * 2009-01-16 2013-06-18 The United States Of America As Represented By The Secretary Of The Army Composition of matter for an incendiary device and method of manufacture
DE102011108146B4 (en) * 2011-07-20 2014-03-20 Diehl Bgt Defence Gmbh & Co. Kg Use of a salt of bistetrazolylamine and detonator
KR101740620B1 (en) * 2015-02-27 2017-05-26 부산대학교 산학협력단 Nano Energetic Material Composites with Explosion via Optical Ignition and Method for fabricating the same
EP3523266A4 (en) * 2016-10-05 2020-06-10 Olin Corporation Pyrotechnic compositions

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618521A (en) * 1969-07-07 1971-11-09 Us Navy Propellant gas generator
US3682727A (en) * 1968-08-05 1972-08-08 Dynamit Nobel Ag Igniter charge for propellant compositions and rocket propellant charges
US4363679A (en) * 1979-12-22 1982-12-14 Dynamit Nobel Aktiengesellschaft Use of zinc peroxide as oxidant for explosives and pyrotechnical mixtures
US4620046A (en) * 1983-03-21 1986-10-28 Dynamit Nobel Aktiengesellschaft Nitrated aryl ethers
US4861924A (en) * 1988-08-25 1989-08-29 Jet Research Center, Inc. 1,3,5-trinitro-2,4,6-tripicrylbenzene
US4870903A (en) * 1987-05-20 1989-10-03 Aerospatiale Societe Nationale Industrielle Photopyrotechnical detonation device and photopyrotechnical chain using this device
US4956029A (en) * 1987-03-11 1990-09-11 Dynamit Nobel Aktiengesellschaft Electrically primable igniter charges for caseless ammunition and propellant cartridges
US5212343A (en) * 1990-08-27 1993-05-18 Martin Marietta Corporation Water reactive method with delayed explosion
US5241264A (en) * 1991-05-15 1993-08-31 Advantest Corporation IC test apparatus
US5406889A (en) * 1993-09-03 1995-04-18 Morton International, Inc. Direct laser ignition of ignition products
US5472529A (en) * 1991-06-26 1995-12-05 Asahi Kasei Kogyo Kabushiki Kaisha Explosive composition and method for producing the same
US5552257A (en) * 1994-01-21 1996-09-03 Minnesota Mining And Manufacturing Company Thermal decomposition of azide-containing materials
US5625165A (en) * 1992-02-24 1997-04-29 Wight; Charles A. Desensitized energetic materials
US5747723A (en) * 1996-11-26 1998-05-05 The United States Of America As Represented By The Secretary Of The Army Modular artillery charge system
US6080248A (en) * 1998-02-10 2000-06-27 Snpe Non-detonatable pyrotechnic materials for microsystems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519505A (en) * 1967-03-01 1970-07-07 Space Ordnance Systems Inc Ignition material containing tellurium dioxide,boron and fluoropolymeric binder
US3876478A (en) * 1972-12-18 1975-04-08 Us Navy Light sensitive explosive mixture
DE2543971C2 (en) * 1975-10-02 1986-05-22 Dynamit Nobel Ag, 5210 Troisdorf Ignition system for high temperature resistant propellants
DE2752166C2 (en) * 1977-11-23 1986-10-23 Dynamit Nobel Ag, 5210 Troisdorf Polynitro aromatic polymers
LU85320A1 (en) * 1984-04-17 1985-11-27 Oreal COSMETIC COMPOSITION CONTAINING ALOESIN AS A PROTECTIVE AGENT AGAINST SUNLIGHT AND ITS USE FOR PROTECTING SKIN AND HAIR
SE462092B (en) * 1988-10-17 1990-05-07 Nitro Nobel Ab INITIATIVE ELEMENT FOR PRIMARY EXTENSION FREE EXPLOSION CAPS
US4892037A (en) * 1989-01-03 1990-01-09 The United States Of America As Represented By The Secretary Of The Army Self consumable initiator
US5099761A (en) * 1991-01-28 1992-03-31 The United States Of America As Represented By The Secretary Of The Army Laser actuated thru-bulkhead initiator
US5179247A (en) * 1991-07-15 1993-01-12 Ensign-Bickford Aerospace Corporation Optically initiated detonator
DE4302476C2 (en) * 1993-01-29 1995-12-07 Dynamit Nobel Ag Ignition-sensitive electrical detonators with a weak detonative output, process for their production and their use
ATE177074T1 (en) * 1994-08-27 1999-03-15 Eley Ltd INITIAL CHARGE

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682727A (en) * 1968-08-05 1972-08-08 Dynamit Nobel Ag Igniter charge for propellant compositions and rocket propellant charges
US3618521A (en) * 1969-07-07 1971-11-09 Us Navy Propellant gas generator
US4363679A (en) * 1979-12-22 1982-12-14 Dynamit Nobel Aktiengesellschaft Use of zinc peroxide as oxidant for explosives and pyrotechnical mixtures
US4620046A (en) * 1983-03-21 1986-10-28 Dynamit Nobel Aktiengesellschaft Nitrated aryl ethers
US4956029A (en) * 1987-03-11 1990-09-11 Dynamit Nobel Aktiengesellschaft Electrically primable igniter charges for caseless ammunition and propellant cartridges
US4870903A (en) * 1987-05-20 1989-10-03 Aerospatiale Societe Nationale Industrielle Photopyrotechnical detonation device and photopyrotechnical chain using this device
US4861924A (en) * 1988-08-25 1989-08-29 Jet Research Center, Inc. 1,3,5-trinitro-2,4,6-tripicrylbenzene
US5212343A (en) * 1990-08-27 1993-05-18 Martin Marietta Corporation Water reactive method with delayed explosion
US5241264A (en) * 1991-05-15 1993-08-31 Advantest Corporation IC test apparatus
US5472529A (en) * 1991-06-26 1995-12-05 Asahi Kasei Kogyo Kabushiki Kaisha Explosive composition and method for producing the same
US5625165A (en) * 1992-02-24 1997-04-29 Wight; Charles A. Desensitized energetic materials
US5406889A (en) * 1993-09-03 1995-04-18 Morton International, Inc. Direct laser ignition of ignition products
US5552257A (en) * 1994-01-21 1996-09-03 Minnesota Mining And Manufacturing Company Thermal decomposition of azide-containing materials
US5747723A (en) * 1996-11-26 1998-05-05 The United States Of America As Represented By The Secretary Of The Army Modular artillery charge system
US6080248A (en) * 1998-02-10 2000-06-27 Snpe Non-detonatable pyrotechnic materials for microsystems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090151825A1 (en) * 2006-02-24 2009-06-18 Cheddite France Ignition Composition and Applications
US8052813B2 (en) * 2006-02-24 2011-11-08 Cheddite France Ignition composition and applications
US9199887B2 (en) 2006-03-02 2015-12-01 Orbital Atk, Inc. Propellant compositions including stabilized red phosphorus and methods of forming same
US20120132099A1 (en) * 2008-08-19 2012-05-31 Busky Randall T Nontoxic, noncorrosive phosphorus-based primer compositions and an ordnance element including the same
US8540828B2 (en) * 2008-08-19 2013-09-24 Alliant Techsystems Inc. Nontoxic, noncorrosive phosphorus-based primer compositions and an ordnance element including the same
RU2522611C2 (en) * 2012-10-18 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Light sensitive explosive composition
US20180130659A1 (en) * 2016-11-08 2018-05-10 Varian Semiconductor Equipment Associates, Inc. Plasma Doping Using A Solid Dopant Source
RU2637016C1 (en) * 2017-03-20 2017-11-29 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for manufacturing heat-resistant light-sensitive explosive compositions and light detonator on their basis
RU2729490C1 (en) * 2019-06-14 2020-08-07 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Initiating composition and method for production thereof

Also Published As

Publication number Publication date
EP0894235A1 (en) 1999-02-03
DE19616627A1 (en) 1997-11-06
WO1997041403A1 (en) 1997-11-06
EP0894235B1 (en) 2005-09-07
DE59712416D1 (en) 2005-10-13
ES2249799T3 (en) 2006-04-01
US20100180787A1 (en) 2010-07-22
US20010054462A1 (en) 2001-12-27
ATE304156T1 (en) 2005-09-15
US20110162547A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
US20070017612A1 (en) Ignition mixtures
US6997998B2 (en) Lead-and barium-free propellant charges
US5417160A (en) Lead-free priming mixture for percussion primer
US5380380A (en) Ignition compositions for inflator gas generators
US5861571A (en) Gas-generative composition consisting essentially of ammonium perchlorate plus a chlorine scavenger and an organic fuel
US5936195A (en) Gas generating composition with exploded aluminum powder
US6221187B1 (en) Method of safely initiating combustion of a gas generant composition using an autoignition composition
US20010001970A1 (en) Lead- and barium-free propellant charges
CA2253196C (en) Firing mixtures
CN100455553C (en) Thermally initiatable ignition mixture
US6645326B2 (en) Low temperature autoignition material
USH285H (en) Oxygen rich igniter compositions
DE19616628A1 (en) Ignition mixture used for igniting pyrotechnical mixtures
Eneh Chapter Thirty-four
RU2157357C1 (en) Pellet causing no corrosion
Eneh CHEMICAL EXPLOSIVES: WARHEAD ALLY
Gesser et al. Explosives
Fox Explosives and Class 1

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION