US20070071896A1 - Alkyl push flow for vertical flow rotating disk reactors - Google Patents

Alkyl push flow for vertical flow rotating disk reactors Download PDF

Info

Publication number
US20070071896A1
US20070071896A1 US10/568,794 US56879403A US2007071896A1 US 20070071896 A1 US20070071896 A1 US 20070071896A1 US 56879403 A US56879403 A US 56879403A US 2007071896 A1 US2007071896 A1 US 2007071896A1
Authority
US
United States
Prior art keywords
gas
carrier
chamber
reactant
reactant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/568,794
Inventor
Michael Murphy
Richard Hoffman
Jonathan Cruel
Lev Kadinski
Jeffrey Ramer
Eric Armour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeco Instruments Inc
Original Assignee
Veeco Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeco Instruments Inc filed Critical Veeco Instruments Inc
Priority to US11/544,075 priority Critical patent/US8980000B2/en
Assigned to VEECO INSTRUMENTS INC. reassignment VEECO INSTRUMENTS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KADINSKI, LEV, ARMOUR, ERIC A., CRUEL, JONATHAN, HOFFMAN, RICHARD, MURPHY, MICHAEL, RAMER, JEFFREY C.
Publication of US20070071896A1 publication Critical patent/US20070071896A1/en
Priority to TW096136935A priority patent/TWI375731B/en
Priority to US14/255,016 priority patent/US9593434B2/en
Priority to US14/618,519 priority patent/US9982362B2/en
Priority to US15/960,785 priority patent/US10364509B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to metal organic chemical vapor phase deposition reactors. More particularly, the present invention relates to rotating disk reactors in which one or more gases are injected onto the surface of a rotating substrate to grow epitaxial layers thereon.
  • Vertical high-speed rotating disk reactors in which the gas or gases are injected downwardly onto a substrate surface rotating within a reactor, are frequently employed for metal organic chemical vapor deposition (MOCVD).
  • MOCVD metal organic chemical vapor deposition
  • Vertical disk-type CVD reactors in particular, have been found useful for wide varieties of epitaxial compounds, including various combinations of semiconductor single films and multilayered structures such as lasers and LED'S.
  • one or more injectors spaced above a substrate carrier provide a predetermined gas flow, which upon contact with the substrate, deposits layers of epitaxial material on the surface of the substrate.
  • rotating disk reactors employ several injectors spaced above the substrate.
  • the injectors are typically spaced above the wafer in various positions along one or more radial axes of the wafer, relative to the central axis of the substrate carrier.
  • the rate of source reactant material injected into the reactor varies from injector to injector to permit the same molar quantity of reactant to reach the surface of the substrate.
  • some reactant injectors may have different gas velocities than others. This variation in reactant velocity is, in pertinent part, due to the relative placement of the injectors.
  • the injectors near the outer edge of the carrier cover a larger region of surface area on the carrier than the injectors closer to the center of the carrier in any given time period.
  • the outer injectors typically employ a greater gas velocity of reactant than the inner injectors in order to maintain desired uniformity.
  • individual injector gas velocities may differ by a factor of as much as three to four between adjacent injectors.
  • a reactor according to this aspect of the invention preferably includes a chamber and a substrate carrier mounted for movement within the chamber, most preferably for rotational movement about an axis.
  • the substrate carrier is adapted to hold one or more substrates, most preferably so that surfaces of the substrates to be treated lie substantially perpendicular to the axis.
  • the reactor according to this aspect of the invention desirably includes a gas stream generator arranged to deliver one or more gas streams within the chamber directed toward the substrate carrier at a substantially uniform velocity.
  • the gas stream generator most preferably is arranged so that the one or more gas streams include a carrier gas and a reactant gas, and so that different portions of the one or more gas streams contain different concentrations of the reactant gas.
  • the gas stream generator desirably is arranged to supply said one or more gas streams with different concentrations of the reactant gas at different radial distances from the axis.
  • the gas directed towards a portion of the substrate carrier near the axis desirably includes a relatively large concentration of the carrier gas and a relatively small concentration of the reactant gas, whereas the gas directed towards a portion of the substrate carrier desirably includes a high concentration of the reactant gas.
  • the gas stream generator may include a plurality of gas inlets communicating with the chamber at different distances from the axis, as well as one or more sources of a reactant gas connected to the inlets and one or more sources of a carrier gas connected to at least one of inlets.
  • a further aspect of the invention includes methods of treating substrates.
  • a method according to this aspect of the invention desirably includes rotating a substrate support about an axis while supporting one or more substrates to be treated on the support so that surfaces of the substrates lie substantially perpendicular to said axis.
  • the method further includes introducing a reactant gas and a carrier gas into the chamber so that said gases flow within said chamber toward the surfaces in one or more streams having substantially uniform velocity at different radial distances from said axis.
  • the one or more gas streams are arranged so that different portions of the substrate surfaces at different radial distances from the axis receive substantially the same amount of said reactant gas per unit time per unit area.
  • the step of introducing the carrier gas and reactant gas includes mixing at least some of the reactant gas with the carrier gas so that gas flowing toward radially outward portions of the substrate surfaces has a higher concentration of the reactant gas than gas flowing toward radially inward portions of the surfaces, close to the axis.
  • Preferred reactors and methods according to the foregoing aspects of the invention can provide uniform distribution of the reactant gas over the treatment surface of a substrate carrier, such as over the surface of a rotating disk substrate carrier, while avoiding turbulence caused by differing reactant gas velocities.
  • FIG. 1A is a schematic view depicting a reactor according to one embodiment of the present invention.
  • FIG. 1B is a top plan view of a substrate carrier used in the embodiment of FIG. 1A .
  • FIG. 2 is a fragmentary sectional elevational view depicting a reactor according to another embodiment of the invention.
  • FIG. 3 is a fragmentary view along line 3 - 3 in FIG. 2 .
  • FIG. 4 is a fragmentary bottom plan view of a plate used in a reactor according to a further embodiment of the invention.
  • FIG. 5A is a fragmentary sectional elevational view depicting a reactor according to yet another embodiment of the invention.
  • FIG. 5B is a sectional view along line 5 B- 5 B in FIG. 5A .
  • FIGS. 6, 7 and 8 are view similar to FIG. 4 but depicting portions of plates used in reactors according to additional embodiments of the invention.
  • An apparatus includes a reaction chamber 1 and a substrate carrier 2 .
  • the chamber includes a top wall 16 and an exhaust port 11 .
  • the substrate carrier 2 is mounted within the chamber 1 for rotation about a central axis 14 and connected to a rotary drive system 12 so that the substrate carrier 2 can be rotated around the axis 14 .
  • the substrate carrier 2 defines a treatment surface 18 in the form of a generally planar disc perpendicular to axis 14 and facing toward top wall 16 . Only a portion of such surface 18 is depicted in FIG. 1 .
  • the reaction chamber 1 is equipped with other conventional elements (not shown) for facilitating the desired epitaxial growth reaction as, for example, a heating system for maintaining the substrate carrier at an elevated temperature, temperature monitoring devices and pressure monitoring devices.
  • a heating system for maintaining the substrate carrier at an elevated temperature
  • temperature monitoring devices for example, temperature monitoring devices
  • pressure monitoring devices for example, temperature monitoring devices
  • These features of the apparatus may be of the type used in reactors sold under the trademark TURBODISC® by the Emcore Corporation of Somerset, N.J.
  • the reactor has a plurality of gas stream inlets 8 a - 8 d communicating with the interior of the chamber through top wall 16 .
  • each inlet is in the form of a single port directed downwardly in a direction parallel to central axis 14 towards the treatment surface 18 of the carrier, and the port of each inlet is of the same size.
  • Gas stream inlets 8 a - 8 d are arranged along a common plane which extends radially from central axis 14 .
  • the common plane is a plane defined by axis 14 and a radial line 17 extending perpendicular to axis 14 .
  • the gas stream inlets 8 a - 8 d are spaced apart from one another, for example, by a uniform spacing distance h in the radial direction. Each inlet 8 is aligned with a different annular zone of treatment surface 18 .
  • outermost or first inlet 8 a is aligned with an outermost zone 10 a furthest from axis 14 ;
  • inlet 8 b is aligned with the next zone 10 b ;
  • inlet 8 c is aligned with zone 10 c , and inlet 8 d is aligned with the innermost zone 10 d , closest to axis 14 .
  • zone borders are indicated by broken lines in FIG. 1 for clarity of illustration, these zones typically are not delineated by visible features of the substrate carrier.
  • the reactor includes a plurality of reaction gas sources 6 a - 6 d , each such source being adapted to supply a reaction gas at a predetermined mass flow rate. Any device capable of providing the reaction gas at a predetermined rate may be used.
  • each reaction gas source 6 a - 6 d is a flow restricting device, and all of the sources are connected to a common supply 4 of the reaction gas as, for example, a tank holding such gas under pressure.
  • the flow restricting device incorporated in each gas sources 6 a - 6 d may include any conventional flow control structure such as a fixed orifice, a manually adjustable valve or an automatically-controlled valve linked to a feedback control system (not shown) or a metering pump.
  • each reactant gas source may include a separate evaporator arranged to control the rate of vaporization, or else each gas source may include a flow restricting device as discussed above, all of these being connected to a common evaporator.
  • the reactant gas may be any gas, vapor, or material desired to be injected into the reactor to participate in the deposition of a substrate within the reactor. More particularly, the reactant gas may be any gas which is suitable for treating the substrate surface.
  • the reactant gas includes one or more constituents of the semiconductor to be grown.
  • the reactant gas may include one or more metal alkyls for deposition of a compound semiconductor.
  • the reactant gas may be a mixture of plural chemical species, and may include inert, non-reactive components. Where the desired reaction includes etching of a substrate surface, the reactant gas may include a constituent reactive with the material of the substrate surface.
  • the types of material systems to which the present invention can be applied can include, for example, epitaxial growth of Group mn-v semiconductors such as GaAs, GaP, GaAs 1 ⁇ x , P x , Ga 1 ⁇ y Al y As, Ga 1 ⁇ y In y As, AlAs, InAs, InP, InGaP, InSb, GaN, InGaN, and the like.
  • Group mn-v semiconductors such as GaAs, GaP, GaAs 1 ⁇ x , P x , Ga 1 ⁇ y Al y As, Ga 1 ⁇ y In y As, AlAs, InAs, InP, InGaP, InSb, GaN, InGaN, and the like.
  • the invention can also be applied to other systems.
  • Group II-VI compounds such as ZnSe, CdTe, HgCdTe, CdZnTe, CdSeTe, and the like
  • Group IV-IV compounds such as SiC, diamond, and SiGe
  • oxides such as YBCO, BaTiO, MgO 2 , ZrO, SiO 2 , ZnO and ZnSiO
  • metals such as Al, Cu and W.
  • the resultant materials will have a wide range of electronic and optoelectronic applications, including high brightness light emitting diodes (LED's), lasers, solar cells, photocathodes, HEMT's and MESFET's.
  • Carrier gas sources 7 a - 7 d are also provided.
  • the carrier gas sources 7 a - 7 d may be similar in structure to the reaction gas sources, and may be connected to a common supply 5 of a carrier gas.
  • Each gas stream inlet 8 a - 8 d is connected to one reaction gas source 6 a - 6 d and to one carrier gas source 7 a - 7 d .
  • inlet 8 a is connected to reaction gas source 6 a and carrier gas source 7 a
  • inlet 8 d is connected to reaction gas source 6 d and carrier gas source 7 d.
  • the carrier gas may be any carrier desired which does not participate in the deposition reaction in the chamber given the reactant gasses to be applied to the substrate, such as an inert gas or a non-participating gas in the reaction, or, alternatively the carrier gas may be, for example, itself a reactant gas which serves as a non rate limiting participant in a reaction and thus may be provided in any desired quantity so long as such quantity is in excess of a rate limiting quantity in the reactor at the desired temperature, pressure and conditions of reaction.
  • the carrier gas may be any carrier desired which does not participate in the deposition reaction in the chamber given the reactant gasses to be applied to the substrate, such as an inert gas or a non-participating gas in the reaction, or, alternatively the carrier gas may be, for example, itself a reactant gas which serves as a non rate limiting participant in a reaction and thus may be provided in any desired quantity so long as such quantity is in excess of a rate limiting quantity in the reactor at the desired temperature, pressure and conditions of reaction.
  • substrates 3 in the form of flat, thin discs are disposed on the treatment surface 18 of the substrate carrier 2 so that the substrates 3 overlay the treatment surface 18 and so that the surfaces of the substrates 3 to be treated face upwardly, toward top wall 16 .
  • the exposed surfaces of the substrate 3 are coplanar or nearly coplanar with the surrounding portions of the treatment surface.
  • a substrate 3 in the form of a relatively thin wafer placed on a treatment surface 18 will have an exposed, upwardly facing surface elevated above the surrounding portions of the treatment surface 18 by only the thickness of the wafer 3 .
  • the treatment surface 18 of the substrate carrier 2 may include pockets or depressions having a depth approximately equal to the thickness of the wafer (not shown).
  • the reaction gas sources 6 a - 6 d and carrier gas sources 7 a - d are actuated to supply gasses to inlets 8 a - 8 d .
  • the reactant gas 4 and carrier gas 5 supplied to each inlet mix to form a combined gas stream 9 a - 9 d issuing from each inlet 8 a - 8 d .
  • the gas streams 9 a - 9 d issuing from the inlets flow downwardly into the chamber, in the axial direction parallel to axis 14 , and impinge on the treatment surface and on the exposed surfaces of the substrates 3 .
  • stream 9 a issuing from inlet 8 a impinges predominantly on innermost zone 10 a
  • streams 9 b , 9 c and 9 d impinge predominantly on zones 10 b , 10 c and 10 d , respectively.
  • the streams 9 a - 9 d merge with one another to form a substantially continuous, radially elongated stream or curtain of gas flowing towards the substrate carrier
  • the individual streams 9 a - 9 d of from the various inlets 8 a - 8 d pass to different zones 10 a - 10 d of the treatment surface 18 .
  • the gas impinging on innermost zone 10 d of the treatment surface 18 is composed principally of gas in stream 9 d from inlet 8 d
  • the gas impinging on zone 10 b is composed principally of gas in stream 9 b from inlet 8 b , and so on.
  • all regions 10 a - 10 d of the treatment surface 18 should be provided with equal amounts of reactant gas 4 per unit area of treatment surface per unit time.
  • the zones 10 a - 10 d supplied by the various gas outlets are of unequal area.
  • zone 10 a adjacent the periphery of the treatment surface, has a larger surface area than zone 10 d , adjacent the axis. Accordingly, the reactant gas flow rates provided by sources 6 a - 6 d are selected to provide different flow rates of reactant gas in the streams 9 a - 9 d issuing from the various inlets 8 a - 8 d .
  • the flow rates referred to in this discussion are molar flow rates.
  • the molar flow rate represents the number of molecules of gas (or atoms in a monatomic gas) per unit time.
  • Source 6 a is arranged to supply reactant gas at a relatively large flow rate to inlet 8 a for stream 9 a
  • soirce 6 d is set to supply reactant gas at a relatively small flow rate to inlet 8 d for stream 9 d.
  • Sources 6 b and 6 c supply the reactant gas at intermediate flow rates. Stated another way, the reactant gas flow rate increases in direct relation to the distance between the central axis 14 of rotation for the substrate carrier 2 of the reactor 1 and the gas inlet 8 a - 8 d to be supplied with reactant gas.
  • Carrier gas sources 7 a - 7 d are set to supply the carrier gas 5 at different flow rates to the various inlets 8 a - 8 d .
  • the flow rates of the carrier gas are selected so that the velocities of the various streams 9 a - 9 d will be equal to one another.
  • the volumetric flow rate of the streams 9 a - 9 d issuing from each inlet 8 a - 8 d should be equal.
  • the volumetric flow rate of the gas in each stream is directly proportional to the total molar flow rate in the strean, i.e., to the sum of the reactant gas molar flow rate and the carrier gas molar flow rate.
  • the carrier gas molar flow rate supplied by source 7 d to inlet 8 d must be greater than the carrier gas molar flow rate supplied by source 7 a to inlet 8 a .
  • the greater carrier gas flow rate supplied to inlet 8 d and incorporated in stream 9 d compensates for the smaller reactant gas flow rate from reactant gas source 6 d relative to that provided by reactant gas source 6 a to inlet 8 a.
  • the various streams have the same total volumetric flow rate but different concentrations of reactant gas.
  • Stream 9 a impinging on the largest zone 10 a has the highest reactant gas flow rate, and the lowest carrier gas flow rate, whereas stream 9 d impinging on the smallest zone 10 d has the lowest reactant gas concentration, and hence the highest carrier gas flow rate.
  • Bars 13 a - 13 d in FIG. 1 This arrangement is indicated graphically by bars 13 a - 13 d in FIG. 1 .
  • the overall length C of bar 13 d represents the total molar flow rate or volumetric flow rate of stream 9 d issuing from inlet 8 d.
  • the length of the darkened portion of this bar represents the reactant gas molar flow rate vain the stream, whereas the white portion of the bar represents the carrier gas molar flow rate ia in the same stream 9 d.
  • Bars 13 a, 13 b and 13 c similarly represent the composition and flow rate of streams 9 a , 9 b and 9 c respectively.
  • bars 13 a, 13 b and 13 c represent the progressively greater reactant gas molar flow rates v c , v b and v a and progressively lower carrier gas molar flow rates i c , i b , i a in streams 9 c , 9 b and 9 a .
  • the exposed surfaces of the wafer 3 at all portions of the treatment surface 18 receive substantially the same amount of reactant gas per unit time per unit area.
  • the reaction thus proceds at a substantially uniform rate over all of the exposed wafer surfaces 3 .
  • the reaction involves deposition of a layer such as epitaxial growth, the deposited layer grows at a substantially uniform rate on the various exposed surfaces.
  • the system can be varied to deliver unequal amounts of reactant gas per unit surface area per unit time.
  • the gas flow pattern within the reactor may include some flow in the radially outward direction, away from axis 14 at or near the treatment surface. Such flow may tend to carry some unreacted reactant gas from the innermost zone 10 d toward the outermost zone 10 a.
  • the gas sources can be adjusted to deliver slightly more reactant gas to the innermost zone, as by increasing the reactant gas concentration in innermost stream 9 d above that which would be required to achieve exactly equal reactant gas flow per unit time. In this case, the reactant gas flow and reactant gas concentration will not be exactly proportional to radial distance from axis 14 .
  • the system still uses multiple gas streams of differing concentration but the same velocity to provide a downwardly or axially flowing gas curtain having substantially uniform velocity but unequal reactant gas concentration at different radial locations.
  • the reactant gas concentration in the gas stream from the outermost inlet 8 a may be 100%, so that the downwardly-flowing gas impinging on the outermost zone consists entirely of the reactant gas, with no carrier gas.
  • carrier gas source 7 a associated with inlet 8 a may be omitted.
  • the principles discussed above can be applied with more or fewer gas inlets directed onto more or fewer zones.
  • the gas stream inlets are not disposed in a radial plane on one side of the axis of rotation as discussed above with reference to FIG. 1 .
  • the outermost gas inlet 108 a is disposed on one side of the axis of rotation 114 of substrate carrier 102 , and at a large radial distance from the axis, whereas the next gas inlet 108 b lies on the opposite side of axis 114 but at a lesser radial distance from the axis.
  • Inlets 108 c and 108 d also lie on opposite sides of the axis along a common diameter 219 ( FIG. 3 ).
  • the different gas streams 109 a - 109 d impinge on different zones of treatment surface 118 having different areas.
  • the carrier gas flows from carrier gas sources 107 a - 107 d and the reactant gas flows from reactant gas sources 106 a - 106 d are selected in the same manner as described above, so as to provide gas streams 109 a - 109 d with different reactant gas concentrations and flow rates, but with the same velocity.
  • the gas inlets may be provided as two complete sets, one on each side of the central axis, each such set including a full complement of gas inlets adapted to direct gas onto all of the zones of the treatment surface. More than two sets of gas inlets may be provided as, for example, four sets disposed on two diameters.
  • the various gas inlets 36 a 36 g may be distributed along different radii 17 a - 17 g , and at different radial distances from the central axis 114 .
  • each gas stream is formed by mixing carrier gas and reactant gas prior to introducing the mixed gases into the reaction chamber.
  • the innermost gas inlet 208 d includes two separate ports opening through reactor top wall 216 : a reactant gas port 230 d and a carrier gas port 232 d.
  • the reactant gas port 230 d is connected to a reactant gas source 206 d, whereas the carrier gas port 232 d is connected to a carrier gas source 207 d .
  • Ports 230 d and 232 d are disposed adjacent to one another, so that the carrier gas introduced through port 232 d merges with the reactant gas introduced through port 230 d just after the gases enter the interior of reaction chamber 201 , and form a combined gas stream passing downwardly onto the associated zone of treatment surface 218 .
  • Each of the other inlets 208 a - 208 c is constituted by a similar pair of ports, and operates in the same manner.
  • the apparatus of FIGS. 5A and 5B also includes a porous plate 215 mounted within reaction chamber 210 , between top wall 216 and the treatment surface.
  • a porous plate can include, for example, a wire mesh screen supported by a set of coolant conduits.
  • the porous plate has an upstream or inlet side facing toward the top wall 216 , and has a downstream side facing toward substrate carrier 202 (toward the bottom of the drawing in FIG. 5A ).
  • the porous plate 215 is spaced from the top wall.
  • a set of barrier walls 250 extend between the top wall 216 and the porous plate 215 in the vicinity of inlets 208 a - 208 d.
  • the barrier walls 250 subdivide the space upstream of the porous plate into spaces 254 a - 254 d.
  • Each gas inlet 208 a - 208 d opens into one such space.
  • Additional walls 256 separate spaces 254 a - 254 d from other spaces 258 ( FIG. 5B ) disposed upstream of the porous plate.
  • the carrier gas and reactin gas provided through each inlet mix within the space 254 associated with that inlet, and pass through a region of the porous plate aligned with such space.
  • the combined gasses provided by inlet 208 d including reactant gas from port 230 d and carrier gas from port 232 d, passes downstream through a region of the porous plate 215 , and passes from the downstream side of the injection plate to the treatment surface as a stream 209 d , so that this stream impinges principally on the innermost region 210 d of the treatment surface 218 .
  • the gases from inlets 208 c, 208 b and 208 d mix in spaces 254 c, 254 b and 254 a , respectively, to form streams 209 c, 209 b and 209 a, which impinge on other regions of the treatment surface.
  • the individual streams are depicted separately in FIG. 5A for clarity of illustration, in actuality the streams spread radially and merge with one another enroute from the porous plate 215 to the treatment surface.
  • the flow rates of the carrier gas and reaction gas supplied by each of the gas sources are selected so that the total flow rate in each stream 209 , and hence the velocity of each stream, is substantially equal, but the concentration of reactant gas in the various streams is unequal.
  • additional sets of inlets 208 ′ for the carrier gas and reaction gas may be provided at other locations spaced circumferentially around central axis 214 . Each such set is arranged in the same manner as inlets 208 a - 208 d.
  • other gases used in the growth process can be introduced through additional inlets (not shown) connected to additional spaces 258 . Such other gases can be introduced at the same time as the carrier gas and reactant gas, or at other times, during other stages of the process.
  • a similar porous plate may be used with inlets such as those discussed above with reference to FIGS. 1A and 2 .
  • the ports constituting the inlets act to control the amounts of gases in each gas steam.
  • the outermost gas inlet 308 a includes a reaction gas port 330 a and a carrier gas port 332 a
  • each of the other gas inlets 308 b, 308 c and 308 d includes a similar pair of ports.
  • the ports constituting each gas inlet are disposed adjacent to one another. The ports are arranged along a common radial line 317 .
  • All of the reaction gas ports 330 a, 330 b, 330 c and 330 d are connected to a common conduit 306 which in turn is connected to a supply of reactant gas, so that all of the reactin gas ports are supplied with the reaction gas at substantially the same pressure.
  • all of the carrier gas ports 332 a, 332 b, 332 c and 332 d are connected to a common conduit 307 , which in turn is connected to a supply of the carrier gas, so that all of the carrier gas ports are supplied with the carrier gas at substantially the same pressure.
  • the sizes of the ports, and hence the flow resistances of the ports differ.
  • Reactant gas port 330 a of the outermost gas inlet 308 a is relatively large, and has relatively low flow resistance, whereas carrier gas port 332 a of the outermost gas inlet is relatively small, and hence has high flow resistance. Accordingly, the gas stream issuing from these ports and hence from gas inlet 308 a will incorporate a large proportion of reactant gas and a small proportion of carrier gas. Conversely, reactant gas port 330 d of the innermost gas inlet 308 d is relatively small, and has high flow resistance, whereas the carrier gas port 332 d of the same inlet is relatively large, and has high flow resistance. The gas stream issuing from inlet 308 d will have a relatively large proportion of carrier gas. As will be appreciated with reference to FIG.
  • the sizes of the reactant gas ports 330 increase progressively in the radially outward direction, away from axis 314 , ie., in the direction from the smallest zone of the treatment surface to the largest zone, so that the flow resistance of the reactant gas ports decreases progressively in this direction.
  • the flow resistance of the carrier gas ports increases progressively in the same direction.
  • the apparatus thus will provide gas streams having substantially the same total flow rate (carrier gas plus reactant gas) but differing concentrations of reactant gas, impinging on the differing zones of the treatment surface.
  • Plural sets of ports as described above can be provided along numerous radial lines, so as to provide a plurality of such streams around the circumference of the chamber.
  • FIG. 7 the separate ports and inlets of are replaced by a carrier gas passage 432 and reactant gas passage 430 extending through top plate 416 .
  • the downstream ends of these passages are visible in FIG. 7 .
  • the passages are disposed side-by-side.
  • Carrier gas passage 432 is connected to carrier gas conduit 407
  • reactant gas passage 430 is connected to a reactant gas conduit 406 .
  • Conduits 407 and 406 are connected to supplies of carrier gas and reactant gas, respectively.
  • the carrier gas passage 432 has a width w 432 which decreases progressively in the radially outward direction away from axis 414 .
  • the resistance of the carrier gas passage to flow of the carrier gas in the downstream direction of the passage increases progressively in the radially outward direction.
  • the reactant gas passage has a width w 430 which increases progressively in the radially outward direction, so that the resistance of the reactant gas passage to downstream flow of reactant gas decreases progressively in the radially outward direction.
  • a relatively large amount of reactant gas passes through the radially outer portion of the reactant gas passage 430 whereas a relatively small amount of carrier gas passes through the radially outer portion of carrier gas passage 432 .
  • a small amount of reactant gas and a large amount of carrier gas pass through the radially inner portions of the passages.
  • the carrier and reactant gases merge to form a gas stream passing downstream (in the direction out of the plane of the drawing in FIG. 7 ), such gas stream having a substantially constant total flow rate per unit radial distance and substantially constant velocity at all radial locations but having progressively increasing reactant gas concentration in the radially outward direction.
  • a reactor according to a further embodiment of the invention shown in FIG. 8 , has a reactant gas passage 530 and carrier gas passage 532 similar to the passages discussed above with reference to FIG. 7 . In the reactor of FIG. 8 , however, the passages have constant width over their radial extent.
  • Reactant gas passage 530 is filled with a mesh or other porous structure 531 having progressively increasing porosity in the radially outward direction, away from axis 514 . Accordingly, the resistance of passage 530 to downstream flow of reactant gas decreases in the radially outward direction.
  • the carrier gas passage 532 is filled with a porous structure 533 having progressively decreasing porosity, and hence progressively increasing flow resistance, in the radially outward direction. The net effect is the same as discussed with reference to FIG. 7 .
  • Other features of the passageways can be varied to achieve similar variations in flow resistance along the radial extent of the passageways.
  • the passageways can include baffles or partial obstructions disposed at various radial locations.
  • each passage can have different lengths, in the downstream direction of the passage, at its inner and outer edges.
  • the thickness of the plate can vary in the radial direction so as to vary the length of the passage, and hence the flow resistance of the passage, in the radial direction.
  • the present invention is applicable to the electronics manufacturing industry and where it is desired to manufacture electronics components in large number through the epitaxial growth of materials thereon.
  • the present invention is applicable to, for example, vertical disk reactors for the epitaxial growth of materials on silicon wafers for electronics components.

Abstract

In a rotating disk reactor (1) for growing epitaxial layers on substrate (3), gas directed toward the substrates at different radial distances from the axis of rotation of the disk has substantially the same velocity. The gas directed toward portions of the disk remote from the axis (10 a) may include a higher concentration of a reactant gas (4) than the gas directed toward portions of the disk close to the axis (10 d), so that portions of the substrate surfaces at different distances from the axis (14) receive substantially the same amount of reactant gas (4) per unit area. A desirable flow pattern is achieved within the reactor while permitting uniform deposition and growth of epitaxial layers on the substrate.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to metal organic chemical vapor phase deposition reactors. More particularly, the present invention relates to rotating disk reactors in which one or more gases are injected onto the surface of a rotating substrate to grow epitaxial layers thereon.
  • BACKGROUND OF THE INVENTION
  • Vertical high-speed rotating disk reactors, in which the gas or gases are injected downwardly onto a substrate surface rotating within a reactor, are frequently employed for metal organic chemical vapor deposition (MOCVD). Vertical disk-type CVD reactors, in particular, have been found useful for wide varieties of epitaxial compounds, including various combinations of semiconductor single films and multilayered structures such as lasers and LED'S. In these reactors, one or more injectors spaced above a substrate carrier provide a predetermined gas flow, which upon contact with the substrate, deposits layers of epitaxial material on the surface of the substrate.
  • For larger wafers, rotating disk reactors employ several injectors spaced above the substrate. The injectors are typically spaced above the wafer in various positions along one or more radial axes of the wafer, relative to the central axis of the substrate carrier. Frequently, the rate of source reactant material injected into the reactor varies from injector to injector to permit the same molar quantity of reactant to reach the surface of the substrate. Hence, some reactant injectors may have different gas velocities than others. This variation in reactant velocity is, in pertinent part, due to the relative placement of the injectors. As the reactor carrier holding the substrate rotates at a predetermined rate, the injectors near the outer edge of the carrier cover a larger region of surface area on the carrier than the injectors closer to the center of the carrier in any given time period. Thus, the outer injectors typically employ a greater gas velocity of reactant than the inner injectors in order to maintain desired uniformity. For example, individual injector gas velocities may differ by a factor of as much as three to four between adjacent injectors.
  • While this variation in gas velocity helps to ensure a more uniform layer thickness, it may also cause turbulence between the injector flows due to their varying velocities. Also, the risk of side effects such as uneven layer thickness, dissipation of reactant, or premature condensation of reactant may be increased.
  • DISCLOSURE OF THE INVENTION
  • One aspect of the invention provides a reactor. A reactor according to this aspect of the invention preferably includes a chamber and a substrate carrier mounted for movement within the chamber, most preferably for rotational movement about an axis. The substrate carrier is adapted to hold one or more substrates, most preferably so that surfaces of the substrates to be treated lie substantially perpendicular to the axis. The reactor according to this aspect of the invention desirably includes a gas stream generator arranged to deliver one or more gas streams within the chamber directed toward the substrate carrier at a substantially uniform velocity.
  • The gas stream generator most preferably is arranged so that the one or more gas streams include a carrier gas and a reactant gas, and so that different portions of the one or more gas streams contain different concentrations of the reactant gas. Where the substrate carrier is mounted for rotational movement about an axis, the gas stream generator desirably is arranged to supply said one or more gas streams with different concentrations of the reactant gas at different radial distances from the axis. The gas directed towards a portion of the substrate carrier near the axis desirably includes a relatively large concentration of the carrier gas and a relatively small concentration of the reactant gas, whereas the gas directed towards a portion of the substrate carrier desirably includes a high concentration of the reactant gas.
  • The gas stream generator may include a plurality of gas inlets communicating with the chamber at different distances from the axis, as well as one or more sources of a reactant gas connected to the inlets and one or more sources of a carrier gas connected to at least one of inlets.
  • A further aspect of the invention includes methods of treating substrates. A method according to this aspect of the invention desirably includes rotating a substrate support about an axis while supporting one or more substrates to be treated on the support so that surfaces of the substrates lie substantially perpendicular to said axis. The method further includes introducing a reactant gas and a carrier gas into the chamber so that said gases flow within said chamber toward the surfaces in one or more streams having substantially uniform velocity at different radial distances from said axis.
  • The one or more gas streams are arranged so that different portions of the substrate surfaces at different radial distances from the axis receive substantially the same amount of said reactant gas per unit time per unit area. Most preferably, the step of introducing the carrier gas and reactant gas includes mixing at least some of the reactant gas with the carrier gas so that gas flowing toward radially outward portions of the substrate surfaces has a higher concentration of the reactant gas than gas flowing toward radially inward portions of the surfaces, close to the axis.
  • Preferred reactors and methods according to the foregoing aspects of the invention can provide uniform distribution of the reactant gas over the treatment surface of a substrate carrier, such as over the surface of a rotating disk substrate carrier, while avoiding turbulence caused by differing reactant gas velocities.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic view depicting a reactor according to one embodiment of the present invention.
  • FIG. 1B is a top plan view of a substrate carrier used in the embodiment of FIG. 1A.
  • FIG. 2 is a fragmentary sectional elevational view depicting a reactor according to another embodiment of the invention.
  • FIG. 3 is a fragmentary view along line 3-3 in FIG. 2.
  • FIG. 4 is a fragmentary bottom plan view of a plate used in a reactor according to a further embodiment of the invention.
  • FIG. 5A is a fragmentary sectional elevational view depicting a reactor according to yet another embodiment of the invention.
  • FIG. 5B is a sectional view along line 5B-5B in FIG. 5A.
  • FIGS. 6, 7 and 8 are view similar to FIG. 4 but depicting portions of plates used in reactors according to additional embodiments of the invention.
  • MODES FOR CARRYING OUT THE INVENTION
  • An apparatus according to one embodiment of the invention, depicted schematically in FIG. 1, includes a reaction chamber 1 and a substrate carrier 2. The chamber includes a top wall 16 and an exhaust port 11. The substrate carrier 2 is mounted within the chamber 1 for rotation about a central axis 14 and connected to a rotary drive system 12 so that the substrate carrier 2 can be rotated around the axis 14. The substrate carrier 2 defines a treatment surface 18 in the form of a generally planar disc perpendicular to axis 14 and facing toward top wall 16. Only a portion of such surface 18 is depicted in FIG. 1. The reaction chamber 1 is equipped with other conventional elements (not shown) for facilitating the desired epitaxial growth reaction as, for example, a heating system for maintaining the substrate carrier at an elevated temperature, temperature monitoring devices and pressure monitoring devices. These features of the apparatus may be of the type used in reactors sold under the trademark TURBODISC® by the Emcore Corporation of Somerset, N.J.
  • The reactor has a plurality of gas stream inlets 8 a-8 d communicating with the interior of the chamber through top wall 16. In the embodiment of FIG. 1, each inlet is in the form of a single port directed downwardly in a direction parallel to central axis 14 towards the treatment surface 18 of the carrier, and the port of each inlet is of the same size. Gas stream inlets 8 a-8 d are arranged along a common plane which extends radially from central axis 14. The common plane is a plane defined by axis 14 and a radial line 17 extending perpendicular to axis 14. The gas stream inlets 8 a-8 d are spaced apart from one another, for example, by a uniform spacing distance h in the radial direction. Each inlet 8 is aligned with a different annular zone of treatment surface 18. Thus, outermost or first inlet 8 a is aligned with an outermost zone 10 a furthest from axis 14; inlet 8 b is aligned with the next zone 10 b; inlet 8 c is aligned with zone 10 c, and inlet 8 d is aligned with the innermost zone 10 d, closest to axis 14. Although the zone borders are indicated by broken lines in FIG. 1 for clarity of illustration, these zones typically are not delineated by visible features of the substrate carrier.
  • The reactor includes a plurality of reaction gas sources 6 a-6 d, each such source being adapted to supply a reaction gas at a predetermined mass flow rate. Any device capable of providing the reaction gas at a predetermined rate may be used. In the arrangement illustrated, each reaction gas source 6 a-6 d is a flow restricting device, and all of the sources are connected to a common supply 4 of the reaction gas as, for example, a tank holding such gas under pressure. The flow restricting device incorporated in each gas sources 6 a-6 d may include any conventional flow control structure such as a fixed orifice, a manually adjustable valve or an automatically-controlled valve linked to a feedback control system (not shown) or a metering pump. Where the reactant gas is formed by vaporization from the liquid phase, each reactant gas source may include a separate evaporator arranged to control the rate of vaporization, or else each gas source may include a flow restricting device as discussed above, all of these being connected to a common evaporator.
  • The reactant gas may be any gas, vapor, or material desired to be injected into the reactor to participate in the deposition of a substrate within the reactor. More particularly, the reactant gas may be any gas which is suitable for treating the substrate surface. For example, where the desired treatment is growth of a semiconductor layer such as epitaxial growth, the reactant gas includes one or more constituents of the semiconductor to be grown. For example, the reactant gas may include one or more metal alkyls for deposition of a compound semiconductor. The reactant gas may be a mixture of plural chemical species, and may include inert, non-reactive components. Where the desired reaction includes etching of a substrate surface, the reactant gas may include a constituent reactive with the material of the substrate surface.
  • The types of material systems to which the present invention can be applied can include, for example, epitaxial growth of Group mn-v semiconductors such as GaAs, GaP, GaAs1−x, Px, Ga1−y AlyAs, Ga1−yInyAs, AlAs, InAs, InP, InGaP, InSb, GaN, InGaN, and the like. However, the invention can also be applied to other systems. These include Group II-VI compounds, such as ZnSe, CdTe, HgCdTe, CdZnTe, CdSeTe, and the like; Group IV-IV compounds, such as SiC, diamond, and SiGe; as well as oxides, such as YBCO, BaTiO, MgO2, ZrO, SiO2, ZnO and ZnSiO; and metals, such as Al, Cu and W. Furthermore, the resultant materials will have a wide range of electronic and optoelectronic applications, including high brightness light emitting diodes (LED's), lasers, solar cells, photocathodes, HEMT's and MESFET's.
  • Carrier gas sources 7 a-7 d are also provided. The carrier gas sources 7 a-7 d may be similar in structure to the reaction gas sources, and may be connected to a common supply 5 of a carrier gas.
  • Each gas stream inlet 8 a-8 d is connected to one reaction gas source 6 a-6 d and to one carrier gas source 7 a-7 d. For example, inlet 8 a is connected to reaction gas source 6 a and carrier gas source 7 a, whereas inlet 8 d is connected to reaction gas source 6 d and carrier gas source 7 d.
  • The carrier gas may be any carrier desired which does not participate in the deposition reaction in the chamber given the reactant gasses to be applied to the substrate, such as an inert gas or a non-participating gas in the reaction, or, alternatively the carrier gas may be, for example, itself a reactant gas which serves as a non rate limiting participant in a reaction and thus may be provided in any desired quantity so long as such quantity is in excess of a rate limiting quantity in the reactor at the desired temperature, pressure and conditions of reaction.
  • In a method according to one embodiment of the invention, substrates 3 in the form of flat, thin discs are disposed on the treatment surface 18 of the substrate carrier 2 so that the substrates 3 overlay the treatment surface 18 and so that the surfaces of the substrates 3 to be treated face upwardly, toward top wall 16. Desirably, the exposed surfaces of the substrate 3 are coplanar or nearly coplanar with the surrounding portions of the treatment surface. For example, a substrate 3 in the form of a relatively thin wafer placed on a treatment surface 18 will have an exposed, upwardly facing surface elevated above the surrounding portions of the treatment surface 18 by only the thickness of the wafer 3. The treatment surface 18 of the substrate carrier 2 may include pockets or depressions having a depth approximately equal to the thickness of the wafer (not shown).
  • When the substrate carrier 2 and substrates 3 are at the desired temperature for the reaction, and the interior of the chamber 1 is at the desired subatmospheric pressure for the particular reaction to be accomplished, the reaction gas sources 6 a-6 d and carrier gas sources 7 a-d are actuated to supply gasses to inlets 8 a-8 d. The reactant gas 4 and carrier gas 5 supplied to each inlet mix to form a combined gas stream 9 a-9 d issuing from each inlet 8 a-8 d. The gas streams 9 a-9 d issuing from the inlets flow downwardly into the chamber, in the axial direction parallel to axis 14, and impinge on the treatment surface and on the exposed surfaces of the substrates 3. The gas streams 9 a-9 d from different inlets 8 a-8 d impinge on different zones 10 a-10 d of the treatment surface 18. For example, stream 9 a issuing from inlet 8 a impinges predominantly on innermost zone 10 a, whereas streams 9 b, 9 c and 9 d impinge predominantly on zones 10 b, 10 c and 10 d, respectively. Thus, although the streams 9 a-9 d merge with one another to form a substantially continuous, radially elongated stream or curtain of gas flowing towards the substrate carrier, the individual streams 9 a-9 d of from the various inlets 8 a-8 d pass to different zones 10 a-10 d of the treatment surface 18. Stated another way, the gas impinging on innermost zone 10 d of the treatment surface 18 is composed principally of gas in stream 9 d from inlet 8 d, whereas the gas impinging on zone 10 b is composed principally of gas in stream 9 b from inlet 8 b, and so on. As the substrate carrier 2 rotates at a predetermined rotation rate α, different portions of the carrier 2 at different circumferential positions around axis 14 are brought into alignment with the gas streams 9 a-9 d, so that exposure of the treatment surface 18 to the gas streams 9 a-9 d is the same at all circumferential positions.
  • To provide equal reaction rates on the various regions of the exposed substrate 3 surfaces, all regions 10 a-10 d of the treatment surface 18 should be provided with equal amounts of reactant gas 4 per unit area of treatment surface per unit time. However, the zones 10 a-10 d supplied by the various gas outlets are of unequal area. For example, zone 10 a, adjacent the periphery of the treatment surface, has a larger surface area than zone 10 d, adjacent the axis. Accordingly, the reactant gas flow rates provided by sources 6 a-6 d are selected to provide different flow rates of reactant gas in the streams 9 a-9 d issuing from the various inlets 8 a-8 d. Unless otherwise indicated, the flow rates referred to in this discussion are molar flow rates. The molar flow rate represents the number of molecules of gas (or atoms in a monatomic gas) per unit time. Source 6 a is arranged to supply reactant gas at a relatively large flow rate to inlet 8 a for stream 9 a, whereas soirce 6 d is set to supply reactant gas at a relatively small flow rate to inlet 8 d for stream 9 d. Sources 6 b and 6 c supply the reactant gas at intermediate flow rates. Stated another way, the reactant gas flow rate increases in direct relation to the distance between the central axis 14 of rotation for the substrate carrier 2 of the reactor 1 and the gas inlet 8 a-8 d to be supplied with reactant gas.
  • Carrier gas sources 7 a-7 d are set to supply the carrier gas 5 at different flow rates to the various inlets 8 a-8 d. The flow rates of the carrier gas are selected so that the velocities of the various streams 9 a-9 d will be equal to one another. For inlets of the same configuration—which provide streams of equal cross-sectional area—the volumetric flow rate of the streams 9 a-9 d issuing from each inlet 8 a-8 d should be equal.
  • As a first approximation, assuming that the gases are near ideal gases, the volumetric flow rate of the gas in each stream is directly proportional to the total molar flow rate in the strean, i.e., to the sum of the reactant gas molar flow rate and the carrier gas molar flow rate. Thus, to provide streams having equal total molar flow rates and hence equal velocity, the carrier gas molar flow rate supplied by source 7 d to inlet 8 d must be greater than the carrier gas molar flow rate supplied by source 7 a to inlet 8 a. The greater carrier gas flow rate supplied to inlet 8 d and incorporated in stream 9 d compensates for the smaller reactant gas flow rate from reactant gas source 6 d relative to that provided by reactant gas source 6 a to inlet 8 a.
  • Stated another way, the various streams have the same total volumetric flow rate but different concentrations of reactant gas. Stream 9 a impinging on the largest zone 10 a has the highest reactant gas flow rate, and the lowest carrier gas flow rate, whereas stream 9 d impinging on the smallest zone 10 d has the lowest reactant gas concentration, and hence the highest carrier gas flow rate.
  • This arrangement is indicated graphically by bars 13 a-13 d in FIG. 1. The overall length C of bar 13 d represents the total molar flow rate or volumetric flow rate of stream 9 d issuing from inlet 8 d. The length of the darkened portion of this bar represents the reactant gas molar flow rate vain the stream, whereas the white portion of the bar represents the carrier gas molar flow rate ia in the same stream 9 d. Bars 13 a, 13 b and 13 c similarly represent the composition and flow rate of streams 9 a, 9 b and 9 c respectively. The overall lengths C of all bars 13 are equal, but bars 13 a, 13 b and 13 c represent the progressively greater reactant gas molar flow rates vc, vb and va and progressively lower carrier gas molar flow rates ic, ib, ia in streams 9 c, 9 b and 9 a. By supplying the various streams 9 a-9 d at different concentrations of reactant gas but at the same total stream velocity, the system avoids turbulence and other flow irregularities which would be created by streams of different velocities, and yet supplies substantially equal molar flow rates of reactant gas per unt area to the various zones of the of the treatment surface.
  • Thus, the exposed surfaces of the wafer 3 at all portions of the treatment surface 18 receive substantially the same amount of reactant gas per unit time per unit area. The reaction thus proceds at a substantially uniform rate over all of the exposed wafer surfaces 3. For example, where the reaction involves deposition of a layer such as epitaxial growth, the deposited layer grows at a substantially uniform rate on the various exposed surfaces.
  • The system can be varied to deliver unequal amounts of reactant gas per unit surface area per unit time. For example, the gas flow pattern within the reactor may include some flow in the radially outward direction, away from axis 14 at or near the treatment surface. Such flow may tend to carry some unreacted reactant gas from the innermost zone 10 d toward the outermost zone 10 a. To compensate for this effect, the gas sources can be adjusted to deliver slightly more reactant gas to the innermost zone, as by increasing the reactant gas concentration in innermost stream 9 d above that which would be required to achieve exactly equal reactant gas flow per unit time. In this case, the reactant gas flow and reactant gas concentration will not be exactly proportional to radial distance from axis 14. However, the system still uses multiple gas streams of differing concentration but the same velocity to provide a downwardly or axially flowing gas curtain having substantially uniform velocity but unequal reactant gas concentration at different radial locations.
  • In another variant, the reactant gas concentration in the gas stream from the outermost inlet 8 a may be 100%, so that the downwardly-flowing gas impinging on the outermost zone consists entirely of the reactant gas, with no carrier gas. In this instance, carrier gas source 7 a associated with inlet 8 a may be omitted. Also, the principles discussed above can be applied with more or fewer gas inlets directed onto more or fewer zones.
  • In apparatus according to a further embodiment of the invention, seen in FIG. 2 and 3, the gas stream inlets are not disposed in a radial plane on one side of the axis of rotation as discussed above with reference to FIG. 1. Instead, in the embodiment of FIGS. 2 and 3, the outermost gas inlet 108 a is disposed on one side of the axis of rotation 114 of substrate carrier 102, and at a large radial distance from the axis, whereas the next gas inlet 108 b lies on the opposite side of axis 114 but at a lesser radial distance from the axis. Inlets 108 c and 108 d, at lesser radial distances from axis 114, also lie on opposite sides of the axis along a common diameter 219 (FIG. 3). Here again, the different gas streams 109 a-109 d impinge on different zones of treatment surface 118 having different areas. The carrier gas flows from carrier gas sources 107 a-107 d and the reactant gas flows from reactant gas sources 106 a-106 d are selected in the same manner as described above, so as to provide gas streams 109 a-109 d with different reactant gas concentrations and flow rates, but with the same velocity. In a further variant, the gas inlets may be provided as two complete sets, one on each side of the central axis, each such set including a full complement of gas inlets adapted to direct gas onto all of the zones of the treatment surface. More than two sets of gas inlets may be provided as, for example, four sets disposed on two diameters. In a further variant (FIG. 4) the various gas inlets 36 a 36 g may be distributed along different radii 17 a-17 g, and at different radial distances from the central axis 114.
  • In the apparatus discussed above, each gas stream is formed by mixing carrier gas and reactant gas prior to introducing the mixed gases into the reaction chamber. However, this is not essential. In the apparatus of FIGS. 5A and 5B, the innermost gas inlet 208 d includes two separate ports opening through reactor top wall 216: a reactant gas port 230 d and a carrier gas port 232 d. The reactant gas port 230 d is connected to a reactant gas source 206 d, whereas the carrier gas port 232 d is connected to a carrier gas source 207 d. Ports 230 d and 232 d are disposed adjacent to one another, so that the carrier gas introduced through port 232 d merges with the reactant gas introduced through port 230 d just after the gases enter the interior of reaction chamber 201, and form a combined gas stream passing downwardly onto the associated zone of treatment surface 218. Each of the other inlets 208 a-208 c is constituted by a similar pair of ports, and operates in the same manner.
  • The apparatus of FIGS. 5A and 5B also includes a porous plate 215 mounted within reaction chamber 210, between top wall 216 and the treatment surface. As discussed in greater detail in U.S. Pat. No. 6,197,121, the disclosure of which is incorporated by reference here, such a porous plate can include, for example, a wire mesh screen supported by a set of coolant conduits. The porous plate has an upstream or inlet side facing toward the top wall 216, and has a downstream side facing toward substrate carrier 202 (toward the bottom of the drawing in FIG. 5A). The porous plate 215 is spaced from the top wall. A set of barrier walls 250 extend between the top wall 216 and the porous plate 215 in the vicinity of inlets 208 a-208 d. The barrier walls 250 subdivide the space upstream of the porous plate into spaces 254 a-254 d. Each gas inlet 208 a-208 d opens into one such space. Additional walls 256 separate spaces 254 a-254 d from other spaces 258 (FIG. 5B) disposed upstream of the porous plate.
  • In operation, the carrier gas and reactin gas provided through each inlet mix within the space 254 associated with that inlet, and pass through a region of the porous plate aligned with such space. For example, the combined gasses provided by inlet 208 d, including reactant gas from port 230 d and carrier gas from port 232 d, passes downstream through a region of the porous plate 215, and passes from the downstream side of the injection plate to the treatment surface as a stream 209 d, so that this stream impinges principally on the innermost region 210 d of the treatment surface 218. In the same manner, the gases from inlets 208 c, 208 b and 208 d mix in spaces 254 c, 254 b and 254 a, respectively, to form streams 209 c, 209 b and 209 a, which impinge on other regions of the treatment surface. Although the individual streams are depicted separately in FIG. 5A for clarity of illustration, in actuality the streams spread radially and merge with one another enroute from the porous plate 215 to the treatment surface. Here again, the flow rates of the carrier gas and reaction gas supplied by each of the gas sources are selected so that the total flow rate in each stream 209, and hence the velocity of each stream, is substantially equal, but the concentration of reactant gas in the various streams is unequal. In this arrangement as well, additional sets of inlets 208′ for the carrier gas and reaction gas may be provided at other locations spaced circumferentially around central axis 214. Each such set is arranged in the same manner as inlets 208 a-208 d. Also, other gases used in the growth process can be introduced through additional inlets (not shown) connected to additional spaces 258. Such other gases can be introduced at the same time as the carrier gas and reactant gas, or at other times, during other stages of the process.
  • A similar porous plate may be used with inlets such as those discussed above with reference to FIGS. 1A and 2.
  • In apparatus according to a further embodiment (FIG. 6), the ports constituting the inlets act to control the amounts of gases in each gas steam. In this embodiment, the outermost gas inlet 308 a includes a reaction gas port 330 a and a carrier gas port 332 a, whereas each of the other gas inlets 308 b, 308 c and 308 d includes a similar pair of ports. Here again, the ports constituting each gas inlet are disposed adjacent to one another. The ports are arranged along a common radial line 317. All of the reaction gas ports 330 a, 330 b, 330 c and 330 d are connected to a common conduit 306 which in turn is connected to a supply of reactant gas, so that all of the reactin gas ports are supplied with the reaction gas at substantially the same pressure. Likewise, all of the carrier gas ports 332 a, 332 b, 332 c and 332 d are connected to a common conduit 307, which in turn is connected to a supply of the carrier gas, so that all of the carrier gas ports are supplied with the carrier gas at substantially the same pressure. The sizes of the ports, and hence the flow resistances of the ports, differ. Reactant gas port 330 a of the outermost gas inlet 308 a is relatively large, and has relatively low flow resistance, whereas carrier gas port 332 a of the outermost gas inlet is relatively small, and hence has high flow resistance. Accordingly, the gas stream issuing from these ports and hence from gas inlet 308 a will incorporate a large proportion of reactant gas and a small proportion of carrier gas. Conversely, reactant gas port 330 d of the innermost gas inlet 308 d is relatively small, and has high flow resistance, whereas the carrier gas port 332 d of the same inlet is relatively large, and has high flow resistance. The gas stream issuing from inlet 308 d will have a relatively large proportion of carrier gas. As will be appreciated with reference to FIG. 6, the sizes of the reactant gas ports 330 increase progressively in the radially outward direction, away from axis 314, ie., in the direction from the smallest zone of the treatment surface to the largest zone, so that the flow resistance of the reactant gas ports decreases progressively in this direction. Conversely, the flow resistance of the carrier gas ports increases progressively in the same direction. The apparatus thus will provide gas streams having substantially the same total flow rate (carrier gas plus reactant gas) but differing concentrations of reactant gas, impinging on the differing zones of the treatment surface. Plural sets of ports as described above can be provided along numerous radial lines, so as to provide a plurality of such streams around the circumference of the chamber.
  • In a further variant (FIG. 7) the separate ports and inlets of are replaced by a carrier gas passage 432 and reactant gas passage 430 extending through top plate 416. The downstream ends of these passages (the ends of the passages opening into the reaction chamber) are visible in FIG. 7. The passages are disposed side-by-side. Carrier gas passage 432 is connected to carrier gas conduit 407, whereas reactant gas passage 430 is connected to a reactant gas conduit 406. Conduits 407 and 406 are connected to supplies of carrier gas and reactant gas, respectively. The carrier gas passage 432 has a width w432 which decreases progressively in the radially outward direction away from axis 414. Thus, the resistance of the carrier gas passage to flow of the carrier gas in the downstream direction of the passage (the direction out of the plane of the drawing in FIG. 7) increases progressively in the radially outward direction. The reactant gas passage has a width w430 which increases progressively in the radially outward direction, so that the resistance of the reactant gas passage to downstream flow of reactant gas decreases progressively in the radially outward direction. In operation, a relatively large amount of reactant gas passes through the radially outer portion of the reactant gas passage 430 whereas a relatively small amount of carrier gas passes through the radially outer portion of carrier gas passage 432. Conversely, a small amount of reactant gas and a large amount of carrier gas pass through the radially inner portions of the passages. The carrier and reactant gases merge to form a gas stream passing downstream (in the direction out of the plane of the drawing in FIG. 7), such gas stream having a substantially constant total flow rate per unit radial distance and substantially constant velocity at all radial locations but having progressively increasing reactant gas concentration in the radially outward direction.
  • A reactor according to a further embodiment of the invention, shown in FIG. 8, has a reactant gas passage 530 and carrier gas passage 532 similar to the passages discussed above with reference to FIG. 7. In the reactor of FIG. 8, however, the passages have constant width over their radial extent.
  • Reactant gas passage 530 is filled with a mesh or other porous structure 531 having progressively increasing porosity in the radially outward direction, away from axis 514. Accordingly, the resistance of passage 530 to downstream flow of reactant gas decreases in the radially outward direction. The carrier gas passage 532 is filled with a porous structure 533 having progressively decreasing porosity, and hence progressively increasing flow resistance, in the radially outward direction. The net effect is the same as discussed with reference to FIG. 7. Other features of the passageways can be varied to achieve similar variations in flow resistance along the radial extent of the passageways. For example, the passageways can include baffles or partial obstructions disposed at various radial locations. In yet another variant, each passage can have different lengths, in the downstream direction of the passage, at its inner and outer edges. For example, where a passage extends through a plate, the thickness of the plate can vary in the radial direction so as to vary the length of the passage, and hence the flow resistance of the passage, in the radial direction.
  • Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
  • INDUSTRIAL APPLICABILITY
  • The present invention is applicable to the electronics manufacturing industry and where it is desired to manufacture electronics components in large number through the epitaxial growth of materials thereon. The present invention is applicable to, for example, vertical disk reactors for the epitaxial growth of materials on silicon wafers for electronics components.

Claims (26)

1. A reactor for treating a substrate comprising:
a reaction chamber;
a substrate carrier mounted within the reactor chamber, whereby at least one substrate can be mounted on the substrate carrier;
a plurality of gas inlets connected to said chamber;
one or more sources of a reactant gas connected to said inlets and one or more sources of a carrier gas connected to at least one of said inlets, said gas sources and said inlets being constructed and arranged so that each inlet directs a gas stream into said chamber toward said substrate carrier, the streams directed by said inlets having different concentrations of said reactant gas and different mass flow rates of said reactant gas but having substantially the same velocity; and said inlets and said gas sources are arranged so that the reactant gas mass flow rate of each gas stream is proportional to the area of the associated zone of said treatment surface.
2. A reactor as claimed in claim 1 wherein said substrate carrier has a treatment surface incorporating a plurality of zones of unequal area and said inlets are arranged so that each said gas stream is associated with and impinges on a different one of said zones.
3. A reactor as claimed in claim 2 wherein said inlets and said gas sources are arranged so that a first one of said gas streams impinges on a first one of said zones having a first area, a second one of said gas streams impinges on a second one of said zones having a second area greater than said first area, and so that said second one of said gas streams has a reactant gas mass flow rate greater than the reactant gas mass flow rate of said first gas stream.
4. A reactor as claimed in claim 2 wherein said inlets and said gas sources are arranged so that the reactant gas mass flow rate of each gas stream is directly proportional to the area of the associated zone of said treatment surface while constant total gas velocity is maintained.
5. A reactor as claimed in claim 2 wherein said substrate carrier is mounted for rotation about an axis, said treatment surface is substantially perpendicular to said axis, and said inlets are arranged to direct said gas streams in flow directions substantially parallel to said axis.
6. A reactor as claimed in claim 5 wherein said inlets are disposed at differing radial distances from said axis.
7. A reactor as claimed in claim 6 wherein said inlets are arranged to direct said gas streams substantially along a common plane, said common plane extending substantially radially from said axis.
8. A reactor as claimed in claim 1 further comprising an injection plate having upstream and downstream faces, said injection plate being at least partially porous, said injection plate being disposed in said chamber between said inlets and said substrate carrier with said upstream face facing said inlets so that gasses passing from said inlets to said substrate carrier pass through said injection plate to said downstream face and from said downstream face toward said substrate carrier.
9. A reactor as claimed in claim 8 wherein at least one of said inlets includes a reaction gas port connected to one of said one or more reaction gas sources and a carrier gas port connected to one of said one or more carrier gas sources, said ports opening to said chamber so that reactant gas introduced through said reactant gas port and carrier gas introduced through said carrier gas port mix and form a combined gas stream exiting from said downstream face of said injection plate.
10. A reactor as claimed in claim 1 wherein at least one of said inlets includes a common port opening to said chamber and connected to one of said one or more reaction gas sources and also connected to one of said one of more carrier gas sources.
11. A reactor for treating a substrate comprising:
a chamber;
a substrate carrier mounted for movement within the chamber, said substrate carrier being adapted to hold one or more substrates; and
a gas stream generator arranged to deliver a gas stream having substantially uniform velocity but different concentrations of a reactant gas at different locations within the stream, said gas stream generator being arranged to direct the gas stream within the chamber toward the substrate carrier,
said substrate carrier is mounted for rotational movement about an axis and said gas stream generator is adapted to supply said gas stream with different concentrations of said reactant gas at different radial distances from said axis.
12. A reactor as claimed in claim 11 wherein said gas stream generator is adapted to supply said gas stream with concentrations of said reactant gas at a rate directly proportional to the radial distances of said gas stream generator from said axis.
13. A reactor as claimed in claim 11, wherein said gas streams generator issues said gas streams downwardly into said chamber in the axial direction parallel to said axis.
14. A reactor as claimed in claim 11 wherein said gas stream generator includes a plurality of gas stream inlets spaced apart from one another and different gas sources connected to said gas stream inlets, said gas sources being arranged so that gases supplied through different inlets have different concentrations of said reactant gas while maintaining substantially constant total gas velocity.
15. A reactor as claimed in claim 11 wherein said gas stream generator includes a structure defining a carrier gas passage having a downstream direction and a reactant gas passage having a downstream direction, said reactant gas passage extending in proximity to said carrier gas passage, a source of carrier gas communicating with the interior of the chamber through said carrier gas passage so that carrier gas entering the chamber will pass in the downstream direction through the carrier gas passage, and a source of reactant gas communicating with said chamber through said reactant gas passage so that reactant gas entering the chamber will pass in the downstream direction through the reactant gas passage, each said passage having resistance to gas flow in the downstream direction through the passage, the resistance of the carrier gas passage increasing progressively in a radially outward direction away from said axis, the resistance of the reactant gas passage decreasing progressively in the radially outward direction.
16. A reactor as claimed in claim 15, further including a choke structure comprising a plate, wherein said carrier gas passage is in the form of a carrier gas slot extending through said plate, said reactant gas passage is in the form of a carrier gas slot extending through said plate, said each said slot having a width transverse to the radially outward direction, the width of the carrier gas slot decreasing progressively in the outward direction, the width of the reactant gas slot decreasing progressively in the inward direction.
17. A reactor for growing epitaxial layers on a substrate comprising:
a reaction chamber;
a substrate carrier movably mounted within the reactor chamber for rotation about an axis; whereby at least one substrate can be mounted on the substrate carrier,
a first reactant gas source for supplying a first reactant gas at a first reactant gas flow rate;
a first carrier gas source for supplying a first carrier gas at a first carrier gas flow rate;
said first gas inlet and said first carrier gas source being connected to said chamber so that the first reactant gas and first carrier gas enter the chamber as a first combined gas stream, said first combined gas stream having a first combined stream velocity;
a second reactant gas source for supplying a second reactant gas at a second reactant gas flow rate;
a second carrier gas source for supplying a second carrier gas at a second carrier gas flow rate;
said second reactant gas source and said second carrier gas source being connected to said chamber so that said second reactant gas and said second carrier gas enter said chamber as a second combined gas stream, said second combined gas stream having a second combined velocity substantially equal to said first combined velocity;
said reactant gas sources and carrier gas sources being connected to said chamber so that said first combined gas stream impinges on a first treatment area of said treatment, and said second combined gas stream impinges on a second treatment area of said treatment surface, said second treatment area unequal in area to said first treatment area; and
said first and second reactant gas velocities being selected so that a ratio of said first reactant gas flow rate to said first treatment area is equal to the ratio of said second reactant gas flow rate to said second treatment area.
18. A reactor as claimed in claim 16, further including a second gas inlet wherein said second carrier gas source is connected to said chamber so that the second reactant gas and second carrier gas enter the chamber as a second combined gas stream, wherein said first gas inlet and said second gas inlet issue said first combined gas stream and said second combined gas stream respectively downwardly into said chamber in the axial direction parallel to said axis.
19. A reactor for treating a substrate, comprising:
a chamber;
a substrate carrier rotatably mounted in said chamber for rotation about an axis, said substrate carrier including a treatment surface for holding one or more substrates to be treated; and
gas supply means for introducing a reactant gas and a carrier gas into said chamber so that said gases flow within said chamber toward said treatment surface in one or more streams at having substantially uniform velocity but so that different portions of said treatment source at different radial locations receive substantially the same amount of said reactant gas per unit time per unit area;
wherein said gas supply means is operative to mix at least some of said reactant gas with said carrier gas so that gas flowing toward radially outward portions of said treatment surface has a higher concentration of said reactant gas than gas flowing toward radially inward portions of said treatment surface.
20. A reactor as claimed in claim 19, wherein said gas stream generator issues said gas stream downwardly into said chamber in the axial direction parallel to said axis.
21. A method of treating substrates comprising:
rotating a substrate support about an axis while supporting one or more substrates on said support so that one or more surfaces of the substrates to be treated lie substantially perpendicular to said axis; and
introducing a reactant gas and a carrier gas into said chamber so that said gases flow within said chamber toward said one or more surfaces in one or more streams having substantially uniform velocity at different radial distances from said axis so that different portions of said one or more surfaces at different radial distances from said axis receive substantially the same amount of said reactant gas per unit time per unit area; and,
mixing at least some of said reactant gas with said carrier gas so that gas flowing toward radially outward portions of said one or more surfaces has a higher concentration of said reactant gas than gas flowing toward radially inward portions of said one or more surfaces.
22. A method as claimed in claim 21 wherein said introducing step includes discharging said gases into said chamber through a plurality of inlets disposed at different radial distances from said axis.
23. A method as claimed in claim 22 wherein mixing step is performed so that as to mix the carrier gas with the reactant gas prior to discharge from at least some of said inlets, and so that streams having different concentrations of said carrier gas will be discharged from different ones of said inlets.
24. A method as claimed in claim 21 further comprising the step of maintaining reaction conditions in said chamber such that said reactant gas reacts at said substrate to grow a layer including a constituent derived from said reactant gas epitaxially on said one or more surfaces.
25. A method as claimed in claim 24 wherein said reactant gas includes a metal alkyl.
26. A method as claimed in claim 24 wherein said carrier gas includes nitrogen.
US10/568,794 2003-08-20 2003-08-20 Alkyl push flow for vertical flow rotating disk reactors Abandoned US20070071896A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/544,075 US8980000B2 (en) 2003-08-20 2006-10-06 Density-matching alkyl push flow for vertical flow rotating disk reactors
TW096136935A TWI375731B (en) 2003-08-20 2007-10-02 Density-matching alkyl push flow for vertical flow rotating disk reactors
US14/255,016 US9593434B2 (en) 2003-08-20 2014-04-17 Alkyl push flow for vertical flow rotating disk reactors
US14/618,519 US9982362B2 (en) 2003-08-20 2015-02-10 Density-matching alkyl push flow for vertical flow rotating disk reactors
US15/960,785 US10364509B2 (en) 2003-08-20 2018-04-24 Alkyl push flow for vertical flow rotating disk reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/026112 WO2005019496A1 (en) 2003-08-20 2003-08-20 Alkyl push flow for vertical flow rotating disk reactors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/026112 A-371-Of-International WO2005019496A1 (en) 2003-08-20 2003-08-20 Alkyl push flow for vertical flow rotating disk reactors

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/544,075 Continuation-In-Part US8980000B2 (en) 2003-08-20 2006-10-06 Density-matching alkyl push flow for vertical flow rotating disk reactors
US14/255,016 Division US9593434B2 (en) 2003-08-20 2014-04-17 Alkyl push flow for vertical flow rotating disk reactors

Publications (1)

Publication Number Publication Date
US20070071896A1 true US20070071896A1 (en) 2007-03-29

Family

ID=34215342

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/568,794 Abandoned US20070071896A1 (en) 2003-08-20 2003-08-20 Alkyl push flow for vertical flow rotating disk reactors
US11/544,075 Expired - Fee Related US8980000B2 (en) 2003-08-20 2006-10-06 Density-matching alkyl push flow for vertical flow rotating disk reactors
US14/255,016 Expired - Fee Related US9593434B2 (en) 2003-08-20 2014-04-17 Alkyl push flow for vertical flow rotating disk reactors
US14/618,519 Expired - Fee Related US9982362B2 (en) 2003-08-20 2015-02-10 Density-matching alkyl push flow for vertical flow rotating disk reactors
US15/960,785 Expired - Fee Related US10364509B2 (en) 2003-08-20 2018-04-24 Alkyl push flow for vertical flow rotating disk reactors

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/544,075 Expired - Fee Related US8980000B2 (en) 2003-08-20 2006-10-06 Density-matching alkyl push flow for vertical flow rotating disk reactors
US14/255,016 Expired - Fee Related US9593434B2 (en) 2003-08-20 2014-04-17 Alkyl push flow for vertical flow rotating disk reactors
US14/618,519 Expired - Fee Related US9982362B2 (en) 2003-08-20 2015-02-10 Density-matching alkyl push flow for vertical flow rotating disk reactors
US15/960,785 Expired - Fee Related US10364509B2 (en) 2003-08-20 2018-04-24 Alkyl push flow for vertical flow rotating disk reactors

Country Status (9)

Country Link
US (5) US20070071896A1 (en)
EP (1) EP1660697B1 (en)
JP (1) JP4714021B2 (en)
KR (2) KR101185298B1 (en)
CN (1) CN100545303C (en)
AT (1) ATE554196T1 (en)
AU (1) AU2003265542A1 (en)
TW (2) TWI261310B (en)
WO (1) WO2005019496A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070134419A1 (en) * 2003-08-20 2007-06-14 Bojan Mitrovic Density-matching alkyl push flow for vertical flow rotating disk reactors
US20080213543A1 (en) * 2007-03-02 2008-09-04 Freiberger Compound Materials Gmbh Method and device for manufacturing semiconductor compound materials by means of vapour phase epitaxy
US20110083607A1 (en) * 2008-06-05 2011-04-14 Sorona Inc. Vapor phase self-assembled monolayer coating apparatus
US20120132367A1 (en) * 2010-11-25 2012-05-31 Tokyo Electron Limited Processing apparatus
US20120156363A1 (en) * 2010-12-17 2012-06-21 Veeco Instruments Inc. Gas Injection System for Chemical Vapor Deposition Using Sequenced Valves
US20120152172A1 (en) * 2009-09-02 2012-06-21 Wonik Ips Co., Ltd. Gas-discharging device and substrate-processing apparatus using same
CN102576661A (en) * 2009-08-31 2012-07-11 圆益Ips股份有限公司 Gas injection apparatus and substrate processing apparatus using same
US20130029496A1 (en) * 2011-07-29 2013-01-31 Asm America, Inc. Methods and Apparatus for a Gas Panel with Constant Gas Flow
US20130255784A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Gas delivery systems and methods of use thereof
US20150167162A1 (en) * 2012-07-13 2015-06-18 Gallium Enterprises Pty Ltd Apparatus and method for film formation
US20180245216A1 (en) * 2017-02-28 2018-08-30 Tokyo Electron Limited Film forming apparatus
US20190360098A1 (en) * 2018-05-25 2019-11-28 Kokusai Electric Corporation Substrate Processing Apparatus and Method of Manufacturing Semiconductor Device
CN112563107A (en) * 2019-09-26 2021-03-26 株式会社国际电气 Substrate processing apparatus, method for manufacturing semiconductor device, recording medium, and program
CN114277360A (en) * 2021-12-29 2022-04-05 季华实验室 Chemical vapor deposition device
US11879171B2 (en) 2019-01-16 2024-01-23 Denso Corporation Semiconductor manufacturing device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480974B2 (en) * 2005-02-15 2009-01-27 Lam Research Corporation Methods of making gas distribution members for plasma processing apparatuses
KR101443665B1 (en) * 2006-10-06 2014-10-02 비코 인스트루먼츠 인코포레이티드 Density-matching alkyl push flow for vertical flow rotating disk reactors
KR101483522B1 (en) 2007-01-12 2015-01-16 비코 인스트루먼츠 인코포레이티드 Gas treatment systems
DE102007043291A1 (en) * 2007-09-11 2009-04-02 Maschinenfabrik Reinhausen Gmbh Method and device for treating or coating surfaces
EP2215282B1 (en) 2007-10-11 2016-11-30 Valence Process Equipment, Inc. Chemical vapor deposition reactor
US8895107B2 (en) 2008-11-06 2014-11-25 Veeco Instruments Inc. Chemical vapor deposition with elevated temperature gas injection
CN102640303A (en) * 2009-07-17 2012-08-15 索泰克公司 Method of bonding using a bonding layer based on zinc, silicon and oxygen and corresponding structures
JP6038618B2 (en) * 2011-12-15 2016-12-07 株式会社ニューフレアテクノロジー Film forming apparatus and film forming method
KR101929481B1 (en) * 2012-03-26 2018-12-14 주성엔지니어링(주) Substrate processing apparatus and substrate processing method
JP2015056632A (en) * 2013-09-13 2015-03-23 東京エレクトロン株式会社 Method for manufacturing silicone oxide film
WO2016052333A1 (en) * 2014-09-30 2016-04-07 株式会社日立国際電気 Board processing device, semiconductor device making method, and recording medium
CN107723790B (en) * 2016-08-12 2020-07-07 上海新昇半导体科技有限公司 Epitaxial equipment, equipment manufacturing method and epitaxial method
JP6740799B2 (en) * 2016-08-17 2020-08-19 東京エレクトロン株式会社 Film forming apparatus, film forming method and storage medium
RU2673515C2 (en) 2017-02-02 2018-11-27 Общество С Ограниченной Ответственностью "Монолюм" Gases to the reactor supplying method for the group iii metals nitrides based epitaxial structures growing and device for its implementation
WO2021102726A1 (en) * 2019-11-27 2021-06-03 东莞市中镓半导体科技有限公司 Linear spray head for gan material growth

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010045A (en) * 1973-12-13 1977-03-01 Ruehrwein Robert A Process for production of III-V compound crystals
US4369031A (en) * 1981-09-15 1983-01-18 Thermco Products Corporation Gas control system for chemical vapor deposition system
US4741354A (en) * 1987-04-06 1988-05-03 Spire Corporation Radial gas manifold
US4980204A (en) * 1987-11-27 1990-12-25 Fujitsu Limited Metal organic chemical vapor deposition method with controlled gas flow rate
US4993358A (en) * 1989-07-28 1991-02-19 Watkins-Johnson Company Chemical vapor deposition reactor and method of operation
US5091320A (en) * 1990-06-15 1992-02-25 Bell Communications Research, Inc. Ellipsometric control of material growth
US5106453A (en) * 1990-01-29 1992-04-21 At&T Bell Laboratories MOCVD method and apparatus
US5269847A (en) * 1990-08-23 1993-12-14 Applied Materials, Inc. Variable rate distribution gas flow reaction chamber
US5393232A (en) * 1993-11-15 1995-02-28 Haines; William C. Visual aid system
US5431738A (en) * 1991-03-19 1995-07-11 Fujitsu Limited Apparatus for growing group II-VI mixed compound semiconductor
US5843234A (en) * 1996-05-10 1998-12-01 Memc Electronic Materials, Inc. Method and apparatus for aiming a barrel reactor nozzle
US5853484A (en) * 1995-10-28 1998-12-29 Lg Semicon Co., Ltd. Gas distribution system and method for chemical vapor deposition apparatus
US5956148A (en) * 1996-12-20 1999-09-21 Texas Instruments Incorporated Semiconductor surface measurement system and method
US6197121B1 (en) * 1996-11-27 2001-03-06 Emcore Corporation Chemical vapor deposition apparatus
US6280581B1 (en) * 1998-12-29 2001-08-28 David Cheng Method and apparatus for electroplating films on semiconductor wafers
US6289842B1 (en) * 1998-06-22 2001-09-18 Structured Materials Industries Inc. Plasma enhanced chemical vapor deposition system
US6333272B1 (en) * 2000-10-06 2001-12-25 Lam Research Corporation Gas distribution apparatus for semiconductor processing
US20020009868A1 (en) * 2000-06-09 2002-01-24 Toshiba Ceramics Co., Ltd. Method of growing a thin film in gaseous phase and apparatus for growing a thin film in gaseous phase for use in said method
US20020076490A1 (en) * 2000-12-15 2002-06-20 Chiang Tony P. Variable gas conductance control for a process chamber
US6428850B1 (en) * 1998-05-13 2002-08-06 Tokyo Electron Limited Single-substrate-processing CVD method of forming film containing metal element
US6448536B2 (en) * 2000-04-07 2002-09-10 Tokyo Electron Limited Single-substrate-heat-processing apparatus for semiconductor process
US6480286B1 (en) * 1999-03-31 2002-11-12 Matsushita Electric Inudstrial Co., Ltd. Method and apparatus for measuring thickness variation of a thin sheet material, and probe reflector used in the apparatus
US6499425B1 (en) * 1999-01-22 2002-12-31 Micron Technology, Inc. Quasi-remote plasma processing method and apparatus
US6511539B1 (en) * 1999-09-08 2003-01-28 Asm America, Inc. Apparatus and method for growth of a thin film
US20030056728A1 (en) * 2000-01-28 2003-03-27 Johannes Lindner Method and device for depositing at least one precursor, which is in liquid or dissolved form, on at least one substrate
US20030091740A1 (en) * 2001-08-08 2003-05-15 Gilbert Stephen R. Forming ferroelectric Pb (Zr, Ti)O3 films
US20030207032A1 (en) * 2002-05-02 2003-11-06 Micron Technology, Inc. Methods, systems, and apparatus for atomic-layer deposition of aluminum oxides in integrated circuits
US6887523B2 (en) * 2002-12-20 2005-05-03 Sharp Laboratories Of America, Inc. Method for metal oxide thin film deposition via MOCVD
US20060021574A1 (en) * 2004-08-02 2006-02-02 Veeco Instruments Inc. Multi-gas distribution injector for chemical vapor deposition reactors
US20060121193A1 (en) * 2003-04-30 2006-06-08 Strauch Gerhard K Process and apparatus for depositing semiconductor layers using two process gases, one of which is preconditioned
US20070134419A1 (en) * 2003-08-20 2007-06-14 Bojan Mitrovic Density-matching alkyl push flow for vertical flow rotating disk reactors
US20090017190A1 (en) * 2007-07-10 2009-01-15 Veeco Instruments Inc. Movable injectors in rotating disc gas reactors
US20090064932A1 (en) * 2007-08-31 2009-03-12 Samsung Electronics Co., Ltd. Apparatus for HDP-CVD and method of forming insulating layer using the same
US7524532B2 (en) * 2002-04-22 2009-04-28 Aixtron Ag Process for depositing thin layers on a substrate in a process chamber of adjustable height
US20090236447A1 (en) * 2008-03-21 2009-09-24 Applied Materials, Inc. Method and apparatus for controlling gas injection in process chamber
US20120156363A1 (en) * 2010-12-17 2012-06-21 Veeco Instruments Inc. Gas Injection System for Chemical Vapor Deposition Using Sequenced Valves

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579609A (en) 1984-06-08 1986-04-01 Massachusetts Institute Of Technology Growth of epitaxial films by chemical vapor deposition utilizing a surface cleaning step immediately before deposition
JPH0645890B2 (en) * 1985-12-18 1994-06-15 キヤノン株式会社 Deposited film formation method
JPS6447017A (en) * 1987-08-18 1989-02-21 Fujitsu Ltd Manufacture of semiconductor device
JP2668687B2 (en) 1987-11-27 1997-10-27 富士通株式会社 CVD device
JPH0296324A (en) * 1988-09-30 1990-04-09 Fujitsu Ltd Manufacture of semiconductor device and vapor growth device used for it
EP0339845B1 (en) 1988-04-29 1993-01-07 Hughes Aircraft Company System for automated real-time control of film deposition
JPH02187018A (en) 1989-01-13 1990-07-23 Mitsubishi Electric Corp Chemical vapor phase deposition device
JPH03262116A (en) 1990-03-13 1991-11-21 Fujitsu Ltd Cvd device
JP3215498B2 (en) 1992-05-27 2001-10-09 東京エレクトロン株式会社 Film forming equipment
JP2790009B2 (en) 1992-12-11 1998-08-27 信越半導体株式会社 Method and apparatus for growing silicon epitaxial layer
US5709745A (en) 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof
KR0158780B1 (en) 1994-12-22 1998-11-16 가네꼬 히사시 Method and apparatus for film formation by chemical vapor deposition
US5976261A (en) * 1996-07-11 1999-11-02 Cvc Products, Inc. Multi-zone gas injection apparatus and method for microelectronics manufacturing equipment
JP4056144B2 (en) * 1998-09-10 2008-03-05 株式会社エフオーアイ Plasma processing equipment
JP3556483B2 (en) * 1998-09-18 2004-08-18 鐘淵化学工業株式会社 Method for manufacturing silicon-based thin film photoelectric conversion device
JP2000286251A (en) 1999-03-31 2000-10-13 Japan Storage Battery Co Ltd Ultraviolet treatment device
US6534332B2 (en) * 2000-04-21 2003-03-18 The Regents Of The University Of California Method of growing GaN films with a low density of structural defects using an interlayer
JP2002064084A (en) * 2000-08-17 2002-02-28 Sumitomo Metal Ind Ltd Gas introducing equipment for plasma treatment and plasma treating method
JP2002155366A (en) * 2000-11-15 2002-05-31 Tokyo Electron Ltd Method and device of leaf type heat treatment
US6902623B2 (en) * 2001-06-07 2005-06-07 Veeco Instruments Inc. Reactor having a movable shutter
US20030198754A1 (en) * 2001-07-16 2003-10-23 Ming Xi Aluminum oxide chamber and process
US20050045498A1 (en) 2003-08-25 2005-03-03 Kimberly-Clark Worldwide, Inc. Cold pack

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010045A (en) * 1973-12-13 1977-03-01 Ruehrwein Robert A Process for production of III-V compound crystals
US4369031A (en) * 1981-09-15 1983-01-18 Thermco Products Corporation Gas control system for chemical vapor deposition system
US4741354A (en) * 1987-04-06 1988-05-03 Spire Corporation Radial gas manifold
US4980204A (en) * 1987-11-27 1990-12-25 Fujitsu Limited Metal organic chemical vapor deposition method with controlled gas flow rate
US4993358A (en) * 1989-07-28 1991-02-19 Watkins-Johnson Company Chemical vapor deposition reactor and method of operation
US5106453A (en) * 1990-01-29 1992-04-21 At&T Bell Laboratories MOCVD method and apparatus
US5091320A (en) * 1990-06-15 1992-02-25 Bell Communications Research, Inc. Ellipsometric control of material growth
US5269847A (en) * 1990-08-23 1993-12-14 Applied Materials, Inc. Variable rate distribution gas flow reaction chamber
US5431738A (en) * 1991-03-19 1995-07-11 Fujitsu Limited Apparatus for growing group II-VI mixed compound semiconductor
US5393232A (en) * 1993-11-15 1995-02-28 Haines; William C. Visual aid system
US5853484A (en) * 1995-10-28 1998-12-29 Lg Semicon Co., Ltd. Gas distribution system and method for chemical vapor deposition apparatus
US5843234A (en) * 1996-05-10 1998-12-01 Memc Electronic Materials, Inc. Method and apparatus for aiming a barrel reactor nozzle
US6197121B1 (en) * 1996-11-27 2001-03-06 Emcore Corporation Chemical vapor deposition apparatus
US5956148A (en) * 1996-12-20 1999-09-21 Texas Instruments Incorporated Semiconductor surface measurement system and method
US6428850B1 (en) * 1998-05-13 2002-08-06 Tokyo Electron Limited Single-substrate-processing CVD method of forming film containing metal element
US6289842B1 (en) * 1998-06-22 2001-09-18 Structured Materials Industries Inc. Plasma enhanced chemical vapor deposition system
US6280581B1 (en) * 1998-12-29 2001-08-28 David Cheng Method and apparatus for electroplating films on semiconductor wafers
US6499425B1 (en) * 1999-01-22 2002-12-31 Micron Technology, Inc. Quasi-remote plasma processing method and apparatus
US6480286B1 (en) * 1999-03-31 2002-11-12 Matsushita Electric Inudstrial Co., Ltd. Method and apparatus for measuring thickness variation of a thin sheet material, and probe reflector used in the apparatus
US6511539B1 (en) * 1999-09-08 2003-01-28 Asm America, Inc. Apparatus and method for growth of a thin film
US20030056728A1 (en) * 2000-01-28 2003-03-27 Johannes Lindner Method and device for depositing at least one precursor, which is in liquid or dissolved form, on at least one substrate
US6448536B2 (en) * 2000-04-07 2002-09-10 Tokyo Electron Limited Single-substrate-heat-processing apparatus for semiconductor process
US20020009868A1 (en) * 2000-06-09 2002-01-24 Toshiba Ceramics Co., Ltd. Method of growing a thin film in gaseous phase and apparatus for growing a thin film in gaseous phase for use in said method
US6333272B1 (en) * 2000-10-06 2001-12-25 Lam Research Corporation Gas distribution apparatus for semiconductor processing
US20020076490A1 (en) * 2000-12-15 2002-06-20 Chiang Tony P. Variable gas conductance control for a process chamber
US20030091740A1 (en) * 2001-08-08 2003-05-15 Gilbert Stephen R. Forming ferroelectric Pb (Zr, Ti)O3 films
US7524532B2 (en) * 2002-04-22 2009-04-28 Aixtron Ag Process for depositing thin layers on a substrate in a process chamber of adjustable height
US20030207032A1 (en) * 2002-05-02 2003-11-06 Micron Technology, Inc. Methods, systems, and apparatus for atomic-layer deposition of aluminum oxides in integrated circuits
US6887523B2 (en) * 2002-12-20 2005-05-03 Sharp Laboratories Of America, Inc. Method for metal oxide thin film deposition via MOCVD
US20060121193A1 (en) * 2003-04-30 2006-06-08 Strauch Gerhard K Process and apparatus for depositing semiconductor layers using two process gases, one of which is preconditioned
US20100012034A1 (en) * 2003-04-30 2010-01-21 Gerhard Karl Strauch Process And Apparatus For Depositing Semiconductor Layers Using Two Process Gases, One Of Which is Preconditioned
US20070134419A1 (en) * 2003-08-20 2007-06-14 Bojan Mitrovic Density-matching alkyl push flow for vertical flow rotating disk reactors
US20060021574A1 (en) * 2004-08-02 2006-02-02 Veeco Instruments Inc. Multi-gas distribution injector for chemical vapor deposition reactors
US20090017190A1 (en) * 2007-07-10 2009-01-15 Veeco Instruments Inc. Movable injectors in rotating disc gas reactors
US20090064932A1 (en) * 2007-08-31 2009-03-12 Samsung Electronics Co., Ltd. Apparatus for HDP-CVD and method of forming insulating layer using the same
US20090236447A1 (en) * 2008-03-21 2009-09-24 Applied Materials, Inc. Method and apparatus for controlling gas injection in process chamber
US20120156363A1 (en) * 2010-12-17 2012-06-21 Veeco Instruments Inc. Gas Injection System for Chemical Vapor Deposition Using Sequenced Valves

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980000B2 (en) 2003-08-20 2015-03-17 Veeco Instruments Inc. Density-matching alkyl push flow for vertical flow rotating disk reactors
US10364509B2 (en) 2003-08-20 2019-07-30 Veeco Instruments Inc. Alkyl push flow for vertical flow rotating disk reactors
US9982362B2 (en) 2003-08-20 2018-05-29 Veeco Instruments Inc. Density-matching alkyl push flow for vertical flow rotating disk reactors
US20070134419A1 (en) * 2003-08-20 2007-06-14 Bojan Mitrovic Density-matching alkyl push flow for vertical flow rotating disk reactors
US9074297B2 (en) * 2007-03-02 2015-07-07 Freiberger Compound Materials Gmbh Method and device for manufacturing semiconductor compound materials by means of vapour phase epitaxy
US20080213543A1 (en) * 2007-03-02 2008-09-04 Freiberger Compound Materials Gmbh Method and device for manufacturing semiconductor compound materials by means of vapour phase epitaxy
US9856579B2 (en) 2007-03-02 2018-01-02 Freiberger Compound Materials Gmbh Method and device for manufacturing semiconductor compound materials by means of vapour phase epitaxy
US20110083607A1 (en) * 2008-06-05 2011-04-14 Sorona Inc. Vapor phase self-assembled monolayer coating apparatus
CN102576661A (en) * 2009-08-31 2012-07-11 圆益Ips股份有限公司 Gas injection apparatus and substrate processing apparatus using same
US9732424B2 (en) 2009-08-31 2017-08-15 Wonik Ips Co., Ltd. Gas injection apparatus and substrate processing apparatus using same
KR101625078B1 (en) 2009-09-02 2016-05-27 주식회사 원익아이피에스 Gas injecting device and Substrate processing apparatus using the same
US20120152172A1 (en) * 2009-09-02 2012-06-21 Wonik Ips Co., Ltd. Gas-discharging device and substrate-processing apparatus using same
US10665431B2 (en) 2010-11-25 2020-05-26 Tokyo Electron Limited Processing method
CN102541102A (en) * 2010-11-25 2012-07-04 东京毅力科创株式会社 Processing apparatus
US20120132367A1 (en) * 2010-11-25 2012-05-31 Tokyo Electron Limited Processing apparatus
US9303319B2 (en) * 2010-12-17 2016-04-05 Veeco Instruments Inc. Gas injection system for chemical vapor deposition using sequenced valves
US20120156363A1 (en) * 2010-12-17 2012-06-21 Veeco Instruments Inc. Gas Injection System for Chemical Vapor Deposition Using Sequenced Valves
WO2012082225A1 (en) * 2010-12-17 2012-06-21 Veeco Instruments Inc. Gas injection system for chemical vapor deposition using sequenced valves
US8728239B2 (en) * 2011-07-29 2014-05-20 Asm America, Inc. Methods and apparatus for a gas panel with constant gas flow
US20130029496A1 (en) * 2011-07-29 2013-01-31 Asm America, Inc. Methods and Apparatus for a Gas Panel with Constant Gas Flow
US20130255784A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Gas delivery systems and methods of use thereof
US20150167162A1 (en) * 2012-07-13 2015-06-18 Gallium Enterprises Pty Ltd Apparatus and method for film formation
US20180245216A1 (en) * 2017-02-28 2018-08-30 Tokyo Electron Limited Film forming apparatus
US20190360098A1 (en) * 2018-05-25 2019-11-28 Kokusai Electric Corporation Substrate Processing Apparatus and Method of Manufacturing Semiconductor Device
US11015248B2 (en) * 2018-05-25 2021-05-25 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
US11555246B2 (en) 2018-05-25 2023-01-17 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
US11879171B2 (en) 2019-01-16 2024-01-23 Denso Corporation Semiconductor manufacturing device
CN112563107A (en) * 2019-09-26 2021-03-26 株式会社国际电气 Substrate processing apparatus, method for manufacturing semiconductor device, recording medium, and program
US11380540B2 (en) * 2019-09-26 2022-07-05 Kokusai Electric Corporation Substrate processing apparatus
CN114277360A (en) * 2021-12-29 2022-04-05 季华实验室 Chemical vapor deposition device

Also Published As

Publication number Publication date
EP1660697A1 (en) 2006-05-31
CN1849410A (en) 2006-10-18
TWI261310B (en) 2006-09-01
CN100545303C (en) 2009-09-30
US10364509B2 (en) 2019-07-30
TWI375731B (en) 2012-11-01
TW200511394A (en) 2005-03-16
KR20060079198A (en) 2006-07-05
US8980000B2 (en) 2015-03-17
WO2005019496A1 (en) 2005-03-03
US9982362B2 (en) 2018-05-29
US20180237943A1 (en) 2018-08-23
ATE554196T1 (en) 2012-05-15
JP2007521633A (en) 2007-08-02
US9593434B2 (en) 2017-03-14
KR101185298B1 (en) 2012-09-21
AU2003265542A1 (en) 2005-03-10
JP4714021B2 (en) 2011-06-29
EP1660697A4 (en) 2009-06-03
US20150225875A1 (en) 2015-08-13
KR20110120964A (en) 2011-11-04
TW200825198A (en) 2008-06-16
US20070134419A1 (en) 2007-06-14
KR101188977B1 (en) 2012-10-08
EP1660697B1 (en) 2012-04-18
US20140224178A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
US9593434B2 (en) Alkyl push flow for vertical flow rotating disk reactors
US9273395B2 (en) Gas treatment systems
US8216375B2 (en) Slab cross flow CVD reactor
TWI417415B (en) Chemical vapor deposition flow inlet elements and methods
US20100263588A1 (en) Methods and apparatus for epitaxial growth of semiconductor materials
TWI809088B (en) Chemical vapor deposition apparatus with multi-zone injector block
JPH04233723A (en) Variable distribution gas flow reaction chamber
KR20040091651A (en) Method and device for depositing semi-conductor layers
KR101443665B1 (en) Density-matching alkyl push flow for vertical flow rotating disk reactors
JP2010267982A (en) Method and rotary disk type reactor for growing uniform epitaxial layer on the surface of substrate
JPH01257323A (en) Semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: VEECO INSTRUMENTS INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURPHY, MICHAEL;HOFFMAN, RICHARD;CRUEL, JONATHAN;AND OTHERS;REEL/FRAME:018501/0991;SIGNING DATES FROM 20061024 TO 20061026

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION