US20070074490A1 - Apparatus and methods for bagging organic and other materials - Google Patents

Apparatus and methods for bagging organic and other materials Download PDF

Info

Publication number
US20070074490A1
US20070074490A1 US11/535,338 US53533806A US2007074490A1 US 20070074490 A1 US20070074490 A1 US 20070074490A1 US 53533806 A US53533806 A US 53533806A US 2007074490 A1 US2007074490 A1 US 2007074490A1
Authority
US
United States
Prior art keywords
plastic material
tunnel
bagging machine
bagging
side edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/535,338
Inventor
Steven Cullen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRC Innovations LLC
Original Assignee
SRC Innovations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRC Innovations LLC filed Critical SRC Innovations LLC
Priority to US11/535,338 priority Critical patent/US20070074490A1/en
Assigned to SRC INNOVATIONS, LLC reassignment SRC INNOVATIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CULLEN, STEVEN R.
Publication of US20070074490A1 publication Critical patent/US20070074490A1/en
Assigned to SRC INNOVATIONS, LLC reassignment SRC INNOVATIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SRC INNOVATIONS, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F25/00Storing agricultural or horticultural produce; Hanging-up harvested fruit
    • A01F25/16Arrangements in forage silos
    • A01F25/18Loading or distributing arrangements
    • A01F25/183Loading arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F25/00Storing agricultural or horticultural produce; Hanging-up harvested fruit
    • A01F25/14Containers specially adapted for storing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F25/00Storing agricultural or horticultural produce; Hanging-up harvested fruit
    • A01F25/14Containers specially adapted for storing
    • A01F2025/145Bagging machines for loose materials making some kind of "sausage" on the field

Definitions

  • This disclosure relates to apparatus and methods for bagging organic and other material such as silage, compost, grain, sawdust, dirt, sand, etc., and more particularly to apparatus and methods for dispensing plastic material from a roll mounted on a bagging machine so that the plastic material is at least partially wrapped around the material being bagged as the bagging machine moves ahead during packing and filling.
  • organic and other material such as silage, compost, grain, sawdust, dirt, sand, etc.
  • Agricultural feed and compost bagging machines have been employed for several years to pack or bag silage, compost or the like into elongated plastic bags.
  • Two of the earliest bagging machines are disclosed in U.S. Pat. Nos. 3,687,061 and 4,046,068, the complete disclosures of which are incorporated herein by reference for all purposes.
  • silage, compost, or the like is supplied to the forward or intake end of the bagging machine and is fed to a packing means such as a rotor, plunger, screw conveyor or the like which conveys the material into a tunnel on which the bag is positioned so that the bag is filled.
  • the bagging machine moves away from the filled end of the bag in a controlled fashion so as to achieve uniform compaction of the silage material within the bag.
  • the empty elongated plastic bags are in a folded condition and are initially positioned over the tunnel or forming means of the machine.
  • the manufacturers of the plastic silage/compost bag must blow or extrude the plastic into a tubular/bag shape, roll it onto a core, fold it into a collar, and then put the same into a box or container, which is palleted for shipping.
  • the box Once the box is delivered to the field, it may take several men and a crane to lift the bag out of the box and feed it by hand over and onto the tunnel.
  • the bag is then laboriously pushed onto the tunnel until the bag is gathered at the forward end of the tunnel so that the bag is ready for filling and packing.
  • a major disadvantage and cost of the current method of manufacturing plastic bags for use on bagging machines is the sophisticated and expensive machinery required by the manufacturers to fold the bags after the blowing or extruding process. Only a few manufacturers have such costly machines, and they pass the processing and material costs onto the end user. Secondly, the extra steps necessary to convert the roll of plastic into bags, fold the bags into boxes, load the individual boxes into a larger container for shipping, and then transport and deliver those boxes to the consumers adds time, packaging, space requirements, handling equipment, manpower and disposal costs to the entire process.
  • a further problem created by the present method of putting a plastic bag onto a bagging machine is the physical strain and danger to the men who load the bag onto the tunnel.
  • the newer, bigger bags (14′ ⁇ 500′) weigh up to 1200 lbs and the industry trend is for even larger tunnels and even longer bags.
  • the method of bagging the material comprises the steps of: (1) providing a mobile bagging machine having rearward and forward ends, a material receiving means at the forward end thereof, a material packing means in communication with the material receiving means, and a rearwardly extending material forming or shaping enclosure, which may be in the form of a tunnel having an upper end, opposite sides and a lower end; (2) positioning a roll of flexible plastic material on the bagging machine; and (3) causing the plastic material to unroll from the roll, as material is forced through the tunnel, and to pass around the tunnel to partially or completely enclose the material being discharged from the tunnel.
  • the plastic material forms a bag-like enclosure in which the material is placed.
  • the method may include the step of controlling the packing density of the material being bagged.
  • the term “bag” refers to a flexible container or enclosure which extends partially around or completely around material to partially or completely enclose the same.
  • the apparatus for performing the method comprises a mobile frame having rearward and forward ends; a material receiving means on the mobile frame means; a material packing means on the mobile frame means in communication with the material receiving means; a rearwardly extending material forming or shaping enclosure, which may be in the form of a tunnel, in communication with the material packing means; and a roll of flexible plastic material mounted on the mobile frame means.
  • the apparatus further includes a density control assembly operatively coupled to the bagging machine. The plastic material is pulled from the roll as the bagging machine moves forwardly during the bagging operation. The plastic material passes partially or completely around the tunnel to at least partially enclose the material being discharged from the tunnel.
  • Various means for causing the plastic material to pass around the tunnel and at least partially beneath the tunnel are disclosed.
  • FIG. 1 is a front perspective view of a bagging machine having a roll of plastic material mounted thereon with the plastic material being pulled from the roll to at least partially enclose the material being bagged;
  • FIG. 2 is a side view of a bagging machine having a roll of plastic material mounted above the tunnel;
  • FIG. 3 is a view similar to FIG. 2 except that the roll of plastic material has been extended around the tunnel;
  • FIG. 4 is a perspective view of one form of the plastic material
  • FIG. 5 is a perspective view of another form of the plastic material
  • FIG. 6 is a front perspective view of a slitter operatively coupled to the bagging machine
  • FIG. 7 is a rear view of the bagging machine illustrating an example of a plastic material guide assembly
  • FIG. 8 is a rear view of the bagging machine illustrating the side edges of the plastic material being spaced apart;
  • FIG. 9 is a view similar to FIG. 8 except that the side edges of the plastic material have been overlapped;
  • FIG. 10 is a partial side view illustrating the manner in which the plastic material is passed through the guide assembly
  • FIG. 11 is a rear perspective view illustrating an example of the guide assembly
  • FIG. 12 is a rear view of the embodiment of FIG. 11 ;
  • FIG. 13A is a partial rear perspective view of a bagging machine including an apparatus for adjusting the size of the bag formed by the plastic material as it passes around the tunnel;
  • FIG. 13B is a side view of the embodiment of FIG. 13A ;
  • FIG. 14A is a rear perspective view of a bagging machine including an apparatus for smoothing out the plastic material as it passes around the tunnel;
  • FIG. 14B is a side view of the embodiment of FIG. 14A ;
  • FIG. 15 is a side view illustrating an example of the guide assembly according to the present disclosure.
  • FIG. 16 is a rear view of the embodiment of FIG. 15 ;
  • FIG. 17 is a sectional view illustrating the material having been partially enclosed in the plastic material.
  • FIG. 18 is a view similar to FIG. 17 except that the material has been completely enclosed within the plastic material.
  • the numeral 10 refers to a bagging machine such as manufactured by Versa Corporation, Astoria, Oreg.
  • the bagging machine is intended to bag organic material such as compost, silage, grain, sawdust, etc., within a bag.
  • the machine 10 may also be used to bag dirt or sand to create temporary dikes during flooding.
  • Machine 10 is seen to include a wheeled frame 12 having a forwardly extending tongue or hitch 14 adapted to be connected to a prime mover such as a tractor, truck, etc.
  • Gear box 16 is provided on frame 12 and is driven by a PTO shaft 18 connected to the PTO on the tractor.
  • frame 12 shown in the drawings is wheeled, it is possible that the wheels could be omitted.
  • machine 10 could be truck mounted such as seen in U.S. Pat. No. 5,784,865. Additionally, the machine 10 could be self propelled such as illustrated in U.S. Pat. No. 5,799,472.
  • machine 10 will be described as having a forward end 20 and a rearward end 22 .
  • Machine 10 is provided with a material receiving means 24 at its forward end which may be in the form of: (1) a feed table such as seen in U.S. Pat. No. 5,297,377; (2) a hopper such as seen in U.S. Pat. No. 5,398,736; (3) a feed mechanism such as shown in U.S. Pat. No. 5,396,753; (4) a feed mechanism such as shown in U.S. Pat. No. 5,367,860; or (5) a hopper such as seen in U.S. Pat. Nos. 5,140,802; 5,419,102; and 5,724,793.
  • the complete disclosures of the above-identified patents are hereby incorporated by reference for all purposes.
  • the purpose of the material receiving means is to receive the material to be bagged and deliver the same to a material packing means 26 positioned at the forward end of a material shaping or forming enclosure 28 .
  • the material packing means may be: (1) a rotor such as shown in U.S. Pat. Nos. 5,396,753; 5,297,377; 5,799,472; 5,295,554; (2) a screw conveyor such as seen in U.S. Pat. Nos. 5,140,802 or 5,419,102; (3) a plunger such as seen in U.S. Pat. No. 5,724,793; or (4) the packing fingers described in U.S. Pat. No. 3,687,061.
  • a rotor such as shown in U.S. Pat. Nos. 5,396,753; 5,297,377; 5,799,472; 5,295,554
  • a screw conveyor such as seen in U.S. Pat. Nos. 5,140,802 or 5,419,102
  • a plunger such as seen in U.S. Pat. No. 5,724,793
  • the material forming or shaping enclosure is illustrated as a tunnel 28 .
  • the size (diameter) of the tunnel 28 will depend on the desired bag diameter.
  • the tunnel 28 may be semi-circular or substantially semi-circular.
  • the tunnel may have vertical straight portions on the opposing sides connected by an arcuate portion on the top.
  • the tunnel may be formed from one or more arcuate portions having the same or different radii of curvature.
  • “diameter” refers to the distance between opposing interior surfaces of the tunnel, whether semi-circular or substantially semi-circular.
  • a face plate 30 may be secured to the forward end of the tunnel with the face plate 30 being secured to the frame of the machine.
  • the face plate is permanently mounted on the machine with the tunnel being secured to the face plate.
  • Various tunnels are shown in U.S. Pat. Nos. 5,899,247; 5,396,753; 5,297,377; 5,799,472; 5,398,736; 5,355,659; 5,295,554; 5,140,802; 5,419,102; 5,421,142; 5,724,793; and 5,894,713. The complete disclosures of the above-identified patents are hereby incorporated by reference for all purposes.
  • the tunnel 28 will include a top wall 32 , side walls 34 and 36 , and at least a partial bottom wall 38 .
  • Face plate 30 may include an opening 40 through which the material passes to the interior of the tunnel when a rotor is utilized as the packing means. If plungers, screw conveyors, etc., are utilized as the packing means, the face plate may or may not be included and opening 40 will be omitted.
  • bagging machines 10 of the present disclosure may also include a density control assembly.
  • a density control assembly as used herein refers to structures or devices that are coupled to the bagging machine and used to control or adjust the packing density of the material be packed into the bag.
  • a variety of density control assemblies and methods may be implemented with the bagging machine of the present disclosure some examples of which include backstop control systems, internal control systems, and drag resistance control systems.
  • a backstop structure yieldably engaged the closed end of the agricultural bag to resist the movement of the bagging machine away from the filled end of the agricultural bag as silage is forced into the bag.
  • These machines included a pair of drums rotatably mounted on the bagging machine with a brake associated therewith for braking or resisting the rotation of the drum with a selected brake force.
  • a cable is wrapped around the drum and is connected to the backstop. Examples of such bagging machines are disclosed in U.S. Pat. Nos. 3,687,061 and 4,046,068, previously incorporated by reference.
  • an internal density control assembly including one or more cables was positioned in the flow of the agricultural material being bagged.
  • more or less cables would be employed based on the material being packed.
  • FIG. 13A One example of such an arrangement is shown in FIG. 13A where a cable loop 106 is formed with the ends 108 thereof coupled to the tunnel 28 .
  • the configuration of cable loop shown in FIG. 13A is one of many cable loop configurations within the scope of the present disclosure. For example, more than one cable loop may be used.
  • ends 108 of the cable loop may be coupled to the inside or the outside of the-tunnel 28 , may be coupled to the face plate, may be coupled to the bagging machine with an assembly for adjusting the width or length of the loop, may be coupled to the bagging machine in a non-parallel pattern where two or more of the cable loops cross each other, or may be coupled to the bagging machine with an anchor coupled to the rearward portion of the loop. Examples of these and other alternative configurations are disclosed in U.S. Pat. Nos.
  • FIG. 14A Another arrangement have been used to control the packing density of the material being packed into the bag, one example of which is shown in FIG. 14A where a single cable 110 extends rearwardly from the bagging machine 10 and includes an anchor disposed at the rearward end 112 .
  • the length of the cable 110 behind the bagging machine 10 may be fixed or adjustable. It is within the scope of the present disclosure that more than one cable can be used with or without anchors.
  • an anchor is coupled to the rearward end 112 of the cable 110 , the size and configuration of the anchor may be fixed or adjustable.
  • the V-shaped anchor 114 may be adjustable to have a greater or smaller angle between the arms of the V.
  • an inflatable anchor may be used that can expand or contract as needed or a screw anchor may be used.
  • a screw anchor may be used. Examples of these and other alternative configurations are disclosed in U.S. Pat. Nos. 6,655,116; 6,443,194; and RE38,020, the complete disclosures of which are hereby incorporated by reference for all purposes.
  • drag resistance density control assemblies have been developed using belts or straps disposed between the bagged material and the ground.
  • a drag member such as one or more belts or straps, is attached to the bagging machine or the tunnel and extends rearwardly behind the tunnel.
  • the drag member is positioned between the bagged material and the ground and may be disposed inside the bag or outside the bag.
  • the weight of the bagged material on the drag member slows the advance of the bagging machine and increases the packing density of the agricultural material in the bag.
  • the packing density of the material in the bag may be established prior to beginning the bagging operation or may be adjusted as the bag is being filled.
  • the packing density is established or adjusted, at least in part, by controlling the amount of drag member surface area disposed under the weight of the bagged material.
  • Density control assemblies for agricultural bagging machines that include drag members are disclosed in U.S. Pat. No. 6,748,724 and U.S. patent application Ser. No. 10/867,593. The complete disclosures of the above-identified patent and patent application are hereby incorporated by reference for all purposes.
  • One example of a drag member 116 coupled to a bagging machine is illustrated in FIG. 11 .
  • a support 42 is secured to the machine 10 and extends upwardly therefrom adjacent the forward end of the tunnel 28 for rotatably supporting a roll 44 of plastic material 46 thereon.
  • the plastic material 46 is dispensed from a roll 44 mounted on the bagging machine so that the plastic material 46 is at least partially wrapped around the agricultural material being bagged as the bagging machine moves ahead during packing and filling.
  • the plastic material 46 is pulled from the roll 44 , as shown in FIG. 2 , and is positioned around the tunnel 28 and at least partially beneath the tunnel so that the plastic material 46 forms a bag-like enclosure, as shown in FIG. 3 .
  • the roll 44 may be disposed above the tunnel 28 as shown in FIGS. 1-3 and may alternatively be disposed at other locations on the machine 10 . Additionally, the roll 44 may be enclosed in a housing or canister. It is also within the scope of the present disclosure that the plastic material could be dispensed from a source such as a box or container much like garbage bags are dispensed.
  • the flexible plastic material of the present disclosure may be disposed on the roll either as a sheet having opposing ends and opposing side edges or as an elongate tube.
  • the sheet of plastic material having opposing ends and opposing side edges may be formed by slitting an elongate tube prior to rolling the plastic material onto the roll or by slitting an elongate tube as the material is being rolled onto the roll.
  • the sheet When the plastic material 46 is a sheet, the sheet may be folded in a tube-like shape such as seen in FIGS. 4 and 5 .
  • the plastic material 46 in FIG. 4 is what would be termed a single fold including a front layer 48 and a back layer 50 .
  • the front layer may be slit at 52 at the factory to form front layer portions 48 a and 48 b.
  • the plastic material 46 on roll 44 may also be multi-layered, such as seen in FIG. 5 , with a front layer 54 , back layer 56 , and side gusset layers 58 and 60 therebetween. Similar to the single fold shown in FIG. 4 , front layer 54 may be slit at 62 at the factory to form front layers 54 a and 54 b.
  • the tube When the flexible plastic material is disposed on the roll as an elongate tube, the tube may be slit as the plastic material is unrolled and positioned around the tunnel.
  • a slitting device may be provided on support 42 or on machine 10 to slit the elongate tube. In some embodiments, the slitting device may slit the front layer as shown in FIGS. 4 and 5 .
  • FIG. 6 One example of a slitting device 53 disposed on support 42 is shown in FIG. 6 .
  • a pan 64 or other suitable support may be positioned below the forward end of the tunnel 28 as shown in FIGS. 1-3 .
  • the pan 64 may have rollers 66 , 68 , 70 and 72 rotatably mounted thereon. Although four rollers are illustrated, more or less rollers could be utilized.
  • Rollers 74 , 76 , 78 and 80 are rotatably mounted on the underside of floor 38 of tunnel 28 or other suitable support above rollers 66 , 68 , 70 and 72 , respectively. Referring to FIG. 10 , the peripheries of the corresponding rollers may be disposed in operative engagement with each other such that the flexible plastic material is allowed to pass therebetween and is moved in accordance with movement of the rollers.
  • rollers 74 , 76 , 78 and 80 may be angled inwardly somewhat with respect to the centerline of-the tunnel so as to guide the plastic material 46 inwardly towards the centerline of the tunnel as will be described in greater detail hereinafter.
  • the flexible plastic material is positioned around the tunnel with the opposing side edges of the plastic material disposed underneath the tunnel.
  • the opposing side edges are shown as being disposed in a spaced-apart relationship.
  • the opposing side edges will be disposed between the bagged material and the ground with the ground surface closing the bag, such as shown in FIG. 17 .
  • the opposing side edges overlap and completely enclose the material being bagged.
  • FIG. 18 illustrates a cross-sectional view of a bag filled with the configuration shown in FIG. 9 with the overlapping side edges.
  • the overlapping portions may be sealed to form a closed periphery.
  • the overlapping portions may be sealed in a variety of manners such as heat sealing, ultrasonic welding, adhesive sealing, or stapling.
  • the rollers or wheels provided beneath the tunnel ensure that the plastic material will be pulled beneath the material being bagged so that the plastic material will form the bag-like enclosures of FIGS. 17 and 18 .
  • the plastic material 46 beneath the tunnel 28 may be guided towards the centerline of the tunnel 28 through other plastic material guiding assemblies, one example of which is shown in FIGS. 11 and 12 .
  • a protective tongue or shield 82 extends rearwardly from bottom wall 38 of tunnel 28 .
  • Elongated rollers 84 and 86 are rotatably mounted beneath tongue 82 with the peripheries thereof being in engagement with each other.
  • a pair of elongated rollers 88 and 90 are also rotatably mounted beneath tongue 82 with the peripheries thereof being in engagement with each other. As viewed in FIG.
  • rollers 84 and 90 are driven in a counterclockwise direction and rollers 86 and 88 are rotated or driven in a clockwise direction by any suitable means.
  • the coordinated rotation of rollers 84 , 86 , 88 , and 90 move the opposing side edges of the plastic material in opposing directions moving the side edges toward the centerline of the tunnel 28 .
  • FIGS. 15 and 16 Another example of an assembly for guiding the plastic material 46 beneath the tunnel 28 towards the centerline of the tunnel is illustrated in FIGS. 15 and 16 .
  • rotatable wheels replace the rollers of FIGS. 7-9 .
  • a pair of small wheels 92 and 94 replace the rollers 74 and 66 and a pair of small wheels 96 and 98 replace the rollers 76 and 68 .
  • a pair of small wheels 92 ′ and 94 ′ replace the rollers 80 and 82 and a pair of small wheels 96 and 98 ′ replace the rollers 78 and 70 .
  • four pairs of small wheels are shown, any number of pairs of wheels could be utilized.
  • Wheels 92 , 96 and 92 ′, 96 ′ are rotatably secured to floor 38 while wheels 94 , 98 and 94 ′, 98 ′ are rotatably secured to pan 64 or other suitable support.
  • Wheels 92 , 94 are,in engagement with one another, as viewed in FIG. 16 , with driven wheel 92 being in engagement with wheel 94 .
  • Wheel 92 is rotatably driven by any convenient means so that rotation of wheel 92 also causes wheel 94 to be rotatably driven.
  • the peripheries of wheels 96 and 98 are in engagement with one another in the same manner as wheels 92 and 94 with wheel 96 being driven thereby also causing wheel 98 to rotate.
  • Wheels 92 ′, 94 ′, 96 ′ and 98 ′ are similarly mounted and driven.
  • FIGS. 13A and 13B illustrate a sizing assembly to adjust the diameter of the bag formed by the plastic material as it passes over the tunnel.
  • a substantially U-shaped member 100 having a shroud 101 secured thereto extends around the tunnel with the plastic material passing thereover.
  • the member 100 and the rearward end of shroud 101 are selectively vertically adjusted by an adjustment means 101 A ( FIG. 13B ) to adjust the size of the shroud and the bag formed by the plastic material passing thereover.
  • FIGS. 14A and 14B illustrate a smoothing assembly to smooth out wrinkles that may be present in the plastic material as it passes around the tunnel.
  • a plurality of balls or rollers 102 are rotatably mounted on a flexible cable 104 or the like with the balls or rollers 102 being in engagement with the exterior surface of tunnel 28 .
  • the rotation of the balls smoothes out the plastic material as the plastic material passes between the balls and the tunnel.

Abstract

Apparatus and methods for bagging organic and other material such as silage, compost, grain, sawdust, dirt, sand, etc., wherein plastic material is dispensed from a roll mounted on the bagging machine so that the plastic material is at least partially wrapped around the material being bagged as the bagging machine moves ahead during packing and filling.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This is a continuation-in-part application of U.S. patent application Ser. No. 10/334,484 filed on Dec. 30, 2002, entitled “A METHOD AND MEANS FOR BAGGING ORGANIC AND OTHER MATERIAL.” The entire disclosure of which is incorporated herein for all purposes.
  • TECHNICAL FIELD
  • This disclosure relates to apparatus and methods for bagging organic and other material such as silage, compost, grain, sawdust, dirt, sand, etc., and more particularly to apparatus and methods for dispensing plastic material from a roll mounted on a bagging machine so that the plastic material is at least partially wrapped around the material being bagged as the bagging machine moves ahead during packing and filling.
  • BACKGROUND OF THE DISCLOSURE
  • Agricultural feed and compost bagging machines have been employed for several years to pack or bag silage, compost or the like into elongated plastic bags. Two of the earliest bagging machines are disclosed in U.S. Pat. Nos. 3,687,061 and 4,046,068, the complete disclosures of which are incorporated herein by reference for all purposes. In prior art bagging machines, silage, compost, or the like is supplied to the forward or intake end of the bagging machine and is fed to a packing means such as a rotor, plunger, screw conveyor or the like which conveys the material into a tunnel on which the bag is positioned so that the bag is filled. As the silage is packed into the bag, the bagging machine moves away from the filled end of the bag in a controlled fashion so as to achieve uniform compaction of the silage material within the bag. The empty elongated plastic bags are in a folded condition and are initially positioned over the tunnel or forming means of the machine.
  • In the present state of the art, the manufacturers of the plastic silage/compost bag must blow or extrude the plastic into a tubular/bag shape, roll it onto a core, fold it into a collar, and then put the same into a box or container, which is palleted for shipping. Once the box is delivered to the field, it may take several men and a crane to lift the bag out of the box and feed it by hand over and onto the tunnel. The bag is then laboriously pushed onto the tunnel until the bag is gathered at the forward end of the tunnel so that the bag is ready for filling and packing.
  • A major disadvantage and cost of the current method of manufacturing plastic bags for use on bagging machines is the sophisticated and expensive machinery required by the manufacturers to fold the bags after the blowing or extruding process. Only a few manufacturers have such costly machines, and they pass the processing and material costs onto the end user. Secondly, the extra steps necessary to convert the roll of plastic into bags, fold the bags into boxes, load the individual boxes into a larger container for shipping, and then transport and deliver those boxes to the consumers adds time, packaging, space requirements, handling equipment, manpower and disposal costs to the entire process.
  • A further problem created by the present method of putting a plastic bag onto a bagging machine is the physical strain and danger to the men who load the bag onto the tunnel. The newer, bigger bags (14′×500′) weigh up to 1200 lbs and the industry trend is for even larger tunnels and even longer bags.
  • There is a need to replace the old process of manufacturing the bags and the installation of the same on the bagging machines to reduce manufacturing and handling costs, improve safety and worker ergonomics, and eliminate the stranglehold a few manufacturers have on bag distributors and consumers.
  • SUMMARY OF THE DISCLOSURE
  • Apparatus and methods for bagging organic and other material such as compost, silage, grain, sawdust, dirt, sand, etc., are described. The method of bagging the material comprises the steps of: (1) providing a mobile bagging machine having rearward and forward ends, a material receiving means at the forward end thereof, a material packing means in communication with the material receiving means, and a rearwardly extending material forming or shaping enclosure, which may be in the form of a tunnel having an upper end, opposite sides and a lower end; (2) positioning a roll of flexible plastic material on the bagging machine; and (3) causing the plastic material to unroll from the roll, as material is forced through the tunnel, and to pass around the tunnel to partially or completely enclose the material being discharged from the tunnel. The plastic material forms a bag-like enclosure in which the material is placed. Optionally, the method may include the step of controlling the packing density of the material being bagged.
  • As used herein, the term “bag” refers to a flexible container or enclosure which extends partially around or completely around material to partially or completely enclose the same. The apparatus for performing the method comprises a mobile frame having rearward and forward ends; a material receiving means on the mobile frame means; a material packing means on the mobile frame means in communication with the material receiving means; a rearwardly extending material forming or shaping enclosure, which may be in the form of a tunnel, in communication with the material packing means; and a roll of flexible plastic material mounted on the mobile frame means. Optionally, the apparatus further includes a density control assembly operatively coupled to the bagging machine. The plastic material is pulled from the roll as the bagging machine moves forwardly during the bagging operation. The plastic material passes partially or completely around the tunnel to at least partially enclose the material being discharged from the tunnel. Various means for causing the plastic material to pass around the tunnel and at least partially beneath the tunnel are disclosed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front perspective view of a bagging machine having a roll of plastic material mounted thereon with the plastic material being pulled from the roll to at least partially enclose the material being bagged;
  • FIG. 2 is a side view of a bagging machine having a roll of plastic material mounted above the tunnel;
  • FIG. 3 is a view similar to FIG. 2 except that the roll of plastic material has been extended around the tunnel;
  • FIG. 4 is a perspective view of one form of the plastic material;
  • FIG. 5 is a perspective view of another form of the plastic material;
  • FIG. 6 is a front perspective view of a slitter operatively coupled to the bagging machine;
  • FIG. 7 is a rear view of the bagging machine illustrating an example of a plastic material guide assembly;
  • FIG. 8 is a rear view of the bagging machine illustrating the side edges of the plastic material being spaced apart;
  • FIG. 9 is a view similar to FIG. 8 except that the side edges of the plastic material have been overlapped;
  • FIG. 10 is a partial side view illustrating the manner in which the plastic material is passed through the guide assembly;
  • FIG. 11 is a rear perspective view illustrating an example of the guide assembly;
  • FIG. 12 is a rear view of the embodiment of FIG. 11;
  • FIG. 13A is a partial rear perspective view of a bagging machine including an apparatus for adjusting the size of the bag formed by the plastic material as it passes around the tunnel;
  • FIG. 13B is a side view of the embodiment of FIG. 13A;
  • FIG. 14A is a rear perspective view of a bagging machine including an apparatus for smoothing out the plastic material as it passes around the tunnel;
  • FIG. 14B is a side view of the embodiment of FIG. 14A;
  • FIG. 15 is a side view illustrating an example of the guide assembly according to the present disclosure;
  • FIG. 16 is a rear view of the embodiment of FIG. 15;
  • FIG. 17 is a sectional view illustrating the material having been partially enclosed in the plastic material; and
  • FIG. 18 is a view similar to FIG. 17 except that the material has been completely enclosed within the plastic material.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to FIG. 1, the numeral 10 refers to a bagging machine such as manufactured by Versa Corporation, Astoria, Oreg. The bagging machine is intended to bag organic material such as compost, silage, grain, sawdust, etc., within a bag. The machine 10 may also be used to bag dirt or sand to create temporary dikes during flooding. Machine 10 is seen to include a wheeled frame 12 having a forwardly extending tongue or hitch 14 adapted to be connected to a prime mover such as a tractor, truck, etc. Gear box 16 is provided on frame 12 and is driven by a PTO shaft 18 connected to the PTO on the tractor. Although frame 12 shown in the drawings is wheeled, it is possible that the wheels could be omitted. Further, the machine 10 could be truck mounted such as seen in U.S. Pat. No. 5,784,865. Additionally, the machine 10 could be self propelled such as illustrated in U.S. Pat. No. 5,799,472. The complete disclosures of both of the above-identified patents are hereby incorporated by reference for all purposes. For purposes of description, machine 10 will be described as having a forward end 20 and a rearward end 22.
  • Machine 10 is provided with a material receiving means 24 at its forward end which may be in the form of: (1) a feed table such as seen in U.S. Pat. No. 5,297,377; (2) a hopper such as seen in U.S. Pat. No. 5,398,736; (3) a feed mechanism such as shown in U.S. Pat. No. 5,396,753; (4) a feed mechanism such as shown in U.S. Pat. No. 5,367,860; or (5) a hopper such as seen in U.S. Pat. Nos. 5,140,802; 5,419,102; and 5,724,793. The complete disclosures of the above-identified patents are hereby incorporated by reference for all purposes. The purpose of the material receiving means is to receive the material to be bagged and deliver the same to a material packing means 26 positioned at the forward end of a material shaping or forming enclosure 28.
  • The material packing means may be: (1) a rotor such as shown in U.S. Pat. Nos. 5,396,753; 5,297,377; 5,799,472; 5,295,554; (2) a screw conveyor such as seen in U.S. Pat. Nos. 5,140,802 or 5,419,102; (3) a plunger such as seen in U.S. Pat. No. 5,724,793; or (4) the packing fingers described in U.S. Pat. No. 3,687,061. The complete disclosures of the above-identified patents are hereby incorporated by reference for all purposes.
  • With reference to FIG. 7, the material forming or shaping enclosure is illustrated as a tunnel 28. The size (diameter) of the tunnel 28 will depend on the desired bag diameter. The tunnel 28 may be semi-circular or substantially semi-circular. For example, the tunnel may have vertical straight portions on the opposing sides connected by an arcuate portion on the top. Alternatively, the tunnel may be formed from one or more arcuate portions having the same or different radii of curvature. As used herein, “diameter” refers to the distance between opposing interior surfaces of the tunnel, whether semi-circular or substantially semi-circular.
  • With continued reference to FIG. 7, a face plate 30 may be secured to the forward end of the tunnel with the face plate 30 being secured to the frame of the machine. In some machines, the face plate is permanently mounted on the machine with the tunnel being secured to the face plate. Various tunnels are shown in U.S. Pat. Nos. 5,899,247; 5,396,753; 5,297,377; 5,799,472; 5,398,736; 5,355,659; 5,295,554; 5,140,802; 5,419,102; 5,421,142; 5,724,793; and 5,894,713. The complete disclosures of the above-identified patents are hereby incorporated by reference for all purposes. Normally, the tunnel 28 will include a top wall 32, side walls 34 and 36, and at least a partial bottom wall 38. Face plate 30 may include an opening 40 through which the material passes to the interior of the tunnel when a rotor is utilized as the packing means. If plungers, screw conveyors, etc., are utilized as the packing means, the face plate may or may not be included and opening 40 will be omitted.
  • While not required, bagging machines 10 of the present disclosure may also include a density control assembly. A density control assembly as used herein refers to structures or devices that are coupled to the bagging machine and used to control or adjust the packing density of the material be packed into the bag. A variety of density control assemblies and methods may be implemented with the bagging machine of the present disclosure some examples of which include backstop control systems, internal control systems, and drag resistance control systems.
  • In early bagging machines, a backstop structure yieldably engaged the closed end of the agricultural bag to resist the movement of the bagging machine away from the filled end of the agricultural bag as silage is forced into the bag. These machines included a pair of drums rotatably mounted on the bagging machine with a brake associated therewith for braking or resisting the rotation of the drum with a selected brake force. A cable is wrapped around the drum and is connected to the backstop. Examples of such bagging machines are disclosed in U.S. Pat. Nos. 3,687,061 and 4,046,068, previously incorporated by reference.
  • In more recent bagging machines, an internal density control assembly including one or more cables was positioned in the flow of the agricultural material being bagged. In order to vary the packing density of the material in the machine, more or less cables would be employed based on the material being packed. For example, corn silage flows easy and would require more cables while alfalfa packs hard and would use fewer cables. One example of such an arrangement is shown in FIG. 13A where a cable loop 106 is formed with the ends 108 thereof coupled to the tunnel 28. The configuration of cable loop shown in FIG. 13A is one of many cable loop configurations within the scope of the present disclosure. For example, more than one cable loop may be used. Additionally, the ends 108 of the cable loop may be coupled to the inside or the outside of the-tunnel 28, may be coupled to the face plate, may be coupled to the bagging machine with an assembly for adjusting the width or length of the loop, may be coupled to the bagging machine in a non-parallel pattern where two or more of the cable loops cross each other, or may be coupled to the bagging machine with an anchor coupled to the rearward portion of the loop. Examples of these and other alternative configurations are disclosed in U.S. Pat. Nos. 5,297,377; 5,425,220; 5,463,849; 5,464,049; 5,517,806; 5,671,594; 5,775,069; 5,671,594; 5,857,313; and 6,694,711, the complete disclosures of which are hereby incorporated by reference for all purposes.
  • Other arrangements have been used to control the packing density of the material being packed into the bag, one example of which is shown in FIG. 14A where a single cable 110 extends rearwardly from the bagging machine 10 and includes an anchor disposed at the rearward end 112. The length of the cable 110 behind the bagging machine 10 may be fixed or adjustable. It is within the scope of the present disclosure that more than one cable can be used with or without anchors. When an anchor is coupled to the rearward end 112 of the cable 110, the size and configuration of the anchor may be fixed or adjustable. In the example shown in FIG. 14A, the V-shaped anchor 114 may be adjustable to have a greater or smaller angle between the arms of the V. Alternatively, an inflatable anchor may be used that can expand or contract as needed or a screw anchor may be used. Examples of these and other alternative configurations are disclosed in U.S. Pat. Nos. 6,655,116; 6,443,194; and RE38,020, the complete disclosures of which are hereby incorporated by reference for all purposes.
  • More recently, drag resistance density control assemblies have been developed using belts or straps disposed between the bagged material and the ground. In these embodiments, a drag member, such as one or more belts or straps, is attached to the bagging machine or the tunnel and extends rearwardly behind the tunnel. The drag member is positioned between the bagged material and the ground and may be disposed inside the bag or outside the bag. The weight of the bagged material on the drag member slows the advance of the bagging machine and increases the packing density of the agricultural material in the bag. The packing density of the material in the bag may be established prior to beginning the bagging operation or may be adjusted as the bag is being filled. The packing density is established or adjusted, at least in part, by controlling the amount of drag member surface area disposed under the weight of the bagged material. Density control assemblies for agricultural bagging machines that include drag members are disclosed in U.S. Pat. No. 6,748,724 and U.S. patent application Ser. No. 10/867,593. The complete disclosures of the above-identified patent and patent application are hereby incorporated by reference for all purposes. One example of a drag member 116 coupled to a bagging machine is illustrated in FIG. 11.
  • With reference to FIGS. 2 and 3, a support 42 is secured to the machine 10 and extends upwardly therefrom adjacent the forward end of the tunnel 28 for rotatably supporting a roll 44 of plastic material 46 thereon. The plastic material 46 is dispensed from a roll 44 mounted on the bagging machine so that the plastic material 46 is at least partially wrapped around the agricultural material being bagged as the bagging machine moves ahead during packing and filling. The plastic material 46 is pulled from the roll 44, as shown in FIG. 2, and is positioned around the tunnel 28 and at least partially beneath the tunnel so that the plastic material 46 forms a bag-like enclosure, as shown in FIG. 3.
  • The roll 44 may be disposed above the tunnel 28 as shown in FIGS. 1-3 and may alternatively be disposed at other locations on the machine 10. Additionally, the roll 44 may be enclosed in a housing or canister. It is also within the scope of the present disclosure that the plastic material could be dispensed from a source such as a box or container much like garbage bags are dispensed.
  • The flexible plastic material of the present disclosure may be disposed on the roll either as a sheet having opposing ends and opposing side edges or as an elongate tube. The sheet of plastic material having opposing ends and opposing side edges may be formed by slitting an elongate tube prior to rolling the plastic material onto the roll or by slitting an elongate tube as the material is being rolled onto the roll.
  • When the plastic material 46 is a sheet, the sheet may be folded in a tube-like shape such as seen in FIGS. 4 and 5. The plastic material 46 in FIG. 4 is what would be termed a single fold including a front layer 48 and a back layer 50. The front layer may be slit at 52 at the factory to form front layer portions 48a and 48b. The plastic material 46 on roll 44 may also be multi-layered, such as seen in FIG. 5, with a front layer 54, back layer 56, and side gusset layers 58 and 60 therebetween. Similar to the single fold shown in FIG. 4, front layer 54 may be slit at 62 at the factory to form front layers 54 a and 54 b.
  • When the flexible plastic material is disposed on the roll as an elongate tube, the tube may be slit as the plastic material is unrolled and positioned around the tunnel. A slitting device may be provided on support 42 or on machine 10 to slit the elongate tube. In some embodiments, the slitting device may slit the front layer as shown in FIGS. 4 and 5. One example of a slitting device 53 disposed on support 42 is shown in FIG. 6.
  • A pan 64 or other suitable support may be positioned below the forward end of the tunnel 28 as shown in FIGS. 1-3. With reference to FIG. 7, the pan 64 may have rollers 66, 68, 70 and 72 rotatably mounted thereon. Although four rollers are illustrated, more or less rollers could be utilized. Rollers 74, 76, 78 and 80 are rotatably mounted on the underside of floor 38 of tunnel 28 or other suitable support above rollers 66, 68, 70 and 72, respectively. Referring to FIG. 10, the peripheries of the corresponding rollers may be disposed in operative engagement with each other such that the flexible plastic material is allowed to pass therebetween and is moved in accordance with movement of the rollers. Although four rollers are illustrated, more or less rollers could be utilized. The number of rollers on the underside of floor 38 will correspond to the number of rollers on pan 64. In some embodiments, the rollers 74, 76, 78 and 80 may be angled inwardly somewhat with respect to the centerline of-the tunnel so as to guide the plastic material 46 inwardly towards the centerline of the tunnel as will be described in greater detail hereinafter.
  • As can be seen in FIGS. 8 and 9, the flexible plastic material is positioned around the tunnel with the opposing side edges of the plastic material disposed underneath the tunnel. In FIG. 8, the opposing side edges are shown as being disposed in a spaced-apart relationship. When the agricultural material is packed into the bag formed by the configuration in FIG. 8, the opposing side edges will be disposed between the bagged material and the ground with the ground surface closing the bag, such as shown in FIG. 17. In FIG. 9, the opposing side edges overlap and completely enclose the material being bagged. FIG. 18 illustrates a cross-sectional view of a bag filled with the configuration shown in FIG. 9 with the overlapping side edges. When the side edges of the plastic material overlap, the overlapping portions may be sealed to form a closed periphery. The overlapping portions may be sealed in a variety of manners such as heat sealing, ultrasonic welding, adhesive sealing, or stapling. The rollers or wheels provided beneath the tunnel ensure that the plastic material will be pulled beneath the material being bagged so that the plastic material will form the bag-like enclosures of FIGS. 17 and 18.
  • The plastic material 46 beneath the tunnel 28 may be guided towards the centerline of the tunnel 28 through other plastic material guiding assemblies, one example of which is shown in FIGS. 11 and 12. In the embodiment of FIGS. 11 and 12, a protective tongue or shield 82 extends rearwardly from bottom wall 38 of tunnel 28. Elongated rollers 84 and 86 are rotatably mounted beneath tongue 82 with the peripheries thereof being in engagement with each other. A pair of elongated rollers 88 and 90 are also rotatably mounted beneath tongue 82 with the peripheries thereof being in engagement with each other. As viewed in FIG. 12, rollers 84 and 90 are driven in a counterclockwise direction and rollers 86 and 88 are rotated or driven in a clockwise direction by any suitable means. The coordinated rotation of rollers 84, 86, 88, and 90 move the opposing side edges of the plastic material in opposing directions moving the side edges toward the centerline of the tunnel 28.
  • Another example of an assembly for guiding the plastic material 46 beneath the tunnel 28 towards the centerline of the tunnel is illustrated in FIGS. 15 and 16. In the embodiment of FIGS. 15 and 16, rotatable wheels replace the rollers of FIGS. 7-9. A pair of small wheels 92 and 94 replace the rollers 74 and 66 and a pair of small wheels 96 and 98 replace the rollers 76 and 68. Similarly, although not illustrated, a pair of small wheels 92′ and 94′ replace the rollers 80 and 82 and a pair of small wheels 96 and 98′ replace the rollers 78 and 70. Although four pairs of small wheels are shown, any number of pairs of wheels could be utilized. Wheels 92, 96 and 92′, 96′ are rotatably secured to floor 38 while wheels 94, 98 and 94′, 98′ are rotatably secured to pan 64 or other suitable support. Wheels 92, 94 are,in engagement with one another, as viewed in FIG. 16, with driven wheel 92 being in engagement with wheel 94. Wheel 92 is rotatably driven by any convenient means so that rotation of wheel 92 also causes wheel 94 to be rotatably driven. The peripheries of wheels 96 and 98 are in engagement with one another in the same manner as wheels 92 and 94 with wheel 96 being driven thereby also causing wheel 98 to rotate. Wheels 92′, 94′, 96′ and 98′ are similarly mounted and driven.
  • FIGS. 13A and 13B illustrate a sizing assembly to adjust the diameter of the bag formed by the plastic material as it passes over the tunnel. In FIGS. 13A and 13B, a substantially U-shaped member 100 having a shroud 101 secured thereto extends around the tunnel with the plastic material passing thereover. The member 100 and the rearward end of shroud 101 are selectively vertically adjusted by an adjustment means 101A (FIG. 13B) to adjust the size of the shroud and the bag formed by the plastic material passing thereover.
  • FIGS. 14A and 14B illustrate a smoothing assembly to smooth out wrinkles that may be present in the plastic material as it passes around the tunnel. In FIGS. 14A and 14B, a plurality of balls or rollers 102 are rotatably mounted on a flexible cable 104 or the like with the balls or rollers 102 being in engagement with the exterior surface of tunnel 28. The rotation of the balls smoothes out the plastic material as the plastic material passes between the balls and the tunnel.
  • It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Where the disclosure or subsequently filed claims recite “a” or “a first” element or the equivalent thereof, it should be within the scope of the present inventions that such disclosure or claims may be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
  • Applicant reserves the right to submit claims directed to certain combinations and subcombinations that are directed to one of the disclosed inventions and are believed to be novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of those claims or presentation of new claims in that or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.

Claims (35)

1. A method of bagging material, comprising the steps of:
providing a mobile bagging machine having rearward and forward ends and a rearwardly extending tunnel;
positioning a roll of flexible plastic material on said bagging machine;
causing said plastic material to unroll from said roll as material is forced through said tunnel and to pass around said tunnel to at least partially enclose the material being discharged from said tunnel; and
controlling the packing density of the material at least partially enclosed by the plastic material.
2. The method of claim 1 wherein the material at least partially enclosed comprises organic material.
3. The method of claim 1 wherein said plastic material passing around the tunnel has opposing side edges.
4. The method of claim 3 wherein said plastic material forms a bag-like enclosure in which the material is placed.
5. The method of claim 4 wherein said opposing side edges of said plastic material are positioned below the material in a horizontally spaced-apart manner.
6. The method of claim 4 wherein said side edges of said plastic material are positioned below the material in an overlapping manner.
7. The method of claim 6 wherein said overlapping side edges of said plastic material are sealed together.
8. The method of claim 1 wherein the plastic material on the roll includes a folded sheet material having opposing sides.
9. The method of claim 1 wherein the plastic material on the roll includes tubular material; and wherein the method further comprises the step of slitting the tubular material prior to passing the plastic material around the tunnel to create a sheet having opposing side edges.
10. The method of claim 3 further comprising the step of passing the plastic material through a guide assembly operatively coupled to the tunnel.
11. The method of claim 10 wherein the guide assembly is adapted to draw the opposing side edges of the plastic material toward a centerline of the tunnel.
12. The method of claim 1 wherein the material being at least partially enclosed by the plastic material includes at least one of agricultural material, silage material, waste material, or compost material.
13. The method of claim 1 further comprising the step of passing the flexible plastic material over a sizing assembly as the plastic material passes around the tunnel.
14. The method of claim 1 further comprising the step of passing the flexible plastic material through a smoothing assembly as the plastic material passes around the tunnel.
15-24. (canceled)
25. A bagging machine for bagging material, comprising:
a mobile frame having rearward and forward ends;
a rearwardly extending tunnel operatively coupled to the mobile frame;
a density control assembly operatively coupled to the tunnel; and
a roll of flexible plastic material mounted on said mobile frame, wherein said plastic material is pulled from said roll as the bagging machine moves forwardly during the bagging operation, wherein said plastic material passes at least partially around said tunnel to at least partially enclose the material being discharged from said tunnel in a bag-like enclosure, and wherein said plastic material has opposing side edges as it passes at least partially around said tunnel.
26. The bagging machine of claim 25 wherein the plastic material on the roll includes a folded sheet material having opposing sides.
27. The bagging machine of claim 25 wherein the plastic material on the roll includes tubular material; and wherein the bagging machine further comprises a slitter operatively coupled to the mobile frame and adapted to slit the tubular material to create a sheet having opposing side edges.
28. The bagging machine of claim 25 wherein said roll of flexible plastic sheet material is mounted on said mobile frame means above said material forming means.
29. The bagging machine of claim 25 wherein said roll of flexible plastic sheet material is rotatably mounted on said mobile frame means.
30. The bagging machine of claim 25 further including a plastic material guide assembly.
31. The bagging machine of claim 30 wherein said plastic material guide assembly positions said opposing side edges of said plastic material beneath said tunnel.
32. The bagging machine of claim 30 wherein said plastic material guide assembly positions said opposing side edges of said plastic material beneath said tunnel in a horizontally spaced-apart relationship.
33. The bagging machine of claim 30 wherein said plastic material guide assembly positions said opposing side edges of said plastic material beneath said tunnel in an overlapping relationship.
34. The bagging machine of claim 30 wherein said plastic material guide assembly comprises guide rollers.
35. The bagging machine of claim 34 wherein said guide rollers are driven.
36. The bagging machine of claim 30 wherein said plastic material guide assembly comprises guide wheels.
37. The bagging machine of claim 36 wherein said guide wheels are driven.
38. The bagging machine of claim 30 wherein said plastic material guide assembly is positioned beneath said tunnel.
39. The bagging machine of claim 25 wherein the material being at least partially enclosed by the plastic material includes at least one of agricultural material, silage material, waste material, or compost material.
40. The bagging machine of claim 25, wherein the bag-like enclosure has a diameter and further comprising a sizing assembly operatively coupled to the tunnel to adjust the diameter of the bag-like enclosure formed by the plastic material.
41. The bagging machine of claim 25 further comprising a smoothing assembly operatively coupled to the tunnel to smooth the plastic material passing around the tunnel.
42-53. (canceled)
54. A bagging machine for bagging material, comprising:
a mobile frame having rearward and forward ends;
a rearwardly extending tunnel operatively coupled to the mobile frame;
a density control assembly operatively coupled to the tunnel; and
a source of flexible plastic material mounted on said mobile frame, wherein said plastic material is pulled from said source as the bagging machine moves forwardly during the bagging operation, wherein said plastic material passes at least partially around said tunnel to at least partially enclose the material being discharged from said tunnel in a bag-like enclosure, and wherein said plastic material has opposing side edges as it passes at least partially around said tunnel.
55. A method of bagging material, comprising the steps of:
providing a mobile bagging machine having rearward and forward ends and a rearwardly extending tunnel;
positioning a source of flexible plastic material on said bagging machine;
causing said plastic material to dispense from said source as material is forced through said tunnel and to pass around said tunnel to at least partially enclose the material being discharged from said tunnel; and
controlling the packing density of the material at least partially enclosed by the plastic material.
US11/535,338 2002-12-30 2006-09-26 Apparatus and methods for bagging organic and other materials Abandoned US20070074490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/535,338 US20070074490A1 (en) 2002-12-30 2006-09-26 Apparatus and methods for bagging organic and other materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/334,484 US20040128953A1 (en) 2002-12-30 2002-12-30 Method and means for bagging organic and other material
US11/009,690 US7117656B2 (en) 2002-12-30 2004-12-10 Apparatus and methods for bagging organic and other materials
US11/535,338 US20070074490A1 (en) 2002-12-30 2006-09-26 Apparatus and methods for bagging organic and other materials

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/334,484 Continuation-In-Part US20040128953A1 (en) 2002-12-30 2002-12-30 Method and means for bagging organic and other material
US11/009,690 Division US7117656B2 (en) 2002-12-30 2004-12-10 Apparatus and methods for bagging organic and other materials

Publications (1)

Publication Number Publication Date
US20070074490A1 true US20070074490A1 (en) 2007-04-05

Family

ID=32680805

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/334,484 Abandoned US20040128953A1 (en) 2002-12-30 2002-12-30 Method and means for bagging organic and other material
US11/009,690 Expired - Lifetime US7117656B2 (en) 2002-12-30 2004-12-10 Apparatus and methods for bagging organic and other materials
US11/535,338 Abandoned US20070074490A1 (en) 2002-12-30 2006-09-26 Apparatus and methods for bagging organic and other materials

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/334,484 Abandoned US20040128953A1 (en) 2002-12-30 2002-12-30 Method and means for bagging organic and other material
US11/009,690 Expired - Lifetime US7117656B2 (en) 2002-12-30 2004-12-10 Apparatus and methods for bagging organic and other materials

Country Status (3)

Country Link
US (3) US20040128953A1 (en)
AU (1) AU2003230997A1 (en)
WO (1) WO2004060045A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080110133A1 (en) * 2006-08-16 2008-05-15 Lorenzi Thomas E Flexible Container Filling Device
USD732261S1 (en) 2014-02-10 2015-06-16 Src Innovations, Llc Bagging machine cabin

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050166555A1 (en) * 2002-10-03 2005-08-04 Cullen Steven R. Bagging machine with an adjustable tunnel
US20040128953A1 (en) * 2002-12-30 2004-07-08 Cullen Steven R. Method and means for bagging organic and other material
US7434375B2 (en) * 2006-09-22 2008-10-14 Deere & Company Automated system for in-field storage, traceability and unloading of harvest products of harvested material from a harvesting machine
US8863481B2 (en) * 2008-09-15 2014-10-21 Src Innovations, Llc Bag installation for bagging machine
DK200970027A (en) * 2009-06-12 2010-12-13 Anpartsselskabet Af Transportable apparatus and method for filling tubular bag with particulate material
US8789563B2 (en) * 2010-10-12 2014-07-29 Deere & Company Intelligent grain bag loader
AR083334A3 (en) * 2011-09-26 2013-02-21 Fiber K Ind S A PACKING MACHINE SUITABLE FOR ALL KINDS OF DRY AND SMOKE GRAIN
US10940962B2 (en) * 2016-06-30 2021-03-09 topocare GmbH Device for producing a tubular container
US11267595B2 (en) * 2016-11-01 2022-03-08 Pregis Innovative Packaging Llc Automated furniture bagger and material therefor

Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237364A (en) * 1961-09-29 1966-03-01 Clifford R Mack Method of packaging articles in a tube
US3687061A (en) * 1968-12-21 1972-08-29 Eberhardt Geb Device for building up and removing a flat mass of goods
US3996721A (en) * 1973-11-23 1976-12-14 F. B. Mercer, Limited Commodity packaging
US4046068A (en) * 1971-07-10 1977-09-06 Gebruder Eberhard Apparatus for forming mats or strands of fodder feed material for flat storage thereof
US4310036A (en) * 1980-01-21 1982-01-12 Ag-Bag Corporation Tunnel clean out mechanism for an agricultural bag loading apparatus
US4483127A (en) * 1982-06-14 1984-11-20 Lubbock Interstate Sales Co., Inc. Cotton module cover
US4563792A (en) * 1982-10-02 1986-01-14 Herbert Niedecker Process of manufacturing tubular wrappers from a continuous web of plastic material sheeting
US4577370A (en) * 1982-11-29 1986-03-25 Kollross Guenter Method and apparatus for opening axially shirring and dividing off thin-walled, cord-shaped tubular casing material, especially casings made of synthetic material, for the sausage manufacture
US4594836A (en) * 1984-07-23 1986-06-17 Good Maynard L Apparatus and method for loading plastic tubing with bales
US4621666A (en) * 1984-04-02 1986-11-11 Kelly Ryan Equipment Co. Two wheel agricultural feed bagger
US4672794A (en) * 1985-07-29 1987-06-16 Good Maynard L Apparatus and method for packing bulk material in plastic bags
US4734956A (en) * 1986-01-08 1988-04-05 Viskase Corporation Food casing article
US4950511A (en) * 1982-09-27 1990-08-21 Tredegar Industries, Inc. Plastic film construction
US4958477A (en) * 1984-08-28 1990-09-25 Naturin-Werk Becker & Co. Apparatus for the production of meat products
US5113635A (en) * 1989-12-28 1992-05-19 Nippon Suisan Kaisha Ltd. Apparatus for automatically feeding and packing surimi of fish or shellfish
US5140802A (en) * 1991-03-19 1992-08-25 Ag-Bag Corporation Grain bagging machine and method
US5295554A (en) * 1991-12-31 1994-03-22 Cullen Steven R Steering system for an agricultural bagging machine
US5297377A (en) * 1992-07-13 1994-03-29 Cullen Steven R Density control means for an agricultural feed bagging machine
US5355659A (en) * 1994-02-23 1994-10-18 Cullen Steven R Agricultural feed bagging machine having a length adjustable tunnel
US5367860A (en) * 1994-02-23 1994-11-29 Versa Corporation Agricultural feed bagging machine having an improved auger conveyor mounted thereon
US5396753A (en) * 1991-12-30 1995-03-14 Cullen; Steven R. Agricultural bagging machine
US5398736A (en) * 1994-02-23 1995-03-21 Versa Corporation Agricultural feed bagging machine having a tunnel grader edge
US5398738A (en) * 1991-04-08 1995-03-21 Block Drug Company, Inc. Drain cleaner dispenser
US5400569A (en) * 1990-03-06 1995-03-28 Owens-Corning Building Products (U.K.) Limited Packing machine
US5408810A (en) * 1994-02-23 1995-04-25 Versa Corporation Agricultural feed bagging machine having bag retainers thereon
US5419102A (en) * 1991-03-19 1995-05-30 Ag-Bag Corporation Grain bagging machine
US5421142A (en) * 1994-05-20 1995-06-06 Versa Corporation Agricultural bagging machine
US5425220A (en) * 1992-07-13 1995-06-20 Versa Corporation Density control means for an agricultural feed bagging machine
US5461843A (en) * 1993-10-12 1995-10-31 Ag-Bag International Method for treatment of bagged organic materials
US5464049A (en) * 1994-03-10 1995-11-07 Versa Corporation Agricultural feed bagging machine including a rotor winch
US5463849A (en) * 1992-07-13 1995-11-07 Versa Corporation Agricultural feed bagging machine
US5671594A (en) * 1992-07-13 1997-09-30 Versa Corp. Density control means for an agricultural feed bagging machine
US5724793A (en) * 1995-08-02 1998-03-10 Ag-Bag International, Ltd. Materials bagger and system
US5775069A (en) * 1995-05-24 1998-07-07 Versa Corporation Density control means for an agricultural feed bagging machine
US5784865A (en) * 1994-02-22 1998-07-28 Versa Corp. Truck-mounted agricultural feed bagging machine
US5799472A (en) * 1997-06-13 1998-09-01 Versa Corp. Bag pan for an agricultural feed bagging machine
US5857313A (en) * 1995-05-24 1999-01-12 Versa Corp. Density control means for an agricultural feed bagging machine including an adjustable, beveled press plate
US5878552A (en) * 1997-07-31 1999-03-09 Wingert; Paul R. Apparatus and method for bagging agricultural feed
US5894713A (en) * 1992-07-13 1999-04-20 Cullen; Steven R. Density control means for an agricultural feed bagging machine
US5899247A (en) * 1998-01-05 1999-05-04 Versa Corp. Adjustable anchor wing for an agricultural bagging machine
US6146261A (en) * 1997-10-06 2000-11-14 Poly-Clip System Gmbh & Co. Kg Method and apparatus for producing and filling a tubular packaging casing
US6443194B1 (en) * 2001-12-11 2002-09-03 Steven R. Cullen Screw anchor adjustable density control means
US6655116B2 (en) * 2001-08-10 2003-12-02 Steven R. Cullen Adjustable pneumatic density control means for an agricultural bagging machine
US6694711B1 (en) * 2002-09-10 2004-02-24 Src Innovations, Llc Density control and anchoring means for an agricultural bagging machine
US6748724B1 (en) * 2003-04-16 2004-06-15 Src Innovations, Llc Adjustable density control means for a bagging machine
US7117656B2 (en) * 2002-12-30 2006-10-10 Src Innovations, Llc Apparatus and methods for bagging organic and other materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012482A1 (en) * 1990-04-19 1991-10-24 Eggenmueller Alfred Method for flat storage of forage - comprises material by tractor-mounted conveyor and forming device against solid back wall
US5396763A (en) 1994-04-25 1995-03-14 General Electric Company Cooled spraybar and flameholder assembly including a perforated hollow inner air baffle for impingement cooling an outer heat shield
DE10032824A1 (en) * 2000-07-09 2002-01-17 Alfred Eggenmueller Method and appliance for conveying flat silage involve conveyor and press with front and back molding boxes, sheeting cover, chipper, pressure rollers and base.
DE50113496D1 (en) * 2000-11-17 2008-03-06 Josef Altenbuchner Mobile arrangement for the production of ground-storing silage

Patent Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237364A (en) * 1961-09-29 1966-03-01 Clifford R Mack Method of packaging articles in a tube
US3687061A (en) * 1968-12-21 1972-08-29 Eberhardt Geb Device for building up and removing a flat mass of goods
US4046068A (en) * 1971-07-10 1977-09-06 Gebruder Eberhard Apparatus for forming mats or strands of fodder feed material for flat storage thereof
US3996721A (en) * 1973-11-23 1976-12-14 F. B. Mercer, Limited Commodity packaging
US4310036A (en) * 1980-01-21 1982-01-12 Ag-Bag Corporation Tunnel clean out mechanism for an agricultural bag loading apparatus
US4483127A (en) * 1982-06-14 1984-11-20 Lubbock Interstate Sales Co., Inc. Cotton module cover
US4950511A (en) * 1982-09-27 1990-08-21 Tredegar Industries, Inc. Plastic film construction
US4563792A (en) * 1982-10-02 1986-01-14 Herbert Niedecker Process of manufacturing tubular wrappers from a continuous web of plastic material sheeting
US4577370A (en) * 1982-11-29 1986-03-25 Kollross Guenter Method and apparatus for opening axially shirring and dividing off thin-walled, cord-shaped tubular casing material, especially casings made of synthetic material, for the sausage manufacture
US4621666A (en) * 1984-04-02 1986-11-11 Kelly Ryan Equipment Co. Two wheel agricultural feed bagger
US4594836A (en) * 1984-07-23 1986-06-17 Good Maynard L Apparatus and method for loading plastic tubing with bales
US4958477A (en) * 1984-08-28 1990-09-25 Naturin-Werk Becker & Co. Apparatus for the production of meat products
US4672794A (en) * 1985-07-29 1987-06-16 Good Maynard L Apparatus and method for packing bulk material in plastic bags
US4734956A (en) * 1986-01-08 1988-04-05 Viskase Corporation Food casing article
US5113635A (en) * 1989-12-28 1992-05-19 Nippon Suisan Kaisha Ltd. Apparatus for automatically feeding and packing surimi of fish or shellfish
US5400569A (en) * 1990-03-06 1995-03-28 Owens-Corning Building Products (U.K.) Limited Packing machine
US5140802A (en) * 1991-03-19 1992-08-25 Ag-Bag Corporation Grain bagging machine and method
US5419102A (en) * 1991-03-19 1995-05-30 Ag-Bag Corporation Grain bagging machine
US5398738A (en) * 1991-04-08 1995-03-21 Block Drug Company, Inc. Drain cleaner dispenser
US5396753A (en) * 1991-12-30 1995-03-14 Cullen; Steven R. Agricultural bagging machine
US5295554A (en) * 1991-12-31 1994-03-22 Cullen Steven R Steering system for an agricultural bagging machine
US5671594A (en) * 1992-07-13 1997-09-30 Versa Corp. Density control means for an agricultural feed bagging machine
US5894713A (en) * 1992-07-13 1999-04-20 Cullen; Steven R. Density control means for an agricultural feed bagging machine
US5463849A (en) * 1992-07-13 1995-11-07 Versa Corporation Agricultural feed bagging machine
US5297377A (en) * 1992-07-13 1994-03-29 Cullen Steven R Density control means for an agricultural feed bagging machine
US5517806A (en) * 1992-07-13 1996-05-21 Versa Corporation Agricultural feed bagging machine
US5425220A (en) * 1992-07-13 1995-06-20 Versa Corporation Density control means for an agricultural feed bagging machine
US5461843A (en) * 1993-10-12 1995-10-31 Ag-Bag International Method for treatment of bagged organic materials
US5784865A (en) * 1994-02-22 1998-07-28 Versa Corp. Truck-mounted agricultural feed bagging machine
US5408810A (en) * 1994-02-23 1995-04-25 Versa Corporation Agricultural feed bagging machine having bag retainers thereon
US5355659A (en) * 1994-02-23 1994-10-18 Cullen Steven R Agricultural feed bagging machine having a length adjustable tunnel
US5398736A (en) * 1994-02-23 1995-03-21 Versa Corporation Agricultural feed bagging machine having a tunnel grader edge
US5367860A (en) * 1994-02-23 1994-11-29 Versa Corporation Agricultural feed bagging machine having an improved auger conveyor mounted thereon
US5464049A (en) * 1994-03-10 1995-11-07 Versa Corporation Agricultural feed bagging machine including a rotor winch
US5421142A (en) * 1994-05-20 1995-06-06 Versa Corporation Agricultural bagging machine
US5775069A (en) * 1995-05-24 1998-07-07 Versa Corporation Density control means for an agricultural feed bagging machine
US5857313A (en) * 1995-05-24 1999-01-12 Versa Corp. Density control means for an agricultural feed bagging machine including an adjustable, beveled press plate
US5724793A (en) * 1995-08-02 1998-03-10 Ag-Bag International, Ltd. Materials bagger and system
US5799472A (en) * 1997-06-13 1998-09-01 Versa Corp. Bag pan for an agricultural feed bagging machine
US5878552A (en) * 1997-07-31 1999-03-09 Wingert; Paul R. Apparatus and method for bagging agricultural feed
US6146261A (en) * 1997-10-06 2000-11-14 Poly-Clip System Gmbh & Co. Kg Method and apparatus for producing and filling a tubular packaging casing
US5899247A (en) * 1998-01-05 1999-05-04 Versa Corp. Adjustable anchor wing for an agricultural bagging machine
USRE38020E1 (en) * 1998-01-05 2003-03-11 Versa Corporation Adjustable anchor wing for an agricultural bagging machine
US6655116B2 (en) * 2001-08-10 2003-12-02 Steven R. Cullen Adjustable pneumatic density control means for an agricultural bagging machine
US6443194B1 (en) * 2001-12-11 2002-09-03 Steven R. Cullen Screw anchor adjustable density control means
US6694711B1 (en) * 2002-09-10 2004-02-24 Src Innovations, Llc Density control and anchoring means for an agricultural bagging machine
US7117656B2 (en) * 2002-12-30 2006-10-10 Src Innovations, Llc Apparatus and methods for bagging organic and other materials
US6748724B1 (en) * 2003-04-16 2004-06-15 Src Innovations, Llc Adjustable density control means for a bagging machine
US6955030B2 (en) * 2003-04-16 2005-10-18 Src Innovations, Llc Adjustable density controller for a bagging machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080110133A1 (en) * 2006-08-16 2008-05-15 Lorenzi Thomas E Flexible Container Filling Device
USD732261S1 (en) 2014-02-10 2015-06-16 Src Innovations, Llc Bagging machine cabin

Also Published As

Publication number Publication date
US7117656B2 (en) 2006-10-10
AU2003230997A1 (en) 2004-07-29
US20050120682A1 (en) 2005-06-09
WO2004060045A1 (en) 2004-07-22
US20040128953A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
US20070074490A1 (en) Apparatus and methods for bagging organic and other materials
US7178315B2 (en) Adjustable density controller for a bagging machine
EP2106687B1 (en) Mobile bagging machine
US7404280B2 (en) Systems and methods for measuring packing density
US7594374B2 (en) Bagging machines having a collapsible tunnel
US7926246B2 (en) Mobile bagging machine tunnel
US20040144067A1 (en) Material bagging machine having a bag folder mounted thereon
US20090241480A1 (en) Mobile bagging machine rotor assembly and transmission
US7437861B2 (en) Bagging machine with a tunnel at least partially formed of flexible material
US10299438B2 (en) Apparatus for forming and wrapping material
EP2468087B1 (en) Method of wrapping a bale and combination of a round baler and a respective wrapping material dispensing mechanism
US20050166555A1 (en) Bagging machine with an adjustable tunnel
WO2006069227A2 (en) Bagging machines having an adjustable tunnel

Legal Events

Date Code Title Description
AS Assignment

Owner name: SRC INNOVATIONS, LLC, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CULLEN, STEVEN R.;REEL/FRAME:018621/0887

Effective date: 20061211

AS Assignment

Owner name: SRC INNOVATIONS, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SRC INNOVATIONS, LLC;REEL/FRAME:022440/0572

Effective date: 20081231

Owner name: SRC INNOVATIONS, LLC,WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SRC INNOVATIONS, LLC;REEL/FRAME:022440/0572

Effective date: 20081231

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION