US20070084862A1 - Sterile container with sterile filter - Google Patents

Sterile container with sterile filter Download PDF

Info

Publication number
US20070084862A1
US20070084862A1 US11/543,466 US54346606A US2007084862A1 US 20070084862 A1 US20070084862 A1 US 20070084862A1 US 54346606 A US54346606 A US 54346606A US 2007084862 A1 US2007084862 A1 US 2007084862A1
Authority
US
United States
Prior art keywords
sterile
accordance
filter
sterile container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/543,466
Inventor
Mariana Jakab
Friedrich-Wilhelm Oertmann
Stefan Schuster
Torsten Renner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aesculap AG
Original Assignee
Aesculap AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aesculap AG filed Critical Aesculap AG
Assigned to AESCULAP AG & CO., KG reassignment AESCULAP AG & CO., KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAKAB, MARIANA, RENNER, TORSTEN, SCHUSTER, STEFAN, OERTMANN, FRIEDRICH-WILHELM
Publication of US20070084862A1 publication Critical patent/US20070084862A1/en
Assigned to AESCULAP AG reassignment AESCULAP AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AESCULAP AG & CO. KG
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • A61B50/31Carrying cases or bags, e.g. doctors' bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/022Filtration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B2050/005Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers with a lid or cover
    • A61B2050/0058Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers with a lid or cover closable by translation
    • A61B2050/006Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers with a lid or cover closable by translation perpendicular to the lid plane, e.g. by a downward movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • A61B2050/3011Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments having carrying handles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • A61B50/31Carrying cases or bags, e.g. doctors' bags
    • A61B2050/311Cases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps

Definitions

  • the invention relates to a sterile container, in particular, for receiving and storing surgical instruments or surgical material under sterile conditions, comprising a receiving space formed by a container bottom and container walls, a lid for closing the receiving space, a gas exchange opening for providing a fluid connection between the receiving space and an environment outside of the sterile container, a filter holding device including a first holding element and a second holding element, and a sterile filter, wherein, in a sterile position in which the sterile filter closes the gas exchange opening, the sterile filter is held between the first holding element and the second holding element.
  • Sterile filters for sterile containers of the kind described at the outset are usually constructed in the form of a flat circular filter disc, which has a concentric bore and closes the gas exchange opening.
  • the gas exchange opening enables exchange of fluids, i. e., in particular, gases, liquids or gas-liquid mixtures, between the outside environment and the receiving space of the sterile container.
  • fluids i. e., in particular, gases, liquids or gas-liquid mixtures
  • a fastening pin which passes through the bore in the filter disc and thereby secures the filter against moving sideways.
  • a spring mechanism usually engages the fastening pin and presses the filter against a wall of the container, for example, a wall of the lid.
  • a shortcoming of this kind of filter holding device is that two concentric sealing surfaces must be provided, namely, a first one directly around the concentric bore of the sterile filter, and the second at the outer rim of the filter. Moreover, in the case of reusable filters, it may happen that the filter starts to tear at the bore when removing the filter for cleaning purposes. As a result, the filter becomes completely unusable and has to be replaced.
  • the object of the present invention is, therefore, to so improve a sterile container of the kind described at the outset that the design thereof is simplified and damage to the sterile filter is avoided.
  • a sterile container of the kind described at the outset in accordance with the invention, in that the sterile filter is constructed so as to have no openings, in that the first holding element has at least one first holding surface, in that the second holding element has at least one second holding surface, and in that in the sterile position the sterile filter is held clamped between the first holding surface and the second holding surface.
  • a fastening pin Owing to the sterile filter being constructed so as to have no openings, a fastening pin is no longer required, and, in addition, a second sealing of the sterile filter in relation to a wall of the sterile container may be dispensed with. Accordingly, to attach the sterile filter it is, for example, sufficient to hold the sterile filter clamped between two holding surfaces, for example, two ring surfaces, surrounding the gas exchange opening.
  • the at least one first holding surface and the at least one second holding surface are arranged so as to face one another. This means that the two holding surfaces would lie directly against one another, were the sterile filter not held clamped between them. As a result, the two holding surfaces may be made very small, so that as large a filter surface as possible remains free. Nevertheless, the sterile filter is held securely.
  • the design of the sterile container becomes particularly simple when the sterile filter and/or the gas exchange opening are of circular or substantially circular construction.
  • the filter holding device is further simplified in its design when a wall surface of the sterile container carries or comprises or is formed integrally with the at least one first holding surface.
  • the at least one first holding surface can thus be directly integrated into the wall surface of the sterile container, for example, into a lid surface.
  • the gas exchange opening is provided on the lid, and for the wall surface to form part of the lid of the sterile container. This facilitates exchange of the sterile filter, as the sterile filter can be exchanged in a simple way after removal of the lid, even when the receiving space is filled.
  • the first holding element prefferably includes a sterile filter receptacle having a cross-sectional area that corresponds substantially to a filter surface of the sterile filter.
  • the sterile filter may be placed in the sterile filter receptacle, and is thereby also guided at the sides, for example.
  • the design of the sterile container becomes particularly simple when the sterile filter receptacle is of pot-like construction.
  • the sterile filter is guided at the sides in the pot-like sterile filter receptacle.
  • a remaining surface of the bottom of the filter receptacle may form the at least one first holding surface.
  • openings are provided in a side wall of the sterile filter receptacle.
  • a gas exchange can take place through the openings when, for example, the sterile filter is moved away from the filter receptacle parallel to a bottom surface of the filter receptacle and, therefore, closes the filter receptacle even after the lifting-off from the bottom surface.
  • the openings may be uniformly distributed over a circumference of a side wall of a pot-like sterile filter receptacle, for example, in the form of slots extending parallel to the bottom surface.
  • At least one supporting element is advantageously provided, which includes the at least one first holding surface or the at least one second holding surface, and which includes bearing surfaces covering at least partially the gas exchange opening for supporting the sterile filter on one side thereof.
  • the at least one supporting element ensures that when there are large pressure differences between the receiving space and an outside environment of the sterile container, an arching of the sterile filter will be limited and minimized, whereby damage to the sterile filter is avoided.
  • the sterile filter can be supported in a particularly advantageous way when the at least one supporting element is a radial supporting web extending from a center of the gas exchange opening.
  • the gas exchange opening can be spanned in a simple way with this and, for example, divided up into different segments, so that small individual sterile filter surface areas remain, which are also capable of withstanding larger pressure differences between the receiving space and the outside environment of the sterile container.
  • the at least one first supporting element may be a supporting ring which is concentric in relation to the gas exchange opening.
  • the free sterile filter surface can thereby be optimized, as a concentric supporting ring may, for example, be provided so as to surround the gas exchange opening.
  • the at least one first and/or the at least one second holding element to carry a seal on which the sterile filter rests in the sterile position. It is then only possible for a gas exchange between the receiving space and an outside environment of the sterile container to take place through the sterile filter.
  • the at least one first and/or the at least one second holding element In order that the seal will be unable to slip intentionally, it is favorable for the at least one first and/or the at least one second holding element to have a seal receptacle in which the seal is seated at least partially.
  • a particularly simple design of the sterile container is obtained when the seal is constructed in the form of a sealing ring.
  • first holding element and the second holding element are releasably connectable to one another.
  • the sterile filter and the filter holding device are releasably connectable, that the sterile filter is releasable from the filter holding device in a remove position and is held on the filter holding device in a connect position.
  • the sterile filter can be detached from the filter holding device, for example, for cleaning purposes or for disposal.
  • a particularly secure connection can be made between the two holding elements when a bayonet connector is provided for connecting the first holding element to the second holding element and for transferring the filter holding device from the remove position to the connect position.
  • the two holding elements may be brought into engagement relative to one another in a coupling direction and transferred to the connect position by rotation in a plane transverse to the coupling direction relative to one another.
  • a locking mechanism is provided for locking the connect position of the two holding elements.
  • the design of the sterile container becomes particularly simple when the locking mechanism comprises a snap-in locking connection. Depending on the configuration, this also has the advantage that a snap-in locking of the two holding elements in the connect position can be acoustically perceived.
  • a cover may be provided for covering the sterile filter on one side thereof.
  • this may be arranged on an inner side or on an outer side of the sterile container, depending on whether the sterile filter is arranged on an inner side or on an outer side of the sterile container.
  • the second holding element comprises the cover.
  • the second holding element and the cover are of integral construction. In this way, stability of the second holding element is also increased.
  • the cover In order for gas exchange through the cover to be possible in a simple way, it is favorable for the cover to be provided with openings for providing a fluid connection between the receiving space and the sterile filter.
  • the openings are covered by opening covers in a direction transverse to a flow-through direction.
  • Gas exchange between the receiving space and an environment outside of the sterile container is additionally improved when the cover is spaced from the sterile filter, and supporting elements of the first and/or the second holding elements form spacers for the cover.
  • At least one pressure-relief valve is provided for making a fluid connection between an outside environment and the receiving space of the sterile container, for the pressure-relief valve to comprise a valve opening, and a valve flap for opening and closing the valve opening, the pressure-relief valve being constructed so that in a normal position the valve opening is closed and that in a flow-through position, when a minimum pressure difference between pressures prevailing in the receiving space and in the outside environment of the sterile container is exceeded, the valve opening is at least partially open.
  • the pressure-relief valve In order that the pressure-relief valve will reliably assume the normal position when pressure differences between the receiving space and the outside environment of the sterile container are smaller than the minimum pressure difference, it is favorable for the valve flap to be held in a biased manner on the sterile container in the normal position.
  • the pressure-relief valve could be constructed in the form of an outlet valve.
  • the pressure-relief valve is preferably constructed in the form of an inlet valve, which assumes the flow-through position when a pressure prevailing in an outside environment of the sterile container exceeds a pressure prevailing in the receiving space by the minimum pressure difference.
  • the sterile container can thereby be prevented from being compressed, for example, during a sterilization procedure.
  • a pressure difference can then be reduced by hot steam under high pressure being allowed to flow through the valve opening into the receiving space of the sterile container.
  • the design of the sterile container becomes particularly simple when the sterile filter forms the valve flap.
  • the sterile filter thus carries out two functions. Firstly, it serves to prevent penetration of germs and bacteria into the receiving space, and, secondly, it serves as valve flap for the valve opening.
  • At least one stop is provided for delimiting an opening movement of the valve flap away from the valve opening.
  • the second holding element is mounted so as to be movable relative to the first holding element.
  • one of the two holding elements can then support the sterile filter and/or be moved together with the sterile filter when it serves as valve flap.
  • a movable mounting between the first holding element and the second holding element can be implemented in a particularly simple way by bearing elements being provided on the second holding element and on the sterile container adjacent to the gas exchange opening for mounting the second holding element movably on the sterile container.
  • the sterile filter In the closed position, the sterile filter is preferably held in a biased manner between the at least one first holding surface and the at least one second holding surface. It is thereby ensured that in the closed position a gas exchange between the receiving space and the outside environment of the sterile filter is only allowed through the sterile filter.
  • the sterile filter In order to have to exchange the sterile filter as seldom as possible, it is advantageous for the sterile filter to be a permanent filter, in particular, one made from polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the sterile container becomes particularly light when the lid is made from a plastic material, in particular, from polyetheretherketone (PEEK) or polyphenylene sulfone (PPSU).
  • PEEK polyetheretherketone
  • PPSU polyphenylene sulfone
  • FIG. 1 shows an exploded illustration of a lid of a sterile container
  • FIG. 2 shows a plan view of a detail from an inner side of the lid with a part of a filter holding device
  • FIG. 3 shows a sectional view taken along line 3 - 3 in FIG. 2 ;
  • FIG. 4 shows a sectional view similar to FIG. 3 with an inserted sterile filter
  • FIG. 5 shows an enlarged view of area A in FIG. 4 ;
  • FIG. 6 shows a plan view of a lid of the filter holding device
  • FIG. 7 shows a sectional view taken along line 7 - 7 in FIG. 6 ;
  • FIG. 8 shows a view of an underside of the lid of the filter holding device from FIG. 6 ;
  • FIG. 9 shows a schematic illustration of the congruence of webs of two holding elements of the filter holding device.
  • FIG. 1 shows a lid, generally designated by reference numeral 10 , of a sterile container comprising a container tray.
  • a filter holding device generally designated by reference numeral 12 , is arranged on the lid 10 . It serves to receive a flat, disc-shaped sterile filter 14 , which, in a sterile position, closes a circular opening 16 arranged at the center of the lid 10 in order to, on the one hand, allow gas exchange between an interior enclosed by the container tray and an environment outside of the sterile container, and, on the other hand, to prevent penetration of germs and bacteria into the interior.
  • the lid 10 is provided in a conventional manner with a circumferential rim 18 , which partially covers side walls of the container tray. Pivotably mounted clamps 20 are provided on the rim 18 of the lid 10 for joining and securing the lid 10 to the container tray.
  • the round opening 16 is divided into individual segments by a supporting structure, generally designated by reference numeral 22 and shown in FIGS. 2 to 5 .
  • the supporting structure 22 is of symmetrical design and comprises eight radial supporting webs 24 which extend from a center of the opening 16 and are integrally joined to a wall 26 of the lid 10 .
  • a small supporting disc 28 arranged at the center of the opening 16 is concentrically surrounded by a supporting ring 30 which intersects the supporting webs 24 about halfway along their total length.
  • the supporting structure 22 is constructed such that its components together form a flat bearing surface 32 , which is continued at least section-wise beyond the opening 16 by an inner surface 34 defined by the wall 26 of the lid 10 .
  • a ring-shaped guide rim 38 projecting perpendicularly from the inner surface 34 is provided at a spacing from a rim 36 of the opening 16 , so that a ring-shaped supporting surface 40 surrounding the opening 16 is formed by the inner surface 34 .
  • the guide rim 38 together with the supporting structure 22 form a pot-shaped filter receptacle 42 , with a diameter of the sterile filter 14 corresponding to an inner diameter of the ring-shaped guide rim 38 , so that the sterile filter 14 placed in the filter receptacle 42 is guided at the sides.
  • the filter receptacle 42 forms part of the filter holding device 12 , which further comprises a clamping lid 44 and a frame 46 which is movably mounted on the wall 26 and is releasably connectable to the clamping lid 44 .
  • the frame 46 is of approximately U-shaped cross section and has a ring-shaped side wall 48 resting against the guide rim 38 , and a supporting wall 50 extending parallel to the inner surface 34 .
  • Arranged on the supporting wall 50 is an outer wall 52 which projects substantially transversely, and the rim 54 of which rests against the inner surface 34 of the lid 10 .
  • the rim 54 forms an octagonal boundary of the frame 46 .
  • a helical spring 66 is supported, on the one hand, on the cup cover 64 , and, on the other hand, on the bottom 58 .
  • the helical spring 66 is then compressed.
  • a movement of the frame 46 relative to the wall 26 of the lid 10 is guided by the cup cover 64 adapted to an inner diameter of the bearing cup 56 and by the bore 60 in the bottom 58 and the bearing bolt 62 .
  • a sideways movement of the frame 46 relative to the filter receptacle 42 is prevented by the side wall 48 which is adapted in its diameter to the guide rim 38 .
  • the clamping lid 44 shown in greater detail in FIGS. 6 to 8 comprises a flat, octagonal plate 68 which, in a connect position, as shown in FIG. 4 , just covers the supporting wall 50 of the octagonal frame 46 .
  • the plate 68 is provided with a circular opening 70 , which is divided by four supporting webs 72 into four quadrantal segments. Adjacent an inner rim 74 of the opening 70 , two clamping rings 76 and 78 are arranged concentrically and parallel to one another so as to stand perpendicularly on the plate 68 . Arranged concentrically in relation to these is, furthermore, a clamping ring 80 , which surrounds a center of the opening 70 and intersects the supporting webs 72 .
  • An outer diameter of the clamping ring 78 is selected such that the clamping ring 78 rests on the outside of the guide rim 38 .
  • the guide rim 38 is thus guided between the side wall 48 and the clamping ring 78 .
  • a large number of lamellae 84 are provided for additionally covering the opening 70 .
  • the lamellae 84 of each sector, defined by the supporting webs 72 , of the opening 70 are aligned parallel to one another, but the lamellae 84 of adjacent sectors transversely to one another.
  • Each of the lamellae 84 is inclined through 45° relative to the plate 68 , thereby creating slanted through-slots 86 , through which an exchange of gas from one side of the plate 68 to the other side thereof is enabled.
  • the projections 88 each extend over an angular range of approximately 30° and are of L-shaped cross section. They have a portion 90 projecting vertically from the plate 68 , and a holding portion 92 projecting parallel to the plate 68 from the portion 90 and pointing towards the clamping rings 76 and 78 .
  • the projections 88 form part of a bayonet connector for connecting the clamping lid 44 to the frame 46 .
  • This also includes for each projection 88 a bayonet slot 94 , into which the holding portion 92 is insertable. Adjoining the bayonet slot 94 is a narrower guide slot 96 corresponding to the portion 90 , so that upon rotation of the clamping lid 44 inserted with the projections 88 into the bayonet slot 94 , with the plate 68 resting against the supporting wall 50 , rotation of the clamping lid 44 relative to the frame 46 is guided by the portions 90 entering the guide slots 96 .
  • spring tongues 98 arranged adjacent to the guide slots 96 press against the portions 90 in the connect position. Additionally arranged on the spring tongues 98 are locking projections, not shown in greater detail, which engage behind a narrow side of the portion 90 in the connect position and prevent rotary movement out of the connect position.
  • a ring groove 100 in which a sealing ring 102 is inserted.
  • the sealing surface 40 is likewise provided with a ring groove 104 which also receives a sealing ring 106 .
  • the sterile filter 14 rests against the sealing rings 102 and 106 and closes the opening 16 completely.
  • the diameters of the supporting ring 30 and of the clamping ring 80 correspond to one another, so that the bearing surface 32 formed by the supporting ring 30 and the clamping surface 82 formed by the clamping ring 80 are arranged directly opposite one another and would rest against one another, were a sterile filter 14 not held clamped between these.
  • the supporting surface 40 likewise lies opposite the clamping surface 82 formed by the two clamping rings 76 and 80 , so that an outer rim of the sterile filter 14 can be held in a clamped manner.
  • FIG. 9 shows the concentric and opposed or overlapping configuration of the supporting surface 40 and the clamping surface 82 facing one another, namely when the clamping lid 44 assumes a position in which the frame 46 is covered.
  • the supporting webs 72 of the clamping lid 44 are arranged so that, in the connect position, i. e., after insertion of the projections 88 into the bayonet slots 94 and rotation of the clamping lid 44 through 45° relative to the frame 46 , they are each located above a supporting web 24 , so that the sterile filter 14 is held clamped between clamping surfaces 82 and bearing surfaces 32 , formed by the supporting webs 72 and 24 , respectively.
  • a protective cover 108 domed slightly away from the wall 26 is provided for covering the opening 16 .
  • the protective cover 108 has four fastening clips 110 which can be clipped onto the supporting webs 24 .
  • the protective cover 108 can thus be fastened in a simple way by being clipped onto the lid 10 .
  • the filter holding device 12 is designed so that together with the sterile filter 14 held therein it forms a pressure-relief valve. If a pressure prevailing in the environment outside of the sterile container exceeds the pressure inside the sterile container, the sterile filter 14 is pressed against the clamping lid 44 as a result of the pressure forces acting on it from outside. Since the clamping lid 44 is fixedly connected to the frame 46 , but the frame 46 is movably mounted on the lid 10 , the frame 46 is also moved away from the wall 26 , so that the bottoms 58 are released from the inner surface 34 and the helical springs 66 are compressed.
  • the guide rim 38 has slots 112 extending parallel to the inner surface 34 and distributed at regular intervals over the circumference of the guide rim 38 . These are released when the clamping lid 44 assumes the flow-through position described hereinabove. If the pressure difference between the outside environment and the interior of the sterile container drops again, the frame and hence the clamping lid 44 connected thereto are transferred by the helical springs 66 back into the sterile condition shown in FIG. 4 , in which the sterile filter 14 , forming a valve flap of the pressure-relief valve, closes the opening 16 completely.
  • the entire lid 10 in the embodiment described herein is made from a plastic material. It is, however, conceivable to also make the clamps 20 from a plastic material, so that the entire lid with all parts arranged thereon may be made from a plastic material. In other lid variants, however, different materials may be used for manufacturing the lid 10 , in particular, for parts of the lid 10 that are not formed integrally with one another and serve to provide special functions.
  • the clamping lid 44 , the frame 46 , the protective cover 108 and the lid 10 are each manufactured in one piece from a plastic material.

Abstract

To improve a sterile container, in particular, for receiving and storing surgical instruments or surgical material under sterile conditions, comprising a receiving space formed by a container bottom and container walls, a lid for closing the receiving space, a gas exchange opening for providing a fluid connection between the receiving space and an environment outside of the sterile container, a filter holding device including a first holding element and a second holding element, and a sterile filter, wherein, in a sterile position in which the sterile filter closes the gas exchange opening, the sterile filter is held between the first holding element and the second holding element, so that the design thereof is simplified and damage to the sterile filter is avoided, it is proposed that the sterile filter be constructed so as to have no openings, that the first holding element have at least one first holding surface, that the second holding element have at least one second holding surface, and that in the sterile position the sterile filter be held clamped between the first holding surface and the second holding surface.

Description

  • This application is a continuation of international application number PCT/EP2005/003939 filed on Apr. 14, 2005.
  • The present disclosure relates to the subject matter disclosed in international application number PCT/EP2005/003939 of Apr. 14, 2005 and German application number 10 2004 020 803.4 of Apr. 16, 2004, which are incorporated herein by reference in their entirety and for all purposes.
  • BACKGROUND OF THE INVENTION
  • The invention relates to a sterile container, in particular, for receiving and storing surgical instruments or surgical material under sterile conditions, comprising a receiving space formed by a container bottom and container walls, a lid for closing the receiving space, a gas exchange opening for providing a fluid connection between the receiving space and an environment outside of the sterile container, a filter holding device including a first holding element and a second holding element, and a sterile filter, wherein, in a sterile position in which the sterile filter closes the gas exchange opening, the sterile filter is held between the first holding element and the second holding element.
  • Sterile filters for sterile containers of the kind described at the outset are usually constructed in the form of a flat circular filter disc, which has a concentric bore and closes the gas exchange opening. The gas exchange opening enables exchange of fluids, i. e., in particular, gases, liquids or gas-liquid mixtures, between the outside environment and the receiving space of the sterile container. To attach the filter to the sterile container, it is known to provide on the lid a fastening pin which passes through the bore in the filter disc and thereby secures the filter against moving sideways. In addition, a spring mechanism usually engages the fastening pin and presses the filter against a wall of the container, for example, a wall of the lid. A shortcoming of this kind of filter holding device is that two concentric sealing surfaces must be provided, namely, a first one directly around the concentric bore of the sterile filter, and the second at the outer rim of the filter. Moreover, in the case of reusable filters, it may happen that the filter starts to tear at the bore when removing the filter for cleaning purposes. As a result, the filter becomes completely unusable and has to be replaced.
  • The object of the present invention is, therefore, to so improve a sterile container of the kind described at the outset that the design thereof is simplified and damage to the sterile filter is avoided.
  • SUMMARY OF THE INVENTION
  • This object is accomplished with a sterile container of the kind described at the outset, in accordance with the invention, in that the sterile filter is constructed so as to have no openings, in that the first holding element has at least one first holding surface, in that the second holding element has at least one second holding surface, and in that in the sterile position the sterile filter is held clamped between the first holding surface and the second holding surface. Owing to the sterile filter being constructed so as to have no openings, a fastening pin is no longer required, and, in addition, a second sealing of the sterile filter in relation to a wall of the sterile container may be dispensed with. Accordingly, to attach the sterile filter it is, for example, sufficient to hold the sterile filter clamped between two holding surfaces, for example, two ring surfaces, surrounding the gas exchange opening.
  • It is advantageous for the at least one first holding surface and the at least one second holding surface to be arranged so as to face one another. This means that the two holding surfaces would lie directly against one another, were the sterile filter not held clamped between them. As a result, the two holding surfaces may be made very small, so that as large a filter surface as possible remains free. Nevertheless, the sterile filter is held securely.
  • The design of the sterile container becomes particularly simple when the sterile filter and/or the gas exchange opening are of circular or substantially circular construction.
  • The filter holding device is further simplified in its design when a wall surface of the sterile container carries or comprises or is formed integrally with the at least one first holding surface. For example, the at least one first holding surface can thus be directly integrated into the wall surface of the sterile container, for example, into a lid surface.
  • It is advantageous for the gas exchange opening to be provided on the lid, and for the wall surface to form part of the lid of the sterile container. This facilitates exchange of the sterile filter, as the sterile filter can be exchanged in a simple way after removal of the lid, even when the receiving space is filled.
  • It is favorable for the first holding element to include a sterile filter receptacle having a cross-sectional area that corresponds substantially to a filter surface of the sterile filter. The sterile filter may be placed in the sterile filter receptacle, and is thereby also guided at the sides, for example.
  • The design of the sterile container becomes particularly simple when the sterile filter receptacle is of pot-like construction. The sterile filter is guided at the sides in the pot-like sterile filter receptacle. In particular, when the gas exchange opening is provided in a bottom of the pot-like sterile filter receptacle, a remaining surface of the bottom of the filter receptacle may form the at least one first holding surface.
  • It is favorable for openings to be provided in a side wall of the sterile filter receptacle. A gas exchange can take place through the openings when, for example, the sterile filter is moved away from the filter receptacle parallel to a bottom surface of the filter receptacle and, therefore, closes the filter receptacle even after the lifting-off from the bottom surface. In particular, the openings may be uniformly distributed over a circumference of a side wall of a pot-like sterile filter receptacle, for example, in the form of slots extending parallel to the bottom surface.
  • At least one supporting element is advantageously provided, which includes the at least one first holding surface or the at least one second holding surface, and which includes bearing surfaces covering at least partially the gas exchange opening for supporting the sterile filter on one side thereof. The at least one supporting element ensures that when there are large pressure differences between the receiving space and an outside environment of the sterile container, an arching of the sterile filter will be limited and minimized, whereby damage to the sterile filter is avoided.
  • The sterile filter can be supported in a particularly advantageous way when the at least one supporting element is a radial supporting web extending from a center of the gas exchange opening. The gas exchange opening can be spanned in a simple way with this and, for example, divided up into different segments, so that small individual sterile filter surface areas remain, which are also capable of withstanding larger pressure differences between the receiving space and the outside environment of the sterile container.
  • It may also be advantageous for the at least one first supporting element to be a supporting ring which is concentric in relation to the gas exchange opening. The free sterile filter surface can thereby be optimized, as a concentric supporting ring may, for example, be provided so as to surround the gas exchange opening.
  • In order to hold the sterile filter covering the gas exchange opening securely, it is favorable for two or three concentric supporting rings to be provided.
  • To prevent penetration of, for example, air into the receiving space of the sterile container in the area of the holding surfaces resting on the sterile filter, it is advantageous for the at least one first and/or the at least one second holding element to carry a seal on which the sterile filter rests in the sterile position. It is then only possible for a gas exchange between the receiving space and an outside environment of the sterile container to take place through the sterile filter.
  • In order that the seal will be unable to slip intentionally, it is favorable for the at least one first and/or the at least one second holding element to have a seal receptacle in which the seal is seated at least partially.
  • A particularly simple design of the sterile container is obtained when the seal is constructed in the form of a sealing ring.
  • To facilitate exchange of the sterile filter, it is favorable for the first holding element and the second holding element to be releasably connectable to one another.
  • Furthermore, in accordance with a preferred embodiment of the invention, it may be provided that the sterile filter and the filter holding device are releasably connectable, that the sterile filter is releasable from the filter holding device in a remove position and is held on the filter holding device in a connect position. In this way, the sterile filter can be detached from the filter holding device, for example, for cleaning purposes or for disposal.
  • A particularly secure connection can be made between the two holding elements when a bayonet connector is provided for connecting the first holding element to the second holding element and for transferring the filter holding device from the remove position to the connect position. For example, the two holding elements may be brought into engagement relative to one another in a coupling direction and transferred to the connect position by rotation in a plane transverse to the coupling direction relative to one another.
  • In order that the two holding elements will be unable to become released in an undesired manner from the connect position, it is advantageous for a locking mechanism to be provided for locking the connect position of the two holding elements.
  • The design of the sterile container becomes particularly simple when the locking mechanism comprises a snap-in locking connection. Depending on the configuration, this also has the advantage that a snap-in locking of the two holding elements in the connect position can be acoustically perceived.
  • To protect the sterile filter, a cover may be provided for covering the sterile filter on one side thereof. For example, this may be arranged on an inner side or on an outer side of the sterile container, depending on whether the sterile filter is arranged on an inner side or on an outer side of the sterile container.
  • In order to minimize the number of parts required for manufacturing the sterile container, it is favorable for the second holding element to comprise the cover.
  • It is favorable for the second holding element and the cover to be of integral construction. In this way, stability of the second holding element is also increased.
  • In order for gas exchange through the cover to be possible in a simple way, it is favorable for the cover to be provided with openings for providing a fluid connection between the receiving space and the sterile filter.
  • To protect the sterile filter covered by the cover from possible damage by articles contained in the receiving space, it is advantageous for the openings to be covered by opening covers in a direction transverse to a flow-through direction.
  • Gas exchange between the receiving space and an environment outside of the sterile container is additionally improved when the cover is spaced from the sterile filter, and supporting elements of the first and/or the second holding elements form spacers for the cover.
  • In accordance with a preferred embodiment of the invention, it may be provided that at least one pressure-relief valve is provided for making a fluid connection between an outside environment and the receiving space of the sterile container, for the pressure-relief valve to comprise a valve opening, and a valve flap for opening and closing the valve opening, the pressure-relief valve being constructed so that in a normal position the valve opening is closed and that in a flow-through position, when a minimum pressure difference between pressures prevailing in the receiving space and in the outside environment of the sterile container is exceeded, the valve opening is at least partially open. Since, in the event of pressure differences exceeding the minimum pressure difference, a gas exchange through the sterile filter is insufficient to reduce this pressure difference and the sterile container in its entirety can thereby be compressed or arched out, damage to the sterile container can be prevented by means of the pressure-relief valve.
  • In order that the pressure-relief valve will reliably assume the normal position when pressure differences between the receiving space and the outside environment of the sterile container are smaller than the minimum pressure difference, it is favorable for the valve flap to be held in a biased manner on the sterile container in the normal position.
  • In principle, the pressure-relief valve could be constructed in the form of an outlet valve. However, the pressure-relief valve is preferably constructed in the form of an inlet valve, which assumes the flow-through position when a pressure prevailing in an outside environment of the sterile container exceeds a pressure prevailing in the receiving space by the minimum pressure difference. The sterile container can thereby be prevented from being compressed, for example, during a sterilization procedure. A pressure difference can then be reduced by hot steam under high pressure being allowed to flow through the valve opening into the receiving space of the sterile container.
  • The design of the sterile container becomes particularly simple when the sterile filter forms the valve flap. The sterile filter thus carries out two functions. Firstly, it serves to prevent penetration of germs and bacteria into the receiving space, and, secondly, it serves as valve flap for the valve opening.
  • To prevent the valve flap from becoming damaged, for example, by too strong deformation, it is favorable for at least one stop to be provided for delimiting an opening movement of the valve flap away from the valve opening.
  • It is advantageous for the second holding element to be mounted so as to be movable relative to the first holding element. For example, one of the two holding elements can then support the sterile filter and/or be moved together with the sterile filter when it serves as valve flap.
  • A movable mounting between the first holding element and the second holding element can be implemented in a particularly simple way by bearing elements being provided on the second holding element and on the sterile container adjacent to the gas exchange opening for mounting the second holding element movably on the sterile container.
  • In the closed position, the sterile filter is preferably held in a biased manner between the at least one first holding surface and the at least one second holding surface. It is thereby ensured that in the closed position a gas exchange between the receiving space and the outside environment of the sterile filter is only allowed through the sterile filter.
  • In order to have to exchange the sterile filter as seldom as possible, it is advantageous for the sterile filter to be a permanent filter, in particular, one made from polytetrafluoroethylene (PTFE).
  • The sterile container becomes particularly light when the lid is made from a plastic material, in particular, from polyetheretherketone (PEEK) or polyphenylene sulfone (PPSU).
  • The following description of a preferred embodiment of the invention serves in conjunction with the drawings to explain the invention in greater detail.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an exploded illustration of a lid of a sterile container;
  • FIG. 2 shows a plan view of a detail from an inner side of the lid with a part of a filter holding device;
  • FIG. 3 shows a sectional view taken along line 3-3 in FIG. 2;
  • FIG. 4 shows a sectional view similar to FIG. 3 with an inserted sterile filter;
  • FIG. 5 shows an enlarged view of area A in FIG. 4;
  • FIG. 6 shows a plan view of a lid of the filter holding device;
  • FIG. 7 shows a sectional view taken along line 7-7 in FIG. 6;
  • FIG. 8 shows a view of an underside of the lid of the filter holding device from FIG. 6; and
  • FIG. 9 shows a schematic illustration of the congruence of webs of two holding elements of the filter holding device.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a lid, generally designated by reference numeral 10, of a sterile container comprising a container tray. A filter holding device, generally designated by reference numeral 12, is arranged on the lid 10. It serves to receive a flat, disc-shaped sterile filter 14, which, in a sterile position, closes a circular opening 16 arranged at the center of the lid 10 in order to, on the one hand, allow gas exchange between an interior enclosed by the container tray and an environment outside of the sterile container, and, on the other hand, to prevent penetration of germs and bacteria into the interior.
  • The lid 10 is provided in a conventional manner with a circumferential rim 18, which partially covers side walls of the container tray. Pivotably mounted clamps 20 are provided on the rim 18 of the lid 10 for joining and securing the lid 10 to the container tray.
  • The round opening 16 is divided into individual segments by a supporting structure, generally designated by reference numeral 22 and shown in FIGS. 2 to 5. The supporting structure 22 is of symmetrical design and comprises eight radial supporting webs 24 which extend from a center of the opening 16 and are integrally joined to a wall 26 of the lid 10. A small supporting disc 28 arranged at the center of the opening 16 is concentrically surrounded by a supporting ring 30 which intersects the supporting webs 24 about halfway along their total length. The supporting structure 22 is constructed such that its components together form a flat bearing surface 32, which is continued at least section-wise beyond the opening 16 by an inner surface 34 defined by the wall 26 of the lid 10. A ring-shaped guide rim 38 projecting perpendicularly from the inner surface 34 is provided at a spacing from a rim 36 of the opening 16, so that a ring-shaped supporting surface 40 surrounding the opening 16 is formed by the inner surface 34. The guide rim 38 together with the supporting structure 22 form a pot-shaped filter receptacle 42, with a diameter of the sterile filter 14 corresponding to an inner diameter of the ring-shaped guide rim 38, so that the sterile filter 14 placed in the filter receptacle 42 is guided at the sides.
  • The filter receptacle 42 forms part of the filter holding device 12, which further comprises a clamping lid 44 and a frame 46 which is movably mounted on the wall 26 and is releasably connectable to the clamping lid 44. The frame 46 is of approximately U-shaped cross section and has a ring-shaped side wall 48 resting against the guide rim 38, and a supporting wall 50 extending parallel to the inner surface 34. Arranged on the supporting wall 50 is an outer wall 52 which projects substantially transversely, and the rim 54 of which rests against the inner surface 34 of the lid 10. In a plan view, the rim 54 forms an octagonal boundary of the frame 46.
  • Four hollow, cylindrical bearing cups 56 distributed symmetrically over the circumference of the frame 46 are arranged on the supporting wall 50 so as to project perpendicularly therefrom. Their bottom 58 rests against the inner surface 34 and has a central bore 60, through which there extends a bearing bolt 62 which projects perpendicularly from the inner surface 34. Placed on the bearing bolt 62 is a cup cover 64, which closes the bearing cup 56 and fits with its surface into the supporting wall 50. In the bearing cup 56, a helical spring 66 is supported, on the one hand, on the cup cover 64, and, on the other hand, on the bottom 58. When the frame 46 is moved parallel to a longitudinal axis of the bearing bolt 62 away from the inner surface 34, the helical spring 66 is then compressed. A movement of the frame 46 relative to the wall 26 of the lid 10 is guided by the cup cover 64 adapted to an inner diameter of the bearing cup 56 and by the bore 60 in the bottom 58 and the bearing bolt 62. Furthermore, a sideways movement of the frame 46 relative to the filter receptacle 42 is prevented by the side wall 48 which is adapted in its diameter to the guide rim 38.
  • The clamping lid 44 shown in greater detail in FIGS. 6 to 8 comprises a flat, octagonal plate 68 which, in a connect position, as shown in FIG. 4, just covers the supporting wall 50 of the octagonal frame 46. The plate 68 is provided with a circular opening 70, which is divided by four supporting webs 72 into four quadrantal segments. Adjacent an inner rim 74 of the opening 70, two clamping rings 76 and 78 are arranged concentrically and parallel to one another so as to stand perpendicularly on the plate 68. Arranged concentrically in relation to these is, furthermore, a clamping ring 80, which surrounds a center of the opening 70 and intersects the supporting webs 72. The supporting webs 72 and the clamping rings 76, 78 and 80 together define a flat clamping surface 82 for the sterile filter 14. An outer diameter of the clamping ring 78 is selected such that the clamping ring 78 rests on the outside of the guide rim 38. The guide rim 38 is thus guided between the side wall 48 and the clamping ring 78. A large number of lamellae 84 are provided for additionally covering the opening 70. The lamellae 84 of each sector, defined by the supporting webs 72, of the opening 70 are aligned parallel to one another, but the lamellae 84 of adjacent sectors transversely to one another. Each of the lamellae 84 is inclined through 45° relative to the plate 68, thereby creating slanted through-slots 86, through which an exchange of gas from one side of the plate 68 to the other side thereof is enabled.
  • To connect the clamping lid 44 to the frame 46, four projections 88 arranged concentrically in relation to the clamping rings 76 and 78 protrude from the plate 68. The projections 88 each extend over an angular range of approximately 30° and are of L-shaped cross section. They have a portion 90 projecting vertically from the plate 68, and a holding portion 92 projecting parallel to the plate 68 from the portion 90 and pointing towards the clamping rings 76 and 78.
  • The projections 88 form part of a bayonet connector for connecting the clamping lid 44 to the frame 46. This also includes for each projection 88 a bayonet slot 94, into which the holding portion 92 is insertable. Adjoining the bayonet slot 94 is a narrower guide slot 96 corresponding to the portion 90, so that upon rotation of the clamping lid 44 inserted with the projections 88 into the bayonet slot 94, with the plate 68 resting against the supporting wall 50, rotation of the clamping lid 44 relative to the frame 46 is guided by the portions 90 entering the guide slots 96. To hold the clamping lid 44 in the connect position, spring tongues 98 arranged adjacent to the guide slots 96 press against the portions 90 in the connect position. Additionally arranged on the spring tongues 98 are locking projections, not shown in greater detail, which engage behind a narrow side of the portion 90 in the connect position and prevent rotary movement out of the connect position.
  • To achieve particularly good sealing of the opening 16 by the sterile filter 14, there is arranged in the supporting ring 30 a ring groove 100 in which a sealing ring 102 is inserted. The sealing surface 40 is likewise provided with a ring groove 104 which also receives a sealing ring 106. In the sterile or closed position, shown in FIGS. 4 and 5, the sterile filter 14 rests against the sealing rings 102 and 106 and closes the opening 16 completely.
  • The diameters of the supporting ring 30 and of the clamping ring 80 correspond to one another, so that the bearing surface 32 formed by the supporting ring 30 and the clamping surface 82 formed by the clamping ring 80 are arranged directly opposite one another and would rest against one another, were a sterile filter 14 not held clamped between these. The supporting surface 40 likewise lies opposite the clamping surface 82 formed by the two clamping rings 76 and 80, so that an outer rim of the sterile filter 14 can be held in a clamped manner. FIG. 9 shows the concentric and opposed or overlapping configuration of the supporting surface 40 and the clamping surface 82 facing one another, namely when the clamping lid 44 assumes a position in which the frame 46 is covered.
  • The supporting webs 72 of the clamping lid 44 are arranged so that, in the connect position, i. e., after insertion of the projections 88 into the bayonet slots 94 and rotation of the clamping lid 44 through 45° relative to the frame 46, they are each located above a supporting web 24, so that the sterile filter 14 is held clamped between clamping surfaces 82 and bearing surfaces 32, formed by the supporting webs 72 and 24, respectively.
  • To protect the sterile filter 14 from damage from outside, a protective cover 108 domed slightly away from the wall 26 is provided for covering the opening 16. The protective cover 108 has four fastening clips 110 which can be clipped onto the supporting webs 24. The protective cover 108 can thus be fastened in a simple way by being clipped onto the lid 10.
  • In its entirety, the filter holding device 12 is designed so that together with the sterile filter 14 held therein it forms a pressure-relief valve. If a pressure prevailing in the environment outside of the sterile container exceeds the pressure inside the sterile container, the sterile filter 14 is pressed against the clamping lid 44 as a result of the pressure forces acting on it from outside. Since the clamping lid 44 is fixedly connected to the frame 46, but the frame 46 is movably mounted on the lid 10, the frame 46 is also moved away from the wall 26, so that the bottoms 58 are released from the inner surface 34 and the helical springs 66 are compressed. This enables gas exchange between the outside environment and the interior of the sterile container not only through the sterile filter 14 but also through an overpressure flow path opening up between the supporting surface 40 and the sterile filter 14. The pressure-relief valve and the sterile filter then assume the flow-through position.
  • To allow a gas exchange which is as unimpeded as possible, the guide rim 38 has slots 112 extending parallel to the inner surface 34 and distributed at regular intervals over the circumference of the guide rim 38. These are released when the clamping lid 44 assumes the flow-through position described hereinabove. If the pressure difference between the outside environment and the interior of the sterile container drops again, the frame and hence the clamping lid 44 connected thereto are transferred by the helical springs 66 back into the sterile condition shown in FIG. 4, in which the sterile filter 14, forming a valve flap of the pressure-relief valve, closes the opening 16 completely.
  • Except for the clamps 20, the entire lid 10 in the embodiment described herein is made from a plastic material. It is, however, conceivable to also make the clamps 20 from a plastic material, so that the entire lid with all parts arranged thereon may be made from a plastic material. In other lid variants, however, different materials may be used for manufacturing the lid 10, in particular, for parts of the lid 10 that are not formed integrally with one another and serve to provide special functions. In the embodiment described hereinabove, the clamping lid 44, the frame 46, the protective cover 108 and the lid 10 are each manufactured in one piece from a plastic material.

Claims (36)

1. Sterile container, in particular, for receiving and storing surgical instruments or surgical material under sterile conditions, comprising a receiving space formed by a container bottom and container walls, a lid for closing the receiving space, a gas exchange opening for providing a fluid connection between the receiving space and an environment outside of the sterile container, a filter holding device including a first holding element and a second holding element, and a sterile filter, the sterile filter being held between the first holding element and the second holding element in a sterile position in which the sterile filter closes the gas exchange opening, the sterile filter being constructed so as to have no openings, the first holding element having at least one first holding surface, the second holding element having at least one second holding surface, and the sterile filter being held clamped between the first holding surface and the second holding surface in the sterile position.
2. Sterile container in accordance with claim 1, wherein the at least one first holding surface and the at least one second holding surface are arranged so as to face one another.
3. Sterile container in accordance with claim 1, wherein the sterile filter and/or the gas exchange opening are of circular or substantially circular construction.
4. Sterile container in accordance with claim 1, wherein a wall surface of the sterile container carries or comprises or is formed integrally with the at least one first holding surface.
5. Sterile container in accordance with claim 4, wherein the gas exchange opening is provided on the lid, and the wall surface forms part of the lid of the sterile container.
6. Sterile container in accordance with claim 1, wherein the first holding element includes a sterile filter receptacle having a cross sectional area that corresponds substantially to a filter surface of the sterile filter.
7. Sterile container in accordance with claim 6, wherein the sterile filter receptacle is of pot-like construction.
8. Sterile container in accordance with claim 6, wherein openings are provided in a side wall of the sterile filter receptacle.
9. Sterile container in accordance with claim 1, wherein at least one supporting element is provided, which includes the at least one first holding surface or the at least one second holding surface, and which includes bearing surfaces covering at least partially the gas exchange opening for supporting the sterile filter on one side thereof.
10. Sterile container in accordance with claim 9, wherein the at least one supporting element is a radial supporting web extending from a center of the gas exchange opening.
11. Sterile container in accordance with claim 9, wherein the at least one first supporting element is a supporting ring which is concentric in relation to the gas exchange opening.
12. Sterile container in accordance with claim 11, wherein two or three concentric supporting rings are provided.
13. Sterile container in accordance with claim 1, wherein the at least one first and/or the at least one second holding element carry a seal on which the sterile filter rests in the sterile position.
14. Sterile container in accordance with claim 13, wherein the at least one first and/or the at least one second holding element have a seal receptacle in which the seal is seated at least partially.
15. Sterile container in accordance with claim 13, wherein the seal is constructed in the form of a sealing ring.
16. Sterile container in accordance with claim 1, wherein the first holding element and the second holding element are releasably connectable to one another.
17. Sterile container in accordance with claim 1, wherein the sterile filter and the filter holding device are releasably connectable, and the sterile filter is releasable from the filter holding device in a remove position and is held on the filter holding device in a connect position.
18. Sterile container in accordance with claim 17, wherein a bayonet connector is provided for connecting the first holding element to the second holding element and for transferring the filter holding device from the remove position to the connect position.
19. Sterile container in accordance with claim 17, wherein a locking mechanism is provided for locking the connect position of the two holding elements.
20. Sterile container in accordance with claim 19, wherein the locking mechanism comprises a snap-in locking connection.
21. Sterile container in accordance with claim 1, wherein a cover is provided for covering the sterile filter one side thereof.
22. Sterile container in accordance with claim 21, wherein the second holding element includes the cover.
23. Sterile container in accordance with claim 21, wherein the second holding element and the cover are of integral construction.
24. Sterile container in accordance with claim 21, wherein the cover is provided with openings for providing a fluid connection between the receiving space and the sterile filter.
25. Sterile container in accordance with claim 24, wherein the openings are covered by opening covers in a direction transverse to a flow-through direction.
26. Sterile container in accordance with claim 21, wherein the cover is spaced from the sterile filter, and supporting elements of the first and/or the second holding elements form spacers for the cover.
27. Sterile container in accordance with claim 1, wherein at least one pressure-relief valve is provided for providing a fluid connection between an outside environment and the receiving space of the sterile container, and the pressure-relief valve comprises a valve opening, and a valve flap for opening and closing the valve opening, the pressure-relief valve being constructed such that in a normal position the valve opening is closed, and in a flow-through position, when a minimum pressure difference between pressures prevailing in the receiving space and in the outside environment of the sterile container is exceeded, the valve opening is at least partially open.
28. Sterile container in accordance with claim 27, wherein in the normal position the valve flap is held in a biased manner on the sterile container.
29. Sterile container in accordance with claim 27, wherein the pressure-relief valve is constructed in the form of an inlet valve which assumes the flow-through position when a pressure prevailing in an environment outside of the sterile container exceeds a pressure prevailing in the receiving space by the minimum pressure difference.
30. Sterile container in accordance with claim 27, wherein the sterile filter forms the valve flap.
31. Sterile container in accordance with claim 27, wherein at least one stop is provided for delimiting an opening movement of the valve flap away from the valve opening.
32. Sterile container in accordance with claim 1, wherein the second holding element is mounted so as to be movable relative to the first holding element.
33. Sterile container in accordance with claim 32, wherein bearing elements are provided on the second holding element and on the sterile container adjacent to the gas exchange opening for mounting the second holding element movably on the sterile container.
34. Sterile container in accordance with claim 32, wherein in the closed position the sterile filter is held in a biased manner between the at least one first and the at least one second holding surfaces.
35. Sterile container in accordance with claim 1, wherein the sterile filter is a permanent filter, in particular, one made from polytetrafluoroethylene (PTFE).
36. Sterile container in accordance with claim 1, wherein the lid is made from a plastic material, in particular, from polyetheretherketone (PEEK) or polyphenylene sulfone (PPSU).
US11/543,466 2004-04-16 2006-10-03 Sterile container with sterile filter Abandoned US20070084862A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004020803A DE102004020803A1 (en) 2004-04-16 2004-04-16 A sterile container
DE102004020803.4 2004-04-16
PCT/EP2005/003939 WO2005099610A1 (en) 2004-04-16 2005-04-14 Sterile container comprising a sterile filter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003939 Continuation WO2005099610A1 (en) 2004-04-16 2005-04-14 Sterile container comprising a sterile filter

Publications (1)

Publication Number Publication Date
US20070084862A1 true US20070084862A1 (en) 2007-04-19

Family

ID=34965496

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/543,466 Abandoned US20070084862A1 (en) 2004-04-16 2006-10-03 Sterile container with sterile filter

Country Status (4)

Country Link
US (1) US20070084862A1 (en)
EP (1) EP1734883B1 (en)
DE (1) DE102004020803A1 (en)
WO (1) WO2005099610A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100028933A1 (en) * 2007-03-21 2010-02-04 Sartorius Stedim Biotech Gmbh Nutrient medium unit and method for holding a filter from a filtration device
US20110089122A1 (en) * 2008-04-05 2011-04-21 Aquaclear Technology Limited Liquid removal apparatus
US20150053703A1 (en) * 2013-08-23 2015-02-26 Innovation Medical GmbH Filter holder for sterilization container
US20190069970A1 (en) * 2016-02-26 2019-03-07 Asculap Ag Sterile container lid with outer cover
US10688206B2 (en) 2016-02-03 2020-06-23 Aesculap Ag Filter system with outlet function
US11490982B2 (en) 2017-08-03 2022-11-08 Aesculap Ag Modularly structured lid for a sterile container and filter covering for such a lid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010009925U1 (en) * 2010-07-06 2010-10-14 Gottfried Storz Medizintechnik Gmbh & Co. Kg Medical sterilization container with gas exchange filter
EP3132805A1 (en) * 2015-05-20 2017-02-22 Interlock Medizintechnik GmbH Sterilization container with filter support
DE102017127289A1 (en) * 2017-11-20 2019-05-23 Aesculap Ag STERILE CONTAINER WITH GAS EXCHANGE DEVICE AND METHOD FOR THE SETTING THEREOF

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512498A (en) * 1983-10-21 1985-04-23 Karl Liebinger Medizintechnik Gmbh & Co. Sterilizable container
US4551311A (en) * 1981-11-23 1985-11-05 Georg Wagner Kg Sterilizer container
US4748003A (en) * 1986-03-11 1988-05-31 Riley Medical Incorporated Container for flash sterilization
US4783321A (en) * 1984-12-18 1988-11-08 Instrumed, Inc. Sterlization container system
US5176884A (en) * 1989-01-03 1993-01-05 Aesculap Ag Sterilizing container
US5346075A (en) * 1992-04-17 1994-09-13 Johnson & Johnson Medical, Inc. Apparatus and method for holding a medical instrument
US6145687A (en) * 1991-03-04 2000-11-14 Johnson & Johnson Medical, Inc. Contaminant plug for medical instrument sterilization containers
US6620390B1 (en) * 1997-12-03 2003-09-16 Wagner Gmbh Fabrik Fur Medizinische Gerate Sterilizing container
US6622871B2 (en) * 1998-07-21 2003-09-23 Aesculap Ag & Co. Kg Plate-shaped filter holder for a sterilizing container
US20040256270A1 (en) * 2001-11-15 2004-12-23 Aesculap Ag & Co. Kg Sterile container
US20050045551A1 (en) * 2002-03-06 2005-03-03 Aesculap Ag & Co. Kg Sterile container and filter unit for a sterile container
US6994128B2 (en) * 2001-11-15 2006-02-07 Aesculap Ag & Co. Kg Sterile container
US7132089B2 (en) * 2000-04-25 2006-11-07 Metrolog, Services Metrologiques Set for sterilising medical instruments or appliances
US7172740B2 (en) * 2001-11-15 2007-02-06 Aesculap Ag & Co. Kg Sterile container

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA81514B (en) * 1980-01-28 1982-02-24 Roger S Sanderson Sterilized storage container
DE3500026C2 (en) * 1983-10-21 1994-01-27 Leibinger Medizintech Sterilization container
DE29720450U1 (en) * 1997-11-18 1998-01-15 Leibinger Medizintech Sterilization containers
WO2000012141A1 (en) * 1998-08-26 2000-03-09 Case Medical, Inc. Filtered gas plasma sterilization container with improved circulation
DE20118911U1 (en) * 2001-11-15 2002-02-07 Aesculap Ag & Co Kg A sterile container
DE20213523U1 (en) * 2002-03-06 2002-11-28 Aesculap Ag & Co Kg Sterile container and filter unit for a sterile container

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551311A (en) * 1981-11-23 1985-11-05 Georg Wagner Kg Sterilizer container
US4512498A (en) * 1983-10-21 1985-04-23 Karl Liebinger Medizintechnik Gmbh & Co. Sterilizable container
US4783321A (en) * 1984-12-18 1988-11-08 Instrumed, Inc. Sterlization container system
US4748003A (en) * 1986-03-11 1988-05-31 Riley Medical Incorporated Container for flash sterilization
US5176884A (en) * 1989-01-03 1993-01-05 Aesculap Ag Sterilizing container
US6145687A (en) * 1991-03-04 2000-11-14 Johnson & Johnson Medical, Inc. Contaminant plug for medical instrument sterilization containers
US5346075A (en) * 1992-04-17 1994-09-13 Johnson & Johnson Medical, Inc. Apparatus and method for holding a medical instrument
US6620390B1 (en) * 1997-12-03 2003-09-16 Wagner Gmbh Fabrik Fur Medizinische Gerate Sterilizing container
US6622871B2 (en) * 1998-07-21 2003-09-23 Aesculap Ag & Co. Kg Plate-shaped filter holder for a sterilizing container
US7132089B2 (en) * 2000-04-25 2006-11-07 Metrolog, Services Metrologiques Set for sterilising medical instruments or appliances
US20040256270A1 (en) * 2001-11-15 2004-12-23 Aesculap Ag & Co. Kg Sterile container
US6994128B2 (en) * 2001-11-15 2006-02-07 Aesculap Ag & Co. Kg Sterile container
US20060076081A1 (en) * 2001-11-15 2006-04-13 Aesculap Ag & Co. Kg Sterile container
US7172740B2 (en) * 2001-11-15 2007-02-06 Aesculap Ag & Co. Kg Sterile container
US20050045551A1 (en) * 2002-03-06 2005-03-03 Aesculap Ag & Co. Kg Sterile container and filter unit for a sterile container

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100028933A1 (en) * 2007-03-21 2010-02-04 Sartorius Stedim Biotech Gmbh Nutrient medium unit and method for holding a filter from a filtration device
US10184101B2 (en) * 2007-03-21 2019-01-22 Sartorius Stedim Biotech Gmbh Nutrient medium unit and method for holding a filter from a filtration device
US20110089122A1 (en) * 2008-04-05 2011-04-21 Aquaclear Technology Limited Liquid removal apparatus
US9114340B2 (en) * 2008-04-05 2015-08-25 Stevenson Group Limited Liquid removal apparatus with moving transport deck for filter belt
US20150053703A1 (en) * 2013-08-23 2015-02-26 Innovation Medical GmbH Filter holder for sterilization container
US9393332B2 (en) * 2013-08-23 2016-07-19 Innovation Medical GmbH Filter holder for sterilization container
US10688206B2 (en) 2016-02-03 2020-06-23 Aesculap Ag Filter system with outlet function
US20190069970A1 (en) * 2016-02-26 2019-03-07 Asculap Ag Sterile container lid with outer cover
US10874472B2 (en) * 2016-02-26 2020-12-29 Aesculap Ag Sterile container lid with outer cover
US11490982B2 (en) 2017-08-03 2022-11-08 Aesculap Ag Modularly structured lid for a sterile container and filter covering for such a lid

Also Published As

Publication number Publication date
DE102004020803A1 (en) 2005-11-03
EP1734883A1 (en) 2006-12-27
WO2005099610A1 (en) 2005-10-27
EP1734883B1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
US20070084862A1 (en) Sterile container with sterile filter
US7401628B2 (en) Sterile container
US20110147380A1 (en) Sterile container
US6620390B1 (en) Sterilizing container
US4133769A (en) Liquid filter having self-retaining filter bag
US4126559A (en) Pharmaceutical filter
US4704254A (en) Filtered port suitable for medical sterilization containers and method or use thereof
US7381385B2 (en) Sterile container
EP1032784B1 (en) Weldable fuel tank valve apparatus
US5256285A (en) Filter container with double construction
RU2389421C2 (en) Packing system and receiving device for ball in packing system of fluids (versions)
US7172740B2 (en) Sterile container
US5736043A (en) Filter for medical instrument sterilization containers
US10045652B2 (en) Filter insert
US7506666B2 (en) Anti-drip ring and drip seal
KR20140051096A (en) Water filter cartridge with valves
JP6034854B2 (en) Fixing fittings to containers
KR20190069591A (en) Filter element, air purifier assembly, and method of use and assembly
JPH0329450B2 (en)
RU2682533C2 (en) Closure assembly
WO2017196589A1 (en) Drinking vessel lid assembly
US9005541B2 (en) Medical sterilization container with gas-exchange filter
JP2013533437A (en) Splash shield swing bolt
CA1080130A (en) Pharmaceutical filter
US20130240547A1 (en) Lip-operable spill-proof container

Legal Events

Date Code Title Description
AS Assignment

Owner name: AESCULAP AG & CO., KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAKAB, MARIANA;OERTMANN, FRIEDRICH-WILHELM;SCHUSTER, STEFAN;AND OTHERS;REEL/FRAME:018739/0852;SIGNING DATES FROM 20061114 TO 20061116

AS Assignment

Owner name: AESCULAP AG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:AESCULAP AG & CO. KG;REEL/FRAME:021731/0524

Effective date: 20080506

Owner name: AESCULAP AG,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:AESCULAP AG & CO. KG;REEL/FRAME:021731/0524

Effective date: 20080506

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION