US20070042488A1 - Cell spraying device, method and sprayed cell suspension - Google Patents

Cell spraying device, method and sprayed cell suspension Download PDF

Info

Publication number
US20070042488A1
US20070042488A1 US11/518,012 US51801202A US2007042488A1 US 20070042488 A1 US20070042488 A1 US 20070042488A1 US 51801202 A US51801202 A US 51801202A US 2007042488 A1 US2007042488 A1 US 2007042488A1
Authority
US
United States
Prior art keywords
cells
cell suspension
suspension
cell
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/518,012
Inventor
Reinhard Bornemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renovacare Sciences Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20070042488A1 publication Critical patent/US20070042488A1/en
Assigned to RENOVACARE SCIENCES CORP. reassignment RENOVACARE SCIENCES CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GERLACH, JORG C., BORNEMANN, REINHARD
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/10Hair or skin implants
    • A61F2/105Skin implants, e.g. artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/06Means for pre-treatment of biological substances by chemical means or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/09Means for pre-treatment of biological substances by enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/22Means for packing or storing viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0625Epidermal cells, skin cells; Cells of the oral mucosa
    • C12N5/0629Keratinocytes; Whole skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/09Body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • A61M2205/7545General characteristics of the apparatus with filters for solid matter, e.g. microaggregates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/98Xeno-free medium and culture conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/99Serum-free medium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Definitions

  • This invention relates to a simple, rapid, and cost effective technique for the grafting of cells, in particular to a device for spraying a cell suspension from a tissue sample obtained from a donor site and distributing that cell suspension to a recipient site.
  • Spraying of cells may be of interest for the distribution of cell suspensions onto a tissue wound.
  • This can be applied, e.g., in general surgery to help regenerate tissue trauma.
  • skin grafting techniques exist, which aim to reconstruct skin areas of the body that have suffered either damage or defects to the skin.
  • these types of grafts are classified according to their host-donor relationship and by their thickness.
  • the most clinically applied graft is the autologous graft, whereby tissue is taken from one area of the body and applied to another area. The grafted tissue then develops a new blood supply and attaches to the underlying tissues.
  • split-thickness grafts There are several types of skin grafts presently used, including split-thickness, full-thickness grafts, and micro-grafting. Each of these graft types must be prepared using certain techniques, and each one has its inherent advantages and disadvantages. Split-thickness grafts often require considerable skill, time and expensive equipment. Further, donor sites are painful, result in scarring and limit the coverable area. Although split-thickness grafts may be more successful than full-thickness grafts, they are usually cosmetically less attractive. Full-thickness grafts require less skill or expensive equipment, and their cosmetic appearance is better than that of split-thickness grafts.
  • a variation to the above grafting techniques is the mesh graft, which is a type of split-thickness or full-thickness skin graft in which parallel rows of slits are cut into the treated tissue.
  • Some of the advantages of mesh grafts include: greater coverage of the effected area, drainage of blood or serum from beneath the graft, and increased conformity of the graft to uneven recipient areas. This technique has been very successful, with 90 to 100 percent “take” after the grafts have been applied on healthy granulation beds.
  • An alternative to split-skin grafting is to form a blister under suction at a donor site, then remove the skin above the blister and transplant it onto the recipient site.
  • the production of blisters to treat wounds has been used since the 1960s.
  • the blisters are produced by a suction device, such as DermavacTM, at a suction pressure of approximately 250-300 mmHg for 1-2 hours.
  • DermavacTM a suction device
  • the blisters are then cut off and placed on the wound.
  • the healing time is around 10-14 days.
  • There are several disadvantages to this method such as the amount of time required to prepare the graft is too long and the graft may not result in re-pigmentation of the area; or uneven pigmentation is common around the edges of the area of treatment.
  • Micro-grafting has become a more common approach for large area cover and involves the “snipping off” of a number of very small sections of tissue from a donor site and applying them to a dressing that is which is in turn applied to the wound area.
  • CEA Cultured epithelial autografts
  • confluent grown cell sheets are an important adjunct in the coverage of burns and other situations in which large areas of the body's surface experience skin loss.
  • tissue culture facilities whose aim is to produce autologous epithelial grafts for use in a wide variety of applications.
  • the usefulness and application of CEA is related to its ability to achieve confluent cells sheets suitable for grafting.
  • This technique overcomes many of the disadvantages of the previous treatments described above.
  • cultured epithelial autografts reduce the demand for donor sites.
  • these autografts are slow growing and require time to cultur, which often exceeds the preparation time of the recipient's sites.
  • blister formation by wound secretion below the sheet grafts hinder grafting.
  • Navarro et al. (2000) and Wood et al. (2003) describe the use of single cells suspended in Hartmans's solution and distributed over the wound, thus avoiding the sheets.
  • the cell suspension may be delivered via a pipette, common “eye-droppers,” syringe and needle, and/or other similar devices to place small quantities of cellular suspension on a graft site.
  • a mechanical hand driven spray technique is described (see references).
  • the spray technique addresses some afore mentioned problems in the field.
  • a hand driven spray method and subsequently the distribution of the cells is not performed in a controlled manner and results in uneven cell distribution.
  • the present invention provides a method, a device, and a cell suspension generated by using the method, each of which seeks to ameliorate some of the disadvantages associated with prior art CEA grafting technology.
  • the present invention provides a method and/or device suitable for producing a transplantable cellular spray of living cells suitable for grafting to a patient.
  • cells suitable for grafting to a patient are dispersed in a solution and sprayed with the device for distribution over the recipient graft site.
  • a method for spraying a cell suspension through a controlled spray head suitable for application to a patient utilizing a spray device comprises the steps of: (a) subjecting a tissue sample including cells suitable for grafting to a patient, to at least a physical and/or chemical dissociating means capable of dissociating cells in the tissue sample; (b) taking the cells suitable for grafting on to a patient into a saline solution, (c) filtering the cellular suspension produced to remove large cellular conglomerates; and spraying the cell suspension through a spray head.
  • an electronically controlled apparatus for distribution of tissue regenerating cells in a sterile suspension over a tissue surface via electronic controlled compressed gas and/or pump driven spraying through a sterilizeable spray head, providing continuous force application in a single shot and generating suspension drops containing cells.
  • the cells in the suspension are autologous cells (i.e. they are isolated from the patient requiring an autograft), or stem cells.
  • a method is provided to treat a patient in need of graft surgery.
  • FIG. 1 compares two application modes of skin cells to a patient.
  • This can be compared to the state of the art medical treatment with skin cell application using confluently grown keratinocyte sheets (right).
  • Using sprayed cells result in the need of fewer cells while in a larger treatment surface can be enabled for therapy.
  • Blister formation is avoided by the use of single cells without forming a closed sheet. Reducing the cell number speeds up application time by avoiding an in vitro cell expansion. This reduces in vitro differentiation and therefore better preserves basal keratinoyte progenitor cells in the cell suspension.
  • this invention provides a unique method and/or device suitable for producing a transplantable cellular suspension of living tissue suitable for grafting to a patient.
  • cell preparations of different origin may be used. This includes stem cell preparations and patient autologous cells, whereas donor tissue is harvested and subjected to a tissue dissociating means. Cells suitable for grafting to a patient, or back to a patient, are dispersed in a solution that is suitable for immediate dispersion over the recipient graft site.
  • the subject invention has many advantages over the prior art some of which are described in the following paragraphs.
  • the biopsy donor site is markedly smaller than a split skin graft donor site and reduces or eliminates the use of split skin graft donor sites; improves the expansion rate of cell coverage; improves the rate of healing of small burns; is useful for small areas of skin reconstructions, such as scars; and improves scar quality.
  • It provides a means for the treatment of various skin disorders or diseases.
  • it may be used for the following: epidermal resurfacing, replacement after skin loss, site match-up during re-pigmentation of an area of skin, treatment of burn wounds, leukoderma, vitiligo, piebaldism, in the treatment of scars—for example, caused through incorrect wound healing, improper scar direction or scar distortion from wound contraction, acne scars; resurfacing cosmetic dermabrasion, resurfacing after laser treatment and in association with dermal reconstruction.
  • the method may be used for cell replacement therapy, including, for example, nerve cell replacement treatment, epithelial cell (such as urothelial cell, buccal mucosal cell and respiratory epithelial cell) replacement treatment, endothelial cell replacement treatment and osteogenic precursor cell replacement treatment.
  • the method may also be used to stimulate tissue regeneration in surgically induced wounds.
  • the invention relates to at least two distinct cell sources, all suitable for use in resurfacing and regeneration of damaged tissue: (i) non-autologous cells, including stem cells, and (ii) autologous cells, including the patient's own progenitor cells.
  • the invention provides a method for preparing an autologous cell suspension.
  • tissue is harvested from a patient by means known in the art of tissue grafting. Preferably this is achieved by taking a tissue biopsy.
  • tissue biopsy With the harvesting of the biopsy consideration must be given to the depth of the biopsy and size of the surface area. The depth and size of the biopsy influence the ease at which the procedure can be undertaken and the speed with which a patient recovers from the procedure.
  • the chosen donor site should appropriately match the recipient site, for example post-auricular for head and neck, thigh for lower limbs, inner-upper-arm for upper limbs, or palm for sole or vice-versa.
  • the tissue sample is subjected to physical and/or chemical dissociating means capable of dissociating cellular stratum in the tissue sample.
  • the dissociating means may be either a physical or a chemical disruption.
  • Physical dissociation means might include, for example, scraping the tissue sample with a scalpel, mincing the tissue, physically cutting the layers apart, or perfusing the tissue.
  • Chemical dissociation means might include, for example, digestion with enzymes such as trypsin, dispase, collagenase, trypsin-edta, thermolysin, pronase, hyaluronidase, elastase, papain and pancreatin.
  • enzymes such as trypsin, dispase, collagenase, trypsin-edta, thermolysin, pronase, hyaluronidase, elastase, papain and pancreatin.
  • Non-enzymatic solutions for the dissociation of tissue can also be used.
  • dissociation of the tissue sample is achieved by placing the sample in a pre-warmed enzyme solution containing an amount of enzyme sufficient to dissociate cellular stratum in the tissue sample.
  • the tissue sample After the tissue sample has been immersed in the enzyme solution for an appropriate amount of time, the sample is removed and washed with nutrient solution.
  • the saline/nutrient solution used in the method should be capable of significantly reducing and more preferably removing the effect of the enzyme either by dilution or neutralization.
  • the nutrient solution used in the method will also preferably have the characteristics of being (i) free of at least xenogenic serum, (ii) capable of maintaining the viability of the cells until applied to a patient, and (iii) suitable for direct application to a region on a patient undergoing tissue grafting.
  • the tissue stratum of the sample is separated permitting the cells capable of reproduction to be removed from the cellular material and suspended in the nutrient solution.
  • the dermis and epidermis are preferably separated to allow access to the dermal-epithelial junction of both surfaces.
  • Cells capable of reproduction are then removed from the separated stratum by any means known in the art.
  • the reproductive cells are scraped off the surface of the stratum using an instrument such as a scalpel.
  • Cells capable of reproduction within the dermal-epithelial junction include but are not limited to keratinocyte basal cells, Langerhans cells, fibroblasts and melanocytes. Following release of the cells from the tissue sample they are suspended in the saline/nutrient solution.
  • the invention provides simultaneously a method for using a non-autologous cell suspension.
  • the solution may be anything physiological from a basic salt solution to a more complex nutrient solution.
  • the nutrient solution is free of all serum but contains various salts that resemble the substances found in body fluids; this type of solution is often called physiological saline.
  • Phosphate or other non-toxic substances may also buffer the solution in order to maintain the pH at approximate physiological levels.
  • Suitable nutrient solutions that are preferred base on Ringer-lactate solutions, including Hartmann's solution, dialysis solutions, and on peripheral intravenous nurtition solutions.
  • Preferably only a small volume of solution is applied to the tissue sample after the harvesting steps, or by suspending non-autologous cells, otherwise the suspension may become too fluid therein providing difficulties in applying the suspension to the graft.
  • the cell suspension is then applied by using the spray device, described in the claims.
  • the suspension is preferably filtered, either prior to using the suspension with the device, or by a specific feature of the device.
  • the cellular suspension Prior to application with the device or immediately after filtering, the cellular suspension may be diluted to produce an appropriate cell density suitable for the purpose with which the suspension is to be used.
  • a sprayed aqueous cell suspension highly suitable for tissue regeneration and grafting techniques, produced by the method described.
  • An important advantage of the invention is an even cell distribution.
  • An important aspect of utilizing such a suspension in grafting technology is that it can be used to greatly expand the area or volume of a wound that can be treated quickly by in situ multiplication of a limited number of cells. Cellular multiplication is encouraged on the patient rather than in an in vitro system, as provided by the state of the art CEA method.
  • the number and concentration of cells seeded onto graft site may be varied by modifying the concentration of cells in suspension, or by modifying the quantity of suspension that is distributed onto a given area or volume of the graft site.
  • the composition of cells in the cellular preparation is comparable to that seen in situ compared to prior art CEA cellular preparation.
  • it contains the basal keratinocytes and skin progenitor cells for skin regeneration, which are typically lost in the CEA method.
  • culture of the cellular preparation utilizes selective culture for keratinocytes, therefore the loss of cellular constituents such as skin progenitor cells, fibroblasts and melanocytes occurs, whereas the cellular suspension produced by the method of the invention has a cell composition comparable to the in situ cell population.
  • a method of treatment of the patient requiring a tissue graft By this method the cellular suspension produced according to the invention is applied to a graft site.
  • an apparatus containing a spray head to distribute the cells.
  • the suspension may be sprayed through any type of nozzle that transforms liquid into small airborne droplets.
  • an electronically controlled apparatus as a medical device to operate the spraying through a sterilizeable spray head.
  • the apparatus enables a distribution of cells using a 0.5-60 ⁇ 20 ml sterile cell suspension through a spray head.
  • the apparatus transfers the cell suspension from a medical grade disposable sterilizeable syringe, including 0.5-60 ml sterile Luer-lock syringes.
  • the apparatus can be operated preferrably basing on producing compressed gas, e.g. air, for the spray head, or forcing the cell suspension pump driven through the nozzle, e.g. by motor operated pushing of a sterile Luer-lock syringe containing the cell suspension, without mixing with gas.
  • compressed gas e.g. air
  • the apparatus preferrably provides continuous force application over a range of 0.5-10 ⁇ 1.0 minutes for in a single shot, or several shots, and generates suspension drops containing cells in the range of 30-500+200 millimeter.
  • the apparatus may provide means to measure and control parameters such as flow, pressure, and/or temperature.
  • the apparatus preferrably also transfers the cell suspension from a medical grade sterilizeable container to the sterilizeable spray head via a disposable filter capable of separating large cellular congregates from a cellular suspension.
  • a disposable filter capable of separating large cellular congregates from a cellular suspension.
  • Any filter capable of separating excessively large cellular congregates from the suspension may be used.
  • the filter exibits a cut off of approximately 5-100 cells, preferably 20-60 cells and most preferred 40 cells.
  • the apparatus may comprise a first and second member wherein: (i) the first member includes power supply, gas/air supply and electronic controls, and (ii) the second member includes a sterilizeable spray head and the container with the cell suspension.
  • both members are connected through a cable/wire/tube sensor/effector connector which may be sterilizeable or can be covered with a sterile operation foil hose and has suitable connectors to the memebr (i) and (ii).
  • the apparatus may comprise a first and second member wherein both members are wirelessly connected for data exchange, including blue tooth technology, to connect sensor/effector controls in the first and second member.
  • the apparatus may also feature battery operation, facilitating an easy use in operation theaters.
  • the apparatus comprises an all-in one device for hand-held operation.
  • the wound may be covered with a wound dressing.
  • the healing of the wound is followed up by standard protocols for graft treatment known to those skilled in the art.
  • Separated epidermis was incubated with 0.05% trypsin/0.02% EDTA-solution for 15 minutes.
  • the single cell suspension was cultivated in a standard culture flask with serum free culture medium (EpiLife, TEBU, Offenbach, Germany). Cells were incubated at a cell density of 10 4 per cm 2 , using a CO 2 -incubator (Heraeus BB 6060, Kendro, Langenselbold, Germany) at 37° C. in a humidified atmosphere with 5% CO 2 . Medium was changed every two days. As 80% confluence was reached, cells were detached by trypsinization and used with the above described compressor operated spray device prototype.
  • Operation partameter were set to an air flow of 3.7 l/min and a fluid flow of 4.2 cc/min. This adjustment resulted in a spray pressure of 8.2 mmHg.
  • the cells were sprayed into a non medium filled standard cell culture dish at a density of 10 4 cells per cm 2 .
  • As control cells from the same suspension were cultivated, under the above described culture conditions after pipetting into a medium filled culture flask with the same density. Cell morphology was monitored by light microscopy (Zeiss, Axiovert 25). Sprayed and non-sprayed cells showed similar morphologic appearance in light- and phase-contrast microscopy, they also showed comparable follow up culture behavior.

Abstract

The invention provides a device and methods suitable for producing a cellular spray of cells. The sprayed cells are of interest for covering and growing on a surface, including a skin wound. In applying the method and/or using the device, cells for grafting onto a patient are dispersed in a solution and sprayed with the device for distribution over the recipient's graft site.

Description

    FIELD OF THE INVENTION
  • This invention relates to a simple, rapid, and cost effective technique for the grafting of cells, in particular to a device for spraying a cell suspension from a tissue sample obtained from a donor site and distributing that cell suspension to a recipient site.
  • BACKGROUND
  • Spraying of cells may be of interest for the distribution of cell suspensions onto a tissue wound. This can be applied, e.g., in general surgery to help regenerate tissue trauma. There are many methods for treating skin wounds known to those skilled in the art. For example, skin grafting techniques exist, which aim to reconstruct skin areas of the body that have suffered either damage or defects to the skin. In general, these types of grafts are classified according to their host-donor relationship and by their thickness. The most clinically applied graft is the autologous graft, whereby tissue is taken from one area of the body and applied to another area. The grafted tissue then develops a new blood supply and attaches to the underlying tissues. There are several types of skin grafts presently used, including split-thickness, full-thickness grafts, and micro-grafting. Each of these graft types must be prepared using certain techniques, and each one has its inherent advantages and disadvantages. Split-thickness grafts often require considerable skill, time and expensive equipment. Further, donor sites are painful, result in scarring and limit the coverable area. Although split-thickness grafts may be more successful than full-thickness grafts, they are usually cosmetically less attractive. Full-thickness grafts require less skill or expensive equipment, and their cosmetic appearance is better than that of split-thickness grafts. However, full-thickness grafts do not “take” as well as split-thickness grafts. Micro-grafts are more easily accomplished and require no special instruments. However, their cosmetic appearance is not as good as other techniques, as the resulting scarring is unacceptable.
  • A variation to the above grafting techniques is the mesh graft, which is a type of split-thickness or full-thickness skin graft in which parallel rows of slits are cut into the treated tissue. Some of the advantages of mesh grafts include: greater coverage of the effected area, drainage of blood or serum from beneath the graft, and increased conformity of the graft to uneven recipient areas. This technique has been very successful, with 90 to 100 percent “take” after the grafts have been applied on healthy granulation beds.
  • An alternative to split-skin grafting is to form a blister under suction at a donor site, then remove the skin above the blister and transplant it onto the recipient site. The production of blisters to treat wounds has been used since the 1960s. The blisters are produced by a suction device, such as Dermavac™, at a suction pressure of approximately 250-300 mmHg for 1-2 hours. The blisters are then cut off and placed on the wound. The healing time is around 10-14 days. There are several disadvantages to this method such as the amount of time required to prepare the graft is too long and the graft may not result in re-pigmentation of the area; or uneven pigmentation is common around the edges of the area of treatment.
  • Micro-grafting has become a more common approach for large area cover and involves the “snipping off” of a number of very small sections of tissue from a donor site and applying them to a dressing that is which is in turn applied to the wound area.
  • Another technology for the generation of tissue in vitro is to culture epidermis. Cultured epithelial autografts (CEA), provided in confluent grown cell sheets, are an important adjunct in the coverage of burns and other situations in which large areas of the body's surface experience skin loss. There are many centres throughout the world with tissue culture facilities whose aim is to produce autologous epithelial grafts for use in a wide variety of applications. The usefulness and application of CEA is related to its ability to achieve confluent cells sheets suitable for grafting. This technique overcomes many of the disadvantages of the previous treatments described above. For example, cultured epithelial autografts reduce the demand for donor sites. However, these autografts are slow growing and require time to cultur, which often exceeds the preparation time of the recipient's sites. Moreover, blister formation by wound secretion below the sheet grafts hinder grafting.
  • Navarro et al. (2000) and Wood et al. (2003) describe the use of single cells suspended in Hartmans's solution and distributed over the wound, thus avoiding the sheets. The cell suspension may be delivered via a pipette, common “eye-droppers,” syringe and needle, and/or other similar devices to place small quantities of cellular suspension on a graft site. As method of choice a mechanical hand driven spray technique is described (see references).
  • The spray technique adresses some afore mentioned problems in the field. A hand driven spray method and subsequently the distribution of the cells, however, is not performed in a controlled manner and results in uneven cell distribution.
  • The present invention provides a method, a device, and a cell suspension generated by using the method, each of which seeks to ameliorate some of the disadvantages associated with prior art CEA grafting technology.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method and/or device suitable for producing a transplantable cellular spray of living cells suitable for grafting to a patient. In applying the method and/or in using the device, cells suitable for grafting to a patient are dispersed in a solution and sprayed with the device for distribution over the recipient graft site.
  • According to the invention a method is provided for spraying a cell suspension through a controlled spray head suitable for application to a patient utilizing a spray device, which method comprises the steps of: (a) subjecting a tissue sample including cells suitable for grafting to a patient, to at least a physical and/or chemical dissociating means capable of dissociating cells in the tissue sample; (b) taking the cells suitable for grafting on to a patient into a saline solution, (c) filtering the cellular suspension produced to remove large cellular conglomerates; and spraying the cell suspension through a spray head.
  • According to the invention an electronically controlled apparatus is provided as a medical device for distribution of tissue regenerating cells in a sterile suspension over a tissue surface via electronic controlled compressed gas and/or pump driven spraying through a sterilizeable spray head, providing continuous force application in a single shot and generating suspension drops containing cells.
  • According to the invention there is provided a cell suspension produced according to the above-described method. Preferably the cells in the suspension are autologous cells (i.e. they are isolated from the patient requiring an autograft), or stem cells.
  • According to another aspect of the invention a method is provided to treat a patient in need of graft surgery.
  • Other aspects and advantages of the invention will become apparent to those skilled in the art from a review of the ensuing description, which proceeds with reference to the following descriptions and drawings.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 compares two application modes of skin cells to a patient. Application of the method and/ or device described in this text at hand, spraying skin cells onto a skin wound surface, is illustrated on the left side. This can be compared to the state of the art medical treatment with skin cell application using confluently grown keratinocyte sheets (right). Using sprayed cells result in the need of fewer cells while in a larger treatment surface can be enabled for therapy. Blister formation is avoided by the use of single cells without forming a closed sheet. Reducing the cell number speeds up application time by avoiding an in vitro cell expansion. This reduces in vitro differentiation and therefore better preserves basal keratinoyte progenitor cells in the cell suspension.
  • DESCRIPTION OF THE INVENTION
  • Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variation and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in the specification, individually or collectively and any and all combinations or any two or more of the steps or features.
  • The present invention is not to be limited in scope by the specific embodiments described herein, which are intended for the purpose of exemplification. Functionally equivalent products, compositions and where appropriate methods are clearly within the scope of the invention as described herein.
  • Throughout this specification and the claims that follow, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
  • Having regard to the above, this invention provides a unique method and/or device suitable for producing a transplantable cellular suspension of living tissue suitable for grafting to a patient. In applying the method and/or in using the device cell preparations of different origin may be used. This includes stem cell preparations and patient autologous cells, whereas donor tissue is harvested and subjected to a tissue dissociating means. Cells suitable for grafting to a patient, or back to a patient, are dispersed in a solution that is suitable for immediate dispersion over the recipient graft site.
  • The subject invention has many advantages over the prior art some of which are described in the following paragraphs.
  • 1. It provides a time efficient method for supplying a cellular cover to a tissue in a clinical setting. That is, cells are finely and evenly distributed over a wound, avoiding the use of cell sheets. This is achievable because there is a controlled procuring of the cell suspension with a method provided by an apparatus, thus allowing cell spraying to be performed more evenly than the mechanical hand operated methods of the prior state of the art.
  • 2. It provides a method and an apparatus, which avoids the blister formation associated with the use of conventional CEA's.
  • 3. It aids in the achievement of rapid cell coverage in areas of tissue wounds, tissue trauma/injury and donor sites. It provides a means for reducing the size of skin cell donor sites—the biopsy donor site is markedly smaller than a split skin graft donor site and reduces or eliminates the use of split skin graft donor sites; improves the expansion rate of cell coverage; improves the rate of healing of small burns; is useful for small areas of skin reconstructions, such as scars; and improves scar quality.
  • 4. It provides a means for the treatment of various skin disorders or diseases. For example, it may be used for the following: epidermal resurfacing, replacement after skin loss, site match-up during re-pigmentation of an area of skin, treatment of burn wounds, leukoderma, vitiligo, piebaldism, in the treatment of scars—for example, caused through incorrect wound healing, improper scar direction or scar distortion from wound contraction, acne scars; resurfacing cosmetic dermabrasion, resurfacing after laser treatment and in association with dermal reconstruction. Additionally the method may be used for cell replacement therapy, including, for example, nerve cell replacement treatment, epithelial cell (such as urothelial cell, buccal mucosal cell and respiratory epithelial cell) replacement treatment, endothelial cell replacement treatment and osteogenic precursor cell replacement treatment. The method may also be used to stimulate tissue regeneration in surgically induced wounds.
  • 5. It provides a means to produce a suspension of cells in a ratio to each other comparable with those seen in situ. That is, due to the manner of preparation of the cellular suspension, cells such as keratinocyte basal cells, Langerhans cells, fibroblasts and melanocytes typically have enhanced survival rates in comparison to standard tissue culture techniques, whereby selective cell culture can result in the loss of certain cell types. This has the advantage of allowing for the correct re-pigmentation of skin after a skin graft.
  • 7. It allows faster surgery and healing—thereby reducing trauma for patients during the phase of their medical care.
  • The invention relates to at least two distinct cell sources, all suitable for use in resurfacing and regeneration of damaged tissue: (i) non-autologous cells, including stem cells, and (ii) autologous cells, including the patient's own progenitor cells.
  • The invention provides a method for preparing an autologous cell suspension. According to this method, tissue is harvested from a patient by means known in the art of tissue grafting. Preferably this is achieved by taking a tissue biopsy. With the harvesting of the biopsy consideration must be given to the depth of the biopsy and size of the surface area. The depth and size of the biopsy influence the ease at which the procedure can be undertaken and the speed with which a patient recovers from the procedure. In a highly preferred form of the invention the chosen donor site should appropriately match the recipient site, for example post-auricular for head and neck, thigh for lower limbs, inner-upper-arm for upper limbs, or palm for sole or vice-versa.
  • Once a biopsy has been harvested from a patient the tissue sample is subjected to physical and/or chemical dissociating means capable of dissociating cellular stratum in the tissue sample. Methods for dissociating cellular layers within the tissues are well known in the field. For example, the dissociating means may be either a physical or a chemical disruption. Physical dissociation means might include, for example, scraping the tissue sample with a scalpel, mincing the tissue, physically cutting the layers apart, or perfusing the tissue. Chemical dissociation means might include, for example, digestion with enzymes such as trypsin, dispase, collagenase, trypsin-edta, thermolysin, pronase, hyaluronidase, elastase, papain and pancreatin. Non-enzymatic solutions for the dissociation of tissue can also be used. Preferably, dissociation of the tissue sample is achieved by placing the sample in a pre-warmed enzyme solution containing an amount of enzyme sufficient to dissociate cellular stratum in the tissue sample.
  • After the tissue sample has been immersed in the enzyme solution for an appropriate amount of time, the sample is removed and washed with nutrient solution.
  • The saline/nutrient solution used in the method should be capable of significantly reducing and more preferably removing the effect of the enzyme either by dilution or neutralization. The nutrient solution used in the method will also preferably have the characteristics of being (i) free of at least xenogenic serum, (ii) capable of maintaining the viability of the cells until applied to a patient, and (iii) suitable for direct application to a region on a patient undergoing tissue grafting. After application of a suitable saline/nutrition solution to the tissue sample, the cellular stratum of the sample is separated permitting the cells capable of reproduction to be removed from the cellular material and suspended in the nutrient solution. Where the tissue sample is skin, the dermis and epidermis are preferably separated to allow access to the dermal-epithelial junction of both surfaces.
  • Cells capable of reproduction are then removed from the separated stratum by any means known in the art. Preferably, the reproductive cells are scraped off the surface of the stratum using an instrument such as a scalpel. Cells capable of reproduction within the dermal-epithelial junction include but are not limited to keratinocyte basal cells, Langerhans cells, fibroblasts and melanocytes. Following release of the cells from the tissue sample they are suspended in the saline/nutrient solution.
  • The invention provides simultaneously a method for using a non-autologous cell suspension. To procure cells of any source, the cells are suspended in an aquaeus saline/nutrition solution. The solution may be anything physiological from a basic salt solution to a more complex nutrient solution. Preferably, the nutrient solution is free of all serum but contains various salts that resemble the substances found in body fluids; this type of solution is often called physiological saline. Phosphate or other non-toxic substances may also buffer the solution in order to maintain the pH at approximate physiological levels. Suitable nutrient solutions that are preferred base on Ringer-lactate solutions, including Hartmann's solution, dialysis solutions, and on peripheral intravenous nurtition solutions.
  • Preferably only a small volume of solution is applied to the tissue sample after the harvesting steps, or by suspending non-autologous cells, otherwise the suspension may become too fluid therein providing difficulties in applying the suspension to the graft.
  • The cell suspension is then applied by using the spray device, described in the claims. To avoid excessively large cellular congregates in the cellular suspension the suspension is preferably filtered, either prior to using the suspension with the device, or by a specific feature of the device.
  • Prior to application with the device or immediately after filtering, the cellular suspension may be diluted to produce an appropriate cell density suitable for the purpose with which the suspension is to be used.
  • According to the invention there is provided a sprayed aqueous cell suspension, highly suitable for tissue regeneration and grafting techniques, produced by the method described. An important advantage of the invention is an even cell distribution.
  • An important aspect of utilizing such a suspension in grafting technology is that it can be used to greatly expand the area or volume of a wound that can be treated quickly by in situ multiplication of a limited number of cells. Cellular multiplication is encouraged on the patient rather than in an in vitro system, as provided by the state of the art CEA method.
  • The number and concentration of cells seeded onto graft site may be varied by modifying the concentration of cells in suspension, or by modifying the quantity of suspension that is distributed onto a given area or volume of the graft site.
  • Another unique feature of the cell suspension produced according to the method of the invention is that the composition of cells in the cellular preparation is comparable to that seen in situ compared to prior art CEA cellular preparation. Importantly, it contains the basal keratinocytes and skin progenitor cells for skin regeneration, which are typically lost in the CEA method. In this prior art, culture of the cellular preparation utilizes selective culture for keratinocytes, therefore the loss of cellular constituents such as skin progenitor cells, fibroblasts and melanocytes occurs, whereas the cellular suspension produced by the method of the invention has a cell composition comparable to the in situ cell population.
  • According to a further aspect of the invention there is provided a method of treatment of the patient requiring a tissue graft. By this method the cellular suspension produced according to the invention is applied to a graft site.
  • According to the invention there is provided an apparatus containing a spray head to distribute the cells. The suspension may be sprayed through any type of nozzle that transforms liquid into small airborne droplets.
  • According to the invention there is provided an electronically controlled apparatus as a medical device to operate the spraying through a sterilizeable spray head. Preferrably the apparatus enables a distribution of cells using a 0.5-60±20 ml sterile cell suspension through a spray head. Preferrably, the apparatus transfers the cell suspension from a medical grade disposable sterilizeable syringe, including 0.5-60 ml sterile Luer-lock syringes.
  • The apparatus can be operated preferrably basing on producing compressed gas, e.g. air, for the spray head, or forcing the cell suspension pump driven through the nozzle, e.g. by motor operated pushing of a sterile Luer-lock syringe containing the cell suspension, without mixing with gas. The apparatus preferrably provides continuous force application over a range of 0.5-10±1.0 minutes for in a single shot, or several shots, and generates suspension drops containing cells in the range of 30-500+200 millimeter.
  • The apparatus may provide means to measure and control parameters such as flow, pressure, and/or temperature.
  • The apparatus preferrably also transfers the cell suspension from a medical grade sterilizeable container to the sterilizeable spray head via a disposable filter capable of separating large cellular congregates from a cellular suspension. Any filter capable of separating excessively large cellular congregates from the suspension may be used. In a highly preferred form of the invention the filter exibits a cut off of approximately 5-100 cells, preferably 20-60 cells and most preferred 40 cells.
  • The apparatus may comprise a first and second member wherein: (i) the first member includes power supply, gas/air supply and electronic controls, and (ii) the second member includes a sterilizeable spray head and the container with the cell suspension. In that case both members are connected through a cable/wire/tube sensor/effector connector which may be sterilizeable or can be covered with a sterile operation foil hose and has suitable connectors to the memebr (i) and (ii).
  • The apparatus may comprise a first and second member wherein both members are wirelessly connected for data exchange, including blue tooth technology, to connect sensor/effector controls in the first and second member.
  • The apparatus may also feature battery operation, facilitating an easy use in operation theaters. In that preferred case, the apparatus comprises an all-in one device for hand-held operation.
  • After the cell suspension has been applied to the recipient graft site, the wound may be covered with a wound dressing. Preferably, the healing of the wound is followed up by standard protocols for graft treatment known to those skilled in the art.
  • EXAMPLE
  • If not otherwise indicated, all materials were purchased from Biochrom AG, Berlin, Germany. Media were supplemented with antibiotics (Penicillin/Streptomycin, 120 μ/g/ml) and antimycotics (Amphotericin B, 2.5 μg/ml). A 1 cm2 skin biopsy was obtained after obtaining informed consent of the donor and cut into 2 mm2 pieces. The method is described in more detail in Johnen C, et al., Burns. 2006; 32(2). Prior to separation of epidermis and dermis the pieces were exposed to 0.4% collagenase (Serva Electrophoresis GmbH, Heidelberg, Germany) in DMEM at 37° C. Separated epidermis was incubated with 0.05% trypsin/0.02% EDTA-solution for 15 minutes. The single cell suspension was cultivated in a standard culture flask with serum free culture medium (EpiLife, TEBU, Offenbach, Germany). Cells were incubated at a cell density of 104 per cm2, using a CO2-incubator (Heraeus BB 6060, Kendro, Langenselbold, Germany) at 37° C. in a humidified atmosphere with 5% CO2. Medium was changed every two days. As 80% confluence was reached, cells were detached by trypsinization and used with the above described compressor operated spray device prototype. Operation partameter were set to an air flow of 3.7 l/min and a fluid flow of 4.2 cc/min. This adjustment resulted in a spray pressure of 8.2 mmHg. The cells were sprayed into a non medium filled standard cell culture dish at a density of 104 cells per cm2. As control cells from the same suspension were cultivated, under the above described culture conditions after pipetting into a medium filled culture flask with the same density. Cell morphology was monitored by light microscopy (Zeiss, Axiovert 25). Sprayed and non-sprayed cells showed similar morphologic appearance in light- and phase-contrast microscopy, they also showed comparable follow up culture behavior.
  • Further examples will be given in a manuscript, to be submitted after filing of the application at hand to Elsevier, N.Y., USA for consideration in the book “Principles of Regenerative Medicine” edited by Antony Atala et al., to be published in 2007.
  • Modifications and variations of the described methods and device of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the relevant field in which this invention resides are intended to be within the scope of the described claims.

Claims (17)

1. A device for an electronically flow controlled distribution of tissue regenerating cells, including skin cells, in an approximately 0.5-80 ml, preferably 5-40 ml and most preferably 5-20 ml sterile suspension across an area for further growth, via controlled compressed gas and/or pump driven spraying through an electronically pressure and/or flow controlled spray head, providing continuous application over a range of approximately 0.5-10, preferably 1-5 and most preferably 1-2 minutes in a single shot, or several shots, preferably up to 3 shots, while generating suspension drops containing cells ranging between 30-500±200 mm in size, wherin the spray head may be sterilizeable or can be covered with a sterile surgery foil hose, and wherein the following procedures are enabled: (a) subjecting a tissue sample including cells for grafting onto a patient, to at least a physical and/or chemical dissociating means capable of dissociating cells in the tissue sample; (b) taking the cells, which may also have been expanded after the aforementioned step, for spraying into a saline solution, wherein the solution is (i) free of xenogenic serum, (ii) capable of maintaining the the cells alive until applied, (iii) contains electrolytes in a physiologic composition, and (iv) allows direct application to a biomaterial surface or region on a patient undergoing tissue grafting; (c) filtering the cellular suspension produced according to steps (a) and (b) to remove cellular conglomerates of more than 10-500 cells, preferably 50-300 cells and most preferably 50-100 cells; and (d) distributing the cell suspension through the flow controlled spray head onto the receipient surface.
2. A device according to claim 1 that is driven via a gas compressor.
3. A device according to claim 1 that is driven via a motor.
4. A device according to claims 1 to 3, which contains sensors to measure flow and/or pressure, and/or temperature.
5. A device according to claims 1 to 4, which contains sensors to measure and feedback controls to control flow and/or pressure, and/or temperature.
6. A device according to claims 1 to 5, which transfers the cell suspension from medical-grade disposable sterilizeable syringes, including 0.5-60 ml sterile Luer-lock syringes, preferably 1-50 ml and most preferred 5-20 ml syringes.
7. A device according to claims 1 to 6, which transfers the cell suspension from a medical-grade sterilizeable container, including luer-lock syringes, to the sterilizeable spray head via a disposable filter capable of separating large cellular congregates with a cut off of approximately 5-100 cells, preferably 20-60 cells and most preferred 40 cells from a cellular suspension.
8. A device according to claims 1 to 7, which is battery operated.
9. A device according to claims 1 to 8 for distributing a cell suspension, containing a first and second component wherein: (i) the first component includes the power supply, gas/air supply and electronic controls, and (ii) the second component includes a sterilizeable spray head and the container with the cell suspension; and wherein both components are connected through a cable/wire/tube sensor/effector connector, which may be sterilizeable or can be covered with a sterile operation foil hose and has suitable connectors to the components (i) and (ii).
10. A device according to claim 1 to 9 for distributing a cell suspension, containing a first and second component wherein both components are wirelessly connected for data exchange, including blue tooth technology to connect sensor/effector controls in the first and second component.
11. A device according to claims 1 to 10 which utilizes a solution as an aquaeous solution containing electrolytes in a physiologic composition, including Ringer-Lactate like electrolyte solutions, including Hartman's solution.
12. A cell suspension produced according to the devices and methods of claims 1 to 11.
13. A cell suspension produced according to at least one of the aforementioned claims prepared from autologous cells, including in vitro expanded autologous cells.
14. A cell suspension produced according to at least one of the aforementioned claims prepared from stem cells.
15. A method of utilizing the device according to at least one of the aforementioned claims and producing a cell suspension for treating a patient in need of graft surgery, which is is comprised of the steps: (a) preparing a cell suspension according to the method of claims 1 to 14; and (b) administering the suspension directly to a region on the patient that requires a cell graft in a manner that facilitates spraying of the cell suspension in an even distribution over the graft area.
16. A method of utilizing the device according to at least one of the aforementioned claims and producing a cell suspension for treating a patient in need of graft surgery with a cell suspension according to one of the aforementioned claims, said devices according to claims 1 to 11 and administering the suspension to a region on the patient that requires a cell graft in a manner that facilitates spraying of the cell suspension in an even distribution over the graft area.
17. A method of coating an artificial surface or a biomaterial surface for commercial use with the device according to at least one aforementioned claims, said method is comprised of the steps: (a) preparing a cell suspension according to the method of claims 1 to 16; and (b) administering the suspension directly onto an artificial or a biomaterial that requires a cell coated surface in a manner that facilitates spraying of the cell suspension in an even distribution.
US11/518,012 2001-02-07 2002-02-07 Cell spraying device, method and sprayed cell suspension Abandoned US20070042488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPR2989A AUPR298901A0 (en) 2001-02-07 2001-02-07 Cell suspension preparation technique and device
AUPR2989 2001-02-07

Publications (1)

Publication Number Publication Date
US20070042488A1 true US20070042488A1 (en) 2007-02-22

Family

ID=3827012

Family Applications (9)

Application Number Title Priority Date Filing Date
US10/068,299 Abandoned US20020106353A1 (en) 2001-02-07 2002-02-06 Cell suspension preparation technique and device
US11/518,012 Abandoned US20070042488A1 (en) 2001-02-07 2002-02-07 Cell spraying device, method and sprayed cell suspension
US12/699,554 Abandoned US20100196334A1 (en) 2001-02-07 2010-02-03 Cell Suspension Preparation Technique and Device
US13/036,569 Expired - Lifetime US9029140B2 (en) 2001-02-07 2011-02-28 Cell suspension preparation technique and device
US13/223,577 Expired - Fee Related US9078741B2 (en) 2001-02-07 2011-09-01 Cell suspension preparation technique and device
US14/645,933 Expired - Lifetime US9867692B2 (en) 2001-02-07 2015-03-12 Cell suspension preparation technique and device
US15/838,429 Expired - Lifetime US10729536B2 (en) 2001-02-07 2017-12-12 Cell suspension preparation technique and device
US16/436,693 Expired - Lifetime US10631974B2 (en) 2001-02-07 2019-06-10 Cell suspension preparation technique and device
US16/935,015 Abandoned US20210169636A1 (en) 2001-02-07 2020-07-21 Cell suspension preparation technique and device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/068,299 Abandoned US20020106353A1 (en) 2001-02-07 2002-02-06 Cell suspension preparation technique and device

Family Applications After (7)

Application Number Title Priority Date Filing Date
US12/699,554 Abandoned US20100196334A1 (en) 2001-02-07 2010-02-03 Cell Suspension Preparation Technique and Device
US13/036,569 Expired - Lifetime US9029140B2 (en) 2001-02-07 2011-02-28 Cell suspension preparation technique and device
US13/223,577 Expired - Fee Related US9078741B2 (en) 2001-02-07 2011-09-01 Cell suspension preparation technique and device
US14/645,933 Expired - Lifetime US9867692B2 (en) 2001-02-07 2015-03-12 Cell suspension preparation technique and device
US15/838,429 Expired - Lifetime US10729536B2 (en) 2001-02-07 2017-12-12 Cell suspension preparation technique and device
US16/436,693 Expired - Lifetime US10631974B2 (en) 2001-02-07 2019-06-10 Cell suspension preparation technique and device
US16/935,015 Abandoned US20210169636A1 (en) 2001-02-07 2020-07-21 Cell suspension preparation technique and device

Country Status (5)

Country Link
US (9) US20020106353A1 (en)
EP (2) EP3632452A1 (en)
AU (1) AUPR298901A0 (en)
ES (2) ES2747300T3 (en)
PT (1) PT2343079E (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100219A1 (en) * 2008-02-05 2009-08-13 University Of Virginia Patent Foundation Spraying device and related method for cell aggregates and cell aggregate suspension thereof
WO2011150055A3 (en) * 2010-05-25 2012-07-12 Cook Biotech Incorporated Methods, substrates, and systems useful for cell seeding of medical grafts
US20130060335A1 (en) * 2011-04-27 2013-03-07 Reinhard Bornemann Device for cell spraying, manufacturing of the device, method for spraying with the device and a cell suspension sprayed with the device
US9610430B2 (en) 2006-09-11 2017-04-04 Renovacare Sciences Corp. Cell spraying device, method and sprayed cell suspension
US20190133706A1 (en) * 2016-06-14 2019-05-09 Renovacare Sciences Corp. Disposable apparatus and device with unsterile reusable apparatus for sterile application of a liquid
US10370175B2 (en) 2012-07-30 2019-08-06 P.C.O.A. Devices Ltd. Receptacle for containing and dispensing solid medicinal pills
US10399725B2 (en) 2012-07-05 2019-09-03 P.C.O.A. Devices Ltd. Medication dispenser
US10456332B2 (en) 2014-06-22 2019-10-29 P.C.O.A. Devices Ltd. Controlled dosage form-dispensing system
US10952928B2 (en) 2015-04-20 2021-03-23 Dosentrix Ltd. Medication dispenser depilling mechanism
US11040363B2 (en) 2016-06-14 2021-06-22 Renovacare Sciences Corp. Modular device for cell spraying
US11264125B2 (en) 2015-10-15 2022-03-01 Dosentrx, Ltd. Image recognition-based dosage form dispensers
US11458072B2 (en) 2015-11-02 2022-10-04 Dosentrx Ltd. Lockable advanceable oral dosage form dispenser containers

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR298901A0 (en) 2001-02-07 2001-03-08 McComb Foundation, Inc., The Cell suspension preparation technique and device
WO2005035742A2 (en) 2003-10-08 2005-04-21 Vet-Stem Inc. Methods of preparing and using stem cell compositions and kits comprising the same
CA2626199A1 (en) * 2005-10-17 2007-04-26 Aderans Research Institute, Inc. Method of delivering hair follicle progenitor cells to the skin
CN101605566A (en) * 2006-10-13 2009-12-16 利莱恩斯生命科学有限公司 Cultivation melanocyte on the biopolymer
EP2828378B1 (en) * 2012-03-22 2021-02-17 Avita Medical Ltd Cell suspension and use thereof
FR2991690B1 (en) * 2012-06-07 2020-02-28 Laboratoires Genevrier USE OF A HEATER TO PROMOTE A BIOLOGICAL REACTION
AU2013205148B2 (en) 2013-03-14 2014-10-30 AVITA Medical Americas, LLC Systems and methods for tissue processing and preparation of cell suspension therefrom
CN103810779A (en) * 2014-02-13 2014-05-21 郭任 Bluetooth low-power-consumption lock cylinder
CA2943088A1 (en) * 2014-03-20 2015-10-01 Patrick J. Casey Method for the treatment of damaged tissue
US20160177250A1 (en) * 2014-06-25 2016-06-23 Cytori Therapeutics, Inc. Tissue transfer system
CN104232475B (en) * 2014-09-17 2017-01-11 中国人民解放军第二军医大学 Device and method for rapidly and immediately separating epidermal cells, melanophore and fibroblast of human skin
WO2017120493A1 (en) * 2016-01-06 2017-07-13 The Research Foundation For The State University Of New York Liquid tissue graft
JP2019535323A (en) * 2016-11-15 2019-12-12 レグロー バイオサイエンシズ プライベート リミティッド Preparation method of buccal epithelial cell suspension and use thereof
CN108795759B (en) * 2018-07-03 2021-08-06 大连理工大学 Microfluidic system and method for cell scratch repair experiment with shear stress and chemotactic factor quantitative regulation
WO2021050552A1 (en) * 2019-09-09 2021-03-18 The Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Method of treating or repairing an abdominal wall opening
US20220025317A1 (en) * 2020-07-22 2022-01-27 Avita Medical Pty Limited Devices, methods, and kits for preparing a cell suspension
CN112961820A (en) * 2021-02-04 2021-06-15 王忠坤 Method and device for collecting, extracting and preparing cell suspension of skin tissue

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139031A (en) * 1989-09-18 1992-08-18 La Mina Ltd. Method and device for cytology and microbiological testing
US5571083A (en) * 1994-02-18 1996-11-05 Lemelson; Jerome H. Method and system for cell transplantation
EP0809976A2 (en) * 1996-05-29 1997-12-03 Udo Heisig GmbH Tubular foil cover for medical use
US20020082692A1 (en) * 1998-11-30 2002-06-27 Isotis N.V. Artificial skin
US20030202965A1 (en) * 1999-12-06 2003-10-30 Biotissue Technologies Ag Methods and compositions for the preparation of cell transplants
US7628780B2 (en) * 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US8157817B2 (en) * 2000-07-21 2012-04-17 Atropos Limited Surgical instrument

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1356794A (en) * 1919-12-27 1920-10-26 Smith John Thomas Skid-oiler
US3647632A (en) * 1968-04-11 1972-03-07 Little Inc A Apparatus for cell culture
US3608553A (en) * 1969-09-04 1971-09-28 Ultrasonic Systems Ultrasonic method and apparatus for tissue grafting
JPS497414A (en) * 1972-05-24 1974-01-23
US4059486A (en) * 1976-11-03 1977-11-22 Monsanto Company Cell culture process
US4377010A (en) * 1978-11-08 1983-03-22 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Biocompatible material comprising a base polymer bulk graft polymerized with an ethylenically unsaturated carboxylic acid
FR2461002A1 (en) * 1979-07-13 1981-01-30 Inst Nat Sante Rech Med METHOD FOR STIMULATING THE GROWTH OF HUMAN EPIDERMIC CELLS AND PRODUCTS USING THE SAME
US4254226A (en) * 1979-09-13 1981-03-03 Sloan Kettering Institute For Cancer Research Process for growing human epidermal cells in tissue culture
US4304866A (en) * 1979-11-14 1981-12-08 Massachusetts Institute Of Technology Transplantable sheets of living keratinous tissue
US4350768A (en) * 1980-09-19 1982-09-21 Bristol Myers Company Method for preparing single cell suspension
US4510144A (en) * 1981-08-26 1985-04-09 Newport Pharmaceuticals International Methods of imparting immunomodulating activity with dihydrothiazolo purine derivatives
US4418691A (en) * 1981-10-26 1983-12-06 Massachusetts Institute Of Technology Method of promoting the regeneration of tissue at a wound
US4458678A (en) 1981-10-26 1984-07-10 Massachusetts Institute Of Technology Cell-seeding procedures involving fibrous lattices
US5328695A (en) * 1983-03-22 1994-07-12 Massachusetts Institute Of Technology Muscle morphogenic protein and use thereof
US4649115A (en) * 1983-03-31 1987-03-10 Sloan-Kettering Institute Monoclonal antibodies to skin cells
US4769317A (en) * 1983-06-14 1988-09-06 Hefton John M Process for growing human epidermis, product thereof
US5000963A (en) * 1983-06-14 1991-03-19 Hefton John M Method of treating the skin using human epidermal sheets
US5441539A (en) * 1985-06-06 1995-08-15 Thomas Jefferson University Endothelial cell deposition device
US5035708A (en) * 1985-06-06 1991-07-30 Thomas Jefferson University Endothelial cell procurement and deposition kit
US5460939A (en) * 1986-04-18 1995-10-24 Advanced Tissue Sciences, Inc. Temporary living skin replacement
US5079160A (en) * 1987-06-08 1992-01-07 Lacy Paul E Method to isolate clusters of cell subtypes from organs
US5015584A (en) * 1987-10-14 1991-05-14 Board Of Regents, The University Of Texas System Epidermal graft system
JPH0372872A (en) 1988-07-12 1991-03-28 Bio Kagaku Kenkyusho:Kk Serum-free culture medium and method for culturing cell of mammals using the same
GB8816516D0 (en) * 1988-07-12 1988-08-17 Welsh Water Authority Portable incubator and incubating kit
US5292655A (en) * 1990-01-29 1994-03-08 Wille Jr John J Method for the formation of a histologically-complete skin substitute
EP0444270A1 (en) * 1990-02-26 1991-09-04 Thomas Jefferson University Endothelial cell deposition device
US5145770A (en) * 1990-06-04 1992-09-08 Biosurface Technology, Inc. Cryopreservation of cultured epithelial sheets
CA2106955C (en) * 1991-03-26 2003-05-06 Robert E. Burgeson Product and method for improving keratinocyte adhesion to the dermis
US5556783A (en) * 1991-03-27 1996-09-17 Trustees Of Univ. Of Penna Methods of culturing and modulating the growth of hair follicular stem cells
DE69231063T2 (en) * 1991-11-20 2001-01-11 Innogenetics Nv LERATES OF KERATINOCYTES FOR USE AS A MEDICINE FOR Wounds.
JPH07505887A (en) * 1992-04-17 1995-06-29 アボツト・ラボラトリーズ Taxol derivative
US5955343A (en) * 1992-12-28 1999-09-21 Massachusetts Institute Of Technology Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor
US5624638A (en) * 1993-05-05 1997-04-29 Davcotech, Inc. Modular laboratory equipment and coupling system
US5507385A (en) * 1994-08-12 1996-04-16 Rubbermaid Incorporated Multipurpose storage bin
US5518612A (en) * 1994-08-30 1996-05-21 Becton, Dickinson And Company Cell strainer assembly and method of use
US5650317A (en) * 1994-09-16 1997-07-22 Michigan State University Human breast epithelial cell type with stem cell and luminal epithelial cell characteristics
US5851522A (en) 1995-06-07 1998-12-22 Trustees Of Tufts College Enhancing keratinocyte migration
US6238908B1 (en) * 1995-06-07 2001-05-29 Aastrom Biosciences, Inc. Apparatus and method for maintaining and growth biological cells
ES2155166T3 (en) * 1995-12-21 2001-05-01 Nestle Sa IMMORTALIZED LINES OF CELLS DERIVED FROM NORMAL HUMAN CUTANEOUS FABRICS AND GROWTH WITHOUT SERUM, ADAPTED TO YOUR CROP.
US6432666B1 (en) * 1996-05-29 2002-08-13 The Corporation Of The Trustees Of The Sisters Of Mercy In Queensland Dendritic cell receptor
AUPO275296A0 (en) 1996-10-04 1996-10-31 Institute for Research into Tissue Repair, Regeneration and Reconstruction Method for engraftment of cultured cells
AU3990197A (en) * 1996-10-04 1998-04-09 Metropolitan Health Service Board Method of engraftment of cultured cells
IL120909A0 (en) 1997-05-26 1997-09-30 Lrr & D Ltd Compositions and means for the treatment of burns and other cutaneous traumas
US5786207A (en) * 1997-05-28 1998-07-28 University Of Pittsburgh Tissue dissociating system and method
IT1293484B1 (en) 1997-06-11 1999-03-01 Fidia Advanced Biopolymers Srl BIOLOGICAL MATERIAL INCLUDING AN EFFICIENT CELL CULTURE AND A BIOCOMPATIBLE AND BIODEGRADABLE THREE-DIMENSIONAL MATRIX
DK1011699T3 (en) 1997-09-11 2002-03-11 Purdue Research Foundation Galactosidase-modified submucosal tissue
WO1999021963A1 (en) 1997-10-25 1999-05-06 Roche Diagnostics Gmbh Autodegradable microcarriers and their use
US20010048917A1 (en) 1998-03-09 2001-12-06 Warren Hoeffler Skin equivalent and methods of forming and using same
US6080581A (en) * 1998-07-02 2000-06-27 Charles Daniel Anderson Culture vessel for growing or culturing cells, cellular aggregates, tissues and organoids and methods for using same
US6207451B1 (en) * 1998-09-15 2001-03-27 The Regents Of The University Of Michigan Mammalian muscle construct and method for producing same
CA2352810A1 (en) * 1998-12-02 2000-06-08 Bristol-Myers Squibb Company Spray delivery of cells
JP2002537851A (en) 1999-03-09 2002-11-12 アコルディス インダストリアル ファイバース ゲゼルシャフト ミット ベシュレンクテル ハフツング In vitro test method for active substances, device and use thereof
WO2000073413A2 (en) 1999-05-28 2000-12-07 Cepheid Apparatus and method for cell disruption
US7081240B1 (en) 2000-06-28 2006-07-25 Zimmer Orthobiologics, Inc. Protein mixtures for wound healing
US6673603B2 (en) 2000-09-01 2004-01-06 Modex Therapeutiques, S.A. Cell paste comprising keratinocytes and fibroblasts
EP2343079B1 (en) 2001-02-07 2015-03-25 Avita Medical Ltd Cell suspension preparation device
AUPR298901A0 (en) 2001-02-07 2001-03-08 McComb Foundation, Inc., The Cell suspension preparation technique and device
WO2002066598A1 (en) 2001-02-20 2002-08-29 Max-Delbrück-Centrum für Molekulare Medizin System for automatically isolating living cells from animal tissue
US7585670B2 (en) 2001-12-07 2009-09-08 Cytori Therapeutics, Inc. Automated methods for isolating and using clinically safe adipose derived regenerative cells
FI20020197A0 (en) 2002-02-01 2002-02-01 Orion Corp A combination treatment method for acute myocardial infarction
US9144583B2 (en) 2002-03-29 2015-09-29 Tissue Genesis, Inc. Cell separation apparatus and methods of use
US20050026275A1 (en) 2003-06-23 2005-02-03 Andrej Bahoric Device, system and method for receiving, processing and dispersing cells
DK2348103T3 (en) 2003-09-17 2019-09-30 Lorem Vascular Pte Ltd Methods for using regenerative cells to treat peripheral vascular disease and related diseases
JP2007530543A (en) 2004-03-22 2007-11-01 オシリス セラピューティクス,インコーポレイテッド Mesenchymal stem cells and use thereof
US7655465B2 (en) 2004-06-07 2010-02-02 Massachusetts Institute Of Technology Methods for ex vivo propagation of somatic hair follicle stem cells
EP1778293B1 (en) 2004-07-01 2015-04-22 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of musculoskeletal disorders
EP1765980A4 (en) 2004-07-02 2007-12-12 Cytori Therapeutics Inc Systems and methods for isolating and using clinically safe adipose derived regenerative cells
US8568761B2 (en) 2005-07-15 2013-10-29 Cormatrix Cardiovascular, Inc. Compositions for regenerating defective or absent myocardium
US8216528B2 (en) 2005-09-29 2012-07-10 Sysmex Corporation Sample preparation kit, sample preparation container, and sample processing device
CN102389344B (en) 2006-02-07 2015-12-16 脊柱赛特有限公司 Adopt the method that mechanical strain makes human skin fibroblast generation Subchondral drilling break up
US9259445B2 (en) 2006-06-07 2016-02-16 Universidad Tecnica Federico Santa Maria Integrated implant system (IIS) biocompatible, biodegradable and bioactive, comprising a biocompatible sterile porous polymeric matrix and a gel, integrating in situ the tridimensional matrix structure
US20070286880A1 (en) 2006-06-08 2007-12-13 Andrey Vasiliev Inoculated spongiform scaffold for transplantation and tissue regeneration
WO2008086358A1 (en) 2007-01-08 2008-07-17 University Of Southern California Usc Stevens Skin wound healing compositions and methods of use thereof
EP2222234B1 (en) 2007-12-04 2018-01-24 Ingeneron, Inc. Apparatus and methods for cell isolation
JP2011523355A (en) 2008-05-07 2011-08-11 ユーシーエル ビジネス ピーエルシー Biomimetic cell scaffold
CN102203580A (en) 2008-09-17 2011-09-28 高压生物科学公司 Shredder for mechanical disruption by gentle controlled compressive rotation
US9057064B1 (en) 2009-02-25 2015-06-16 Ag-Defense Systems, Inc. Method and apparatus for extracting DNA from a biological sample
AU2010242780B2 (en) 2009-05-01 2016-04-21 Puregraft Llc Systems, methods and compositions for optimizing tissue and cell enriched grafts
US8207118B2 (en) 2009-07-17 2012-06-26 University Of Southern California Skin wound healing compositions and methods of use thereof
US8921103B2 (en) 2009-08-28 2014-12-30 Board Of Regents, The University Of Texas System Laminar construct for tissue-engineered dermal equivalent
FR2950074B1 (en) 2009-09-16 2017-10-06 Oreal IN VITRO SKIN EQUIVALENT AND PROCESS FOR PREPARING THE SAME
US20120264689A1 (en) 2009-10-07 2012-10-18 Genogen, Inc. Methods and compositions for skin regeneration
CN101914495A (en) 2010-07-22 2010-12-15 吉林大学 Culture method for largely amplifying hair follicle stem cells in vitro
US8162247B2 (en) 2010-08-17 2012-04-24 Biomedical Polymers, Inc. Grinding system
US9150826B2 (en) 2011-03-14 2015-10-06 Zymo Research Corporation Portable sample disruptor apparatus, kits, and methods
EP3557251B1 (en) 2011-03-22 2023-09-13 CartiRegen B.V. A cartilage cell processing system
US10934519B2 (en) 2011-07-29 2021-03-02 Global Life Sciences Solutions Usa Llc Systems, methods and control laws for cell harvesting
AU2012303719B2 (en) 2011-08-29 2016-05-26 Stempeutics Research Private Limited A system for isolating stromal vascular fraction (SVF) cells from the adipose tissue and a method thereof
JP6159729B2 (en) 2011-11-08 2017-07-05 オークソセル ラボラトリーズ, インコーポレイテッド System and method for treating cells
DE102012002795A1 (en) 2012-02-15 2013-08-22 Claas Selbstfahrende Erntemaschinen Gmbh Protection device for a cutting unit of a self-propelled combine harvester
EP2828378B1 (en) 2012-03-22 2021-02-17 Avita Medical Ltd Cell suspension and use thereof
FR2991690B1 (en) 2012-06-07 2020-02-28 Laboratoires Genevrier USE OF A HEATER TO PROMOTE A BIOLOGICAL REACTION
AU2013205148B2 (en) 2013-03-14 2014-10-30 AVITA Medical Americas, LLC Systems and methods for tissue processing and preparation of cell suspension therefrom
US10436680B2 (en) 2013-10-15 2019-10-08 Kianoosh Peyvan Capture, disruption, and extraction apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139031A (en) * 1989-09-18 1992-08-18 La Mina Ltd. Method and device for cytology and microbiological testing
US5571083A (en) * 1994-02-18 1996-11-05 Lemelson; Jerome H. Method and system for cell transplantation
EP0809976A2 (en) * 1996-05-29 1997-12-03 Udo Heisig GmbH Tubular foil cover for medical use
US20020082692A1 (en) * 1998-11-30 2002-06-27 Isotis N.V. Artificial skin
US20030202965A1 (en) * 1999-12-06 2003-10-30 Biotissue Technologies Ag Methods and compositions for the preparation of cell transplants
US8157817B2 (en) * 2000-07-21 2012-04-17 Atropos Limited Surgical instrument
US7628780B2 (en) * 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Computer Desktop Encyclopedia, 1981 *
Farlex Partner Medical Dictionary, 2000 *
Saunders Comprehensive Veterinary Dictionary, 2000 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9610430B2 (en) 2006-09-11 2017-04-04 Renovacare Sciences Corp. Cell spraying device, method and sprayed cell suspension
US20110059182A1 (en) * 2008-02-05 2011-03-10 University Of Virginia Patent Foundation Spraying device and related method for cell aggregates and cell aggregate suspension thereof
WO2009100219A1 (en) * 2008-02-05 2009-08-13 University Of Virginia Patent Foundation Spraying device and related method for cell aggregates and cell aggregate suspension thereof
US11077231B2 (en) 2010-05-25 2021-08-03 Muffin Incorporated Methods, substrates, and systems useful for cell seeding of medical grafts
WO2011150055A3 (en) * 2010-05-25 2012-07-12 Cook Biotech Incorporated Methods, substrates, and systems useful for cell seeding of medical grafts
US10071187B2 (en) 2010-05-25 2018-09-11 Cook Biotech Incorporated Methods, substrates, and systems useful for cell seeding of medical grafts
US11173231B2 (en) 2010-05-25 2021-11-16 Muffin Incorporated Methods, substrates, and systems useful for cell seeding of medical grafts
US20130060335A1 (en) * 2011-04-27 2013-03-07 Reinhard Bornemann Device for cell spraying, manufacturing of the device, method for spraying with the device and a cell suspension sprayed with the device
US20170196679A1 (en) * 2011-04-27 2017-07-13 Renovacare Sciences Corp. Device for cell spraying
US10376658B2 (en) * 2011-04-27 2019-08-13 Renovacare Sciences Corp. Device for cell spraying
US9505000B2 (en) * 2011-04-27 2016-11-29 Renovacare Sciences Corp. Device for cell spraying, manufacturing of the device, method for spraying with the device and a cell suspension sprayed with the device
US11135380B2 (en) * 2011-04-27 2021-10-05 Renovacare Sciences Corp. Device for cell spraying
US10399725B2 (en) 2012-07-05 2019-09-03 P.C.O.A. Devices Ltd. Medication dispenser
US10370175B2 (en) 2012-07-30 2019-08-06 P.C.O.A. Devices Ltd. Receptacle for containing and dispensing solid medicinal pills
US10456332B2 (en) 2014-06-22 2019-10-29 P.C.O.A. Devices Ltd. Controlled dosage form-dispensing system
US10952928B2 (en) 2015-04-20 2021-03-23 Dosentrix Ltd. Medication dispenser depilling mechanism
US11264125B2 (en) 2015-10-15 2022-03-01 Dosentrx, Ltd. Image recognition-based dosage form dispensers
US11458072B2 (en) 2015-11-02 2022-10-04 Dosentrx Ltd. Lockable advanceable oral dosage form dispenser containers
US11040363B2 (en) 2016-06-14 2021-06-22 Renovacare Sciences Corp. Modular device for cell spraying
US20190133706A1 (en) * 2016-06-14 2019-05-09 Renovacare Sciences Corp. Disposable apparatus and device with unsterile reusable apparatus for sterile application of a liquid
AU2017286194B2 (en) * 2016-06-14 2022-07-28 Renovacare Sciences Corp. Disposable apparatus and device with unsterile reusable apparatus for sterile application of a liquid

Also Published As

Publication number Publication date
US9029140B2 (en) 2015-05-12
ES2747300T3 (en) 2020-03-10
US20190307550A1 (en) 2019-10-10
US20180098840A1 (en) 2018-04-12
US9078741B2 (en) 2015-07-14
US20150182739A1 (en) 2015-07-02
US10631974B2 (en) 2020-04-28
US20210169636A1 (en) 2021-06-10
EP2957288A1 (en) 2015-12-23
ES2534353T3 (en) 2015-04-21
US20020106353A1 (en) 2002-08-08
US10729536B2 (en) 2020-08-04
AUPR298901A0 (en) 2001-03-08
US20110311497A1 (en) 2011-12-22
US20100196334A1 (en) 2010-08-05
US9867692B2 (en) 2018-01-16
US20110150848A1 (en) 2011-06-23
EP2957288B1 (en) 2019-08-07
EP3632452A1 (en) 2020-04-08
PT2343079E (en) 2015-07-16

Similar Documents

Publication Publication Date Title
US20070042488A1 (en) Cell spraying device, method and sprayed cell suspension
US11135380B2 (en) Device for cell spraying
JP6042377B2 (en) Method for preparing cell suspension and cell suspension
US20170304600A1 (en) Cell spraying device, method and sprayed cell suspension
US20200093952A1 (en) Cell suspension and use thereof
AU2002227802A1 (en) Cell suspension preparation technique and device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: RENOVACARE SCIENCES CORP., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BORNEMANN, REINHARD;GERLACH, JORG C.;SIGNING DATES FROM 20140411 TO 20140415;REEL/FRAME:034611/0793