US20070134656A1 - Product and method - Google Patents

Product and method Download PDF

Info

Publication number
US20070134656A1
US20070134656A1 US10/535,414 US53541403A US2007134656A1 US 20070134656 A1 US20070134656 A1 US 20070134656A1 US 53541403 A US53541403 A US 53541403A US 2007134656 A1 US2007134656 A1 US 2007134656A1
Authority
US
United States
Prior art keywords
probes
oligonucleotide
disease
sample
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/535,414
Inventor
Praveen Sharma
Narinder Sahni
Anders Lonneborg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diagenic AS
Original Assignee
Diagenic AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diagenic AS filed Critical Diagenic AS
Assigned to DIAGENIC AS reassignment DIAGENIC AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LONNEBORG, ANDERS, SAHNI, NARINDER S., SHARMA, PRAVEEN
Publication of US20070134656A1 publication Critical patent/US20070134656A1/en
Priority to US13/735,740 priority Critical patent/US20130143761A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/20Polymerase chain reaction [PCR]; Primer or probe design; Probe optimisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to oligonucleotide probes, for use in assessing gene transcript levels in a cell, which may be used in analytical techniques, particularly diagnostic techniques.
  • the probes are provided in kit form. Different sets of probes may be used in techniques to prepare gene expression patterns and identify, diagnose or monitor different states, such as diseases, conditions or stages thereof. Also provided are methods of identifying suitable probes and their use in methods of the invention.
  • the analysis of gene expression within cells has been used to provide information on the state of those cells and importantly the state of the individual from which the cells are derived.
  • the relative expression of various genes in a cell has been identified as reflecting a particular state within a body.
  • cancer cells are known to exhibit altered expression of various proteins and the transcripts or the expressed proteins may therefore be used as markers of that disease state.
  • biopsy tissue may be analysed for the presence of these markers and cells originating from the site of the disease may be identified in other tissues or fluids of the body by the presence of the markers.
  • products of the altered expression may be released into the blood stream and these products may be analysed.
  • cells which have contacted disease cells may be affected by their direct contact with those cells resulting in altered gene expression and their expression or products of expression may be similarly analysed.
  • WO98/49342 describes the analysis of the gene expression of cells distant from the site of disease, e.g. peripheral blood collected distant from a cancer site.
  • the physiological state of a cell in an organism is determined by the pattern with which genes are expressed in it.
  • the pattern depends upon the internal and external biological stimuli to which said cell is exposed, and any change either in the extent or in the nature of these stimuli can lead to a change in the pattern with which the different genes are expressed in the cell.
  • Such methods have various advantages. Often, obtaining clinical samples from certain areas in the body that is diseased can be difficult and may involve undesirable invasions in the body, for example biopsy is often used to obtain samples for cancer. In some cases, such as in Alzheimer's disease the diseased brain specimen can only be obtained post-mortem. Furthermore, the tissue specimens which are obtained are often heterogeneous and may contain a mixture of both diseased and non-diseased cells, making the analysis of generated gene expression data both complex and difficult.
  • tumour tissues that appear to be pathogenetically homogeneous with respect to morphological appearances of the tumour may well be highly heterogeneous at the molecular level (Alizadeh, 2000, supra), and in fact might contain tumours representing essentially different diseases (Alizadeh, 2000, supra; Golub, 1999, supra).
  • any method that does not require clinical samples to originate directly from diseased tissues or cells is highly desirable since clinical samples representing a homogeneous mixture of cell types can be obtained from an easily accessible region in the body.
  • the invention provides a set of oligonucleotide probes which correspond to genes in a cell whose expression is affected in a pattern characteristic of a particular disease, condition or stage thereof, wherein said genes are systemically affected by said disease, condition or stage thereof.
  • said genes are metabolic or house-keeping genes and preferably are constitutively moderately or highly expressed.
  • the genes are moderately or highly expressed in the cells of the sample but not in cells from disease cells or in cells having contacted such disease cells.
  • Such probes particularly when isolated from cells distant to the site of disease, do not rely on the development of disease to clinically recognizable levels and allow detection of a disease or condition or stage thereof very early after the onset of said disease or condition, even years before other subjective or objective symptoms appear.
  • systemically affected genes refers to genes whose expression is affected in the body without direct contact with a disease cell or disease site and the cells under investigation are not disease cells.
  • Contact refers to cells coming into close proximity with one another such that the direct effect of one cell on the other may be observed, e.g. an immune response, wherein these responses are not mediated by secondary molecules released from the first cell over a large distance to affect the second cell.
  • contact refers to physical contact, or contact that is as close as is. sterically possible, conveniently, cells which contact one another are found in the same unit volume, for example within 1 cm 3 .
  • a “disease cell” is a cell manifesting phenotypic changes and is present at the disease site at some time during its life-span, e.g. a tumour cell at the tumour site or which has disseminated from the tumour, or a brain cell in the case of brain disorders such as Alzheimer's disease.
  • Methodabolic or “house-keeping” genes refer to those genes responsible for expressing products involved in cell division and maintenance, e.g. non-immune function related genes.
  • “Moderately or highly” expressed genes refers to those present in resting cells in a copy number of more than 30-100 copies/cell (assuming an average 3 ⁇ 10 5 mRNA molecules in a cell).
  • the present invention provides a set of oligonucleotide probes, wherein said set comprises at least 10 oligonucleotides selected from:
  • Table 1 refers to Table 1a and/or Table 1b.
  • Table 1b contains reference to additional clones and sequences as disclosed herein.
  • Tables 2 and 4 comprise 2 parts, a and b.
  • the invention also provides one or more oligonucleotide probes, wherein each oligonucleotide probe is selected from the oligonucleotides listed in Table 1, or derived from a sequence described in Table 1, or a complementary sequence thereof.
  • each oligonucleotide probe is selected from the oligonucleotides listed in Table 1, or derived from a sequence described in Table 1, or a complementary sequence thereof.
  • an “oligonucleotidell” is a nucleic acid molecule having at least 6 monomers in the polymeric structure, ie. nucleotides or modified forms thereof.
  • the nucleic acid molecule may be DNA, RNA or PNA (peptide nucleic acid) or hybrids thereof or modified versions thereof, e.g. chemically modified forms, e.g. LNA (Locked Nucleic acid), by methylation or made up of modified or non-natural bases during synthesis, providing they retain their ability to bind to complementary sequences.
  • PNA peptide nucleic acid
  • LNA Locked Nucleic acid
  • oligonucleotide derived from a sequence described in Table 1 refers to a part of a sequence disclosed in that Table (e.g. Table 1-4), which satisfies the requirements of the oligonucleotide probes as described herein, e.g. in length and function. Preferably said parts have the size described hereinafter.
  • the oligonucleotide probes forming said set are at least 15 bases in length to allow binding of target molecules.
  • said oligonucleotide probes are from 20 to 200 bases in length, e.g. from 30 to 150 bases, preferably 50-100 bases in length.
  • complementary sequences refers to sequences with consecutive complementary bases (ie. T:A, G:C) and which complementary sequences are therefore able to bind to one another through their complementarity.
  • 10 oligonucleotides refers to 10 different oligonucleotides. Whilst a Table 1 oligonucleotide, a Table 1 derived oligonucleotide and their functional equivalent are considered different oligonucleotides, complementary oligonucleotides are not considered different. Preferably however, the at least 10 oligonucleotides are 10 different Table 1 oligonucleotides (or Table 1 derived oligonucleotides or their functional equivalents). Thus said 10 different oligonucleotides are preferably able to bind to 10 different transcripts.
  • oligonucleotides are as described in Table 1 or are derived from a sequence described in Table 1.
  • said oligonucleotides are as described in Table 2 or Table 4 or are derived from a sequence described in either of those tables.
  • the oligonucleotide (or the oligonucleotide derived therefrom) has a high occurrence as defined in Table 3, especially preferably >40%, e.g. >80 or >90, e.g. 100%.
  • a “set” as described refers to a collection of unique oligonucleotide probes (ie. having a distinct sequence) and preferably consists of less than 1000 oligonucleotide probes, especially less than 500 probes, e.g. preferably from 10 to 500, e.g. 10 to 100, 200 or 300, especially preferably 20 to 100, e.g. 30 to 100 probes. In some cases less than 10 probes may be used, e.g. from 2 to 9 probes, e.g. 5 to 9 probes.
  • oligonucleotide probes not described herein may also be present, particularly if they aid the ultimate use of the set of oligonucleotide probes.
  • said set consists only of said Table 1 oligonucleotides, Table 1 derived oligonucleotides, complementary sequences or functionally equivalent oligonucleotides, or a sub-set thereof (e.g. of the size as described above), preferably a sub-set for which sequences are provided herein (see Table 1 and its footnote).
  • said set consists only of said Table 1 oligonucleotides, Table 1 derived oligonucleotides, or complementary sequences thereof, or a sub-set thereof.
  • each unique oligonucleotide probe e.g. 10 or more copies, may be present in each set, but constitute only a single probe.
  • a set of oligonucleotide probes which may preferably be immobilized on a solid support or have means for such immobilization, comprises the at least 10 oligonucleotide probes selected from those described hereinbefore. Especially preferably said probes are selected from those having high occurrence as described in Table 3 and as mentioned above. As mentioned above, these 10 probes must be unique and have different sequences. Having said this however, two separate probes may be used which recognize the same gene but reflect different splicing events. However oligonucleotide probes which are complementary to, and bind to distinct genes are preferred.
  • a “functionally equivalent” oligonucleotide to those described in Table 1 or derived therefrom refers to an oligonucleotide which is capable of identifying the same gene as an oligonucleotide of Table 1 or derived therefrom, ie. it can bind to the same mRNA molecule (or DNA) transcribed from a gene (target nucleic acid molecule) as the Table 1 oligonucleotide or the Table 1 derived oligonucleotide (or its complementary sequence).
  • said functionally equivalent oligonucleotide is capable of recognizing, ie.
  • mRNA molecule is the full length mRNA molecule which corresponds to the Table 1 oligonucleotide or the Table 1 derived oligonucleotide.
  • capable of binding or “binding” refers to the ability to hybridize under conditions described hereinafter.
  • oligonucleotides or complementary sequences
  • sequence identity or will hybridize, as described hereinafter, to a region of the target molecule to which molecule a Table 1 oligonucleotide or a Table 1 derived oligonucleotide or a complementary oligonucleotide binds.
  • oligonucleotides hybridize to one of the MRNA sequences which corresponds to a Table 1 oligonucleotide or a Table 1 derived oligonucleotide under the conditions described hereinafter or has sequence identity to a part of one of the mRNA sequences which corresponds to a Table 1 oligonucleotide or a Table 1 derived oligonucleotide.
  • a “part” in this context refers to a stretch of at least 5, e.g. at least 10 or 20 bases, such as from 5 to 100, e.g. 10 to 50 or 15 to 30 bases.
  • the functionally equivalent oligonucleotide binds to all or a part of the region of a target nucleic acid molecule (mRNA or CDNA) to which the Table 1 oligonucleotide or Table 1 derived oligonucleotide binds.
  • a “target” nucleic acid molecule is the gene transcript or related product e.g. MRNA, or cDNA, or amplified product thereof.
  • Said “region” of said target molecule to which said Table 1 oligonucleotide or Table 1 derived oligonucleotide binds is the stretch over which complementarity exists.
  • this region is the whole length of the Table 1 oligonucleotide or Table 1 derived oligonucleotide, but may be shorter if the entire Table 1 sequence or Table 1 derived oligonucleotide is not complementary to a region of the target sequence.
  • said part of said region of said target molecule is a stretch of at least 5, e.g. at least 10 or 20 bases, such as from 5 to 100, e.g. 10 to 50 or 15 to 30 bases.
  • said functionally equivalent oligonucleotide having several identical bases to the bases of the Table 1 oligonucleotide or the Table 1 derived oligonucleotide. These bases may be identical over consecutive stretches, e.g. in a part of the functionally equivalent oligonucleotide, or may be present non-consecutively, but provide sufficient complementarity to allow binding to the target sequence.
  • said functionally equivalent oligonucleotide hybridizes under conditions of high stringency to a Table 1 oligonucleotide or a Table 1 derived oligonucleotide or the complementary sequence thereof.
  • said functionally equivalent oligonucleotide exhibits high sequence identity to all or part of a Table 1 oligonucleotide.
  • said functionally equivalent oligonucleotide has at least 70% sequence identity, preferably at least 80%, e.g. at least 90, 95, 98 or 99%, to all of a Table 1 oligonucleotide or a part thereof.
  • a “part” refers to a stretch of at least 5, e.g. at least 10 or 20 bases, such as from 5 to 100, e.g. 190 to 50 or 15 to 30 bases, in said Table 1 oligonucleotide. Especially preferably when sequence identity to only a part of said Table 1 oligonucleotide is present, the sequence identity is high, e.g. at least 80% as described above.
  • oligonucleotides which satisfy the above stated functional requirements include those which are derived from the Table 1 oligonucleotides and also those which have been modified by single or multiple nucleotide base (or equivalent) substitution, addition and/or deletion, but which nonetheless retain functional activity, e.g. bind to the same target molecule as the Table 1 oligonucleotide or the Table 1 derived oligonucleotide from which they are further derived or modified.
  • said modification is of from 1 to 50, e.g. from 10 to 30, preferably from 1 to 5 bases.
  • Especially preferably only minor modifications are present, e.g. variations in less than 10 bases, e.g. less than 5 base changes.
  • addition equivalents are included oligonucleotides containing additional sequences which are complementary to the consecutive stretch of bases on the target molecule to which the Table 1 oligonucleotide or the Table 1 derived oligonucleotide binds.
  • the addition may comprise a different, unrelated sequence, which may for example confer a further property, e.g. to provide a means for immobilization such as a linker to bind the oligonucleotide probe to a solid support.
  • Naturally occurring equivalents such as biological variants, e.g. allelic, geographical or allotypic variants, e.g. oligonucleotides which correspond to a genetic variant, for example as present in a different species.
  • Functional equivalents include oligonucleotides with modified bases, e.g. using non-naturally occurring bases. Such derivatives may be prepared during synthesis or by post production modification.
  • Hybridizing sequences which bind under conditions of low stringency are those which bind under non-stringent conditions (for example, 6 ⁇ SSC/50% formamide at room temperature) and remain bound when washed under conditions of low stringency (2 ⁇ SSC, room temperature, more preferably 2 ⁇ SSC, 42° C.).
  • Sequence identity refers to the value obtained when assessed using ClustalW (Thompson et al., 1994, Nucl. Acids Res., 22, p4673-4680) with the following parameters:
  • Sequence identity at a particular base is intended to include identical bases which have simply been derivatized.
  • the invention also extends to polypeptides encoded by the mRNA sequence to which a Table 1 oligonucleotide or a Table 1 derived oligonucleotide binds.
  • the invention further extends to antibodies which bind to any of said polypeptides.
  • said set of oligonucleotide probes may be immobilized on one or more solid supports.
  • Single or preferably multiple copies of each unique probe are attached to said solid supports, e.g. 10 or more, e.g. at least 100 copies of each unique probe are present.
  • One or more unique oligonucleotide probes may be associated with separate solid supports which together form a set of probes immobilized on multiple solid support, e.g. one or more unique probes may be immobilized on multiple beads, membranes, filters, biochips etc. which together form a set of probes, which together form modules of the kit described hereinafter.
  • the solid support of the different modules are conveniently physically associated although the signals associated with each probe (generated as described hereinafter) must be separately determinable.
  • the probes may be immobilized on discrete portions of the same solid support, e.g. each unique oligonucleotide probe, e.g. in multiple copies, may be immobilized to a distinct and discrete portion or region of a single filter or membrane, e.g. to generate an array.
  • a combination of such techniques may also be used, e.g. several solid supports may be used which each immobilize several unique probes.
  • solid support shall mean any solid material able to bind oligonucleotides by hydrophobic, ionic or covalent bridges.
  • Immobilization refers to reversible or irreversible association of the probes to said solid support by virtue of such binding. If reversible, the probes remain associated with the solid support for a time sufficient for methods of the invention to be carried out.
  • solid supports suitable as immobilizing moieties according to the invention are well known in the art and widely described in the literature and generally speaking, the solid support may be any of the well-known supports or matrices which are currently widely used or proposed for immobilization, separation etc. in chemical or biochemical procedures.
  • Such materials include, but are not limited to, any synthetic organic polymer such as polystyrene, polyvinylchloride, polyethylene; or nitrocellulose and cellulose acetate; or tosyl activated surfaces; or glass or nylon or any surface carrying a group suited for covalent coupling of nucleic acids.
  • the immobilizing moieties may take the form of particles, sheets, gels, filters, membranes, microfibre strips, tubes or plates, fibres or capillaries, made for example of a polymeric material e.g. agarose, cellulose, alginate, teflon, latex or polystyrene or magnetic beads.
  • Solid supports allowing the presentation of an array, preferably in a single dimension are preferred, e.g. sheets, filters, membranes, plates or biochips.
  • Attachment of the nucleic acid molecules to the solid support may be performed directly or indirectly.
  • attachment may be performed by UV-induced crosslinking.
  • attachment may be performed indirectly by the use of an attachment moiety carried on the oligonucleotide probes and/or solid support.
  • a pair of affinity binding partners may be used, such as avidin, streptavidin or biotin, DNA or DNA binding protein (e.g. either the lac I repressor protein or the lac operator sequence to which it binds), antibodies (which may be mono- or polyclonal), antibody fragments or the epitopes or haptens of antibodies.
  • one partner of the binding pair is attached to (or is inherently part of) the solid support and the other partner is attached to (or is inherently part of) the nucleic acid molecules.
  • an “affinity binding pair” refers to two components which recognize and bind to one another specifically (ie. in preference to binding to other molecules). Such binding pairs when bound together form a complex.
  • Attachment of appropriate functional groups to the solid support may be performed by methods well known in the art, which include for example, attachment through hydroxyl, carboxyl, aldehyde or amino groups which may be provided by treating the solid support to provide suitable surface coatings.
  • Solid supports presenting appropriate moieties for attachment of the binding partner may be produced by routine methods known in the art.
  • Attachment of appropriate functional groups to the oligonucleotide probes of the invention may be performed by ligation or introduced during synthesis or amplification, for example using primers carrying an appropriate moiety, such as biotin or a particular sequence for capture.
  • the set of probes described hereinbefore is provided in kit form.
  • the present invention provides a kit comprising a set of oligonucleotide probes as described hereinbefore immobilized on one or more solid supports.
  • said probes are immobilized on a single solid support and each unique probe is attached to a different region of said solid support.
  • said multiple solid supports form the modules which make up the kit.
  • said solid support is a sheet, filter, membrane, plate or biochip.
  • the kit may also contain information relating to the signals generated by normal or diseased samples (as discussed in more detail hereinafter in relation to the use of the kits), standardizing materials, e.g. mRNA or cDNA from normal and/or diseased samples for comparative purposes, labels for incorporation into CDNA, adapters for introducing nucleic acid sequences for amplification purposes, primers for amplification and/or appropriate enzymes, buffers and solutions.
  • said kit may also contain a package insert describing how the method of the invention should be performed, optionally providing standard graphs, data or software for interpretation of results obtained when performing the invention.
  • kits to prepare a standard diagnostic gene transcript pattern as described hereinafter forms a further aspect of the invention.
  • the set of probes as described herein have various uses. Principally however they are used to assess the gene expression state of a test cell to provide information relating to the organism from which said cell is derived. Thus the probes are useful in diagnosing, identifying or monitoring a disease or condition or stage thereof in an organism.
  • the invention provides the use of a set of oligonucleotide probes or a kit as described hereinbefore to determine the gene expression pattern of a cell which pattern reflects the level of gene expression of genes to which said oligonucleotide probes bind, comprising at least the steps of:
  • step (a) hybridizing the mRNA or cDNA of step (a) to a set of oligonucleotide probes or a kit as defined herein;
  • said mRNA or cDNA is preferably amplified prior to step b).
  • said molecules may be modified, e.g. by using non-natural bases during synthesis providing complementarity remains.
  • Such molecules may also carry additional moieties such as signalling or immobilizing means.
  • gene expression refers to transcription of a particular gene to produce a specific mRNA product (ie. a particular splicing product).
  • the level of gene expression may be determined by assessing the level of transcribed mRNA molecules or cDNA molecules reverse transcribed from the mRNA molecules or products derived from those molecules, e.g. by amplification.
  • the “pattern” created by this technique refers to information which, for example, may be represented in tabular or graphical form and conveys information about the signal associated with two or more oligonucleotides.
  • Preferably said pattern is expressed as an array of numbers relating to the expression level associated with each probe.
  • PLSR partial Least Squares Regression
  • the probes are thus used to generate a pattern which reflects the gene expression of a cell at the time of its isolation.
  • the pattern of expression is characteristic of the circumstances under which that cells finds itself and depends on the influences to which the cell has been exposed.
  • a characteristic gene transcript pattern standard or fingerprint for cells from an individual with a particular disease or condition may be prepared and used for comparison to transcript patterns of test cells. This has clear applications in diagnosing, monitoring or identifying whether an organism is suffering from a particular disease, condition or stage thereof.
  • the standard pattern is prepared by determining the extent of binding of total mRNA (or cDNA or related product), from cells from a sample of one or more organisms with the disease or condition or stage thereof, to the probes. This reflects the level of transcripts which are present which correspond to each unique probe. The amount of nucleic acid material which binds to the different probes is assessed and this information together forms the gene transcript pattern standard of that disease or condition or stage thereof. Each such standard pattern is characteristic of the disease, condition or stage thereof.
  • the present invention provides a method of preparing a standard gene transcript pattern characteristic of a disease or condition or stage thereof in an organism comprising at least the steps of:
  • step (a) hybridizing the mRNA or cDNA of step (a) to a set of oligonucleotides or a kit as described hereinbefore specific for said disease or condition or stage thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • said oligonucleotides are preferably immobilized on one or more solid supports.
  • the standard pattern for a great number of diseases or conditions and different stages thereof using particular probes may be accumulated in databases and be made available to laboratories on request.
  • Disease samples and organisms as referred to herein refer to organisms (or samples from the same) with an underlying pathological disturbance relative to a normal organism (or sample), in a symptomatic or asymptomatic organism, which may result, for example, from infection or an acquired or congenital genetic imperfection. Such organisms are known to have, or which exhibit, the disease or condition or stage thereof under study.
  • a “condition” refers to a state of the mind or body of an organism which has not occurred through disease, e.g. the presence of an agent in the body such as a toxin, drug or pollutant, or pregnancy.
  • Stages thereof refer to different stages of the disease or condition which may or may not exhibit particular physiological or metabolic changes, but do exhibit changes at the genetic level which may be detected as altered gene expression. It will be appreciated that during the course of a disease or condition the expression of different transcripts may vary. Thus at different stages, altered expression may not be exhibited for particular transcripts compared to “normal” samples. However, combining information from several transcripts which exhibit altered expression at one or more stages through the course of the disease or condition can be used to provide a characteristic pattern which is indicative of a particular stage of the disease or condition. Thus for example different stages in cancer, e.g. pre-stage I, stage I, stage II, II or IV can be identified.
  • Normal refers to organisms or samples which are used for comparative purposes. Preferably, these are “normal” in the sense that they do not exhibit any indication of, or are not believed to have, any disease or condition that would affect gene expression, particularly in respect of the disease for which they are to be used as the normal standard. However, it will be appreciated that different stages of a disease or condition may be compared and in such cases, the “normal” sample may correspond to the earlier stage of the disease or condition.
  • sample refers to any material obtained from the organism, e.g. human or non-human animal under investigation which contains cells and includes, tissues, body fluid or body waste or in the case of prokaryotic organisms, the organism itself.
  • Body fluids include blood, saliva, spinal fluid, semen, lymph.
  • Body waste includes urine, expectorated matter (pulmonary patients), faeces etc.
  • tissue samples include tissue obtained by biopsy, by surgical interventions or by other means e.g. placenta. Preferably however, the samples which are examined are from areas of the body not apparently affected by the disease or condition. The cells in such samples are not disease cells, e.g.
  • peripheral blood may be used for the diagnosis of non-haematopoietic cancers, and the blood does not require the presence of malignant or disseminated cells from the cancer in the blood.
  • peripheral blood may still be used in the methods of the invention.
  • the method of preparing the standard transcription pattern and other methods of the invention are also applicable for use on living parts of eukaryotic organisms such as cell lines and organ cultures and explants.
  • reference to “corresponding” sample etc. refers to cells preferably from the same tissue, body fluid or body waste, but also includes cells-from tissue, body fluid or body waste which are sufficiently similar for the purposes of preparing the standard or test pattern.
  • genes “corresponding” to the probes this refers to genes which are related by sequence (which may be complementary) to the probes although the probes may reflect different splicing products of expression.
  • the invention may be put into practice as follows. To prepare a standard transcript pattern for a particular disease, condition or stage thereof, sample mRNA is extracted from the cells of tissues, body fluid or body waste according to known techniques (see for example Sambrook et. al. (1989), Molecular Cloning: A laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) from a diseased individual or organism.
  • the RNA is preferably reverse transcribed at this stage to form first strand cDNA.
  • Cloning of the cDNA or selection from, or using, a cDNA library is not however necessary in this or other methods of the invention.
  • the complementary strands of the first strand cDNAs are synthesized, ie. second strand cDNAs, but this will depend on which relative strands are present in the oligonucleotide probes.
  • the RNA may however alternatively be used directly without reverse transcription and may be labelled if so required.
  • the cDNA strands are amplified by known amplification techniques such as the polymerase chain reaction (PCR) by the use of appropriate primers.
  • the cDNA strands may be cloned with a vector, used to transform a bacteria such as E. coli which may then be grown to multiply the nucleic acid molecules.
  • primers may be directed to regions of the nucleic acid molecules which have been introduced.
  • adapters may be ligated to the cDNA molecules and primers directed to these portions for amplification of the cDNA molecules.
  • advantage may be taken of the polyA tail and cap of the RNA to prepare appropriate primers.
  • the above described oligonucleotide probes are used to probe mRNA or cDNA of the diseased sample to produce a signal for hybridization to each particular oligonucleotide probe species, ie. each unique probe.
  • a standard control gene transcript pattern may also be prepared if desired using mRNA or cDNA from a normal sample. Thus, mRNA or cDNA is brought into contact with the oligonucleotide probe under appropriate conditions to allow hybridization.
  • probe kit modules When multiple samples are probed, this may be performed consecutively using the same probes, e.g. on one or more solid supports, ie. on probe kit modules, or by simultaneously hybridizing to corresponding probes, e.g. the modules of a corresponding probe kit.
  • transcripts or related molecules hybridize (e.g. by detection of double stranded nucleic acid molecules or detection of the number of molecules which become bound, after removing unbound molecules, e.g. by washing).
  • either or both components which hybridize carry or form a signalling means or a part thereof.
  • This “signalling means” is any moiety capable of direct or indirect detection by the generation or presence of a signal.
  • the signal may be any detectable physical characteristic such as conferred by radiation emission, scattering or absorption properties, magnetic properties, or other physical properties such as charge, size or binding properties of existing molecules (e.g. labels) or molecules which may be generated (e.g. gas emission etc.). Techniques are preferred which allow signal amplification, e.g. which produce multiple signal events from a single active binding site, e.g. by the catalytic action of enzymes to produce multiple detectable products.
  • the signalling means may be a label which itself provides a detectable signal. Conveniently this may be achieved by the use of a radioactive or other label which may be incorporated during cDNA production, the preparation of complementary cDNA strands, during amplification of the target mRNA/cDNA or added directly to target nucleic acid molecules.
  • label are those which directly or indirectly allow detection or measurement of the presence of the transcripts/cDNA.
  • labels include for example radiolabels, chemical labels, for example chromophores or fluorophores (e.g. dyes such as fluorescein and rhodamine), or reagents of high electron density such as ferritin, haemocyanin or colloidal gold.
  • the label may be an enzyme, for example peroxidase or alkaline phosphatase, wherein the presence of the enzyme is visualized by its interaction with a suitable entity, for example a substrate.
  • the label may also form part of a signalling pair wherein the other member of the pair is found on, or in close proximity to, the oligonucleotide probe to which the transcript/cDNA binds, for example, a fluorescent compound and a quench fluorescent substrate may be used.
  • a label may also be provided on a different entity, such as an antibody, which recognizes a peptide moiety attached to the transcripts/cDNA, for example attached to a base used during synthesis or amplification.
  • a signal may be achieved by the introduction of a label before, during or after the hybridization step.
  • the presence of hybridizing transcripts may be identified by other physical properties, such as their absorbance, and in which case the signalling means is the complex itself.
  • the amount of signal associated with each oligonucleotide probe is then assessed.
  • the assessment may be quantitative or qualitative and may be based on binding of a single transcript species (or related cDNA or other products) to each probe, or binding of multiple transcript species to multiple copies of each unique probe. It will be appreciated that quantitative results will provide further information for the transcript fingerprint of the disease which is compiled. This data may be expressed as absolute values (in the case of macroarrays) or may be determined relative to a particular standard or reference e.g. a normal control sample.
  • the standard diagnostic gene pattern transcript may be prepared using one or more disease samples (and normal samples if used) to perform the hybridization step to obtain patterns not biased towards a particular individual's variations in gene expression.
  • this information can be used to identify the presence, absence or extent or stage of that disease or condition in a different test organism or individual.
  • test sample of tissue, body fluid or body waste containing cells, corresponding to the sample used for the preparation of the standard pattern, is obtained from a patient or the organism to be studied.
  • a test gene transcript pattern is then prepared as described hereinbefore as for the standard pattern.
  • the present invention provides a method of preparing a test gene transcript pattern comprising at least the steps of:
  • step (a) hybridizing the mRNA or cDNA of step (a) to a set of oligonucleotides or a kit as described hereinbefore specific for a disease or condition or stage thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • This test pattern may then be compared to one or more standard patterns to assess whether the sample contains cells having the disease, condition or stage thereof.
  • the present invention provides a method of diagnosing or identifying or monitoring a disease or condition or stage thereof in an organism, comprising the steps of:
  • step c) is the preparation of a test pattern as described above.
  • diagnosis refers to determination of the presence or existence of a disease or condition or stage thereof in an organism.
  • Monitoring refers to establishing the extent of a disease or condition, particularly when an individual is known to be suffering from a disease or condition, for example to monitor the effects of treatment or the development of a disease or condition, e.g. to determine the suitability of a treatment or provide a prognosis.
  • the presence of the disease or condition or stage thereof may be determined by determining the degree of correlation between the standard and test samples' patterns. This necessarily takes into account the range of values which are obtained for normal and diseased samples. Although this can be established by obtaining standard deviations for several representative samples binding to the probes to develop the standard, it will be appreciated that single samples may be sufficient to generate the standard pattern to identify a disease if the test sample exhibits close enough correlation to that standard. Conveniently, the presence, absence, or extent of a disease or condition or stage thereof in a test sample can be predicted by inserting the data relating to the expression level of informative probes in test sample into the standard diagnostic probe pattern established according to equation 1.
  • Data generated using the above mentioned methods may be analysed using various techniques from the most basic visual representation (e.g. relating to intensity) to more complex data manipulation to identify underlying patterns which reflect the interrelationship of the level of expression of each gene to which the various probes bind, which may be quantified and expressed mathematically.
  • the raw data thus generated may be manipulated by the data processing and statistical methods described hereinafter, particularly normalizing and standardizing the data and fitting the data to a classification model to determine whether said test data reflects the pattern of a particular disease, condition or stage thereof.
  • Probes of the invention may not be sufficiently informative for diagnostic purposes when used alone, but are informative when used as one of several probes to provide a characteristic pattern, e.g. in a set as described hereinbefore.
  • said probes correspond to genes which are systemically affected by said disease, condition or stage thereof.
  • said genes, from which transcripts are derived which bind to probes of the invention are metabolic or house-keeping genes and preferably are moderately or highly expressed.
  • the advantage of using probes directed to moderately or highly expressed genes is that smaller clinical samples are required for generating the necessary gene expression data set, e.g. less than 1 ml blood samples.
  • transcripts which are already being actively transcribed tend to be more prone to being influenced, in a positive or negative way, by new stimuli.
  • transcripts are already being produced at levels which are generally detectable, small changes in those levels are readily detectable as for example, a certain detectable threshold does not need to be reached.
  • the set of probes of the invention are informative for a variety of different diseases, conditions or stages thereof.
  • a sub-set of the probes disclosed herein may be used for diagnosis, identification or monitoring a particular disease, condition or stage thereof.
  • the probes may be used to diagnose or identify or monitor any condition, ailment, disease or reaction that leads to the relative increase or decrease in the activity of informative genes of any or all eukaryotic or prokaryotic organisms regardless of whether these changes have been caused by the influence of bacteria, virus, prions, parasites, fungi, radiation, natural or artificial toxins, drugs or allergens, including mental conditions due to stress, neurosis, psychosis or deteriorations due to the ageing of the organism, and conditions or diseases of unknown cause, providing a sub-set of the probes as described herein are informative for said disease or condition or stage thereof.
  • Such diseases include those which result in metabolic or physiological changes, such as fever-associated diseases such as influenza or malaria.
  • Other diseases which may be detected include for example yellow fever, sexually transmitted diseases such as gonorrhea, fibromyalgia, candida-related complex, cancer (for example of the stomach, lung, breast, prostate gland, bowel, skin, colon, ovary etc), Alzheimer's disease, disease caused by retroviruses such as HIV, senile dementia, multiple sclerosis and Creutzfeldt-Jakob disease to mention a few.
  • the invention may also be used to identify patients with psychiatric or psychosomatic diseases such as schizophrenia and eating disorders.
  • psychiatric or psychosomatic diseases such as schizophrenia and eating disorders.
  • this method to detect diseases, conditions, or stages thereof, which are not readily detectable by known diagnostic methods, such as HIV which is generally not detectable using known techniques 1 to 4 months following infection.
  • Conditions which may be identified include for example drug abuse, such as the use of narcotics, alcohol, steroids or performance enhancing drugs.
  • said disease to be identified or monitored is a cancer or a degenerative brain disorder (such as Alzheimer's or Parkinson's disease).
  • a set of oligonucleotide probes wherein said set comprises at least 10 oligonucleotides selected from:
  • the diagnostic method may be used alone as an alternative to other diagnostic techniques or in addition to such techniques.
  • methods of the invention may be used as an alternative or additive diagnostic measure to diagnosis using imaging techniques such as Magnetic Resonance Imagine (MRI), ultrasound imaging, nuclear imaging or X-ray imaging, for example in the identification and/or diagnosis of tumours.
  • imaging techniques such as Magnetic Resonance Imagine (MRI), ultrasound imaging, nuclear imaging or X-ray imaging, for example in the identification and/or diagnosis of tumours.
  • the methods of the invention may be performed on cells from prokaryotic or eukaryotic organisms which may be any eukaryotic organisms such as human beings, other mammals and animals, birds, insects, fish and plants, and any prokaryotic organism such as a bacteria.
  • Preferred non-human animals on which the methods of the invention may be conducted include, but are not limited to mammals, particularly primates, domestic animals, livestock and laboratory animals.
  • preferred animals for diagnosis include mice,. rats, guinea pigs, cats, dogs, pigs, cows, goats, sheep, horses.
  • the disease state or condition of humans is diagnosed, identified or monitored.
  • the sample under study may be any convenient sample which may be obtained from an organism.
  • the sample is obtained from a site distant to the site of disease and the cells in such samples are not disease cells, have not been in contact with such cells and do not originate from the site of the disease or condition.
  • the sample may contain cells which do not fulfil these criteria.
  • the probes of the invention are concerned with transcripts whose expression is altered in cells which do satisfy these criteria, the probes are specifically directed to detecting changes in transcript levels in those cells even if in the presence of other, background cells.
  • the same probe may be found to be informative in determinations regarding two or more diseases, conditions or stages thereof by virtue of the particular level of transcripts binding to that probe or the interrelationship of the extent of binding to that probe relative to other probes.
  • Table 9 which represents preferred probes of the invention discloses probes which are informative for both Alzheimer's and breast cancer.
  • the present invention also provides sets of probes for diagnosing, identifying or monitoring two or more diseases, conditions or stages thereof, wherein at least one of said probes is suitable for said diagnosing, identifying or monitoring at least two of said diseases, conditions or stages thereof, and kits and methods of using the same.
  • at least 5 probes e.g. from 5 to 15 probes, are used in at least two diagnoses.
  • the present invention provides a method of diagnosis or identification or monitoring as described hereinbefore for the diagnosis, identification or monitoring of two or more diseases, conditions or stages thereof in an organism, wherein said test pattern produced in step c) of the diagnostic method is compared in step d) to at least two standard diagnostic patterns prepared as described previously, wherein each standard diagnostic pattern is a pattern generated for a different disease or condition or stage thereof.
  • the methods of assessment concern the development of a gene transcript pattern from a test sample and comparison of the same to a standard pattern, the elevation or depression of .expression of certain markers may also be examined by examining the products of expression and the level of those products.
  • a standard pattern in relation to the expressed product may be generated:
  • polypeptides or fragments thereof which are present.
  • the presence or concentration of polypeptides may be examined, for example by the use of a binding partner to said polypeptide (e.g. an antibody), which may be immobilized, to separate said polypeptide from the sample and the amount of polypeptide may then be determined.
  • a binding partner to said polypeptide e.g. an antibody
  • “Fragments” of the polypeptides refers to a domain or region of said polypeptide, e.g. an antigenic fragment, which is recognizable as being derived from said polypeptide to allow binding of a specific binding partner.
  • a fragment comprises a significant portion of said polypeptide and corresponds to a product of normal post-synthesis processing.
  • each binding partner is specific to a marker polypeptide (or a fragment thereof) encoded by the gene to which an oligonucleotide of Table 1 (or derived from a sequence described in Table 1) binds, to allow binding of said binding partners to said target polypeptides, wherein said marker polypeptides are specific for said disease or condition thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • target polypeptides refer to those polypeptides present in a sample which are to be detected and “marker polypeptides” are polypeptides which are encoded by the genes to which Table 1 oligonucleotides or Table 1 derived oligonucleotides bind.
  • the target and marker polypeptides are identical or at least have areas of high similarity, e.g. epitopic regions to allow recognition and binding of the binding partner.
  • “Release” of the target polypeptides refers to appropriate treatment of a sample to provide the polypeptides in a form accessible for binding of the binding partners, e.g. by lysis of cells where these are present.
  • the samples used in this case need not necessarily comprise cells as the target polypeptides may be released from cells into the surrounding tissue or fluid, and this tissue or fluid may be analysed, e.g. urine or blood. Preferably however the preferred samples as described herein are used.
  • “Binding partners” comprise the separate entities which together make an affinity binding pair as described above, wherein one partner of the binding pair is the target or marker polypeptide and the other partner binds specifically to that polypeptide, e.g. an antibody.
  • a sandwich type assay e.g. an immunoassay such as an ELISA, may be used in which an antibody specific to the polypeptide and carrying a label (as described elsewhere herein) may be bound to the binding pair (e.g. the first antibody:polypeptide pair) and the amount of label detected.
  • a further aspect of the invention provides a method of preparing a test gene transcript pattern comprising at least the steps of:
  • each binding partner is specific to a marker polypeptide (or a fragment thereof) encoded by the gene to which an oligonucleotide of Table 1 (or derived from a sequence described in Table 1) binds, to allow binding of said binding partners to said target polypeptides, wherein said marker polypeptides are specific for said disease or condition thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • a yet further aspect of the invention provides a method of diagnosing or identifying or monitoring a disease or condition or stage thereof in an organism comprising the steps of:
  • each binding partner is specific to a marker polypeptide (or a fragment thereof) encoded by the gene to which an oligonucleotide of Table 1 (or derived from a sequence described in Table 1) binds, to allow binding of said binding partners to said target polypeptides, wherein said marker polypeptides are specific for said disease or condition thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • the methods of generating standard and test patterns and diagnostic techniques rely on the use of informative oligonucleotide probes to generate the gene expression data. In some cases it will be necessary to select these informative probes for a particular method, e.g. to diagnose a particular disease, from a selection of available probes, e.g. the probes described hereinbefore (the Table 1 oligonucleotides, the Table 1 derived oligonucleotides, their complementary sequences and functionally equivalent oligonucleotides). The following methodology describes a convenient method for identifying such informative probes, or more particularly how to select a suitable sub-set of probes from the probes described herein.
  • Probes for the analysis of a particular disease or condition or stage thereof may be identified in a number of ways known in the prior art, including by differential expression or by library subtraction (see for example WO98/49342). As described hereinafter, in view of the high information content of most transcripts, as a starting point one may also simply analyse a random sub-set of mRNA or CDNA species and pick the most informative probes from that sub-set. The following method describes the use of immobilized oligonucleotide probes (e.g. the probes of the invention) to which mRNA (or related molecules) from different samples is bound to identify which probes are the most informative to identify a particular type of sample, e.g. a disease sample.
  • immobilized oligonucleotide probes e.g. the probes of the invention
  • the immobilized probes can be derived from various unrelated or related organisms; the only requirement is that the immobilized probes should bind specifically to their homologous counterparts in test organisms. Probes can also be derived from commercially available or public databases and immobilized on solid supports or, as mentioned above, they can be randomly picked and isolated from a cDNA library and immobilized on a solid support.
  • the length of the probes immobilised on the solid support should be long enough to allow for specific binding to the target sequences.
  • the immobilised probes can be in the form of DNA, RNA or their modified products or PNAs (peptide nucleic acids).
  • the probes immobilised should bind specifically to their homologous counterparts representing highly and moderately expressed genes in test organisms.
  • the probes which are used are the probes described herein.
  • the gene expression pattern of cells in biological samples can be generated using prior art techniques such as microarray or macroarray as described below or using methods described herein.
  • Several technologies have now been developed for monitoring the expression level of a large number of genes simultaneously in biological samples, such as, high-density oligoarrays (Lockhart et al., 1996, Nat. Biotech., 14, p1675-1680), cDNA microarrays (Schena et al, 1995, Science, 270, p467-470) and CDNA macroarrays (Maier E et al., 1994, Nucl. Acids Res., 22, p3423-3424; Bernard et al., 1996, Nucl. Acids Res., 24, p1435-1442).
  • oligoarrays and cDNA microarrays hundreds and thousands of probe oligonucleotides or cDNAs, are spotted onto glass slides or nylon membranes, or synthesized on biochips.
  • the MRNA isolated from the test and reference samples are labelled by reverse transcription with a red or green fluorescent dye, mixed, and hybridised to the microarray. After washing, the bound fluorescent dyes are detected by a laser, producing two images, one. for each dye. The resulting ratio of the red and green spots on the two images provides the information about the changes in expression levels of genes in the test and reference samples.
  • single channel or multiple channel microarray studies can also be performed.
  • cDNA macroarray different cDNAs are spotted on a solid support such as nylon membranes in excess in relation to the amount of test mRNA that can hybridise to each spot.
  • mRNA isolated from test samples is radio-labelled by reverse transcription and hybridised to the immobilised probe cDNA. After washing, the signals associated with labels hybridising specifically to immobilised probe cDNA are detected and quantified.
  • the data obtained in macroarray contains information about the relative levels of transcripts present in the test samples. Whilst macroarrays are only suitable to monitor the expression of a limited number of genes, microarrays can be used to monitor the expression of several thousand genes simultaneously and is, therefore, a preferred choice for large-scale gene expression studies.
  • a macroarray technique for generating the gene expression data set has been used to illustrate the probe identification method described herein.
  • mRNA is isolated from samples of interest and used to prepare labelled target molecules, e.g. mRNA or CDNA as described above.
  • the labelled target molecules are then hybridised to probes immobilised on the solid support.
  • solid supports can be used for the purpose, as described previously.
  • unbound target molecules are removed and signals from target molecules hybridizing to immobilised probes quantified.
  • PhosphoImager can be used to generate an image file that can be used to generate a raw data set.
  • other instruments can also be used, for example, when fluorescence is used for labelling, a FluoroImager can be used to generate an image file from the hybridised target molecules.
  • the raw data corresponding to mean intensity, median intensity, or volume of the signals in each spot can be acquired from the image file using commercially available software for image analysis.
  • the acquired data needs to be corrected for background signals and normalized prior to analysis, since, several factors can affect the quality and quantity of the hybridising signals. For example, variations in the quality and quantity of mRNA isolated from sample to sample, subtle variations in the efficiency of labelling target molecules during each reaction, and variations in the amount of unspecific binding between different macroarrays can all contribute to noise in the acquired data set that must be corrected for prior to analysis.
  • Background correction can be performed in several ways.
  • the lowest pixel intensity within a spot can be used for background subtraction or the mean or median of the line of pixels around the spots' outline can be used for the purpose.
  • the background corrected data can then be transformed for stabilizing the variance in the data structure and normalized for the differences in probe intensity.
  • Normalization can be performed by dividing the intensity of each spot with the collective intensity, average intensity or median intensity of all the spots in a macroarray or a group of spots in a macroarray in order to obtain the relative intensity of signals hybridising to immobilised probes in a macroarray.
  • Several methods have been described for normalizing gene expression data (Richmond and Somerville, 2000, Current Opin.
  • FIG. 1 provides one such example showing a classification based on Principal Component Analysis (PCA) of combined data from two experimental series where the main goal is to distinguish between Alzheimer/non-Alzheimer patients.
  • PCA Principal Component Analysis
  • PCA also known as singular value decomposition
  • PCA is a technique for studying interdependencies and underlying relationships of a set of variables.
  • the data are modelled in terms of a few significant factors or principal components (PC's), plus residuals.
  • PC's contain the main phenomena and define the systematic variability present in the data, while the residuals represent the variability interpreted as noise.
  • Details on PCA can be found in Jollife (1986, Principal Component Analysis, Springer-Verlag, N.Y.), and Jackson (1991, A User's Guide to Principal Components, Wiley, N.Y.).
  • the results of FIG. 1 show that two clusters are formed representing the data from two experimental series rather than the Alzheimer/non-Alzheimer differentiation. There were eight samples in common between the two series of experiments, which ideally should have fallen on top of, or in near proximity to, each other if appropriately standardized.
  • the secondary data representing for example experimental series 2 (secondary measurements, R 2 ) are corrected to match the data measured on the primary measurements representing data from series 1 (R 1 ), while the calibration model remains unchanged.
  • the transformation matrix F in equation (2) is calculated using a relatively small subset of samples which are measured on both the master primary and the secondary series of data.
  • the column i of the transformation matrix contains the multiplication factors for a set of genes measured in the secondary series to obtain the intensity at spot i of the corrected series.
  • the number of samples that are repeated in the experimental series, R 1 and R 2 should be equal to their ranks, which in this case is equal to the number of principal components retained for explaining the variation in the R 1 and R 2 .
  • R 1 and R 2 The samples that should be repeated between different series should ideally be those that exhibit high leverages in the gene expression pattern. At times, two samples may suffice, while at other times, more than two samples should be ideally be included for good representativity.
  • the samples selected can be the same in all the experimental series to be compared (reference samples), while in other cases, representative samples can be selected sequentially by analyzing the expression pattern after each experiment. The selected samples with high leverages are then included in the next experimental series.
  • the results of using Direct Standardization are shown in FIG. 1 .
  • Another approach for normalizing and standardizing the gene expression data set is to hybridize each DNA array with target molecules prepared from a test sample and an equal amount of labelled target molecules. prepared from representative reference samples.
  • target molecules prepared from a test sample and an equal amount of labelled target molecules. prepared from representative reference samples.
  • the labelled molecules are prepared from test and reference samples using different labels, for example, different fluorescent dyes can be used for preparing the labelled material.
  • the labelled molecules prepared from reference samples can be added to the hybridization solution together with the labelled material prepared from test samples.
  • a data file from each array representing the expression pattern of different genes in the test sample and reference samples can then be obtained, normalized and standardized by the direct standardization method as described above.
  • Cluster analysis is by far the most commonly used technique for gene expression analysis, and has been performed to identify genes that are regulated in a similar manner, and or identifying new/unknown tumour classes using gene expression profiles (Eisen et al., 1998, PNAS, 95, p14863-14868, Alizadeh et al. 2000, supra, Perou et al.
  • genes are grouped into functional categories (clusters) based on their expression profile, satisfying two-criteria: homogeneity—the genes in the same cluster are highly similar in expression to each other; and separation—genes in different clusters have low similarity in expression to each other.
  • clustering techniques that have been used for gene expression analysis include hierarchical clustering (Eisen et al., 1998, supra; Alizadeh et al. 2000, supra; Perou et al. 2000, supra; Ross et al, 2000, supra), K-means clustering (Herwig et al., 1999, supra; Tavazoie et al, 1999, Nature Genetics, 22(3), p. 281-285), gene shaving (Hastie et al., 2000, Genome Biology, 1(2), research 0003.1-0003.21), block clustering (Tibshirani et al., 1999, Tech repot Univ Stanford.) Plaid model (Lazzeroni, 2002, Stat.
  • one builds the classifier by training the data that is capable of discriminating between member and non-members of a given class.
  • the trained classifier can then be used to predict the class of unknown samples.
  • Examples of discrimination methods that have been described in the literature include Support Vector Machines (Brown et al, 2000, PNAS, 97, p262-267), Nearest Neighbour (Dudoit et al., 2000, supra), Classification trees (Dudoit et al., 2000, supra), Voted classification (Dudoit et al., 2000, supra), Weighted Gene voting (Golub et al. 1999, supra), and Bayesian classification (Keller et al. 2000, Tec report Univ of Washington).
  • PLSR Partial Least Squares Regression
  • class assignment is based on a simple dichotomous distinction such as breast cancer (class 1)/healthy (class 2), or a multiple distinction based on multiple disease diagnosis such as breast cancer (class 1)/Alzheimer (class 2)/healthy (class 3).
  • the list of diseases for classification can be increased depending upon the samples available corresponding to other diseases or conditions or stages thereof.
  • PLS-DA DA standing for Discriminant analysis
  • Y-matrix is a dummy matrix containing n rows *(corresponding to the number of samples) and K columns (corresponding to the number of classes).
  • the Y-matrix is constructed by inserting 1 in the kth column and ⁇ 1 in all the other columns if the corresponding ith object of X belongs to class k.
  • ⁇ (x) ( ⁇ 1 (x), ⁇ 2 (x), . . . , ⁇ k (x)).
  • Score plots represent a projection of the samples onto the principal components and shows the distribution of the samples in the classification model and their relationship to one another. Loading plots display correlations between the variables present in the data set.
  • LDA Linear discriminant analysis
  • the next step following model building is of model validation. This step is considered to be amongst the most important aspects of multivariate analysis, and tests the “goodness” of the calibration model which has been built.
  • a cross validation approach has been used for validation. In this approach, one or a few samples are kept out in each segment while the model is built using a full cross-validation on the basis of the remaining data. The samples left out are then used for prediction/classification. Repeating.the simple cross-validation process several times holding different samples out for each cross-validation leads to a so-called double cross-validation procedure. This approach has been shown to work well with a limited amount of data, as is the case in some of the Examples described here. Also, since the cross validation step is repeated several times the dangers of model bias and overfitting are reduced.
  • genes exhibiting an expression pattern that is most relevant for describing the desired information in the model can be selected by techniques described in the prior art for variable selection, as mentioned elsewhere. Variable selection will help in reducing the final model complexity, provide a parsimonious model, and thus lead to a reliable model that can be used for prediction. Moreover, use of fewer genes for the purpose of providing diagnosis will reduce the cost of the diagnostic product. In this way informative probes which would bind to the genes of relevance may be identified.
  • Jackknife has been implemented together with cross-validation.
  • the difference between the B-coefficients B i in a cross-validated sub-model and B tot for the total model is first calculated.
  • the sum of the squares of the differences is then calculated in all sub-models to obtain an expression of the variance of the B i estimate for a variable.
  • the significance of the estimate of B i is calculated using the t-test.
  • the resulting regression coefficients can be presented with uncertainty limits that correspond to 2 Standard Deviations, and from that significant variables are detected.
  • step c) select the significant genes for the model in step b) using the Jackknife criterion
  • step d) repeat the above 3 steps until all the unique samples in the, data set are kept out once (as described in step a). For example, if 75 unique samples are present in the data set, 75 different calibration models are built resulting in a collection of 75 different sets of significant probes;
  • e select the most significant variables using the frequency of occurrence criterion in the generated sets of significant probes in step d). For example, a set of probes appearing in all sets (100%) are more informative than probes appearing in only 50% of the generated sets in step d).
  • a final model is made and validated.
  • the two most commonly used ways of validating the model are cross-validation (CV) and test set validation.
  • CV cross-validation
  • test set validation the data is divided into k subsets.
  • the model is then trained k times, each time leaving out one of the subsets from training, but using only the omitted subset to compute error criterion, RMSEP (Root Mean Square Error of Prediction). If k equals the sample size, this is called “leave-one-out” cross-validation.
  • RMSEP Root Mean Square Error of Prediction
  • the second approach for model validation is to use a separate test-set for validating the calibration model. This requires running a separate set of experiments to be used as a test set. This is the preferred approach given that real test data are available.
  • the final model is then used to identify a disease, condition or stage thereof in test samples. For this purpose, expression data of selected informative genes is generated from test samples and then the final model is used to determine whether a sample belongs to a diseased or non-diseased class or has a condition or stage thereof.
  • the present invention provides a method of identifying probes useful for diagnosing or identifying or monitoring a disease or condition or stage thereof in an organism, comprising the steps of:
  • a model for classification purposes is generated by using the data relating to the probes identified according to the above described method.
  • the sample is as described previously.
  • the oligonucleotides which are immobilized in step (a) are randomly selected as described below or are the probes as described hereinbefore.
  • Such oligonucleotides may be of considerable length, e.g. if using CDNA (which is encompassed within the scope of the term “oligonucleotide”).
  • CDNA which is encompassed within the scope of the term “oligonucleotide”.
  • the above described model may then be used to generate and analyse data of test samples and thus may be used for the diagnostic methods of the invention.
  • the data generated from the test sample provides the gene expression data set and this is normalized and standardized as described above. This is then fitted to the calibration model described above to provide classification.
  • the method described herein can also be used to simultaneously select informative probes for several related and unrelated diseases or conditions. Depending upon which diseases or conditions have been included in the calibration or training set, informative probes can be selected for the said diseases or conditions.
  • the informative probes selected for one disease or condition may or may not be similar to the informative probes selected for another disease or condition of interest. It is the pattern with which the selected genes are expressed in relation to each other during a disease, condition, or stage thereof, that determines whether or not they are informative for the disease, condition or stage thereof.
  • informative genes are selected based on how their expression correlates with the expression of other selected informative genes under the influence of responses generated by the disease, condition or stage thereof under investigation.
  • 139 informative probes were selected for breast cancer diagnosis and 182 probes were selected for Alzheimer's disease diagnosis by training the gene expression data set of genes representing 1435 or 758 randomly picked cDNA clones for breast cancer/non breast cancer samples, or Alzheimer/non-Alzheimer samples, respectively.
  • the probes selected for breast cancer and Alzheimer about 10 probes were informative both for breast cancer and Alzheimer disease diagnosis.
  • the gene expression data set must contain the information on how genes are expressed when the subject has a particular disease, condition or stage thereof under investigation.
  • the data set is generated from a set of healthy or diseased samples, where a particular sample may contain the information of only one disease, condition or stages thereof or may also contain information about multiple diseases, conditions or stages thereof.
  • a particular sample may contain the information of only one disease, condition or stages thereof or may also contain information about multiple diseases, conditions or stages thereof.
  • whole blood samples can be obtained from an Alzheimer patient who has breast cancer and diabetes.
  • the method also teaches an efficient experimental design to reduce the number of samples required for isolating informative probes by selecting samples representing more than one disease, condition or stage thereof.
  • the identification and selection of informative probes for use in diagnosing, monitoring or identifying a particular disease, condition or stage thereof may be dramatically simplified.
  • the pool of genes from which a selection may be made to identify informative probes may be radically reduced.
  • the informative probes are selected from a limited number of randomly obtained genes. For example, from a population of 1435 cDNA clones, randomly picked from a human whole blood cDNA library, we were able to select 139 informative probes for breast cancer diagnosis (see Example 1 and Table 2).
  • said set of oligonucleotides which are immobilized in step (a) are randomly selected from a larger set of oligonucleotides, e.g. from a cDNA library or other oligonucleotide pool, which may be, but is preferably not selected from the set provided herein.
  • said larger set comprises oligonucleotides which correspond to moderately or highly expressed genes.
  • the set of oligonucleotides according to the invention are replaced with a set of oligonucleotides which are randomly selected, e.g. from commercially available oligonucleotide or cDNA libraries.
  • random refers to selection which is not biased based on the extent of information carried by the transcripts in relation to the disease, condition or organism under study, ie. without bias towards their likely utility as informative probes. Whilst a random selection may be made from a pool of transcripts (or related products) which have been biased, e.g. to highly or moderately expressed transcripts, preferably random selection is made from a pool of transcripts not biased or selected by a sequence-based criterion. The larger set may therefore contain oligonucleotides corresponding to highly and moderately expressed genes, or alternatively, may be enriched for those corresponding to the highly and moderately expressed genes.
  • Random selection from highly and moderately expressed genes can be achieved in a wide variety of ways.
  • a strategy used in this work, but not limiting in itself involves randomly picking a significant number of CDNA clones from a cDNA library constructed from a biological specimen under investigation. Since, in a cDNA library, the cDNA clones corresponding to transcripts present in high or moderate amount are more frequently present than transcripts corresponding to CDNA present in low amount, the former will tend to be picked up more frequently than the latter.
  • a pool of cDNA enriched for those corresponding to highly and moderately expressed genes can be isolated by this approach.
  • the information about the relative level of their transcripts in samples of interest can be generated using several prior art techniques. Both non-sequence based methods, such as differential display or RNA fingerprinting, and sequence-based methods such as microarrays or macroarrays can be used for the purpose. Alternatively, specific primer sequences for highly and moderately expressed genes can be designed and methods such as quantitative RT-PCR can be used to determine the levels of highly and moderately expressed genes. Hence, a skilled practitioner may use a variety of techniques which are known in the art for determining the relative level of MRNA in a biological sample.
  • the sample for the isolation of MRNA in the above described method is as described previously and is preferably not from the site of disease and the cells in said sample are not disease cells and have not contacted disease cells.
  • FIG. 1 shows the effect of Direct Standardization (DS) on the Alzheimer data measured in two different series of experiments in which AD denotes Alzheimer's samples and A,B are non-Alzheimer's samples.
  • the samples in both series have been labelled systematically as (xx — 7/xx — 8), whereas the corrected samples from series 8 (in b, c, d) have been labelled as (xx_c), thus, for example, AD2-7 denotes Alzheimer disease sample number 2 in experiment series 7.
  • the circled spots represent the samples chosen as the transfer samples.
  • the connecting lines in figures b,c,d show the proximity of the replicated samples after applying DS.
  • the dashed lines in figures a,c,d represent the decision boundary separating the classes.
  • FIG. 2 shows the projection of normal (including benign) and breast cancer samples onto a classification model generated by PLSR-DA using the data of 44 informative genes, in which PC is the principal components and N and C are normal and breast cancer samples, respectively;
  • FIG. 3 shows the projection of individuals with and without Alzheimer's disease onto a classification model generated by PLSR-DA using 182 informative genes
  • FIGS. 4, 6 and 8 show projection plots as FIG. 2 in which the classification model is generated using 719, 111 and 345 cDNAs, respectively, wherein PC is the principal components, N denotes normal and B denotes breast cancer samples;
  • FIGS. 5, 7 and 9 show prediction plots based on 3 principal components using the data of 719, 111 and 345 cDNAs, respectively;
  • FIG. 10 shows a projection plot as FIG. 3 in which the classification model is generated using 520 cDNAs.
  • FIG. 11 is the prediction plot corresponding to FIG. 10 .
  • mRNA was isolated from the blood of the 29 breast cancer patients and 46 normal donors and used to prepare labelled probes by reverse transcribing in the presence of ⁇ 33 P-dATP.
  • the first strand cDNA of the normal and diseased samples was bound, separately to 1435 cDNA clones immobilized on a solid support (nylon membrane). These cDNA clones were randomly picked, without any prior knowledge of their gene sequences, from a cDNA library constructed using whole blood of 550 healthy individuals (Clontech, Palo Alto, USA). These methods were conducted as follows.
  • bacterial clones were grown in microtiter plates containing 150 ⁇ l LB with 50 ⁇ g/ml carbenicillin, and incubated overnight with agitation at 37° C. To lyse the cells, 5 ⁇ l of each culture were diluted with 50 ⁇ l H2O and incubated for 12 min. at 95° C. Of this mixture, 2 ⁇ l were subjected to a PCR reaction using 20 pmoles of M13 forward and reverse primer in presence of 1.5 mM MgCl 2 . PCR reactions were performed with the following cycling protocol: 4 min. at 95° C., followed by 25 cycles of 1 min. at 94° C., 1 min. at 60° C. and 3 min. at 72° C.
  • the printed arrays also contained controls for assessing background level, consistency and sensitivity of the assay. These were spotted at multiple positions and included controls such as PCR mix (without any insert); positive and negative controls of SpotReportTM 10 array validation system (Stratagene, La Jolla, USA) and cDNAs corresponding to constitutively expressed genes such as b-actin, g-actin, GAPDH, HOD and cyclophilin. Also, oligonucleotides corresponding to SIX1, b-tubulin, TRP-2, MDM2, Myosin Light C, CD44, Maspin, Laminin, and SRP 19 were included to detect disseminated cancer cells.
  • RNA from blood collected in EDTA tubes was purified using Trizol LS Reagent protocol (Invitrogen/Life Technologies). From blood contained in PAXgene tubes, the total RNA was purified according to the supplier's instructions (PreAnalytix, Hombrechtikon, Switzerland). Contaminating DNA was removed from the isolated RNA by DNAase I treatment using DNA-free kit (Ambion, Inc. Austin, USA). RNA quality was determined visually by inspecting the integrity of 28S and 18S ribosomal bands following agarose gel electrophoresis. The concentration and purity of extracted RNA was determined by measuring the absorbance at 260 nm and 280 nm. mRNA was isolated from the total RNA using Dynabeads as per the supplier's instructions (Dynal AS, Oslo, Norway).
  • Labelling and hybridization experiments were performed in batches. The number of samples assayed in each batch varied from six to nine. In the case of samples that were assayed more than once (replicates), aliquots derived from the same mRNA pool were used for probe synthesis. For probe synthesis, aliquots of MRNA corresponding to 4-5 ⁇ g of total RNA were mixed together with oligodT 25NV (0.5 ⁇ g/ml) and mRNA spikes of SpotReportTM10 array validation system (10 pg; Spike 2, 1 pg), heated to 70° C. to remove secondary structures, and then chilled on ice.
  • Probes were prepared in 35 ⁇ l reaction mixes by reverse transcription in the presence of 50 ⁇ Ci [( ⁇ 33 p] DATP, 3.5 ⁇ M DATP, 0.6 mM each of dCTP, dTTP, dGTP, 200 units of SuperScript reverse transcriptase (Invitrogen, LifeTechnologies) and 0.1 M DTT, labelling for 1.5 hr at 42° C. Following synthesis, the enzyme was deactivated for 10 min. at 70° C. and mRNA removed by incubating the reaction mix for 20 min. at 37° C. in 4 units of Ribo H (Promega, Madison USA). Unincorporated nucleotides were removed using ProbeQuant G 50 Columns (Amersham Biosciences, Piscataway, USA).
  • the membranes Prior to hybridization, the membranes were equilibrated in 4 ⁇ SSC for 2 hr at room temperature and prehybridized overnight at 65° C. in 10 ml prehybridisation solution (4 ⁇ SSC, 0.1 M NaH 2 PO 4 , 1 mM EDTA, 8% dextran sulphate, 10 ⁇ denhardt's solution, 1% SDS). Freshly prepared probes were added to 5 ml of the same prehybridisation solution, and hybridization continued overnight at 65° C. The membranes were washed at 65° C. at increasing stringency (2 ⁇ 30 min. each in 2 ⁇ SSC, 0.1% SDS; 1 ⁇ SSC, 0.1% SDS; 0.1 ⁇ SSC, 0.1% SDS) to remove unspecific signals.
  • the amount of labelled first strand cDNA binding to each spot was assessed and quantified using a Phospholmager to generate a gene expression data set.
  • the data was generated using Phoretix software version 3 (Non Linear Dynamics, England). Background subtraction was performed on the generated data by subtracting the median of the line of pixels around each spot outline from the total intensity obtained from the respective spots.
  • the background-subtracted data was then normalized and transformed by selecting out 50 lowest and 50 maximum signals from each membrane. This step was to exclude genes that were expressed with a high degree of variance. Since the genes varied from membrane to membrane, the expression data from 497 genes were removed from the data set. The values for the remaining 938 genes were then normalised by using different approaches such as external controls, dividing each spot by the median intensity of the observed signal in the respective membrane, range normalizing the data from each membrane, and then log transforming the data obtained.
  • the selected informative probes based on occurrence criterion were used to construct a classification model.
  • the result of the classification model based on probes appearing in at least 90% of the generated sets after the step of isolating informative probes as described above is shown in FIG. 2 in which it is seen that the expression pattern of these genes was able to classify most women with breast cancer and women with no breast cancer into distinct groups.
  • PC1 and PC2 indicate the two principal components statistically derived from the data which best define the systemic variability present in the data. This allows each sample, and the data from each of the informative probes to which the sample's labelled first strand cDNA was bound, to be represented on the classification model as a single point which is a projection of the sample onto the principal components—the score plot.
  • the model also correctly predicted the class of most non-cancer samples (41/46), including those that were obtained from women with non-cancerous breast abnormalities.
  • the mean age of the patients was 72.3 with an age range of 69-76.
  • the mean MMSE score was 22.0 (the maximum score attainable being 30).
  • the criterion in PLSR is to maximize the explained covariance of [X, Y]. This is achieved by the loading weights vector w a+1 , which is the first eigenvector of E a T F a F a T E a (E a and F a are the deflated X and Y after a factors or PLS components).
  • a PLSR model with full rank, i.e. maximum number of components, is equivalent to the MLR solutions. Further details on PLSR can be found in Marteus & Naes, 1989, Multivariate Calibration, John Wiley & Sons, Inc., USA and Kowalski & Seasholtz, 1991, supra.
  • Example 1 The results in Example 1 were validated by using the informative probes identified in Example 1 on new beast cancer and control samples.
  • Example 1 Blood was taken from patients as described in Table 8. However, blood was collected in PAXgene tubes and the first strand labelled cDNAs were hybridized to 719 cDNAs spotted on nylon-membranes along with other controls as described in Example 1. After background subtraction using control spots, the data of each membrane was normalized using the inter quantile range. The data was analysed as described in Example 1 and the model validated by cross validation.
  • the 719 cDNAs which were spotted are a subset of the cDNAs spotted in Example 1 and include 111 cDNAs described in Table 2 and which were found to be informative in Example 1.
  • FIGS. 4 to 9 The results are shown in FIGS. 4 to 9 .
  • FIGS. 4, 6 and 8 are projection plots similar to FIG. 2 and show the projection of normal and breast cancer patients' samples onto a classification model generated using all 719 cDNA.
  • FIG. 6 is similar but uses a classification model generated with the 111 probes common to Example 1.
  • FIG. 8 uses the 345 sequences of the 719 for which sequence information is provided herein. In each case classification of normal and breast cancer groups was possible.
  • FIGS. 5, 7 and 9 show prediction plots which reflect the ability of the generated models to correctly diagnose breast cancer.
  • the disease samples appear on the x axis at +1 and the non-disease samples appear at ⁇ 1.
  • the y axis represents the predicted class membership. During prediction, if the prediction is correct, disease samples should fall above zero and non-disease samples should fall below zero. In each case almost all samples are correctly predicted.
  • Example 2 The results in Example 2 were validated by using the informative probes identified in Example 2 on new Alzheimer's patient samples.
  • Example 2 The methods, essentially as described in Example 2, were used. Twelve female patients diagnosed with Alzheimer's disease at the Memory Clinic at Ullev ⁇ l University Hospital who were confirmed as having Alzheimer's disease based on the criteria of Example 2 were used in the trial. The mean age of the patients was 72.3 with an age range of 66-83. The mean MMSE score was 22.0 (the maximum score attainable being 30).
  • mRNA was isolated from the blood of the Alzheimer's disease and from the control group donors according to the manufacturers's instructions (PreAnalytiX, Hombrechtikon, Switzerland). The isolated mRNA was labelled during reverse transcription in the presence of ⁇ 33 P-dATP, yielding a labelled first strand CDNA. Hybridization was performed as described previously onto 730 CDNA clones picked from a cDNA library from whole blood of 550 healthy individuals without knowledge of the gene sequence of the random CDNA clones.
  • FIG. 10 is a projection plot generated using 520 probes which have been sequenced.
  • FIG. 11 is a prediction plot and shows correct prediction of almost all samples. TABLE 1a List of probes informative for disease diagnosis Sequence No.

Abstract

The present invention relates to oligonucleotide probes, for use in assessing gene transcript levels in a cell, which may be used in analytical techniques, particularly diagnosis techniques and kits containing the same.

Description

  • The present invention relates to oligonucleotide probes, for use in assessing gene transcript levels in a cell, which may be used in analytical techniques, particularly diagnostic techniques. Conveniently the probes are provided in kit form. Different sets of probes may be used in techniques to prepare gene expression patterns and identify, diagnose or monitor different states, such as diseases, conditions or stages thereof. Also provided are methods of identifying suitable probes and their use in methods of the invention.
  • The identification of quick and easy methods of sample analysis for, for example, diagnostic applications, remains the goal of many researchers. End users seek methods which are cost effective, produce statistically significant results and which may be implemented routinely without the need for highly skilled individuals.
  • The analysis of gene expression within cells has been used to provide information on the state of those cells and importantly the state of the individual from which the cells are derived. The relative expression of various genes in a cell has been identified as reflecting a particular state within a body. For example, cancer cells are known to exhibit altered expression of various proteins and the transcripts or the expressed proteins may therefore be used as markers of that disease state.
  • Thus biopsy tissue may be analysed for the presence of these markers and cells originating from the site of the disease may be identified in other tissues or fluids of the body by the presence of the markers. Furthermore, products of the altered expression may be released into the blood stream and these products may be analysed. In addition cells which have contacted disease cells may be affected by their direct contact with those cells resulting in altered gene expression and their expression or products of expression may be similarly analysed.
  • However, there are some limitations with these methods. For example, the use of specific tumour markers for identifying cancer suffers from a variety of defects, such as lack of specificity or sensitivity, association of the marker with disease states besides the specific type of cancer, and difficulty of detection in asymptomatic individuals.
  • In addition to the analysis of one or two marker transcripts or proteins, more recently, gene expression patterns have been analysed. Most of the work involving large-scale gene expression analysis with implications in disease diagnosis has involved clinical samples originating from diseased tissues or cells. For example, several recent publications, which demonstrate that gene expression data can be used to distinguish between similar cancer types, have used clinical samples from diseased tissues or cells (Alon et al. 1999, PNAS, 96, p6745-6750; Golub et al. 1999, Science, 286, p531-537; Alizadeh et al, 2000, Nature, 403, p503-511; Bittner et al., 2000, Nature, 406, p536-540).
  • However, these methods have relied on analysis of a sample containing diseased cells or products of those cells or cells which have been contacted by disease cells. Analysis of such samples relies on knowledge of the presence of a disease and its location, which may be difficult in asymptomatic patients. Furthermore, samples can not always be taken from the disease site, e.g. in diseases of the brain.
  • In a finding of great significance, the present inventors identified the previously untapped potential of all cells within a body to provide information relating to the state of the organism from which the cells were derived. WO98/49342 describes the analysis of the gene expression of cells distant from the site of disease, e.g. peripheral blood collected distant from a cancer site.
  • This finding is based on the premise that the different parts of an organism's body exist in dynamic interaction with each other. When a disease affects one part of the body, other parts of the body are also affected. The interaction results from a wide spectrum of biochemical signals that are released from the diseased area, affecting other areas in the body. Although, the nature of the biochemical and physiological changes induced by the released signals can vary in the different body parts, the changes can be measured at the level of gene expression and used for diagnostic purposes.
  • The physiological state of a cell in an organism is determined by the pattern with which genes are expressed in it. The pattern depends upon the internal and external biological stimuli to which said cell is exposed, and any change either in the extent or in the nature of these stimuli can lead to a change in the pattern with which the different genes are expressed in the cell. There is a growing understanding that by analysing the systemic changes in gene expression patterns in cells in biological samples, it is possible to provide information on the type and nature of the biological stimuli that are acting on them. Thus, for example, by monitoring the expression of a large number of genes in cells in a test sample, it is possible to determine whether their genes are expressed with a pattern characteristic for a particular disease, condition or stage thereof. Measuring changes in gene activities in cells, e.g. from tissue or body fluids is therefore emerging as a powerful tool for disease diagnosis.
  • Such methods have various advantages. Often, obtaining clinical samples from certain areas in the body that is diseased can be difficult and may involve undesirable invasions in the body, for example biopsy is often used to obtain samples for cancer. In some cases, such as in Alzheimer's disease the diseased brain specimen can only be obtained post-mortem. Furthermore, the tissue specimens which are obtained are often heterogeneous and may contain a mixture of both diseased and non-diseased cells, making the analysis of generated gene expression data both complex and difficult.
  • It has been suggested that a pool of tumour tissues that appear to be pathogenetically homogeneous with respect to morphological appearances of the tumour may well be highly heterogeneous at the molecular level (Alizadeh, 2000, supra), and in fact might contain tumours representing essentially different diseases (Alizadeh, 2000, supra; Golub, 1999, supra). For the purpose of identifying a disease, condition, or a stage thereof, any method that does not require clinical samples to originate directly from diseased tissues or cells is highly desirable since clinical samples representing a homogeneous mixture of cell types can be obtained from an easily accessible region in the body.
  • We have now identified a set of probes of surprising utility for identifying one or more diseases. Thus, we now describe probes and sets of probes derived from cells which are not disease cells and which have not contacted disease cells, which correspond to genes which exhibit altered expression in normal versus disease individuals, for use in methods of identifying, diagnosing or monitoring certain conditions, particularly diseases or stages thereof.
  • Thus the invention provides a set of oligonucleotide probes which correspond to genes in a cell whose expression is affected in a pattern characteristic of a particular disease, condition or stage thereof, wherein said genes are systemically affected by said disease, condition or stage thereof. Preferably said genes are metabolic or house-keeping genes and preferably are constitutively moderately or highly expressed. Preferably the genes are moderately or highly expressed in the cells of the sample but not in cells from disease cells or in cells having contacted such disease cells.
  • Such probes, particularly when isolated from cells distant to the site of disease, do not rely on the development of disease to clinically recognizable levels and allow detection of a disease or condition or stage thereof very early after the onset of said disease or condition, even years before other subjective or objective symptoms appear.
  • As used herein “systemically” affected genes refers to genes whose expression is affected in the body without direct contact with a disease cell or disease site and the cells under investigation are not disease cells.
  • “Contact” as referred to herein refers to cells coming into close proximity with one another such that the direct effect of one cell on the other may be observed, e.g. an immune response, wherein these responses are not mediated by secondary molecules released from the first cell over a large distance to affect the second cell. Preferably contact refers to physical contact, or contact that is as close as is. sterically possible, conveniently, cells which contact one another are found in the same unit volume, for example within 1 cm3.
  • A “disease cell” is a cell manifesting phenotypic changes and is present at the disease site at some time during its life-span, e.g. a tumour cell at the tumour site or which has disseminated from the tumour, or a brain cell in the case of brain disorders such as Alzheimer's disease.
  • “Metabolic” or “house-keeping” genes refer to those genes responsible for expressing products involved in cell division and maintenance, e.g. non-immune function related genes.
  • “Moderately or highly” expressed genes refers to those present in resting cells in a copy number of more than 30-100 copies/cell (assuming an average 3×105 mRNA molecules in a cell).
  • Specific probes having the above described properties are provided herein.
  • Thus in one aspect, the present invention provides a set of oligonucleotide probes, wherein said set comprises at least 10 oligonucleotides selected from:
      • an oligonucleotide as described in Table 1 or derived from a sequence described in Table 1, or an oligonucleotide with a complementary sequence, or a functionally equivalent oligonucleotide.
  • “Table 1” as referred to herein refers to Table 1a and/or Table 1b. Table 1b contains reference to additional clones and sequences as disclosed herein. Similarly Tables 2 and 4 comprise 2 parts, a and b.
  • The invention also provides one or more oligonucleotide probes, wherein each oligonucleotide probe is selected from the oligonucleotides listed in Table 1, or derived from a sequence described in Table 1, or a complementary sequence thereof. The use of such probes in products and methods of the invention, form further aspects of the invention.
  • As referred to herein an “oligonucleotidell” is a nucleic acid molecule having at least 6 monomers in the polymeric structure, ie. nucleotides or modified forms thereof. The nucleic acid molecule may be DNA, RNA or PNA (peptide nucleic acid) or hybrids thereof or modified versions thereof, e.g. chemically modified forms, e.g. LNA (Locked Nucleic acid), by methylation or made up of modified or non-natural bases during synthesis, providing they retain their ability to bind to complementary sequences. Such oligonucleotides are used in accordance with the invention to probe target sequences and are thus referred to herein also as oligonucleotide probes or simply as probes.
  • An “oligonucleotide derived from a sequence described in Table 1” (or any other table) refers to a part of a sequence disclosed in that Table (e.g. Table 1-4), which satisfies the requirements of the oligonucleotide probes as described herein, e.g. in length and function. Preferably said parts have the size described hereinafter.
  • Preferably the oligonucleotide probes forming said set are at least 15 bases in length to allow binding of target molecules. Especially preferably said oligonucleotide probes are from 20 to 200 bases in length, e.g. from 30 to 150 bases, preferably 50-100 bases in length.
  • As referred to herein the term “complementary sequences” refers to sequences with consecutive complementary bases (ie. T:A, G:C) and which complementary sequences are therefore able to bind to one another through their complementarity.
  • Reference to “10 oligonucleotides” refers to 10 different oligonucleotides. Whilst a Table 1 oligonucleotide, a Table 1 derived oligonucleotide and their functional equivalent are considered different oligonucleotides, complementary oligonucleotides are not considered different. Preferably however, the at least 10 oligonucleotides are 10 different Table 1 oligonucleotides (or Table 1 derived oligonucleotides or their functional equivalents). Thus said 10 different oligonucleotides are preferably able to bind to 10 different transcripts.
  • Preferably said oligonucleotides are as described in Table 1 or are derived from a sequence described in Table 1. Especially preferably said oligonucleotides are as described in Table 2 or Table 4 or are derived from a sequence described in either of those tables. Especially preferably the oligonucleotide (or the oligonucleotide derived therefrom) has a high occurrence as defined in Table 3, especially preferably >40%, e.g. >80 or >90, e.g. 100%.
  • A “set” as described refers to a collection of unique oligonucleotide probes (ie. having a distinct sequence) and preferably consists of less than 1000 oligonucleotide probes, especially less than 500 probes, e.g. preferably from 10 to 500, e.g. 10 to 100, 200 or 300, especially preferably 20 to 100, e.g. 30 to 100 probes. In some cases less than 10 probes may be used, e.g. from 2 to 9 probes, e.g. 5 to 9 probes.
  • It will be appreciated that increasing the number of probes will prevent the possibility of poor analysis, e.g. misdiagnosis by comparison to other diseases which could similarly alter the expression of the particular genes in question. Other oligonucleotide probes not described herein may also be present, particularly if they aid the ultimate use of the set of oligonucleotide probes. However, preferably said set consists only of said Table 1 oligonucleotides, Table 1 derived oligonucleotides, complementary sequences or functionally equivalent oligonucleotides, or a sub-set thereof (e.g. of the size as described above), preferably a sub-set for which sequences are provided herein (see Table 1 and its footnote). Especially preferably said set consists only of said Table 1 oligonucleotides, Table 1 derived oligonucleotides, or complementary sequences thereof, or a sub-set thereof.
  • Multiple copies of each unique oligonucleotide probe, e.g. 10 or more copies, may be present in each set, but constitute only a single probe.
  • A set of oligonucleotide probes, which may preferably be immobilized on a solid support or have means for such immobilization, comprises the at least 10 oligonucleotide probes selected from those described hereinbefore. Especially preferably said probes are selected from those having high occurrence as described in Table 3 and as mentioned above. As mentioned above, these 10 probes must be unique and have different sequences. Having said this however, two separate probes may be used which recognize the same gene but reflect different splicing events. However oligonucleotide probes which are complementary to, and bind to distinct genes are preferred.
  • As described herein a “functionally equivalent” oligonucleotide to those described in Table 1 or derived therefrom refers to an oligonucleotide which is capable of identifying the same gene as an oligonucleotide of Table 1 or derived therefrom, ie. it can bind to the same mRNA molecule (or DNA) transcribed from a gene (target nucleic acid molecule) as the Table 1 oligonucleotide or the Table 1 derived oligonucleotide (or its complementary sequence). Preferably said functionally equivalent oligonucleotide is capable of recognizing, ie. binding to the same splicing product as a Table 1 oligonucleotide or a Table 1 derived oligonucleotide. Preferably said mRNA molecule is the full length mRNA molecule which corresponds to the Table 1 oligonucleotide or the Table 1 derived oligonucleotide.
  • As referred to herein “capable of binding” or “binding” refers to the ability to hybridize under conditions described hereinafter.
  • Alternatively expressed, functionally equivalent oligonucleotides (or complementary sequences) have sequence identity or will hybridize, as described hereinafter, to a region of the target molecule to which molecule a Table 1 oligonucleotide or a Table 1 derived oligonucleotide or a complementary oligonucleotide binds. Preferably, functionally equivalent oligonucleotides (or their complementary sequences) hybridize to one of the MRNA sequences which corresponds to a Table 1 oligonucleotide or a Table 1 derived oligonucleotide under the conditions described hereinafter or has sequence identity to a part of one of the mRNA sequences which corresponds to a Table 1 oligonucleotide or a Table 1 derived oligonucleotide. A “part” in this context refers to a stretch of at least 5, e.g. at least 10 or 20 bases, such as from 5 to 100, e.g. 10 to 50 or 15 to 30 bases.
  • In a particularly preferred aspect, the functionally equivalent oligonucleotide binds to all or a part of the region of a target nucleic acid molecule (mRNA or CDNA) to which the Table 1 oligonucleotide or Table 1 derived oligonucleotide binds. A “target” nucleic acid molecule is the gene transcript or related product e.g. MRNA, or cDNA, or amplified product thereof. Said “region” of said target molecule to which said Table 1 oligonucleotide or Table 1 derived oligonucleotide binds is the stretch over which complementarity exists. At its largest this region is the whole length of the Table 1 oligonucleotide or Table 1 derived oligonucleotide, but may be shorter if the entire Table 1 sequence or Table 1 derived oligonucleotide is not complementary to a region of the target sequence.
  • Preferably said part of said region of said target molecule is a stretch of at least 5, e.g. at least 10 or 20 bases, such as from 5 to 100, e.g. 10 to 50 or 15 to 30 bases. This may for example be achieved by said functionally equivalent oligonucleotide having several identical bases to the bases of the Table 1 oligonucleotide or the Table 1 derived oligonucleotide. These bases may be identical over consecutive stretches, e.g. in a part of the functionally equivalent oligonucleotide, or may be present non-consecutively, but provide sufficient complementarity to allow binding to the target sequence.
  • Thus in a preferred feature, said functionally equivalent oligonucleotide hybridizes under conditions of high stringency to a Table 1 oligonucleotide or a Table 1 derived oligonucleotide or the complementary sequence thereof. Alternatively expressed, said functionally equivalent oligonucleotide exhibits high sequence identity to all or part of a Table 1 oligonucleotide. Preferably said functionally equivalent oligonucleotide has at least 70% sequence identity, preferably at least 80%, e.g. at least 90, 95, 98 or 99%, to all of a Table 1 oligonucleotide or a part thereof. As used in this context, a “part” refers to a stretch of at least 5, e.g. at least 10 or 20 bases, such as from 5 to 100, e.g. 190 to 50 or 15 to 30 bases, in said Table 1 oligonucleotide. Especially preferably when sequence identity to only a part of said Table 1 oligonucleotide is present, the sequence identity is high, e.g. at least 80% as described above.
  • Functionally equivalent oligonucleotides which satisfy the above stated functional requirements include those which are derived from the Table 1 oligonucleotides and also those which have been modified by single or multiple nucleotide base (or equivalent) substitution, addition and/or deletion, but which nonetheless retain functional activity, e.g. bind to the same target molecule as the Table 1 oligonucleotide or the Table 1 derived oligonucleotide from which they are further derived or modified. Preferably said modification is of from 1 to 50, e.g. from 10 to 30, preferably from 1 to 5 bases. Especially preferably only minor modifications are present, e.g. variations in less than 10 bases, e.g. less than 5 base changes.
  • Within the meaning of “addition” equivalents are included oligonucleotides containing additional sequences which are complementary to the consecutive stretch of bases on the target molecule to which the Table 1 oligonucleotide or the Table 1 derived oligonucleotide binds. Alternatively the addition may comprise a different, unrelated sequence, which may for example confer a further property, e.g. to provide a means for immobilization such as a linker to bind the oligonucleotide probe to a solid support.
  • Particularly preferred are naturally occurring equivalents such as biological variants, e.g. allelic, geographical or allotypic variants, e.g. oligonucleotides which correspond to a genetic variant, for example as present in a different species.
  • Functional equivalents include oligonucleotides with modified bases, e.g. using non-naturally occurring bases. Such derivatives may be prepared during synthesis or by post production modification.
  • “Hybridizing” sequences which bind under conditions of low stringency are those which bind under non-stringent conditions (for example, 6×SSC/50% formamide at room temperature) and remain bound when washed under conditions of low stringency (2×SSC, room temperature, more preferably 2×SSC, 42° C.). Hybridizing under high stringency refers to the above conditions in which washing is performed at 2×SSC, 65° C. (where SSC=0.15M NaCl, 0.015M sodium citrate, pH 7.2).
  • “Sequence identity” as referred to herein refers to the value obtained when assessed using ClustalW (Thompson et al., 1994, Nucl. Acids Res., 22, p4673-4680) with the following parameters:
    • Pairwise alignment parameters—Method: accurate, Matrix: IUB, Gap open penalty: 15.00, Gap extension penalty: 6.66;
    • Multiple alignment parameters—Matrix: IUB, Gap open penalty: 15.00, % identity for delay: 30, Negative matrix: no, Gap extension penalty: 6.66, DNA transitions weighting: 0.5.
  • Sequence identity at a particular base is intended to include identical bases which have simply been derivatized.
  • The invention also extends to polypeptides encoded by the mRNA sequence to which a Table 1 oligonucleotide or a Table 1 derived oligonucleotide binds. The invention further extends to antibodies which bind to any of said polypeptides.
  • As described above, conveniently said set of oligonucleotide probes may be immobilized on one or more solid supports. Single or preferably multiple copies of each unique probe are attached to said solid supports, e.g. 10 or more, e.g. at least 100 copies of each unique probe are present.
  • One or more unique oligonucleotide probes may be associated with separate solid supports which together form a set of probes immobilized on multiple solid support, e.g. one or more unique probes may be immobilized on multiple beads, membranes, filters, biochips etc. which together form a set of probes, which together form modules of the kit described hereinafter. The solid support of the different modules are conveniently physically associated although the signals associated with each probe (generated as described hereinafter) must be separately determinable.
  • Alternatively, the probes may be immobilized on discrete portions of the same solid support, e.g. each unique oligonucleotide probe, e.g. in multiple copies, may be immobilized to a distinct and discrete portion or region of a single filter or membrane, e.g. to generate an array.
  • A combination of such techniques may also be used, e.g. several solid supports may be used which each immobilize several unique probes.
  • The expression “solid support” shall mean any solid material able to bind oligonucleotides by hydrophobic, ionic or covalent bridges.
  • “Immobilization” as used herein refers to reversible or irreversible association of the probes to said solid support by virtue of such binding. If reversible, the probes remain associated with the solid support for a time sufficient for methods of the invention to be carried out.
  • Numerous solid supports suitable as immobilizing moieties according to the invention, are well known in the art and widely described in the literature and generally speaking, the solid support may be any of the well-known supports or matrices which are currently widely used or proposed for immobilization, separation etc. in chemical or biochemical procedures. Such materials include, but are not limited to, any synthetic organic polymer such as polystyrene, polyvinylchloride, polyethylene; or nitrocellulose and cellulose acetate; or tosyl activated surfaces; or glass or nylon or any surface carrying a group suited for covalent coupling of nucleic acids. The immobilizing moieties may take the form of particles, sheets, gels, filters, membranes, microfibre strips, tubes or plates, fibres or capillaries, made for example of a polymeric material e.g. agarose, cellulose, alginate, teflon, latex or polystyrene or magnetic beads. Solid supports allowing the presentation of an array, preferably in a single dimension are preferred, e.g. sheets, filters, membranes, plates or biochips.
  • Attachment of the nucleic acid molecules to the solid support may be performed directly or indirectly. For example if a filter is used, attachment may be performed by UV-induced crosslinking. Alternatively, attachment may be performed indirectly by the use of an attachment moiety carried on the oligonucleotide probes and/or solid support. Thus for example, a pair of affinity binding partners may be used, such as avidin, streptavidin or biotin, DNA or DNA binding protein (e.g. either the lac I repressor protein or the lac operator sequence to which it binds), antibodies (which may be mono- or polyclonal), antibody fragments or the epitopes or haptens of antibodies. In these cases, one partner of the binding pair is attached to (or is inherently part of) the solid support and the other partner is attached to (or is inherently part of) the nucleic acid molecules.
  • As used herein an “affinity binding pair” refers to two components which recognize and bind to one another specifically (ie. in preference to binding to other molecules). Such binding pairs when bound together form a complex.
  • Attachment of appropriate functional groups to the solid support may be performed by methods well known in the art, which include for example, attachment through hydroxyl, carboxyl, aldehyde or amino groups which may be provided by treating the solid support to provide suitable surface coatings. Solid supports presenting appropriate moieties for attachment of the binding partner may be produced by routine methods known in the art.
  • Attachment of appropriate functional groups to the oligonucleotide probes of the invention may be performed by ligation or introduced during synthesis or amplification, for example using primers carrying an appropriate moiety, such as biotin or a particular sequence for capture.
  • Conveniently, the set of probes described hereinbefore is provided in kit form.
  • Thus viewed from a further aspect the present invention provides a kit comprising a set of oligonucleotide probes as described hereinbefore immobilized on one or more solid supports.
  • Preferably, said probes are immobilized on a single solid support and each unique probe is attached to a different region of said solid support. However, when attached to multiple solid supports, said multiple solid supports form the modules which make up the kit. Especially preferably said solid support is a sheet, filter, membrane, plate or biochip.
  • Optionally the kit may also contain information relating to the signals generated by normal or diseased samples (as discussed in more detail hereinafter in relation to the use of the kits), standardizing materials, e.g. mRNA or cDNA from normal and/or diseased samples for comparative purposes, labels for incorporation into CDNA, adapters for introducing nucleic acid sequences for amplification purposes, primers for amplification and/or appropriate enzymes, buffers and solutions. Optionally said kit may also contain a package insert describing how the method of the invention should be performed, optionally providing standard graphs, data or software for interpretation of results obtained when performing the invention.
  • The use of such kits to prepare a standard diagnostic gene transcript pattern as described hereinafter forms a further aspect of the invention.
  • The set of probes as described herein have various uses. Principally however they are used to assess the gene expression state of a test cell to provide information relating to the organism from which said cell is derived. Thus the probes are useful in diagnosing, identifying or monitoring a disease or condition or stage thereof in an organism.
  • Thus in a further aspect the invention provides the use of a set of oligonucleotide probes or a kit as described hereinbefore to determine the gene expression pattern of a cell which pattern reflects the level of gene expression of genes to which said oligonucleotide probes bind, comprising at least the steps of:
  • a) isolating mRNA from said cell, which may optionally be reverse transcribed to cDNA;
  • b) hybridizing the mRNA or cDNA of step (a) to a set of oligonucleotide probes or a kit as defined herein; and
  • c) assessing the amount of mRNA or cDNA hybridizing to each of said probes to produce said pattern.
  • The mRNA and cDNA as referred to in this method, and the methods hereinafter, encompass derivatives or copies of said molecules, e.g. copies of such molecules such as those produced by amplification or the preparation of complementary strands, but which retain the identity of the mRNA sequence, ie. would hybridize to the direct transcript (or its complementary sequence) by virtue of precise complementarity, or sequence identity, over at least a region of said molecule. It will be appreciated that complementarity will not exist over the entire region where techniques have been used which may truncate the transcript or introduce new sequences, e.g. by primer amplification. For convenience, said mRNA or cDNA is preferably amplified prior to step b). As with the oligonucleotides described herein said molecules may be modified, e.g. by using non-natural bases during synthesis providing complementarity remains. Such molecules may also carry additional moieties such as signalling or immobilizing means.
  • The various steps involved in the method of preparing such a pattern are described in more detail hereinafter.
  • As used herein “gene expression” refers to transcription of a particular gene to produce a specific mRNA product (ie. a particular splicing product). The level of gene expression may be determined by assessing the level of transcribed mRNA molecules or cDNA molecules reverse transcribed from the mRNA molecules or products derived from those molecules, e.g. by amplification.
  • The “pattern” created by this technique refers to information which, for example, may be represented in tabular or graphical form and conveys information about the signal associated with two or more oligonucleotides. Preferably said pattern is expressed as an array of numbers relating to the expression level associated with each probe.
  • Preferably, said pattern is established using the following linear model:
    y=Xb+f   Equation 1
    wherein, X is the matrix of gene expression data and y is the response variable, b is the regression coefficient vector and f the estimated residual vector. Although many different methods can be used to establish the relationship provided in equation 1, especially preferably the partial Least Squares Regression (PLSR) method is used for establishing the relationship in equation 1.
  • The probes are thus used to generate a pattern which reflects the gene expression of a cell at the time of its isolation. The pattern of expression is characteristic of the circumstances under which that cells finds itself and depends on the influences to which the cell has been exposed. Thus, a characteristic gene transcript pattern standard or fingerprint (standard probe pattern) for cells from an individual with a particular disease or condition may be prepared and used for comparison to transcript patterns of test cells. This has clear applications in diagnosing, monitoring or identifying whether an organism is suffering from a particular disease, condition or stage thereof.
  • The standard pattern is prepared by determining the extent of binding of total mRNA (or cDNA or related product), from cells from a sample of one or more organisms with the disease or condition or stage thereof, to the probes. This reflects the level of transcripts which are present which correspond to each unique probe. The amount of nucleic acid material which binds to the different probes is assessed and this information together forms the gene transcript pattern standard of that disease or condition or stage thereof. Each such standard pattern is characteristic of the disease, condition or stage thereof.
  • In a further aspect therefore, the present invention provides a method of preparing a standard gene transcript pattern characteristic of a disease or condition or stage thereof in an organism comprising at least the steps of:
  • a) isolating MRNA from the cells of a sample of one or more organisms having the disease or condition or stage thereof, which may optionally be reverse transcribed to cDNA;
  • b) hybridizing the mRNA or cDNA of step (a) to a set of oligonucleotides or a kit as described hereinbefore specific for said disease or condition or stage thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • c) assessing the amount of mRNA or cDNA hybridizing to each of said probes to produce a characteristic pattern reflecting the level of gene expression of genes to which said oligonucleotides bind, in the sample with the disease, condition or stage thereof.
  • For convenience, said oligonucleotides are preferably immobilized on one or more solid supports.
  • The standard pattern for a great number of diseases or conditions and different stages thereof using particular probes may be accumulated in databases and be made available to laboratories on request.
  • “Disease” samples and organisms as referred to herein refer to organisms (or samples from the same) with an underlying pathological disturbance relative to a normal organism (or sample), in a symptomatic or asymptomatic organism, which may result, for example, from infection or an acquired or congenital genetic imperfection. Such organisms are known to have, or which exhibit, the disease or condition or stage thereof under study.
  • A “condition” refers to a state of the mind or body of an organism which has not occurred through disease, e.g. the presence of an agent in the body such as a toxin, drug or pollutant, or pregnancy.
  • “Stages” thereof refer to different stages of the disease or condition which may or may not exhibit particular physiological or metabolic changes, but do exhibit changes at the genetic level which may be detected as altered gene expression. It will be appreciated that during the course of a disease or condition the expression of different transcripts may vary. Thus at different stages, altered expression may not be exhibited for particular transcripts compared to “normal” samples. However, combining information from several transcripts which exhibit altered expression at one or more stages through the course of the disease or condition can be used to provide a characteristic pattern which is indicative of a particular stage of the disease or condition. Thus for example different stages in cancer, e.g. pre-stage I, stage I, stage II, II or IV can be identified.
  • “Normal” as used herein refers to organisms or samples which are used for comparative purposes. Preferably, these are “normal” in the sense that they do not exhibit any indication of, or are not believed to have, any disease or condition that would affect gene expression, particularly in respect of the disease for which they are to be used as the normal standard. However, it will be appreciated that different stages of a disease or condition may be compared and in such cases, the “normal” sample may correspond to the earlier stage of the disease or condition.
  • As used herein a “sample” refers to any material obtained from the organism, e.g. human or non-human animal under investigation which contains cells and includes, tissues, body fluid or body waste or in the case of prokaryotic organisms, the organism itself. “Body fluids” include blood, saliva, spinal fluid, semen, lymph. “Body waste” includes urine, expectorated matter (pulmonary patients), faeces etc. “Tissue samples” include tissue obtained by biopsy, by surgical interventions or by other means e.g. placenta. Preferably however, the samples which are examined are from areas of the body not apparently affected by the disease or condition. The cells in such samples are not disease cells, e.g. cancer cells, have not been in contact with such disease cells and do not originate from the site of the disease or condition. The “site of disease” is considered to be that area of the body which manifests the disease in a way which may be objectively determined, e.g. a tumour or area of inflammation. Thus for example peripheral blood may be used for the diagnosis of non-haematopoietic cancers, and the blood does not require the presence of malignant or disseminated cells from the cancer in the blood. Similarly in diseases of the brain, in which no diseased cells are found in the blood due to the blood:brain barrier, peripheral blood may still be used in the methods of the invention.
  • It will however be appreciated that the method of preparing the standard transcription pattern and other methods of the invention are also applicable for use on living parts of eukaryotic organisms such as cell lines and organ cultures and explants.
  • As used herein, reference to “corresponding” sample etc. refers to cells preferably from the same tissue, body fluid or body waste, but also includes cells-from tissue, body fluid or body waste which are sufficiently similar for the purposes of preparing the standard or test pattern. When used in reference to genes “corresponding” to the probes, this refers to genes which are related by sequence (which may be complementary) to the probes although the probes may reflect different splicing products of expression.
  • “Assessing” as used herein refers to both quantitative and qualitative assessment which may be determined in absolute or relative terms.
  • The invention may be put into practice as follows. To prepare a standard transcript pattern for a particular disease, condition or stage thereof, sample mRNA is extracted from the cells of tissues, body fluid or body waste according to known techniques (see for example Sambrook et. al. (1989), Molecular Cloning: A laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) from a diseased individual or organism.
  • Owing to the difficulties in working with RNA, the RNA is preferably reverse transcribed at this stage to form first strand cDNA. Cloning of the cDNA or selection from, or using, a cDNA library is not however necessary in this or other methods of the invention. Preferably, the complementary strands of the first strand cDNAs are synthesized, ie. second strand cDNAs, but this will depend on which relative strands are present in the oligonucleotide probes. The RNA may however alternatively be used directly without reverse transcription and may be labelled if so required.
  • Preferably the cDNA strands are amplified by known amplification techniques such as the polymerase chain reaction (PCR) by the use of appropriate primers. Alternatively, the cDNA strands may be cloned with a vector, used to transform a bacteria such as E. coli which may then be grown to multiply the nucleic acid molecules. When the sequence of the cDNAs are not known, primers may be directed to regions of the nucleic acid molecules which have been introduced. Thus for example, adapters may be ligated to the cDNA molecules and primers directed to these portions for amplification of the cDNA molecules. Alternatively, in the case of eukaryotic samples, advantage may be taken of the polyA tail and cap of the RNA to prepare appropriate primers.
  • To produce the standard diagnostic gene transcript pattern or fingerprint for a particular disease or condition or stage thereof, the above described oligonucleotide probes are used to probe mRNA or cDNA of the diseased sample to produce a signal for hybridization to each particular oligonucleotide probe species, ie. each unique probe. A standard control gene transcript pattern may also be prepared if desired using mRNA or cDNA from a normal sample. Thus, mRNA or cDNA is brought into contact with the oligonucleotide probe under appropriate conditions to allow hybridization.
  • When multiple samples are probed, this may be performed consecutively using the same probes, e.g. on one or more solid supports, ie. on probe kit modules, or by simultaneously hybridizing to corresponding probes, e.g. the modules of a corresponding probe kit.
  • To identify when hybridization occurs and obtain an indication of the number of transcripts/cDNA molecules which become bound to the oligonucleotide probes, it is necessary to identify a signal produced when the transcripts (or related molecules) hybridize (e.g. by detection of double stranded nucleic acid molecules or detection of the number of molecules which become bound, after removing unbound molecules, e.g. by washing).
  • In order to achieve a signal, either or both components which hybridize (ie. the probe and the transcript) carry or form a signalling means or a part thereof. This “signalling means” is any moiety capable of direct or indirect detection by the generation or presence of a signal. The signal may be any detectable physical characteristic such as conferred by radiation emission, scattering or absorption properties, magnetic properties, or other physical properties such as charge, size or binding properties of existing molecules (e.g. labels) or molecules which may be generated (e.g. gas emission etc.). Techniques are preferred which allow signal amplification, e.g. which produce multiple signal events from a single active binding site, e.g. by the catalytic action of enzymes to produce multiple detectable products.
  • Conveniently the signalling means may be a label which itself provides a detectable signal. Conveniently this may be achieved by the use of a radioactive or other label which may be incorporated during cDNA production, the preparation of complementary cDNA strands, during amplification of the target mRNA/cDNA or added directly to target nucleic acid molecules.
  • Appropriate labels are those which directly or indirectly allow detection or measurement of the presence of the transcripts/cDNA. Such labels include for example radiolabels, chemical labels, for example chromophores or fluorophores (e.g. dyes such as fluorescein and rhodamine), or reagents of high electron density such as ferritin, haemocyanin or colloidal gold. Alternatively, the label may be an enzyme, for example peroxidase or alkaline phosphatase, wherein the presence of the enzyme is visualized by its interaction with a suitable entity, for example a substrate. The label may also form part of a signalling pair wherein the other member of the pair is found on, or in close proximity to, the oligonucleotide probe to which the transcript/cDNA binds, for example, a fluorescent compound and a quench fluorescent substrate may be used. A label may also be provided on a different entity, such as an antibody, which recognizes a peptide moiety attached to the transcripts/cDNA, for example attached to a base used during synthesis or amplification.
  • A signal may be achieved by the introduction of a label before, during or after the hybridization step. Alternatively, the presence of hybridizing transcripts may be identified by other physical properties, such as their absorbance, and in which case the signalling means is the complex itself.
  • The amount of signal associated with each oligonucleotide probe is then assessed. The assessment may be quantitative or qualitative and may be based on binding of a single transcript species (or related cDNA or other products) to each probe, or binding of multiple transcript species to multiple copies of each unique probe. It will be appreciated that quantitative results will provide further information for the transcript fingerprint of the disease which is compiled. This data may be expressed as absolute values (in the case of macroarrays) or may be determined relative to a particular standard or reference e.g. a normal control sample.
  • Furthermore it will be appreciated that the standard diagnostic gene pattern transcript may be prepared using one or more disease samples (and normal samples if used) to perform the hybridization step to obtain patterns not biased towards a particular individual's variations in gene expression.
  • The use of the probes to prepare standard patterns and the standard diagnostic gene transcript patterns thus produced for the purpose of identification or diagnosis or monitoring of a particular disease or condition or stage thereof in a particular organism forms a further aspect of the invention.
  • Once a standard diagnostic fingerprint or pattern has been determined for a particular disease or condition using the selected oligonucleotide probes, this information can be used to identify the presence, absence or extent or stage of that disease or condition in a different test organism or individual.
  • To examine the gene expression pattern of a test sample, a test sample of tissue, body fluid or body waste containing cells, corresponding to the sample used for the preparation of the standard pattern, is obtained from a patient or the organism to be studied. A test gene transcript pattern is then prepared as described hereinbefore as for the standard pattern.
  • In a further aspect therefore, the present invention provides a method of preparing a test gene transcript pattern comprising at least the steps of:
  • a) isolating mRNA from the cells of a sample of said test organism, which may optionally be reverse transcribed to CDNA;
  • b) hybridizing the mRNA or cDNA of step (a) to a set of oligonucleotides or a kit as described hereinbefore specific for a disease or condition or stage thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • c) assessing the amount of mRNA or cDNA hybridizing to each of said probes to produce said pattern reflecting the level of gene expression of genes to which said oligonucleotides bind, in said test sample.
  • This test pattern may then be compared to one or more standard patterns to assess whether the sample contains cells having the disease, condition or stage thereof.
  • Thus viewed from a further aspect the present invention provides a method of diagnosing or identifying or monitoring a disease or condition or stage thereof in an organism, comprising the steps of:
      • a) isolating mRNA from the cells of a sample of said organism, which may optionally be reverse transcribed to cDNA;
      • b) hybridizing the mRNA or cDNA of step (a) to a set of oligonucleotides or a kit as described hereinbefore specific for said disease or condition or stage thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation;
      • c) assessing the amount of mRNA or cDNA hybridizing to each of said probes to produce a characteristic pattern reflecting the level of gene expression of genes to which said oligonucleotides bind, in said sample; and
      • d) comparing said pattern to a standard diagnostic pattern prepared according to the method of the invention using a sample from an organism corresponding to the organism and sample under investigation to determine the presence of said disease or condition or a stage thereof in the organism under investigation.
  • The method up to and including step c) is the preparation of a test pattern as described above.
  • As referred to herein, “diagnosis” refers to determination of the presence or existence of a disease or condition or stage thereof in an organism. “Monitoring” refers to establishing the extent of a disease or condition, particularly when an individual is known to be suffering from a disease or condition, for example to monitor the effects of treatment or the development of a disease or condition, e.g. to determine the suitability of a treatment or provide a prognosis.
  • The presence of the disease or condition or stage thereof may be determined by determining the degree of correlation between the standard and test samples' patterns. This necessarily takes into account the range of values which are obtained for normal and diseased samples. Although this can be established by obtaining standard deviations for several representative samples binding to the probes to develop the standard, it will be appreciated that single samples may be sufficient to generate the standard pattern to identify a disease if the test sample exhibits close enough correlation to that standard. Conveniently, the presence, absence, or extent of a disease or condition or stage thereof in a test sample can be predicted by inserting the data relating to the expression level of informative probes in test sample into the standard diagnostic probe pattern established according to equation 1.
  • Data generated using the above mentioned methods may be analysed using various techniques from the most basic visual representation (e.g. relating to intensity) to more complex data manipulation to identify underlying patterns which reflect the interrelationship of the level of expression of each gene to which the various probes bind, which may be quantified and expressed mathematically. Conveniently, the raw data thus generated may be manipulated by the data processing and statistical methods described hereinafter, particularly normalizing and standardizing the data and fitting the data to a classification model to determine whether said test data reflects the pattern of a particular disease, condition or stage thereof.
  • The methods described herein may be used to identify, monitor or diagnose a disease, condition or ailment or its stage or progression, for which the oligonucleotide probes are informative. “Informative” probes as described herein, are those which reflect genes which have altered expression in the diseases or conditions in question, or particular stages thereof. Probes of the invention may not be sufficiently informative for diagnostic purposes when used alone, but are informative when used as one of several probes to provide a characteristic pattern, e.g. in a set as described hereinbefore.
  • Preferably said probes correspond to genes which are systemically affected by said disease, condition or stage thereof. Especially preferably said genes, from which transcripts are derived which bind to probes of the invention, are metabolic or house-keeping genes and preferably are moderately or highly expressed. The advantage of using probes directed to moderately or highly expressed genes is that smaller clinical samples are required for generating the necessary gene expression data set, e.g. less than 1 ml blood samples.
  • Furthermore, it has been found that such genes which are already being actively transcribed tend to be more prone to being influenced, in a positive or negative way, by new stimuli. In addition, since transcripts are already being produced at levels which are generally detectable, small changes in those levels are readily detectable as for example, a certain detectable threshold does not need to be reached.
  • In preferred methods of the invention, the set of probes of the invention are informative for a variety of different diseases, conditions or stages thereof. A sub-set of the probes disclosed herein may be used for diagnosis, identification or monitoring a particular disease, condition or stage thereof.
  • Thus the probes may be used to diagnose or identify or monitor any condition, ailment, disease or reaction that leads to the relative increase or decrease in the activity of informative genes of any or all eukaryotic or prokaryotic organisms regardless of whether these changes have been caused by the influence of bacteria, virus, prions, parasites, fungi, radiation, natural or artificial toxins, drugs or allergens, including mental conditions due to stress, neurosis, psychosis or deteriorations due to the ageing of the organism, and conditions or diseases of unknown cause, providing a sub-set of the probes as described herein are informative for said disease or condition or stage thereof.
  • Such diseases include those which result in metabolic or physiological changes, such as fever-associated diseases such as influenza or malaria. Other diseases which may be detected include for example yellow fever, sexually transmitted diseases such as gonorrhea, fibromyalgia, candida-related complex, cancer (for example of the stomach, lung, breast, prostate gland, bowel, skin, colon, ovary etc), Alzheimer's disease, disease caused by retroviruses such as HIV, senile dementia, multiple sclerosis and Creutzfeldt-Jakob disease to mention a few.
  • The invention may also be used to identify patients with psychiatric or psychosomatic diseases such as schizophrenia and eating disorders. Of particular importance is the use of this method to detect diseases, conditions, or stages thereof, which are not readily detectable by known diagnostic methods, such as HIV which is generally not detectable using known techniques 1 to 4 months following infection. Conditions which may be identified include for example drug abuse, such as the use of narcotics, alcohol, steroids or performance enhancing drugs.
  • Preferably said disease to be identified or monitored is a cancer or a degenerative brain disorder (such as Alzheimer's or Parkinson's disease).
  • In particular, a set of oligonucleotide probes, wherein said set comprises at least 10 oligonucleotides selected from:
      • an oligonucleotide as described in Table 4 or an oligonucleotide derived therefrom or an oligonucleotide with a complementary sequence, or a functionally equivalent oligonucleotide,
        may be used for diagnosis or identification or monitoring the progression of Alzheimer's disease. Similarly Table 2 probes and Table 2 derived probes and their functional equivalents may be used to diagnose, identify or monitor the progression of breast cancer. Especially preferably the probes used for breast cancer analysis are selected based on their occurrence as set forth in Table 3 and as described hereinbefore.
  • The diagnostic method may be used alone as an alternative to other diagnostic techniques or in addition to such techniques. For example, methods of the invention may be used as an alternative or additive diagnostic measure to diagnosis using imaging techniques such as Magnetic Resonance Imagine (MRI), ultrasound imaging, nuclear imaging or X-ray imaging, for example in the identification and/or diagnosis of tumours.
  • The methods of the invention may be performed on cells from prokaryotic or eukaryotic organisms which may be any eukaryotic organisms such as human beings, other mammals and animals, birds, insects, fish and plants, and any prokaryotic organism such as a bacteria.
  • Preferred non-human animals on which the methods of the invention may be conducted include, but are not limited to mammals, particularly primates, domestic animals, livestock and laboratory animals. Thus preferred animals for diagnosis include mice,. rats, guinea pigs, cats, dogs, pigs, cows, goats, sheep, horses. Particularly preferably the disease state or condition of humans is diagnosed, identified or monitored.
  • As described above, the sample under study may be any convenient sample which may be obtained from an organism. Preferably however, as mentioned above, the sample is obtained from a site distant to the site of disease and the cells in such samples are not disease cells, have not been in contact with such cells and do not originate from the site of the disease or condition. In such cases, although preferably absent, the sample may contain cells which do not fulfil these criteria. However, since the probes of the invention are concerned with transcripts whose expression is altered in cells which do satisfy these criteria, the probes are specifically directed to detecting changes in transcript levels in those cells even if in the presence of other, background cells.
  • It has been found that the cells from such samples show significant and informative variations in the gene expression of a large number of genes. Thus, the same probe (or several probes) may be found to be informative in determinations regarding two or more diseases, conditions or stages thereof by virtue of the particular level of transcripts binding to that probe or the interrelationship of the extent of binding to that probe relative to other probes. As a consequence, it is possible to use a relatively small number of probes for screening for multiple disorders or diseases. This has consequences with regard to the selection of probes, discussed in relation to random identification of probes hereinafter, but also for the use of a single set of probes for more than one diagnosis. Table 9 which represents preferred probes of the invention discloses probes which are informative for both Alzheimer's and breast cancer.
  • Thus, the present invention also provides sets of probes for diagnosing, identifying or monitoring two or more diseases, conditions or stages thereof, wherein at least one of said probes is suitable for said diagnosing, identifying or monitoring at least two of said diseases, conditions or stages thereof, and kits and methods of using the same. Preferably at least 5 probes, e.g. from 5 to 15 probes, are used in at least two diagnoses.
  • Thus, in a further preferred aspect, the present invention provides a method of diagnosis or identification or monitoring as described hereinbefore for the diagnosis, identification or monitoring of two or more diseases, conditions or stages thereof in an organism, wherein said test pattern produced in step c) of the diagnostic method is compared in step d) to at least two standard diagnostic patterns prepared as described previously, wherein each standard diagnostic pattern is a pattern generated for a different disease or condition or stage thereof.
  • Whilst in a preferred aspect the methods of assessment concern the development of a gene transcript pattern from a test sample and comparison of the same to a standard pattern, the elevation or depression of .expression of certain markers may also be examined by examining the products of expression and the level of those products. Thus a standard pattern in relation to the expressed product may be generated:
  • In such methods the levels of expression of a set of polypeptides encoded by the gene to which an oligonucleotide of Table 1 or a Table 1 derived oligonucleotide, binds, are analysed.
  • Various diagnostic methods may be used to assess the amount of polypeptides (or fragments thereof) which are present. The presence or concentration of polypeptides may be examined, for example by the use of a binding partner to said polypeptide (e.g. an antibody), which may be immobilized, to separate said polypeptide from the sample and the amount of polypeptide may then be determined.
  • “Fragments” of the polypeptides refers to a domain or region of said polypeptide, e.g. an antigenic fragment, which is recognizable as being derived from said polypeptide to allow binding of a specific binding partner. Preferably such a fragment comprises a significant portion of said polypeptide and corresponds to a product of normal post-synthesis processing.
  • Thus in a further aspect the present invention provides a method of preparing a standard gene transcript pattern characteristic of a disease or condition or stage thereof in an organism comprising at least the steps of:
  • a) releasing target polypeptides from a sample of one or more organisms having the disease or condition or stage thereof;
  • b) contacting said target polypeptides with one or more binding partners, wherein each binding partner is specific to a marker polypeptide (or a fragment thereof) encoded by the gene to which an oligonucleotide of Table 1 (or derived from a sequence described in Table 1) binds, to allow binding of said binding partners to said target polypeptides, wherein said marker polypeptides are specific for said disease or condition thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • c) assessing the target polypeptide binding to said binding partners to produce a characteristic pattern reflecting the level of gene expression of genes which express said marker polypeptides, in the sample with the disease, condition or stage thereof.
  • As used herein “target polypeptides” refer to those polypeptides present in a sample which are to be detected and “marker polypeptides” are polypeptides which are encoded by the genes to which Table 1 oligonucleotides or Table 1 derived oligonucleotides bind. The target and marker polypeptides are identical or at least have areas of high similarity, e.g. epitopic regions to allow recognition and binding of the binding partner.
  • “Release” of the target polypeptides refers to appropriate treatment of a sample to provide the polypeptides in a form accessible for binding of the binding partners, e.g. by lysis of cells where these are present. The samples used in this case need not necessarily comprise cells as the target polypeptides may be released from cells into the surrounding tissue or fluid, and this tissue or fluid may be analysed, e.g. urine or blood. Preferably however the preferred samples as described herein are used. “Binding partners” comprise the separate entities which together make an affinity binding pair as described above, wherein one partner of the binding pair is the target or marker polypeptide and the other partner binds specifically to that polypeptide, e.g. an antibody.
  • Various arrangements may be envisaged for detecting the amount of binding pairs which form. In its simplest form, a sandwich type assay e.g. an immunoassay such as an ELISA, may be used in which an antibody specific to the polypeptide and carrying a label (as described elsewhere herein) may be bound to the binding pair (e.g. the first antibody:polypeptide pair) and the amount of label detected.
  • Other methods as described herein may be similarly modified for analysis of the protein product of expression rather than the gene transcript and related nucleic acid molecules.
  • Thus a further aspect of the invention provides a method of preparing a test gene transcript pattern comprising at least the steps of:
  • a) releasing target polypeptides from a sample of said test organism;
  • b) contacting said target polypeptides with one or more binding partners, wherein each binding partner is specific to a marker polypeptide (or a fragment thereof) encoded by the gene to which an oligonucleotide of Table 1 (or derived from a sequence described in Table 1) binds, to allow binding of said binding partners to said target polypeptides, wherein said marker polypeptides are specific for said disease or condition thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • c) assessing the target polypeptide binding to said binding partners to produce a characteristic pattern reflecting the level of gene expression of genes which express said marker polypeptides, in said test sample.
  • A yet further aspect of the invention provides a method of diagnosing or identifying or monitoring a disease or condition or stage thereof in an organism comprising the steps of:
  • a) releasing target polypeptides from a sample of said organism;
  • b) contacting said target polypeptides with one or more binding partners, wherein each binding partner is specific to a marker polypeptide (or a fragment thereof) encoded by the gene to which an oligonucleotide of Table 1 (or derived from a sequence described in Table 1) binds, to allow binding of said binding partners to said target polypeptides, wherein said marker polypeptides are specific for said disease or condition thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
  • c) assessing the target polypeptide binding to said binding partners to produce a characteristic pattern reflecting the level of gene expression of genes which express said marker polypeptides in said sample; and
  • d) comparing said pattern to a standard diagnostic pattern prepared as described hereinbefore using a sample from an organism corresponding to the organism and sample under investigation to determine the degree of correlation indicative of the presence of said disease or condition or a stage thereof in the organism under investigation.
  • The methods of generating standard and test patterns and diagnostic techniques rely on the use of informative oligonucleotide probes to generate the gene expression data. In some cases it will be necessary to select these informative probes for a particular method, e.g. to diagnose a particular disease, from a selection of available probes, e.g. the probes described hereinbefore (the Table 1 oligonucleotides, the Table 1 derived oligonucleotides, their complementary sequences and functionally equivalent oligonucleotides). The following methodology describes a convenient method for identifying such informative probes, or more particularly how to select a suitable sub-set of probes from the probes described herein.
  • Probes for the analysis of a particular disease or condition or stage thereof, may be identified in a number of ways known in the prior art, including by differential expression or by library subtraction (see for example WO98/49342). As described hereinafter, in view of the high information content of most transcripts, as a starting point one may also simply analyse a random sub-set of mRNA or CDNA species and pick the most informative probes from that sub-set. The following method describes the use of immobilized oligonucleotide probes (e.g. the probes of the invention) to which mRNA (or related molecules) from different samples is bound to identify which probes are the most informative to identify a particular type of sample, e.g. a disease sample.
  • The immobilized probes can be derived from various unrelated or related organisms; the only requirement is that the immobilized probes should bind specifically to their homologous counterparts in test organisms. Probes can also be derived from commercially available or public databases and immobilized on solid supports or, as mentioned above, they can be randomly picked and isolated from a cDNA library and immobilized on a solid support.
  • The length of the probes immobilised on the solid support should be long enough to allow for specific binding to the target sequences. The immobilised probes can be in the form of DNA, RNA or their modified products or PNAs (peptide nucleic acids). Preferably, the probes immobilised should bind specifically to their homologous counterparts representing highly and moderately expressed genes in test organisms. Conveniently the probes which are used are the probes described herein.
  • The gene expression pattern of cells in biological samples can be generated using prior art techniques such as microarray or macroarray as described below or using methods described herein. Several technologies have now been developed for monitoring the expression level of a large number of genes simultaneously in biological samples, such as, high-density oligoarrays (Lockhart et al., 1996, Nat. Biotech., 14, p1675-1680), cDNA microarrays (Schena et al, 1995, Science, 270, p467-470) and CDNA macroarrays (Maier E et al., 1994, Nucl. Acids Res., 22, p3423-3424; Bernard et al., 1996, Nucl. Acids Res., 24, p1435-1442).
  • In high-density oligoarrays and cDNA microarrays, hundreds and thousands of probe oligonucleotides or cDNAs, are spotted onto glass slides or nylon membranes, or synthesized on biochips. The MRNA isolated from the test and reference samples are labelled by reverse transcription with a red or green fluorescent dye, mixed, and hybridised to the microarray. After washing, the bound fluorescent dyes are detected by a laser, producing two images, one. for each dye. The resulting ratio of the red and green spots on the two images provides the information about the changes in expression levels of genes in the test and reference samples. Alternatively, single channel or multiple channel microarray studies can also be performed.
  • In cDNA macroarray, different cDNAs are spotted on a solid support such as nylon membranes in excess in relation to the amount of test mRNA that can hybridise to each spot. mRNA isolated from test samples is radio-labelled by reverse transcription and hybridised to the immobilised probe cDNA. After washing, the signals associated with labels hybridising specifically to immobilised probe cDNA are detected and quantified. The data obtained in macroarray contains information about the relative levels of transcripts present in the test samples. Whilst macroarrays are only suitable to monitor the expression of a limited number of genes, microarrays can be used to monitor the expression of several thousand genes simultaneously and is, therefore, a preferred choice for large-scale gene expression studies.
  • A macroarray technique for generating the gene expression data set has been used to illustrate the probe identification method described herein. For this purpose, mRNA is isolated from samples of interest and used to prepare labelled target molecules, e.g. mRNA or CDNA as described above. The labelled target molecules are then hybridised to probes immobilised on the solid support. Various solid supports can be used for the purpose, as described previously. Following hybridization, unbound target molecules are removed and signals from target molecules hybridizing to immobilised probes quantified. If radio labelling is performed, PhosphoImager can be used to generate an image file that can be used to generate a raw data set. Depending on the nature of label chosen for labelling the target molecules, other instruments can also be used, for example, when fluorescence is used for labelling, a FluoroImager can be used to generate an image file from the hybridised target molecules.
  • The raw data corresponding to mean intensity, median intensity, or volume of the signals in each spot can be acquired from the image file using commercially available software for image analysis. However, the acquired data needs to be corrected for background signals and normalized prior to analysis, since, several factors can affect the quality and quantity of the hybridising signals. For example, variations in the quality and quantity of mRNA isolated from sample to sample, subtle variations in the efficiency of labelling target molecules during each reaction, and variations in the amount of unspecific binding between different macroarrays can all contribute to noise in the acquired data set that must be corrected for prior to analysis.
  • Background correction can be performed in several ways. The lowest pixel intensity within a spot can be used for background subtraction or the mean or median of the line of pixels around the spots' outline can be used for the purpose. One can also define an area representing the background intensity based on the signals generated from negative controls and use the average intensity of this area for background subtraction.
  • The background corrected data can then be transformed for stabilizing the variance in the data structure and normalized for the differences in probe intensity. Several transformation techniques have been described in the literature and a brief overview can be found in Cui, Kerr and Churchill http://www.jax.org/research/churchill/research/expression/Cui-Transform.pdf). Normalization can be performed by dividing the intensity of each spot with the collective intensity, average intensity or median intensity of all the spots in a macroarray or a group of spots in a macroarray in order to obtain the relative intensity of signals hybridising to immobilised probes in a macroarray. Several methods have been described for normalizing gene expression data (Richmond and Somerville, 2000, Current Opin. Plant Biol., 3, p108-116; Finkelstein et al., 2001, In “Methods of Microarray Data Analysis. Papers from CAMDA, Eds. Lin & Johnsom, Kluwer Academic, p57-68; Yang et al., 2001, In “Optical Technologies and Informatics”, Eds. Bittner, Chen, Dorsel & Dougherty, Proceedings of SPIE, 4266, p141-152; Dudoit et al, 2000, J. Am. Stat. Ass., 97, p77-87; Alter et al 2000, supra; Newton et al., 2001, J. Comp. Biol., 8, p37-52). Generally, a scaling factor or function is first calculated to correct the intensity effect and then used for normalising the intensities. The use of external controls has also been suggested for improved normalization.
  • One other major challenge encountered in large-scale gene expression analysis is that of standardization of data collected from experiments performed at different times. We have observed that gene expression data for samples acquired in the same experiment can be efficiently compared following background correction and normalization. However, the data from samples acquired in experiments performed at different times requires further standardization prior to analysis. This is because subtle differences in experimental parameters between different experiments, for example, differences in the quality and quantity of mRNA extracted at different times, differences in time used for target molecule labelling, hybridization time or exposure time, can affect the measured values. Also, factors such as the nature of the sequence of transcripts under investigation (their GC content) and their amount in relation to the each other determines how they are affected by subtle variations in the experimental processes. They determine, for example, how efficiently first strand cDNAs, corresponding to a particular transcript, are transcribed and labelled during first strand synthesis, or how efficiently the corresponding labelled target molecules bind to their complementary sequences during hybridization. Batch to batch difference in the printing process is also a major factor for variation in the generated expression data.
  • Failure to properly address and rectify for these influences leads to situations where the differences between the experimental series may overshadow the main information of interest contained in the gene expression data set, i.e. the differences within the combined data from the different experimental series. FIG. 1 provides one such example showing a classification based on Principal Component Analysis (PCA) of combined data from two experimental series where the main goal is to distinguish between Alzheimer/non-Alzheimer patients.
  • PCA (also known as singular value decomposition) is a technique for studying interdependencies and underlying relationships of a set of variables. The data are modelled in terms of a few significant factors or principal components (PC's), plus residuals. The PC's contain the main phenomena and define the systematic variability present in the data, while the residuals represent the variability interpreted as noise. Details on PCA can be found in Jollife (1986, Principal Component Analysis, Springer-Verlag, N.Y.), and Jackson (1991, A User's Guide to Principal Components, Wiley, N.Y.). The results of FIG. 1 show that two clusters are formed representing the data from two experimental series rather than the Alzheimer/non-Alzheimer differentiation. There were eight samples in common between the two series of experiments, which ideally should have fallen on top of, or in near proximity to, each other if appropriately standardized.
  • We have now found that gene expression data between different experiments can be efficiently standardized by including a subset of samples from one experimental series in the next experimental series and using a direct standardization method (DS), originally described by Wang and Kowalski (Anal. Chem., 1991, 63, p2750 and J. Chemometrics, 1991, 5, p129-145). Although the method of DS is well known in the field of analytical chemistry, it remains undescribed and unused in the field of gene expression data analysis.
  • In DS, the secondary data representing for example experimental series 2 (secondary measurements, R2) are corrected to match the data measured on the primary measurements representing data from series 1 (R1), while the calibration model remains unchanged. In DS, response matrices for both experimental series are related to each other by a transformation matrix F, i.e.
    R1=R2F  (1)
  • Where F is a square matrix dimensioned gene by gene. From (1), the transformation matrix is calculated as:
    F=R2 +R1  (2)
  • The transformation matrix F in equation (2) is calculated using a relatively small subset of samples which are measured on both the master primary and the secondary series of data.
  • Finally, the response of the unknown sample measured on the secondary series rT 2,un, is standardized to the response vector {circumflex over (r)}T 1,un expected from the primary series
    {circumflex over (r)}T 1,un=rT21,un{circumflex over (F)}  (3)
  • From the preceding equation it can be seen that the column i of the transformation matrix contains the multiplication factors for a set of genes measured in the secondary series to obtain the intensity at spot i of the corrected series.
  • The number of samples that are repeated in the experimental series, R1 and R2, should be equal to their ranks, which in this case is equal to the number of principal components retained for explaining the variation in the R1 and R2. For example, if three principal components are retained for explaining the variation in the data set, a minimum of three samples should be repeated between R1 and R2. The samples that should be repeated between different series should ideally be those that exhibit high leverages in the gene expression pattern. At times, two samples may suffice, while at other times, more than two samples should be ideally be included for good representativity. In some cases, the samples selected can be the same in all the experimental series to be compared (reference samples), while in other cases, representative samples can be selected sequentially by analyzing the expression pattern after each experiment. The selected samples with high leverages are then included in the next experimental series. The results of using Direct Standardization are shown in FIG. 1.
  • Another approach for normalizing and standardizing the gene expression data set is to hybridize each DNA array with target molecules prepared from a test sample and an equal amount of labelled target molecules. prepared from representative reference samples. In order to measure the intensity of labelled target molecules hybridizing to the immobilized probes it is necessary that the labelled molecules are prepared from test and reference samples using different labels, for example, different fluorescent dyes can be used for preparing the labelled material. The labelled molecules prepared from reference samples can be added to the hybridization solution together with the labelled material prepared from test samples. A data file from each array representing the expression pattern of different genes in the test sample and reference samples can then be obtained, normalized and standardized by the direct standardization method as described above. An instant advantage of including the differentially labelled target molecules from reference samples during hybridization is that it enables an efficient comparison of new test samples to the data sets already stored in a database.
  • Monitoring the expression of a large number of genes in several samples leads to the generation of a large amount of data that is too complex to be easily interpreted. Several unsupervised and supervised multivariate data analysis techniques have already been shown to be useful in extracting meaningful biological information from these large data sets. Cluster analysis is by far the most commonly used technique for gene expression analysis, and has been performed to identify genes that are regulated in a similar manner, and or identifying new/unknown tumour classes using gene expression profiles (Eisen et al., 1998, PNAS, 95, p14863-14868, Alizadeh et al. 2000, supra, Perou et al. 2000, Nature, 406, p747-752; Ross et al, 2000, Nature Genetics, 24(3), p227-235; Herwig et al., 1999, Genome Res., 9, p1093-1105; Tamayo et al, 1999, Science, PNAS, 96, p2907-2912).
  • In the clustering method, genes are grouped into functional categories (clusters) based on their expression profile, satisfying two-criteria: homogeneity—the genes in the same cluster are highly similar in expression to each other; and separation—genes in different clusters have low similarity in expression to each other.
  • Examples of various clustering techniques that have been used for gene expression analysis include hierarchical clustering (Eisen et al., 1998, supra; Alizadeh et al. 2000, supra; Perou et al. 2000, supra; Ross et al, 2000, supra), K-means clustering (Herwig et al., 1999, supra; Tavazoie et al, 1999, Nature Genetics, 22(3), p. 281-285), gene shaving (Hastie et al., 2000, Genome Biology, 1(2), research 0003.1-0003.21), block clustering (Tibshirani et al., 1999, Tech repot Univ Stanford.) Plaid model (Lazzeroni, 2002, Stat. Sinica, 12, p61-86), and self-organizing maps (Tamayo et al. 1999, supra). Also, related methods of multivariate statistical analysis, such as those using the singular value decomposition (Alter et al., 2000, PNAS, 97(18), p10101-10106; Ross et al. 2000, supra) or multidimensional scaling can be effective at reducing the dimensions of the objects under study.
  • However, methods such as cluster analysis and singular value decomposition are purely exploratory and only provide a broad overview of the internal structure present in the data. They are unsupervised approaches in which the available information concerning the nature of the class under investigation is not used in the analysis. Often, the nature of the biological perturbation to which a particular sample has been subjected is known. For example, it is sometimes known whether the sample whose gene expression pattern is being analysed derives from a diseased or healthy individual. In such instances, discriminant analysis can be used for classifying samples into various groups based on their gene expression data.
  • In such an analysis one builds the classifier by training the data that is capable of discriminating between member and non-members of a given class. The trained classifier can then be used to predict the class of unknown samples. Examples of discrimination methods that have been described in the literature include Support Vector Machines (Brown et al, 2000, PNAS, 97, p262-267), Nearest Neighbour (Dudoit et al., 2000, supra), Classification trees (Dudoit et al., 2000, supra), Voted classification (Dudoit et al., 2000, supra), Weighted Gene voting (Golub et al. 1999, supra), and Bayesian classification (Keller et al. 2000, Tec report Univ of Washington). Also a technique in which PLS (Partial Least Square) regression analysis is first used to reduce the dimensions in the gene expression data set followed by classification using logistic discriminant analysis and quadratic discriminant analysis (LD and QDA) has recently been described (Nguyen & Rocke, 2002, Bioinformatics, 18, p39-50 and 1216-1226).
  • A challenge that gene expression data poses to classical discriminatory methods is that the number of genes whose expression are being analysed is very large compared to the number of samples being analysed. However in most cases only a small fraction of these genes are informative in discriminant analysis problems. Moreover, there is a danger that the noise from irrelevant genes can mask or distort the information from the informative genes. Several methods have been suggested in literature to identify and select genes that are informative in microarray studies, for example, t-statistics (Dudoit et al, 2002, J. Am. Stat. Ass., 97, p77-87), analysis of variance (Kerr et al., 2000, PNAS, 98, p8961-8965), Neighbourhood analysis (Golub et al, 1999, supra), Ratio of between groups to within groups sum of squares (Dudoit et al., 2002, supra), Non parametric scoring (Park et al., 2002, Pacific Symposium on Biocomputing, p52-63) and Likelihood selection (Keller-et al., 2000, supra).
  • In the methods described herein the gene expression data that has been normalized and standardized is analysed by using Partial Least Squares Regression (PLSR). Although PLSR is primarily a method used for regression analysis of continuous data (see Appendix A), it can also be utilized as a method for model building and discriminant analysis using a dummy response matrix based on a binary coding. The class assignment is based on a simple dichotomous distinction such as breast cancer (class 1)/healthy (class 2), or a multiple distinction based on multiple disease diagnosis such as breast cancer (class 1)/Alzheimer (class 2)/healthy (class 3). The list of diseases for classification can be increased depending upon the samples available corresponding to other diseases or conditions or stages thereof.
  • PLSR applied as a classification method is referred to as PLS-DA (DA standing for Discriminant analysis). PLS-DA is an extension of the PLSR algorithm in which the Y-matrix is a dummy matrix containing n rows *(corresponding to the number of samples) and K columns (corresponding to the number of classes). The Y-matrix is constructed by inserting 1 in the kth column and −1 in all the other columns if the corresponding ith object of X belongs to class k. By regressing Y onto X, classification of a new sample is achieved by selecting the group corresponding to the largest component of the fitted, ŷ(x)=(ŷ1(x), ŷ2(x), . . . , ŷk(x)). Thus, in a −1/1 response matrix, a prediction value below 0 means that the sample belongs to the class designated as −1, while a prediction value above 0 implies that the sample belongs to the class designated as 1.
  • An advantage of PLSR-DA is that the results obtained can be easily represented in the form of two different plots, the score and loading plots. Score plots represent a projection of the samples onto the principal components and shows the distribution of the samples in the classification model and their relationship to one another. Loading plots display correlations between the variables present in the data set.
  • It is usually recommended to use PLS-DA as a starting point for the classification problem due to its ability to handle collinear data, and the property of PLSR as a dimension reduction technique. Once this purpose has been satisfied, it is possible to use other methods such as Linear discriminant analysis, LDA, that has been shown to be effective in extracting further information, Indahl et al. (1999, Chem. and Intell. Lab. Syst., 49, p19-31). This approach is based on first decomposing the data using PLS-DA, and then using the scores vectors (instead of the original variables) as input to LDA. Further details on LDA can be found in Duda and Hart (Classification and Scene Analysis, 1973, Wiley, USA).
  • The next step following model building is of model validation. This step is considered to be amongst the most important aspects of multivariate analysis, and tests the “goodness” of the calibration model which has been built. In this work, a cross validation approach has been used for validation. In this approach, one or a few samples are kept out in each segment while the model is built using a full cross-validation on the basis of the remaining data. The samples left out are then used for prediction/classification. Repeating.the simple cross-validation process several times holding different samples out for each cross-validation leads to a so-called double cross-validation procedure. This approach has been shown to work well with a limited amount of data, as is the case in some of the Examples described here. Also, since the cross validation step is repeated several times the dangers of model bias and overfitting are reduced.
  • Once a calibration model has been built and validated, genes exhibiting an expression pattern that is most relevant for describing the desired information in the model can be selected by techniques described in the prior art for variable selection, as mentioned elsewhere. Variable selection will help in reducing the final model complexity, provide a parsimonious model, and thus lead to a reliable model that can be used for prediction. Moreover, use of fewer genes for the purpose of providing diagnosis will reduce the cost of the diagnostic product. In this way informative probes which would bind to the genes of relevance may be identified.
  • We have found that after a calibration model has been built, statistical techniques like Jackknife (Effron, 1982, The Jackknife, the Bootstrap and other resampling plans. Society for Industrial and Applied mathematics, Philadelphia, USA), based on resampling methodology, can be efficiently used to select or confirm significant variables (informative probes).
  • The approximate uncertainty variance of the PLS regression coefficients B can be estimated by: S 2 B = m = 1 M ( ( B - B m ) g ) 2
    where
    • S2B=estimated uncertainty variance of B;
    • B=the regression coefficient at the cross validated rank A using all the N objects;
    • Bm=the regression coefficient at the rank A using all objects except the object(s) left out in cross validation segment m; and
    • g=scaling coefficient (here: g=1).
  • In our approach, Jackknife has been implemented together with cross-validation. For each variable the difference between the B-coefficients Bi in a cross-validated sub-model and Btot for the total model is first calculated. The sum of the squares of the differences is then calculated in all sub-models to obtain an expression of the variance of the Bi estimate for a variable. The significance of the estimate of Bi is calculated using the t-test. Thus, the resulting regression coefficients can be presented with uncertainty limits that correspond to 2 Standard Deviations, and from that significant variables are detected.
  • No further details as to the implementation or use of this step are provided here since this has been implemented in commercially available software, The Unscrambler, CAMO ASA, Norway. Also, details on variable selection using Jackknife can be found in Westad & Martens (2000, J. Near Inf. Spectr., 8, p117-124).
  • The following approach can be used to select informative probes from a gene expression data set:
  • a) keep out one unique sample (including its repetitions if present in the data set) per cross validation segment;
  • b) build a calibration model (cross validated segment) on the remaining samples using PLSR-DA;
  • c) select the significant genes for the model in step b) using the Jackknife criterion;
  • d) repeat the above 3 steps until all the unique samples in the, data set are kept out once (as described in step a). For example, if 75 unique samples are present in the data set, 75 different calibration models are built resulting in a collection of 75 different sets of significant probes;
  • e) select the most significant variables using the frequency of occurrence criterion in the generated sets of significant probes in step d). For example, a set of probes appearing in all sets (100%) are more informative than probes appearing in only 50% of the generated sets in step d).
  • Once the informative probes for a disease have been selected, a final model is made and validated. The two most commonly used ways of validating the model are cross-validation (CV) and test set validation. In cross-validation, the data is divided into k subsets. The model is then trained k times, each time leaving out one of the subsets from training, but using only the omitted subset to compute error criterion, RMSEP (Root Mean Square Error of Prediction). If k equals the sample size, this is called “leave-one-out” cross-validation. The idea of leaving one or a few samples out per validation segment is valid only in cases where the covariance between the various experiments is zero. Thus, one sample at-a-time approach can not be justified in situations containing replicates since keeping only one of the replicates out will introduce a systematic bias in our analysis. The correct approach in this case will be to leave out all replicates of the same samples at a time since that would satisfy assumptions of zero covariance between the CV-segments.
  • The second approach for model validation is to use a separate test-set for validating the calibration model. This requires running a separate set of experiments to be used as a test set. This is the preferred approach given that real test data are available.
  • The final model is then used to identify a disease, condition or stage thereof in test samples. For this purpose, expression data of selected informative genes is generated from test samples and then the final model is used to determine whether a sample belongs to a diseased or non-diseased class or has a condition or stage thereof.
  • Thus viewed from a yet further aspect the present invention provides a method of identifying probes useful for diagnosing or identifying or monitoring a disease or condition or stage thereof in an organism, comprising the steps of:
      • a) immobilizing a set of oligonucleotide probes, preferably as described hereinbefore, on a solid support;
      • b) isolating mRNA from a sample of a normal organism (normal sample), which may optionally be reverse transcribed to CDNA;
      • c) isolating mRNA from a sample from an organism, corresponding to the sample and organism of step (b), which is known to have said disease or condition or a stage thereof (diseased sample), which may optionally be reverse transcribed to cDNA;
      • d) hybridizing the mRNA or cDNA of steps (b) and (c) to said set of immobilized oligonucleotide probes of step (a); and
      • e) assessing the amount of mRNA or cDNA hybridizing to each of said oligonucleotide probes to determine the level of gene expression of genes to which said oligonucleotide probes bind in said normal and diseased samples to generate a gene expression data set for each sample;
      • f) normalizing and standardizing said data set of step (e);
      • g) constructing a calibration model for classification, preferably using the statistical techniques Partial Least Squares Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA);
      • h) performing JackKnife analysis and identifying those oligonucleotide probes which are required for classification of said disease and normal samples into their respective groups.
  • Preferably a model for classification purposes is generated by using the data relating to the probes identified according to the above described method. Preferably the sample is as described previously. Preferably the oligonucleotides which are immobilized in step (a) are randomly selected as described below or are the probes as described hereinbefore. Such oligonucleotides may be of considerable length, e.g. if using CDNA (which is encompassed within the scope of the term “oligonucleotide”). The identification of such CDNA molecules as useful probes allows the development of shorter oligonucleotides which reflect the specificity of the cDNA molecules but are easier to manufacture and manipulate.
  • The above described model may then be used to generate and analyse data of test samples and thus may be used for the diagnostic methods of the invention. In such methods the data generated from the test sample provides the gene expression data set and this is normalized and standardized as described above. This is then fitted to the calibration model described above to provide classification.
  • The method described herein can also be used to simultaneously select informative probes for several related and unrelated diseases or conditions. Depending upon which diseases or conditions have been included in the calibration or training set, informative probes can be selected for the said diseases or conditions. The informative probes selected for one disease or condition may or may not be similar to the informative probes selected for another disease or condition of interest. It is the pattern with which the selected genes are expressed in relation to each other during a disease, condition, or stage thereof, that determines whether or not they are informative for the disease, condition or stage thereof.
  • In other words, informative genes are selected based on how their expression correlates with the expression of other selected informative genes under the influence of responses generated by the disease, condition or stage thereof under investigation. In examples 1 and 2 provided hereinafter, 139 informative probes were selected for breast cancer diagnosis and 182 probes were selected for Alzheimer's disease diagnosis by training the gene expression data set of genes representing 1435 or 758 randomly picked cDNA clones for breast cancer/non breast cancer samples, or Alzheimer/non-Alzheimer samples, respectively. Among the probes selected for breast cancer and Alzheimer, about 10 probes were informative both for breast cancer and Alzheimer disease diagnosis.
  • For the purpose of isolating informative probes or identifying several related and unrelated diseases, conditions and stages thereof simultaneously, the gene expression data set must contain the information on how genes are expressed when the subject has a particular disease, condition or stage thereof under investigation. The data set is generated from a set of healthy or diseased samples, where a particular sample may contain the information of only one disease, condition or stages thereof or may also contain information about multiple diseases, conditions or stages thereof. For example, if the isolation of informative probes for Alzheimer disease, breast cancer and diabetes is sought, whole blood samples can be obtained from an Alzheimer patient who has breast cancer and diabetes. Hence, the method also teaches an efficient experimental design to reduce the number of samples required for isolating informative probes by selecting samples representing more than one disease, condition or stage thereof.
  • As mentioned previously, in view of the high information content of most transcripts, the identification and selection of informative probes for use in diagnosing, monitoring or identifying a particular disease, condition or stage thereof may be dramatically simplified. Thus the pool of genes from which a selection may be made to identify informative probes may be radically reduced.
  • Unlike, in prior art technologies where informative probes are selected from a population of thousands of genes that are being expressed in a cell, like in microarray, in the method described herein, the informative probes are selected from a limited number of randomly obtained genes. For example, from a population of 1435 cDNA clones, randomly picked from a human whole blood cDNA library, we were able to select 139 informative probes for breast cancer diagnosis (see Example 1 and Table 2).
  • Thus in a preferred aspect of the above mentioned method of identifying probes useful for diagnosing or identifying or monitoring a disease or condition or stage thereof in an organism, said set of oligonucleotides which are immobilized in step (a) are randomly selected from a larger set of oligonucleotides, e.g. from a cDNA library or other oligonucleotide pool, which may be, but is preferably not selected from the set provided herein. Preferably said larger set comprises oligonucleotides which correspond to moderately or highly expressed genes. Thus preferably in methods of the invention, the set of oligonucleotides according to the invention are replaced with a set of oligonucleotides which are randomly selected, e.g. from commercially available oligonucleotide or cDNA libraries.
  • As referred to herein “random” refers to selection which is not biased based on the extent of information carried by the transcripts in relation to the disease, condition or organism under study, ie. without bias towards their likely utility as informative probes. Whilst a random selection may be made from a pool of transcripts (or related products) which have been biased, e.g. to highly or moderately expressed transcripts, preferably random selection is made from a pool of transcripts not biased or selected by a sequence-based criterion. The larger set may therefore contain oligonucleotides corresponding to highly and moderately expressed genes, or alternatively, may be enriched for those corresponding to the highly and moderately expressed genes.
  • Random selection from highly and moderately expressed genes can be achieved in a wide variety of ways. A strategy used in this work, but not limiting in itself involves randomly picking a significant number of CDNA clones from a cDNA library constructed from a biological specimen under investigation. Since, in a cDNA library, the cDNA clones corresponding to transcripts present in high or moderate amount are more frequently present than transcripts corresponding to CDNA present in low amount, the former will tend to be picked up more frequently than the latter. A pool of cDNA enriched for those corresponding to highly and moderately expressed genes can be isolated by this approach.
  • To identify genes that are expressed in high or moderate amount among the isolated population for use in methods of the invention, the information about the relative level of their transcripts in samples of interest can be generated using several prior art techniques. Both non-sequence based methods, such as differential display or RNA fingerprinting, and sequence-based methods such as microarrays or macroarrays can be used for the purpose. Alternatively, specific primer sequences for highly and moderately expressed genes can be designed and methods such as quantitative RT-PCR can be used to determine the levels of highly and moderately expressed genes. Hence, a skilled practitioner may use a variety of techniques which are known in the art for determining the relative level of MRNA in a biological sample.
  • Especially preferably the sample for the isolation of MRNA in the above described method is as described previously and is preferably not from the site of disease and the cells in said sample are not disease cells and have not contacted disease cells.
  • The following examples are given by way of illustration only in-which the Figures referred to are as follows:
  • FIG. 1 shows the effect of Direct Standardization (DS) on the Alzheimer data measured in two different series of experiments in which AD denotes Alzheimer's samples and A,B are non-Alzheimer's samples. The samples in both series have been labelled systematically as (xx 7/xx8), whereas the corrected samples from series 8 (in b, c, d) have been labelled as (xx_c), thus, for example, AD2-7 denotes Alzheimer disease sample number 2 in experiment series 7. The circled spots represent the samples chosen as the transfer samples. The connecting lines in figures b,c,d show the proximity of the replicated samples after applying DS. The dashed lines in figures a,c,d represent the decision boundary separating the classes. These lines have not been drawn on the basis of any statistical criteria, but serve the purpose of visually separating the classes. All the four figures show scores plot (PC1-PC2) from PCA analysis based on (a) non-standardized data, (b) scores plot after direct standardization using 3 transfer samples, (c) scores plot after direct standardization using 4 transfer sample, (d) scores plot after direct standardization using 8 transfer samples;
  • FIG. 2 shows the projection of normal (including benign) and breast cancer samples onto a classification model generated by PLSR-DA using the data of 44 informative genes, in which PC is the principal components and N and C are normal and breast cancer samples, respectively;
  • FIG. 3 shows the projection of individuals with and without Alzheimer's disease onto a classification model generated by PLSR-DA using 182 informative genes;
  • FIGS. 4, 6 and 8 show projection plots as FIG. 2 in which the classification model is generated using 719, 111 and 345 cDNAs, respectively, wherein PC is the principal components, N denotes normal and B denotes breast cancer samples;
  • FIGS. 5, 7 and 9 show prediction plots based on 3 principal components using the data of 719, 111 and 345 cDNAs, respectively;
  • FIG. 10 shows a projection plot as FIG. 3 in which the classification model is generated using 520 cDNAs; and
  • FIG. 11 is the prediction plot corresponding to FIG. 10.
  • EXAMPLE 1 Diagnosis of Breast Cancer
  • Methods
  • Whole blood was obtained from the arms of breast cancer patients and patients with benign tumours (Ullevål and Haukland hospitals in Norway). All of the patients with breast cancer had a malignant tumour of the breast (disease samples). Healthy blood was collected from the above two hospitals, or collected at a Health station at Ås, Norway or at DiaGenic AS, Norway, from the arms of female donors with no reported signs of breast cancer. The blood from healthy individuals or with benign tumours comprise the normal samples. The blood was either collected in tubes containing EDTA and stored immediately at −80° C. or was collected in PAXgene tubes and stored for 12-24 hours at room temperature before finally storing them at −80° C. before use. Further details of the breast cancer and benign tumour patients from which blood was taken is provided in Table 5. mRNA was isolated from the blood of the 29 breast cancer patients and 46 normal donors and used to prepare labelled probes by reverse transcribing in the presence of α33P-dATP. The first strand cDNA of the normal and diseased samples was bound, separately to 1435 cDNA clones immobilized on a solid support (nylon membrane). These cDNA clones were randomly picked, without any prior knowledge of their gene sequences, from a cDNA library constructed using whole blood of 550 healthy individuals (Clontech, Palo Alto, USA). These methods were conducted as follows.
  • For amplification of inserts, bacterial clones were grown in microtiter plates containing 150 μl LB with 50 μg/ml carbenicillin, and incubated overnight with agitation at 37° C. To lyse the cells, 5 μl of each culture were diluted with 50 μl H2O and incubated for 12 min. at 95° C. Of this mixture, 2 μl were subjected to a PCR reaction using 20 pmoles of M13 forward and reverse primer in presence of 1.5 mM MgCl2. PCR reactions were performed with the following cycling protocol: 4 min. at 95° C., followed by 25 cycles of 1 min. at 94° C., 1 min. at 60° C. and 3 min. at 72° C. either in a RoboCyclere® Temperature Cycler (Stratagene, La Jolla, USA) or DNA Engine Dyad Peltier Thermal Cycler (MJ Research Inc., Waltham, USA). The amplified products were denatured by incubating with NaOH (0.2 M, final concentration) for 30 min. and spotted onto Hybond-N+ membranes (Amersham Pharmacia Biotech, Little Chalfont, UK), using MicroGrid II workstation according to the manufacturer's instructions (BioRobotics Ltd, Cambridge England). The immobilized cDNAs were fixed using a UV cross-linker (Hoefer Scientific Instruments, San Francisco, USA).
  • In addition to the 1435 cDNAs, the printed arrays also contained controls for assessing background level, consistency and sensitivity of the assay. These were spotted at multiple positions and included controls such as PCR mix (without any insert); positive and negative controls of SpotReport™ 10 array validation system (Stratagene, La Jolla, USA) and cDNAs corresponding to constitutively expressed genes such as b-actin, g-actin, GAPDH, HOD and cyclophilin. Also, oligonucleotides corresponding to SIX1, b-tubulin, TRP-2, MDM2, Myosin Light C, CD44, Maspin, Laminin, and SRP 19 were included to detect disseminated cancer cells.
  • The total RNA from blood collected in EDTA tubes was purified using Trizol LS Reagent protocol (Invitrogen/Life Technologies). From blood contained in PAXgene tubes, the total RNA was purified according to the supplier's instructions (PreAnalytix, Hombrechtikon, Switzerland). Contaminating DNA was removed from the isolated RNA by DNAase I treatment using DNA-free kit (Ambion, Inc. Austin, USA). RNA quality was determined visually by inspecting the integrity of 28S and 18S ribosomal bands following agarose gel electrophoresis. The concentration and purity of extracted RNA was determined by measuring the absorbance at 260 nm and 280 nm. mRNA was isolated from the total RNA using Dynabeads as per the supplier's instructions (Dynal AS, Oslo, Norway).
  • Labelling and hybridization experiments were performed in batches. The number of samples assayed in each batch varied from six to nine. In the case of samples that were assayed more than once (replicates), aliquots derived from the same mRNA pool were used for probe synthesis. For probe synthesis, aliquots of MRNA corresponding to 4-5 μg of total RNA were mixed together with oligodT25NV (0.5 μg/ml) and mRNA spikes of SpotReport™10 array validation system (10 pg; Spike 2, 1 pg), heated to 70° C. to remove secondary structures, and then chilled on ice. Probes were prepared in 35 μl reaction mixes by reverse transcription in the presence of 50 μCi [(α33p] DATP, 3.5 μM DATP, 0.6 mM each of dCTP, dTTP, dGTP, 200 units of SuperScript reverse transcriptase (Invitrogen, LifeTechnologies) and 0.1 M DTT, labelling for 1.5 hr at 42° C. Following synthesis, the enzyme was deactivated for 10 min. at 70° C. and mRNA removed by incubating the reaction mix for 20 min. at 37° C. in 4 units of Ribo H (Promega, Madison USA). Unincorporated nucleotides were removed using ProbeQuant G 50 Columns (Amersham Biosciences, Piscataway, USA).
  • Prior to hybridization, the membranes were equilibrated in 4×SSC for 2 hr at room temperature and prehybridized overnight at 65° C. in 10 ml prehybridisation solution (4×SSC, 0.1 M NaH2PO4, 1 mM EDTA, 8% dextran sulphate, 10× denhardt's solution, 1% SDS). Freshly prepared probes were added to 5 ml of the same prehybridisation solution, and hybridization continued overnight at 65° C. The membranes were washed at 65° C. at increasing stringency (2×30 min. each in 2×SSC, 0.1% SDS; 1×SSC, 0.1% SDS; 0.1×SSC, 0.1% SDS) to remove unspecific signals.
  • The amount of labelled first strand cDNA binding to each spot was assessed and quantified using a Phospholmager to generate a gene expression data set. The data was generated using Phoretix software version 3 (Non Linear Dynamics, England). Background subtraction was performed on the generated data by subtracting the median of the line of pixels around each spot outline from the total intensity obtained from the respective spots.
  • The background-subtracted data was then normalized and transformed by selecting out 50 lowest and 50 maximum signals from each membrane. This step was to exclude genes that were expressed with a high degree of variance. Since the genes varied from membrane to membrane, the expression data from 497 genes were removed from the data set. The values for the remaining 938 genes were then normalised by using different approaches such as external controls, dividing each spot by the median intensity of the observed signal in the respective membrane, range normalizing the data from each membrane, and then log transforming the data obtained.
  • The processed data obtained above was then used to isolate the informative probes by:
  • a) keeping one unique sample (including all repetitions of the selected sample) out per cross validation segment;
  • b) building a calibration model (cross validated) on the remaining samples using PLSR-DA;
  • c) selecting the set of significant genes for the model in step b using the Jackknife criterion;
  • d) repeating steps a), b) and a) until all the unique samples were kept out once (hence, in all 75 different calibration models were built (after repeating step b) 75 times), resulting in 75 different sets of significant probes (after repeating step c) 75 times));
  • e) selecting significant variables using the frequency of occurrence criterion amongst the 75 different sets of significant probes.
  • The selected informative probes based on occurrence criterion were used to construct a classification model. The result of the classification model based on probes appearing in at least 90% of the generated sets after the step of isolating informative probes as described above is shown in FIG. 2 in which it is seen that the expression pattern of these genes was able to classify most women with breast cancer and women with no breast cancer into distinct groups. In this figure PC1 and PC2 indicate the two principal components statistically derived from the data which best define the systemic variability present in the data. This allows each sample, and the data from each of the informative probes to which the sample's labelled first strand cDNA was bound, to be represented on the classification model as a single point which is a projection of the sample onto the principal components—the score plot.
  • The ability of the generated model, based on isolated informative probes, to predict future samples was determined by the double cross-validation approach. The performance of the diagnostic test for breast cancer based on the occurrence criterion is presented in Table 6.
  • Correct prediction of most breast cancer cells was achieved. These included all three samples obtained from women with ductal carcinoma in situ (DCIS), 11/15 samples obtained from women with stage I breast cancer, all five samples obtained from women with stage II breast cancer, and one of two samples obtained from women with stage III breast cancer. Interestingly, two correctly predicted stage I samples were obtained from women having a tumour size of <5 mm in diameter.
  • The model also correctly predicted the class of most non-cancer samples (41/46), including those that were obtained from women with non-cancerous breast abnormalities.
  • Confirmation that the gene transcripts are not from cells which are disseminated disease cells has been confirmed by several lines of evidences. Firstly, the informative genes were expressed constitutively at high or moderate levels in blood cells of women irrespective of whether they had cancer or not. Secondly, in the assay described in this Example, in order to identify transcripts, at least 720 disseminated cells in blood samples would be required. Since, the average number of disseminated cells present in blood during different stages of breast cancer is much lower (organ confined breast cancer, 0.8 cells per ml; invasive breast cancer spread to lymph nodes only, 2.4 cells per ml; and metastatic breast cancer, 6 cells per ml; SD>100%) (29), we believe that the signals being detected originated from peripheral blood cells and could not have originated from disseminated cells. Thirdly, we were not able to detect any signal from the eight cancer markers known to have elevated expression in malignant cancer cells, including cancer cells that are disseminated in the blood.
  • EXAMPLE 2 Diagnosis of Alzheimer's Disease
  • Similar experiments were conducted with samples from Alzheimer's patients. In this method 7 patients diagnosed with Alzheimer's Disease at the Memory Clinic at Ullevål University Hospital were used in the trial. The patients were confirmed as having Alzheimer's disease based on the following criteria:
    • A standardized interview with a care-giver using IQCODE, an ADL scale and a scale measuring behaviour of the patient (Green scale).
    • Neuropsychological evaluation using MMSE, Clock drawing test, Trailmaking test A and B (TMT A and B), Kendrick object learning test (visual memory test), part of the Wechsler battery and Benton test.
    • A psychiatric evaluation using scales for detection of depression, MADRS for interviewing the patient and Cornell scale for interviewing the care-giver.
    • A physical examination.
    • Laboratory tests of blood samples to rule out other diseases.
    • CT scan of the brain.
    • SPECT of the brain.
  • The mean age of the patients was 72.3 with an age range of 69-76. The mean MMSE score was 22.0 (the maximum score attainable being 30).
  • Six age-matched individuals without diagnosed Alzheimer's disease were used as a control. All had been tested with MMSE and had a minimum score of 28 (mean: 28.4). The mean age of the normal control group was 73.0 and the age range 66-81. A sample from a 16-year old individual, with a consequent minimal chance of having Alzheimer's disease, was also included as an additional control.
  • Using the methods described above (except that hybridization to 758 rather than 1435 cDNA clones was performed), informative probes were selected based on occurrence criterion and used to construct a classification model. The results of the classification model based on probes appearing at least once in the generated sets after the method to isolate informative probes as described above is shown in FIG. 3 in which it will be seen that the expression pattern of these genes was able to classify individuals with or without Alzheimer's disease into distinct groups. In this Figure PC1 and PC2 indicate the 2 principal components statistically derived from the data which define the systematic variability present in the data. This allows each sample, and the data from each of the informative probes to which the samples' cDNA was bound, to be represented on the classification model as a single point which is a projection of the sample onto the principal components—the score plot.
  • The ability of the generated model, based on isolated informative probes, to predict future samples was determined by the double cross-validation. The performance of the diagnostic test for Alzheimer's disease is presented in Table 7.
  • Appendix A
  • Partial Least Squares regression (PLSR)
  • Let a multivariate regression model be defined as:
    Y=XB+F
    where
    • X a N×P matrix with N predictor variables (genes);
    • Y (N×J) being the 3 predicted variables. In our case Y represents a matrix containing dummy variables;
    • B is a matrix of regression coefficients; and
    • F is a N×J matrix of residuals.
  • The structure of the PLSR model can be written as:
    X=TP T +E A, and
    Y=TQ T +F A, where
    where
    • T (N×A) is a matrix of score vectors which are linear combinations of the x-variables;
    • P (P×A) is a matrix with the x-loading vectors pa as columns;
    • Q (J×A) is a matrix with the y-loading vectors qa as columns;
    • Ea (N×P) is the matrix for X after A factors; and
    • Fa (N×T) is the matrix for Y after A factors.
  • The criterion in PLSR is to maximize the explained covariance of [X, Y]. This is achieved by the loading weights vector wa+1, which is the first eigenvector of Ea TFaFa TEa (Ea and Fa are the deflated X and Y after a factors or PLS components).
  • The regression coefficients are given by:
    B=W(P T W)−1 Q T
  • A PLSR model with full rank, i.e. maximum number of components, is equivalent to the MLR solutions. Further details on PLSR can be found in Marteus & Naes, 1989, Multivariate Calibration, John Wiley & Sons, Inc., USA and Kowalski & Seasholtz, 1991, supra.
  • EXAMPLE 3 Validation of Example 1, Diagnosis of Breast Cancer
  • The results in Example 1 were validated by using the informative probes identified in Example 1 on new beast cancer and control samples.
  • Methods
  • The methods, essentially as described in Example 1, were used. Blood was taken from patients as described in Table 8. However, blood was collected in PAXgene tubes and the first strand labelled cDNAs were hybridized to 719 cDNAs spotted on nylon-membranes along with other controls as described in Example 1. After background subtraction using control spots, the data of each membrane was normalized using the inter quantile range. The data was analysed as described in Example 1 and the model validated by cross validation.
  • The 719 cDNAs which were spotted are a subset of the cDNAs spotted in Example 1 and include 111 cDNAs described in Table 2 and which were found to be informative in Example 1.
  • Results
  • The results are shown in FIGS. 4 to 9. FIGS. 4, 6 and 8 are projection plots similar to FIG. 2 and show the projection of normal and breast cancer patients' samples onto a classification model generated using all 719 cDNA. FIG. 6 is similar but uses a classification model generated with the 111 probes common to Example 1. FIG. 8 uses the 345 sequences of the 719 for which sequence information is provided herein. In each case classification of normal and breast cancer groups was possible. FIGS. 5, 7 and 9 show prediction plots which reflect the ability of the generated models to correctly diagnose breast cancer. In the 3 prediction plots shown, the disease samples appear on the x axis at +1 and the non-disease samples appear at −1. The y axis represents the predicted class membership. During prediction, if the prediction is correct, disease samples should fall above zero and non-disease samples should fall below zero. In each case almost all samples are correctly predicted.
  • EXAMPLE 4 Validation of Example 2, Diagnosis of Alzheimers
  • The results in Example 2 were validated by using the informative probes identified in Example 2 on new Alzheimer's patient samples.
  • Methods
  • The methods, essentially as described in Example 2, were used. Twelve female patients diagnosed with Alzheimer's disease at the Memory Clinic at Ullevål University Hospital who were confirmed as having Alzheimer's disease based on the criteria of Example 2 were used in the trial. The mean age of the patients was 72.3 with an age range of 66-83. The mean MMSE score was 22.0 (the maximum score attainable being 30).
  • Sixteen age-matched female individuals without diagnosed Alzheimer's disease were used as the normal control group. All had been tested with MMSE and had a minimum score of 29. The mean age of the normal control group was 74.0 and the age range 66-86.
  • After transfer of the blood to PAXgene tubes, total mRNA was isolated from the blood of the Alzheimer's disease and from the control group donors according to the manufacturers's instructions (PreAnalytiX, Hombrechtikon, Switzerland). The isolated mRNA was labelled during reverse transcription in the presence of α33P-dATP, yielding a labelled first strand CDNA. Hybridization was performed as described previously onto 730 CDNA clones picked from a cDNA library from whole blood of 550 healthy individuals without knowledge of the gene sequence of the random CDNA clones.
  • Results
  • The results are shown in FIGS. 10 and 11. FIG. 10 is a projection plot generated using 520 probes which have been sequenced. FIG. 11 is a prediction plot and shows correct prediction of almost all samples.
    TABLE 1a
    List of probes informative for disease diagnosis
    Sequence No. of
    Clone ID ID nucleotides
    1 I-01
    2 I-02
    3 I-13
    4 I-21
    5 I-24 308 373
    6 I-28 310 564
    7 I-30 1180  622
    8 I-34 313 554
    9 I-37
    10 I-42
    11 I-52
    12 I-54 1181  155
    13 I-58 326 654
    14 I-71
    15 I-72
    16 I-86
    17 I-95
    18 II-03 361 622
    19 II-05 363 628
    20 II-06 364 528
    21 II-10 368 329
    22 II-24 381 534
    23 II-25 382 444
    24 II-26 383 566
    26 II-33 390 523
    26 II-34 391 566
    27 II-41 397 534
    28 II-42 398 612
    29 II-47
    30 II-57 411 505
    31 II-61 415 596
    32 II-69 423 387
    33 II-70 424 420
    34 II-75 429 535
    35 II-83
    36 II-84 438 577
    37 II-87 441 552
    38 II-88 442 606
    39 II-90
    40 II-94 448 329
    41 III-02 453 747
    42 III-05
    43 III-06 458 682
    44 III-08 460 536
    45 III-10
    46 III-13 464 615
    47 III-15
    48 III-17
    49 III-20 1183  479
    50 III-23 473 694
    51 III-26 476 476
    52 III-35 485 551
    53 III-39 487 224
    54 III-40 488 349
    55 III-43 490 382
    56 III-44 491 382
    57 III-53 500 390
    58 III-56 503 109
    59 III-57 504 374
    60 III-60
    61 III-60
    62 III-61 507 521
    63 III-63 509 575
    64 III-68
    65 III-74 518 502
    66 III-80 523 585
    67 III-82
    88 III-85 526 516
    69 III-89 530 660
    70 III-92
    71 III-96
    72 IV-14 684 545
    73 IV-15 1185  628
    74 IV-23
    76 IV-26 1186  494
    75 IV-26
    77 IV-29
    78 IV-31 687 268
    79 IV-32 688 569
    80 IV-34
    81 IV-35
    82 IV-41
    88 IV-45
    84 IV-53  61 362
    85 IV-62
    86 IV-69 192 286
    87 IV-80 701 579
    88 IV-82
    89 IV-93
    90 IX-10 736 641
    91 IX-12
    92 IX-38 757 583
    93 IX-39 758 424
    94 IX-42
    95 IX-48 764 626
    96 IX-77 785 556
    97 V-01
    98 V-02
    99 V-03 706 496
    100 V-04 707 397
    101 V-06
    102 V-07 708 293
    103 V-11 1188  599
    104 V-12 711 498
    105 V-15
    106 V-17
    107 V-21
    108 V-25
    109 V-32
    110 V-35
    111 V-39
    112 V-42
    113 V-43
    114 V-47
    115 V-49
    116 V-52
    117 V-54
    118 V-55  77 412
    119 V-58
    120 V-59
    121 V-65
    122 V-68
    123 V-71
    124 V-75
    125 V-79
    126 V-80 726 260
    127 V-90
    128 V-91
    129 V-92
    130 V-94
    131 VI-02
    132 VI-04 865 122
    133 VI-07  93 405
    134 VI-09
    135 VI-10
    136 VI-12 869 667
    137 VI-14 871 642
    138 VI-17
    139 VI-20 876 115
    140 VI-21
    141 VI-23 878 634
    142 VI-34
    143 VI-41
    144 VI-42
    145 VI-43
    146 VI-44
    147 VI-48 891 626
    148 VI-49
    149 VI-50 893 585
    150 VI-52
    151 VI-53 895 560
    152 VI-55 897 509
    153 VI-65
    154 VI-70 108 550
    155 VI-71
    156 VI-72
    157 VI-74 905 655
    158 VI-76 907 582
    159 VI-78
    160 VI-79
    161 VI-84
    162 VI-87 911 595
    163 VI-88 912 651
    164 VI-90
    165 VI-93
    166 VI-95 915 230
    167 VI-96
    168 VII-02
    169 VII-03 1196  412
    170 VII-06
    171 VII-10
    172 VII-11
    173 VII-15 1199  439
    174 VII-19 562 580
    175 VII-21 564 671
    176 VII-25
    177 VII-32 571 457
    178 VII-36 575 209
    179 VII-39 576 541
    180 VII-42 579 502
    181 VII-43 580 316
    182 VII-46 583 631
    183 VII-47 1200  526
    184 VII-48 1201  613
    185 VII-59 593 565
    186 VII-60
    187 VII-63 595  98
    188 VII-66 598 362
    189 VII-67
    190 VII-72 600 595
    191 VII-73 601 522
    192 VII-75
    193 VII-76 603 624
    194 VII-77 1203  692
    195 VII-80 605 338
    196 VII-81 606 556
    197 VII-83
    198 VII-86
    199 VII-88
    200 VII-90 612 576
    201 VII-91 613 341
    202 VII-93 615 379
    203 VIII-01
    204 VIII-02
    205 VIII-03
    206 VIII-06
    207 VIII-09 618 598
    208 VIII-10
    209 VIII-15
    210 VIII-20 628 419
    211 VIII-22
    212 VIII-26
    213 VIII-28 634 511
    214 VIII-29 635 592
    215 VIII-30 636 572
    216 VIII-31 637 482
    217 VIII-32 638 545
    218 VIII-33 639 624
    219 VIII-39
    220 VIII-41 645 649
    221 VIII-42 646 600
    222 VIII-44
    223 VIII-46 649 425
    224 VIII-48 651 251
    225 VIII-58
    226 VIII-64 663 627
    227 VIII-65
    228 VIII-66 665 345
    229 VIII-67 666 252
    230 VIII-74
    231 VIII-76 675 591
    232 VIII-78
    233 VIII-82
    234 VIII-83
    235 VIII-85
    236 VIII-87
    237 VIII-91
    238 VIII-92
    239 VIII-93
    240 VIII-95
    241 X-04
    242 X-07 808 641
    243 X-15 814 132
    244 X-29 821 370
    245 X-34
    246 X-35
    247 X-54 837 603
    248 X-56 839  71
    249 X-68 1207  642
    250 X-72 849 622
    251 X-94 860 501
    252 XI-07
    253 XI-13 1209  620
    254 XI-50
    255 XI-58
    256 XI-81 1212  374
    257 XII-07 1213  567
    258 XII-17
    259 XII-26
    260 XII-27
    261 XII-31
    262 XII-32
    263 XII-35 1214  620
    264 XII-36
    265 XII-52
    266 XII-59 1216  484
    267 XIII-19 1219  559
    268 XIII-29
    269 XIII-52 939 513
    270 XIII-62
    271 XIII-84
    272 XIII-92 1221  741
    273 XV-18
    274 XV-22 1099  561
    275 XV-24
    276 XV-25 1224  485
    277 XV-28
    278 XV-34
    279 XV-42
    280 XV-68
    281 XV-74
    282 XV-93
    283 XV-94
    284 XV-96
    285 XVI-36 1056  435
    286 XVI-53 1230  741
    287 XVI-59
    288 XVI-66 1074  689
    289 XVI-76 1083  198
    290 XVI-77 1084  198
    291 XVII-07
    292 XVII-08
    293 XVII-17
    294 XVII-28
    295 XVII-29
    296 XVII-31 1139  503
    297 XVII-36
    298 XVII-39
    299 XVII-40 1231  203
    300 XVII-48 1148  587
    301 XVII-55
    302 XVII-58
    303 XVII-67
    304 XVII-72
    305 XVII-76 1160  650
    306 XVII-82
    307 XVII-87 1165  502
    308 XVII-95 1172  648
  • TABLE 1b
    List of sequences of probes informative for disease diagnosis
    Please see the note at the bottom
    Clone ID Sequence ID
    I-09 298
    I-10 299
    I-13 1331
    I-14 1178
    I-15 300
    I-16 301
    I-17 302
    I-19 304
    I-20 305
    I-22 306
    I-23 307
    I-24 308
    I-25 309
    I-28 310
    I-30 1180
    I-31 311
    I-32 312
    I-34 313
    I-37 1440
    I-38 314
    I-39 315
    I-40 316
    I-42 1332
    I-44 317
    I-45 318
    I-46 319
    I-47 320
    I-48 321
    I-49 322
    I-53 323
    I-54 1181
    I-56 324
    I-57 325
    I-58 326
    I-60 327
    I-64 328
    I-67 330
    I-69 331
    I-71 332
    I-72 333
    I-73 334
    I-77 335
    I-79 336
    I-80 337
    I-81 338
    I-82 339
    I-86 1336
    I-88 1182
    I-95 1337
    II-02 360
    II-03 361
    II-05 363
    II-06 364
    II-07 365
    II-08 366
    II-09 367
    II-10 368
    II-11 369
    II-12 370
    II-13 371
    II-14 372
    II-15 373
    II-16 374
    II-17 375
    II-18 376
    II-20 377
    II-21 378
    II-22 379
    II-23 380
    II-24 381
    II-25 382
    II-26 383
    II-27 384
    II-28 385
    II-29 386
    II-30 387
    II-31 388
    II-32 389
    II-33 390
    II-34 391
    II-35 392
    II-37 393
    II-38 394
    II-39 395
    II-40 396
    II-41 397
    II-42 398
    II-43 399
    II-44 400
    II-46 401
    II-47 402
    II-48 403
    II-49 404
    II-50 405
    II-52 406
    II-53 407
    II-54 408
    II-55 409
    II-56 410
    II-57 411
    II-58 412
    II-59 413
    II-60 414
    II-61 415
    II-62 416
    II-63 417
    II-64 418
    II-65 419
    II-66 420
    II-67 421
    II-68 422
    II-69 423
    II-70 424
    II-71 425
    II-72 426
    II-73 427
    II-74 428
    II-75 429
    II-76 430
    II-77 431
    II-78 432
    II-79 433
    II-80 434
    II-81 435
    II-82 436
    II-83 437
    II-84 438
    II-85 439
    II-86 440
    II-87 441
    II-88 442
    II-89 443
    II-90 444
    II-91 445
    II-92 446
    II-93 447
    II-94 448
    II-95 449
    II-96 450
    III-01 452
    III-02 453
    III-03 454
    III-04 455
    III-05 457
    III-06 458
    III-07 459
    III-08 460
    III-09 461
    III-11 462
    III-12 463
    III-13 464
    III-14 465
    III-15 466
    III-16 467
    III-17 468
    III-18 469
    III-19 470
    III-20 1183
    III-21 471
    III-22 472
    III-23 473
    III-24 474
    III-25 475
    III-26 476
    III-27 477
    III-28 478
    III-29 479
    III-31 481
    III-32 482
    III-33 483
    III-34 484
    III-35 485
    III-37 486
    III-39 487
    III-40 488
    III-42 489
    III-43 490
    III-44 491
    III-45 492
    III-46 493
    III-47 494
    III-48 495
    III-49 496
    III-50 497
    III-51 498
    III-52 499
    III-53 500
    III-54 501
    III-55 502
    III-56 503
    III-57 504
    III-58 505
    III-59 506
    III-61 507
    III-62 508
    III-63 509
    III-64 510
    III-65 511
    III-66 512
    III-67 513
    III-69 514
    III-70 515
    III-71 516
    III-73 517
    III-74 518
    III-76 519
    III-77 520
    III-78 521
    III-79 522
    III-80 523
    III-81 524
    III-82 1348
    III-83 525
    III-85 526
    III-86 527
    III-87 528
    III-88 529
    III-89 530
    III-91 531
    III-92 1351
    III-93 532
    III-94 533
    III-95 534
    III-96 535
    IV-02 681
    IV-04 682
    IV-13 683
    IV-14 684
    IV-15 1185
    IV-17 685
    IV-23 1353
    IV-26 1186
    IV-28 686
    IV-31 687
    IV-32 688
    IV-35 1355
    IV-37 g6
    IV-38 689
    IV-40 690
    IV-42 691
    IV-43 1239
    IV-44 692
    IV-47 693
    IV-53 61
    IV-55 694
    IV-56 695
    IV-61 696
    IV-64 697
    IV-65 698
    IV-69 192
    IV-72 699
    IV-73 700
    IV-80 701
    IV-82 196
    IV-85 702
    IV-93 703
    IV-95 704
    IV-96 705
    IX-10 736
    IX-12 738
    IX-13 739
    IX-24 747
    IX-38 757
    IX-39 758
    IX-48 764
    IX-50 766
    IX-56 768
    IX-62 773
    IX-65 776
    IX-72 782
    IX-77 785
    IX-91 796
    IX-96 801
    V-01 1361
    V-03 706
    V-04 707
    V-07 708
    V-08 709
    V-09 710
    V-11 1188
    V1-16 873
    V1-19 875
    V-12 711
    V-17 1364
    V-18 712
    V-20 713
    V-24 714
    V-25 1365
    V-28 1189
    V-35 1366
    V-37 716
    V-38 1190
    V-39 1109
    V-40 717
    V-41 718
    V-47 1368
    V-48 719
    V-49 1369
    V-55 77
    V-57 720
    V-58 1370
    V-61 721
    V-64 722
    V-65 723
    V-68 1448
    V-71 1495
    V-74 724
    V-75 1372
    V-80 726
    V-81 727
    V-87 728
    V-90 1374
    VI-02 340
    VI-03 341
    VI-04 342
    VI-06 343
    VI-07 344
    VI-08 345
    VI-09 346
    VI-11 347
    VI-12 869
    VI-13 870
    VI-14 871
    VI-16 873
    VI-18 348
    VI-19 349
    VI-20 350
    VI-21 351
    VI-22 352
    VI-23 878
    VI-24 879
    VI-25 353
    VI-26 354
    VI-27 355
    VI-31 356
    VI-32 885
    VI-33 357
    VI-35 358
    VI-39 887
    VI-43 1382
    VI-44 1193
    VI-45 889
    VI-48 359
    VI-49 892
    VI-50 893
    VI-53 895
    VI-55 897
    VI-58 899
    VI-66 903
    VI-67 904
    VI-70 108
    VI-71 1387
    VI-74 905
    VI-75 906
    VI-76 907
    VI-77 110
    VI-79 1389
    VI-80 908
    VI-85 910
    VI-87 911
    VI-88 912
    VI-90 1390
    VI-93 1391
    VI-95 915
    VI-96 1392
    VII-02 547
    VII-03 548
    VII-04 549
    VII-05 550
    VII-06 551
    VII-07 552
    VII-08 553
    VII-09 554
    VII-10 555
    VII-11 556
    VII-12 557
    VII-14 558
    VII-15 559
    VII-17 560
    VII-18 561
    VII-19 562
    VII-20 563
    VII-21 564
    VII-22 565
    VII-23 566
    VII-24 567
    VII-25 1397
    VII-26 250
    VII-27 568
    VII-28 569
    VII-29 570
    VII-32 571
    VII-33 572
    VII-34 573
    VII-35 574
    VII-36 575
    VII-39 576
    VII-40 577
    VII-41 578
    VII-42 579
    VII-43 580
    VII-44 581
    VII-45 582
    VII-46 583
    VII-47 1200
    VII-48 584
    VII-49 585
    VII-50 586
    VII-52 587
    VII-53 588
    VII-54 589
    VII-55 590
    VII-57 591
    VII-58 592
    VII-59 593
    VII-62 594
    VII-63 595
    VII-64 596
    VII-65 597
    VII-66 598
    VII-67 1399
    VII-71 599
    VII-72 600
    VII-73 601
    VII-74 602
    VII-76 603
    VII-77 604
    VII-80 605
    VII-81 606
    VII-82 607
    VII-83 608
    VII-84 609
    VII-86 1453
    VII-87 610
    VII-89 611
    VII-90 612
    VII-91 613
    VII-92 614
    VII-93 615
    VII-94 616
    VII-96 617
    VIII-09 618
    VIII-10 619
    VIII-11 620
    VIII-12 621
    VIII-13 622
    VIII-15 623
    VIII-16 624
    VIII-17 625
    VIII-18 626
    VIII-19 627
    VIII-20 628
    VIII-21 629
    VIII-22 1455
    VIII-23 630
    VIII-24 631
    VIII-25 632
    VIII-26 1456
    VIII-27 633
    VIII-28 634
    VIII-29 635
    VIII-30 636
    VIII-31 637
    VIII-32 638
    VIII-33 639
    VIII-34 640
    VIII-36 641
    VIII-37 642
    VIII-38 643
    VIII-40 644
    VIII-41 645
    VIII-42 646
    VIII-43 647
    VIII-45 648
    VIII-46 649
    VIII-47 650
    VIII-48 651
    VIII-50 652
    VIII-51 653
    VIII-53 654
    VIII-54 655
    VIII-55 656
    VIII-56 657
    VIII-57 658
    VIII-58 659
    VIII-59 660
    VIII-60 661
    VIII-61 662
    VIII-64 663
    VIII-65 664
    VIII-66 665
    VIII-67 666
    VIII-68 667
    VIII-69 668
    VIII-70 669
    VIII-71 670
    VIII-72 671
    VIII-73 672
    VIII-74 673
    VIII-75 674
    VIII-76 675
    VIII-77 676
    VIII-78 677
    VIII-79 678
    VIII-80 679
    X-07 808
    X-15 814
    X-20 817
    X-29 821
    X-34 825
    X-46 833
    X-54 837
    X-56 839
    X-68 1207
    X-72 849
    X-73 1208
    X-94 860
    XI-13 1209
    XI-37 1460
    XI-43 1210
    XI-67 1211
    XI-81 1212
    XII-07 1213
    XII-35 1214
    XII-36 1215
    XII-59 1216
    XII-65 1028
    XII-92 1217
    XIII-03 917
    XIII-04 1218
    XIII-19 1219
    XIII-24 926
    XIII-51 938
    XIII-52 939
    XIII-67 947
    XIII-69 949
    XIII-88 1220
    XIII-92 1221
    XV-22 1099
    XV-24 1101
    XV-25 1224
    XV-42 1108
    XV-62 1226
    XV-64 1118
    XV-84 1125
    XVI-19 1228
    XVI-36 1056
    XVI-53 1230
    XVI-60 1071
    XVI-66 1074
    XVI-74 1081
    XVI-76 1083
    XVI-77 1084
    XVII-31 1139
    XVII-40 1231
    XVII-48 1148
    XVII-76 1160
    XVII-87 1165
    XVII-95 1172

    Note

    Sequences not available for sequence IDs in Table 1, and corresponding sequence Ids in Table 2 and 4.

    298, 301, 305, 307, 312, 317, 318, 319, 320, 332, 333, 334, 336, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 367, 372, 375, 376, 377, 379, 385, 392, 393, 404, 437, 439, 440, 443, 444, 445, 449, 455, 457, 465, 466, 467, 468, 470, 486, 498, 501, 511, 514, 516, 517, 520, 522, 528, 531, 535, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 573, 584, 604, 608,
    # 616, 620, 623, 640, 659, 662, 664, 667, 668, 673, 677, 678, 679, 681, 695, 702, 712, 716, 825, 886, 894, 902, 909, 916, 1101, 1108, 1109, 1177, 1187, 1193, 1204, 1220, 1239, 1255, 1256, 1342, 1347, 1354, 1357, 1362, 1363, 1364, 1373, 1375, 1379, 1403, 1404, 1405, 1406, 1413
  • TABLE 2a
    List of informative probes for diagnosis of breast cancer
    Clone ID Sequence ID
    I-24 308
    I-28 310
    I-30 1180
    I-52
    I-54 1181
    II-41 397
    II-70 424
    II-87 441
    III-06 458
    III-20 1183
    III-40 488
    III-57 504
    III-60
    III-61 507
    III-89 530
    IV-14 684
    IV-15 1185
    IV-26 1186
    IV-32 688
    IV-41
    IV-53 61
    IV-62
    IV-69 192
    IV-80 701
    IV-82 196
    IX-10 736
    IX-12
    IX-38 757
    IX-39 758
    IX-42
    IX-48 764
    IX-77 785
    V-11 1188
    V-32
    V-39
    V-55 77
    V-80 726
    V-94
    VI-07 93
    VI-34
    VI-41
    VI-48 891
    VI-49
    VI-52
    VI-55 897
    VI-65
    VI-70 108
    VI-72
    VI-78
    VI-84
    VII-03 1196
    VII-15 1199
    VII-32 571
    VII-39 576
    VII-47 1200
    VII-48 1201
    VII-60
    VII-73 601
    VII-77 1203
    VII-90 612
    VIII-20 628
    VIII-29 635
    VIII-30 636
    VIII-31 637
    VIII-39
    VIII-44
    VIII-46 649
    VIII-48 651
    VIII-66 865
    VIII-74
    VIII-76 675
    X-04
    X-07 808
    X-15 814
    X-29 821
    X-34
    X-35
    X-54 837
    X-56 839
    X-68 1207
    X-72 849
    X-94 860
    XI-07
    XI-13 1209
    XI-50
    XI-58
    XI-81 1212
    XII-07 1213
    XII-17
    XII-26
    XII-27
    XII-31
    XII-32
    XII-35 1214
    XII-36
    XII-52
    XII-59 1216
    XIII-19 1219
    XIII-29
    XIII-52 939
    XIII-62
    XIII-84
    XIII-92 1221
    XV-18
    XV-22 1099
    XV-24
    XV-25 1224
    XV-28
    XV-34
    XV-42
    XV-68
    XV-74
    XV-93
    XV-94
    XV-96
    XVI-36 1056
    XVI-53 1230
    XVI-59
    XVI-66 1074
    XVI-76 1083
    XVI-77 1084
    XVII-07
    XVII-08
    XVII-17
    XVII-28
    XVII-29
    XVII-31 1139
    XVII-36
    XVII-39
    XVII-40 1231
    XVII-48 1148
    XVII-55
    XVII-58
    XVII-67
    XVII-72
    XVII-76 1160
    XYII-82
    XVII-87 1165
    XVII-95 1172
  • TABLE 2b
    List of sequences of probes informative for breast cancer
    Please see the note at the bottom of Table 1. Some sequences
    are missing.
    Clone ID Sequence ID
    I-13 1331
    I-14 1178
    I-24 308
    I-25 309
    I-28 310
    I-30 1180
    I-37 1440
    I-42 1332
    I-48 321
    I-54 1181
    I-60 327
    I-72 1335
    I-81 338
    I-82 339
    I-86 1336
    I-88 1182
    I-95 1337
    II-02 360
    II-03 361
    II-06 364
    II-07 365
    II-10 368
    II-21 378
    II-23 380
    II-24 381
    II-25 382
    II-27 384
    II-33 390
    II-34 391
    II-41 397
    II-42 398
    II-46 401
    II-47 1338
    II-48 403
    II-52 406
    II-57 411
    II-58 412
    II-59 413
    II-60 414
    II-61 415
    II-62 416
    II-64 418
    II-67 421
    II-69 423
    II-70 424
    II-74 428
    II-80 434
    II-82 436
    II-84 438
    II-87 441
    II-88 442
    II-96 450
    III-01 452
    III-02 453
    III-06 458
    III-08 460
    III-12 463
    III-13 464
    III-17 1344
    III-18 469
    III-20 1183
    III-21 471
    III-23 473
    III-24 474
    III-25 475
    III-26 476
    III-27 477
    III-28 478
    III-29 479
    III-32 482
    III-33 483
    III-35 485
    III-39 487
    III-40 488
    III-42 489
    III-45 492
    III-46 493
    III-47 494
    III-48 495
    III-56 503
    III-57 504
    III-58 505
    III-59 506
    III-61 507
    III-62 508
    III-63 509
    III-64 510
    III-66 512
    III-67 513
    III-70 515
    III-74 518
    III-75 519
    III-78 521
    III-80 523
    III-81 524
    III-82 1348
    III-85 526
    III-86 527
    III-88 529
    III-89 530
    III-92 1351
    III-93 532
    III-95 534
    III-96 1352
    IV-04 682
    IV-13 683
    IV-14 684
    IV-15 1185
    IV-17 685
    IV-23 1353
    IV-26 1186
    IV-31 687
    IV-32 688
    IV-35 1355
    IV-37 g6
    IV-38 689
    IV-42 691
    IV-43 1239
    IV-47 693
    IV-53 61
    IV-61 696
    IV-64 697
    IV-69 192
    IV-72 699
    IV-80 701
    IV-82 196
    IV-85 702
    IV-93 1360
    IV-96 705
    IX-10 736
    IX-12 738
    IX-13 739
    IX-24 747
    IX-38 757
    IX-39 758
    IX-48 764
    IX-50 766
    IX-56 768
    IX-62 773
    IX-65 776
    IX-72 782
    IX-77 785
    IX-91 796
    IX-96 801
    V-01 1361
    V-03 706
    V-04 707
    V-07 708
    V-08 709
    V-11 1188
    V-12 711
    V-17 1364
    V-24 714
    V-25 1365
    V-28 1189
    V-35 1366
    V-38 1190
    V-39 1109
    V-41 718
    V-47 1368
    V-49 1369
    V-55 77
    V-57 720
    V-58 1370
    V-61 721
    V-64 722
    V-65 1371
    V-68 1448
    V-71 1495
    V-74 724
    V-75 1372
    V-80 726
    V-90 1374
    VI-03 864
    VI-04 865
    VI-07 93
    VI-08 867
    VI-09 1378
    VI-12 869
    VI-13 870
    VI-14 871
    VI-16 873
    VI-19 875
    VI-20 876
    VI-21 1380
    VI-23 878
    VI-24 879
    VI-25 1192
    VI-26 881
    VI-32 885
    VI-39 887
    VI-43 1382
    VI-44 1193
    VI-45 889
    VI-48 891
    VI-49 892
    VI-50 893
    VI-53 895
    VI-55 897
    VI-58 899
    VI-66 903
    VI-67 904
    VI-70 108
    VI-71 1387
    VI-74 905
    VI-75 906
    VI-76 907
    VI-77 110
    VI-79 1389
    VI-80 908
    VI-85 910
    VI-87 911
    VI-88 912
    VI-90 1390
    VI-93 1391
    VI-95 915
    VI-96 1392
    VII-02 1195
    VII-03 1196
    VII-06 1394
    VII-08 1197
    VII-09 1198
    VII-10 1395
    VII-11 1396
    VII-15 1199
    VII-17 560
    VII-19 562
    VII-21 564
    VII-22 565
    VII-23 566
    VII-24 567
    VII-25 1397
    VII-26 250
    VII-27 568
    VII-29 570
    VII-32 571
    VII-33 572
    VII-36 575
    VII-39 576
    VII-41 578
    VII-42 579
    VII-43 580
    VII-46 583
    VII-47 1200
    VII-48 1201
    VII-49 585
    VII-54 589
    VII-57 591
    VII-58 592
    VII-59 593
    VII-62 594
    VII-63 1202
    VII-64 596
    VII-66 598
    VII-67 1399
    VII-72 600
    VII-73 601
    VII-77 1203
    VII-80 605
    VII-82 607
    VII-86 1453
    VII-87 610
    VII-90 612
    VII-91 613
    VII-92 614
    VII-93 615
    VII-96 617
    VIII-09 618
    VIII-10 619
    VIII-13 622
    VIII-16 624
    VIII-20 628
    VIII-21 629
    VIII-22 1455
    VIII-23 630
    VIII-24 631
    VIII-25 632
    VIII-26 1456
    VIII-27 633
    VIII-28 634
    VIII-29 635
    VIII-30 636
    VIII-31 637
    VIII-32 638
    VIII-33 639
    VIII-34 1204
    VIII-38 643
    VIII-40 644
    VIII-41 645
    VIII-46 649
    VIII-48 651
    VIII-55 656
    VIII-57 658
    VIII-59 660
    VIII-60 661
    VIII-61 1205
    VIII-64 663
    VIII-66 665
    VIII-73 672
    VIII-74 673
    VIII-76 675
    VIII-80 679
    X-07 808
    X-15 814
    X-20 817
    X-29 821
    X-34 825
    X-46 833
    X-54 837
    X-56 839
    X-68 1207
    X-72 849
    X-73 1208
    X-94 860
    XI-13 1209
    XI-37 1460
    XI-43 1210
    XI-67 1211
    XI-81 1212
    XII-07 1213
    XII-35 1214
    XII-36 1215
    XII-59 1216
    XII-65 1028
    XII-92 1217
    XIII-03 917
    XIII-04 1218
    XIII-19 1219
    XIII-24 926
    XIII-51 938
    XIII-52 939
    XIII-67 947
    XIII-69 949
    XIII-88 1220
    XIII-92 1221
    XV-22 1099
    XV-24 1101
    XV-25 1224
    XV-42 1108
    XV-62 1226
    XV-64 1118
    XV-84 1125
    XVI-19 1228
    XVI-36 1056
    XVI-53 1230
    XVI-60 1071
    XVI-66 1074
    XVI-74 1081
    XVI-76 1083
    XVI-77 1084
    XVII-31 1139
    XVII-40 1231
    XVII-48 1148
    XVII-76 1160
    XVII-87 1165
    XVII-95 1172
  • TABLE 3
    List of informative probes (Clone ID) selected for breast cancer diagnosis based
    on their occurrence criterion during variable selection.
    Occurrence* Clone ID
    100%  XI-8, XVI-66, VIII-66, XVI-59, VII-03, XIII-19, XII-35, X-35, XI-
    50, XII-26, IV-53, XIII-29, XIII-62, I-30, III-06, XV-22, XV-94, VII-
    15, VII-39, IX-39, XVII-39, III-40, VII-32
    90% I-52, VI-65, VI-34, IV-62, XV-34, XVII-58, V-11, VI-78, XII-36, XIII-
    92, VIII-29, XVI-53, XVI-77, XI-13, XIII-84, IV-14, XII-31, V-80, VII-
    48, XVII-29, XVII-72
    80% III-60, VIII-74, IX-12, X-04, XIII-52, VIII-30, IX-38
    70% VI-49, X-29, VIII-48
    60% IV-82, IX-10, VI-52, X-68, VII-77
    50% IV-15
    40% XV-28, II-70, V-55
    30% XVII-17, XVII-67
    20% XI-58, XVI-36, VIII-39, VIII-44, III-61, IV-69, XV-68, X-72
    10% IX-42, IX-77, X-94, XV-96, XVII-55
     5% XII-59, XVI-76, I-54, XV-18, V-94, X-54, VI-07, VII-47, XVII-
    31, XVII-87, XVII-48
    In at lcast II-41, VI-41, III-57, III-89, VII-73, XV-25, IV-26, X-34, IV-41, VII-
    one modal 90, XV-42, XVII-82, XII-27, VIII-20, I-28, VII-60, VIII-76, III-20, VI-
    84, XI-07, XVII-28, XII-17, XVII-36, XII-52, XVII-76, VIII-46, VI-
    70, XV-74, XV-93, VIII-31, II-87, V-39, VI-55, X-07, X-15, XII-
    07, XVII-07, XVII-08, XVII-95, I-24, IV-32, V-32, VI-48, VI-72, IV-
    80, IX-48, X-56, XV-24, XII-32, XVII-40

    *100% = Genes appearing in all the 75 cross validated models; 90% = Additional genes appearing in at least 68 out of 75 cross validated models; 5% = Additional genes appearing in at least 4 out of 75 cross validated models and so on.
  • TABLE 4a
    List of informative probes for diagnosis of Alzheimer disease
    Clone ID Sequence ID
    I-01
    I-02
    I-13
    I-21
    I-34 313
    I-37
    I-42
    I-58 326
    I-71
    I-72
    I-86
    I-95
    II-03 361
    II-05 363
    II-06 364
    II-10 368
    II-24 381
    II-25 382
    II-26 383
    II-33 390
    II-34 391
    II-42 398
    II-47
    II-57 411
    II-61 415
    II-69 423
    II-75 429
    II-83
    II-84 438
    II-88 442
    II-90
    II-94 448
    III-02 453
    III-05
    III-06 458
    III-08 460
    III-10
    III-13 464
    III-15
    III-17
    III-23 473
    III-26 476
    III-35 485
    III-39 487
    III-43 490
    III-44 491
    III-53 500
    III-56 503
    III-60
    III-63 509
    III-68
    III-74 518
    III-80 523
    III-82
    III-85 526
    III-92
    III-96
    IV-23
    IV-26
    IV-29
    IV-31 687
    IV-34
    IV-35
    IV-45
    IV-80 701
    IV-82
    IV-93
    V-01
    V-02
    V-03 706
    V-04 707
    V-06
    V-07 708
    V-12 711
    V-15
    V-17
    V-21
    V-25
    V-35
    V-42
    V-43
    V-47
    V-49
    V-52
    V-54
    V-58
    V-59
    V-65
    V-68
    V-71
    V-75
    V-79
    V-80 726
    V-90
    V-91
    V-92
    VI-02
    VI-04 865
    VI-09
    VI-10
    VI-12 869
    VI-14 871
    VI-17
    VI-20 876
    VI-21
    VI-23 878
    VI-41
    VI-42
    VI-43
    VI-44
    VI-48 891
    VI-49
    VI-50 893
    VI-53 895
    VI-71
    VI-74 905
    VI-76 907
    VI-78
    VI-79
    VI-87 911
    VI-88 912
    VI-90
    VI-93
    VI-95 915
    VI-96
    VII-02
    VII-03
    VII-06
    VII-10
    VII-11
    VII-19 562
    VII-21 564
    VII-25
    VII-36 575
    VII-42 579
    VII-43 580
    VII-46 583
    VII-59 593
    VII-63 595
    VII-66 598
    VII-67
    VII-72 600
    VII-73 601
    VII-75
    VI-02
    VI-04 866
    VI-09
    VI-10
    VI-12 873
    VI-14 875
    VI-17
    VII-91 613
    VII-93 616
    VIII-01
    VIII-02
    VIII-03
    VIII-06
    VIII-09 618
    VIII-10
    VIII-15
    VIII-22
    VIII-26
    VIII-28 634
    VIII-30 636
    VIII-32 638
    VIII-33 639
    VIII-41 645
    VIII-42 646
    VIII-48 651
    VIII-58
    VIII-64 663
    VIII-65
    VIII-67 666
    VIII-78
    VIII-82
    VIII-83
    VIII-85
    VIII-87
    VIII-91
    VIII-92
    VIII-93
    VIII-95
  • TABLE 4b
    List of sequences of probes informative for Alzheimer disease
    Please see note to Table 1
    Clone ID Sequence ID
    I-09 298
    I-10 299
    I-15 300
    I-16 301
    I-17 302
    I-19 304
    I-20 305
    I-22 306
    I-23 307
    I-24 308
    I-25 309
    I-28 310
    I-31 311
    I-32 312
    I-34 313
    I-38 314
    I-39 315
    I-40 316
    I-44 317
    I-45 318
    I-46 319
    I-47 320
    I-48 321
    I-49 322
    I-53 323
    I-56 324
    I-57 325
    I-58 326
    I-60 327
    I-64 328
    I-67 330
    I-69 331
    I-71 332
    I-72 333
    I-73 334
    I-77 335
    I-79 336
    I-80 337
    I-81 338
    I-82 339
    VI-02 340
    VI-03 341
    VI-04 342
    VI-06 343
    VI-07 344
    VI-08 345
    VI-09 346
    VI-11 347
    VI-18 348
    VI-19 349
    VI-20 350
    VI-21 351
    VI-22 352
    VI-25 353
    VI-26 354
    VI-27 355
    VI-31 356
    VI-33 357
    VI-35 358
    VI-48 359
    II-02 360
    II-03 361
    II-05 363
    II-06 364
    II-07 365
    II-08 366
    II-09 367
    II-10 368
    II-11 369
    II-12 370
    II-13 371
    II-14 372
    II-15 373
    II-16 374
    II-17 375
    II-18 376
    II-20 377
    II-21 378
    II-22 379
    II-23 380
    II-24 381
    II-25 382
    II-26 383
    II-27 384
    II-28 385
    II-29 386
    II-30 387
    II-31 388
    II-32 389
    II-33 390
    II-34 391
    II-35 392
    II-37 393
    II-38 394
    II-39 395
    II-40 396
    II-41 397
    II-42 398
    II-43 399
    II-44 400
    II-46 401
    II-47 402
    II-48 403
    II-49 404
    II-50 405
    II-52 406
    II-53 407
    II-54 408
    II-55 409
    II-56 410
    II-57 411
    II-58 412
    II-59 413
    II-60 414
    II-61 415
    II-62 416
    II-63 417
    II-64 418
    II-65 419
    II-66 420
    II-67 421
    II-68 422
    II-69 423
    II-70 424
    II-71 425
    II-72 426
    II-73 427
    II-74 428
    II-75 429
    II-76 430
    II-77 431
    II-78 432
    II-79 433
    II-80 434
    II-81 435
    II-82 436
    II-83 437
    II-84 438
    II-85 439
    II-86 440
    II-87 441
    II-88 442
    II-89 443
    II-90 444
    II-91 445
    II-92 446
    II-93 447
    II-94 448
    II-95 449
    II-96 450
    III-01 452
    III-02 453
    III-03 454
    III-04 455
    III-05 457
    III-06 458
    III-07 459
    III-08 460
    III-09 461
    III-11 462
    III-12 463
    III-13 464
    III-14 465
    III-15 466
    III-16 467
    III-17 468
    III-18 469
    III-19 470
    III-21 471
    III-22 472
    III-23 473
    III-24 474
    III-25 475
    III-26 476
    III-27 477
    III-28 478
    III-29 479
    III-31 481
    III-32 482
    III-33 483
    III-34 484
    III-35 485
    III-37 486
    III-39 487
    III-40 488
    III-42 489
    III-43 490
    III-44 491
    III-45 492
    III-46 493
    III-47 494
    III-48 495
    III-49 496
    III-50 497
    III-51 498
    III-52 499
    III-53 500
    III-54 501
    III-55 502
    III-56 503
    III-57 504
    III-58 505
    III-59 506
    III-61 507
    III-62 508
    III-63 509
    III-64 510
    III-65 511
    III-66 512
    III-67 513
    III-69 514
    III-70 515
    III-71 516
    III-73 517
    III-74 518
    III-75 519
    III-77 520
    III-78 521
    III-79 522
    III-80 523
    III-81 524
    III-83 525
    III-85 526
    III-86 527
    III-87 528
    III-88 529
    III-89 530
    III-91 531
    III-93 532
    III-94 533
    III-95 534
    III-96 535
    VII-02 547
    VII-03 548
    VII-04 549
    VII-05 550
    VII-06 551
    VII-07 552
    VII-08 553
    VII-09 554
    VII-10 555
    VII-11 556
    VII-12 557
    VII-14 558
    VII-15 559
    VII-17 560
    VII-18 561
    VII-19 562
    VII-20 563
    VII-21 564
    VII-22 565
    VII-23 566
    VII-24 567
    VII-27 568
    VII-28 569
    VII-29 570
    VII-32 571
    VII-33 572
    VII-34 573
    VII-35 574
    VII-36 575
    VII-39 576
    VII-40 577
    VII-41 578
    VII-42 579
    VII-43 580
    VII-44 581
    VII-45 582
    VII-46 583
    VII-48 584
    VII-49 585
    VII-50 586
    VII-52 587
    VII-53 588
    VII-54 589
    VII-55 590
    VII-57 591
    VII-58 592
    VII-59 593
    VII-62 594
    VII-63 595
    VII-64 596
    VII-65 597
    VII-66 598
    VII-71 599
    VII-72 600
    VII-73 601
    VII-74 602
    VII-76 603
    VII-77 604
    VII-80 605
    VII-81 606
    VII-82 607
    VII-83 608
    VII-84 609
    VII-87 610
    VII-89 611
    VII-90 612
    VII-91 613
    VII-92 614
    VII-93 615
    VII-94 616
    VII-96 617
    VIII-09 618
    VIII-10 619
    VIII-11 620
    VIII-12 621
    VIII-13 622
    VIII-15 623
    VIII-16 624
    VIII-17 625
    VIII-18 626
    VIII-19 627
    VIII-20 628
    VIII-21 629
    VIII-23 630
    VIII-24 631
    VIII-25 632
    VIII-28 634
    VIII-29 635
    VIII-30 636
    VIII-31 637
    VIII-32 638
    VIII-33 639
    VIII-34 640
    VIII-36 641
    VIII-37 642
    VIII-38 643
    VIII-40 644
    VIII-41 645
    VIII-42 646
    VIII-43 647
    VIII-45 648
    VIII-46 649
    VIII-47 650
    VIII-48 651
    VIII-50 652
    VIII-51 653
    VIII-53 654
    VIII-54 655
    VIII-55 656
    VIII-56 657
    VIII-57 658
    VIII-58 659
    VIII-59 660
    VIII-60 661
    VIII-61 662
    VIII-64 663
    VIII-65 664
    VIII-66 665
    VIII-67 666
    VIII-68 667
    VIII-69 668
    VIII-70 669
    VIII-71 670
    VIII-72 671
    VIII-73 672
    VIII-74 673
    VIII-75 674
    VIII-76 675
    VIII-77 676
    VIII-78 677
    VIII-79 678
    VIII-80 679
    IV-02 681
    IV-04 682
    IV-13 683
    IV-14 684
    IV-17 685
    IV-28 686
    IV-31 687
    IV-32 688
    IV-38 689
    IV-40 690
    IV-42 691
    IV-44 692
    IV-47 693
    IV-55 694
    IV-56 695
    IV-61 696
    IV-64 697
    IV-65 698
    IV-72 699
    IV-73 700
    IV-80 701
    IV-85 702
    IV-93 703
    IV-95 704
    IV-96 705
    V-03 706
    V-04 707
    V-07 708
    V-08 709
    V-09 710
    V-12 711
    V-18 712
    V-20 713
    V-24 714
    V-37 716
    V-40 717
    V-41 718
    V-48 719
    V-57 720
    V-61 721
    V-64 722
    V-65 723
    V-74 724
    V-80 726
    V-81 727
    V-87 728
    VI-13 870
    VI-14 871
    VI-16 873
    VI-23 878
    VI-24 879
    VI-28 883
    VI-32 885
    VI-38 886
    VI-39 887
    VI-45 889
    VI-46 890
    VI-49 892
    VI-50 893
    VI-52 894
    VI-53 895
    VI-54 896
    VI-55 897
    VI-57 898
    VI-58 899
    VI-63 900
    VI-65 902
    VI-66 903
    VI-67 904
    VI-74 905
    VI-75 906
    VI-76 907
    VI-80 908
    VI-81 909
    VI-85 910
    VI-87 911
    VI-88 912
    VI-91 913
    VI-94 914
    VI-95 915
    VI-96 916
    I-13 1177
    I-14 1178
    I-30 1180
    I-54 1181
    I-88 1182
    III-20 1183
    IV-15 1185
    IV-26 1186
    IV-62 1187
    V-11 1188
    V-28 1189
    V-38 1190
    V-45 1191
    VI-44 1193
    VII-47 1200
    I-42 1332
    I-52 1333
    I-86 1336
    I-95 1337
    III-10 1342
    III-60 1347
    III-82 1348
    III-92 1351
    IV-23 1353
    IV-34 1354
    IV-35 1355
    IV-41 1356
    IV-45 1357
    IV-82 1359
    V-01 1361
    V-02 1362
    V-06 1363
    V-17 1364
    V-25 1365
    V-35 1366
    V-42 1367
    V-47 1368
    V-49 1369
    V-58 1370
    V-75 1372
    V-79 1373
    V-90 1374
    V-91 1375
    V-94 1376
    VI-10 1379
    VI-41 1381
    VI-43 1382
    VI-71 1387
    VI-72 1388
    VI-79 1389
    VI-90 1390
    VI-93 1391
    VII-25 1397
    VII-60 1398
    VII-67 1399
    VIII-22 1403
    VIII-26 1404
    VIII-39 1405
    VIII-44 1406
    I-37 1440
    V-32 1445
    V-52 1447
    V-68 1448
    V-92 1449
    VI-42 1450
    VI-78 1452
    VII-86 1453
    VII-88 1454
    IV-29 1490
    V-15 1491
    V-39 1492
    V-54 1493
    V-59 1494
    V-71 1495
  • TABLE 5
    Samples
    Diagnosis No. of women
    Normal/Benign  42*
    DCIS  3
    Invasive cancer 26
    *From one woman, whole blood was collected at weeks 1, 2, 3, 4, 5
    following menstruation. Hence, the number of unique normal/benign
    samples tested in the experiment is 75
    Information about women with breast cancer
    Size hist.
    Sample AGE Stage Cancer type (mm) Nodes
     1 51 II IDC 20 1/7
     2 84 II IDC 22 2/2
     3 50 I DCIS + 1 >50 DCIS; 0/7
    IDC 5 × 14
     4 47 I IDC 15 0
     5 69 III ILCg.2 + tubular 50 + 3 1 av 12 + 1 av 7
    adeno carcinoma
     6 50 II IDC 24 0
     7 65 I IDC 15 0
     8 63 II IDC 23 0
     9 55 I IDC + DCIS  4 0 av 1
    10 52 0 DCIS + small 50 + 3 0
    colloid carcinoma
    foci
    11 60 II IDC 24 0
    12 54 I IDC 11 0
    13 0 DCIS 20 0
    14 49 0 DCIS  9 0
    15 48 I IDC  4 0
    16 56 I IDC  4 0
    17 68 I IDC 14 0
    18 68 I IDC  7 0
    19 63 I IDC 10 0
    20 45 I IDC 19 1
    21 57 III IDC 60  8/20
    22 55 II IDC/DCIS 35 + 55 0
    23 71 I IDC/extensive  8 0
    DCIS
    24 56 I IDC  9 ?
    25 66 II IDC 26 0
    26 66 I IDC 15 ?
    27 61 I IDC  9 ?
    28 ? ? ? ? ?
    29 65 I IDC 11 0
    Other diseases/conditions present in the women tested
    Other diseases/conditions present in the women tested
    Disease/condition
    Diabetes
    Asthma
    Ulcerous colitis
    Hemochromatose
    Crohn's disease
    Fibromyalgia
    Psoraiasis
    Atopic eczema
    Rheumatism
    Allergies
    Prior history of cancer in the women tested
    Cancer type No. of women
    Breast 3
    Colon 2
    Stomach 1
    Skin 1
  • TABLE 6
    Number of samples tested by double cross validation and success of the diagnostic test
    for breast cancer based on selected informative genes
    Number of samples tested by double cross validation
    Number Of unique samples 75
    tested
    Number of unique non 48
    cancer samples tested
    Number of cancer samples 29
    tested
    Success of the diagnostic test for breast cancer based on selected informative genes
    Number of False False
    Occurrence in informative Positive negative
    percentage* probes Specificity Sensitivity Accuracy rate rate Total error rate
    100.00  23 84.78 75.86 81.33 15.22 24.14 18.67
    90.00 44 91.30 79.31 86.67 8.70 20.69 13.33
    80.00 51 86.96 79.31 84.00 13.04 20.69 16.00
    70.00 54 89.13 75.86 84.00 10.87 24.14 16.00
    60.00 58 89.13 75.86 84.00 10.87 24.14 16.00
    50.00 59 89.13 75.86 84.00 10.87 24.14 16.00
    40.00 63 89.13 75.86 84.00 10.87 24.14 16.00
    30.00 66 86.96 75.86 82.67 13.04 24.14 17.33
    20.00 74 89.13 75.86 84.00 10.87 24.14 16.00
    10.00 79 89.13 75.86 84.00 10.87 24.14 16.00
     5.00 90 86.96 79.31 84.00 13.04 20.69 16.00
     1.33 139 84.78 72.41 80.00 15.22 27.59 20.00

    *100% = Genes appearing in all the 75 cross validated models; 90% = Genes appearing in at least 68 out of 75 cross validated models; 5% = Genes appearing in at least 4 out of 75 cross validated models; and so on.
  • TABLE 7
    Double cross-validation and details of the success of the
    diagnostic test for Alzheimer disease based on the expression
    182 informative genes
    Validation Result
    Total number of samples tested 14
    Number of Alzheimer's disease 7
    samples tested
    Number of Alzheimer's disease 1
    samples incorrectly predicted
    Number of non_Alzheimer's 7
    disease samples tested
    Number of non-Alzheimer's 0
    disease samples incorrectly
    predicted
    Success of diagnostic test
    Performance Description %
    Accuracy Percentage of the total 92.9
    number of predictions that
    were correct
    Sensitivity Percentage of positive 85.7
    cases that were correctly
    Identified
    Specificity Percentage of negatives 100
    cases that were correctly
    predicted
    False positive rate Percentage of negatives 0.0
    cases that were incorrectly
    classified as positive
    False negative rate Percentage of positives 14.3
    cases that were incorrectly
    classified as negative
    Total error rate Percentage of the total 7.1
    cases incorrectly predicted
  • TABLE 8
    Some relevant features of the blood donors.
    Cancer type/
    breast Size Hist. mRNA
    AGE abnormality (mm) Quality
    1 B1 na IDC  5 ++
    2 B2 49 DCIS  8 nd
    3 B3 54 IDC 18 ++
    4 B4 59 IDC 12 +
    5 B5 61 DCIS + micro 15 + 1.5 ++
    invasive cancer
    6 B6 55 IDC 12 + 17 nd
    7 B6 IDC 12 + 17 nd
    8 N1 45 Fibroadenoma nd
    9 N2 52 na +
    10 N3 55 cyst ++
    11 N4 54 na ++
    12 N5 51 Benign ductal nd
    epitelhelium
    13 N6 57 Benign nd
    14 N7 50 na ++
    15 N8 52 na +

    B, Female donors with breast cancer;

    N, Female donors with suspected mammogram but no breast cancer;

    IDC, invasive ductal carcinoma;

    DCIS, ductal carcinoma in situ;

    na, not available

    nd, not determined;

    ++, no degradation of mRNA and no ribosomal contamination in the sample,

    +, no degradation of mRNA but ribosomal contamination in the sample.
  • TABLE 9
    List of sequence of probes informative for both alzheimer and
    breast cancer disease
    Clone ID Sequence ID
    I-24 308
    I-25 309
    I-28 310
    I-48 321
    I-60 327
    I-72 333
    I-81 338
    I-82 339
    II-02 360
    II-03 361
    II-06 364
    II-07 365
    II-10 368
    II-21 378
    II-23 380
    II-24 381
    II-25 382
    II-27 384
    II-33 390
    II-34 391
    II-41 397
    II-42 398
    II-46 401
    II-47 402
    II-48 403
    II-52 406
    II-57 411
    II-58 412
    II-59 413
    II-60 414
    II-61 415
    II-62 416
    II-64 418
    II-67 421
    II-69 423
    II-70 424
    II-74 428
    II-80 434
    II-82 436
    II-84 438
    II-87 441
    II-88 442
    II-96 450
    III-01 452
    III-02 453
    III-06 458
    III-08 460
    III-12 463
    III-13 464
    III-17 468
    III-18 469
    III-21 471
    III-23 473
    III-24 474
    III-25 475
    III-26 476
    III-27 477
    III-28 478
    III-29 479
    III-32 482
    III-33 483
    III-35 485
    III-39 487
    III-40 488
    III-42 489
    III-45 492
    III-46 493
    III-47 494
    III-48 495
    III-56 503
    III-57 504
    III-58 505
    III-59 506
    III-61 507
    III-62 508
    III-63 509
    III-64 510
    III-66 512
    III-67 513
    III-70 515
    III-74 518
    III-75 519
    III-78 521
    III-80 523
    III-81 524
    III-85 526
    III-86 527
    III-88 529
    III-89 530
    III-93 532
    III-95 534
    III-96 535
    IV-04 682
    IV-13 683
    IV-14 684
    IV-17 685
    IV-31 687
    IV-32 688
    IV-38 689
    IV-42 691
    IV-47 693
    IV-61 696
    IV-64 697
    IV-72 699
    IV-80 701
    IV-85 702
    IV-93 703
    IV-96 705
    V-03 706
    V-04 707
    V-07 708
    V-08 709
    V-12 711
    V-24 714
    V-41 718
    V-57 720
    V-61 721
    V-64 722
    V-65 723
    V-74 724
    V-80 726
    VI-03 341
    VI-04 342
    VI-07 344
    VI-08 345
    VI-09 346
    VI-12 869
    VI-14 871
    VI-19 349
    VI-20 350
    VI-21 351
    VI-23 878
    VI-25 353
    VI-26 354
    VI-48 359
    VI-50 893
    VI-53 895
    VI-74 905
    VI-76 907
    VI-87 911
    VI-88 912
    VI-95 915
    VII-02 547
    VII-03 548
    VII-06 551
    VII-08 553
    VII-09 554
    VII-10 555
    VII-11 556
    VII-15 559
    VII-17 560
    VII-19 562
    VII-21 564
    VII-22 565
    VII-23 566
    VII-24 567
    VII-27 568
    VII-29 570
    VII-32 571
    VII-33 572
    VII-36 575
    VII-39 576
    VII-41 578
    VII-42 579
    VII-43 580
    VII-46 583
    VII-48 584
    VII-49 585
    VII-54 589
    VII-57 591
    VII-58 592
    VII-59 593
    VII-62 594
    VII-63 595
    VII-64 596
    VII-66 598
    VII-72 600
    VII-73 601
    VII-77 604
    VII-80 605
    VII-82 607
    VII-87 610
    VII-90 612
    VII-91 613
    VII-92 614
    VII-93 615
    VII-96 617
    VIII-09 618
    VIII-10 619
    VIII-13 622
    VIII-16 624
    VIII-20 628
    VIII-21 629
    VIII-23 630
    VIII-24 631
    VIII-25 632
    VIII-28 634
    VIII-29 635
    VIII-30 636
    VIII-31 637
    VIII-32 638
    VIII-33 639
    VIII-34 640
    VIII-38 643
    VIII-40 644
    VIII-41 645
    VIII-46 649
    VIII-48 651
    VIII-55 656
    VIII-57 658
    VIII-59 660
    VIII-60 661
    VIII-61 662
    VIII-64 663
    VIII-66 665
    VIII-73 672
    VIII-74 673
    VIII-76 675
    VIII-80 679
  • Nucleotide sequences
    Sequence ID - 93   nt: 405
    GGATCCTGTGGCCCACAGAGCTGCCCCAGCAGACGCTCCGCCCCACCCGG
    TGATGGAGCCCCGGGGGGACAATCGTGCCTGGGGAGGAGCAGGGTACAGC
    CCATTCCCCCAGCCCTGGCTGACCTGGCCTAGCAGTTTGGCCCTGCTGGC
    CTTAGCAGGGAGACAGGGGAGCAAAGAACGCCAAGCCGGAGGCCCGAGGC
    CAGCCGGCCTCTCGAGAGCCAGAGCAGCAGTTGAATGTAATGCTGGGGAC
    AGGCATGCTGCCGCCAGTAGGGCGGGGACCCGGACAGCCAGGTGACTACC
    AGTCCTGGGGACACACTCACCATAAACACATCCCCAGGCAGGACAGATCG
    GGGAAGGGGTGTGTACCAGGCTATGATTTCTCTTGCATTAAAATGTATTA
    TTATT
    Sequence ID - 108  nt: 550
    GGCTTTGACAGAGTGCAAGACGATGACTTGCAAAATGTCGCATCTGGAAC
    GCAACATAGANACCATCATCAACACCTTCCACCAATACTCTGTGAAGCTG
    GGGCACCCAGACACCCTGAACCAGGGGGAATTCAAAGAGCTGGTGCGAAA
    AGATCTGCAAAATTTTCTCAAGAAGGAGAATAAGAATGAAAAGGTCATAG
    AACACATCATGGAGGACCTGGACACAAATGCAGACAAGCAGCTGAGCTTC
    GAGGAGTTCATCATGCTGATGGCGAGGCTAACCTGGGCCTCCCACGAGAA
    GATGCACGAGGGTGACGAGGGCCCTGGCCACCACCATAAGCCAGGCCTCG
    GGGAGGGCACCCCCTAAGACCACAGTGGCCAAGATCACAGTGGCCACGGC
    CACGGCCACAGTCATGGTGGCCACGGCCACAGCCACTAATCAGGAGGCCA
    GGCCACCCTGCCTNTACCCAACCAGGGCCCCGGGGCCTGTTATGTCAAAC
    TGTCTTGGCTGTGGGGCTAGGGGCTGGGGCCAAATAAAGTCTCTTTCTCC
    Sequence ID 110
    ACGAAGACAGACATCTGTGGAATGATTCACATCCTCTCAAGTTAGGAGGA
    TGGAGGCCTGCTTCATTAAGAAGCTGGGGGTAGGGTGGGGGTGGGGAGAA
    CACTTAACAACATGGGGACCAGTCAGGGGAATCCCCTTATTTCTGTTTTG
    CATATGAGGAACCCTAGAGCAGCCAGGTGAGGCTCTCTAGTTTAATAAAA
    ATCATGGAAAGACTCTTAATGCAGACTCTTCTTAAGTGTTAATAGGGATT
    TTTTCAGCTTATTTTGGTTGCAGTTTCCAATTTTTAAAAATGTTGAGGTA
    ATCTTTCCCACCTTCCCAAACCTAATTCTTGTAGATGCATTAGTGTTGAA
    CCAATGCTTTCTCATGTCTCAATTCTTTGTATATGCATTCTTTTCAGATG
    TATTAAACAAACAAAAACCCTTC
    Sequence ID - 192  nt: 286
    CCGGTAATAGAATAGAAAAGGGAGAGTGTCTTCATGCAATGTGGCATCCT
    GGATTGGGTCTCGNNACAAAAACAGGACATTAGTGGGAAAATTGGAAATC
    TGAAAAAAGTCTGAATTTTAGTTAATATACCAATTTCAGTCTCTTGGTTT
    TGACAGATGTACCATGGTGATGTAAGATGTTGACCTTGGGGTAGGCTGGG
    TGAAGGGTATACAGGAACTCTTTGTACTATCTCTGCAACTTCTCTGTAAA
    TCTAGTATCATTCCAAAATAAAAGTTTATTTAATTT
    Sequence ID 250
    GTGGAAGTGACATCGTCTTTAAACCCTGCGTGGCAATCCCTGACGCACCG
    CCGTGATGCCCAGGGAAGACAGGGCGACCTGGAAGTCCAACTACTTCCTT
    AAGATCATCCAACTATTGGATGATTATCCGAAATGTTTCATTGTGGGAGC
    AGACAATGTGGGCTCCAAGCAGATGCAGCAGATCCGCATGTCCCTTCGCG
    GGAAGGCTGTGGTGCTGATGGGCAAGAACACCATGATGCGCAAGGCCATC
    CGAGGGCACCTGGAAAACAACCCAGCTCTGGAGAAACTGCTGCCTCATAT
    CCGGGGGAATGTGGGCTTTGTGTTCACCAAGGAGGACCTCACTGAGATCA
    GGGACATGTTGCTGGCCAATAAGGTGCCAGCTGCTGCCCGTGCTGGTGCC
    ATTGCCCCATGTGAAGTCACTGTGCCAGCCCAGAACACTGGTCTCGGGCC
    CGAGAAGACCTCCTTTTTCCAGGCTTTAGGTATCACCACTAAAATCTCCA
    GGGGCACCATTGAAATCCTGAGTGATGTGCACTGATCAAGACTGG
    Sequence ID 299
    CAGCGCAGGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGAGGAAACCGCA
    GATAAGTTTTTTTCTCTTTGAAAGATAGAGATTGNTACAACTACTTAAAA
    AATATAGTCAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTTAACG
    TAATTTTAATAGCTTAAGATTTTAAGAGAAAATATGAAGACTTAGAAGAG
    TAGCATGAGGAAGGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTTG
    AGATGAAGCTTCTTCATGGAGTAAAAAATGTATTTAAAAGAAAATTGAGA
    GAAAGGACTACAGAGCCCCGAATTAATACCAATAGAAGGGCAATGCTTTT
    AGATTAAAATGAAGGTGACTTAAACAGCTTAAAGTTTAGTTTAAAAGTTG
    TAGGTGATTAAAATAATTTGAAGGCGATCTTTTAAAAAGAGATTAAACCG
    AAGGTGATTAAAAGACCTTGAAATCCATGACGCANGGAGAATTGCGCATT
    TAAAGCCTAGTTACGCATTTACTAAACGCAGACGAAAATGGGAAGATTAA
    TTGGGAGTGGTAGGATGAAACAATTTTGGAGAAGATAGAAG
    Sequence ID 300
    CTCAAAGGAGAAAAAAAACCTTGTAAAAAAAGCAAAAATGACAACAGAAA
    AACAATCTTATTCCGAGCATTCCAGTAACTTTTTTGTGTATGTACTTAGC
    TGTACTATAAGTAGTTGGTTTGTATGAGATGGTTAAAAAGGCCAAAGATA
    AAAGGTTTCTTTTTTTTTCCTTTTTTGTCTATGAAGTTGCTGTTTATTTT
    TTTTGGCCTGTTTGATGTATGTGTGAAACAATGTTGTCCAACAATAAACA
    GGAATTTTATTTTGCTGAGTTGTTCTAAAAAAAAAAAAAAAAAAAAA
    Sequence ID 302
    AGTAGAGACGGGGTTTCACTGTGTTAGCCAGGATGGTCTCGATCTCCTGA
    CCTCGTGATCCGGCCACCTCGGCCTCCCGAAAGTGCTGGGATTACAGGCG
    TGAGCCACGGCGCCCAGCCCCAGCCTGTCACTTAAACTGATAAACGACAG
    ATTAACAGTAGAAAAATTTTATTTTGCATACATAATGAGGCTTCACAAAA
    GAGAAGTGAAAACCCAAGTAGGAGTTTAGGGCTGGGGGCTTATATACCAT
    TTAACAAGGGGTGATAAATTGTAAGAGAATAG
    Sequence ID 304
    TCCTTGGTTTCGATTTGTGGCAACAATCCAGTCTTTTTGTTTTTTTCAGG
    GATACCATATGTAACAGGTGCCATTGTTACTGTAACTTTTCACACATGCC
    TTCAGTTTGATGTCAAAGTCATCATTTAGTGTAAACAGCAAGTTATCTGT
    TAGGCTGCACATCATGAACTTTACTTTTAGAAAGTCTTATCTTTTATGCC
    ACAGAAATAGCATTTGGCTATTAGTCATGGATGGCAAAGAAATTAATTTT
    GAGTTGTTTGGATAAAAATGTTTCAGTTGACTGTAGTGTGTATTGAGAGA
    CACTGCCAGTAAACAAACTCTCTTGGTAGGTGGAAATCCCCTAGAAGTTA
    CAGAAAATTGGGAGGAGGTGAACTTAATTAAATAACTTGAATTGTTTAGA
    CATATTCAGAGCTTCTTATGACCTTGAAGAAATCACCCAACTTCAAAAGA
    CCTCGGTTTCTTCATTTGTAAAATTAGGGAGTTTGACTAGATGTGTAAAT
    CTAGTTGTTAGTTAACTTCTAAGATGTAAAAACCCTCTTGTTTAACAAAA
    ACCTACAAGATCAAGTTGCTTATCTGAAATCTTTATGAATCAACACTAGT
    CACTAAGTCTAGCTCGACC
    Sequence ID 306
    CTTTTCCTCCCGCTGTCCCCCACGGAGGGGACTGCTCTCCCCCGCTGCAT
    CCTTTCTGTGAGGTACCTTACCCACCTCAGCACCTGAGAGGGTGAAATAG
    AATTCTAACCTCGACATTCGGGAAGTGTTTTTGAGAAGTCTCGGTCGGTA
    AGGGAAGTCTTCCAAGTCCGTGCAGCACTAACGTATTGGCACCTGCCTCC
    TCTTCGGCCACCCCCCAGATGAGGCAGCTGTGACTGTGTCAAGGGAAGCC
    ACGACTCTGACCATAGTCTTCTCTCAGCTTCCACTGCCGTCTCCACAGGA
    AACCCAGAAGTTCTGTGAACAAGTCCATGCTGCCATCAAGGCATTTATTG
    CAGTGTACTATTTGCTTCCAAAGGATCAGGCCCTGAGAACAATGACCTTA
    TTTCCTACAACAGTGTCTGGGTTGCGTGCCAGCAGATGCCTCAGATACCA
    AGAGATAACAAAGCTGCAGCTCTTTTGATGCTGACCAAGAATGTGGATTT
    TGTGAAGGATGCNCATGAANAAATGGACNAGCTGTG
    Sequence ID - 308  nt: 373
    AAGTGGGTCTTGCCATCCCTGAACTGNAATCATCCCTAACATATTCATAC
    CTGTTTTCATTTTAAAAGTTGGGTCAGTTTTTTTATTAGTACATGTATTT
    CTATCCTACTGATTTATTTGCTATATCATCTAATTTAGTTTGAATATTCC
    ATAATTTACTTAATTAGTCCTGTATGGAGACCTAGCTCTTCTCAGTGTCT
    ACTATTATAAACAATGCTACAGTGAATATTGGTGNATAAATCCATACNCA
    CCACGTACATATCTTAAGTTCTGGAAGAGATATTGCTAAACCAGAAGATA
    ACCTGCATTTAAAATTTGACTGCTAGGGNCAGGGNCACATTTAATTAAAT
    TAGAACAANGAATGCATAATGNC
    Sequence ID 309
    CCGGAATCGCGGCCGCGTCGACGAAAATATGTGCCCTGGCCAACTCCACA
    GGACTAGTTCTAGGCAATCTGAAGGAAACCAGAAAATGTGAATTTCTCTT
    CCCTCAAAAAGCTATACTGAAGTAGTATTTAATATTCAAGTACTTGTAAA
    TTTGCAGAACAGTACTTTTTAATTTGACCCATGAATTCTATTTAAATTTG
    TCACTTAATATTTAGCCAAGAAGCAAACCATCTAAAAAGATTTCTGGTTT
    ATTTCTCCAACTCCTAATAAATAGGGTCACATATTTTTTAACTTTTTTCT
    AATTTGAAAAGTAATACAGGCATATGGTATTTTAAAAATGAAACAACACA
    AAGGGATATGTTTTGAAAAGTGGTCTTGCCATCCCTGAACTGTAATCATC
    CCTAACATATTCATACCTGTTTTCATTTTAAAAGTTGGGTCAGTTTTTTT
    ATTAGTACATGTATTTCTATCCTACTGATTTATTTGCTATATCATCTAAT
    TTAGTTTGAATATTCCATAATTTACTTAATTAGTCCTGTATGGAGACCTA
    GCTCTTCTCAGTGTCTACTATTATAAACAATGCTACAGTGAATATTGGTG
    NATAAATCCTACACACCACGTAACATATCTTAAGTTCCTGGAAGAGATAT
    TGCTAAACCAGAAGATAACCTGCATTTAAAATTTGACTGCTAGGGTCAGG
    GTCACATTTAAATTAAATTAGAACAAGGAATGCATAATGTCTTCGATAGC
    AATCTATTCAAGGTGCACCGTGGTCACAAAGGAAAGCAAAACTGTC
    Sequence ID - 310  nt: 564
    CCTGGNCAGAGGCCTCTATCCTGTANTGATAATTGCCATCAAAATTGTCA
    AAAANGATTTAATTTCTATGGGNAATAGTCCTTTTCTTAGCTTCTGCCNN
    TCACTTGCTTATTTTTTGTGTGGGAATGGGGTTGGATAAACCAATGAACT
    TTATTATAAACAAATCCCACCTATATCTANCAAATTTATATTTTCGGTGA
    AATACAGATATTTGCCTTTCTGGAGTANTATAGAAGCTGTCAATATGTAT
    CTACTGTACAGTACTAAATAGTATTCATTTATGAAATGAGTAGTGTTTGG
    GTGGCTGGGGTTAAGGAAAAATGAGACTTGGAATTGTAGCTTTTATCCAA
    GTTTTGAGTATAAATAGGGTTTTGTTTTGTTTTTTTTAACCTAAAAACTG
    AAATGCCATATAGAAAAACAGCATTGTTTTTACAGTTTGTAGTAAGTAAC
    TTTTTAAAGATTTTATCAAAAAGAATTTTGTCTATNGTGAGTAAAAGAAG
    TTCTAATAATGGCCTAATCACTGCATTTTTAAAAAACAAAGTTCAACACA
    AATGACATTTGTTT
    Sequence ID 311
    CCTCTCCTCCATCTAAAGGCAACATTCCTTACCCATTAGTCTCAGAAATT
    GTCTTAAGCAACAGCCCCAAATGCTGGCTGCCCCCGGCCAAGCATTGGGG
    CCGCCATCCTGCCTGGCACTGGCTGATGGGCACCTCTGTTGGTTCCATCA
    GCCAGAGCTCTGCCAAAGGCCCCGCAGTCCCTCTCCCAGGAGGACCCTAG
    AGGCAATTAAATGATGTCCTGTTCCATTGG
    Sequence ID - 313  nt: 554
    CCCGGAATCGCGGCCCGCGTCGACAACAAACCTGCATGTTCTGCACATGT
    ATCCAGGAACTTAAAAAAAAAAAAAGATAGTTTGTGTGTCTTAATTGAAT
    AATAGTAGATTTATAGATTAAAGATCTATGGGTTTTTAATATGGATTANA
    AATCTGTGGGTTTTTGATATGGATTANAAATCTGTGGGTTTTTAATATGG
    ATTGGAAATCTGTGGGTTTTTAATATGGATTAAAAAACATCTGTGGGTTT
    TTAATATGGATTAAACATCTGTGGGTTTTTAATATGGATTAAACATCTGG
    GTTTTTAATATGGATTAAACATCTGTGGGTTTTTAATATGGGTTAAAAAT
    CAAAAGAAAATGAACTATTTGCTCCAGTGCAGGAAAATACAGGCAATACT
    GGATACAATTAGATGGTCAGGAGCGATAACCCGGTTGCCATTGTTTGAAG
    AAGAGAATAAGGNGCTAGCATTCCTATCCGTAGATAATTTGACAGCTAGG
    AAATAGGGGGAGTCTTCTATGTAGTTAGTGAAGGCTAAATGAACTATTAT
    ATGC
    Sequence ID 314
    CTTTTCCTCCCGCTGTCCCCCACGGAGGGGACTGCTCTCCCCCGCTGCAT
    CCTTTCTGTGAGGTACCTTACCCACCTCAGCACCTGAGAGGGTGAAATAG
    AATTCTAACCTCGACATTCGGGAAGTGTTTTTGAGAAGTCTCGGTCGGTA
    AGGGAAGTCTTCCAAGTCCGTGCAGCACTAACGTATTGGCACCTGCCTCC
    TCTTCGGCCACCCCCCAGATGAGGCAGCTGTGACTGTGTCAAGGGAAGCC
    ACGACTCTGACCATAGTCTTCTCTCAGCTTCCACTGCCGTCTCCACAGGA
    AACCCAGAAGTTCTGTGAACAAGTCCATGCTGCCATCAAGGCATTTATTG
    CAGTGTACTATTTGCTTCCAAAGGATCAGGCCCTGAGAACAATGACCTTA
    TTTCCTACAACAGTGTCTGGGTTGCGTGCCAGCAGATGCCTCAGATACCA
    AGAGATAACAAAGCTGCAGCTCTTTTGATGCTGACCAAGAATGTGGATTT
    TGTGAAGGATGCACATGAAGAAATGGAGCAGGCTGTGGAAGAATGTGACC
    CTTACTCTGGCCTCTTGAATGATACTGAGGAGAACAACTCTGACAACCAC
    AATCATGAGG
    Sequence ID 315
    TGGTACAGATACAAACTGGACTCTCAGGACAAAACGACACCAGCCAAACC
    AGCAGCCCCTCAGCATCCAGCAGCATGAGCGGAGGCATTTTCCTTTTCTT
    CGTGGCCAATGCCATAATCCACCTCTTCTGCTTCAGTTGAGGTGACACGT
    CTCAGCCTTAGCCCTGTGCCCCCTGAAACAGCTGCCACCATCACTCGCAA
    GAGAATCCCCTCCATCTTTGGGAGGGGTTGATGCCAGACATCACCAGGTT
    GTAGAAGTTGACAGGCAGTGCCATGGGGGCAACAGCCAAAATAGGGGGGT
    AATGATGTACGGGCCAAGCACTGCCCAGCTGGGGGTCAATAAAGTTACCC
    TTGTACTTG
    Sequence ID 316
    CGCCACTTATCCAGTGAACCACTATCACGAAAAAAACTCTACCTCTCTAT
    ACTAATCTCCCTACAAATCTCCTTAATTATAACATTCACAGCCACAGAAC
    TAATCATATTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAA
    Sequence ID 321
    CAGAACAGTACTTTTTAATTTGACCCATGAATTCTATTTAAATTTGTCAC
    TTAATATTTAGCCAAGAAGCAAACCATCTAAAAAGATTTCTGGTTTATTT
    CTCCAACTCCTAATAAATAGGGTCACATATTTTTTAACTTTTTTCTAATT
    TGAAAAGTAATACAGGCATATGGTATTTTAAAAATGAAACAACACAAAGG
    GATATGTTTTGAAAAGTGGTTCTTGCCATCCCTGAACTGTAATCATCCCT
    AACATATTCATACCTGTTTTCATTTTAAAAGTTGGGTCAGTTTTTTTATT
    AGTACATGTATTTCTATCCTACTGATTTATTTGCTATATCATCTAATTTA
    GTTTGAATATTCCATAATTTACTTAATTAGTCCTGTATGGAGACCTAGCT
    CTTCTCAGTGTCTACTATTATAAACAATGCTACAGTGAATATTGGTGTAT
    AAATCCATACACACCACGTAACATATCTTAAGTTCCTGGAAGAGATATTG
    CTAAACCAGAAGATAACCTGCATTTAAAATTTTGACTGCTAGGGTCAGGG
    TCACATTTAAATTAAATTAGAACAAGGAATGCATAATGTCTTCGATAGCA
    ATCTATTCCAGGTGCACCGTGGTCACAAAGGAAAGCAAAACTGTCAATAA
    CTTTCTTCTCA
    Sequence ID 322
    TAGCATTTGGCCTTTTAAAACATTTGTTTATTTTTTTTCTGAGAATGGCT
    AACACACTTTATTGAGGTTCGAAATTAATAAAGAAAATAAAAGAAATGTA
    TCTTCATTCATTCTGTATGTTAGTGTTTTAATTACCCTTAGAATATATGG
    ATAAAAAATACTATTCTTTGTCTTGGAGAAGGTAAGAGTCTAGTTAGATG
    AATAAGGGTTATCTATGTAGAACAACTAGAGAATGAGAAGAGAGCTTATG
    AGATTGAGTACTACGTTATGCAGTAGAGTAGCACGTCATCTGCTACTGAG
    TATGGTGTGATAACATTGTGTAACAGGAAAGTATGATCAATATCTACTTA
    AAATTAAGGACAATATTAGCACTACATTGCTTTATTTTAAAGTAAAAATT
    AGAGAACTAAACACAAGCATTGTAAGTACAATAAAAGCTGATCTTTCTAG
    TTAAGCAGAATAATACATGTTCAAGCATCTGCTAAATCATTAAATATAAG
    AATATAGGGGTTTTCTATAATCTTATTTTCTTTGGAAGAGTACCTCATTT
    TCAAGANGAGAAGTTTCTAATTGCCACTTCTTTAAAAATAAAACAGGGTT
    TTAATGTTCCCAGCACAAAAATTAATATCTCTTCAAAAAGTCTCTTGTGA
    TTAAGTTTGAATCCCTTGTCATACTGCTTCTAATATTGACACTGACCTCC
    TTAGGTATTTTTCAGGGGTTATAATCTTTTCTTAAGGTATCTTTTTTCAA
    GAATTGGATACCTTGGGCTT
    Sequence ID 323
    CGCGTCGACTTTTAAAGTCATCTCTATAGGAAGGTGCTGGGCAGGGATCC
    CAGAGAAAGAAAGGGTCCAAGACTCCATTAACTGCCCTGGATGAAGGGCA
    CTGCTACAGCAGCTAGTACCAGAGACTCTCCTATCTCACGGTTGAGGCAG
    ACCCAGGATAGAATAGAGAATAAAAGGAATGCTTATAGGAAACAATTTTG
    TATGGAATGCTAGATGGCCAAGCCTCAGCCTTTGGTCCAGTGCAACCCTT
    GCCTCGCTTGTCAACAGTGAAAAATTAGTTTGGTTAGAAGAACCATCTGG
    AAACACACCAGCTTCTGCTACCTTCATGCTCATTGTTAAAAAAAGATTAA
    CCAGTGTGAACATTCTGATCTGTTAATTCCAGGGACTGTTTTCTTTCCAA
    TGGACTGTTTGTTGGTAGAATAACCCCCAAAAGCTCAAAGCTAAAATGCA
    TCATCAGTCCTAGTCGGCAGTTCCTTAAGAATGGACTGGCGGCGTGGTTG
    AGCTGATATGGAAAAGCTGCACCTTCCTGCAGAAGATCAACTGACCTGCT
    ATCCCACCCCAAATTCAACCTGAGGTATATTTCAGTGAAGCAGGTAGCTG
    TGCTTCTCAAAGCAGAGAAGCAGTTTTAAGAACCAAAAAGGTAGAGGAAA
    TCTA
    Sequence ID 324
    GTTTGTTACAGGCAGAATTGGATAGATACAGCCCTACAAATGTATATGCC
    CTCCCCTGAAAAAAATTGGATGAAAATCTGCACAGCAAAGTGAAACACAC
    AGATAATAGGAACAAAATGTAGTTCCCATGTGCCAAACAAAATAAATGAA
    ATCTCTGCATGTTTGCAGCATATCTGCCTTTTGGGAATGTAATCAAGGNA
    TAATCTTTGGCTAGTGTTATGTGCCTGTATTTTTTTAAAATGGTACACCA
    GAAAAGGACTGGCAGTCTACTTCTACCATAGTTAAACTTCACCCTCTTTA
    ATTTCACAACATATTCTTTGGAAGCAGGAAGAAATGCTCATAAAGAGGAT
    CAGACCTTCTTTCCCGTGAAACCAGTATTTGGCGCCATATATAAGCCTGG
    TTAAATTGGTCATCTAAAGCTGTCAAATAAGACATTCTGTGAAAGGTAAA
    CATCGAAACTGGTTATAAGTAAAACCATCAAGCCAACAACAGGGTCTTGA
    GATAACCTTTGAAGCTTATTGTCTGGCCTGCACCAGAAGATGTCTGCATT
    ACTCATTGCTAAAAATGTGTACACAGAACTGCACTAGGATTAATTGGTTC
    AAGAAGAAATTTAAACTTACGTTTGGGTTTCCATACAGCACTCTATTGAA
    TACATGCATCTGAATTTAAGTTGCAA
    Sequence ID 325
    GACCAGTAATGGCTTTTAAGAGTCCATTTTGTCATTGTCTCCCTAGTTAA
    TTACAGGTGGGGGATCTTTTGCCTCTATTCTCTTCATATTGAAATGAATC
    ATACTCATGTTTTGTGGAACTCCTTAAAGTTGTAGCTGTCATGATCAGAT
    TTTTTTTATATTTCCTCAGCTTAACTCTGCTACTTGATTTACAGTGACCC
    ATAACCTACTCATCCTTGGTTTATAGTGACACATAATCTTATCTCTTTAT
    AGAACCTTAAATTTTATCATTATTTTCGCTTAGAATACAGCATTTCTTTG
    CTTCTGTTGCTGGTTTGACTTAAGAAATAAGGCAGTAACTCTGATCAATC
    AATTATCCATAAGGAAGGGCTTTTCATGGGTTCTATTAATTTGTTAGTAC
    CCTAAGTATATCTGAAAAATATGTCTATTGAGAGAAGATTTTGGCATTCC
    AGATGGTATAGTCTATATATATTTAAAGTTTTGAATTTGCTTATATATAC
    TCAGCTTTCTTTTTCTAGCATTTTTGCATTTACCTGTTAATTGAAGTATA
    CCCCCCACATATAAAAGTTCCTCTTAAAGACACTGGACTCTTTCTGGGGG
    GCTAAAATA
    Sequence ID - 326  nt: 554
    CCCGGAATCGCGGCCCGCGTCGACAACAAACCTGCATGTTCTGCACATGT
    ATCCAGGAACTTAAAAAAAAAAAAAGATAGTTTGTGTGTCTTAATTGAAT
    AATAGTAGATTTATAGATTAAAGATCTATGGGTTTTTAATATGGATTANA
    AATCTGTGGGTTTTTGATATGGATTANAAATCTGTGGGTTTTTAATATGG
    ATTGGAAATCTGTGGGTTTTTAATATGGATTAAAAAACATCTGTGGGTTT
    TTAATATGGATTAAACATCTGTGGGTTTTTAATATGGATTAAACATCTGG
    GTTTTTAATATGGATTAAACATCTGTGGGTTTTTAATATGGGTTAAAAAT
    CAAAAGAAAATGAACTATTTGCTCCAGTGCAGGAAAATACAGGCAATACT
    GGATACAATTAGATGGTCAGGAGCGATAACCCGGTTGCCATTGTTTGAAG
    AAGAGAATAAGGNGCTAGCATTCCTATCCGTAGATAATTTGACAGCTAGG
    AAATAGGGGGAGTCTTCTATGTAGTTAGTGAAGGCTAAATGAACTATTAT
    ATGC
    Sequence ID 327
    CGGCTACCGACAGAAGGACTATTTCATCGCCACCCAGGGGCCACTGGCAC
    ACACGGTTGAGGACTTCTGGAGGATGATCTGGGAGGGGAAGTCCCACACT
    ATCGTGATGCTGACGGAGGTGCAGGAGAGAGAGCAGGATAAATGCTACCA
    GTATTGGCCAACCGAGGGCTCAGTTACTCATGGAGAAATAACGATTGAGA
    TAAAGAATGATACCCTTTCAGAAGCCATCAGTATACGAGACTTTCTGGTC
    ACTCTCAATCAGCCCCAGGCCCGCCAGGAGGAGCAGGTCCGAGTAGTGCG
    CCAGTTTCACTTCCACGGCTGGCCTGAGATCGGGATTCCCGCCGAGGGCA
    AAGGCATGATTGACCTCATCGCAGCCGTGCAGAAGCANCAGCAGCAGACA
    GGCAACCACCCCATCACCGTGCACTGCAGTGCCGGAGCTGGGCGAACAGG
    TACATTCATAGCCCTCAGCAACATTTTGGAGCGAGTAAAAGCCGAGGGAC
    TTTTANATGTATTTCAAGCTGTGAAGAGTTTACGACTTCAGAGACCACAT
    ATGGTGCAACCCTGGAACAGTATGAAATGTGCTACAAAGTGGTACAAGAT
    TTATTGATATATTTCTGATTATGCTAATTTCAATGAAGATCCTGCCTTAA
    ATATTTTTTAATTTAATGGCANAT
    Sequence ID 328
    CAAGACTCCATCTCAAAAAAAAAAAAAAATCTACAGTGCTGAGTATATAA
    AATTATTAACACATTTCACAACAATATGTGTTTGTGGAGTTAAATATTTT
    TTGTCTTTAAAACAGGTAATTTTAGTGCATACTTAATTTGATGATTAAAT
    ATGGTAGAATTAAGCATTTTAAATGTTAATGTTTGTTACATTGTTCAAGA
    AATAAGTAGAAATATATTCCTTTGTTTTTTATTTAAATTTTTGTTCCTCT
    GTAAACTAAAAGAACACGAAGTAATTGGTCACAATTACTGGTGTTTAACT
    GCCAAATATGGGTAAATAAGGGAAAATTTTGTTTAATATTTAGTCCTTCT
    GAGATGGCTTGAATATTTGAATTTTGTTGTACGTCTATACTGGGTAGTCA
    CAAGTCTTATAAACACTTTAGAGGAAAGATGGATTTCAGTCTGTATTTTT
    AAACATCATTTATTTTAAATCTGGTGCTGAAAAATAAGAAAAAAATTAAA
    CTGCATTCTGCTGTTCTTCTTTANAAGCATTCCTGCGTAAATACTGCTGT
    AATACTGTCATGCAAAGTGTATCCTTTCTTGTCGTATCCTTTTTGGGGCA
    GTGGTTTTT
    Sequence ID 330
    GCGGGAATCGCGGCCCGCGTCGACCTCAAAGGAGAAAAAAAACCTTGTAA
    AAAAAGCAAAAATGACAACAGAAAAACAATCTTATTCCGAGCATTCCAGT
    AACTTTTTTGTGTATGTACTTAGCTGTACTATAAGTAGTTGGTTTGTATG
    AGATGGTTAAAAAGGCCAAAGATAAAAGGTTTCTTTTTTTTTCCTTTTTT
    GTCTATGAAGTTGCTGTTTATTTTTTTTGGCCTGTTTGATGTATGTGTGA
    AACAATGTTGTCCAACAATAAACAGGAATTTTATTTTGCTGAGTTGTTCT
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    TTTTAAAATTTTTAAAATAAAACCCTTGGTTAT
    Sequence ID 331
    GCCGCGTCGACCTGCATGAGCCACAGTTTCTTGACTGGAGGCCATCAACC
    CTCTTGGTTGAGGCCTTGTTCTGAGCCCTGACATGTGCTTGGGCACTGGT
    GGGCCTGGGCTTCTGAGGTGGCCTCCTGCCCTGATCAGGGACCCTCCCCG
    CTTTCCTGGGCCTCTCAGTTGAACAAAGCAGCAAAACAAAGGCAGTTTTA
    TATGAAAGATTANAAGCCTGGAATAATCAGGCTTTTTAAATGATGTAATT
    CCCACTGTAATAGCATAGGGATTTTGGAAGCAGCTGCTGGTGGCTTGGGA
    CATCANTGGGGCCAAGGGTTCTCTGTCCCTGGTTCAACTGTGATTTGGCT
    TTCCCGTGTCTTTCCTGGTGATGCCTTGTTTGGGGTTCTGTGGGTTTGGG
    TGGGAAGAGGGCCATCTGCCTGAATGTAACCTGCTAGCTCTCCGAAGCCC
    TGCGGGCCTGGCTTGTGTGAGCGTGTGGACAGTGGTGGCCGCGCTGTGCC
    TGCTCGTGTTGCCTACATGTCCCTGGCTTGTTGAGGCGCTGCTTCAACCT
    GCACCCCTCCTTGTCTCATAGATGCTCCTTTTGACCTTTTCAAAATTAAT
    ATGGATGGGAAAGCTCCTATGCCTTTTGGCTTCCTGGTAGAAGGCGGGAT
    GCCCAAGGGTCTGCCTGGGTGTGGATTGGATGCTTGGGGTGTGGGGGTTG
    GAAACTGTCTTGTGGCCCACTTGGGCCCC
    Sequence ID 335
    CCCGCGTCGACTTTTAAAGTCATCTCTATAGGAAGGTGCTGGGCAGGGAT
    CCCAGAGAAAGAAAGGGTCCAAGACTCCATTAACTGCCCTGGATGAAGGG
    CACTGCTACAGCAGCTAGTACCAGAGACTCTCCTATCTCACGGTTGAGGC
    AGACCCAGGATAGAATAGAGAATAAAAGGAATGCTTATAGGAAACAATTT
    TGTATGGAATGCTAGATGGCCAAGCCTCAGCCTTTGGTCCAGTGCAACCC
    TTGCCTCGCTTGTCAACAGTGAAAAATTAGTTTGGTTAGAAGAACCATCT
    GGAAACACACCAGCTTCTGCTACCTTCATGCTCATTGTTAAAAAAAGATT
    AACCAGTGTGAACATTCTGATCTGTTAATTCCAGGGACTGTTTTCTTTCC
    AATGGACTGTTTGTTGGTAGAATAACCCCCAAAAGCTCAAAGCTAAAATG
    CATCATCAGTCCTAGTCGGCAGTTCCTTAAGAATGGACTGGCGGCGTGGG
    TGAGCTGATTTGGAAAACTGCCCTTCTGCAAAAAACACTGGCCTGCTTTC
    CA
    Sequence ID 337
    CAAGACTCCATCTCAAAAAAAAAAAAAAATCTACAGTGCTGAGTATATAA
    AATTATTAACACATTTCACAACAATATGTGTTTGTGGAGTTAAATATTTT
    TTGTCTTTAAAACAGGTAATTTTAGTGCATACTTAATTTGATGATTAAAT
    ATGGTAGAATTAAGCATTTTAAATGTTAATGTTTGTTACATTGTTCAAGA
    AATAAGTAGAAATATATTCCTTTGTTTTTTATTTAAATTTTTGTTCCTCT
    GTAAACTAAAAGAACACGAAGTAATTGGTCACAATTACTGGTGTTTAACT
    GCCAAATATGGGTAAATAAGGGAAAATTTTGTTTAATATTTAGTCCTTCT
    GAGATGGCTTGAATATTTGAATTTTGTTGTACGTCTATACTGGGTAGTCA
    CAAGTCTTATAAACACTTTAGAGGAAAGATGGATTTCAGTCTGTATTTTT
    AAACATCATTTATTTTAAATCTGGTGCTGAAAAATAAGAAAAAAATTAAA
    CTGCATTCTGCTGTTCTTCTTTAGAAGCATTCCTGCGTAAATACTGCTGT
    AATACTGTCATGCAAAGTGTATCCTTTCTTGTCGTATCCTTTTTGGGGCA
    GTGGTT
    Sequence ID 338
    CTGGACTGCATGACCAGATCTGATGGGTGAGACTCAGGTGGCATGGAAGA
    GCCGAAAGAGGATACCATATGTGGGTGCCGGGGGGGATAGGTGAGAAGTA
    CTAGAAGGCGGAATGGAAGGACACTTCTGCTCAGCTCTGTGACACGGGCA
    GGGACCCTGCAGGGCTCAGGTCCTTTAACACAGCAGCTTCATTCTAACAC
    CAGCAGCGTTGGAACACACGTACAAGTATGCAGACTAAGCTCTTGCTTGG
    CTGATACGGCTTTTTGGGTTTTTAGAGAACATGCATATATGTTCTCATTC
    ATGGTACATGAACTCAGAAGCCTTACTGCCTATTTTTGTTAATACTTCTG
    GGCAAACATTACCACTTACAACTCACACCAGTTAGAAATCATTTGTAAAA
    TGTTATTTAATAAAGCCAAAGAACTAAATCATATTTATTTTCCAAGGNTT
    TCTAAGATCTCTGAAACTAATGAGGTTTTTTAAATCCCCATTAAGTACTC
    ATCACTGCTAGTAAAAGCAGTTGTCTTTACCTTTAATTCCAGTGAGTCCC
    CTTAAATTTATTTTTTATTATCTTTGGCTACATTGCCTTAGACAAAATGT
    GGTCACCCTAATTTAANGGATAAAATTCACATCCTCACAGATTTCTTATT
    AAGAGGGTCTAANCCTTGAATAATCANCAGTGGAAATGGAAGTCTTCTTT
    ACTGGNTTTNATCCTTTCCCTTTTTTATCCCATG
    Sequence ID 339
    TTTTTTTTTAAATAAAGCTGTCGGCACTCAAGGGTAATTTCATATCAGTG
    TGNTCTACAAGCTGGGGGAAAATGAGTTCTAATTGTCANAGCTACCAAAT
    CCTTCACCTTTAGCATAAAGGTTTAAAGATATCACAAAGATGCCAAGTGA
    TTAATAATGTTTTAAACCACCCCTTTTTCTGTCTGAAAAAACAACTAAAA
    CAATATTACAACAGTATAGTTACAGAAGGGTTCTATTTTCATATGTTTTA
    TGCACACTGTGCCTCAAAGGTACTATTTAAATATATATACTTTTGAGGGG
    GTGGCTAATGCAGAAACACCCAAGACCTAAGGAAGATACAACCCCATTTC
    TAGGTGTGAGGTCTAAATGCTTCACACACCCACTTGTGACCTTTTTTCAT
    GAAGAATCATAACACTGTGCAGTGAGAAACAGTGGCAAAGCAATACTGAA
    AGCATTTTAAATTATTTACTAGGTTAAAAGGGTGAACTGATACTTTAAAT
    ACATCAAATTTCATCAT
    Sequence ID 360
    GCAAGTGAGAGCCGGACGGGCACTGGGCGACTCTGTGCCTCGCTGAGGAA
    AAATAACTAAACATGGGCAAAGGAGATCCTAAGAAGCCGAGAGGCAAAAT
    GTCATCATATGCATTTTTTGTGCAAACTTGTCGGGAGGAGCATAAGAAGA
    AGCACCCAGATGCTTCAGTCAACTTCTCAGAGTTTTCTAAGAAGTGCTCA
    GAGAGGTGGAAGACCATGTCTGCTAAAGAGAAAGGAAAATTTGAAGATAT
    GGCAAAAGCGGACAAGGCCCGTTATGAAAGAGAAATGAAAACCTATATCC
    CTCCCAAAGGGGAGACAAAAAAGAAGTTCAAGGATCCCAATGCACCCAAG
    AGGCCTCCTTCGGCCTTCTTCCTCTTCTGCTCTGAGTATCGCCCAAAAAT
    CAAAGGAGAACATCCTGGCCTGTCCATTGGTGATGTTGCGAAGAAACTGG
    GAGAGATGTGGAATAACACTGCTGCAGATGACAAGCAGCCTTATGAAAAG
    AAGGCTGCGAAGCTGAAGGAAAAATACGAAAAGGTA
    Sequence ID - 361  nt: 622
    CTGTNATNGAATCTGCTTGTNACTNAAATGCTAAACTCAATTCTGTAATT
    CAATAGGTGCACCTNTCTGAGAAACATANNAGACAATGAGGAAAAGGATT
    CANCATTCCGTGGAATTTGTACCATGATCAGTGTGAATCCCANTGGCGTA
    ATCCAAGTAAGATGTTCACAAAGATTTGTTTTTAATGTCTAATTAATAAA
    ATTTTAAAGGAAGAAACATTCTAATACTTTAATTATAAAAAGTTAACTAT
    TTTCAAAGGTATCAAAATACAGTTAAACCTTTAAAATGTATATTTCTTAA
    TATCTTGAAATTGTAATGCCTTTTTTTTTTCCTAAATTTTTTTTGTCATG
    AAATGAGATAGTAACAGCAGATTGGGACAACAAGGTTATATTCTTGTCTT
    GAATCAGGCCATGGCTTCTTTCATCCAAATTTCAGACCTCATTTATTTAC
    TTTGTCCCTGCCTCCCATCCCTGGATATCANGTTTGTGGATATCTACAGT
    TAATAGAGTGACCAAATAGTAGGAATACTGTCTCTCTATTCTGAATAAAA
    TACTTTGAATCAGATTTAGAAATAATGAATAAAATACAAATCACCATTGA
    AATTGCTCTAATTTTGAGAGCT
    Sequence ID - 363  nt: 628
    ATCACNTGAGGCAAGAGTTTGAGCCAGCCTAGCTAACATGGTGAAACCCC
    ATCTCTACAAAAATATAAAAATTAGCCTGGGTGGTGATGGGCACCTGTAA
    CCCCAGCTACTCGGGAGGCTGAGGTAGGAGAATCACTTGAACCCGGGAGA
    TGGAGGTTGCAGTGAGCCAAGATCGTGCCACTGCACTCCAGCCTGTGTGA
    CAGAACAAGACTCTGTCTCAAAAAAAAATAATAATAATAATAATAATAAA
    AAGGAATAACATAGCTAGGAATAAATTTAATCAAAGAGGTGAAAGACTTA
    TACACTTAAAACTACAAAAAAAAAATCACTGAAGGAATTATAGACCCAAA
    TAAAAATAAATAAAAAGACATTCTGTGTTTTAGGGAAAGAAGACTTAATA
    TTGTTAAGATGTCAATACTACCCAAAGTGATCTACAGATTCAACATAATC
    CCTATCAAAATTCCAACAGCCTACTTTGTAGAAATGGAAAAGCCAATTTT
    CAAATTCAGATGGAATTGCGAGGGGTTCTGAATAACAAAAACAATCTTGG
    GGAAAAAAAACAAAAAACAAAGTCAAAGAACTCACACTTCTCTATTTATA
    AATTTACTACAAAGTTATAGTAATCAAA
    Sequence ID - 364  nt: 528
    TGAACATCCAGCCATGTCATTTCTTCCATTCCTGCCCTGGAGTAAAGTAG
    ATTTACTGAGCTGATGACTTGTGTGCATTTGTACATTGCAACCTTAGCTT
    ACCTCTTGAAGCATGTAGAGCATTCATCACCCACCATTCATTCACTGCCT
    ACTCCCACCACAGCTGTTTCGTGGTCTGTCTGCTCCCTGTGCCACCCCCA
    CCCCATCAGGTGGGCCTTTTGCAAGTGATGAAGTCACCTGTGGGGGAAGA
    GCTTTCCTTTCCTCTCCTCAACTCAGAAGGCCTCTTCCTCTTGCTCAAGA
    GGGTGCTGCTGCTTTCTGCCTCCTTCCCCGGCCGGCCTCCATCCCAGTTC
    ACCTTTTCAGAAATGGCCCCTCAGTCAACTCTTCCCTTTTCTCCTGGCTT
    TTTATTTCTCCCAGTCTCTTAAGAGTATCCTTAGCTTTAAAAACAATAAC
    ACAGAGGATGGGTGCAGTGGCTCATGCCTGTAATCCCAGCACTTTGGAGC
    CTGGGGCGGGCGGATCACTTGAGGNCA
    Sequence ID 365
    GTCCCGGAATCGCGGCCGCGTCGACCTTTTCTATGCCTGCTATATAAACA
    GTACCTTGCAAGATGTCCTGTCTGATATCCACAAAGGGGTATTGTCAACC
    CCAAGTTCAGACAGCTTTGTATTCTTCTGTCCCTGGATACATGAATTACT
    GCCATCTTTACACAGCGCCCTAAAATACCAACGCGAAGTTACCTGCTCAG
    CTTGAAGCTGCGCTGTACCCTGGAACCAGCACTTCTGCTGAATGACTCAG
    GATGAAGCCTCGACTTCTCCTTCCCATCCCATGCCCAGACCCCAGTGGCT
    CCTTTCCCAATCTGATCCAGTGACTTTAAGTCCAGCTGTTGCAACCTGGG
    CATGAGGAGGAGTGCAAGATGGCTTTGTCCTACCTGGAAAGAGGCTTTCT
    GGA
    Sequence ID 366
    CACCATTTACACACAGTGGGTCCTTGAATAGCATCGTTTTATTCAATGTC
    ATTTTGTTATAACATTGAGAAAAAAATTGATTCCCGGCTGGGGCCACTGT
    CTGTGCACCGT
    Sequence ID - 368  nt: 329
    GAAAGATCTAAAATCGACACCCTAACATCACAATTAAAAGAACTAGAGAA
    GCAAGAGCAAATTCAAAAGCTAGCAGAAGGCAAGAAATAACTAAGATCAG
    AGCAGAGCTGAAAGAGATAGAGACACAAAAAACCATTCAAAAAAAAACAA
    TGAATCCAGGAGTTTTTTTTTTAAAAAGATCAACAGAATTGACAGACTGC
    TAGCAAGACTAATAAAGAAGAGAGAAGCATCAAATAGACTCAATAAAAAA
    TGATAAAGGGGATATCACCACCAATCCCACAGAAATACAAACTACCATCA
    GAGAACACTATAAACACCTCTATGCAAAT
    Sequence ID 369
    GAAAGATCTAAAATCGACACCCTAACATCACAATTAAAAGAACTAGAGAA
    GCAAGAGCAAATTCAAAAGCTAGCAGAAGGCAAGAAATAACTAAGATCAG
    AGCAGAGCTGAAAGAGATAGAGACACAAAAAACCATTCAAAAAAAAACAA
    TGAATCCAGGAGTTTTTTTTTTAAAAAGATCAACAGAATTGACAGACTGC
    TAGCAAGACTAATAAAGAAGAGAGAAGCATCAAATAGACTCAATAAAAAA
    TGATAAAGGGGATATCACCACCAATCCCACAGAAATACAAACTACCATCA
    GAGAACACTATAAACACCTCTATGCAAATAAACTAGAAAAT
    Sequence ID 370
    GAAAGATCTAAAATCGACACCCTAACATCACAATTAAAAGAACTAGAGAA
    GCAAGAGCAAATTCAAAAGCTAGCAGAAGGCAAGAAATAACTAAGATCAG
    AGCAGAGCTGAAAGAGATAGAGACACAAAAAACCATTCAAAAAAAAACAA
    TGAATCCAGGAGTTTTTTTTTTAAAAAGATCAACA
    Sequence ID 371
    GCCCGGAATCGCGGCCGCGTCGACGTAAGCTCGGCTGAATCCACGGTTCA
    AGAACAGGAAAGAAGGCCAAGGCATAGGGAGTGGGGCAGTTGGGTGAATA
    TTAGTACCTTTCCCTCAGNTNCATTAATTACCCCTGCCTACTCTGCACAA
    AAGGATNTAACAACAGTTTCCTTTTTAATGGCCAGGTACAGCTGCTTATA
    TGGANGGGCATTTNTNAATGATATCCTTNATCACTGTCTTAATCATCACA
    TNCTTAAAACAATCACTTTATTGTGTTAAGGAAGATAAAAATGGCTGGGT
    TCAATTTCCGTTCTGGAAGAAATCGANTNAAAAGGTAACCATTTAATAAT
    GCANAGGGCANTTTCACTGCAGACCCTAATACTGGAAATTTTTAAAAACA
    AATGAAAAACTTCTACTTTTTCTTCTAAGCTTACTTAACCACCCAAATTT
    TCCAGCCACATATCTTCCTAGTCTACAACTGCCTTTAACTTTAAGAGATG
    CTCAAAAAAATGTAAATTCTCAAATACATTCTTATTACAATTACTGCTAA
    CCT
    Sequence ID 373
    CCAGTGTGCTGGGATTACAGGCATGAGCCCTGCACCCAGCCTCTTAAACT
    GATCATATGATATTGGTTCTCAACCAAGGGTGACTTTGCCCCCAGAGGAT
    ACTTGGCAATGTCTGGAGATACTCAGTTGTCATGACTTGGACAGGTGCTA
    CTGTCACCCAGTGGGTAGAGGTCAGGGATGGTGCTAAACATAGGACAGCT
    GTCAAGAGAAAAGAATGTACCCAGCCCCAAATGTCAGTAGGGCTGAGGTT
    GAGAAACCCAGCTGTAGCTGACGTGTGAAGGACAGACTGGCCTGGAAGTG
    TGTTTTCTGCCCCTTTCCACCCCTGCATATTAGTTAAGGCCAAAGGAAAA
    AAGGAATGCAGGAAATGCCCGTTAAAAATCTTCAAAACAATATAAAATGA
    TCAATTCCACTAAAACCCTTTACACATTTAAGTATAAAGGTATTGGTAGG
    AAAATTTGTTATTCACTGCTTTTCTCAGTGTCATGAAATAATTATTTCTG
    CTGTCAGTTT
    Sequence ID 374
    AAAAAAAAAATCACTGAAGGAATTATAGACCCAAATAAAAATAAATAAAA
    AGACATTCTGTGTTTTAGGGAAAGAAGACTTAATATTGTTAAGATGTCAA
    TACTACCCAAAGTGATCTACAGATTCAACATAATCCCTATCAAAATTCCA
    ACAGCCTACTTTGTAGAAATGGAAAAGCCAATTTTCAAATTCAGATGGAA
    TTGCGAGGGGTTCTGAATAACAAAAACAATCTTGGGGAAAAAAAACAAAA
    AACAAAGTCAAAGAACTCACACTTCTCTATTTATAATTTACTACAAAGTT
    ATAGTAATCAAAGTCGACGCGGCCGCGATTCCGGG
    Sequence ID 378
    CGACTGCGGCTCTTCCTCGGGCAGCGGAAGCGGCGCGGCGGTCGGAGAAG
    TGGCCTAAAACTTCGGCGTTGGGTGAAAGAAAATGGCCCGAACCAAGCAG
    ACTGCTCGTAAGTCCACCGGTGGGAAAGCCCCCCGCAAACAGCTGGCCAC
    GAAAGCCGCCAGGAAAAGCGCTCCCTCTACCGGCGGGGTGAAGAAGCCTC
    ATCGCTACAGGCCCGGGACCGTGGCGCTTCGAGAGATTCGTCGTTATCAG
    AAGTCGACCGAGCTGCTCATCCGGAAGCTGCCCTTCCAGAGGTTGGTGAG
    GGANATCGCCCAGG
    Sequence ID 380
    GCAATTTAATTTTTAATAACAAAGATACTGTATTTTAACATGGTGAAATA
    TACTTGGCTAAGTCCAGATTAAAAAAAAAAAGTATCTAGCCCAACAGTAC
    AATTATACAGCTTTGTACAGAACATTCCATAGATCAACAGAAAATACATT
    TGAGCGCAAAAATAAAAAATATTTAAGGAGAATCTCTAAGCAGCATTTTA
    TTTCTGCAAAAGACATATCTTGTCTGATTAAATATCTACAAGTGCTTTTC
    CTTTCAAAAATACATATATTCTTAATAGACTAAGTCATTAACAATGACCT
    GGTAATTCTTTCACTTCAATTTGAATGATTTATAAGCTAAATCTTCAACC
    ACAAAAAGGTTTTTATTTGTATTAAGATGTTACCACTTTTGACAAAAAGC
    TTAAAATATTTTATATTTCAAAGGAAAATTAGCAACATAACTTTACAATA
    TATTCTATGATATTTTGATTGTGAGGGCTACTCTATTTAAAACTGATGAT
    CTCTGTTGTGTTGCTCAGATGCAGGAAAGCAGCAAAA
    Sequence ID - 381  nt: 534
    GACTTANATCTAAATGGACCACATTCTCTACTTAAAAAAATGCTATTAAC
    CATGTGATCTTCTCAGTCATGAGGTAATCTGGTGACTACCCTTCCTCAAA
    GCCAGTTGGGATATTCTTTGAATAGAGTAAAACAGTGTTTCTAGGCTGGG
    AGACACCAGACATAGTTGAGGACAGAGGTGCTAGAAAATAGGAAGTTTAA
    AAGCATGTGCGGTGATGCTCAGAGGAGGTAAACCCCACCCTCATGCTCAT
    AGCTTCCAATCATTTTCTCTAGTTCTTAACTCTTAAATGTGAGAAATGCT
    TGAAGATTCTAGTCATCTGAAGAAAGTCTCTTTATTAAAGATTTTCATAA
    AAGAGACCAAAGCAGACAAACAGAAAAAGACATCTTGGGGAAAAAAACAA
    GGATAATGGGAAGAGAAGGAAAGTTTTAAAAATTATCAATATCCTCAGGG
    GGACAAAATATTATATCCTATAAAGACAGATTTTTATTTTTTAAAAAAAT
    AGAAAGCAAAACAAGCTCCTAAAAATAAAGTTTG
    Sequence ID - 382  nt: 444
    GTTAAGGAAGTCAGCACTTACATTAAGAAAATTGGCTACAACCCCGACAC
    AGTAGCATTTGTGCCAATTTCTGGTTGGAATGGTGACAACATGCTGGAGC
    CAAGTGCTAACATGCCTTGGTTCAAGGGATGGAAAGTCACCCGTAAGGAT
    GGCAATGCCAGTGGAACCACGCTGCTTGAGGCTCTGGACTGCATCCTACC
    ACCAACTCGTCCAACTGACAAGCCCTTGCGCCTGCCTCTCCAGGATGTCT
    ACAAAATTGGTGGTATTGGTACTGTTCCTGTTGGCCGAGTGGAGACTGGT
    GTTCTCAAACCCGGTATGGTGGTCACCTTTGCTCCAGTCAACGTTACAAC
    GGAAGTAAAATCTGTCGAAATGCACCATGAAGCTTTGAGTGAAGCTTTTC
    CTGGGGACAATGTGGGCTTCAATGTCAAGAATGTGTCTGTCAAG
    Sequence ID - 383  nt: 566
    CTTTGAAGAACTTTGCCAAATACTTTCTTACCAATCTCATGAGGAGAGGG
    AACATGCTGAGAAACTGATGAAGCTGCAGAACCAACGAGGTGGCCGAATC
    TTCCTTCAGGATATCAAGAAACCAGACTGTGATGACTGGGAGAGCGGGCT
    GAATGCAATGGAGTGTGCATTACATTTGGAAAAAAATGTGAATCAGTCAC
    TACTGGAACTGCACAAACTGGCCACTGACAAAAATGACCCCCATTTGTGT
    GACTTCATTGAGACACATTACCTGAATGAGCAGGTGAAAGCCATCAAAGA
    ATTGGGTGACCACGTGACCAACTTGCGCAAGATGGGAGCGCCCGAATCTG
    GCTTGGCGGAATATCTCTTTGACAAGCACACCCTGGGAGACAGTGATAAT
    GAAAGCTAAGCCTCGGGCTAATTTCCCCATAGCCGTGGGGTGACTTCCCT
    GGTCACCAAGGCAGTGCATGCATGTTGGGGTTTCCTTTACCTTTTCTATA
    AGTTGTACCAAAACATCCACTTAAGTTCTTTGATTTGTCCATTCCTTCAA
    ATAAAGAAATTTGGTA
    Sequence ID 384
    TTTTGGGGTTTATATATAAGCCTGGTTCTTGCTGAAACTGCTTATGTTGA
    TAACCAGTTAGTGAGTTCCTCTCTATTGACTTGCTGGGAAGTTTATAGAG
    ACATTTTTTATGCATTCAGAGATTTCAGTACAAATCTTGAAAAAGGGACA
    TTTAGGCCGGGCGCGGTGGCTCACATCTGTAACCCTAGCACTCTGGGAGG
    CTGAGGTGGGTGGATCATGAAGTCAAGAGATAGAGACCATCCTGGCAAAA
    ATTAGCTGGGCGTGGTGGGGTGCGCCCGTAGTCCCAGCTACTCGGGAGGC
    TGAGGCAGGAGAATTGCTTGAGCCCGGGAGGCGGAGGTTTCATTGAGCCG
    AGATAGTGCCACTGCACTCCAGCCTGGACAACAGAGCGAGACTGTGTCTT
    Sequence ID 386
    CTAAGGGTTTAAAGATGGAAAGAGGCATTGATGAACAGCTGGGGAAGGAG
    TAGTTTGAGGTAGATGTGCAGATGGAATGAAGAGAAGGTCTCAAGAAGAG
    GGTGGAGCCAAAGAGGGCTGCAGATTTAGAAGGCTAAAGTCTTTAGATGG
    CTTTGGATAGCCTGTTGTATCTTGGACCATGCAGGTTACAGTGGAGCATG
    GAGTGGGGACAGAAGTGGAGGAAGGAACCAGGGAACATGGAGTGAGAAGC
    TAAAGGAAAGTGATGCAGTAGATACATGGCTCTAAAGTACTCAGGACTTT
    CAGAGGCTTAAACATAGGGTGACCAACTATCCCACTATGCCTGATACTAA
    GGGCATTCCCTGGATGTGGACCTTTCATTCCCCAAATTAGGAAAGTCTTG
    GGCATACCAAGACAAGTTGGCCACCCTACTCAAAAGTATGTAAGCTAACA
    TATCTGTTCTCTAAGAGGTTAAAGCTGGATGGGGATACCAGATGTATGTA
    CGTGATGCAGTTAAACAGCAATACAAGGGGGCAAGTCTACCTGATCGGCC
    AATTCAATGGGA
    Sequence ID 387
    GAAGCCAAACCAAAGGAGCTTCTACTTCATGATGCCATTTATGTAAAGTT
    CAGGCAGAGAAAATCAGTGGTTTAAGAAGTTAGAATAATGATTATCTTTG
    GAGGGATTGCAACTGGAAGAAGTCATGATTGGGATTTCTGGGTCCTAATA
    GTGCTCTGTGTCTTGATCTGAGTGCCGACTACATGAGTGGTTAGGTTTGC
    AAAATTCATTGAGTTATGCACTTAATGGTGTTGTCTTATTAGAGCTGATG
    GAGGAGAGAGGGCTTCAATTTGCACAACTGAGTAATCAGCTAGGCCCAGT
    CACTAGGTGAACAACTTACTGCTCCAATCAGCCTTAGAGCAGGAATCAAA
    CTCATGTCTCAGAAAAGTTATTAATTCAGCTTGTCTTGGGACTTCCTTCA
    GAGTCACTCTTGAATAGCTGAAATAGTAAATGTTAAATCTGTGGATGCAA
    GTGTGTAAATTATTTTAGTCATCAGCTCTAATAAGATGGCCTTTGGGGAA
    ATGAGTATAAGGTCACGAAAATGAAATGGCAAGAAGGAGGTCTACTATTT
    CTTCTGTAATACTGATTTTTACCCCATCAGGGTCAGTCCCCAGAGGTTGT
    AAATGTGAAGCTTG-TCTTTTTCTTTAATAA
    Sequence ID 388
    CTTTGGACACTAGGAAAAAACCTTGTAGAGAGAGTAAAAAATTTAACACC
    CATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAAC
    ACCCACTACCTAAAAAATCCCAAACATATAACTGAACTCCTCACACCCAA
    TTGGACCAATCTATCACCCTATAGAAGAACTAATGTTAGTATAAGTAACA
    TGAAAACATTCTCCTCCGCATAAGCCTGCGTCAGATTAAAACACTGAACT
    GACAATTAACAGCCCAATATCTACAATCAACCAACAAGTCATTATTACCC
    TCACTGTCAACCCAACACAGGCATGCTCATAAGGAAAGGTTAAAAAAAGT
    AAAAGGAACTCGGCAAATCTTACCCCGCCTGTTTACCAAAAACATCACCT
    CTAGCATCACCAGTATTAGAGGCACCGCCTGCCCAGTGACACATGTTTAA
    CGGCCGCGGTACCCTAACCGTGCAAAGGTAGCATAATCACTTGTTCCTTA
    ATTAGGGACCTGTATGAATGGCTCCACGAGGGTTCAGCTGTCTCTTACTT
    TTAACCAGTGAAATTGACCTGCCCGTGAAGAGGCGGGCATAACACAGCAA
    GACGAGAAGACCCTATGGAGCTTTAATTTATTAATGCAAACAGTCCTAAC
    AAACCCCAGGTCCTAAACTCCAAACCTGCATTAAA
    Sequence ID 389
    CGACCCGGAATTCGCGGCCGCGTCGACTGAGTTCTTGACAAGAGTGTTTT
    TCCCTTCCCGTCACAGAGTGGGCCCAACGACCTACGGCACTTTGACCCCG
    AGTTTACCGAAGAGCCTGTCCCCAACTCCATTGGCAAGTCCCCTGACAGC
    GTCCTCGTCACAGCCAGCGTCAAGGAAGCTGCCGAGGCTTTCCTAGGCTT
    TTCCTATGCGCCTCCCACGGACTCTTTCCTCTGAACCCTGTTAGGGCTTG
    GTTTTAAAGGATTTTATGTGTGTTTCCGAATGTTTTAGTTAGCCTTTTGG
    TGGAGCCGCCAGCTGACAGGACATCTTACAAGAGAATTTGCACATCTCTG
    GAAGCTTAGCAATCTTATTGCACACTGTTCGCTGGAAGCTTTTTGAAGAG
    CACATTCTCCTCAGTGAGCTCATGAGGTTTTCATTTTTATTCTTCCTTCC
    AACGTGGTGCTATCTCTGAAACGAGCGTTAGAGTGCCGCCTTAGACGGAG
    GCAGGAGTTTCGTTAGAAAGCGGACGCTGTTCT
    Sequence ID - 390  nt: 523
    GAATCCCTAGAAAAAGAGAATTCCCAACTTGATGAGGAAAACTTAGAACT
    GCGAAGGAATGTAGAATCTTTGAAGTGTGCAAGCATGAAAATGGCTCAGC
    TACAGCTAGAAAACAAAGAACTGGAAAGTGAAAAAGAGCAACTTAAGAAG
    GGTTTGGAGCTCCTGAAAGCATCTTTCAAGAAAACAGAACGCTTAGAAGT
    TAGCTACCAGGGTTTAGATATAGAAAATCAAAGACTGCAAAAAACTTTAG
    AGAACAGCAATAAAAAAATCCAGCAATTAGAGAGTGAACTACAAGACTTA
    GAGATGGAAAATCAAACATTGCAGAAAAACCTAGAAGAACTAAAAATATC
    TAGCAAAAGACTAGAACAGCTGGAAAAAGAAAATAAATCATTAGAGCAAG
    AGACTTCTCAACTGGAAAAGGATAAGAAACAATTGGAGAAGGAAAATAAG
    AGACTCCGACANCAAGCAGAAATTAAAGATCCACATTTGAAGAAAATAAT
    GTGAAGATTGGAAATTTGGAAAA
    Sequence ID - 391  nt: 566
    CTTTGAAGAACTTTGCCAAATACTTTCTTACCAATCTCATGAGGAGAGGG
    AACATGCTGAGAAACTGATGAAGCTGCAGAACCAACGAGGTGGCCGAATC
    TTCCTTCAGGATATCAAGAAACCAGACTGTGATGACTGGGAGAGCGGGCT
    GAATGCAATGGAGTGTGCATTACATTTGGAAAAAAATGTGAATCAGTCAC
    TACTGGAACTGCACAAACTGGCCACTGACAAAAATGACCCCCATTTGTGT
    GACTTCATTGAGACACATTACCTGAATGAGCAGGTGAAAGCCATCAAAGA
    ATTGGGTGACCACGTGACCAACTTGCGCAAGATGGGAGCGCCCGAATCTG
    GCTTGGCGGAATATCTCTTTGACAAGCACACCCTGGGAGACAGTGATAAT
    GAAAGCTAAGCCTCGGGCTAATTTCCCCATAGCCGTGGGGTGACTTCCCT
    GGTCACCAAGGCAGTGCATGCATGTTGGGGTTTCCTTTACCTTTTCTATA
    AGTTGTACCAAAACATCCACTTAAGTTCTTTGATTTGTCCATTCCTTCAA
    ATAAAGAAATTTGGTA
    Sequence ID 394
    GACCCGGAATCGCGGCCGCGTCGACCATTTTAGCCAAGGTGCCTCTATAG
    GGGTCAAGACATCATGTGCCCAGACCTAAGGTCAGGAATGTCATATTTTT
    CTGTTAAAATCATTTTATTTCTGTGTATCTTACCTTTAAATCATTGTGGT
    TTACTCTGAGATTCTGTAGTCCTAATATTGTATCATTGTGCTGTCTGCAA
    AACAACTTGAATCTATTTTGTTTGCATCTTTTGTTACATGTAACGCAGCT
    GTACTTTATGTTCTTTGCAACTGTTTCCATTATGAGAACGCTGTGCTATT
    TACAAGGTTACATTTTTCTTGGCCAGGCGAGGTGGTCATGCCTGTGATCC
    CAGCACTTTGGGAGGCCAAGGTGGGCGGATCACTTGAGGTAAAGAGTTGA
    GACCAGCCTGGCTAGCATGGCGAAGCCCAGTCTCTACTAAAAATACAAAA
    ATTGGCCGGGTGAAATTAGCCGGGCGTGGTGGTGTGTGCTTGTAATCCCA
    GCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAATCCGGGAGGCAGAG
    GTTGCAGTGAGCCAAGATCANGCCACTGCACTCCACCTCGGGGTCAAGAG
    CGAAACTCTGTCTCAA
    Sequence ID 395
    CCGTTTTAGTCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCTGCC
    TCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCGGCG
    TAAATCAGGTTTTTTAAATGTTTGCCAAACCTTATCACTGACTTTTATAA
    CAAAATTATTTACTATAATCATTAGGGAATATTTAAGTTCTGCTAATACT
    TAAAATTGCAGAGTGCTAAAACCAGCAGTGAGTTTAGAATCAAGCTAAGC
    TTTATTGTTGCTACTATTTGAGGCATATTAGTTGACTGGTGTTCATATGC
    AAGGCAGTCTACTGGGTGCAACAAGGGTTAGAAGGATATTTTTAAAAAAC
    TGACCCTATTCTCAGGATGAAAATAATACACTAGTAATAGTCTGCTCTGT
    TGGTTAACTCCTCGTAAGGAGGTCAATTAAAATGCTGTAGTGTTGCAAGG
    GAAGGAGAGGAAGAATCATATTCCTTCACTAGCAGGATCAAGAAAGCTTT
    TATAGAAATATACAAAATCTTCACTTCTTGAAGGATTGGTAAAATTTAAT
    AGCCAACATTGGGCACTTATTCATTCTCTGAGTAAATATTTATTGCAT
    Sequence ID 396
    CTTAAATCTAAATGGACCACATTCTCTACTTAAAAAAATGCTATTAACCA
    TGTGATCTTCTCAGTCATGAGGTAATCTGGTGACTACCCTTCCTCAAAGC
    CAGTTGGGATATTCTTTGAATAGAGTAAAACAGTGTTTCTAGGCTGGGAG
    ACACCAGACATAGTTGAGGACAGAGGTGCTAGAAAATAGGAAGTTTAAAA
    GCATGTGCGGTGATGCTCAGAGGAGGTAAACCCCACCCTCATGCTCATAG
    CTTCCAATCATTTTCTCTAGTTCTTAACTCTTAAATGTGAGAAATGCTTG
    AAGATTACTAGTCATCTGAAGAAAGTCTCTTTATTAAAGATTTTCATAAA
    AGAGACCAAAGCAGACAAACAGAAAAAGACATCTTGGGGAAAAAAACAAG
    GATAATGGGAAGAGAAGGAAAGTTTTAAAAATTATCAATATCCTCAGGGG
    GACAAAATATTATATCCTATAAAGACAGATTTTTATTTTTTAAAAAAATA
    GAAAGCAAAACAAGCTCCTAAAAA
    Sequence ID - 397  nt: 534
    GACCCGGAATCGCGGCCGCGTCGACGGAAGCTCCTGCCCCTCCTAAAGCT
    GAAGCCAAAGCGAAGGCTTTAAAGGCCAAGAAGGCAGTGTTGAAAGGTGT
    CCACAGCCACAAAAAGAAGGAGATCCGCACGTCACCCACCTTCCGGCGGC
    CGAAGACACTGCGACTCCGGAGACAGCCCAAATATCCTCGGAAGAGCGCT
    CCCAGGAGAAACAAGCTTGACCACTATGCTATCATCAAGTTTCCGCTGAC
    CACTGAGTCTGCCATGAAGAAGATAGAAGACAACAACACACTTGTGTTCA
    TTGTGGATGTTAAAGCCAACAAGCACCAGATTAAACAGGCTGTGAAGAAG
    CTGTATGACATTGATGTGGCCAAGGTCAACACCCTGATTCGGCCTGATGG
    AGAGAAGAAGGCATATGTTCGACTGGCTCCTGATTACGATGCTTTGGATG
    TTGCCAACAAAATTGGGATCATTTAAACTGAGTCCAGCTGCCTAATTCTG
    AATATATATATATATATATATCTTTTCACCATAA
    Sequence ID - 398  nt: 512
    GGGGAGCCCCCTCTTCCCTCAGTTGTTCCTACTCAGACTGTTGCACTCTA
    AACCTAGGGAGGTTGAAGAATGAGACCCTTAGGTTTTAACACGAATCCTG
    ACACCACCATCTATAGGGTCCCAACTTGGTTATTGTAGGCAACCTTCCCT
    CTCTCCTTGGTGAAGAACATCCCAAGCCAGAAAGAAGTTAACTACAGTGT
    TTTCCTTTGCACCGATCCCCACCCCAATTCAATCCCGGAAGGGACTTACT
    TAGGAAACCCTTCTTTACTAGATATCCTGGCCCCCTGGGCTTGTGAACAC
    CTCCTAGCCACATCACTACAGTACAGTGAGTGACCCCAGCCTCCTGCCTA
    CCCCAAGATGCCCCTCCCCACCCTGACCGTGCTAACTGTGTGTACATATA
    TATTCTACATATATGTATATTAAAACTGCACTGCCATGTCTGCCCTTTTT
    TGTGGTGTCTAGCATTAACTTATTGTCTAGGCCAAAGCGGGGGTGGGAGG
    GGAATGCCACAG
    Sequence ID 399
    TTTTGGCATTACTTAATCCAATTATAAAAACTGAATTTTTAAAAAACAGC
    ACTTGTTTTTTCTTCCAAGATTAATTTGAATTTTTTTATGGACATTAGAA
    AACATTGCAGTTTAGTCATAATCAAAAATAAATCTTGAGGCTGGTAGAGC
    AGCTTTGTTGCTGTTTATATTTTTATTGCTTACTGGATTTCAGTGTTACC
    TAGTGCCATCAGTTTGGTATTTTGCCACCTTGCACATTCAGTGATGTTTG
    ATTTTTCTTTTTCCTTTTTTTCATATTACTTTTAAATCCTGAATAGTTTG
    TGGCAGCTGGAGATCACCTAGTCCACCACTGTCCAACATGGCAATGGTAA
    GTAATATTGAGTAAAGAATAGAAAATTAGTAAAATGCATGGCTTCAGAAT
    TATAGCAATTTGCAAAATAGGTTAATGGATGAAAATTAGAATGACCAGTT
    TAACTTTCCCCCCAGCAGATTCTTCTGTTAAACAATGCCCCTTCAAAATA
    AAGGAAGAACAAGTGGGTGTTATACCTATGTTATTTGGCTATGTTAGCAC
    AATATGATGGACTAATTTGAGAAAAAGCATTTACTTCCTTTACTATTACT
    TCTTTTCTTTATAGGGCTAAGTCTGCCTTCTGGGTCTTTGAA
    Sequence ID 400
    GAAGAAGCGCGAAGAGCCGTTAGTCATGCCGGTGTGGTGGCGGCGGCGGA
    GACTGCGGGCCCGTAGCTGGGCTCTGCGAGGTGCAAGAAAGCCTTTGAGG
    TGAAGGTGTATGAAAGTCATCATAACAGATGTTTTCCAAAAACTTGTAGA
    AGGTTGTGAAAAAACTACTAGGATCACGCGGCATGTATTGAGCATATAGG
    TTGCTGTAGATGAATGTTCTTAGCTGTCATGTTTAAAAATACTTCTGCTT
    CGTTACCTCAAGTGTGGCATGCAGCATTTTGGAAGGAAAATTGAAGACGT
    GTTCAAGAAAACATGAACAGAAGCAAATGATGAAAATGAGCATTTTACTT
    GATGTTGATAACATCACAATAAATTATGGAGAAAAATACATATTTGGCTA
    ACTTTTAATTGCTGAACAATAAAGTGTTTTCTTTTAAATCNAAAAA
    Sequence ID 401
    GAAGCCAAACCAAAGGGAGCTTCTACTTCATGATGCCATTTATGTAAAGT
    TCAGGCAGAGAAAATCAGTGGTTTAAGAAGTTAGAATAATGATTATCTTT
    GGAGGGATTGCAACTGGAAGAAGTCATGATTGGGATTTCTGGGTCCTAAT
    AGTGCTCTGTGTCTTGATCTGAGTGCCGACTACATGAGTGGTTAGGTTTG
    CAAAATTCATTGAGTTATGCACTTAATGGTGTTGTCTTATTAGAGCTGAT
    GGAGGAGAGAGGGCTTCAATTTGCACAACTGAGTAATCAGCTAGGCCCAG
    TCACTAGGTGAACAACTTACTGCTACCAATCAGCCTTAGAGCAGGAATCA
    AACTCATGTCTCAGAAAAGTTATTAATTCAGCTTGTCTTGGGACTTCCTT
    CAGAGTCACTCTTGAATAGCTGAAATAGTAAATGTTAAATCTGTGGATGC
    AAGTGTGTAAATTATTTTAGTCATCAGCTCTAATAAGATGGCCTTTGGGG
    AAATGAGTATAAGGTCACGAAAATGAAATGGCAAGAAGGAGGTCTACTAT
    TTCTTCTGTAATACTGATTTTTACCCCATCAGGGTCAGTCCCCAAAGGTT
    GTAAATGTGAAGCTTGGTCTTTTTCTTTA
    Sequence ID 402
    GACCCTATTCTCAGGATGAAAATAATACACTAGTAATAGTCTGCTCTGTT
    GGTTAACTCCTCGTAAGGAGGTACAATTAAAATGCTGTAGTGTTGCAAGG
    GAAGGAGAGGAAGAATCATATTCCTTCACTAGCAGGATCAAGAAAGCTTT
    TATAGAAATATACAAAATCTTCACTTCTTGAAGGATTGGTAAAATTTAAT
    AGCCAACATTGGGCACTTATTCATTCTCTGAGTAAATATTTATTGCATGC
    TTATCTTGTATCAACATTGNGATGAAAGCNCAAGAATGAAAGAGGAGGGA
    GAATGTTTANAGAATAAGGCTGAAACACAGATTTTGTAGGGAGCGTAGGG
    GAGACTGANAAAACAG
    Sequence ID 403
    AAGACACCTGATAGATTGTCTTGTATTATTTTTCCTTTGCCTTCTTACAA
    TCTCAGTGATTAGAATTGGGCTGAAAACAATACATCAAATTCTCAGCAAA
    ATCCTTATGGGTTGCTGGATACCGAGGGTTTTTAAGATCTTTAGACTTCA
    CTATATAGAACAAATGTTGAATGGGAATTTTCTTTATTTCTATANCGTTT
    NG
    Sequence ID 405
    CCCGGAATCGCGGCCGCGTCGACGATGAGCATTTTTTCATGTGTCTTTTG
    GCTGCATAAATGTCTTCTTTTGAGAAGTGTCGGTTCATATCCTTTGCCCA
    CTTTTTGATGGGGTTGTTTTTTTCTTGTAAATTTGTTTGAGTTCATTGTA
    GATTCTGGATATTAGCCCTTTGTCAGATGAGTAGGTTGCGAAAATTTTCT
    CCCATTTTGTAGGTTGCCTGTTCACTCTGATGGTAGTTTCATTTGCTGTG
    CAGAAGCTCTTTAGTTTAATTAGATCCCATTTGTCAATTTTGGCTTTTGT
    TGCCATTGCTTTTGGTGTTTTAGACTTGAAGTCCTTGCCCATGCCTATGT
    CCTGAATGGTAATGCCTAGGTTTTCTTCTAGGGTTTTGATGGTTTTAGGT
    CTAACGTTTCAGTCTTTAATCCATCTTTTAAAAGTCTCTTCACAGTACAT
    GAGTAGTAGTGACACCAATAATGTCAGAGCAGGGAACTCCCAGGTTCTGC
    CCATCCACAAAAACAACAAATAAGCTGGCAAAAACTTTAAGAATCAACTT
    TTGCAGATCTCTGAAATCTAGTCAAAACTTAAACAGAGGAAAGATTAATA
    AAGACNGGCTGCCTGAGATAACACTAACACACAC
    Sequence ID 406
    CATCAAATAAATAAATAAATAAATTTTAAAAGTCACAGCATTGAATTTTT
    AAATGTTTGGGATGATAAAGCACCTGCTTATCATGAAGCTANAGAAATTC
    AATGACACGTTTGCCAGGGTCTTTGCTAGTGATGTTGGAACAAGTCTGTA
    ATGCTGATGAAACATCACTGTTCGGGCATTATTGCCCCAGAAAGACACTG
    ACTGCAGCTGATGAAACAGCCCTTCCAAGAATTAAGGATGCCAAAGACCA
    AATAACTGTGCTGAGATATACTTACGCAGCAGGCATGCATAAGTGTAAAC
    TTGCTGTTATAAGCAAAAGCTTGCGTTCTCACTGTTTTCAAGGAGTGAAT
    TTCATACCAATCCATTATTATGCTAATAAAAAGGCATGGATCACCAGGGA
    CATCTTTTCAGATTGGTTTCACAAACATTTTGTACCAGCAGCTTGTGCTT
    ACTGCAGGGAAGCTGACTGGATGATGACTGCAAGATTTTGTTATATCTTA
    ACAACTGTTGTGCTCATCCTCCAGCTGAAATTCTCATCAAAAATAATGTT
    TATGGCTCACACCTGTAATCTCAACACTTTGGGAGGATTGCCTGACCCAG
    GAGTTCAAGCCCACCCTGGGCAACACAGCAAGACCCAACCTNTC
    Sequence ID 407
    TTTTAAAAATCATAAAACGTTTCTTACAAAAGAGCATTACATTNTGCACA
    CTGCTCTGAACAGATGCCAGGGACATGTGGACTATTGTTACTTTTCCTCC
    CTGTCCCACCCCCCAAATGTTACAGTGACCACAAAGCAAGGTGTTCACAA
    TAATTACATGGGGGGAATTTTTTAAACCACCAACAATAACGAAAAATAAA
    ATCCACTCACTCTGCTGCTGTTTCAAAATTTCAATGTTAGTTTTTGCACG
    CCCTTCCCCCCCCCAACCCTGTTTGTAAGGAACTAAAACATTACATCTGG
    TGAACAGCAAAGATTTCACTACACCTCAAATGCAGAACACCTATGAAGCA
    GAGGAATGTTGGCTTTTTAAACAGAAGCAGATAAAAAAAAAAGATGCAGG
    ACTCCTTCAGTTCTTCACTAGTCTTAGAAAAACTTTCCAGAATACTGCTT
    CACACTATAAAAAAGAAAAAATATCTTGCATTAGAATCCTTCAACATCTG
    CATACTGCTTCACACTGTTCGTTTCTAGGAGCACTTTGTCACAGGACACT
    TCTGCTTATATTTCTTTAATCAGAACTTAGTTGGATGGGCCGGGCATGGT
    GGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGG-GGGTGGATCA
    CC
    Sequence ID 408
    CCATCTCCAAATTTAGTATTCATTCTGTTTAGCATATTATCAGTTGCCAT
    CTATTTGTTTTAACTGATTACTTGAATCTGATTAAACATCACAGAAATGG
    GCTTTGATAAGAACAATATTGAATAAGAAATTTTAAATAACAAAACAGCT
    TATAGAAAAATTCAGCATAACTTTTCCATCACCTTCACCACCCTTGCCTT
    TTATTATCCTGTCCTGTATCACTGCTTTCTGTTAGCAGTGTTGTGTGAGT
    TAGGATTTGGGCAGGAAAGCAAAAGCAACCACCCGTCATTTTCCCAGAAT
    GAAGGGTTTGACGTAGGATGTAGACTTTGTATAGTAGTTGGGAGAGCTGT
    GGGAGTGAAGGTCAGGGATGTCACCTACAGAAGTCAGGGAATCTGCCACC
    AGAGATCCTGCATCAGAAACAGCCAACAGCGTGCTTCTGAAGAACTAGTG
    GGGAAGTGGCTATAATTCTTAGGAATCCCAGCAAGTCCGCACCACTGTCT
    CAGTCTACAGCAGTGGAGAAAGGGGTTTCCAGGAGCTCTCTGGAAAGTTC
    CTGCCCACACTTTGCAACAATCTTCAGAGGATAATGGGCTTCTCTTCCAG
    CTTCCACACCCAACAAGAGTGCCTTTCATCGGCCAACTCTAACCTGGAAC
    CCTATGGCAGAGGGGATTTAGGAGACAGTTTGTNATGTCTGTGGAATGCA
    AATGAANANGTANCAATGCTTANTTGACAGCGGNCATACACAAATNTNGA
    AA
    Sequence ID 409
    GATCCGTNGACT
    Sequence ID 410
    CTCTTCCCAGCCCCTGAGCCCAGCCCCTTCCCAAGTGGTGCCAGACAAAA
    AACTACATGGCCCTTTCGTGTCTTGGGGGTGGAAAGGGAGGGATGAATTG
    GGGTGATAGAACCCTGGTGAATTCAGAGTAATCTTTCTTTAGAAAACTGG
    TGTTTTCTAAAGAAACAGGATAGGAGTTTAGAGAAGGCACCAAAGCTTTC
    ACTTTGGTTTGGCACCAGTTTCTAACCATCTGTTTTTTCTACCCTAGCTA
    TCTTTTATTGGTAAAATATAAATGTATAATTATGTTTGTAGAGCTTTACC
    AAGGAGTTTCCCTCCTTTTTTGTTTGTTGATTAGCAAATTTTTGATTCTC
    CATTTTCCAAAAGTAAGAGACTCCAGCATGGCCTTCTGTTTGCCCCGCAG
    TAAAGTAACTTCCATATAAAATGGTATTTGAAAGTGAGAGTTCATGACAA
    CAGACCGTTTTCCATTTCATCTGTATTTTATCTCCGTGACTCCACTTGTG
    GGTTT
    Sequence ID - 411  nt: 505
    TGGAGCTGAAAAATTCCTATTACCTAGGGGCATCACAACGCATTGCATTT
    CGCCCGTGTTTGGGATGATGCTGGTGTAAACCTACTATGCTGCCAGTCAT
    GTAAAAGTATAGCACACACAATTAGTAGGTAATGCTTGCAAATAATAATG
    AAAGACTCTGCTACTGGTTTATGTATTTACTATGCTATACTTTTTGTCAT
    TACTTTAGAGTGTACTCCTACTTTTTTTTTTTTTTTTTTTGAGATGGAGT
    TTCACTCTTGTCCTGTAGGCTGGAGCGAANTGGCGCGATCTCGGCTTACT
    GCAACCTCCACCTCCTGGGTTCAAGCGATTCTCCTGCCTCANCTTCCCAG
    AGTAGCTGAGATTACAGGCATGCACCGCCACGCACGGGTAATTTTGTATT
    TTTGGTAGAGACAGGGTTTCACCATGTTGGCCAGGCTGGTCACCAACTCC
    TGACCTCAGGTGACCCGCCTCCTCACCTCCAGAGTGTTGGGATTACAGGN
    GTGAG
    Sequence ID 412
    ATAAAAATTAGCTGGGGGTGATGGGCCCTGTACCCCAGCTACTCGGGAGG
    TGAGGTAGGAGAATCACTTGAACCCGGGAGATGGAGGTTGCAGTGAGCCA
    AGATCGTGCCACTGCACTCCAGCCTGTGTGACAGAACAAGACTCTGTCTC
    AAAAAAAAATAATAATAATAATAATAATAAAAAGGAATAACATAGCTAGG
    AATAAATTTAATCAAAGAGGTGAAAGACTTATACACTTAAAACTACAAAA
    AAAAAATCACTGAAGGAATTATAGACCCAAATAAAAATAAATAAAAAGAC
    ATTCTGTGTTTTAGGGAAAGAAGACTTAATATTGTTAAGATGTCAATACT
    ACCCAAAGTGATCTACAGATTCAACATAATCCCTATCAAAATTCCAACAG
    CCTACTTTGTAGAAATGGAAAAGCCAATTTTCAAATTCAGATGGAATTGC
    GAGGGGTTCTGAATAACAAAACACAATCTTGGGGAAAAAAAACAAAAAAC
    AAAGTCAAAGAACTCACACTTCTCTATTTATAATTTACTACAAAGTTATA
    GNATCAAAGTCGACGCGCCGCGATCCGGGC
    Sequence ID 413
    CACAGTACTCCATTTTGGGGTCCAAACTGTAATGCTCAAAATAATAAATG
    CTTACACGAAAATTATTTATTGAGAATATTCATATAAAAATTACCTAAAG
    CAAAGTAAAAAAAGTAAAATCAAGGTGGTATATTTGAAGTGAATGGTGAT
    TGGAAATTTTTAGCTGTAACAAAAAGAAAGAAAACAACTTTTTTTAAAGC
    CTCATTCTCTTTTCTTTCAAAATGTACCTTATTCCCACACACTCTTGGGC
    TGACCTTTATTTTATCAATAAGCTCAATATTACTTTGTTTAAAATAAGAT
    GCTTCAGCAAAAGTCATTCTCTCTTTAACCATATAATTTAAAAACTCCTC
    TTCACGATTGATAGCAAAATCAGAAACGTTAGGGCACCAGTGAGTTGAAA
    AAACTGGTCTTAAGTTGGAAAAACTATTATTAATAATATTATCCTATCCA
    TCCATATCTATTGAAATTGTCAGGTCCATAATTTCATTTTAATTAATTAT
    AGGAAAGAAGAAAAGATAATACCCATTTGTTCTAT
    Sequence ID 414
    CTCAGACTCTTTCTGCCCTAATGGCCATTACTATCCAGTCTGTATTGCTA
    CAAGGGACCCACTGGTACCCCTTTTAGATTCTATCAAAAGGAACAGGGTT
    TTCCTAGAGGCAGGCAGCCTGGTGGTATGGCACAGCAGAAGCTTACTGCT
    AATGAAATGGGAACCTCCCCCTCCCTTGTGGTTTCAGCACAGAACCTGAA
    TGCCAGGAAAAATTCCTGGGCCAAGAAGCTAAAGCTAAAGAAACCTTCCT
    TTTTTCAACGTTTTTTTTTCTTTCAAACTGTAGGGTCACTTTTGATTGAG
    GCAAAGGGGTCCTACTGTAAGTGGAAAAGACTCACTCCCCTAACATAAGT
    TTTCACTGTGGTGGGATGGTGCCGCCCGATATGCTTGATATGCTTTTCCT
    TCCACATGTTAAGCTAGGAAACCTAACAGGATGTCAGCAGGGCAGTTAAC
    TCTGGACTCANAGCCCTCAAGGGCATGTGGCANAACCTCATGGCATNCAA
    GACCA
    Sequence ID - 415  nt: 596
    GTATAATTGATTCTTTTGAACCTAAAGTATAAGACTTCACGATTAGAAAA
    AAATTATCCAAAGACTAATGTAATTAAGTGAGGAAAAGGTGCTGGAGGAA
    CTGGATAACCACATGGAAATGTATGAACCATGACCTCTATGTCACATACT
    ATATATAAAACTTAATTTGAGGTGTATCACAGAGCTAACTGTGGGGGCTA
    AAACGTTGAAGCCTTTGGATGGCCGCACAAGAGATGTCTGCATTCATAAC
    CTTGGGGAGGGTATGAACATTTCTTGGTAACATGCAAAAAGCACTAACTG
    TAAAAGAGAACAGTTGGTCAGTTGAATTTCATGAAACATTGTAAACTTCT
    GCTAAACAACTGACACCATTAAGAATGTGGAAAAAGGCTGGGCACAGTGG
    CTCATGCCTATAATCCCAGCATTTTGGGAGGCCGGGGCGGGAGAATCACT
    TGAGGCCAGGAGTTTGAAACCAGCCTGGGCAACATGGCAAGACCCCGACT
    CTACAAAAATATTTTTAAAAATTAGTTGGGTGTGGTGATGCACTCCTGTA
    GTCCTAGCTGCCAGGANGCTAAGGNGGAAGGATCACTTAACCCTGG
    Sequence ID 416
    CTGGTGGCGGCGGTCGTGCGGACGCAAACATGCAGATCTTTGTGAAGACC
    CTCACTGGCAAAACCATCACCCTTGAGGTCGAGCCCAGTGACACCATTGA
    GAATGTCAAAGCCAAAATTCAAGACAAGGAGGGTATCCCACCTGACCAGC
    AGCGTCTGATATTTGCCGGCAAACAGCTGGAGGATGGCCGCACTCTCTCA
    GACTACAACATCCAGAAAGAGTCCACCCTGCACCTGGTGTTGCGCCTGCG
    AGGTGGCATTATTGAGCCTTCTCTCCGCCAGCTTGCCCAGAAATACAACT
    GCGACAAGATGATCTGCCGCAAGTGCTATGCTCGCCTTCACCCTCGTGCT
    GTCAACTGCCGCAAGAAGAAGTGTGGTCACACCAACAACCTGCGTCCCAA
    GAAGAAGGTCAAATAAGGTTGTTCTTTCCTTGAAGGGCAGCCTCCTGCCC
    AGGCCCCGTGGCCCTGGAGCCTCAATAAAGTGTCCCTTTCATTGACTGGA
    GCAG
    Sequence ID 417
    GCAGGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGAGGAAACCCGCAGAT
    AAGTTTTTTTCTCTTTGAAAGATAGAGATTAATACAACTACTTAAAAAAT
    ATAGTCAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTTAACGTAA
    TTTTAATAGCTTAAGATTTTAAGAGAAAATATGAAGACTTAGAAGAGTAG
    CATGAGGAAGGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTTGAGA
    TGAAGCTTCTTCATGGAGTAAAAAATGTATTTAAAAGAAAATTGAGAGAA
    AGGACTACAGAGCCCCGAATTAATACCAATAGAAGGGCAATGCTTTTAGA
    TTAAAATGAAGGTGACTTAAACAGCTTAAAGTTTAGTTTAAAAGTTGTAG
    GTGATTAAAATAATTTGAAGGCGATCTTTTAAAAAGAGATTAAACCGAAG
    GTGATTAAAAGACCTTGAAATCCATGACGCAGGGAGAATTGCGTCATTTA
    AAGCCTAGTTAACGCATTTACTAAACGCAGACCAAAATGGAAAGATTAAT
    TGGGAGTGGTAGGA
    Sequence ID 418
    CCCGGAATCGCGGCCGCGTCGACGGGAGGTGATAGCATTGCTTTCGTGTA
    AATTATGTAATGCAAAATTTTTTTAATCTTCGCCTTAATACTTTTTTATT
    TTGTTTTATTTTGAATGATGAGCCTTCGTGCCCCCCCTTCCCCCTTTTTT
    GTCCCCCAACTTGAGATGTATGAAGGCTTTTGGTCTCCCTGGGAGTGGGT
    GGAGGCAGCCAGGGCTTACCTGTACACTGACTTGAGACCAGTTGAATAAA
    AGTGCACACCTTATAAAAAA
    Sequence ID 419
    CCCGGAATCGCGGCCGCGTCGACGGGAGGTGATAGCATTGCTTTCGTGTA
    AATTAT GTAATGCAAAATTTTTTTAATCTTCGCCTTAATACTTTTTTAT
    TTTGTTTTATTTTGAATGATGAGCCTTCGTGCCCCCCCTTCCCCCTTTTT
    TGTCCCCCAACTTGAGATGTATGAAGGCTTTTGGTCTCCCTGGGAGTGGG
    TGGAGGCAGCCAGGGCTTACCTGTACACTGACTTGAGACCAGTTGAATAA
    AAGTGCACACCTTATAAAA
    Sequence ID 420
    CTTCATTTGAAATGGTTGAATCTGCTGTGTAATAAAGTGGTTCAACCATG
    ATTAGGAACTGAAATTTAGTAGAAGAGGGAAAAGGAGTTAATGTAACAAA
    TTATTTTAGCTACAAACCCCGGTAATAGAGCACTTGGGGGATGGGATGGG
    GTGGGTTGGTGAGACAATCAGAATGGTAAATTGATTAAATGCTCCTAACC
    CTGTAATTTTGTGCATAGAGCACCCTATGCTGTGGAAATAACTGTTCTTA
    GATTTCATTGTAACTGGACTGTTCAGGTTGCCCAGAGGGAAAGAACATTC
    CTAATTCTAATAAAATAAACTTTTATTTTGTTTA
    Sequence ID 421
    TGTCATTGAATCTGCTTGTTACTTAAATGCTAAACTCAATTCTGTAATTC
    AATAGGTGCACCTCTCTGAGAAACATAAGAGACAATGAGGAAAAGGATTC
    AGCATTCCGTGGAATTTGTACCATGATCAGTGTGAATCCCAGTGGCGTAA
    TCCAAGTAAGATGTTCACAAAGATTTGTTTTTAATGTCTAATTAATAAAA
    TTTTAAAGGAAGAAACATTCTAATACTTTAATTATAAAAAGTTAACTATT
    TTCAAAGGTATCAAAATACAGTTAAACCTTTAAAATGTATATTTCTTAAT
    ATCTTGAAATTGTAATGCCTTTTTTTTTTCCTAAATTTTTTTTGTCATGA
    AATGAGATAGTAACAGCAGATTGGGACAACAAGGTTATATTCTTGTCTTG
    AATCAGGCCATGGCTTCTTTCATCCAAATTTCAGACCTCATTTATTTACT
    TTGTCCCTGCCTCCCATCCCTGGATATCAGTTTGTGGATATCTACAGTTA
    ATAGAGTGACCAAATAGTAGGAATACTGTCTCTCTATTCTGAATAAAATC
    TTTGAATCAGATTTAGAAATAATGAATAAAATACAAATCAGCCATTGAAA
    TTGCTCTAATTTTGAGAGCTTATGATTTATTCATCTTTGGTTTCCAAGTT
    CAAGTTATATGTAGACATTTTAATT
    Sequence ID 422
    GCTTCCTAGGTGAGGTCACGAGGAAACCTGCTGGCCAAGTGACCTGGCAG
    GGTGTGGCCAGTGTGGCCAGGGCCGCCGAGCCTGCTTTCCTTCCCTGCAG
    CAGGAACCCTTCTGGGGCTGTGATCCTGCGATGGTGCCTGGGTGGGAGTG
    GGGGTGGGGGGCGGGATGGTCTCCCTACCTGCCAGCTTCTTGGTTTGAGG
    TGAGGACAGCCCCGGAAGCTCANACTTGGCTCCTGTCCATGTACTTGGGG
    CCATGAGCTCTGCAGGGACCTTGGAAAGANAGAGACGGGTGGTGTANGGC
    ANGGGAAGGCATTGTCTTCAAACAGGAAAAAGCTGANAATGGAAACAGGC
    GAAACTTACCAAGTGTAACATCACCTGGAACTGAAGGAGGGTGGGAAGGT
    TTTAATTATTTTAAAAATAGAGATGGGGTCTCACTATGTTGCCCAGGCTG
    GTCTCAAACTACTGGGCTCAAGTGAACCTCCTTCT
    Sequence ID - 423  nt: 387
    TGTTTCTCNAGGGCGAGAGGCTGTCTTANAGCACCATTCTCTGGCCCTNG
    TCCCATGAGAAGGAACCGCACTCAGGAGCCACACTCTCCCACTNCCCTTG
    CCCANAAGACTCACAGAGGGCACGGAGCTGGCTGTGGTGAGAGGAGGTCC
    ANCAAATTCCTGTCTGCANAAGGGTTCTGAACACCACCGCCTGGCAGCGT
    GCTGGAGGAGGGATTCCTCTTTTCCTCACAGCAATTCTGACCAGAAACCT
    GTCAAATCAGGAATGGCTAAAATAAGACCAGGGTATGAATGACCATCAGC
    CACAGTAAAACCAAGGCACAGCTCTCCTGAGCCCACCCAAGCTGCTGTGG
    CCCAGACTGGTGACATCACCTCAGGGCAAAAAAAAAA
    Sequence ID - 424  nt: 420
    CGCAGAATGGCTCCCGCAAAGAAGGGTGGCGAGAAGAAAAAGGGCCGTTC
    TGCCATCAACGAAGTGGTAACCCGAGAATACACCATCAACATTCACAAGC
    GCATCCATGGAGTGGGCTTCAAGAAGCGTGCACCTCGGGCACTCAAAGAG
    ATTCGGAAATTTGCCATGAAGGAGATGGGAACTCCAGATGTGCGCATTGA
    CACCAGGCTCAACAAAGCTGTCTGGGCCAAAGGAATAAGGAATGTGCCAT
    ACCGAATCCGTGTGCGGCTGTCCAGAAAACGTAATGAGGATGAAGATTCA
    CCAAATAAGCTATATACTTTGGTTACCTATGTACCTGTTACCACTTTCAA
    AAATCTACAGACAGTCAATGTGGATGAGAACTAATCGCTGATCGTCAGAT
    CAAATAAAGTTATAAAATTG
    Sequence ID 425
    GGAAACTGATGCCAGTCAGAAACTCAGATCAAATGAAGGGGTGAAGAGAA
    CCAGAATTGATCTCTCTGTAGGAGAATATAAATGACTTTTTTAAAGTACA
    TATTTTCTGTGAAAGACAGTTTTTTGTTTAATGCAAAAATGTTAACAATG
    TTTATATCATGTAGAAGTAAAAGATCGTGAAACAGCACAGAGAACAGTAG
    TAAGACAGATTGAATTGCACTGTTGTAAGATGATGAACTTACAATATTAA
    GTGAAGGTAGACTGTGATAGATTAAGGATATATATTGTAATCCCTAGAGC
    AATTGTCAAAGTGGTACAGGTAAAAAGCCAATAGAGGTGATAAAATGGAA
    TACTAAAAAATATCAGATGAATAATAAAGAAGACAGGAAATGAGGAACAG
    TGGAACAGAATGAATAAAAAACAAGACCATTAACTTAATCATTAATAATT
    ACTTTAAATGGGTTAAACATTATGGTTATAAGGCAGAGATTTTCAGACTA
    GATAAAAGAGCAAGCTCCACTATATACTGTCTACAAGAGATATACTTTAA
    AGTGTATATTATATTTAAATATAAAGATTTGGAATAAATAAACCTAAGAA
    TAAGCTTACTAGGGAAGTGAAAGATCTGTACAACAAGAATTACAAAACAC
    TGCTGAACGAAATCATAGGTGACCA
    Sequence ID 426
    GTCCCGGAATCGCGGCCGCGTCGACGTTTCCTCAAAATTTATCTTCCTGT
    TAATGTCAGGCATGTATCTCCTTAGCTTGCCACAAATAACTATATATACC
    ACAGACCTTCCTTTGTAGGGCTAACAGTGTTGCATTGTAAGTGGAGGCCT
    CATAGATACCTGGCCTTTTCCTACCTTATTCCAAAGATGGTTGCATCTTA
    TAAATAATGTCATTCTTCAGCAAATGGTATGGAAATGAGATTGTAATGTC
    ATTATTTCCTCTTTAAATAATCAGGACAACTCATGATACAAAGAGCTCTT
    CTCTATAAAAGGTGGGACTTTTTTTTTTAGTAATAGCAAAAATAAAATTG
    TACCTCCTTAATCTTCTACAGAAAGATGGATTTCATTTTCAACATTAAGA
    GGTAGTTTTAAGAAGCAGTAGAAGTCAGCCTGGGCAGCATGGTGAAACCC
    CGTCTCTACAAAAAAGTTAGCTGGGCTTAGTAGTTGCAATCCCAGCTACT
    CTGGAGGCTGAGGTTGGAGATCATCTGANCCTGGGGAGGTCNAGGCTGCA
    ATGATACANTGAGCCCTGATTGTGCCACTCCACCTGGTTGCAGA
    Sequence ID 427
    TTCCAATCTTCGTGTTCACTTTAAGAACACTCGTGAAACTGCTCAGGCCA
    TCAAGGGTATGCATATACGAAAAGCCACGAAGTATCTGAAAGATGTCACT
    TTACAGAAACAGTGTGTACCATTCCGACGTTACAATGGTGGAGTTGGCAG
    GTGTGCGCAGGCCAAGCAATGGGGCTGGACACAAGGTCGGTGGCCCAAAA
    AGAGTGCTGAATTTTTGCTGCACATGCTTAAAAACGCAGAGAGTAATGCT
    GAACTTAAGGGTTTAGATGTAGATTCTCTGGTCATTGAGCATATCCAAGT
    GAACAAAGCACCTAAGATGCGCCGCCGGACCTACAGAGCTCATGGTCGGA
    TTAACCCATACATGAGCTCTCCCTGCCACATTGAGATGATCCTTACGGAA
    AAGGAACAGATTGTTCCTAAACCAGAAGAGGAGGTTGCCCAGAAGAAAAA
    GATATCCCAGAAGAAACTGAAGAAACAAAAACTTATGGCACGGGAGTAAA
    TTCAGCATTAAAATAAATGTAATTAAAAGG
    Sequence ID 428
    TGCAGGATCCGTCGACTCTAGATAACATGGCTAGAAAAGAGAATGAAAAA
    GTTGGAATTTTTAATTGCCATGGTATGGGGGGTAATCAGGTTTTCTCTTA
    TACTGCCAACAAAGAAATTAGAACAGATGACCTTTGCTTGGATGTTTCCA
    AACTTAATGGCCCAGTTACAATGCTCAAATGCCACCACCTAAAAGGCAAC
    CAACTCTGGGAGTATGACCCAGTGAAATTAACCCTGCAGCATGTGAACAG
    TAATCAGTGCCTGGATAAAGCCACAGAAGAGGATAGCCAGGTGCCCAGCA
    TTAGAGACTGCAATGGAAGTCGGTCCCAGCAGTGGCTTCTTCGAAACGTC
    ACCCTGCCAGAAATATTCTGAGACCAAATTT
    Sequence ID - 429  nt: 535
    CACAGTACTCCATTTTGGGGTCCAAACTGTAATGCTCAAAATAATAAATG
    CTTACACGAAAATTATTTATTGAGAATATTCATATAAAAATTACCTAAAG
    CAAAGTAAAAAAAGTAAAATCAAGGTGGTATATTTGAAGTGAATGGTGAT
    TGGAAATTTTTAGCTGTAACAAAAAGAAAGAAAACAACTTTTTTTAAAGC
    CTCATTCTCTTTTCTTTCAAAATGTACCTTATTCCCACACACTCTTGGGC
    TGACCTTTATTTTATCAATAAGCTCAATATTACTTTGTTTAAAATAAGAT
    GCTTCAGCAAAAGTCATTCTCTCTTTAACCATATAATTTAAAAACTCCTC
    TTCACGATTGATAGCAAAATCAGAAACGTTAGGGCACCAGTGAGTTGAAA
    AAACTGGTCTTAAGTTGGAAAAACTATTATTAATAATATTATCCTATCCA
    TCCATATCTATTGAAATTGTCAGGTCCATAATTTCATTTTAATTAATTAT
    AGGAAAGAAGAAAAGATAATACCCATTTGTTCTAT
    Sequence ID 430
    CAGGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGAGGAAACCGCAGATAA
    GTTTTTTTCTCTTTGAAAGATAGAGATTAATACAACTACTTAAAAAATAT
    AGTCAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTTAACGTAATT
    TTAATAGCTTAAGATTTTAAGAGAAAATATGAAGACTTAGAAGAGTAGCA
    TGAGGAAGGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTTGAGATG
    AAGCTTCTTCATGGAGTAAAAAATGTATTTAAAAGAAAATTGAGAGAAAG
    GACTACAGAGCCCCGAATTAATACCAATAGAAGGGCAATGCTTTTAGATT
    AAAATGAAGGTGACTTAAACAGCTTAAAGTTTAGTTTAAAAGTTGTAGGT
    GATTAAAATAATTTGAAGGCGATCTTTTAAAAAGAGATTAAACCGAAGGT
    GATTAAAAGACCTTGAAATCCATGACGCAGGGAGAATTGCGTCATTTAAA
    GCCTAGTTAACGCATTTACTAAACGCAGACGAAAATGGAAAGATTAATTG
    GGAGTGGTAGGATGAAACAATTTGGAGAAGATAGAAGTTTGAAGTGGAAA
    ACTGGAAGACAGAAGTACC
    Sequence ID 431
    CGCTGGGTGCCTGCAGCGCCTCCCTTGTCTCATATGGTGTGTCCAGCACT
    CTATTGTTGTAAACTGTTGNTTTGNCTGACCTAAATTNTCTTTACTAAAC
    ANATTTAATAGTTNAAAAAAAAAAAANANCA
    Sequence ID 432
    TTTTAAAGTCATCTCTATAGGAAGGTGCTGGGCAGGGATCCCAGAGAAAG
    AAAGGGTCCAAGACTCCATTAACTGCCCTGGATGAAGGGCACTGCTACAG
    CAGCTAGTACCAGAGACTCTCCTATCTCACGGTTGAGGCAGACCCAGGAT
    AGAATAGAGAATAAAAGGAATGCTTATAGGAAACAATTTTGTATGGAATG
    CTAGATGGCCAAGCCTCAGCCTTTGGTCCAGTGCAACCCTTGCCTCGCTT
    GTCAACAGTGAAAAATTAGTTTGGTTAGAAGAACCATCTGGAAACACACC
    AGCTTCTGCTACCTTCATGCTCATTGTTAAAAAAAGATTAACCAGTGTGA
    ACATTCTGATCTGTTAATTCCAGGGACTGTTTTCTTTCCAATGGACTGTT
    TGTTGGTAGAATAACCCCCAAAAGCTCAAAGCTAAAATGCATCATCAGTC
    CTAGTCGGCAGTTCCTTAAGAATGGACTGGCGGCGTGGTTGAGCTGATAT
    GGAAAAGCTGCACCTTCCTGCAGAAGATCAACTGACCTGCTATCCCACCC
    CAAATTTCAACCTGAGGTATATTTCAATGAAGGCAGGTAGCTGTGCTTCT
    CAGAGCA
    Sequence ID 433
    TCCCGGAATCGCGGCCGCGTCGACCCGCCGCCGAGGATTCAGCAGCCTCC
    CCCTTGAGCCCCCTCGCTTCCCGACGTTCCGTTCCCCCCTGCCCGCCTTC
    TCCCGCCACCGCCGCCGCCGCCTTCCGCAGGCCGTTTCCACCGAGGAAAA
    GGAATCGTATCGTATGTCCGCTATCCAGAACCTCCACTCTTTCGACCCCT
    TTGCTGATGCAAGTAAGGGTGATGACCTGCTTCCTGCTGGCACTGAGGAT
    TATATCCATATAAGAATTCAACAGAGAAACGGCAGGAAGACCCTTACTAC
    TGTCCAAGGGATCGCTGATGATTACGATAAAAAGAAACTAGTGAAGGCGT
    TTAAGAAAAAGTTTGCCTGCAATGGTACTGTAATTGAGCATCCGGAATAT
    GGAGAAGTAATTCAGCTACAGGGTGACCAACGCAAGAACATATGCCAGTT
    CCTCGTAGAGATTGGACTGGCTAAGGACGATCAGCTGAAGGTTCATGGGT
    TTTAAGTGCTTGTGGCTCACTGAAGCTTAAGTGAGGATTTCCTTGCAATG
    AGTAGAATTTCCCTTCCTCCCTTGTCACAGGTTTAAAAACCTCACAGCTT
    GTATAATGTAACCATTTGGGGTCCGCTTTTAACTTGGACTAGTGTAACTN
    CTTCATGCAATAAACTGAAAAGACCATGCTGCTANTC
    Sequence ID 434
    TTCGGACGCAAGAAGACAGCGACAGCTGTGGCGCACTGCAAACGCGGCAA
    TGGTCTCATCAAGGTGAACGGGCGGCCCCTGGAGATGATTGAGCCGCGCA
    CGCTACAGTACAAGCTGCTGGAGCCAGTTCTGCTTCTCGGCAAGGAGCGA
    TTTGCTGGTGTAGACATCCGTGTCCGTGTAAAGGGTGGTGGTCACGTGGC
    CCANATTTATGCTATCCGTCAGTCCATCTCCAAAGCCCTGGTGGCCTATT
    ACCANAAATATGTGGATGAGGCTTCCAAGAAGGAGATCAAAGACATCCTC
    ATCCAGTATGACCGGACCCTGCTGGTAGCTGACCCTCGTCGCTGCGAGTC
    CAAAAAGTTTGGAGGCCCTGGTGCCCGCGCTCGCTACCAGAAATCCTACC
    GATAAGCCCATCGTGACTCAAAACTCACTTGTATAATAAACAGTTTTTGA
    GGGATTTTAAAA
    Sequence ID 435
    CTGCAATGTGCAATAGTTGCACCACTGCACTCCAGCCTGGGTGACAGAGT
    GAGAACCTATCTCTTAAAAAAAAAAAAAAAAAAAGGAAGAAGAGACATGA
    GAGGGCCCAAGTCACTTGCTCACTCACTTTCCGTGTACATGTACCAAGAA
    AAGGCCATGTGGGAAAGAGCAAGAAGGCAGCCGCCTTCAAGACAGGAAGA
    GAGCCCTCACCAGAAACTGAGCCAGAACCTTGGAATTCCAGCCTCCANAA
    CTGTGAGAAAAGAATTTTCTGTTGTTTCAGTCCCCCACACTATGGCATTT
    TGTTACGGCAGCCTGAGCTAATACTCCTACTTTGTCCTGCATTTACTTGG
    TCTTCCAGTTAGTTTTTTAGACTTTGGGAATCAGAGCAGTCAGTTGTCAG
    ATTTTAGCTTACAGTTGTCCTACCTGTGCAACTGAAATTTCTTCCATTTT
    AAACCAGAGCAGAGTTTTAGAGTCAAAAGAAACCAGATCTTTTAGTGCAG
    AAGCTTTCCACTGTATTANAAGTGAGGAAGTTGGT
    Sequence ID 436
    AAAAAAACTCCAGAGAAGTTTATAGAAAGAGATGACATGTAAACCCTGCT
    GAAAAATAGTTTCATTTGTTAGAATATAATTGTCTTCCACTAAAAAAAGA
    AAAAAAAAAGCATTTAAGGCTCTAAGATCTCTTGAAGTACCACTTTTCCT
    GAATCCCAGAGTTTTTATGTGCATTATTTTTATGCGTTTGTAGTTTGATA
    TGTTGTATTTATAAGTAGTTTTAGCTTTCCATTATGAATTCTTCTTTGAC
    CCATGAGTTATTTAGGTAAGTGTTTAAAAATTTACAATAGTTTATATATG
    CAAATATTATGTTGTTAGAGTTGGTTTTCATGTCATTTTTACATATACAG
    GGGCAGTTTCCCCAACTAAATTGTATATTCCTTAAAGCAGCACTCTTAAA
    TTTTATTTCTGTGTCAATTTCTTGNCTGTGTTTCCTGGCATGGAATACAT
    GGCATAAAATTTGTTATGTAATTAAATGAAATATTATTATACTTTCTATT
    TTTTAGAAAAAA
    Sequence ID - 438  nt: 577
    GTCGACAGGGATGACATAACTATTAGTGGCAGGTTAGTTGTTGGTCACTT
    TCAACTCTGGGTTCAAGCGATTCTCCTACCTCAGCCTCCCGAGTAGCTGG
    GATTACAGGCATGCACCGCCACACCTAATTTTCTATTCTTAGTAGAGACG
    GGGTTTCTCCCTGTTGGTCAGGCTGGTCTCGAACTCCCGACCTCAGGTGA
    TCTGCCTGCCTCAGTCTCCCAAAGTCCTGGAACCACAGACATGAGCCACC
    ACGCCTGGCCCCTTTTAAAATATTTCTGCTCATTGATGATGCACCCAGTC
    ACCCAAGTGCTCTGATGGAGATGTATAAGGAGATGAATGCTGTTTTCATG
    GCTGCTAATACAACATTCATTCTGCAACCCCCAAATCAAGAAGTAATTTT
    GACTTTCAAGTCTTATTATTTAAGAAATATATTTTGCAAGACTATAGCTG
    CCATAGACCGTGATTCCTCTGATGGATCAGACAAACTAAAATGAAAACCT
    CCTGCAACGTATTCATCATTCTAGATCCCTGAGGAATCGCCACACTGACT
    TNCACAATGGGTGAACTGGGTTACAGT
    Sequence ID - 441  nt: 552
    AAACAAAATTATTCTCTGAGAGGGAAAGGACATTTGAGGGAAACATCAAA
    TTTCCCCATAAATAAATGAATGGAGTTTGCAGGAAGGTGAGGGTGAGCAG
    AGATGTGTGTGGACATCTCTGACCATCCATCGCTGTATTCAAATGGATTG
    TTTTATTCCATTCTGGTCTCAGGCATGACCACGTCCAGTGAAGACATTTG
    AGGCAGCACATCTCAGGACCCAGGCAATAGACTGGCCCCAACTCAGGCTG
    GACTAAGGTGTGATTAATTCTTTGTTTTTTGTGTGGAACAGCTCACCTTG
    TCAGACAGCCTCAGGGCATCTCTGAGACACAGGGGCAGAAAATGACATTC
    ATCTTTTGAGTCCTCATCCATGGAGTGCTGTGTTTGGGGGGCTGCATCTG
    CTGAAGCGAGAACCCCATTCTGCCACCCCACCAGGATGCCCATTCTCCAG
    GACTTCTCCAACTTACTATTAGACTAAACCAGAACAAGCAACAAACTGTA
    TTTATGCAAGCAAAATTGATGAGAAAATTATATTCAAATAAAGCAAAAAT
    TA
    Sequence ID - 442  nt: 606
    TCGTGCCACTGCACTCCAGCCTGGACGACAGAGTGAGACTCCATCTCAAA
    ATAAATAAATAAATAAATAAATAAATAAATAAATAAAAAAATAAAAAATA
    CTTCTGCTATGAAAAACCTAGTTGGTATTTTTGCTTATTTAATACTATAG
    AAATATGGTGATCTCATCTTTAATAGAGTGCTTTTAAGGTCCCCAGTGAT
    AATCTCCTAAAATCATGAACTTTAAGAATTTATAATGTTAATATGAGGAA
    ATGAAATCTGGATTATCTCACCACATATTATATAATTCATTAGTGACAGA
    GCAAGAACTCCAGGTCACCTGTCTATTCCATGTTTTTCCTATCTGCCTTT
    AAATGTTGAGATACTACCCTTATCTCATGTGAATGGAGAAACTGCCTAAA
    ATGCTAAAACTGACTCAGAGGCACCCAGACATAAGTGAAGTGTGATTAGA
    AAATCCTGGTCAGTTGAGTCTTAGCCAAATGTGTACCTACTGTGTCTGCC
    TCTATCAAGTCAATGAAAACATGATCTGAGAACTGTAAGTCCATTTATGG
    AAAGGGTTGATTTANAGATATTTTGAACTTNCAGTGATGAGCCCCTTCTC
    AAATAG
    Sequence ID 446
    CGGACTCCTGTGCTAATTGTCAGCTTACATATCATTGTATAGAGACTGTT
    TATTCTGTACCAAACTGATTTCAAAAGTACTACATNGAAAATAAACCGGT
    GACTGTTTTTCTTCATAAAGTTCTGCGTTTGGCATCTTCACTCTTTCCAA
    AATGTATCTGTACATCANAAATGTCACTATTCCAAGTGTCTTTTTAGTGT
    GGCTTTAGTATGGCTTCCTTTTAATATTGNACATACATTGNATCTTTGTT
    TTATGGNAATAAGTAATAAAAATGTAGACTTCATATTTTGTACAAAATGT
    CCTATGTACAGAATAAAAAAGTTCATAGAAACAGCCNANAA
    Sequence ID 447
    AGGCCGAGGCAGGCAGATCNCNTGAGGTCAAGAGTTTGAGACCAGCNTAG
    CTAACATGGTGAAACCCCATCTCTACAAAAATATA-AAAATTAGCCTGG-
    GTGGTGATGGGCACCTGTAACCCCAGCTACTCGGGAGGCTGAGGTAGGAG
    AATCACTTGAACCCGGGAGATGGAGGTTGCAGTGAGCCAAGATCGTGCCA
    CTGCACTCCAGCCTGTGTGACAGAACAAGACTCTGTCTCAAAAAAAAATA
    ATAATAATAATAATAATAAAAAGGAATAACATAGCTAGGAATAAATTTAA
    TCAAAGAGGTGAAAGACTTATACACTTAAAACTACAAAAAAAAAATCACT
    GAAGGAATTATAGACCCAAATAAAAATAAATAAAAAGACATTCTGTGTTT
    TAGGGAAAGAAGACTTAATATTGTTAAGATGTCAATACTACCCAAAGTGA
    TCTACAGATTCAACATAATCCCTATCAAAATTCCAACAGCCTACTTTGTA
    GAAATGGAAAAGCCAATTTTCAAATTCAGATGGAATTGCGAGGGGTTNTG
    AATAACAAAACACNATCTTGGGGAAAAAAAACAAAAAACAAAGTCAAAGA
    ACTCACACTTCTNTATTTATAAATTTACTACAAAGTTATAGTAATCNAA
    Sequence ID - 448  nt: 329
    TACGCACACGAGAACATGCCTCTCGCAAAGGATCTCCTTCATCCCTCTCC
    AGAAGAGGAGAAGAGGAAACACAAGAAGAAACGCCTGGTGCAGAGCCCCA
    ATTCCTACTTCATGGATGTGAAATGCCCAGGATGCTATAAAATCACCACG
    GTCTTTAGCCATGCACAAACGGTAGTTTTGTGTGTTGGCTGCTCCACTGT
    CCTCTGCCAGCCTACAGGAGGAAAAGCAAGGCTTACAGAAGGATGTTCCT
    TCAGGAGGAAGCAGCACTAAAAGCACTCTGAGTCAAGATGAGTGGGAAAC
    CATCTCAATAAACACATTTTGGGTTAAAA
    Sequence ID 450
    GAGCAGTGGCATGATCACACCTTACTGCGGCCTCCAACCCCTGAGCTTAA
    GTGATTCTCCCGCATTATCCTCCTGAGTAGCTGAGACTACAGGTGCATGC
    CACCATACACTACTAAATTTGGGTCGGGTGGTGGTGGTGATTTTTTAATA
    TTTTTGTAGAGACAGGGTCTCACTGTGATGCCCAGGCTGGTCTTGAACTC
    CTGGGCTCAAGCAGTCACCCACCTCAGCCTCCCAAAGCACTGGGATTACA
    GGTGTGAGCCACCACACTGGCCAGCTTTGTTTTGTTTTGATGACTAAGCT
    GCTCTTGCTAAAAGGGCTTCTCTCTGAACTTCCCTACCTTTCTTCTGTTT
    CCCTGGGCTAGGGCTCCATGTTGGCAGTCCTACTCCCAATTAACCTGGGG
    CTGTCTGGTTAACCTTTATAAGATCTGCAGTCATTGGGAGACCCGGGGAC
    CAGGAATATTGTTGTTGAGGGAGCTACCCTGGAAAGTGGATGGGTGGCCA
    AAGG
    Sequence ID 452
    TTTGGCTTTGCCTCTAGGCATTAGATGTTATCTTTGGAGGCATCCTTCTA
    TGAGCATTCATTTTTGGACCAAGCCTGGATTTACAATTCTATTACTGGCC
    CAGACTTCATTTCTATCCAATTTCATTCCACTGTGCTATAGTTTACAACA
    TATAATTTGACTTATAAATAATTCCTGACTATGGGTTTAAAGACTGAAAA
    TGGATCAATAGAAACTTTGAAAATGTTAACATCTTGATTGCTTTTCTCAG
    TGTAGAAATGGACAATGTTTAGCTTAAAAACTGCATGTTTTTAATGAGAT
    ACGGGGTTGAAAGACTTATTCCTGGAATTTATTGTTCTGGAGAAAGCCTG
    TTGCTATCTGCCATACCTTGGTTTACTTTGTGCAAAATGAGCTTCTTTTT
    AAGTAATGAGCTCTTTCCATGTTCAGCTTAAATTGCTGTCTTAGACACTT
    CATCAGGGTTCCCTGCTCTGCCTCATTCCCCCTTTTGCTCACTTGCAGCC
    TTTGACATAATCCTGGGAGGCAATTGGCATCATACATATTTTGCTTTGTA
    ATCTCCTGCTTTGATTCTGACTGGGACCCAGC
    Sequence ID - 453  nt: 747
    GGATCTAAGACCAGCCTGGCAGCCACCAGATGGTGATTCTAGTCCTGGCT
    CAGTCAGTAATAGGTCACTGACCCCAGAGAAATCAATTCAGCCTCCCCAG
    GTCCTTGGATTTCTTTCTGTGAAAATGAAAGCATAGGTAGGAATTTCCCA
    TGGAACAGCTAGCAGAGGAGAAATATTAAAAGTCAGGAGACTCATGCTAT
    AGTTTTCATACTTCATTACAACAATGTTGTTTAGGACAAGTGAGTTAACC
    TGTTAGCTTCCTCTATATAAAATGGAAAGTCATTAAAAACCTACATAGCA
    GGGTTCTTGTGAAGATCAAGTGATAATGTAGGAAGCATGTACAAATGTCA
    CATTCTGCCGTCACGTAATGGTCCTCACAGCTTGAGGTAGCATTTAGCAT
    GTGTCATGATTTAGTACAAGGGTTGGCAAACTGTTGCTCTTGGATTAAGT
    CTGGCTCATTGCCTGTTTTTCAAAGAAAAAAATTGTATATGTGTGTATAT
    ATGTTATATATAGGTACACACACATATGTGCTATATATAGCATATATACA
    CACATAATATATAAACATGTACATATATAGCATTATATATATACCGTGTA
    TAATATCTCCAGTCCTCATGACCAGCCATGCTTGTTCATTTACATTTGCA
    TACTCTATGATTGCTTTCATGCAACAATGGCAGAGTTGAGTGATTGTTTT
    GCACAGANACTGTATGGCCCACTAAACCTAAAATATTAATCTCTGCC
    Sequence ID 454
    CTCCTGCCGGGCTCGTGGCGGCTTCTGTCCGCTCCGCGGAGGGAAGCGCC
    TTCCCCACAGGACATCAATGCAAGCTTGAATAAGAAAAACAAATTCTTCC
    TCCTAAGCCATGGCATATCAGTTATACAGAAATACTACTTTGGGAAACAG
    TCTTCAGGAGAGCCTAGATGAGCTCATACAGTCTCAACAGATCACCCCCC
    AACTTGCCCTTCAAGTTCTACTTCAGTTTGATAAGGCTATAAATGCAGCA
    CTGGCTCAGAGGGTCAGGAACAGAGTCAATTTCAGGGGCTCTCTAAATAC
    GTACAGATTCTGCGATAATGTGTGGACTTTTGTACTGAATGATGTTGAAT
    TCAGAGAGGTGACAGAACTTATTAAAGTGGATAAAGTGAAAATTGTAGCC
    TGTGATGGTAAAAATACTGGCTCCAATACTACAGAATGAATAGAAAAAAT
    ATGACTTTTTTACACCATCTTCTGTTATTCATTGCTTTTGAAGAGAAGCA
    TAGAAGAGACTTTTTATTTATT
    Sequence ID - 458  nt: 682
    TGCCACTGAAGATCCTGGTGTCGCCATGGGCCGCCGCCCCGCCCGTTGTT
    ACCGGTATTGTAAGAACAAGCCGTACCCAAAGTCTCGCTTCTGCCGAGGT
    GTCCCTGATGCCAAGATTCGCATTTTTGACCTGGGGCGGAAAAAGGCAAA
    AGTGGATGAGTTTCCGCTTTGTGGCCACATGGTGTCAGATGAATATGAGC
    AGCTGTCCTCTGAAGCCCTGGAGGCTGCCCGAATTTGTGCCAATAAGTAC
    ATGGTAAAAAGTTGTGGCAAAGATGGCTTCCATATCCGGGTGCGGCTCCA
    CCCCTTCCACGTCATCCGCATCAACAAGATGTTGTCCTGTGCTGGGGCTG
    ACAGGCTCCAAACAGGCATGCGAGGTGCCTTTGGAAAGCCCCAGGGCACT
    GTGGCCAGGGTTCACATTGGCCAAGTTATCATGTCCATCCGCACCAAGCT
    GCAGAACAAGGAGCATGTGATTGAGGCCCTGCGCAGGGCCAAGTTCAAGT
    TTCTGGCCGCAGAAGATCCACATCTCAAAGAAGTGGGGCTTCACCAAGTT
    CAATGCTGATGAATTTGAAGACATGGTGGCTGAAAAGCGGCTCATCCCAN
    ATGGCTGTGGGGTCAAGTACATCCCCAATCGTGGCCCTCTGGACAAGTGG
    CGGCCCTGCACTCATGAAGGCTTTCAATGTGC
    Sequence ID 459
    TCCCGGAATCGCGGCCGCGTCGACCTTGTCCTTGAGCGTCAACCTTCTTT
    CCCTGAAGTGGCTGGGGTTCCTGTTTCCTTCTTTGATTGACAACTTGTGT
    TAACCCTCGCACATCTCTGGGCCAATTTTTGCTTGTAAGTCTTTCCGGAG
    ACCCCTGGAATTTAAATCATTAGCACCGCGCCCTTCCCCGAAGAGTCTTC
    GAAGGGTTGCCGCTTTTCGGTGGCGCAGTTCTCGCGAGAAGGTGACTTTC
    TTTCTCGGTATTTCCTGGTTTCCAGAATCCTTAGCGCGAGGCGGAAAAAA
    TATTTCTCCCAGCTTGTGTTGATGCCGCGATTTTGACTGAGACTTCTTCC
    CACGATTTCTGTTTTTGCTTCTCCAAGGAAAATGGCAGCTCCCGAGCAGC
    CGCTTGCGATATCAAGGGGATGCACGAGCTCCTCCTCGCTTTCCCCGCCT
    CGGGGCGACCGAACCCTTCTGGTCAGGCACCTGCCGGCTGAGCTTACTGC
    TGAGGAGAAAGAGGACTTGCTGAAGTACTTCGGGGCTCAGTCTGTGCGGG
    TCCTGTCAGATAAGGGGCGACTGAAACATACAGCTTTTGCCACATTCCCT
    AATGAAAAAGCAGCTNTAAAGGCATTGACAAACTNCATCAACTGAAACTT
    TTAGTCATACTTTAATCG
    Sequence ID - 460  nt: 536
    CAGAGATCAAAATAGGCCTTACACAGTGCGACGCGAATTTAAAAGATTAC
    CCCATTCAGGTGTATGGATTTTGCAGTATTAAAGATGCTGCCTGGAATAG
    GTCATTATCTTCTCCAAGTACTCTGTTAAGTCAATGAGTCACATAGAGTA
    TAAGGTTTATTATCTGCTTTTCTTTCATTAAATAAATCTTTATTGAATTT
    CTACTACATTAAAAAACCAAACCAAAACAAAACAAACAAAAAAAACACTT
    CCCTGAGCCATAAAGGAGAAGGTAGTTTTGACTGGAACCTTGAAGGATGG
    GTAAACTTTCAGCAGATAAAGATTGAGAGAAGACCTTCCAGGTAGAGAAA
    GCAGTGTGGGCACAGGCAAAGATGGAAGAACACACGTGGCTGTGGGAACA
    CAGCTAGAAGCCAGTGCGGATAGAGAGTAGGCTATGATGTGGCAAAGGTT
    ANACACTGGGAGAGACAGGTCCATGAGAGTAGCTTGGACTAACACAGGGA
    GGGTTTGGAATCCCAACTGGGGAACCTANAAATCAA
    Sequence ID 461
    TAGGAGGCTTATTCACTGATTTCCCCTATTCTCAGGCTACACCCTAGACC
    AAACCTACGCCAAAATCCATTTCACTATCATATTCATCGGCGTAAATCTA
    ACTTTCTTCCCACAACACTTTCTCGGCCTATCCGGAATGCCCCGACGTTA
    CTCGGACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAG
    GCTCATTCATTTCTCTAACAGCAGTAATATTAATAATTTTCATGATTTGA
    GAAGCCTTCGCTTCGAAGCGAAAAGTCCTAATAGTAGAAGAACCCTCCAT
    AAACCTGGAGTGACTATATGGATGCCCCCCACCCTACCACACATTCGAAG
    AACCCGTATACATAAAAT
    Sequence ID 462
    TCTTTATCAAGTTGAGAAAGTTCCTCCCCTCTATTCCTAGTTTGCTAAGA
    GTCCTTCTATCCTATTTCTTAATGGTTTAGTAGATGACTCTGTGGTACTT
    TGAAGGTTGTTTGCAGAATTTCCATGCCATAGGCAATTTACCTTTCCTTG
    ACATTTGAAGGATTGATGTTGGTGCCAAGTATAGAATCTTCACAGAGTCC
    TCCTGTAGCTTCTAAAGGTTTAGCTTGAAAATGTTAATTGCTTAACGCTA
    GTAAGTGAGTGAAAAAGCTGGGGATAAATTTTGTATCTTGCTTATATTTC
    AGTTCCCACCTCTGTCCNGACNAAACCCCCATATATAA
    Sequence ID 463
    TAGTTTACATATCCCAACCTTTAAAAATATTCCTCTTATTAGCTTTATAT
    TCACTTTATAGAAGTTGAGTTTTAATTAAAATTCTTGGCATCCTGAAGTA
    TGTCACATAGCATGTGCTCCTTATAAATATGTTGATATCTCAGAAGACAG
    CATCCCGGTTTTCATTTTATAAAGTACCATACTTAAGAATGCTGTAATAC
    TTATCTTTTATAACATGTTTCCTTCGCTTTGCTTGNCTTTTATGNCATCA
    GTTTTAACTGTTTACTTCATTTAACAGNTTACATCATNCAACAGTTTACT
    TCATTAAACAGTAGGTGGAAAAATAGATGCCAGTCTATGAAAATCTTCCC
    ATCTATATCAAAATACTTTCAAGGATATACTTT
    Sequence ID - 464  nt: 615
    CGACTTTCAACCATCAAGTGAGGAATACCTTCACATAACTGAGCCTCCCT
    CTTTATCTCCTGACACAAAATTAGAACCTTCAGAAGATGATGGTAAACCT
    GAGTTATTAGAAGAAATGGAAGCTTCTCCCACAGAACTTATTGCTGTGGA
    AGGAACTGAGATTCTCCAAGATTTCCAAAACAAAACCTATGGTCAAGTTT
    CTGGAGAAGCAATCAAGATGTTTCCCACCATTAAAACACCTGAGGCTGGA
    ACTGTTATTACAACTGCCGATGAAATTGAATTAGAAGGTGCTACACAGTG
    GCCACACTCTACTTCTGCTTCTGCCACCTATGGGGTCGAGGCAGGTGTGG
    TGCCTTGGCTAAGTCCACAGACTTCTGAGAGGCCCACGCTTTCTTCTTCT
    CCAGAAATAAACCCTGAAACTCAAGCAGCTTTAATCAGAGGGCAGGATTC
    CACGATAGCAGCATCAGAACAGCAAGTGGCAGCGAGAATTCTTGATTCCA
    ATGATCAGGCAACAGTAAACCCTGTGGAATTTAATACTGAGGGTGCAACA
    CCCCATTTTCCCTTCTGGAGACTTCTAATGAAACANATTTCCTGATTGGC
    ATTAATGAANAGTCA
    Sequence ID 469
    GATTTTTAAAAATACATATAGCAAAAATATTACAGGGTCAGGGGAGACAA
    TTAGAATGATATAATTCAAAGTGGATTAAAAAAAAAACTGTCACCCAGAA
    TACAATACCCAGCAAAGTTGTCCTTCATAAATGAAAGAAAAATNAAATCT
    TTNCCNAACNA
    Sequence ID 471
    TCCCGGGAATCTGCAGGATCCGTCGACT
    Sequence ID 472
    GACAGTGCCCAGGGCTCTGATATGTCTNTCACANCTTGNAAAGTGTGAGA
    CAGCTGCCTTGTGTGGGACTGAAAGGCAAGATTTGTTCCTGCCCTTCCCT
    TTGTGACTTGAAGAACCCTGACTTTGTTTCTGCAAAGGCACCTGCATGTG
    TCTGTGTTCTTGTAGGCATAATGTGAGGAGGTGGGGANACCACCCCACCC
    CCATGTCCACCATGACCCTCTTNCCACNCTNACCTGTGCTCCCTCCCCAA
    TCATNTTT
    Sequence ID - 473  nt: 694
    TGGGCTTTGGGCTGGCTGCAGTCTGTCTGAGGGCGGCCGAAGTGGCTGGC
    TCATTTAAGATGAGGCTTCTGCTGCTTCTCCTAGNGGCGGCGTCTGCGAT
    GGTCCGGAGCGAGGCCTCGGCCAATCTGGGCGGCGTGCCCAGCAAGAGAT
    TAAAGATGCAGTACGCCACGGGGCCGCTGCTCAAGTTCCAGATTTGTGTT
    TCCTGAGGTTATAGGCGGGTGTTTGAGGAGTACATGCGGGTTATTAGCCA
    GCGGTACCCAGACATCCGCATTGAAGGAGAGAATTACCTCCCTCAACCAA
    TATATAGACACATAGCATCTTTCCTGTCAGTCTTCAAACTAGTATTAATA
    GGCTTAATAATTGTTGGCAAGGATCCTTTTGCTTTCTTTGGCATGCAAGC
    TCCTAGCATCTGGCAGTGGGGCCAAGAAAATAAGGTTTATGCATGTATGA
    TGGTTTTCTTCTTGAGCAACATGATTGAGAACCAGTGTATGTCAACAGGT
    GCATTTGAGATAACTTTAAATGATGTACCTGTGTGGTCTAAGCTGGAATC
    TGGTCACCTTCCATCCATGCAACAACTTGTTCAAATTCTTGACAATGAAA
    TGAAACTCAATGTGCATATGGGATTCAATCCCCACCATCGATCATAGCAC
    CCCCTATCAGCACTGNAAACTCTTTTGCATTAAGGGATCATTGC
    Sequence ID 474
    GGCAGCGCGGGGAGCCCGTCGGCGCCGGCGGGCGGGCCGGTTTCGAAGTT
    GATGCAATCGGTTTAAACATGGCTGAACGCGTGTGTACACGGGACTGACG
    CAACCCACGTGTAACTGTCAGCCGGGCCCTGAGTAATCGCTTAAAGATGT
    TCCTACGGGCTTGTTGCTGTTGATGTTTTGTTTTGTTTTGTTTTTTGGTC
    TTTTTTTGTATTATAAAAAATAATCTATTTCTATGAGAAAAGAGGCGTCT
    GTATATTTTGGGAATCTTTTCCGTTTCAAGCATTAAGAACACTTTTAATA
    AACTTTTTTTTGATAATGGTTAAAAAAAAAAAAAAAA
    Sequence ID 475
    CATAATAAAAAACAATCAACAAACAGGGAATGGAAAGAAACTTCCTCAGC
    ATGGTGAAGGCCACATATGAAAATCCCACAGCTAACATCATACTCAATGA
    TGAAAGACTGAAAGCTTTTCTCCTGAGATCAGGAACAAGACAAAGATGTC
    ACCTTTTGTCACTTCTATTCAACTCATTATTGGAAGTTTTTGCCAGAGCA
    ATTAGGTAAG
    Sequence ID - 476  nt: 476
    CAGAATCTTTTCATAGGCTGAATGTTGCTCCACAATGTGTCCTTTGACTA
    TCTCTGGCTAATTATTATTTTAATCTCTTCTCAGCTTTTCCAAGAACATA
    ACGTTAACCAAAGATCTTAGGCCATTCACAACTCTTTTGTAAAAATTAAT
    GTGGATGTGAAACGAGGCAACAAATCCTGAAGTAGAAAGTTATTCCTGGC
    CAGGCACGGTGGCTCACGCCTGTAATCCTGGCACTTTGGGAGGCCGAGGT
    GGGTGGATCATGAGGACAGGAGATCGAGACCATCCTGGCCAACATGATGA
    AACCCCATCTCTACTAAAATACAAAAAATTAGCTGGGCATGGTGACGCGT
    GCCTGTAGTCCCAGTTACTCGGGAGGCTGAGGCAGGGGAATTGCTTGAAC
    CTCGGAGGTGGGAGGTTGCAGTGTGCCGAGATCACGCTACTGCACTCCAG
    CCTGGCAACAGAGCAAGACTCCATCT
    Sequence ID 477
    AAACAGAAAGTTTCTTCTAAAGGCATGATTCAGTTAAGTCATTCTTAAGT
    GTTAAAAAATTGTGAAAAATGTGCCTGTAATCCCAACACTTTGGGAGGCC
    GAGGCAGGCAGATCACGAGGTCAGGAGATCAAGACCATCCTGGCTAACAA
    GGTGAAACCCCGTCTCTACGAAAAATACCAAAAACATTAGCCGGGCGTGG
    TTGTGGGCGCCTGTAGTCCCAGCTACTTGAGAGGCTGAGGCAGGAGAATG
    Sequence ID 478
    TTCTTGGGATATTGATGACTACTGTCTGAGAGGTGCTGTGGGGAGATTTT
    CAGGATTGTGTGGTCTTTGAGGGGGGTGTTTTTTTAAGACAACATTGACC
    ACTGTCCACTGTCCACATGATCATTGTAAAATTGCAATGCCGCATGCTAG
    TTGGTTACATAAGACATAATTCCAGTGATTGAAGGTGGTTACACTGTATG
    GTGGTGTGTTCAAGATGGCACTGGCATCTTTGAGCAGAGCCTGGCTATGC
    AGCATCATTTGAGTTTTTTAAACACCCTANAGGTCTGGTTGTTGTTGCTG
    TTGTCCTTTCCTGTGAAAGTCACAANANAAGTTACAGTCCAGGTGAACCT
    GGAGTTTATAGGTTGGTTTTGTTTCTGNTATATATATATATATATATATT
    TTTTTTTTTTTTTAACATTTACCTGTAGTGCTGTAGCTGTTGATACTATC
    ACCTGCATGCTATTTCTAGTGAGTGCTAAATACAGTATGGTCCAATGACA
    ATAACAGCCCATGGTACTGCCAG
    Sequence ID 479
    CATCAGTCTGTTATCCATGCTGACTTTCCGAAGACTTGCAGCTACTGCAT
    TGATATCTTTCCTGCCAATAAGCAAAGTGTTGAACACTTCACAAAATATT
    TTACTGAGGCAGGCTTGAAAGAGCTTTCAGAATATGTTCGGAATCAGCAA
    ACCATCGGAGCTCGTAAGGAGCTCCAGAAAGAACTTCAAGAACAGATGTC
    CCGTGGTGATCCATTTAAGGATATAATTTTATATGTCAAGGAGGAGATGA
    AAAAAAACAACATCCCAGAGCCAGTTGTCATCGGAATAGTCTGGTCAAGT
    GTAATGAGCACTGTGGAATGGAACAAAAAAGAGGAGCTTGTAGCAGAGCA
    AGCCATCAAGCACTTGAAGCAATACAGCCCTCTACTTGCTGCCTTTACTA
    CTCAAGGTCAGTCTGAGCTGACTCTGTTACTGAAGATTAGGGAGTATTGC
    TATGACAACATTCATTTCATGAAAGCCTTCCANAAAA
    Sequence ID 481
    CACACTTTCATGATAAAAACAGAACCTAGGAATGAAAAGAAATTATAGCA
    ACATAATAAAGACCATATATGAGAAGCCCACAGCTAACATACTGTATGGT
    GAAAAACTGAAAGCTCTTCCTCTAAGATCAGGAACAAGGCAAGGATGCCC
    ATTCTTGCCACTTCTATCGAACGTAGTACTGGAAGCCCTAGCCAGAACAA
    CTAGGCAATAGAAAGAAATTAAAGGCATCCATNTCAGAAAGGAAGAANCA
    AAATGCTGTCTGTTTAANATGACA
    Sequence ID 482
    TTTCTATANAAAAAAATTTTTTAAAATAATTGTAAAGTTAGATTTAAAAT
    TGTAAAATATAAAATCACAAAGGAATGTACCCAATAAAATGTAAATGCNC
    CATAAAAAAAAAAAAAAAAAAAAAAAAAAA
    Sequence ID 483
    CGNTAACGTGCAATCCGCCGCACGCCAGCAAACTGGACAAACTCCGGGAT
    CTCATCGAAGCGATTGAGCACCAGTACCAGAGTAATACCGGACTGATGTA
    ACGAGGCGAGTCGCTCATCCAGCTTGCTGACGTGAGGCAACATCCAGGCC
    ATCGAACGGNTCATCAAGAATCAACAAGTCAGGCTCCGACATCAGCGCCT
    GACACAGCAGGGTTTTTCGCGTCTCGCCAGTGGAAAGGTATTTAAAGCGT
    CNGTCGAGGAGGGCGGTAATACCGAACTGCTGCGCCAGTTGCATGCAACG
    CGGTGCATCCTTTACTTCATCCTGAATGATCTCAGCCGTAGTGCGTCCGG
    TGCCATCTTCGCCAGGGCCGAGCATATCGGTGTTATTCCGCTGCCATTCG
    TCGCTGACGAGTTTTTGCAATTGCTCGAAGGAGAGACGAGTGATGTGGGA
    AAACTGGCTTTGCCGTTCACCTTTCAAAAGCGGGAAGTTCCCCCGCCAGC
    GCGCGGGCCAGGGCCCGAT
    Sequence ID 484
    TTTTTTTTTTTTATTCTATTAAAAAATGTTNNTGAAAAAAGATACTTAAA
    TTTTAAAGATAACTNAATTCCTAANGATTTAAAATAATCCAAGCAGAGAT
    GAAAGANCAAATGCAAATGCNTAAAAAGACCCCANAGCATTGTTAGCAAA
    AAGCAAATATAGTTAGCCAAGCATATATATNTCATAAAAGCAATAANAAG
    GCNTAAAGCAAGTTTGGGGAGAGCTTATTTAAAACTTGTAAAAATCATTT
    GAATTTTTAAAAGTTTTCAAAC
    Sequence ID - 485  nt: 551
    TTTGGAACACAAAGTTCCCTTTTTAGAAGAATAGGTATTGAGCCCTTGAG
    CGTGGGTAGAAAGATAGAGACAGAGTGATTTGCAAAATAATGGAGGATCA
    TATTTATATATGAATTTTCACTTATTTGAACTTTCAGATATCANCTTNAA
    AANCTTTGGTTTAAGTAAAGTNTNTTAATGAGACTCCTTGGATGAAAGTA
    ACCAAAACCAGTAAAAATAAGGTAATAAGGATGTAATAGTTTCTTATGGA
    CACTCAACAGCTAGAATGCAGTTAGTCTCAGAAAAGAATTAGAACAAATA
    ACTGGAAGGCCATCAGGAGTCCAAAACCATCACTCTTTTATATTTTATAT
    TTTATTTTTCTCTCTTCANATGAGCATTCTCTTTCTATGTCCATATGGTA
    NAAGGCGGCAGCTCCATAGATTATGGCTTCAGATGTTACAGTTCCGCTNA
    ATGCAGGGACAGACTTGCTATCTTTCAGTCCCCTTACATATCCTGGGGAG
    AGAGCAAATGATTGACTGGCTTGAGTCAGGTGCCCGTTCCCTTTCCAATC
    T
    Sequence ID - 487  nt: 224
    GTTTGNTTGTGACCATCTGTACTTGTAATTTCTTTACNTTCATTGGTATG
    AAAAATATGTTCTTAGAAGCANGAAAAAGAATTCAGNTTTGCTTTGTATA
    CTAAATTAAATGCTGTAATTTTGATAAAATGAAAAATCTGCTTTATTTGC
    AACAATTGGTTTCTTCCTTGACGTCAGCCTCACTCTTGGACTTTGGTATT
    CAGCCNGNCACCCCTGGGAATTCC
    Sequence ID - 488  nt: 349
    GTGCCTCCCTGTGTGAGTAGCCTAAGGTGCATTGAAAAAGACTGGGATGT
    GTTTTATTTTTTTGTATTAGATAGCATTAACCTTACTGTTGAAGTATTTT
    TGGTGGAGTATTAGTGACAAGCCATTGAGTCTTAAGCCTTACGGCTTCCT
    ATAAAATCACTAATTTCGTGTGTGTTTGTGTGTAGGTTACGTTATATATA
    GGATTCGTGTTCGCCGTGGTGGCCGAAAACGCCCAGTTCCTAAGGGTGCA
    ACTTACGGCAAGCCTGTCCATCATGGTGTTAACCAGCTAAAGTTTGCTCG
    AAGCCTTCAGTCCGTTGCAGAGGANCGAGCTGGACNCCCTGGGGGGCTC
    Sequence ID 489
    TTAACAGCTGCATAGAGTTTTAAAAGTACATTATATTTTGTCAGACAAGT
    AAAATATCTGTTTTTCACGCAAAAAAAGCCATGAAATACGTAATTTTTTA
    AAGACAAAAAATCATCTTTTGAGTTTGCTCTTTGGTTTTTCTTCATTCCT
    TTTGAGGATTGGGAAAACAGAAAGATTCTTTGATTTGGGTAATGAAGAGG
    TAATTTGGGACAGTGTGGTGGTACCAGGAAGAAAGAGGATTGGAAAGGCC
    AGTACTGTTTTAGTTGCTCGGCACTGTTGGTTTTGTTTTAATGTGGTTGC
    CCTGTCCACTACATGGTTCTATCAGTAGTGTAATCCATTTTCAATGTAAA
    GCTCTTTTAGTTTTTGTCATAGACATAAATTAATATTTTGAGAGGCATCC
    CTCACCTGTTCATTTCTTCTGTGTTGAAATGAAGTACTTAAAATTACCGT
    TATACATGAACTTTGTGGACTGTAAGATTTGTTATATATGTTCAAATGCC
    TTTTAGCTGGCTTTTTAATTAATATGCCTGTTTTGAGTGCTTAATACAAT
    GTAATGNGGATTGTAAATCATACCTATTTTAAATCATTCCTTCCTGTATA
    TTTGNACTCAGAGAGCCTTATTTTATTCTTCCAGC
    Sequence ID - 491  nt: 382
    TTTTCTTAGAACTTTATTTTTTCTGGCCAGGCGCAGTGGCTCACACCTGT
    AATCCCAGCACTTTGGGAGGCCAAGGCAGGTCGATCACCTGAGGTCAGGA
    GCTCAAGACCAGCCTGGCCAACATGGTGAAACCCTGTCTCTACTAAAAAT
    ACAAAAATTAGCTGGGCGTGGTGGCGCATGCCTGTAATCCCANCTACTCA
    GGAGGCTGAGGCAGGAGAATTGTTTGAACCCGGGAGGCGGAGGTTGCANT
    GAGCCGAGATTGCGCCACTGCACTCCAGCCTGGGCAACAGAGCGAAACTC
    CATCTCAAAAAAAAAAAAAAAAAACAACCTTTATTTTTTCTGATTTTAAA
    AGTAATAACTAGTTTGTAGAAACATTAAAAGT
    Sequence ID 492
    ACCCTAAACATAACTTAAAATTTGTTNGGAATTTGAAAGTACAGAATTTT
    CCTGTAATTGAGACTNTTTAAACTTTTGTGGTTGGAGAAGGTATTCTATT
    TTTTGAAAATATCTGTAAGTTTTATCTAAATAGTAAACTCTAAGTATTCT
    TCCCCTTTACTTACAGCCACCCTGGGAATCTGAGACTAGAGAAAATAAAG
    TTTGTCTCTTGTTCTAAGGAGGGTCTGGTTTAGAAATCTGATTTAGACAT
    AGAAAAATTGCAAGAAGCTTGAGGTGATTGGAAGATACGATTTTGTTATC
    AAAGNATGTTTCTGTTTTATAGATTTTATTCATCTACAACTCCTTATTAA
    TATATTTAAGAAGTCATTAACCCACCATTGATTACTTGATATAAAAGGAG
    AANCGGTGGTAAAAGGTGAAATANAATTTTTAATTTTTTTTTTTTTAAGT
    TTAGGATTTTTTTTTAAATTCTAAGAGTTTCTGTCATTTGGGGACAATCA
    GAA
    Sequence ID 493
    TGGGAATCATAATTNGTTAACTGAAGCTNATAAGATGAGAGCATTCANAG
    AGAAAAGAACGGAAAGATTGAATATCAGTTTCCCTTCTTTAAAAAAATTG
    TGGATATGTGATCTAGCTTCTTGAGCATCACAGTGACTGATTGGCTCGTG
    GTAATTGATCGCTATGCTGACAATCTTATCTCCACCTATGTCATTCAATT
    TTCTAAGAGGCAAAATCCTTAATCAGGAGGAGAGTTTAGCTCTAGCTAAA
    TTTCCCTTGTCCAGCATGCTCCTGCTCCCCCAACTTGTGGAAACAGCTAA
    AGGATTGGACTAGGAGCANAAGTTTGGAATGGTTAAAATGTAGCAACATG
    TGTTTCCTGAAACAAAATTCCACTATAATAAAAAAAGCATTTGAATGCTC
    CCTTGTAATTCTGTTGGAGCTTGTTGCCTTTTTTATGACACAACCATAAT
    CAGTGATAGACAGTAGCATAAAGAAGCAAGAGCAAAGCAATTAAGTAATA
    ATAGCACTACAAAAATGTGTGCTGTACTTACCAAACACGACATTTATGAA
    TTATTANATAGGAATAAGGGGATGGT
    Sequence ID 494
    GACCCAGCCATCTAAATAAGTTRTACATGTTGCGTATTTTTTTGTTAGGG
    ACTTATCTTCCGAAGAGGAAAGGTTTATGAAACCTAAAGTAACAATGATA
    GCTTGGAATCAAAATGATAGCATTGTTGGCACAGCTGTGAATGATCATGT
    CCTCAAAGTGTGGAATTCTTACACTGGACAACTGCTTCATAACTTAATGG
    GACATGCTGATGAAGTATTTGTTCTGGAGACACATCCCTTTGATTCCAGA
    ATTATGTTATCTGCAGGACATGATGGCAGCATATTTATATGGGATATTAC
    AAAAGGTACCAAGATGAAACATTATTTTAATATGGTAAGTGAAGTGAGAT
    GTACCTTGATACATGCTTGATAATTTGTTTAGAGTATTTGGGTTATGCGG
    CTTACCCAGAAATTGATCTGCTTGTTTTGGCAGTTTGTTTTTACAAATCA
    ACATATTCAAAGCCTGCTAAATATTAGACAGCTACATGTATATACGTACA
    TACATGAA
    Sequence ID 495
    TTTC
    Sequence ID 496
    CTCGCTGGCGGGAGGCCACGGGCTTTCCACAGCGCGGGGGAACGGGAGGC
    TGCAGGATGGTCAAGCTGACGGCGGAGCTGATCGAGCAGGCGGCGCAGTA
    CACCAACGCGGTGCGCGACCGGGAGCTGGACCTCCGGGGGTGATCTGGAC
    CCTCTGGCATCTCTCAAATCGCTGACTTACCTAAGTATCCTAAGAAATCC
    GGTAACCAATAAGAAGCATTACAGATTGTATGTGATTTATAAAGTTCCGC
    AAGTCATAGTACTGGATTTCCAGAAAGTGAAACTAAAATTTTAATCCAGG
    TGCTGGTTTGCCAACTGACAAAAAGAAAGGTGGGCCATCTCCAGGGGATG
    TAAAAGCAATCAAGAATGCCATAGCAAATGCTTNAACTCTGGCTGAAGTG
    GANAGGCTGAANGGGTTGCTGCAGTCTGGTC
    Sequence ID 497
    GAAGACCTCACATCTGAGAGCTCATCTGCGTTGGCATTCTGGAGAACGCC
    CTTTTGTTTGTAACTGGATGTACTGTGGTAAAAGATTTACTCGAAGTGAT
    GAATTACAGAGGCACAGAAGAACACATACAGGTGAGAAGAAATTTGTTTG
    TCCAGAATGTTCAAAACGCTTTATGANAAGTGACCACCTTGCCAAACATA
    TTAAAACACACCAGAATAAAAAAGGTATTGACTCTANCAGTACAGTGCTG
    GCATCTGTGGAAGCTGCGCGAGATGATACTTTGATTACTGCAGGAGGAAC
    AACGCTTATCCTTGCAAATATTCAACAAGGTTCTGTTTCAGGGATAGGAA
    CTGTTAATACTTCCGCCACCAGCAATCAAGATATCCTTACCAACACTGAA
    ATACCTTTACAGCTTGTCACAGTTTCTGGAAATGAGACAATGGGAGTAAA
    TATTACACAAATACTTATTCATTGNGGTTATTTTTATACAGTAGTGAGAA
    GAATATTGTTCCTAAGTTCTTAGATATCTTTTTTTGGATGTGCAAAAATT
    TTTGGATTGACAGTAACTTGGGTATACATGACACTGAAATGCCTTACTTT
    GGATGA
    Sequence ID 499
    TGCCTGCGGGCCAGGACCTCGCCCAGCCCATGTTCATCCAGTCAGCCAAC
    CAGCCCTCCGANGGGCAGGCCCCCCAGGTGACCGGCGACTGAGGGCCTGA
    GCTGGCAAGGCCAAGGACACCCAACACAATTTTTGCCATACAGCCCCAGG
    CAATGGGCACAGCCTTCCTCCCCANAGGACCCGGCCGACCTCAGCGCCTC
    CTGCAGGCTAGGACACTGGTGCACTACACCCCATGCCTGGGGGCCGAGAT
    TCTCCAGCAGAAAGATGCAATATTTTTTGTTTCCTTTTTTTCCATTTTTT
    TCTCTAAGGAATCAATATTTCAATATGTTGAGTGTGTGTCCAATGCTATG
    AAATTAAAATATTAAATAACATATTTATGGCATTTTCTTGAAGAGTGTGG
    TTGAAGAAATATTTCTCCTTTTGTTTTTCTTTTTTTTTTGNTTGNTACTG
    CCACTTCTTTTTAGGAGCAAATCTCCCCAGGGGTGTACGGNATTTCTTGA
    CTCTGGGAACAGCTGCTACCCCCAAGACTTGCCACGTTGTTCTGCCCTCA
    AATGGAATTAAGTG
    Sequence ID - 500  nt: 390
    GGAATATGGTCAGGATCTTCTCCATACTGTCTTCAAGAATGGCAAGGTGA
    CAAAAAGCTATTCATTTGATGAAATAAGAAAAAATGCACAGCTGAATATT
    GAACTGGAAGCAGCACATCATTAGGCTTTATGACTGGGTGTGTGTTGTGT
    GTATGTAATACATAATGTTTATTGTACANATGTGTGGGGTTTGTGTTTTA
    TGATACATTACAGCCAAATTATTTGTTGGTTNATGGACATACTGCCCTTT
    CATTTTTTTCTTTTCCAGTGTTTAGGTGATCTCAAATTAAGAAATGCATT
    TAACCATGTAAAANATGANTGCTAAAGTCAGCTTTTTAGGGCCCTTTGCC
    AATAGGTANTCATTCAATCTGGTATTGATCTTTTCACAAA
    Sequence ID 502
    ACCCGCCATCTTCCAGTAATTCGCCAAAATGACGAACACAAAGGGAAAGA
    GGAGAGGCACCCGATATATGTTCTCTAGGCCTTTTANAAAACATGGAGTT
    GTTCCTTTGGCCACATATATGCGAATCTATAAGAAAGGTGATATTGTAGA
    CATCAAGGGAATGGGTACTGTTCAAAAAGGAATGCCCCACAAGTGTTACC
    ATGGCAAAACTGGAAGAGTCTACAATGTTACCCAGCATGCTGTTGGCATT
    GTTGTAAACAAACAAGTTAAGGGCAAGATTCTTGCCAAGAGAATTAATGT
    GCGTATTGAGCACATTAAGCACTCTAAGAGCCGAGATAGCTTCCTGAAAC
    GTGTGAAGGAAAATGATCAGAAAAAGAAAGAAGCCAAAGAGAAAGGTACC
    TGGGTTCAACTAAAGCGCCAGCCTGCTCCACCCAGAGAAGCACACTTTGT
    GAGAACCAATGGGAAGGAGCCTGAGCTGCTGGAACCTATTCCCTATGAAT
    TCATGGCATAATAGGTGTTAAAAAAAAAAAATAAAGGACCTCTGGG
    Sequence ID - 503  nt: 109
    ACATTTTCCGGNCCTTTTGCCATACACAGTTACAGAGATCAGTCAAATCC
    ATACCACCACTGAGATCTCATTTATTGCCACAGATGCACAAAATAAATAA
    CCCAAAATC
    Sequence ID - 504  nt: 374
    CCAGCAACGACCCATACCTCAGACCCGACGGCCCGGAGCGGAGCGCGCCC
    TGCCCTGGCGCAGCCAGAGCCGCCGGGTGCCCGCTGCAGTTTCTTGGGAC
    ATAGGAGCGCAAAGAAGCTACAGCCTGGACTTACCACCACTAAACTGCGA
    GAGAAGCTAAACGTGTTTATTTTCCCTTAAATTATTTTTGTAATGGTAGC
    TTTTTCTACATCTTACTCCTGTTGATGCAGCTAAGGTACATTTGTAAAAA
    GAAAAAAAACCAGACTTTTCANACAAACCCTTTGTATTGTANATAAGAGG
    AAAAGACTGAGCATGCTCACTTTTTTATATTAATTTTTACAGTATTTGTA
    AGAATAAAGCANCATTTGAAATCG
    Sequence ID 505
    GTACAGGAGGTAAATTGGATACCCCATCTAAGGGGATCTGTGAGACCAGG
    TAGTTATTTGGAATGAAAGAGTAAGATATTAAACCAGCCAGCATGTCAAC
    AGGTGGGTGATAGTCTTGTTCTCACAGACAACAGATGGCCATCATCTTAA
    AACAACATTTATGTTAACCAGCAGATAAGGGACTCCTGCATTGTCAGTGG
    ACTTTGAGCCTGAGTTTTTCTACTTGCATAGGTGAAAGTGGACTGCAATG
    CTAGTATAAATGCCGTATGATGACTAGTACCCCTTAGGGAGCTCCAGTTT
    GCCTTCCTGGGGAACCACAGACCCCAAGTGTAATTTCCTGAGGACAGCCC
    GACTTCT
    Sequence ID 506
    GTTACTGTGAGCCTGTCAGTAGTGGGTACCAATCTTTTGTGACATATTGT
    CATGCTGAGGTGNGACACCTGCTGCACTCATCTGATGTAAAACCATCCCA
    NAGCTGGCGAGAGGATGGAGCTGGGTGGAAACTGCTTTGCACTATCGTTT
    GCTTGGTGTTTGTTTTTAACGCACAACTTGCTTGTACAGTAAACTGTCTT
    CTGTACTATTTAACTGTAAAATGGAATTTTGACTGATTTGTTACAATAAT
    ATAACTCTGAGATGTGTGAAAAAAAAAAAAAAAAAAAAAAAAA
    Sequence ID - 507  nt: 521
    CTGCGGTGGAGCCGCCACCAAAATGCAGATTTTCGTGAAAACCCTTACGG
    GGAAGACCATCACCCTCGAGGTTGAACCCTCGGATACGATAGAAAATGTA
    AAGGCCAAGATCCAGGATAAGGAAGGAATTCCTCCTGATCAGCAGAGACT
    GATCTTTGCTGGCAAGCAGCTGGAAGATGGACGTACTTTGTCTGACTACA
    ATATTCAAAAGGAGTCTACTCTTCATCTTGTGTTGAGACTTCGTGGTGGT
    GCTAAGAAAAGGAAGAAGAAGTCTTACACCACTCCCAAGAAGAATAAGCA
    CAAGAGAAAGAAGGTTAAGCTGGCTGTCCTGAAATATTATAAGGTGGATG
    AGAATGGCAAAATTAGTCGCCTTCGTCGAGAGTGCCCTTCTGATGAATGT
    GGTGCTGGGGTGTTTATGGCAAGTCACTTTGACAGACATTATTGTGGCAA
    ATGTTGTCTGACTTACTGTTTCAACAAACCAGAAGACAAGTAACTGTATG
    AGTTAATAAAAGACATGAACT
    Sequence ID 508
    AAGCTCATGATTTTAAATGTATTTTTCTAATAAACTATACTCCCATTTAA
    AAATCACCAATACCTTAATGTTTCAATTATATAAGCTAATTAAAAATAAA
    GGCTGGGCGTGGTGGCTCACTTTGGAAGACCGAGGCAGGCAGATCACCTG
    AGGTCAGGAGTTCGAGACCAGCCTGCCCAACATGGAGAAACCCCATCTCT
    ACTAAAAATACAAAATTAGCCAGGCATGGTGGCACATGCCCGTAATCCCA
    GCTACTGGGGAAGCTGAGGCAGGAGAATCACTTGAACCTGGGAGGCAGGG
    GCTGCAGTGAGCCGAGATCATGCCATTGCACTCCAGTCTGGGCAACAATA
    GTGGAACTCCATCTCAAAAATAATAAAAAAAATAAAATAAAAATAAAATT
    CAAACCTAAAATAGATGCTCTACTTCAGGAGTGGGCAAATTAATCACCTG
    CATCCTTTTTTTGGGCTTTC
    Sequence ID - 509  nt: 575
    TTTTTTTCTAAATGGNGATTACTAATATATGTGGAGACTATTAATCTCTT
    TTCTGTTGCCATTAGTTCATTTTTCCCCAAAAGCCAATACATGTTCATTA
    CAAAAATGAATTATAAAATATAAGTTAAAAGAAAAACATAAAACCCTACA
    ATCTTACCCACCCAGACAACTACTATTAATACCTTAGTATTAACATATAC
    ACATCATGTATATGTATAAATTTATCTTAAACAAAAATAAAATTATTCTT
    TACATATTGTTTTAAAACCTATTTATCTGGCCAGGTGCCGTGGCTCACGC
    TTGTAATCCCAGCACTTTGGGAGGCTGAGGCACGTGGATCACCTGAGGTC
    AGGAATTCGAGACCAGCCCAGCCAACATGGTGAAACCCTGTCTCTAATGG
    TTTAAATACCAAAAAATTAGCTGGGCATGGTGGCACATGCCTGTAATATC
    AGCTAACATGGGAGGCTGAGGCAGGAGAATCACTTGAACCANGGAGGGGG
    AGGTTGCAGTGAGCCGAAATCACACCACTTCACTGCAGCCTGGGCAACAA
    AGCAAGACTGTCTCAAAAAGAAAAA
    Sequence ID 510
    CACTGTCATTCCCAGGAGGCTTTGGAGTCAGAACTGGATTCAAATTCTGA
    CTNTATGTTGTGTGACTTGGGCCAATAGCTTCTTTNTGTGCCTCAGTTTC
    TTTAGCTGTAAATANACGGGTAGGTCACCCCTTACCCCATAGGTTATGGG
    GAAAGTTACAGAAAATGGTCAGCTGGGCNCAGTGGCTCAAGCCTGTGGTC
    CCAGCNCCTTGGGAGGCCAAGGTGAGCAGATTGCTTGAGCCCAGGAGTTT
    GACACCAGTNTGGCAACGTGACGAAACCCTATCNCTGTGAAAAATACAAA
    AAATTAGCCAGGCATGGTGGTGTGTGTCTGTGGTTCCAGCTGCTTGAGAG
    TTTGAAGTGGGAGGATCACCTGAGCCCAGAAGGTCGAGGCTGCAGTGAGC
    TGTGATCGCGTCACTGCACTCCAGCCTGGC-GACAGAGTGAGA-CCCCT-
    TTTGAAAAAAAAAAAAAAAAAAT
    Sequence ID 512
    GTGAGCGGTGGTGGTTTATTCTTCCGTGGAGTTAAGGGCTCCGTGGACAT
    CTCAGGTCTTCAGGGTCTTCCATCTGGAACTATATAAAGTTCAGAAAACA
    TGTCTCGAAGATATGACTCCAGGACCACTATATTTTCTCCAGAAGGTCGC
    TTATACCAAGTTGAATATGCCATGGAAGCTATTGGACATGCAGGCACCTG
    TTTGGGAATTTTAGCAAATGATGGTGTTTTGCTTGCAGCAGAGAGACNCA
    ACATCCACAAGCTTCTTGATGAAGTCTTTTTTTCTGAAAAAATTTATAAA
    CTCAATGAGGACATGGCTTGCAGTGTGGCAGGCATAACTTCTGATGCTAA
    TGTTCTGACTAATGAACTAAGGCTCATTGCTCAAAGGTATTTATTACAGT
    ATCAGGAGCCAATACCTTGTGAGCAGTTGGTTACAGCGCTGTGTGATATC
    AAACAAGCTTATACACAATTTGGAGGAAAACGTCCCTTTGGTGTTTCATT
    GCTGTACATTGGCTGGGATAAGCACTATGGCTTTCAGCTCTATCAGAGTG
    ACCCTAGTGGAAATTCGGGGGATGGGAAGGCCACATGCATTGGAAATAAT
    ANCGCTGCAGCTGTGTCAATGTTGAAACAAG
    Sequence ID 513
    TTTTTTTTTTATAAACTCCAATCATTTCCAGAGCTACTTAGCTCAGCATC
    TTTTTTTTCCACGCTCTTAAGTTGTGTTTATACATTTTTGATACAGTTAG
    ATTGTTTTTGTCACATTCTTCATTCTATCCTGGGATCCCCCAACCACCTA
    AGTGGATTTTTTGATAATTTGCATGCTTTAAGGATAACTCTTCATTCTGN
    AAAGGGCTATGGGTTTTGGCAAATGCAGAGTCATGTATCCAAGATTACAA
    TATCGCACAGAAGAGTTTCATCACTATATAAAACTCACCAGTCTTCCTCC
    TATTCAACCATCTCCATGCCTTCTTCCCAGCCCTAACTCCTTAAAACCAC
    TCATATCTTTACTATTGCTATAGTATTGCCTCTTCCACCATGTCATATAA
    ATGGAAACATACAGTATTAGTCTTCTCAAACTAGTTTCTTTTACCTAACA
    ACATGCATTTAAGATTCATAGTGTCTTTTAATGACTTGATAGATTATTTC
    TTTGTAGCTGAATAATATTGCATCTTATAGATGTAACCGTTTGTATATCC
    ATATTTTCTCACAGCCTATGACTTGNCTTTTGATTCTCTGAACAGGCCAT
    TCACAAAGGAGAAGTTTTAATTTTTATAAAGCTAATGNATCAACTT
    Sequence ID 515
    CCTGGATGACAGCATATCTGTTTATAGCTCAGTTTACTGAATACTTTAAG
    CCCACTGTTGAAACCTGCT
    Sequence ID - 518  nt: 502
    GATGCATGTCCAGCATAGGCAGGATTGCTCGGTGGTGAGAAGGTTAGGTC
    CGGCTCAGACTGAATAAGAAGAGATAAAATTTGCCTTAAAACTTACCTGG
    CAGTGGCTTTGCTGCACGGTCTGAAACCACCTGTTCCCACCCTCTTGACC
    GAAATTTCCTTGTGACACAGAGAAGGGCAAAGGTCTGAGCCCAGAGTTGA
    CGGAGGGAGTATTTCAGGGTTCACTTCAGGGGCTCCCAAAGCGACAAGAT
    CGTTAGGGAGAGAGGCCCAGGGTGGGGACTGGGAATTTAAGGAGAGCTGG
    GAACGGATCCCTTAGGTTCAGGAAGCTTCTGTGCAAGCTGCGAGGATGGC
    TTGGGCCGAAGGGTTGCTCTGCCCGCCGCGCTAGCTGTGAGCTGAGCAAA
    GCCCTGGGCTCACAGCACCCCAAAAGCCTGTGGCTTCAGTCCTGCGTCTG
    CACCACACATTCAAAAGGATCGTTTTGTTTTGTTTTTAAAGAAAGGTGAN
    AT
    Sequence ID 519
    CTGCGATNGAGTTTTGAGAGGAAGGANTAAAGTNCTCATCTCNGACGGTG
    AGAAAGATCATNACTAAGGAAACGCAGGGTTGGAAGCAGTGCTGANTGTC
    CAGTTGAGTTTCATGANCAAACATTTGCTGTGGGACCAGTTTTCATGGNG
    GTTTGTCATTTTGTCCAGCTGCCTGGAGCTGCTTGGTTGAAGGCACAGAA
    TAATCAGGATTAATTGTTNAACTTGTATGAATTTCTTTATTTTAAAATAG
    GAATAATATCTGCCTTGGGAGCAAGTTGTAAGAGTTAACTGAAAGCTTNA
    GGAAAAACTTTCCCTTGCTATTTAAGTAGGGCTTTACAAGTTACAATTCT
    ATCACAGTTTTAAGATTATAAAC
    Sequence ID 521
    GCGGCGCANCTGCGGATCCANAAGGNCATAAACGANCNGAACCTGCCCAA
    NNCGTGTGATATCACCTTCTNAGATCCAGACNACCTCCTCAACTTCAAGC
    TGGTCATCTGTCCTGATGAGGGCTTCNACAAGAGTGGGAAGTTTGTCTCA
    AAAAA
    Sequence ID - 523  nt: 585
    GATTTACTGTGGGAATTTGCTCATGCAATTATGGAAACCTAGAAGTCCCA
    TAATATGCCATCTTCAAGCTGGAATCCCAGGAAAGCAGGTGGTGTAATTC
    TGAGATTGAAGTCTTGAGAACCGGGGGAGTCAATGGTGTAACTCCCAATC
    TAGGGCTTAAGGCCCAAGGACCAGGGCTGCTGGTGTGCAGATGCAAATCC
    TGGAGTTCAAAGGATTGAGAACCAGGAGCTCTGGTGTCTGAGGGCAGTAG
    AAGATGGATGTTCCAGCTCAAGAAGGGAAAGTAAGAATCCGTCCTTCCTC
    CACTTTTTTGTTCTATTCAGATGAGCCCTCAATGGACTGAACGATGCTCA
    CCCACACTGTGAGGGCTGGTCTTCTTTATTCAATCCACTGACTTAAGTGC
    TGATCTCTTCTGGAAACACCTTCACAGACACACCCAGAAATAATGTTCTA
    CCAGCCATGGGCCTGTTACTTAGCCCAGTCAAGTTGACACAGAAAATTAG
    CTATCACAACATCTGTGTGTGTATATACATATGTATTTGCATGTGTGTGT
    ATATATGGNGTATATATATTCATGTGTGTGTATAT
    Sequence ID 524
    CTTTTGCCAGTAGGCCCCCTGAGTAGGTTCCTCTATCTTTTGGCATGACC
    CCAGAAGTCTTTGATAACTTCCTTGCTTTCTGATGTGACAAGACATCCAG
    GGCCAGATTGTCCATATCCTGCCCCGGATGCACGATGCACTGTTTCTCCA
    AGAATCCCTGTGTCCTTTGCTGATGATGCCATGATTTTAAGTTCTCTAAT
    ATAGTTTTATCTCTTTGTTTCAGATAATGCTTTTGTGTTCTCACATGTCC
    TGCTCTCTCTCTCTCTCTCATTTTGGTGTTGATCAGTCTTTCCATAAGAT
    TGTTTATTTCACTAGTCCTTCATTCTTCTTTTTTCTAAATTTACTCTTCT
    TGACTAGTATCCTGTCACTTCTGAGGACTCATATTTTTGCAACTTGAAAA
    TTATTCTTATTTATTTAAGTATATGTTNCTGAAACTCTCATTAGACACAT
    TTTG
    Sequence ID 525
    GTTAAAAAAAGTAAAAGGAACTCGGCAAATCTTACCCCGCCTGTTTACCA
    AAAACATCACCTGGTAGCATCACCAGTATTAGAGGCACCGCCTGCCCAGT
    GACACATGTTTAACGGCCGCGGTACCCTAACCGTGCAAAGGTAGCATAAT
    CACTTGTTCCTTAAATAGGGACCTGTATGAATGGCTCCACNAGGGTTCAN
    CTGTCTCTTACTTTTAACCAGTGAAATTGACCTGCCCGTGAAGAGGCGGG
    CATAACACAGCTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTT
    Sequence ID - 526  nt: 516
    CTTTTCATGGTCTCTTGTTCATTAATCATCTAAAATCCAAGCNCAGAGAA
    TTCAATTTTAGATGGTCTCCAGAGCAGAATTTGATGTATAATCTTAATTA
    CAAATCATAGATAATTAATATTGNTTACAAAATCANAATACGATTAGAGG
    TAGGGATCCTGCACACACCCTATTTTCCTCCCCAGTGTTCTGACCGAGAG
    ACTAATTAATAATTCAAGGAACTTACAGTGAATGANAACCCATGGTTTTG
    CTTAATTATCAGAACAGCTAGATCTGAGAACAGCTGTCTCCCACATGGAT
    AGACACTTATTCCACCCATTTGCAGGTAGAATAGCTGGCAATAATAAGTC
    CTTCCCATTGGATATGTTGAAAGGTGCCTGCCATGGCATAGTTGCCACAA
    GAGAGGAAGAAATGGACACAAATGTAGGCTGTTTTCAGGGCANAGGGAAG
    GTGGGAGGAAACCAANTTGCTGGTTTTCACACACCCTCTGGGGAACACCC
    ATGCACCTATGANATG
    Sequence ID 527
    GACAAAAGCTGAGAGAATTTTTTTCTTGAATATTTGCACTAAAAGATAGG
    TTAAAATTCTTCAGGCTGAAGAGAGCATACCAGGTGGAGATTTGGATCTA
    CAAAAAGGAAGGAAGATTTGGAAATGGATTTGGCACCATTGACTCAATTT
    CCAGAACAAGAAAGCAGGGACAGTTTTGGGAAGCTCAAGACACACTGCCC
    ATGAGCAGCAATTTGGACCTCCTGCTGCATCCACTGTGCATCAAACACAC
    ACTGTACAGACAAAGACTCCCAGGAAAAGAAGTATAAACATGGACTAACA
    CAGAGATGGGCAAACTACAGCCTGTGACCCAGCCACCTGTTTATGTAGAA
    TCCAAAGTAAGAATCTTTAACTTACACATAAACTT
    Sequence 529; 660nt
    GACAGCAGAGCACACAAGCTTNTAGGACAAGAGCCAGGAAGAAACCACCG
    GAAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAGCTGGCCGTGGC
    TCTCTTGGCAGCCTTCCTGATTTCTGCAGCTCTGTGTGAAGGTGCAGTTT
    TGCCAAGGAGTGCTAAAGAACTTAGATGTCAGTGCATAAAGACATACTCC
    AAACCTTTCCACCCCAAATTTATCAAAGAACTGAGAGTGATTGAGAGTGG
    ACCACACTGCGCCAACACAGAAATTATTGTAAAGCTTTCTGATGGAAGAN
    AGCTCTGTCTGGACCCCAAGGAAAACTGGGTGCANAGGGTTGTGGANAAG
    TTTTTGAAGAGGGCTGAGAATTCATAAAAAAATTCATTCTCTGTGGTATC
    CAAGAATCAGTGAAGATGCCAGTGAAACTTCAAGCAAATCTACTTCAACA
    CTTCATGTATTGTGTGGGTCTGTTGTAGGGTTGCCAGATGCAATACAAGA
    TTCCTGGTTAAATTTGAATTTCAGTAAACAATGAATAGTTTTTCATTGTA
    CCATGAAATATCCAGAACATACTTATATGTAAAGTATTATTTATTTGAAT
    CTACAAAAAACAACAAATAATTTTTAGATATAAGGATTTTCCTGGATATT
    GCACGGGAGA
    Sequence ID 529
    GACAGCAGAGCACACAAGCTTNTAGGACAAGAGCCAGGAAGAAACCACCG
    GAAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAGCTGGCCGTGGC
    TCTCTTGGCAGCCTTCCTGATTTCTGCAGCTCTGTGTGAAGGTGCAGTTT
    TGCCAAGGAGTGCTAAAGAACTTAGATGTCAGTGCATAAAGACATACTCC
    AAACCTTTCCACCCCAAATTTATCAAAGAACTGAGAGTGATTGAGAGTGG
    ACCACACTGCGCCAACACAGAAATTATTGTAAAGCTTTCTGATGGAAGAN
    AGCTCTGTCTGGACCCCAAGGAAAACTGGGTGCANAGGGTTGTGGANAAG
    TTTTTGAAGAGGGCTGAGAATTCATAAAAAAATTCATTCTCTGTGGTATC
    CAAGAATCAGTGAAGATGCCAGTGAAACTTCAAGCAAATCTACTTCAACA
    CTTCATGTATTGTGTGGGTCTGTTGTAGGGTTGCCAGATGCAATACAAGA
    TTCCTGGTTAAATTTGAATTTCAGTAAACAATGAATAGTTTTTCATTGT
    Sequence ID - 530  nt: 660
    GACAGCAGAGCACACAAGCTTNTAGGACAAGAGCCAGGAAGAAACCACCG
    GAAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAGCTGGCCGTGGC
    TCTCTTGGCAGCCTTCCTGATTTCTGCAGCTCTGTGTGAAGGTGCAGTTT
    TGCCAAGGAGTGCTAAAGAACTTAGATGTCAGTGCATAAAGACATACTCC
    AAACCTTTCCACCCCAAATTTATCAAAGAACTGAGAGTGATTGAGAGTGG
    ACCACACTGCGCCAACACAGAAATTATTGTAAAGCTTTCTGATGGAAGAN
    AGCTCTGTCTGGACCCCAAGGAAAACTGGGTGCANAGGGTTGTGGANAAG
    TTTTTGAAGAGGGCTGAGAATTCATAAAAAAATTCATTCTCTGTGGTATC
    CAAGAATCAGTGAAGATGCCAGTGAAACTTCAAGCAAATCTACTTCAACA
    CTTCATGTATTGTGTGGGTCTGTTGTAGGGTTGCCAGATGCAATACAAGA
    TTCCTGGTTAAATTTGAATTTCAGTAAACAATGAATAGTTTTTCATTGTA
    CCATGAAATATCCAGAACATACTTATATGTAAAGTATTATTTATTTGAAT
    CTACAAAAAACAACAAATAATTTTTAGATATAAGGATTTTCCTGGATATT
    GCACGGGAGA
    Sequence ID 532
    GAATTGTGATAGTTCAGCTTGAATGTCTCTTAGAGGGTGGGCTTTTGTTG
    ATGAGGGAGGGGAAACTTTTTTTTTTTCTATAGACTTTTTTCANATAACA
    TCTTCTGAGTCATAACCAGCCTGGCAGTATGATGGCCTANATGCAGAGAA
    AACAGCTCCTTGGTGAATTGATAAGTAAAGGCAGAAAAGATTATATGTCA
    TACCTCCATTGGGGAATAAGCATAACCCTGAGATTCTTACTACTGATGAG
    AACATTATCTGCATATGCCAAAAAATTTTAAGCAAATGAAAGCTACCAAT
    TTAAAGTTACGGAATCTACCATTTTAAAGTTAATTGCTTGTCAAGCTATA
    ACCACAAAAATAATGAATTGATGAGAAATACAATGAAGAGGCAATGTCCA
    TCTCAAAATACTGCTTTTACAAAAGCAGAATAAAAGCGAAAAGAAATGAA
    AATGTTACACTACATTAATCCTGGAATAAAAGAAGCCGAAATAAATGAGA
    GATGAGTTGGGATCAAGTGGGATTGANGANGCTGTGCTGTGT
    Sequence ID 533
    CTTGAACCTCGGAGGCAGAGGTTGCAGTGAGCCGAGATCACGCCACTGCA
    CTCCAGCCTCGGGGACAGAGCAAGACTCCATCTCAAAACACACACACACA
    CACACACACACACACACACACACACAAAACAGATATACACTGAACACAGC
    ACAAGTGGGACATAAGAGATTTAAAAGGGTTAGAGATGTAAAATGGATCT
    AGGAATGGAAACCATAAGGNGGGATTTATCAACTGGATTCTGCANAATGC
    TGTTAAGGCCAGATGTTAGCAGGTGTTACATAAAAAAGGGATACCATGAG
    CAAAAGTATTTGAACATGGGCAATGGTTGAAACAAGTTTAAACAGATTAT
    NTTTATTACCAAATCTCTCAAACCTTTAATATGCTATAAACATTGTGAAA
    CAATAAAAAAACTTTCCAAAA
    Sequence ID 534
    GGGAAGGGAGCTATGAGTGTGTGTGTTGTGTATGGACTCACTCCCAGGTT
    CACCTGGCCACAGGTGCACCCTTCCCACACCCTTTACATTCCCCAGAGCC
    AAGGGAGTTTAAGTTTGCAGTTACAGGCCAGTTCTCCAGCTCTCCATCTT
    ANAGAGACAGGTCACCTTGCAGGCCTGCTTGCAGGAAATGAATCCAGCAG
    CCAACTCGAATCCCCCTAGGGCTCAGGCACTGAGGGCCTGGGGACAGTGG
    AGCATATGGGTGGGAGACAGATGGAGGGTACCCTATTTACAACTGAGTCA
    GCCAAGCCACTGATGGGAATATACAGATTTAGGTGCTAAACCGTTTATTT
    TCCACGGATGAGTCACAATCTGAAGAATCAAACTTCCATCCTGAAAATCT
    ATATGTTTCAAAACCACTTGCCATCCTGTTAGATTGCCAGTTCCTGGGAC
    CAGGCCTCANACTGTGAAAGTA
    Sequence ID 560
    GGCGGAGGTTGCAGTGAGCTGAGATGGCGCCATTGCTCTCCCAGCCTGGG
    TGACAAGAGCAAAACTCCGTCTCAAAAAAAAAAAAAAAAAAAAAAGCAAT
    TTACTTAAAAACATACAAACACAGAGACAAGTATTTTTGAGAAACAAATA
    CCTTTTTCATTTTTTATACCAATGTAACAATAATCCATTAAACACACCTT
    TACTAACTGTTTTCTAGGAGTCTGATATGATGAGGAAATAGGTAAACCTT
    TAATAGCCAGTACTAAATTAGAGTGGCACAACTTTCACTGGGAAAAAAGA
    TGGGTATTTTACTTTTCTGTTTTAGAAAAGTGGCTTGACAACAGTATGCT
    TATGTCTTAGAGTTTGAAATTCAAGTTCTTGAACATTATTAATGGCTACA
    ATCATTCATACCCACATTGGGCTGTATTCTTGATGAATCCAAAGTGATTT
    TCACCTCAACTCTGAATTTCATTCTCCTCTTTTGAATATAATACAACCAT
    CTCACTAGAGGAAGCATTTCAGTCTTTTCTGATTGGAGATTCATTATTGT
    TTTAGATAATGTTTTCATTTGCTTATGGGTATATAAAAAATTTTATCTTA
    AAAATATTTCCTCTCATTTAGCTAGCAACATTGTTTTC
    Sequence ID 561
    CTCAGGGTGATCTCTGAACCCAAACTTGCCCCAAAGAAGGTTGCTCTGTC
    CTCTCCACATCCCCATCTCCTCCCTAGGGCCTTGTTGGGGAGAGGCTCCT
    CCATCTTTCCCAAGTCACACCATCGTTTCCTACGTGGTCTGGACAAGAGC
    AAGAGCACACCTTGTCCCCACCTTCTCCAGAGCAGCCAGAACCCACCTCA
    GGTGCCTTCCCCATCCGGTGCAGTTAAGGCACTTCTGCCAGCACCATGGT
    ATGAGCACTAGACTTGGAGTTAAGATTTGAGAGCCCCCTCTGTGACTGTG
    GAAGCTTGAGCATGTTGCTTGATCTCTCTGAACCTTGTGTTTCTCATCTG
    TGAAAGGTGATAATGTGGGGCTGCTGTGAGATTTAAAGGACATAATGCAC
    CTACGGTCCAAGCACTGCCTGGAATACAGCANAAGCTCAACAGATACTGG
    ACAACCCATCCCCTTAGTAGAGGCACTAACCATGTGACCCAAGGCAAAAG
    TGCTTAAAAAAA
    Sequence ID - 562  nt: 580
    ATTGCATGCAAGTTTGCTGAGCTGAAGGAAAAGATTGATCGCCGTTCTGG
    TAAAAAGCTGGAAGATGGCCCTAAATTCTTGAAGTCTGGTGATGCTGCCA
    TTGTTGATATGGTTCCTGGCAAGCCCATGTGTGTTGAGAGCTTCTCAGAC
    TATCCACCTTTGGGTCGCTTTGCTGTTCGTGATATGAGACAGACAGTTGC
    GGTGGGTGTCATCAAAGCACTGGACAAGAAGGCTGCTGGAGCTGGCAAGG
    TCACCAAGTCTGCCCAGAAAGCTCAGAAGGCTAAATGAATATTATCCCTA
    ATACCTGCCACCCCACTCTTAATCAGTGGTGGAAGAACGGTCTCAGAACT
    GTTTGTTTCAATTGGCCATTTAAGTTTAGTAGTAAAAGACTGGTTAATGA
    TAACAATGCATCGTAAAACCTTCAGAAGGAAAGGAGAATGTTTTGTGGAC
    CACTTTGGTTTTCTTTTTTGCGTGTGGCAGTTTTAAGTTATTAGTTTTTA
    AAATCAGTACTTTTTAATGGAAACAACTTGACCAAAAATTTGTCACAGAA
    TTTTGAGACCCATTAAAAAAGTTAAATGAG
    Sequence ID 563
    GCAACCTGCACAACCCCGCCCTGTTCGAGGGCCGGAGCCCTGCCGTGTGG
    GAGCTGGCCGAGGAGTATCTGGACATCGTGCGGGAGCACCCCTGCCCCCT
    GTCCTACGTCCGGGCCCACCTCTTCAAGCTGTGGCACCACACGCTGCAGG
    TGCACCAGGAGCTGCGAGAGGAGCTGGCCAAGGTGAANACCCTGGAGGGC
    ATCGCTGCTGTGAGCCAGGAGCTGAAGCTGCGGTGTCAGGAGGAGATATC
    CAGGCAGGAGGGAGCGAAGCCCACCGGCGACTTGCCCTTCCACTGGATCT
    GCCAGCCCTACATCCGGCCGGGGCCCAGGGAGGGGAGCAAGGAGAAGGCA
    GGTGCGCGCAGCAAGCGGGCCCTGGAGGAAGAGGAGGGTGGCACGGAGGT
    CCTGTCCAAGAACAAGCAAAAGAAGCAGCTGAGGAACCCCCACAAGACCT
    TCGACCCCTCTCTGAACCAAAATATGCAAAGTGTGACCAGTGTGGAAACC
    CAAAGGGCAACAGATGTGTGTTCAGCCTGTGCCGCGGNTTG
    Sequence ID - 564  nt: 671
    GGAATAGAATTTTAAATAGTAATAACTGCTTGTTTTTTTTGTGCAAGTAC
    TTTTATACATAAGATAAACAAAAACCTTACCACCAAACATACCAAAATGC
    ACCTCTTTCATAAGTGAGTTACTAAGATTTCTATACCTGGAATATCATGT
    ATGTTTCATTTACTGGATGTTTACATTTTAGGAAGGAAAATAGTTTTGTT
    TATTTAAACAACTGAATACTTATAAACTGTTGTTCCTGGAAGTTATTTAT
    TCCATAAAAAATTTGTTCTTTTGTCATGAATTTATAATTCCTAAATGAAG
    ACCAGAAAGTACAAATTGCTGGGAGGAAGAATAGGCTTTATTAATCAACT
    GATGTCTTGATTTTTCTAAATGGGAAGATTGCTTTATTTTTAACACTAAT
    TATGGGAGCAGATTCTTAGCAAACTTCTTTGGAAAAGTTAATGTTATGAT
    GTGCATTAGGCTGCCCCATCGTGTATATAAATGAAGCAGATTTGATTTTT
    GTATTCTTACGTTTCTCTGCTTTGTAGTTGTGGCTGTACTTAAAGAAATA
    CAGAATTTCATATATTTAAAAATGTTTAAAATGTGACCCACAGACATTGT
    AAATGGATTNAAAACTAACATGAAAAATATTCAACCTAAAAGAATTCTTA
    ACTTCACAAGTGTTTTACTTC
    Sequence ID 565
    CTTGGTTCCGCGTTCCCTGCACAAAATGCCCGGCGAAGCCACAGAAACCG
    TCCCTGCTACAGAGCAGGAGTTGCCGCAGCCCCAGGCTGAGACAGGGTCT
    GGAACAGAATCTGACAGTGATGAATCAGTACCAGAGCTTGAAGAACAGGA
    TTCCACCCAGGCAACCACACAACAAGCCCAGCTGGCGGCAGCAGCTGAAA
    TCGATGAAGAACCAGTCAGTAAAGCAAAACAGAGTCGGAGTGAAAAGAAG
    GCACGGAAGGCTATGTCCAAACTGGGTCTTCGGCAGGTTACAGGAGTTAC
    TAGAGTCACTATCCGGAAATCTAAGAATATCCTCTTTGTCATCACAAAAC
    CAGATGTCTACAAGAGCCCTGCTTCAGATACTTACATAGTTTTTGGGGAA
    GCCAAGATCGAAGATTTATCCCAGCAAGCACAACTAGCAGCTGCTGAGAA
    ATTCAAAGTTCAAGGTGAAGCTGTCTCAAACATTCAAGAAAACACACAGA
    CTCCAACTGTACAAGAGGAGAGTGAAGAGGAAGAGGTCGATGAAACAGGT
    GTAGAAGTTAAGGACATAGAATTTGGTCATTGTCACAAAGCAAATGTGTC
    GAGAGCA
    Sequence ID 566
    GTCACCAAGAGCTTGTTGTCAGGTTTTCACTTGCTATTCGCAGAGATTTT
    TTTTAAAGGCACTATTTGTAGTGTTAAAAGGGTGAATTTATCANAAGGCA
    TAATAATCATAAATGTGTATATGCCTAATAATAGAACTTTAAAAGGCATG
    AAGCAACACTCAAAAGGATTAAAGGGAGATCATCTCACCCCCTTCTTACC
    AATTGATAGAATGATCTGATGAAAACAGTAAAATAACAACAGATCTGAAC
    ACTGTCAACCATCTTGACAAATACTTATGCCTAGTGTTCCATTATTGGAA
    CACTAAACATGTGGAATGATTTATATCCTACTGCTCAAGGTCATCACCAA
    GGTCTAATTGTAAAATTTCAAAAAATTGCAACCTCAGGCATAAATGGGTT
    AATCGACATTTATAGCACACACATGCAACATGTACCAGAGATTCCTTCTT
    TTCTATGAACATGGTACTTCCACCAAGATAGACCACATTGTGAACTATAA
    AACAAATCTAAAAACATTTGAAATGAAGGAAATTATATAAAATATGTTCT
    CTTGATCTCAATGAAATTAAATTAATACTATAT
    Sequence ID 567
    CTCATGGCGGCCAATGTAGGCCCAAAACTTCCTCAAGTCAAACTCTCCAG
    GCCCACCTTCTGCTTCCCGGTGGCATCAACAGGCCCAGCTTTGACTTGAG
    AACAGCCTCTGCAGGCCCTGCTCTTGCCTCCCAGGGGCTTTTTCCAGGCC
    CAGCTCTTGCCTCATGGCAGCTGCCCCAGGCCAAATTTCTGCCTGCCTGC
    CAGCAGCCTCAACAGGCACAGCTCCTCCCTCACAGTGGCCCATTTAGGCC
    CAACTCATGACTGTGAGGCCATTTCCAGGCCTAGTGCCTGCCTCGTGGCT
    GACTCTTGAAGCCCAAAACTTCCTCAAATCAGCCTTTTGCCCAACTTCTG
    TCTACTGTCGGACTCTACAGGTCAGCCTCTGCCTCACAGTGGACCCTCCA
    GACCCAGATGGTGTCTNCTGTGGCATCCTCAGGCGAAGCTCCTGCCTTTC
    GGCAGCCTCTCCAGGCCCAGCTCCTCCTGCTCCAGCCTTCTCTCCAGGCT
    CTGAACTTTCTCAGGTCTCCCTCTGTTGTCCAAGGCTGGAGTGTAGTAG
    Sequence ID 568
    TATATATGTAATGCCCTTAACCTAGTGTTTGGCATGATCGTTGCTGAAAG
    GGAAGCTTGTGGGTACAGTGTCCCCTCAGAAGCCAAAGCCCAGGGAAGGT
    CGCCTGCCCAGGTCAGGCTCCCAGCGAGTTTGTCTGGGGAGGGGCCATTC
    ATACCTCCAGGTCAGGACAGAGGCTCGGGCTGAGGGAACCCTACACAGGT
    CCTGGAAGCAGATCCTTCCTGCCTAAGCCAGCAGGACAGCTCAACAGGAA
    GCATCTTCCAGCCACGGGAGGAGAGGCAGCACCTTTTTTGGAACCATACA
    GAGCTAAGAATGGTGGTACAAGTAATAGATTCTGTACTGGCAACCCCACT
    TGGTGGAGCAAGTTCTAGGAAAAGGGGGCTGTCCTTGAGTCAGCCATGGG
    GTCAGCCACACAGTCACCGCAGCTGCTCTTTGGCACCGGGCGCTGGAAAG
    ACCTAGGATGACACAGCCTGGAAAGAGCTTGGGAAAAGCTCATCTTCCAC
    AGAACTACCTGCTATACCAGCCAGGGCAGGTGCTTATTCCCACAACAGCC
    CTCTGTTGTAGGCGGCAGTGCCATCCTGAANGTGCCGTGGTACCTTCTGA
    ANACCCAGCTGAGGGCCTGTAATGGCACTTGCATGCCACATGGNACACCC
    TTTCCCGGTTAA
    Sequence ID 570
    ACCGCGGCCGCGTNAANAAAAAAAAAAAAAGAATTCCACTTGATCAACTT
    AATTCCTTNTCTTTATCTTCCCTCCCTCACTTCCCTTTTCTCCCACCCTC
    TTTTCCAAGCTGTTTCGCTTTGCAATATATTACTGGTAATGAGTTGCAGG
    ATAATGCAGTCATAACTTGTTTTCTCCTAAGTATTTGAGTTCAAAACTCC
    TGTATCTAAAGAAATACGGTTGGGGTCATTAATAAAGAAAATCTTTCTAT
    CTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    Sequence ID - 571  nt: 457
    TTAGAGAGGTGAGGATCTGGTATTTCCTGGACTAAATTCCCCTTGGGGAA
    GACGAAGGGATGCTGCAGTTCCAAAAGAGAAGGACTCTTCCAGAGTCATC
    TACCTGAGTCCCAAAGCTCCCTGTCCTGAAAGCCACAGACAATATGGTCC
    CAAATGACTGACTGCACCTTCTGTGCCTCAGCCGTTCTTGACATCAAGAA
    TCTTCTGTTCCACATCCACACAGCCAATACAATTAGTCAAACCACTGTTA
    TTAACAGATGTAGCAACATGAGAAACGCTTATGTTACAGGTTACATGAGA
    GCAATCATGTAAGTCTATATGACTTCAGAAATGTTAAAATAGACTAACCT
    CTAACAACAAATTAAAAGTGATTGTTTCAAGGTGATGCAATTATTGATGA
    CCTATTTTATTTTTCTATAATGATCATATATTACCTTTGTAATAAAACAT
    TTTTCCC
    Sequence ID 572
    CGTCTATTTGNGTTTCTTCTCACAATTGGTAAGTTCTCTGTATTGATTGA
    TGGCTAAGTTTGATTAGTGTTTTTCTCTAGTTGGTAATTATATTCTAGTA
    TTTTATCATCTTATTGTTTACTCAACTNAAAGTGNCACAGAAGAGTTGCC
    AGGTTTCTCTTTGATATGAGATCTCTNNTTGATTTGGAATGCAAATCANA
    AGTGTCATGTTTTGAATAAAGGGACCAGATGACTTATAGGTATTCTTTCT
    CTAAATATAACTAAGGTAAGATTTTTGTTTTGAGGTACTTAATCTATATA
    AGTGGTAAAGAATTTACTTGAATTTCTCCAAATTCTCATGTCTAAAGTCT
    GATTGATTAAATTCATTCTTGGTATTTCATTTTGAAAAGAATGTAGCTTT
    AGCAAACCTCTTTGTATAAATGCAGTGGGATTAAGGTCATTTAAAAAATT
    GTTATATCATTGTATTTTTAAAATTTACCAGTTTTATTTTTCTTTTTACC
    CTTTAGCCCGGCCTCAGAAAGTGTGTTTGTGTCCATTTCTCCCAGCGCAC
    CCTCTGCATATCTCTACCCACTTGTCATAATTCAGCATCCAGCAGAGGAA
    AACAAAGTGTTGCGTACAGTTCCTCTACTAGCAGCATGCCTCCCCCAGGA
    CAAGTGTA
    Sequence ID 574
    TTATTGCTGACATAAAAATGGTGCACATCGGCCAGGGCCCAGGATGAATC
    AGCCAATCTGCACCATTTATACATGGAACTGGAGAACATTGTGCCAATAA
    TCATTTAATATATGCCAAATCTTACACGTCTACTCTAAACTGCTCTAATG
    AAGTTTCAGTGACCTTGAGGGCTAAAGATTGTTCTTCTGGGTAAGAGCTC
    TTGGGCTGGTTTTTCANAGCAGAGTTCTTGTTGTGGGTAGACTGTGACTA
    GGTTCACAGCCTTTGTGGAACATTCCGTATAACGGCATTGTGGAAGCAAT
    AACTAGTTCCTATGAAAGAACCAGAGCTGGGAAGATGGCTGGGAAGCCAG
    GCCAAAGTGGGGGCAACAGCTTGCTTCTCTTTCTCTTCTCACCCTCAGTT
    TGTATGGGAAAATGGAGATGTCCTCTCCACTTTATCCCACGATATCTAAA
    TG
    Sequence ID - 575  nt: 209
    CAGGATATCGAGACCATCCCAGACAGCATGGTGAAACTCCGTCTCTACTG
    GAATACAAAAAGTTAGCCGTGTGTGGTGGCACGCGCCTCTAATCCCAGCT
    ATTCGGGAGGCTTAGGCAGGAGAATTACTTGAACCCGGGAGGCGAAGGTT
    GCAGTGAGCTGAGATCGCACCATTGCACTCCACCCTGG-CGACAGAGCAA
    GACTCCGTCT
    Sequence ID - 576  nt: 541
    CAGCCAACCCAGAAGGAGCCAGTCTACAACTATGCCTGATCCTCCTCATG
    GCAGGCCACGAAGCATTGCTGCCATGTGTTGAATTATAAAACCCACATTG
    CTTTTTGAACCCTGTTGCGGGTAAAAATAACCAAATTATCAGTCCTTGGA
    AACCCAGGCAATCAAGTGAGTACAAGGTAAAGATAAGTATGGTTTAGAGG
    AGAAATTATGTTCCTGAACTGGTGTCCTTTGATGGCAGCGTCAGCCTTGC
    TAAGTCAGAGTAGAGGGAGCAGTGACCTTAATAAGCTTTGGTGAGCATCA
    TGTGCACGCGTGGGTGGGAGTCCCTTTCACTGATGCTTTTAAAAGTGCTT
    TTGCAGACCCTGGAAGGGATCCTCCACACATATGAGGTGTGGGACAGGTA
    GGCCAGAGAGGATTAGCCCTGCTTTCGAGACTAGAAATCTACAGTCCTGA
    AGGAGCAGTAATTAATTGGTACACCTGTCAGGGCCAGCCCCCAGGTCTCC
    TGGCTTTTTCCAGGTTTTCTGTCTCACATGATTTTGCTTTT
    Sequence ID 577
    CTTTAATTTTTCAAGTGTTTAAAAAACAATTTTATACTTAAGCCAGCCTT
    GAAGATAAGCACAAAATTTACCAGTTTACATTTAAAAAACAAACAAAAAA
    CGACAACAACTCAAGCACCCGCTCTGTGCATAGCACTATTCTAGGTGCAA
    TAAAAGGGAATCTTAACCTTAGAAATATGAGTTCACTTTCTGGAATTGTA
    TTATCTCCTTTTCCAGAGAGTAAAAATAAATAAAATCACCATTGTTTACT
    ACAGATCTGCCCCAAACCACATCTGGTTCACAGAAAGGCTAATTTCTGCC
    AAATTAAAGATGTAATGAACTCAGTTCCTGCTTTCCCAAAAACACGAAAG
    CAGAATTCCTTTTCACTGAAAAAAATAAACAGTTTTCCATGCAAGGGCAG
    TTTGCTTCTAATAAGTATTTTTTAAAAAATTTTTTTTTCCTCTAGCTTTT
    CTTTAAATTTTCTTCCTCTAATATTGCCTTTTCTTGTACAAGGCAGACCA
    GGTATCTTTTTATGCTGTTTTTCCTTTACTAAGAAAAGTATTGCATCTTG
    AAGACAAACCATTTCCCAGAGTAGTGATAAAAAATAACACTAAAAAAACT
    TTAAAGGTGAGTCACTTCATCACCTTGATGAAGTAAAAAA
    Sequence ID 578
    GGAAAAAATATTTCCACTTAGATATTTTACATGGTTTTGTTTAAAATTAC
    CATTACTTGTTTTTTAAAAACACATGACCACATATGTATATGTATATCTA
    CCTAAACATTGTATCATGGTTTCAGTATGTTATTCATGTATTACTGGGAG
    ATGCTACCAAGAAACCAACCCAAAGAAAATTCTGGAAAATACATTTCTAT
    TTATAGAATAAATGTTTCATTTATATAAAAGCAAAAGAACTTAGAGTTCT
    AATAAATGGGATGTCTAATAAATTATGAAGTTACTGATTTGAATATATTA
    TATTTTTATAACTTCCTTGCCAAAGTCCTGATTTAGTACATTAGAGAACC
    TGTGTTTCCTCTCTCCTCTACCATTCATCTCTCTTCCATACAGTCATTTG
    GGCTTTTTACTCAAAGAGAATCAAGAAATAATAAGGTATAACAAGCTTGG
    CAAAGTGTTGGCTTTTTAAAAAAAAATTTTTTTAATCTCTAGCAGTTTGG
    TAATTTAGCAGCATCATTTATTTGGGATTCTTTTATCTGATTTCAACAGT
    GAAAAACATCCCTATGATAAAGCCTAATGACCCATTTCCAAAAGATGGAA
    TTGCCCTTCCTAGAAAATATGACGGAGAAAAGT
    Sequence ID - 579  nt: 502
    CGAATAGCCAAGTGGTCTGACAAGATCGAGAGTAATGAGGCCCATACTTT
    AGTACAGTCTTGAATGGCCAGATGGTGCTGGGCATACCCCAACCAGAGAT
    ATGTAAGTCTTTATGTTGTCAAAATTTCCCAGAAACATGAATTTCCCACT
    AAGATTCATTAAGGAAAACTAGAATGAAAACAAAAACGTTCCTTGTATAA
    TATTCATTANAAAGAAATGAAGAAGGCCGGGCATGGTGGCTCACGCCTGT
    AATCCCAGCACTTTGAGAGGCCAAGGTAGGCAGATCATGAGGTCAGGAGT
    TTGAGACCAGCCTGGCCAACATAGTGAAATCCCGTCTCTACCAAAAATAC
    AAAAAAATTAGCCGGGCATGGTGGCACACACCTGTCATCCCAGCTACTCA
    GGAGGCTGAGGCAGGAGAATTGCTTGAACCTGGGAGGTGGAGGTTGCAGT
    GAGCTGAGATTGCACCACTGTACTACAGCCTAGGTGACAGTGCAAGACTC
    TG
    Sequence ID - 580  nt: 316
    CCTATGCCAAACTAAAGAAAGCTTGCCTGGCCTACAGGCCTAAAGGTTCA
    AATGNGGATTAAAAAAACACAGTAGTCACATAAAATGTCTGCTGGCTGGC
    TGGAATTCCATCACCTACAATTTACCTGCTTTCAAAAACTGTGTTCAACA
    TTGAGAAAACAGAAAACCACTTATCTTGAGCTTAATATGGGCTTCTTTTT
    CCTTAACTGTAGAACACTTACTGAAATATCAAATCAATGGTTAGGATATG
    TATCCTAGGCAGGCCTAAACCATTAACACTTGGTTTAAGCAACTTTGTAT
    AATTNACCTCCTAAAT
    Sequence ID 581
    CTTCATGAGTGCCCGGTTGCCCAAGTCAAAAACCTGGGAGTGATATAAAC
    TCCCCACACATCCAGTCAGTCACTCATCAACTCTATTGATTCTG-CTGCT
    AAATATATCTCAATTGTATTAACTTAAACATATGCATAATACATCTTCTT
    CTTCACTGCATTTTTGTGGGCTGCACTTACCTTTCAGGTAACAACAACAC
    TGGCCCCTCTTGCCCTTCTAGTCAGAAGTGCCAAAATGATGAGAGCTAGC
    CATGACAAACCCACAGCCAACATTACACTGAATGTGCAAAACTGGAAGGG
    CATCCAAACAGAGGAGG
    Sequence ID 582
    TAGAATTCTCGCCTGCCTTGGCTTCTCCCTCTAGTTGTTCCTTCTCTGTC
    TTCTGTGGGCTTCTTATTGTCTGCTCACTCCTTCTTCAGTGTCCTCTCAT
    GGGCTTCCTTCCCTTCTCAGCTGATGCCATCACCTGGGGAATCACAGTTA
    CTCAGCAGCACTGGGGCCTCTCTATCTCTATGCTGGTCATGCCTATGTGT
    GAGCTGCAGACCCAGTGGAATTTCCATTTGTGCATCCCATGCCCAGCCCA
    CCCTCCACCAGCCTCGAATGCAGCTGTTCAGCCCTACCCCAGTCCTCAGA
    AAAGTTCCTCTCCCTGGATCCTCTTTTTCCTTCATGAGTGCCCGGTTGCC
    CAAGTCAAAAACCTGGGAGTGATATAAACTCCCCACACATCCAGTCAGTC
    ACTCATCAACTCTATTGATTCTGTCTGCTAAATATATCTCAATTGTATTA
    ACTTAAACATATGCATAATACATCTTCTTCTTCACTGCATTTTTGTGGGC
    TGCACTTACCTTTCAGGTAACAACAACACTGGCCCCTCTTGCCCTTCTAG
    TCAGAAGTGCCAAAATGATGAGAGCTAGCCATGACAAACCCACAGCCAAC
    ATTACACTGAATGTGCAAAACTGGAAGGGCATCCAAACAGAGGA
    Sequence ID - 583  nt: 631
    CTGAGGTGGGAGGATTCCACTCTCACCCATTTCTTCTTTCATTTTCAGTT
    TCTCCAGTTAGTAACTGAAGATGTTCTTTGAGTAATTAAGTGAGTGAGAA
    AATTTTTAAGTGAGAAATCTATAAAAAGAACCATGTTAACATAAATATTT
    CAGTCCTTACAAGTTGGTATTGACTTTTCTCATTGGTAATCTGACTGATT
    TAATACTGCTCATTCCAATATCTGGTGATGTAATTCTGGTTATGAATCCT
    TGTATTAATAACACCTCCTGGGAGGTTTTTTTTCCCCAACATTACATTCA
    GAATATTAGAGCTGAAAATACCTTTTTTAAGGTTATCAGGAGGAGGGAGC
    TTATGTTTAATGTGGTGGATAAAACTTAACTGCTGGTTAATACAATTGTT
    ATTCAGGTGAAATTCCCTAAACTTTTCACGTGCAAAGTTTTGTATGTATA
    CAGACATTTGGGGAAAAGTTTTATCATCCCTAAAACCGGTTACTGTCCAG
    AAAATGATAAGAATCCCTGGGTTCCAAATCCTTCATAAGGTATTTATTCA
    TTTATTTATTCAACACATTTACTCAATGCCTCCGCTCTGCTGCAACTACA
    CTGACATTCTGCTTCTAATCTAACCGAAAAT
    Sequence ID 585
    TTTCAAATTGTACAATAACACAAACAACTTTGTTAAGGCCATGTTTTATT
    TGCTGATTAATGGACAAAAGGCAATGTAATTTATTTTCAAGTATTTTCTT
    GAAAGTCTGTGCTCATAAAAATCATGAAAAGTTGGAAAGACTGTTAAATC
    ACTGAAACTTCAAATATATCTTACACAATCTTGTTTGTACAAAAATACAA
    GTTAAATATAAACATAAAGCAATCATGGTAATTTTATGCAAATCTGTTTT
    ATGTGATCATCAGTTATATATAAAAGTTTCTCAGTTCTGTTATTTGTGAA
    AAGATCAATACCAGATTGAATGACTACCTATTGGCAAAGGGCCCTAAAAA
    GCTTACTTTAGCACTCATCTTTTACATGGTTAAATGCATTTCCTAATTTG
    AGATCACCTAAACACTGGAAAAGAAAAAAAATGAAAGGGCAGTATGTCCA
    TAAACCAACAAATAATTTGGCTGTAATGTATCATAAAACACAAACCCCAC
    ACATCTGTACAATAAACATTATGTATTACATACACACAACACACACCCAG
    TCATAAAGCCTAATGATGTGCTGCTTCCAGTTCAATATTCAGCTGTGCAT
    TTTTTCTTATTTCATCAAATGAATAGCTTTTTGTCACC
    Sequence ID 586
    GTAAACTGTTCTCTCCGAGGGAAAAAATGGAAGTTATCCTCACAGTTCAC
    TGCCGTGGTATTTCTTCTGTCCCATGCTTTGCATGACTGCCATGGTACAG
    CCTTGTTTCAAACTGTTCACTGTGATCTGTGGGTCTTTGAGTTTCAGTGA
    GTTTGCTGAAATGTCGAAGAAGTAGTTCCAAACTTCAATGTTCAATGAAA
    TTTTTGTTCAAGTTTGAAATGGAGAGAGCAGCTTTAAAAGGTACTAAGCC
    TTTTACAAATTGGTGAGTACTGGCACATGAGAT
    Sequence ID 587
    TTTTTTTTTTTCCTTAAAAGGTAACCCCTAAACACAGCTAAAACTATGCC
    ATCAGCTGACTCCAAGGNACACACAGTCCTGTATCTGGAACTACTGAGTG
    GCAGGCATCTTTCTCTGCCTCTGACAGTGGAGTCCCCATCACTGCAGAGC
    ATAGCCAAAGGAGTCAAAGGTCTCAGCGGGTCACTGCCTTATCAACCCTC
    ACCAGTCCCTTATGTTTTTTAATATTTTATAATCTTGACATGACACCAAG
    ATGCTTTAATAAAAAAGCACCTCTAACTCGGTCTTGTATTCACTTACCTT
    GAGCCTGGGACTTCTCTAGGCTCCTGAGGCAAAAACAGGTAGAGGGGAGA
    TGGTGGAACATAAAACACAATTTTGCTTGGCACCCACCTTGGCGTCTGTC
    CCCATGACCAGGTCTTTCAATTCGATGATTTTGTCATTGATGGAGGAGCG
    ATATCGTTTCTCAATGATATTATGGGTTGTCCGCCTTTCTCCTTCTTTGG
    GGGGCTCAAGCTGCTTGACTCCCCCAGGTACCTGCTTAATGGGGCACTTT
    CTCTTGCCCCATCATTACAGGCATTGTGGTCAGAATGGTCCCACTGCTGC
    CCACCAGGGTCTA
    Sequence ID 588
    CTAGTCTTTTCATAGTCTGCATAGAGTCTGGCCATTACCATCAGTTTTTA
    AGATGTCCATATTGTGGCCGGGCGCGGTGGCTCACGCGTGGTAGTCCCAG
    CACTTTGGGAGGCTGAGGCAGGTGGATCATGAGGTCAGGAGATCGAGACC
    ATCCTGGCTAACACGGTGAAACCCGTCTCTACTAAAAAAAATATTAAAAA
    ATTGGCCAGGCCTGGTGGTGGGCGCCTGTGGTCCCGGCTGCTTGGGAGGC
    TGAGGCAGGANAATGGTGTGAACCCGGAAGTCGGAGGTTGCAGTGAGCCA
    AGATTGCACCTGGGCAACACAGCGAGACTCCGTCTCAAAAAAAAAAAAAA
    Sequence ID 589
    CAATTATTTATTACCTTTCCATTTGTTCGCCTGATGATGTGACAATGCAT
    GGTCTTTGTGCATGCTGCTAGACACTTTTCTTTCCCAGCCGAAAAGTCTA
    TTATGTAATTTTTACATTCATAATTTTAATGTGGATGATCAGGATTAAAT
    CAAGATATATATCTGGAACCTCTTATAAATGGAGCACTTAGAAATTTGTT
    GTTCTGCACTTAACCTAGAGAGAGAAAAAATGCTTTTCTTTGTGAAAAAT
    CTGAATTCCTGTCCTGACCTTCTGTGATGTGGAAACCCTAGGCTCTGAGA
    CACACTCTCTGGTGTCTGAGACAGAACCAAAGCAATAACGTTGTGATGCC
    CACAGGCCTGGAGCCAGCTAGCGACCTTGTGCCGCCCAGCTGTCCATGGC
    CCGTGCAGAGCAGAGGACAGTGAGTGTCTGCACTGAGAACCTTAAACCAC
    AGTTGAACATACCCACACCTGTTTGTCTTAAGCTATAGTGTAAAAACAAA
    GTTTGGGCTCTGAAAATTTAACTGAAAAAGATTTCCTTGTT
    Sequence ID 590
    GTGGCAGCAGGCGCAGCCCAGCCTCGAAATGCAGAACGACGCCGGCGAGT
    TCGTGGACCTGTACGTGCCGCGGAAATGCTCCGCTAGCAATCGCATCATC
    GGTGCCAAGGACCACGCATCCATCCAGATGAACGTGGCCGAGGTTGACAA
    GGTCACAGGCAGGTTTAATGGCCAGTTTAAAACTTATGCTATCTGCGGGG
    CCATTCGTAGGATGGGTGAGTCAGATGATTCCATTCTCCGATTGGCCAAG
    GCCGATGGCATCGTCTCAAAGAACTTTTGACTGGAGAGAATCACAGATGT
    GGAATATTTGTCATAAATAAATAATGAAAACCTAAA
    Sequence ID 591
    CAGCAGCAGAAATGTTTGCAAGATAGGCCAAAATGAGTACAAAAGGTCTG
    TCTTCCATCAGACCCAGTGATGCTGCGACTCACACGCTTCAATTCAAGAC
    CTGACCGCTAGTAGGGAGGTTTATTCANATCGCTGGCAGCCTCGGCTGAG
    CAGATGCACAGAGGGGATCACTGTGCAGTGGGACCACCCTCACTGGCCTT
    CTGCAGCAGGGTTCTGGGATGTTTTCAGTGGTCAAAATACTCTGTTTAGA
    GCAAGGGCTCAGAAAACAGAAATACTGTCATGGAGGTGCTGAACACAGGG
    AAGGTCTGGTACATATTGGAAATTATGAGCAGAACAAATACTCAACTAAA
    TGCACAAAGTATAAAGTGTAGCCATGT
    Sequence ID 592
    TACTCAATGAAAAACCATGATAATTCTTTGTATATAAAATAAACATTTGA
    AAAAAAAAAAAAA
    Sequence ID - 593  nt: 565
    CAGGATCAAGGTGAAAAGGAGAACCCCATGCGGGAACTTCGCATCCGCAA
    ACTCTGTCTCAACATCTGTGTTGGGGAGAGTGGAGACAGACTGACGCGAG
    CAGCCAAGGTGTTGGAGCAGCTCACAGGGCAGACCCCTGTGTTTTCCAAA
    GCTAGATACACTGTCAGATCCTTTGGCATCCGGAGAAATGAAAAGATTGC
    TGTCCACTGCACAGTTCGAGGGGCCAAGGCAGAAGAAATCTTGGAGAAGG
    GTCTAAAGGTGCGGGAGTATGAGTTAAGAAAAAACAACTTCTCAGATACT
    GGAAACTTTGGTTTTGGGATCCAGGAACACATCGATCTGGGTATCAAATA
    TGACCCAAGCATTGGTATCTACGGCCTGGACTTCTATGTGGTGCTGGGTA
    GGCCAGGTTTCAGCATCGCAGACAAGAAGCGCAGGACAGGCTGCATTGGG
    GCCAAACACAGAATCAGCAAAGAGGAGGCCATGCGCTGGTTCCAGCAGAA
    GTATGATGGGATCATCCTTCCTGGCAAATAAATTCCCGTTTCTATCCAAA
    AGAGCAATAAAAAGT
    Sequence ID 594
    CAGAAGAGTAAGCAAATCTCAAAGCAGCGAAAGGGAAGAAACTAAAAAAG
    GTAGAGCAGAAATAAGAGAAAATAGAGAAGAGAACAATTGAGAAAAATAA
    TTGAAACCAAAAGGTGGTTCTTTGAAAAGCCTAACAAAATGGACACATCT
    TTAGTTAGAGTGACCAAGAAAAAAGGGCAGTGACTCAGATTACTTCATTC
    AAGAGTGAAAGAGGGCACATCACTACCAATTTACAGAAATAAAAAGGATT
    ATGAGGAAATACTACAGATAATTGATGACATTAACTTAGAAGAATATATT
    TCAAGAAAGACACAAACTACTGAAACCGACTCAAGAAGAAACAGAAAATC
    TGAACAGACCTATAAAAAATAGAGATTTAATTGATATTCAGAAAGTTTCC
    CAAAAAGAAAAGCACTGGCCAAGATGACTTCACTGGTGAATTCTATCAAG
    TGTCAAAGATGAATTACTGACATTCATTCACACTCCTTTAAGAAATAGAA
    GAGGGGACATCACTTTTCAAAGCATCGACATTCTAATCATTAGTCCCTTG
    GTTTCCTGCTCCCAAAGCCAGGTGATGTATCACAAAAAAACCCCTACAGA
    CCCACTGGGCACAATGGCTTTATGCCTAT
    Sequence ID - 595  nt: 98
    CTTTGCTCGAATNGTCAGATAAGGATTCTGTGAANGGAGATGAGATTTCC
    ATCCATGCTGACTTTGANAATACATGTTCCCGAATTGGGGNCCCCAAA
    Sequence ID 596
    CTCAAGTGTTCCCTCAGCTTAGGCTTTGTTTAAATGATCCCACCCAGGGG
    CGATGGTAGGGAACAACAGGGTCACTAAACTATTTGGCTGGCTACAACTC
    TGGGAAATGGTAAGACAGGGAAAGGCCATGTTGTTCATTCCCTTGTGCAG
    ATCTAGGGAGAACCGCAGAGAGAACAGTTAGCATTTCTTGTTCAATGAAT
    TATCCTATTAAGAACACTGGATGT
    Sequence ID 597
    CGGNCGCGGTCGACGCTACTCCTACCTATCTCCCCTTTTATACTAATAAT
    CTTATAAAAAAAAAAAAAANAAAAAAAAAAA
    Sequence ID - 598  nt: 362
    GGCATGTGCCTGTAGTCCTAGTTGCTGAGGTAAGAGGATTGCTTGAGCCC
    AAGAGTTCAAGGCTGCAACAAGCTTTGATTGCGCCACTGCACTCCANCCT
    TGGCGACAGACTAAAACGCTGTCTCAAAAAAAAAACAAAAACGACNAAAA
    AAAAACAAAACAGAAAAAATTAACTTAGGCAATGACAGTCCCTGGCAAAT
    GCTGGGAGGGAGGCAACANTGGTCAAGGAAGGTAACCCTGAANCAGGACT
    TGTAAAGCAAATAANATTGGGAGGCCAAGGTGGGTGGATCACNAGGTCAG
    GAGTTCGAGACCAACCTGGCCAACATAGTGAAACCCCGTCTTTCTAAAAA
    TACAAAAAAATT
    Sequence ID 599
    GACAAAAGAACCATTTGGATACATAGGTATGGTCTGAGCTATGATATCAA
    TTGGCTTCCTAGGGTTTATCGTGTGAGCACACCATATATTTACAGTAGGA
    ATAGACGTAGACACACGAGCATATTTCACCTCCGCTACCATAATCATCGC
    TATCCCCACCGGCGTCAAAGTATTTAGCTGACTCGCCACACTCCACGGAA
    GCAATATGAAATGATCTGCTGCAGTGCTCTGAGCCCTAGGATTCATCTTT
    CTTTTCACCGTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACT
    AGACATCGTACTACACGACACGTACTACGTTGTAGCTCACTTCCACTATG
    TCCTATCAATAGGAGCTGTATTTGCCATCATAGGAGGCTTCATTCACTGA
    TTTCCCCTATTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCCA
    TTTCACTATCATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACT
    TTCTCGGCCTGTCCGGAATGCCCCGACGTTACTCGGACTACCCCGATGCA
    TACACCACATGAAACATCCTATCATCTGGAG
    Sequence ID - 600  nt: 595
    TTCAAATTCTTGNTAANAGTCTTTGTTCTGAATTTTACTTTGTCTGTTAT
    TCCTATAGCCTTTCCAATTTTCTTTCGCTTGGATTTTACGTGATAAGTTT
    TTTCCCCCATTTTACTTTTANCAACTCTATATTTTTTAGTTGAGGTTGGG
    TTTCTTGTAAACAGCATATAATTTGGGTTTTTTAATCCAATCTGAAAATT
    AATGTCCTTAATTTTGTGTTTATACCATTTACACATAATGTACTCATATA
    TAAGGTTTAACTGAAACCTACTATCTTGCTAGTTGTGCTCTACTTGAATT
    TTTTTTTAGTATTCTGTTTTAATTGACCAACATTTGACTGTATCTCTTTG
    TGTAATTCTTTTACAGGTTGCTGTAGGCATGACAATATATACACTTAACT
    TTTCTCAGTACACTGAGAGTTGAAATTGTAGTACTTCGAGGAAAACATAG
    AAAACTTGCAATGATATCGGTTACATTTTACCACCTCCATATGTTGCAAT
    TATTAAATGTATTAGATCTGCCTACCTCGAAAACCCATCAGTCTTTTAAC
    TTTGCTCTCAATGGTGATTCATATTTTTAAAAAAACTTGAGGCAA
    Sequence ID - 601  nt: 522
    TCGACCGGGTTTGGAGCAGTGCCTTGTTTGCTGTGCAGCGGATACTCTAC
    AGGTACATTTCCTTTTTGGAACCAAAAGGGAGGGATTTGACAATATTGAT
    GGTAGATCTTTTTTCTTTAGCAAGAATTAAGGATTTTGGTGGGTGGGGGG
    AGGCTTCTGTGGGGACCAAGACAATGTACTGTCAGTCAGGATTTAAGTCG
    AACTACCTCATCCCTTGCCCCAGAGAACAGTTGATCGTGTTTTAAACCAA
    AAGGTGCGGAATGGAGAGAGGGAGGCGGTGCATTGCAGCTTCCGATAGAG
    CTTTTTATTTTTGGATATCAGGAACCAATTTTGAAGATTTCTTAAGAAAG
    TCATTTACATCAGGGACATGAAGAGCAAAGTAGGTATTTTTGGTCAGTAC
    TTGAATTTGATAGGCTTTATGCAAACAACTCTCCCTCTGCTGGAGTCTGG
    CAAGTTTGCTTTTCACTGGACGCTAATTCAAGTGCCATACAAAACTAAAA
    TAANAGTTTTACTTATAACACA
    Sequence ID 602
    CAGAAATCGCAATTGAAGACCAGATTTGTCAAGGTTTGAAACTGACATTT
    GATACTACCTTCTCACCAAACACAGGAAAGAAAAGTGGTAAAATCAAGTC
    TTCTTACAAGAGGGAGTGTATAAACCTTGGTTGTGATGTTGACTTTGATT
    TTGCTGGACCTGCAATCCATGGTTCAGCTGTCTTTGGTTATGAGGGCTGG
    CTTGCTGGCTACCAGATGACCTTTGACAGTGCCAAATCAAAGCTGACAAG
    GAATAACTTTGCAGTGGGCTACAGGACTGGGGACTTCCAGCTACACACTA
    ATGTCAATGATGGGACAGAATTTGGAGGATCAATTTATCAGAAAGTTTGT
    GAAGATCTTGACACTTCAGTAAACCTTGCTTGGACATCAGGTACCAACTG
    CACTCGTTTTGGCATTGCAGCTAAATATCAGTTGGATCCCACTGCTTCCA
    TTTCTGCAAAAGTCAACAACTCTAGCTTAATTGGAGTAGGCTATACTCAG
    ACTCTGAGGCCTGGTGTGAAGCTTACACTCTCTGCTCTGGTAGATGGGAA
    GAGCATTAATGCTGGAGGCCACAAGGTTGGGCTCG
    Sequence ID - 603  nt: 624
    GACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCAC
    CGGCGTCAAAGTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGA
    AATGATCTGCTGCAGTGCTCTGAGCCCTAGGATTCATCTTTCTTTTCACC
    GTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
    ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAA
    TAGGAGCTGTATTTGCCATCATAGGAGGCTTCATTCACTGATTTCCCCTA
    TTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCCATTTCACTAT
    CATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCC
    TATCCGGAATGCCCCGACGTTACTCGGACTACCCCGATGCATACACCACA
    TGAAACATCCTATCATCTGTAGGCTCATTCATTTCTCTAACAGCAGTAAT
    ATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
    TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCC
    CCACCCTACCACACATTCGAAGAA
    Sequence ID - 605  nt: 338
    ACCTGAGGCCTCGGTGGGGCCAGTGCGACGCTGGCTTAAGGAGCTGGAGG
    GGTTCCTAATACACATTTAATTCAGTTTCTCTTCCCTAAGAGGCTGCCGG
    AGTTGGGGCCTCCTCCAGCAGAGACCCTCGGACCCCTGCAGGGCCTGGAC
    TTGGGGTGAACAGGGCTTCAGTCAGCGCAAGTATTCCATTTGCATTTGGT
    AATTTTTCATGCCACCTATTTATGAATATATAAATCTTTATACCAAATCT
    ATTTTTTAAAACATGGAAAAGTTGCCTTTATGGAAACTTGGCAGAGCCAG
    AGTGTACACATTCCTAAACCATTAAACAGATTTCTATA
    Sequence ID - 606  nt: 556
    GGATAATGATACCTCTGACCTTTCTTCCTTTTGGGAAGTACTTGAGTGTG
    CAGCTGCATGAGGCCTCAGCAGGAGAGAGATTTTAGGTCCAAGAAGCTAT
    ACCAGTAGGACAAGGCAGGAAAATACTACACTTTCAGGATCAAGCCCCTC
    TGACTCTCATTTGGAAACTGGATGTTTGCTAAGCACCTGCTTCTTAAGGA
    TGCCGAGGGATTTAATGATACTCCCAGAAACCTGGAGAGATTAATGGGGC
    CTATGGAGAAGTGCTCTGAACTCAGTGTTGGGACTTGAATAAAATTAACC
    ATTGTCATGTTTTCAGAACAACTAAGCTGTTTTATATTTCATGTGCATGA
    AAGCCCTAGAACTAAGTTGTGTTATTTCCAGAAATGAAATAGATCCCACA
    GTTAGATGATGTGGCCATTAGGAAGTACCAAATTTATAAAAATCACTGGA
    GGTCTGTCTGAGCAGTACCTAATAAAATATAGTATACTGAAAGTGAACAG
    ATCTTTGTCTCTTTCTTTGGCTGCTTGATACTTTATCTGTGTCTGCCGGA
    CAGTGC
    Sequence ID 607
    CAATAAAAGCAGGTTAACCTCAATGATAGCAGTTAAAATGTTCTATCTTA
    TGTATTTCTTTTAAGTATTACCATTATGGTGCTACTGAGCGTTTTCTTTT
    GGTAAAAAGAAAAATGCCATGGGCTGCAGTCTTCTTCCATCACTTTTCCC
    TACCAGGTCCATTAATATGCTTATAACACTAGTGCCAGTTATTTTATTTG
    ATAATGCTTATGGTATTTGTATATTTGTTTGCATTCCAATTTTGTTTAAT
    AATGAGTGTGTAAACTGCATACGTTAAATAAATGTAAATACTAATGTACT
    GCTGC
    Sequence ID 609
    TTTTATTACCCAAGTTTTAACCTCTGTCTGGTGATTTGTTGTTGTTGTTG
    TTGTNGTTGTTGTTGAAGTTCAGGCTGCATGTGGGATAGGTTTGCTCAGG
    CATACTTCTTAGGAAGTAGTCACTTGCATGACTGTTTTTGGGATAACTCT
    TTGAGTATTTGGAGAGGTCTATTGTAACTTCTGAAAGGCATTGTTTTTAC
    GTATGAATGTTCTAAAATTCATTCTAAATGGTCATGAAAAGAAAAGGATT
    CACATTTTAGAATGGCAATAGTCCCTGAGGACTATTATGTCTTTTAGATT
    TCCTGTGGGTTTCTAGGAATGTTAGTGTAACTTANATTTCCACCTACCTG
    ATTTCTGGATGTGCCTATTGGAACTTGCTGAGATCTTTTTTTTTCCTTAA
    CATGTTGTCCCCTTGACCCGTACTTCGAAACTAAACATATTATTTTATTT
    GCTTACACTTCAGGAGGCAATTGGCAGACACCAGGCCAACAGTCT
    Sequence ID 610
    GCTCTGACCCCAGTTGGAAATGTATCTGTACTTTGTCCGGCTTCCACTCA
    AGGACCATTTATGACATTGCTTGGTGTCAGCTGACAGGGGCTCTGGCCAC
    AGCTTGTGGGGATGACGCGATCCGCGTGTTTCAGGAGGATCCCAACTCGG
    ATCCACAGCAGCCCACCTTCTCCCTGACAGCCCACTTGCATCAGGCCCAT
    TCCCAGGATGTCAACTGTGTGGCCTGGAACCCCAAGGAGCCAGGGCTACT
    GGCCTCCTGCAGTGATGATGGGGAGGTGGCCTTCTGGAAGTATCAGCGGC
    CTGAAGGCCTCTGAGCTACCTCGACTTTGGACAGAGTAATGACTCCCCAG
    AAAACGTCATATAAGACTTTACCAGCCCCTGAGAGGACCAGGAGGAGCAT
    CCTTGACCTTCATTTAACTTGGCTCACTTCTCTTCANACTTGGGTAGAAG
    TGCAGAGCCACAAAATTGCTTTCCTTCCCCGCCTTTGACATGAGGCCTTC
    AGTAAAG
    Sequence ID 611
    TGCAGGATCCGTCGACT
    Sequence ID - 612  nt: 576
    GAGAAATATAAGATTATGTATAGATCAAATCTACCTCTATTTGGTGTCCT
    GAAAGAGATGAGGAGAATGGGACAAACTTGGAAAGCTTATTTCAAGATAA
    CATTCCTGAGAACTTCCCCAATCTTGCTAGAGAGGCCAACATTAAAATTC
    AGTAAATGCTGAAAACTCCAGTAAGATATTTCTTAAGAAAATTATTCCCA
    AGATATATACTCATCAAATTATCTAAGGTCAAATGAAGGAAAAAATTTTA
    TAGGCAGCTAGAGAGAAATGTCAGGTCACCTACAAAGAGAATGGCATAAG
    ACAAAAAGTAGAACTCCCAGCAGAAACTCTAAAAGCCAGAAGAGATTAGG
    GGCCAATATTTAACATTCTGAAAGAAATTCCAACAAGGAATTTCATATCC
    AGCCAAACTAAGCTTCATAATTGAAGGAGAAATAAGATATTTTCCAGACA
    AGCAAATGCTGATGAAATCCATCACCACCAGACCTGCCTTATAAGAGCTC
    CTGAGGGAAGCACTAAATATTGAAAGGGAAGAACTTTATGAACCATTTCA
    AAAACACATTTAAGTNCACAAAGCAG
    Sequence ID - 613  nt: 341
    CCTTATTTTACAGGTGAAAAACCACGAATCAGATAGATTTTTATTTGCCC
    AAGTCACATAATATTAAGAACAGGCCAAGTGTGGTGGCTCATGTCTGTAA
    TCTGAGCACTTTGGGAGGCTAAGGCGGGTGGATTTCCTGAGCCTAGGAGT
    TTGAGATCAGCCTGGGCAACATGGCGAAACCTCATCTCTACAAAACATAC
    AAAAATTAGTCAGTGTGGTGGTGAGAGCCTGTAGTCCTGGCTACTCGTGA
    GGCTGAGGTGGGAGCATCACCTGAGCCTGGGAAGTCGAGGCTGCAGTGGC
    AACAGAATGGGTAACCTGGACATCAGAGTGAGACCCTGTCT
    Sequence ID 614
    CTCACACCTGTAATTCCATTACTTTGGAAGGCTGAGAGAGGAGGATCAGT
    GGAGCCCAGGAGTTTGAGACCAGCCTGGGCAATATAGGGAGACCCTGTCT
    CTACAAAAATGAAATAGCCAGGCGAGGTGGCATGTGCCTGTGGTCCCAGC
    TACTTGGGAGACTGAGGTGGAAGGCTGCCTTGAGCCCAGGAGTTCCAGGC
    TGCAGTGAGCCATCATTATGCCACTGCACTCCAACCTGGGAGACAGAGTG
    AGAGAGACCCTGTCTCAAACAAACAAACCCAAAATAGGCCAGGCACAGTG
    ACTCATGCCTGTAATCCCAGCACTTTGGGAGGCTGAAATAGGCGGATCAT
    TTGAGGTCAGGAGTTCAAATTCAAGACCAGCCCGGCCAACATGGCAAAAC
    CACATCTCTACTACAAATAAAAAATTAGTTGGGTGTGGNGGAGCATTCCT
    GTAATCACAGCTATTCAGGAGGCTGAGGCATGANAACCGCTTCA
    Sequence ID - 615  nt: 379
    TAAATTTAAAACATTTTAATTAGCTGGCATGATGGCATGCACCTGTAGTC
    CTACCTACTTGGGAGGCCAAGGCAGGAAGATTGCTTGAGCCCAGGAGTTT
    GAGCTTACTGTGAGCTGTGATCACACCACTGCACTCCAGCCTGGGTGACA
    AAGGAAGACCGTATTTCTAAAAAATAAAAAATACAAATACAACTACAAAC
    TAGCACTAGACCAACAGTGACTATGTACCATGAACTGAGGAATATTATTA
    ATTCCACCATTTGCATCTGAGGTTAACAATATGTCAATGACTTAAATAAC
    ATCATATCTCTGAGAGTAATTTCTCCTATATTTCCATGACAAATGTTAGA
    TAATTTTCCATTTTTTCCATTCAACAAAA
    Sequence ID 617
    TTTTCAGGCATGTCAGAGAAGGGAGGACTCACTAGAATTAGCAAACAAAA
    CCACCCTGACATCCTCCTTCAGGAACACGGGGAGCAGAGGCCAAAGCACT
    AAGGGGAGGGCGCATACCCGAGACGATTGTATGAAGAAAATATGGAGGAA
    CTGTTACATGTTCGGTACTAAGTCATTTTCAGGGGATTGAAAGACTATTG
    CTGGATTTCATGATGCTGACTGGCGTTAGCTGATTAACCCATGTAAATAG
    GCACTTAAATAGAAGCAGGAAAGGGAGACAAAGACTGGCTTCTGGACTTC
    CTCCCTGATCCCCACTCTTACTCATCACCTGCAGTGGCCAGAATTAGGGA
    CTCAGAATCAAACCAGTGTAAGGCAGTGCTGGCTGCCATTGCCTGGTCAC
    ATTGAAATTGGTGGCTTCATT
    Sequence ID - 618  nt: 598
    GATTAACTTTCATTTTAAGCTCTTCTCTACTAATTCTGTTCGTATGTTTA
    TTCATTTTGCGTTGATCATATTTTGTACACCAGGCACTCTTCTCAGTTTT
    ATATGTGTGTTAATTTACTCCTTTCAAGAGCCCTATGATACATGAATTTA
    TCTCCATTTTATAGATGAGGAAATTAAGACCTAGAGTTACTGAACTTGCC
    CAAGGTTATACAGCTGATGGGTAGGGCCAGAACTTTGCCTCAGAGAATCT
    GAATTTCCAAAAAATAACCTAAAAGAGAAATTTAAGTACTAATTAGTAAG
    CAAAGAAATGCACATTTAAGGAAGACAGTGCACATTTAAGGAAGACAGTA
    ACCTTTTATCTATTAGAGAAAAACACACATTCTGTCTTTAACACACACAT
    AAATCTTATATTGGCAGGGATTTTCTTTATTCAGCAATTATTTATTGGTT
    GTCTGCTTTGTGGTACACATAAATGCTGGGGATAAACACTTAATAAAATA
    TACTTCCTTCTCTTGAATATCTTGCACTTTAAGTGGGAAGGTAAGTCAAC
    AGAGTAGAGGTGATATATCCAAGTGATAGACTGTTTCATTGCCAGTAG
    Sequence ID 619
    GTTGCCTGAGAGTGACCTTTGCATCTGCCTGTCCAGCCAGCATGGAACCA
    AAGCGGATCAGAGAGGGCTACCTTGTGAAGAAGGGGAGCGTGTTCAATAC
    GTGGAAACCCATGTGGGTTGTATTGTTAGAAGATGGAATTGAATTCTATA
    AGAAGAAAAGTGACAACAGCCCCAAAGGAATGATCCCGCTGAAAGGGAGC
    ACTCTGACTAGCCCTTGTCAAGACTTTGGCAAAAGGATGTTTGTGTTTAA
    GATCACTATGACCAAACAGCAGGACCACTTCTTCCAGGCAGCCTTCCTGG
    AGGAGAGAGATGCCTGGGTTCGGGATATCAATAAGGCCATTAAATGCATT
    GAAGGAGGCCAGAAATTTGCCAGGAAATCTACCAGGAGGTCCATTCGACT
    GCCAGAAACCATTGACTTAGGTGCCTTATATTTGTCCATGAAAGACACTG
    AAAAAGGAATAAAAGAACTGAAT
    Sequence ID 621
    TGGTACTGAACCTACGAGTACACCGACTACGGCGGACTAATCTTCAACTC
    CTACATACTTCCCCCATTATTCCTAGAACCAGGCGACCTGCGACTCCTTG
    ACGTTGACAATCGAGTAGTACTCCCGATTGAAGCCCCCATTCGTATAATA
    ATTACATCACAAGACGTCTTGCACTCATGAGCTGTCCCCACATTAGGCTT
    AAAAACAGATGCAATTCCCGGACGTCTAAACCAAACCACTTTCACCGCTA
    CACGACCGGGGGTATACTACGGTCAATGCTCTGAAATCTGTGGAGCAAAC
    CACAGTTTCATGCCCATCGTCCTAGAATTAATTCCCCTAAAAATCTTTGA
    AATAGGGCCCGTATTTACCCTATAGCACCCCCTCTACCCCCT
    Sequence ID 622
    TTTTTCTTGTTTTTGTGTGTCTACCTTGGCATATACTAAAGGAAGGTGTG
    TATTCATTTATTACATGATATCTCTGGGTTATAATTATTTACATATATGA
    ATTTGAAAGAAAGATTGAGAGGGATATGTGTGACCTTTGTTTCATTATGA
    TCATTTACATGACTAAAGATAAAGATCATATGTCTGATTTTCAGTTTAAT
    GGCAAGTTACTTAAAATAAATGAAATATGTTTTTATTGTTTTCGTGGGTT
    TGATGCTTTGTGTTTTATTTCAAGTAACTTGAGAATGCATTGTGTTTGGT
    ACTGTTTTTTATGAATATGATTAAAAATTTATTTAAGGAGAGAGTAATTT
    TGCAATAATATTTTTGATTTATTTGAAAATAAAATTCAAGATAAATGAAA
    TAATTGAAATTTTCTAAAGAAGGAATTGAATATATTTTTACATTTGAATG
    AACTAAGGATTAACTGAACCATTTATATATAGTACTTTCAGAACTGAATG
    TCTTAAATGATAAAGCTCTAATTGGTTAAAGTGACTTTCTTTCAAGTCAA
    AGAACCCAGAAACTGAATAGATGATCTAACTACTGCCACTGAGGTTTTGG
    ATTAGTGAGTATAAATTT
    Sequence ID 624
    TGCAGGATCCGTCGACT
    Sequence ID 625
    GACAATCAGAGCAGATCTTGGGCTTCTGTGGCTCATCTCAGCCCTTTATA
    ACTGGCCTGAGAAGAGGGTTTATCTACTTGTGCAAGTGGCCCAGAAATCT
    CACTCGTACATGAGGCTTTGGAACATCCTTGCAAAGGTACGCTGAAAGCA
    AATTGCTGTTTTCCTGGTGGTTCTGCACGTTTCCTAACTTTTATCATAGT
    TTGATTTTCATTATTTAAGAAAAAATAAAAAATCCAAAGACCATAAGATG
    GCATTAGATTTTTTACCATTAAATTATTAATGCCTATTTGGTGCTCATAA
    AGATTAATCATGTCACGCATGTTTCCAATCTTTCTTTTGCAGTATATTAT
    TTTCTAAAAATTGTTACATGCAAATTTAAACCAAGATTTATCAGTA
    Sequence ID 626
    TTGGAAGAAATAAACCAAGGCAGAAAAATTTTAAATGGCCAAAATAAATT
    GTATTGCTAACTTAGATGGCCACAGATGGGGGCAGGGGTGGAGAGAGGAG
    AAATTGAAAACNCCACAAAGACCCCGCAATGGCTAGAACTTGAAATCTCT
    GGATATTGCAACAATAGCAGCCTCCTTAAGTCAGCAAAAAGATAAAGATT
    GATCCAATGTTCTATATTACAGAACAGAGCAGATTGTCAATATAGCAAAT
    AAAGTTACCGTTGAGTGGACTGCGCTGTNTAAGCTGCTTGGTTGGCCTTA
    AGTGCCGACAATTAAGAGATGAAGGCAATGAGAACTGAAACAAACATTTA
    AGTTCAAGACCCAGTTTACTGACACTGGGACTATTACTATATCTCTTTGG
    GCCTCAGTTTACTTATCTGTAACATTAAGAGGTTGGATTACATGATGTCT
    CACGATTCTTTTTTTTTATTTAGAGATGGGGTTTTGCTCTGTTGCCCAGG
    CTGGAGTGCAGTGGCATGATCATAGCTCACAGCAG
    Sequence ID 627
    CCAGCCTGTCACTGGCCTGGCCAAGGAGGAGAGACAGGCCAGGGATTCTG
    GTCCTAACTCTACTGGCCACACTGTGTGGCCTGAGACCCCCCTTTCCCTC
    CCAAGCCCCTGCCTCCGCATCTGCGTGGTGAAGGCCATTGGCCCTCATCG
    GTGGATCTGCGTTTCCTCGGGCCTACACTGTCTAGGATTGTGCGGGGCTG
    GTGAGAGAACAAGATCTCTTCCGTGTTCAAGGCAGACTTCCTGCCCCCTG
    CACCCTGCTCTCTCCCAGGCCTTGAGGTCAGTGTGAGCCCCAAGGGCAAG
    AACACTTCTGGAAGGGAGAGTGGATTTGGCTGGGCCATCTGGATGGAAGG
    TAAAAAAAAGAAAATCCCTTGAAAGGAGATTGAGGGAAGTTT
    Sequence ID - 628  nt: 419
    AAGAGAAAGGACTCAGTGTGTGATCCGGTTTCTTTTTGCTCGCCCCTGTT
    TTTTGTAGAATCTCTTCATGCTTGACATACCTACCAGTATTATTCCCGAC
    GACACATATACATATGAGAATATACCTTATTTATTTTTGTGTAGGTGTCT
    GCCTTCACAAATGTCATTGTCTACTCCTAGAAGAACCAAATACCTCAATT
    TTTGTTTTTGAGTACTGTACTATCCTGTAAATATATCTTAAGCAGGTTTG
    TTTTCAGCACTGATGGAAAATACCAGTGTTGGGTTTTTTTTTAGTTGCCA
    ACAGTTGTATGTTTGCTGATTATTTATGACCTGAAATAATATATTTCTTC
    TTCTAAGAAGACATTTTGTTACATAAGGATGACTTTTTTATACAATGGGA
    ATAAATTATGGCATTTTTT
    Sequence ID 629
    CTGAGAGTCACTGTGTTTTTAGCCAAATCTAAGGGAGAAAATGAATATTG
    ATAGCAGCATGCTGTAGCCAGCTCCTTAAAGGAAGGATGGTGCCTGGTAC
    AGAGTTAGAGTTAGTGCTTCAGTAAATAATGAATGTGTGCTAGGTAGGTT
    CTGCTGGGTAGGCTGCATGCATTGACCAATTTATTCCTCCTTGTTTCAAA
    ACAGGATTTAAGGGCACTTATATATATATATTTTTTAGTTTTTTTAATGT
    AAATGAGAGAATAAAGATATATATATATGTCTATATATGTATATATGTAT
    ATATATGTCTATATGTCTATATGTATATATGTCTATATGTATATATGTGT
    GTGTGTATATATATATATATATATATAAGTTTTCTGTTGCTAGCATAACA
    AACTACCAGAAACTTAGCAACTGAAACAACATGAATTTATCTTACGGTTC
    TATAGTTCAGAAGTCTAACGTGTCACTGGGATGAAATCCAGGTTTCAACA
    GGACTGGGTTCCCTTCTAGCTCATTCAGCTACCTGGCTCATTCAGGTTGT
    NGGCAGAATATACTTCCATGAAACTGTAGGGCTGAGACCCCGTTCCTTCC
    TGGCTATCATCTGAAAACTTTC
    Sequence ID 630
    AGGCGCAGCCCAGCCTCGAAATGCAGAACGACGCCGGCGAGTTCGTGGAC
    CTGTACGTGCCGCGGAAATGCTCCGCTAGCAATCGCATCATCGGTGCCAA
    GGACCACGCATCCATCCAGATGAACGTGGCCGAGGTTGACAAGGTCACAG
    GCAGGTTTAATGGCCAGTTTAAAACTTATGCTATCTGCGGGGCCATTCGT
    AGGATGGGTGAGTCAGATGATTCCATTCTCCGATTGGCCAAGGCCGATGG
    CATCGTCTCAAAGAACTTTTGACTGGAGAGAATCACAGATGTGGAATATT
    TGTCATAAATAAATAATGAAAACCTAAAAAAAAAAAAAAAAAAAAAAAAA
    Sequence ID 631
    TNCACTCACACACTCCCAAACCTTAACAAACACATACATGTGCAGCCAAC
    CCAATGGGCCAGCCTCTTTTATGCTCCTCACATGTTTCCTTTAACTGGAA
    TACCCATGACAGCTCCCTACATAGTTACTTGTAAACTCCTCCTCTCTGTA
    TAAGTTTTCCTGAATTTTTTTGATAAAATTAAGTTGTGCCACCCCTTTAT
    GCTCTCTTANAACTTTGTTCTGTTCTCATGGCTGTTCTGCAACGAATCTC
    ATTGTGTTCTCCTACTCAATTACATTCCTGCGTCTCCCACTAGATGGCAG
    ACTCTTTGAGAGTAGGAGATTCCCTTGTTATCTCTGGATCCCTGGCACTT
    GCAGAAAGCCTGTTACGTAATAATTGCTCAACAATTAGTTTTTAAATAAA
    TGAATTATTTTTAAAACGCCAAAATTACAATGATTGTGCATTAAGTGAAA
    GATGACCATCTAAAAACATAAAGCCATGCTTCATGACATTGGC
    Sequence ID 632
    GACCATTCAGGGAAATTTTATAAAAAATGCAGATACTGTCTTGAGCAGAT
    CGAAATGCCGATGAGGTGGATGCAATTTCCTTTTGTGCAAGCAGTGCACG
    GTGCCCCCCCCTCGGGTGTCCGTGCTGTGCCTTAGCTTCCCCAGGTGCCG
    GGACTCACACCTGCTAGGGGCTGGGCAAGGCCCCGGCTCTGCTTTCTCTG
    AAGGGCTTGTCCAAGTTCATTGCCCTGTTACAGGTGGTCAAGACGTCCGG
    CCGCCTTGACCCAGGCTACCCTTAGCCAATATCCTCTGCCCCTGGGTGGT
    TGGTGGCTGGGCCTCAGGGTGGGCAACGTTAGGGGTTTGGCGAAAGCCCG
    CCCCATGGGATTGAGGGACGGGGCTGCACTCCAACCGTCTGCACCTGCTC
    TTCCCCCACCCCTGTGGGACCTCATCTTCACGTGCCATGTGTGCTGAAGG
    CCGAGGGCCCAGCAGGGGGCAGTGGCACCTGTTGACGGAAAAGCCGAGGT
    GCTTACCAATGGACCTTCTGGCCCGCCCTCCCCTGTACTTGTCGGGCATT
    CAGGGCCCCGACCTGTGCCTACCCGCA
    Sequence ID 633
    CAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCACCTGACTC
    CTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGAT
    GAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTGGTCTACCCTTGGAC
    CCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTA
    TGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTT
    AGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCACACT
    GAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGC
    TCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAA
    TTCACCCCACCAGTGCAGGCTGCCTATCANAAAGTGGTGGCTGGTGTGGG
    CTAATGCCTGGCCCCACAAGTATCACTAAGCTCGCTTTCTTGCTGTCCAA
    TTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGG
    ATATTATGAAGGGCCTTG
    Sequence ID - 634  nt: 511
    TTTTTTAATTTCACCAAAATTTGTTGACGTCCCTTGATTTGCTGATAGGG
    ACAATAATTAAATATTTTCCACTTGTTTTTATAAAAACTGTAATGGTGAT
    TTGTTTAACAGATGTTGACTTAGCACCTTCTCTCTTTTTTTTTTTTTTTT
    TTTGAGTTGGAGTCTTGCTCTGTCACCCAGCTGGAGTGCAGTGGCACGAT
    TTCGGCTCACTGCAACCTCCGCCTCCCAGGTTCGGGCGCTTCTCCTGCCT
    CAGCCTCCCANATAGTTGGGATTACAGGTGCATGCCGCCACNCCTAGCTA
    ATGTTTTTTGTATCTTGGTANANATGGNGTTTCACCTTGTTGCCCATGCC
    GCTCTTGAACTCCTTGGCCTCCCAAAGTGTTAGGATTACAGGCGTGAGCC
    ACTGTGCCTGGCCCCAATTTANCACCTTACTGGGTGCTGAGGCTGTGAGC
    CATAGTAGAATGCATGTGATCCAGGGCCTTGCTGAATTCATGGGCTAATA
    GGGAGCCTGAC
    Sequence ID - 635  nt: 592
    TGAGCGTTGGGCTGTAGGTCGCTGTGCTGTGTGATCCCCCAGAGCCATGC
    CCGAGATAGTGGATACCTGTTCGTTGGCCTCTCCGGCTTCCGTCTGCCGG
    ACCAAGCACCTGCACCTGCGCTGCAGCGTCGACTTTACTCGCCGGACGCT
    GACCGGGACTGCTGCTCTCACGGTCCAGTCTCAGGAGGACAATCTGCGCA
    GCCTGGTTTTGGATACAAAGGACCTTACAATAGAAAAAGTAGTGATCAAT
    GGACAAGAAGTCAAATATGCTCTTGGAGAAAGACAAAGTTACAAGGGATC
    GCCAATGGAAATCTCTCTTCCTATCGCTTTGAGCAAAAATCAAGAAATTG
    TTATAGAAATTTCTTTTGAGACCTCTCCAAAATCTTCTGCTCTCCAGTGG
    CTCACTCCTGAACAGACTTCTGGGAAGGAACACCCATATCTCTTTAGTCA
    GTGCCAGGCCATCCACTGCAGAGCAATCCTTCCTTGTCAGGACACTCCTT
    CTGNGAAATTAACCTATACTGCAGAGGTGTCTGTCCCTAAAGAACTGGTG
    GCACTTATGAGTGCTATTCGTGATGGAGAAACACCTGACCCA
    Sequence ID - 636  nt: 572
    CTTANAAGAGTTGCTCATTCACACCCACGCCCTTGCCCAAGGCTGGCCCA
    CTCAGAGCGAAACTTAACTTTTGTCTGGATGGGAAGAGAAGTAAGTCTAC
    CCCGAGGTTGCCATGTTGAAGAGTGAGAGGTCCAAGTGATTCTGTGCATT
    GAAACCAAGACACCCCACCCAGAACACTTCTTCCCTCCCTCAGCCCAAAC
    CAAAGGCTGGGGTTCTCATCTCCAAGTGGCTGTTCTCCAACTTTCCCAAG
    CCGCTTGCATTCCCCAGACTGGACTACTGTGGCGGTTAGGTTAGATTTGA
    AGACGGGGCCCAGGCTGGGTATGAACGGGTGCAGCCCTCTTCTCCTCTTC
    CCCCCCACATCTCTCATGAGAGAGGTAGTGGCATTTCCTTCTCAGGGAGC
    TTCAATGGGAAAGGTCTCGAAAGCTTCAGGAGGAGCAGAATACCAACGCA
    GGGGGATGGCTGTAACGATCTCACCGTCTCCTAACCTCAGTCCCTTTTTT
    GAGAGTGAATGGTGGAGGGTGGGAAAGGGACCCAAATTTGTAGATCTCTT
    TGTCTGGGGGAGGGGAANGATG
    Sequence ID - 637  nt: 482
    TTAAAACAGGCGCAGGGGTAAAAATGAGAATGAATCTGAAAAAAGAGAGT
    TGGTGTTTAAAGAGGATGGACAAGAGTATGCTCAGGTAATCAAAATGTTG
    GGAAATGGACGATTGGAAGCATTGTGTTTTGATGGTGTAAAGAGGTTATG
    CCATATCAGAGGGAAATTGAGAAAAAAGGTTTGGATAAATACATCAGACA
    TTATATTGGTTGGTCTACGGGACTATCAGGATAACAAAGCTGATGTAATT
    TTAAAGTACAATGCAGATGAAGCTAGAAGCCTGAAGGCATATGGCGAGCT
    TCCAGAACATGCTAAAATCAATGAAACAGACACATTTGGTCCTGGAGATG
    ATGATGAAATCCAGTTTGACGATATTGGAGATGATGATGAAGACATTGAT
    GATATCTAAATTGAACCAAGTGTTTTTACATGACAAGTTCTCTGAGGATG
    GTTCTACAGTTGGGATTTTGGCCATCATCAAC
    Sequence ID - 638  nt: 545
    TTTGAAGGCAAAGAGGGATTAATCTGTGCTGGCATCATGTAAGGAGACTT
    GATAGATAAGAAAAAGCTTTACCTAAGTTTTGAAGAATAGGTTTTTCATA
    ATGGAAAATTTAAGGGAAAAATCTCCAAAAAAGTGCTACTCAAGTTTTAT
    CCATTTGTATTTCCAACACAGCCTAGGACAGTACCTGCACATAGTAGGTG
    ATTAATAAAAATTTAGAAAGCATTAATACTAAAGAGGAAAAATAGCAATG
    GCAAGAAAACACATGTAGGGAACACATGTAGCCAAAAAATAATATATAAT
    CAGAGAAATAATAGGACTTCTGGAAAAAAAAGATGAGATCAGATTGGTTA
    GGATCTTTACTAACATGACAAGAGCATGAATTTTTTTTCTGTAGATAATA
    AGTATGAAAGAATTTTAGCTTAAAAATTAGCATAATTTGGATCCACATAT
    GCAAATCAATGAATGTAATTCATAATATAAACAGAACTAAACACAAAAAC
    CACGTGATTATCTCAATAGACACAGAAAAGGCCTTCAAAAAAATT
    Sequence ID - 639  nt: 624
    GACACACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCAC
    CGGCGTCAAAGTATTTAGCTGACTCGCCACACTCCACGGAAGCAATATGA
    AATGATCTGCTGCAGTGCTCTGAGCCCTAGGATTCATCTTTCTTTTCACC
    GTAGGTGGCCTGACTGGCATTGTATTAGCAAACTCATCACTAGACATCGT
    ACTACACGACACGTACTACGTTGTAGCCCACTTCCACTATGTCCTATCAA
    TAGGAGCTGTATTTGCCATCATAGGAGGCTTCATTCACTGATTTCCCCTA
    TTCTCAGGCTACACCCTAGACCAAACCTACGCCAAAATCCATTTCACTAT
    CATATTCATCGGCGTAAATCTAACTTTCTTCCCACAACACTTTCTCGGCC
    TATCCGGAATGCCCCGACGTTACTCGGACTACCCCGATGCATACACCACA
    TGAAACATCCTATCATCTGTAGGCTCATTCATTTCTCTAACAGCAGTAAT
    ATTAATAATTTTCATGATTTGAGAAGCCTTCGCTTCGAAGCGAAAAGTCC
    TAATAGTAGAAGAACCCTCCATAAACCTGGAGTGACTATATGGATGCCCC
    CCACCCTACCACACATTCGAAGAA
    Sequence ID 641
    CAAGATGACAAAGAAAAGAAGGAACAATGGTCGTGCCAAAAAGGGCCGCG
    GCCACGTGCAGCCTATTCGCTGCACTAACTGTGCCCGATGCGTGCCCAAG
    GACAAGGCCATTAAGAAATTCGTCATTCGAAACATAGTGGAGGCCGCAGC
    AGTCAGGGACATTTCTGAAGCGAGCGTCTTCGATGCCTATGTGCTTCCCA
    AGCTGTATGTGAAGCTACATTACTGTGTGAGTTGTGCAATTCACAGCAAA
    GTAGTCAGGAATCGATCTCGTGAAGCCCGCAAGGACCGAACACCCCCACC
    CCGATTTAGACCTGCGGGTGCTGCCCCACGTCCCCCACCAAAGCCCATGT
    AAGGAGCTGAGTTCTTAAAGACTGAAGACAGGCTATTCTCTGGAGAAAAA
    TAAAATGGAAATTGTACTTAA
    Sequence ID 642
    TGCTTGGCCCTCTACCTCCTGCCCTCTTCCTGTTCATCTCCCAACCACTG
    CACTCTTGATTTTTATACCACACAGAAGGTAAGAAAATTCTAGGAACCCT
    AAGGATCAATCCTCTCCATTTTCACTCAAATGCCTGGGGCCCAGCTCTGC
    AATGACTGACTCCAGGGCCTCTTTCCTCACTGCCAGCATAGAAGTCAGGG
    GAGCCAGCTGGGCCCTGCGGTCAGGAAGGTTCTCATTTTTGGAGCATTCC
    CTGAGCCCAGATCATAGGAGCAGCTGTCCCTGGTGGGACACAGGAGTCAT
    GACTCCTACCCTCCACCCTCCACACCCACCAGGCATTTAGCAGTCTGTCC
    TATGCAAGACAGATGAATTCTCAGCCAGGATACCTCAAGGCAGGCAAAGG
    TGAGTGGAGGGAAAATTCACAAACATTCAGGGTGTGTGGTGCTGGCATCA
    CCATGGCCAAATCCAAGAGGTCTTCCTGGAAGAGGGCCCAAACTGGAACC
    AAAAGAATGCTGTCAGCAGTTGGAATAGAGCTGTGAATT
    Sequence ID 643
    CTTTCCAAGAGGAATCCTCGGCAGATAAACTGGACTGTCCTCTACAGAAG
    GAAGCACAAAAAGGGACAGTCGGAAGAAATTCAAAAGAAAAGAACCCGCC
    GAGCAGTCAAATTCCAGAGGGCCATTACTGGTGCATCTCTTGCTGATATA
    ATGGCCAAGAGGAATCAGAAACCTGAAGTTAGAAAGGCTCAACGAGAACA
    AGCTATCAGGGCTGCTAAGGAAGCAAAAAAGGCTAAGCAAGCATCTAAAA
    AGACTGCAATGGCTGCTGCTAAGGCACCTACAAAGGCAGCACCTAAGCAA
    AAGATTGTGAAGCCTGTGAAAGTTTCAGCTCCCCGAGTTGGTGGAAAACG
    CTAAACTGGCAGATTAGATTTTTAAATAAAGATTGGATTATAACTCT
    Sequence ID 644
    CTTTGATAGAGAAGAAAATTCTCCTAGGATACAAGAGCCTCAACATTTTA
    AAGATTTTCTGCATCTCAAAAGCGTAGGCTCCTTGCTGGGCAAGGTGAGC
    CTCTGTGAGTCCTCATAGGACCGAGCAAATCTGATTCACCCCAGAAAATC
    CAATATCGAAGCTGAGCTTTGGCCTGAGCGGGTTCCATTTCCTCCCCAGA
    TCCTATTTAGGAAGTGTCTCCTGACAACCTCCAAAAGGTGCTAACATGCA
    ACGTTCTGAAGGGTTATTGCTCAAAAACAAGATTTTCCTTGTGGTCAAGA
    CTCTGCGAGCCTCGAACACGATGAATCCGCTCGAATGGGCTTGGGCTTTG
    CCCGGGTGGCGCACGCTCACACGCTGGAAGCACAGCTTTGACGATCTCCA
    CACACGCACAGGCACACACGCCACAGATGATGCCGGCTCATTCTCAGGGG
    GTGTCTAAGTTCTGCTTTAAATATTTACCCCCTAATTGTACAAACAATAG
    GGGCATGAGCCTGGTACTCGATAAATGGGGACTTNCTTAAAA
    Sequence ID - 645  nt: 649
    CTACAGCCTGGGCAGCGCGCTGCGCCCCAGCACCAGCCGCAGCCTCTACG
    CCTCGTCCCCGGGCGGCGTGTATGCCACGCGCTCCTCTGCCGTGCGCCTG
    CGGAGCAGCGTGCCCGGGGTGCGGCTCCTGCAGGACTCGGTGGACTTCTC
    GCTGGCCGACGCCATCAACACCGAGTTCAAGAACACCCGCACCAACGAGA
    AGGTGGAGCTGCAGGAGCTGAATGACCGCTTCGCCAACTACATCGACAAG
    GTGCGCTTCCTGGAGCAGCAGAATAAGATCCTGCTGGCCGAGCTCGAGCA
    GCTCAAGGGCCAAGGCAAGTCGCGCCTGGGGGACCTCTACGAGGAGGAGA
    TGCGGGAGCTGCGCCGGCAGGTGGACCAGCTAACCAACGACAAAGCCCGC
    GTCGAGGTGGAGCGCGACAACCTGGCCGAGGACATCATGCGCCTCCGGGA
    GAAATTGCAGGAGGAGATGCTTCAGAGAGAGGAAGCCGAAAACACCCTGC
    AATCTTTCAGACAGGAAATCCAGGAGCTGCAGGCTCAGATTCAGGAACAG
    CATGTCCAAATCGATGTGGATGTTTCCAAGCCTGACCTCACGGCTGCCTT
    GCGTGACGTACGTANCAATATGAAAGTGTGGCTGCCAAAAACCTTGCAG
    Sequence ID - 646  nt: 600
    GAGATGTCTCGCTCCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTC
    TGGCCTGGAGGCTATCCAGCGTACTCCAAAGATTCAGGTTTACTCACGTC
    ATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTGGG
    TTTCATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGAAT
    TGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTTTCT
    ATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGAGTATGCC
    TGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGGGA
    TCGAGACATGTAAGCAGCATCATGGAGGTTTGAAGATGCCGCATTTGGAT
    TGGATGAATTCCAAATTCTGCTTGCTTGCTTTTTAATATTGATATGCTTA
    TACACTTACACTTTATGCACAAAATGTAGGGTTATAATAATGTTAACATG
    GACATGATCTTCTTTATAATTCTACTTTGAGTGCTGTCTCCATGTTTGAT
    GTATCTGAGCAGGGTGCTCCACAGGTAGCTCTAGGAGGGCTGGCAACTTA
    Sequence ID 647
    CGAATGTGCAGGTTTGTTACATAGGTATATATATGCCATGATGGAAATAT
    TTATTTTTTTAAGCGTAATTTTGCCAAATAATAAAAACAGAAGGAAATTG
    AGATTAGAGGGAGGTGTTTAAAGAGAGGTTATAGAGTAGAAGATTTGATG
    CTGGAGAGGTTAAGGTGCAATAAGAATTTAGGGAGAAATGTTGTTCATTA
    TTGGAGGGTAAATGATGTGGTGCCTGAGGTCTGTACGTTACCTCTTAACA
    ATTTCTGTCCTTCAGATGGAAACTCTTTAACTTCTCGTAAAAGTCATATA
    CCTATATAATAAAGCTACTGATTTCCAAAAA
    Sequence ID 648
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    Sequence ID - 649  nt: 425
    CAAAAAAACGAAGAAAAGTGACGACAGTCTGAGGGACTTATGGGAGATCA
    TCAAGTGAACCACTATATGTGTAATGTAAGTCTTGGAATGAGAAGAGAGA
    AGGAGAAGGAGGAGAGAGCTTATTTGTAGAAATAATGGCTGAAAACATCC
    CAAACTTTCCTTTTTTTGAGGAAAGAAATAGGCATACAAGTTCAAGAAAC
    TCAAGGAACTCCAGAGAGGACAATTCTAAAGACACCCCCTCTAACATACA
    TTATAATCAAATTGTCAAAAGTAAAATACAAAGAGAATCTTTTAAATTGA
    CAAGAGAAAAGCAGCTGGTCACGTTCAAGGGAGTTCTATAAGAATTTCAG
    CAGATTTCTCAGCAGAAACCTTGCAGGCCAACAGGCAGTGGGATGATACA
    TTCAAAGTGCAAAAAAAAAAAAAAA
    Sequence ID 650
    CGAGAGTTTACCAGTNGCCTAATAATGCAATAAAAAATGCTTTGAGATAG
    CTAACNGCCCATAAAACAAACTCAAATTGCTTATAAAGTTTCTTCCCATG
    TTCCCATTTGATGAAAAGTCTTACATCACATATAACTGGGAAGCAGGGGT
    CCCTCCTCAATTTTCAGACATTTTGAAAGGATGACAGTTCTGTTTGTTAG
    ATGAGTAAACCTCTATATTCATAAGTTCTAAAATCCTTCATTATGAGGGA
    TTCAAAGTATTTATAAAAACACTGCCCTCTAAAAATTTCCTCAGATCTGA
    AGTATGGNCTTGGNCCTGAATATACAGTGTTATCCTATGTTTAAAAGGGT
    GATCCAGACATGAGACGCAACTAGTTGGTGCATAAGAAGGCCCCACTTGG
    CTATTTCATATCTACCTACAATTGACCAAAAAAAATTTTTTAGGCCAGCA
    ATTATTATTTAGCTTCGCTCTTTCTAGTGCAAGAAACTGCAGGCTGGATC
    AGTAGTTCAACAGCTAAACAGTCATAAAATAGTCATTGGCATGTTAAATT
    TCTTTCAATGCTTCAAAGATAAATTCCAATTCTATTTACTTATTCATTGN
    GACNGNATTACTAAACAGGTAAGGATGGGAATA
    Sequence ID - 651  nt: 251
    CTTTGGGAGGCCGAGGCGGGCGGATCACTTGAGGTCAGGGGTTCGAGACC
    AGTCTGGCCAACATGGTGAAACCCCAACTCTACTAAAAATACAAAAGTTA
    GCCAAGTGTGGTGGCAAGTGCCTGTAATCCCAGCTACTCGGGAGGCTGAG
    ACAGGAGAATCACTTTGAACCTGGGAGGCGGAGGTTGCAGTGAGCCAAGA
    TCGTGCCACTGCACTTCAGCCTGGGCAACAGAGCAAGATTCCGTCCATCT
    C
    Sequence ID 652
    CTTTCTTCAGCCTTGCAGACACCTAAACATCATGTAATTACCTAAGGAAT
    TCCCAAGTGCCTCTTCCAGGTTATACGTGTAAATAGCTGTTTTTATGCAA
    GATTAGTTAGATACTGCTCTTTACAGGATGAGTGGTGTTGTCTTTGGCTG
    GGGGGGNCTTAAATGTGTTTCTAATGTGTGTGTCAAATAATTACCTGTTA
    AACAGACTGCCAATCTGGCTGAAGCCAATGCTTCTGAAGAAGATAAAATT
    AAAGCAATGATGTCGCAATCTGGCCATGAATACGACCCAATCAATTACAT
    GAAGAAACCTCTAGGTCCACCACCTCCATCTTACACGTGTTTCCGTTGTG
    GTAAACCTGGACATTATATTAAGAATTGCCCAACAAATGGGGATAAAAAC
    TTTGAATCTGGTCCTAGGATTAAAAAGAGCACTGGAATTCCCAGAAGTTT
    CATGATGGAAGTGAAAGATCCTAATATGAAAGGTGCAATGCTTACCAACA
    CTGGAAAATATGCAATCCAACTATAGATGCAGAAGCATATGCAATTGGGA
    AGAAAGAGAAACCTCCTTNTTACCAGAGAGCCATCTTNTTTCT
    Sequence ID 653
    GTTGTGACTCGTTGGCATGTGATCTGAAGTTCCTGCCCTGCAGCTGACGA
    GCCAGTGTTTCAATAATTAAAAACAACTCAACTCACTGTCCTCCTGCCTT
    GAATTTGATCATTGCGCTTTGCATGTATGTATCACAATACCACATGTACC
    CCATAAATATGTACAAAGATTATGTGTCAATAAAAAACAAAAATTAAAAT
    CCCAATTTTTA
    Sequence ID 654
    GTTGCTAGTAGCGGCAGGAAGATGTCAGGCTCACTTTCCTCTGATTCCCG
    AAATGGGGGGAACCTCTAACCATAAAGGAATGGTAGAACAGTCCATTCCT
    CGGATCAGAGAAAAATGCAGACATGGTGTCACCTGGATTTTTTTCTGCCC
    ATGAATGTTGCCAGTCAGTACCTGTCCTCCTTGTTTCTCTATTTTTGGTT
    ATGAATGTTGGGGTTACCACCTGCATTTAGGGGAAAATTGTGTTCTG
    Sequence ID 655
    GTCCCCGGGAATCGCGGCCGCGTCGACGGTTTATTTTCAGTGCTTGAAGA
    TACATTCACAAATACTTGGTTTGGGAAGACACCGTTTAATTTTAAGTTAA
    CTTGCATGTTGTAAATGCGTTTTATGTTTAAATAAAGAGGAAAATTTTTT
    GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTT
    Sequence ID 656
    TAGAGGCCTGAATAGGTAGACAATGGCAGCAGCGTTTTTAATCACAGTCC
    TATTCATGCCCTAATTCGGGAGTGATGATTAAAGGACATTAGAGGGAGCA
    CTTTGACATCTGATCCTTTGAACTGACGTCTGTGCAGGCTGCACTCCATA
    GAGCTCACTTGGCCAAACTGATTTCCTTAAATAAAGTGCTGTGATTTCCA
    ATGTAGGAAATATTACATTAGAGCCTATTGAAATGATTAGGAATTGAGGA
    GCTTTTCTTTAGGTGGGAATGTGGTGTATGCTGTATACTCACAAAAGTGA
    GATCATTAATATTGCATGTACTACTTTGAATATCAGGGACCACAGAGAAA
    TAGCATGAGAAACGCCTTCCTGCAGTCATGCACTTAAAATGAATATGAAC
    AAAAATGTGGAACTCTGCTGTCATAGCTCTCCG
    Sequence ID 657
    GGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGAGGAAACCGCAGATAAGT
    TTTTTTCTCTTTGAAAGATAGAGATTAATACAACTCTTAAAAAATATAGT
    CAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTTAACGTAATTTTA
    ATAGCTTAAGATTTTAAGAGAAAATATGAAGACTTAGAAGAGTAGCATGA
    GGAAGGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTTGAGATGAAG
    CTTCTTCATGGAGTAAAAAATGTATTTAAAAGAAAATTGAGAGAAAGGAC
    TACAGAGCCCCGAATTAATACCAATAGAAGGGCAATGCTTTTAGATTAAA
    ATGAAGGTGACTTAAACAGCTTAAAGTTTA
    Sequence ID 658
    GACCTTTGAGAAAATTAATTTAAATCCTAGAACTTTGGGTGAACCGAAGA
    AATTTATAATATTTGTTTAGTTAATAACAGATAAAAAGGAAAGATTCAAG
    CCTATTGGATGAGAATTTGTACATTATTTTAGAGCTAATAATAATGGTTT
    TCAGTTTAGTGAGGATTTAAAAAATGTTTTTGAATCAAACTTTTTTTCTT
    TATAATCCTTTTTAACTAACTCAGGAAATAAGGTATTATGAAATCCACAC
    ACTGTTACCTCCTTAAAGTATGAGGATACTTCCCACTGTTTGGTCCACTA
    GTGGCTGATTATTTTGTTTGTGGATTATTTGTAATTTTCTTTTTAATTCT
    TCCTTAAAGAGCATGGCATTTGGAGTCACAGACCTATATTTGAATCCTGT
    CATTTACTAGCGTTTTGACCTTGAACAATTATGCTCAGAGTCTCAGTTTT
    TTCTTGTAAAGTGATGATGATACTACTTAACTCACAGGGTTGTAGTGAAG
    ATCAAATGAGATCATGTCTGTANAACACCCTGCCCGGCACTCAATAAGTA
    TTAATAGGAACCCATATACCTC
    Sequence ID 660
    TGTTTTTATTTTTTAAAAGGTATAAACACCAAAAAAAAAATTAACATTGT
    ATGAAGATGGAAAATAAGAAGATGCACTTTCTGTAACTTTGTCTAAGGAT
    TTAAATTACTAACTTATGAACTCCAATTTGAATTGAACTTAACTATCGGC
    TTTCTTACTGGTAAAATTATATGGTTTATTTTAAATGCGTACATATTGAC
    CAATGGCCTCTGAAAAAGCACATTTTAGATACTGAAATTGAAGGAAAGAA
    AATGCATCTTCAAACATTTTTTGGAATCTCACCACATATACTTTGTTANA
    TTTGTGTATTGTAGGGTGTTTGTTTTGTATTTTTGTATTGTATATGAACT
    TTTTTTAAATGTGACAGTTAAACACATCTTTAAAAGCATAGTCACAGACA
    AAAGCATACAGTATAAAAATTTCCTTGAAAACTCCTACAATATTATATTT
    GGAGGCAGCTTCAGACTGTTTTATTGG
    Seqeunce ID 661
    CTCTGGCACACATTAGTTCCTCTTATATTACATTGATATAAGCAAGTCAT
    ATGGATTTATCTGAGTGTAAGGAGAGCTGGAAAAAATAGTTTCTAGCAGG
    TCAGCCACCTCCCAGTGAGGGCTGCATACCATAGAAGGGGAGAATGAATT
    TTGGGAAAACAGGTAATTATCTCTGTCACAGAAGGGGATGAAAAGTATGG
    TAGTTACNCAAGTTANACATCTGTATGGAAAATACCACTTGGTTCTACAA
    ATGNGG
    Sequence ID - 663  nt: 627
    GCCTCCCGGGTTCAGGGATTTCTCCTGCCTCAGCCTCCTGAGTGGCTGCA
    TTGCAGGCACCTGCCACCACGCCTTGCAAATTTTTGTGTTTTTAGTGGAG
    ATGGGGTTTTGCCATGTTGGCCAGGCTGGTCTCGGACTCCTGACCTCAGG
    TGATCCGCCCGCCTCAGCCTCCCAGAGGGCTGGGATTACAGGCGTGAGCC
    ACTGTGCCTGGCCCCAAGTTTTGCATCTTTTAATGCCCTCTGAACAAATA
    CATAGAGAAAACTCTCAGAACAATTAAAACCTGCAGAGCAACAGTGTCCT
    CCATGTCTTAGGTTTCAAGTTTGCCTCTAAAATTCTAATCCATATTTTTC
    TACTTCTCAGATAATTTATGTGTGTGTACTCTTCCTAGACGTACAAGAGA
    CTTTTTAATGCTAAATATTTGTCAGTGCTTAACAAAAACTCAATTTCACA
    TTACTCATATTGTTTTTGTTTTAATTGAATGTGAATTAAATTTTTATTAG
    TTATTTGATTTGGAATGTTATGTATGCCATTAACACTATTAGGGGAATCT
    CTAGCATTTCTGTATTTTTAAAGAATTTGATTCTTTTGTANATTCTGCCT
    GTGTGGCATTTTAAACATGTGTGACAT
    Sequence ID - 665  nt: 345
    ACCGGCGACATGGCCAAACGTACCAAGAAAGTCGGGATCGTCGGTAAATA
    CGGGACCCGCTATGGGGCCTCCCTCCGGAAAATGGTGAAGAAAATTGAAA
    TCAGCCAGCACGCCAAGTACACTTGCTCTTTCTGTGGCAAAACCAAGATG
    AAGAGACGAGCTGTGGGGATCTGGCACTGTGGTTCCTGCATGAAGACAGT
    GGCTGGCGGTGCCTGGACGTACAATACCACTTCCGCTGTCACGGTAAAGT
    CCGCCATCAGAAGACTGAAGGAGTTGAAAGACCAGTAGACGCTCCTCTAC
    TCTTTGAGACATCACTGGCCTATAATAAATGGGTTAATTTATGTA
    Sequence ID - 666  nt: 252
    ATAATTCAGAACTTCTTCATATGCTCGAGTCTCCAGAGTCACTCCGTTCT
    AAGGTTGATGAAGCTGTAGCTGTACTACAAGCCCACCAAGCTAAAGAGGC
    TGCCCAGAAAGCAGTTAACAGTGCCACCGGTGTTCCAACTGTTTAAAATT
    GATCAGGGACCATGAAAAGAAACTTGTGCTTCACCGAAGAAAAATATCTA
    AACATCGAAAAACTTAAATATTATGGAAAAAAAACATTGCAAAATATAAA
    AT
    Sequence ID 669
    TTACTTTTAACCAGNGAAATTGACCTGCCCGTGAANAGGCGGGCNTGACA
    CAGCAAGACGAGAAGACCCTATGGAGCTTTAATTTATTAATGCAAACGGT
    ACCTAACAAACCCACAGGTCCTAAACTACCAAACCTGCATTAAAAATTTC
    GGTTGGGGCGACCTCGGAGCAGAACCCAACCTCCGAGCAGTACATGCTAA
    GACTTCACCAGTCAAAGCGAACTACTATACTCAATTGATCCAATAACTTG
    ACCAACGGAACAAGTTACCCTAGGGATAACAGCGCAATCCTATT
    Sequence ID 670
    GGCTGATTCCTGAGCTATAAAAGCATAATTGCTTTATATTTTGGATCATT
    TTTTACTGGGGGCGGACTTGGGGGGGGTTGCATACAAAGATAACATATAT
    ATCCAACTTTCTGAAATGAAATGTTTTTAGATTACTTTTTCAACTGTAAA
    TAATGTACATTTAATGTCACAAGAAAAAAATGTCTTCTGCAAATTTTCTA
    GTATAACAGAAATTTTTGTAGATGAAAAAAATCATTATGTTTAGAGGTCT
    AATGCTATGTTTTCATATTACAGAGTGAATTTGTATTTAAACAAAAATTT
    AAATTTTGGAATCCTCTAAACATTTTTGTATCTTTAATTGGTTTATTATT
    AAATAAATCATATAAAAATT
    Sequence ID 671
    CAGGAAGTCACCTGGGATTGGCTGCCTCACCCACTCACAGTGCCATCCCT
    GCCCCAGGCCTCCCAGTGGCAATTCCAAACCTGGGTCCCTCCCTGAGCTC
    TCTGCCTTCTGCTCTGTCTTTAATGCTACCAATGGGTATTGGGGATCGAG
    GGGTGATGTGTGGGTTACCTGAAAGAAACTACACCCTACCTCCACCACCT
    TACCCTCACCTGGAGAGCAGTTATTTCAGAACCATTCTACCTGGCATTTT
    ATCTTATTTAGCTGACAGACCACCTCCACAGTACATCCACCCTAACTCTA
    TAAATGTTGATGGTAATACAGCATTATCTATCACCAATAACCCTTCAGCA
    CTA
    Sequence ID 672
    CAGGAAGTCACCTGGGATTGGCTGCCTCACCCACTCACAGTGCCATCCCT
    GCCCCAGGCCTCCCAGTGGCAATTCCAAACCTGGGTCCCTCCCTGAGCTC
    TCTGCCTTCTGCTCTGTCTTTAATGCTACCAATGGGTATTGGGGATCGAG
    GGGTGATGTGTGGGTTACCTGAAAGAAACTACACCCTACCTCCACCACCT
    TACCCTCACCTGGAGAGCAGTTATTTCANAACCATTCTACCTGGCATTTT
    ATCTTATTTAGCTGACAGACCACCTCCACAGTACATCCACCCTAACTCTA
    TAAATGTTGATGGTAATACAGCATTATCTATCACCAATAACCCTTCAGCA
    CTAGATCCCTATCAGTCCAATGGAAATGTTGGATTANAACCAGGCATTGT
    TTCAATANACTCTCGCTCTGTGAACACACATGG
    Sequence ID 673
    GGGTTTTCTTTCGGAAGCGCGCCTTGTGTTGGTACCCGGGAATTCGCGGC
    CGCGTCGACTGCTAAACAGAATACTGCTATTTTGAGAGAGTCAAGACTCT
    TTCTTAAGGGCCAAGAAAGCCACNTGNNCCCTNGGNCTAATCTGGCTGAG
    TAGTCAGTTATAAAAGCCNTAATNGCTTNNTNTTTGGNNTCNTTTTTNNC
    NGGGGNCGGNCTTGGGGGGGGTTGCNTCCAAAGATANCATNTNTTTCCAA
    CTTTNTNAANNNAANNGTTTTAAAATCCCTTTTCCNCCNGAAAANANNGC
    CCTTTAAGNGCCNCAAAAAAAAANNGTNTTCTGCANNTTTTCTANTATNA
    CAAANNTTTTNGTAGAANAAAAATTTTTTTTTAGNGGCTACCCTTTNTTT
    NTTANNCANNGGAGTTTNTTTTTACAAAAAAAAAANATTGGGNCCCCTCC
    ACAACCTTGGGTCTNTAATNGGGGGGTTTTTAAATAAANCNTNTNTAAAT
    CCCCCNNNNNNNNNCNNNNNNNNNCCNNNNNNNNNNNNNNNCCCNNNAAA
    AAATTTTTNCTCCCCCNCCCTTTTTCTTCCTGCCGGCCCCAATTTAAGCC
    CNGGCGCTTGGGGCAAATCCCCCTTTAGNGGGGGGGTTTANAAAAACCNG
    GGGCGGGGNTTTAAAACCNCGGGGNNNGGGGAA
    Sequence ID 674
    ACCTCTAGCATCACCAGTATTAGAGGCACCGCCTGCCCAGTGACACATG-
    TTTAACGGCCGCGGTACCCTAACCGTGCAAAGGTAGCATAATCACTTGTT
    CCTTAATTAGGGACCTGTNTGAATGGCTCCACNAGGGTTCACTTGTCTCT
    TACTTTTAACCAGTGAAATTGACCTGCC
    Sequence ID - 675  nt: 591
    GTATAGAAAATAATGTCCCCAGNGCATAGAAAAAATGAGTCTCTGGGCCA
    GTGAATACAAAACATCATGTCGAGAATCATTGGAAGATATACAGAGTTCG
    TATTTCAGCTTTGTTTATCCTTCCTGTTAAGAGCCTCTGAGTTTTTAGTT
    TTAAAAGGATGAAAAGCTTATGCAACATGCTCAGCAGGAGCTTCATCAAC
    GATATATGTCAGATCTAAAGGTATATTTTCATTCTGTAATTATGTTACAT
    AAAAGCAATGTAAATCAGAATAAATATGTTAGACCAGAATAAAATTAATT
    ATATTCTGGTCTTCAAAGGACACACAGAACAGATATCAGCAGAATCACTT
    AATACTTCATAGAACAAAAATCACTCAAAACCTGTTTATAACCAAAGAAT
    TCATGAAAAAGAAAGCCTTTGCCATTTGTCTTAGAAAGTTATTTTTTAAA
    AAAAAATCATACTTACTATTAGTATCTATGGAAGTATATGTAACAATTTT
    TATGTAAAGGTCATCTTTCTGTGATAGTGAAAAAATATGTCTTTACTAAG
    TTGAAATGAATACTTTCTGNCTTTGCTAATGGATAGTTATT
    Sequence ID 676
    CTCAATTCTACTAAAAAGCCCCCCAAGAAAAGCGAATGAGAAAACAGAGT
    CATCCTCTGCACAGCAAGTAGCAGTGTCACGCCTTAGCGCTTCCAGCTCC
    AGCTCAGATTCCAGCTCCTCCTCTTCCTCGTCGTCGTCTTCAGACACCAG
    TGATTCAGACTCAGGCTAAGGGGTCAGGCCAGATGGGGCAGGAAGGCTNC
    GCAGGACCGGACCCCTAGACCACCCTGCCCCACCTGCCCCTTCCCCCTTT
    GCTGTGACACTTCTTCATCTCACCCCCCCCTGCCCCCCTCTAGGAGAGCT
    GGCTCTGCAGTGGGGGAGGGATGCAGGGA
    Sequence ID 679
    GNANCNTTTCCTNTCGNAAANCGCGCCTTGTGTTGGTACCCGGGAATTCG
    CGGCCGCGTCGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTNTAGAC
    TCGANCAAGCTTATGCANGCNTGCGGCCGCAATTCGAGCTCGGCCGACTT
    GGCCAATTCGCCCTATAGNGAGTCGTATTACAATTCACTGGCCGTCGTTT
    TACAACGTCGNGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTT
    GCAGCACATCCCCCTTTCGCCAGCTGGCGTAATANCGAANAGGCCCGCAC
    CGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAANGGAAATTGT
    AAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCT
    CATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAA
    GAATAGACGGAGATAGGGTTGAGNGTTGTTCCAGTTTGGAACAANAGTCC
    ACTNTTAAAGAACGNGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATC
    AGGGCGATGGCCCACTACGTGAACCATCNCCCTAATCAAGTTTTTTGGGG
    TCGAGGNGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATT
    TAAAGCTTGACGGGGAAAGCCCGGCGAACGTGGCGAAA
    Sequence ID 682
    CACCTGCAGTCCAAGTACATCGGCACGGGCCACGCCGACACCACCAAGTG
    GGAGTGGCTGGTGAACCAACACCGCGACTCGTACTGCTCCTACATGGGCC
    ACTTCGACCTTCTCAACTACTTCGCCATTGCGGAGAATGAGAGCAAAGCG
    CGAGTCCGCTTCAACTTGATGGAAAAGATGCTTCAGCCTTGTGGACCGCC
    AGCCGACAAGCCCGAGGAAAACTGAAACTTTGCTTAACNACCGAATGGNG
    GGGANCTTTTCCAACGNTTTT
    Sequence ID 683
    TTGGTTTCATACTGNTGGGGNTTGAATGNTCCCTNCAACACTNATGTTGA
    NACTTAATCCCTAATGNGGCAATACTGAAAGGTGGGGCCTTTGAGATGTG
    ATTGGATCGTAAGGCTGTGCCTTCATTCATGGGTTAATGGATTAATGGGT
    TATCACAGGAATGGGACTGGTGGCTTTATAAGAAGAGGAAAAGAGAACTG
    AGCTTGCATGCCC
    Sequence ID - 684  nt: 545
    GTGGAAGNGACATCGTCTTTAAACCCTGCGTGGCAATCCCTGACGCACCG
    CCGTGATGCCCANGGAAGACAGGGCGACCTGGAAGTCCAACTACTTCCTT
    AAGATCATCCAACTATTGGATGATTATCCGAAATGTTTCATTGTGGGAGC
    AGACAATGTGGGCTCCAAGCAGATGCAGCAGATCCGCATGTCCCTTCNCG
    GGAAGGCTGTGGTGCTGATGGGCAAGAACACCATGATGCGCAAGGCCATC
    CGAGGGCACCTGGAAAACAACCCAGCTCTGGAGAAACTGCTGCCTCATAT
    CCGGGGGAATGTGGGCTTTGTGTTCACCAAGGAGGACCTCACTGANATCA
    GGGACATGTTGCTGGCCAATAAGGTGCCAGCTGCTGCCCGTGCTGGTGCC
    ATTGCCCCATGTGAAGTCACTGTGCCAGCCCAGAACACTGGTCTCGGGCC
    CGATAAGACCTCCTTTTTCCAGGCTTTAGGTATCACCACTAAAATCTCCA
    GGGGCACCATTGAAATCCTGAGTGATGTGCACTGATCAAGACTGG
    Sequence ID 685
    GGAAAGGGCCATTTTATTGCCTAAAACCACCTGGNTTTTNAGGTAACAGT
    TCCAACATGTCCTTTTTTGAATAGCTGTTCTAATTATTATATATTCAGCT
    GATTAATAGGAGTACTTGATAGGTGGACTGTGTCAGGTAGCCTCAGGCAA
    TCCTACTTCAACAAGCTGTCAGGGAGCCATGCCATGCTTCTTTATGACAT
    AGGTGAATTTGATAGGCTCACTAGCAGAACATGGGATCACAAGGTGGAAC
    CNTTCCNTTT
    Sequence ID 686
    GACCCCTTCCTTACACCTTATACAAAAAAACTGAAACTGGACCCCTTCCT
    TACACCTTATACAAAAATTAACTCAATTTTATTATGTTGTATTAAATTAA
    GTTGGGTTTAATTAAGATGGATTAAAGACTTAATTATAAGACCTAAAACC
    ATAAAAACCCTAGAAGAAAACCTAGGCCATACCATTCAGGACACGGGTAT
    GGGCAAAGACTTCATAACTAAAACACCAAAAGCAATGGCAACGAAGTCCA
    AATAGACAAATTGGACCTGATTAAACTAAAGAGCTTCAGCACAGCAGAAG
    AGACTATCGTCAGAGTGAACAGGCAACCCACAGAATGGAAGAAAATTCTT
    GCAATCTATCCATCTGACAAGGGGCTAATATCCAAAATCTACAAAGAACT
    TAAACAAATTTACAAGGAAAAACACAAACAACCCCATCAAAAAGTGGGCT
    AAGGATGTGAACAGACACTTCTCAAAAGAAAACATTTATGCAGCCAACAA
    ACATGAAAAAAAGTTCATCATCACTGCTCATTAGAGACATGCAAATCAAA
    ACCACAATGAGATCCCATCCCACACCAGTTAGAATGGCAATCATTAAAAA
    TGT
    Sequence ID - 687  nt: 268
    TTTATGTGTTTTTGCTTGGGGGGCGCTGGGCCTAGCCCAGAGTAGTGCTT
    GCTCCCCCTGCCTTGTCCCACCAGCGAGGCAGCAGACTCAGGCCCTCCAT
    GGTCCTCTTTGTCATTTTGTTGACATGCATTCCTCCTTTTGTCATCTTGT
    TGGGGGGAGGGGATTAACCAAAGGCCACCCTGACTTTGTTTTTGTGGACA
    CACAATAAAAGCCCCGTTTATTTGTAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAA
    Sequence ID - 688  nt: 569
    CTTTAGCCAGCCTGATCAGAAAAAAACAAAAGAAGAGGAAAGACGTAGAT
    TACCAACATCAAGAATGTGAGTTATGATATCACTACAGACTCTCCAGGTA
    TTAAAAGCATAATTAGAGAATGATATGAGCAGCTATATGCAAATAAGTTC
    AACATTGGACAAATGGACAAATTTCTTGAAAGATAAATTATGAAATTTCA
    TTCTGAAAGAACTACATGACCTTAATTGTCTTACATCTATTAAATAAGTG
    GAAATTGTAGTTTAGAAACTTTCCCACAAAGAAAACTCTAGGCCCAGATG
    GCATCAAAATAATATTCAGATGAATGAAATGGAGAAAGGATAGCCTTTTC
    AACAAATGGTGGTGGAACAATTGGATTTCCATATGCAAAAAAATAGAGAT
    GGACGCAGAGGTGTGTGCTTAGGAGGCTGAGGTGAGAGGATTGTTTGAGG
    CCAGCCTGGGCAACATAGCAAGACCCCATTTCAAAAACAAAAATAAAGAA
    CTTGTAGCCTTACCTTGTGCCATATTATGAAAATGTATCATAGGCTTAAA
    TGTGAAACGTAAAACAAAA
    Sequence ID 689
    CGCAGGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGAGGAAACCGCAGAT
    AAGTTTTTTTCTCTTTGAAAGATAGAGATTAATACAACTACTTAAAAAAT
    ATAGTCAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTTAACGTAA
    TTTTAATAGCTTAAGATTTTAAGAGAAAATATGAAGACTTAGAAGAGTAG
    CATGAGGAAGGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTTGAGA
    TGAAGCTTCTTCATGGAGTAAAAAATGTATTTAAAAGAAAATTGAGAGAA
    AGGACTACAGAGCCCCGAATTAATACTAATAGAAGGGCAATGCTTTTAGA
    TTAAAATGAAGGTGACTTAAACAGCTTAAAGTTTAGTTTAAAAGTTGTAG
    GTGATTAAAATAATTTGAAGGCGATCTTTTAAAAAGAGATTAAACCGAAG
    GTGATTAAAAGACCTTGAAATCCATGACGCAGGGAGAATTGC
    Sequence ID 690
    CGAAAAGCAAATATAACTTGCCACTAACCAAGATCACCTCTGCAAAAAGA
    AATGAAAACAACTTTTGGCAGGATTCTGTTTCATCTGACAGAATTCAGAA
    GCAGGAAAAAAAGCCTTTTAAAAATACCGAGAACATTAAAAATTCGCATT
    TGAAGAAATCAGCATTTCTAACTGAAGTGAGCCAAAAGGAAAATTATGCT
    GGGGCAAAGTTTAGTGATCCACCTTCTCCTAGTGTTCTTCCAAAGCCTCC
    TAGTCACTGGATGGGAAGCACTGTTGAAAATTCGAACCAAAACAGGGAGC
    TGATGGCAGTACACTTAAAAACGCTCCTCAAAGTTCAAACTTAGATTTCA
    GATTT
    Sequence ID 691
    CCGGTCTCTACACAATATATAGAAATCTGGGCATGGTGGTGCCTGGCTGT
    AGTCTCAGCTACCTAGTTGGGTGAGGTGGGAGAGTCGCTTGAGTCCTGGA
    GGTTGAGGCTGTAGTGAGCCAGGGCTGCACCACTGCATTCCAGCCTGGGT
    AACAGAGTGAGACCCTGTCTCAAAAAGAAAAAAAAAAATTGCTAATTTTA
    ACAAATCACAAAACTGACTCAGGCAAGTTGTCTGACTCAAAAGCCCTTGA
    AAAACCATCAAAGACAGTAGAATGTTAACTGGTCATTTACGTAAAATAGT
    GTTCATTAAATTTTTGGTTCATTTAGGATAATCATTTTAAATGAGACTGT
    ATTTGAGACTGTATACACATACATATACATGTTTACACACATATACGTAC
    AATATATGTACATTCTATCTAAAAGATCATACATGTGTGTACATATATGT
    TTTTAAAAGTCAAACTGACATATTAATGGAAACAGTGCTTACATCTCTGG
    TAGTGATTTTCTATTAGCAGCAGCCCTACATATGCTGCGTCTCTGAACAG
    CATGTCAGTGCCATGACTGTCTAAACATGCAAATATGACTGACAGACTCT
    TGAGACAGCTTTCACCTTG
    Sequence ID 692
    AATTCGNGGCCGCGTCNNCCTANGAGGCACCAGGAAATCCCGCGGGGTGG
    CCCATGCAGACCAGGCGCACGTGGCTCATGGGGCANAATTGCCAAGGACA
    GCTCACGACAGTGCCACCTTCTCACCATTCCAGCCAAGGAGAGATGTGAC
    GTTGGAACTGCTCTGGCACTTCTGTCAAGCCTCCCCCGCCCCAATTGCCT
    TGAGATCTCTGCTCTTTGTCAGAGATTTGCAAAGACTCACGTTTTTGTTG
    TTTTCTCATCATTCCATTGTGATACTAAGAAACTAAGAAGCTTAATGAAA
    AGAAATAAAATGCCTATGTTGTTGTTCT
    Sequence ID 693
    CTAGAACCCATGACTCCTAGGTCTTATACTGCAACCACAGTATCAGCAAA
    TAATCTTTCATAAGGGGATTATTCTCTGATTAACAGGAAATACAGGAATT
    TAATTTGTGAACACGCTAGGTAGAAGCAGAAACCCAAATCCAAATCCAAA
    TTTAAACATTTAAAATTCATTCTATAACTAAGATCTAACAGTCATTTTCT
    TCCCAGTAAGAAATAACCAAAGCATGCTAAAAATCACTGGACTAAATTGG
    TGTCAAAACTGCCACATTGCCAGGCATGGGGGGGTCATACTTGTAATCCC
    AGCACTTTGGGAGGCCGAGGTGGGAAAATTGCTTGAGGCCAGGAGTTCGA
    AACCAGCCTGGGCAACACAGTGAGACCCCATCTCCACAAAAAAAAAAAAT
    TAAAAAACAAAACAAAACATTAGCTGGGCATGGTGGTACACGCCTGTAGT
    CCCAGCTACTCAGGAGCCTGAAGTGAGAGGATCACTGAAGCCCAGGAGGT
    AGAGCTATGACTGTAGTGAGCTATGACTGTGCCACTACACTCCACCTGGG
    TGACAGGGGACTC
    Sequence ID 694
    CGACTTCCATTTGTATTAATGGAATACTAAGTCCCTCTGTGATTTCTGAA
    CCAAGCTATTCCTAGGCCTGAGTTTTATTTTGTTGACACAGAAATAAATT
    ANAAGGCCAAGCGTGGTGGCATGTGCCTGTAGTCCTAGTTGCTGAGGTAA
    GAGGATTGCTTGAGCCCAGGAGTTCAAGGCTGCAGCAAGCTTTGATTGCG
    CCACTGCACTCCAGCCTTGGCGACAGACTAAGACGCTGTCTCAAAAAAAA
    ACAAAAA
    Sequence ID 696
    GGTTATCAATGAGATTAAGAGACAACTAGAGTAAAAACAAAAGAAAAGAA
    AAGAAANGAAAACAACAGAAGCTCTATTAACTGACCTCTAACCAATACAA
    CAGGTTAACTGATGTTCTCCATTCTGTATATAAAAATCCCAGTGGACACC
    CACAACACAGGCTTCAGGCTTGTAGGACACTTTCTAGTTCATCTGAGCAC
    TTTTGTTCTCAGCAGTTGAGCTGTATACTTAGCAACATTTGGTGCTTCCA
    AACCCATTTGTGCCTGTAGCACTTACTATTGAAATACATAATTTAATTAA
    ATATTATATAAAGGAATGGAATACGAGTTGGACAAGAAAAAGAGTTAAAT
    CTGAAGGTTAGGTAAAAAGAGCAACTTCTTTTCTCTGTTTTGCAGGTTGG
    CAAAATCATTTAAAAACAATTGGAAGTATTATATGTTCTGCATTAAGTTG
    TCATTTTACTTAAAAACTAGGCATCAAAGATGATGCATAATAAATTTAGT
    GTATGCAAGAATGACTGCTTGGGACCTCAATATATGAATTCTTAATCCAA
    GGAAAGTCCTTGGCCTTACATTTAAAAGTCGGCAAATAAGTGTACGTTCA
    TT
    Sequence ID 697
    GAACATTTAAAAATAATGCAAATAAGGCTGGGCGTGGGGGCTCACACCTG
    TAATCCCAGCACTTTGGGAGGCCGAGGCAGGCAGATCACGAGGTCAGGAG
    ATTGAGACCATCCTGGCTAACACAGTGAAACCCTGTCTCTACTTAAAAAA
    TAAAAAAATTAGCCAGGCGTGGTGGTGGGCGCCTGTAGTCCCAGCTACTC
    AGGAGGCTGAGGCAGGAGAATGGTGTGAACCCGGGAGGCGGAGCTTGCAN
    TGAGCTGAGATCGTGCCACTGCACTCCAGCCTGAGCGACAGAGCGAGACT
    CTGTCT
    Sequence ID 698
    TCATTAGAATCCAAGCTTTGAAAATTTCTGATTAATGCTCATGTATTTCT
    TTATCTTTGTTTTTCCTTGTGAAGAAAGACTTTCACCACTGTCTGAGTGA
    TGATGCTGTTGATAAGGATGATGTCGATGACTACTATATTGCATCTCTCA
    GGAACAGCTGATGGGAAGGGAGGGGCTGCTGAGTTCCCTTGTTCTAGCTA
    GCAGGACGCTCCTCANAGAGGGGGCCGAGTTACAGACAGCAGCCGCATTC
    TCATGCAAAATTAGTTTTAAACTGCTAGTGTGGGCATCGGTACCTTTTGC
    CTGGGTGATACCGAAGAATTGTTGAGGATTTAGTATGCTCCGTAGAGACA
    GTTCAGCCAGTCATTTCTGCATTGGAGAGACTTCTCATACTTTCTTTGAA
    GACTCATAGAAAGCTGGAT
    Sequence ID 699
    ATTAAGGTTTGTNCCCAACAAGAATAGATGTAATTAGAAAAAANTGNCTT
    CCTTACCTATTGCCTCTGATNTTTACTTGCTTAAATTTTTTTTATTGNAA
    ATCCAGAAAAAGNGGATTTAGAGAACAACACTAACTCCCACCTAATCTAT
    GACAGANATGTACAANANAGTACCTGTGAAAAATGTGAAAGNATNTGAAA
    AATGTAACCTTTGGCAGCCTGAGCATAGTCAACCAGAAAAACTATCTGAA
    TTAAAATAATTGGTCCATAGGTACTATTTTATTTGGTCCATAAGGATTAT
    TTTTTCAACTTTTTTTTCAAGTGTATTATTATGTCATTTCCCACGTAGGT
    TACTGATACCTGAAGACTTTTTNCACCTTTAACCTTNCTCGTTGAGGAGC
    TTTGTANTCTAATAAAAGAGAAATATAAGTAAATGTTAGATATATGGGNG
    GATAATGGTAACTATGTGCTTAAAGAGGTATAAAAGAAGGGTAGGGAGCA
    GATAAGACAAAGGAAGGGCTATATTATAANGAAGAATATTCCAAGTAGGG
    AAGAGAAAAAGATATGTTATCCATATAATATTTTATGTGCAGTAGAGAAC
    ATGTTCTATAGAANAGACAGAAGATG
    Sequence ID 700
    CTTGAGCCCAGGAATTCCAGCCTGGGCAATATAGTAAGACTCCGTCTCTA
    CAAAAGATACAAAAATTAGCCAGATGTGGTGGTGCGTGCCTGTAGTTCCA
    GATACTGGAAAGACTGAGGCAGGAGGATTGCTTGAGCATGGGAAGTTGAG
    GCTGCAATGAGCTGTGATTACGCCACTACACTCCAGCCTGGGCAACAGAG
    TAAGATCTTGTCTCAAAAAAAAAATTGAATTCAGCTAAAAATAATAAAAT
    TTTAAAATAATTTTAAAAAGCCCTCAACAGCTTTGTTTTTCTCTCCTTGC
    CAGCTTCTCTGCAGCCTATAGCCTGGAGGCTGGCTGCTGCGAGCCAGGAC
    AAGCGGTGGGAAATGCAATCACAGCGTGAAATCTCTGTGTTCAGAGACAC
    GCAGGAAGCAGGTGAACCATGAASGGCCAACACATGCCCCCAGTTAGCAG
    GGTGTAGAGACCGGGGCAGGGCTTTCTTCTTCCTTCTGGGTTATAAATAT
    CCATGTCCTGCCATTTGAAGCTGCAAGTGGCACACATGGATGCTGGACAG
    GCGCTCGCACTTTCTGGGCAGGGCANGGGGCTCAAAGGCAGGACAGCTGG
    GCAAAAGCACCTTGCGTGGGCCC
    Sequence ID - 701  nt: 579
    CTTTGGAGCTTCTGTCTGTGCTGTGGACCTCAATGCAGATGGCTTCTCAG
    ATCTCGTCGTGGGAGCACCCATGCAGAGCACCATCAGAGAGGAAGGAAGA
    GTGTTTGTGTACATCAACTCTGGCTCGGGAGCAGTAATGAATGCAATGGA
    AACAAACCTCGTTGGAAGTGACAAATATGCTGCAAGATTTGGGGAATCTA
    TAGTTAATCTTGGCGACATTGACAATGATGGCTTTGAAGGTAATTAAAAT
    TATCAAATTGGTGCTTGATTTCTGCTTTTAAAATGGTTTATGGAAGAAAA
    TATGATTAAAGTTTTGTATTGTTTTCCTTCCTATAGAAGATGGAGCCAGA
    ATGGCATGCTAAGTTTTTTCTTTTCTTTAGTGTTATATATGACTTCTCCT
    CAATTGTCACCCATTGATCTTTACCACTGTTAATAATGGATGATATTCAA
    AATACCTTATTTCAGTGATTCTAAGGCACCATTGATTAGAAACTGCATTA
    TTATTTATGTGTCCCTAAAAGCTACCTATTAAGCTGTTACACCCACCATT
    TTTCTGTTAAGAAAATCCTGATTTCAGAA
    Sequence ID 702
    GTNNTCCTCTCGGAACGCGCCTTNTGTAGCCAGGTGCTACCAGACCNAAT
    ACACGGTTGTTCCAGCTTGCGCATTCACCGATGGCGTAGATATCCGGATC
    GGAAGTCTGGCAGGAATCATTAATGACAATACCCCCACGCGGAGCAACGT
    CCAGACCACACTGGGTTGCCAGCTTATCGCGCGGACGGATACCGGTAGAG
    AAGACGATAAAGTCGACTTCCAGTTCGCTGCCGTCGGCAAAACGCATGGT
    TTTACGCGCTTCAACACCTTCCTGCACAATCTCAAGGGTGTTTTTGCTGG
    TGTGAACGCGCACGCCCATACTTTCGATTTTGCGACGCAGCTGCTCGCCG
    CCCATCTGATCAAGCTGTTCTGCCATCAGCATAGGGGCAAATTCGATAAC
    GTGGGTTTCAATACCTAAGTTTTTCAGCGCGCCTGCGGCTTCCAGACCTA
    ACAGGCCGCAATTCGAGCTCGGCCGACTTGGCCAATTCGCCCTATAGTGA
    GTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAA
    ACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCC
    AGCTGGCGTAATAGCGAAAGAGGCCCGCACCCGATCGCCCTTTCCAACAG
    TTGCGCACCTGAATGGCGAATGGAAATTGTAAGCGTTAATATTTTGTTAA
    AATTCGCGT
    Sequence ID 703
    CTGCGCAGACCAGACTTCGCTCGTACTCGTGCGCCTCGCTTCGCTTTTCC
    TCCGCAACCATGTCTGACAAACCCGATATGGCTGAGATCGAGAAATTCGA
    TAAGTCGAAACTGAAGAAGACAGAGACGCAAGAGAAAAATCCACTGCCTT
    CCAAAGAAACGATTGAACAGGAGAAGCAAGCAGGCGAATCGTAATGAGGC
    GTGCGCCGCCAATATGCACTGTACATTCCACAAGCATTGCCTTCTTATTT
    TACTTCTTTTAGCTGTTTAACTTTGTAAGATGCAAAGAGGTTGGATCAAG
    TTTAAATGACTGTGCTGCCCCTTTCACATCAAAGAACTACTGACAACGAA
    GGCCGCGCCTGCCTTTCCCATCTGTCTATCTATCTGGCTGGCAGGGAAGG
    AAAGAACTTGCATGTTGGTGAAGGAAGAAGTGGGGTGGAAGAAGTGGGGG
    TGGGACGACAGTGAAATCTAA
    Sequence ID 704
    CTTGTATTCAAGAACTACTGTAATGCATTAGTGGTCTGGCTTCATTTTGT
    ATGATGCCAGATCCTTAATTTACCCAGCACAATCATTTCAGTAGTTTCCT
    ATGGCTCCTGCAAAAATGCAAACAGAAACCACCACAGGAACAGCCCCTTG
    CTGCCTCCTGTTGCTGAGGTAGTAGTCGCTAAAGAAAATTGAAGGCTCCT
    TACAATCTATATTTGAAAACTAGAACTTCTGTAGAAACACACAGATCCCG
    ATCTTAGAAGTTGTACAGGACAATCTGGTAAAACTGACATAATTGTGATT
    TATTAACATGAATTAAAATGCCCAACCAGTGCTTCAGTGTGACAGTATAT
    TTAAAATAAAAAAGAAATTAAAGGTCATATACTGTACTACTTTCACAAAG
    ATCCACAGTTTTGCAAAAGACTTGTCATATGTACAATGCTATATATCAAA
    TGAGAAAAGCTGTAAGCAATTATATACGCAAAAGAAATGGCAGTA
    Sequence ID 705
    TTCCAGTCCTTTCATTTAGTATAAAAGAAATACTGAACAAGCCAGTGGGA
    TGGAATTGAAAGAACTAATCATGAGGACTCTGTCCTGACACAGGTCCTCA
    AAGCTAGCAGAGATACGCAGACATTGTGGCATCTGGGTAGAAGAATACTG
    TATTGTGTGTGCAGTGCACAGTGTGTGGTGTGTGCACACTCATTCCTTCT
    GCTCTTGGGCACAGGCAGTGGGTGTAGAGGTAACCAGTAGCTTTGAGAAG
    CTACATGTAGCTCACCAGTGGTTTTCTCTAAGGAATCACAAAGGTAAACT
    ACCCAACCACATGCCACGTAATATTTCAGCCATTCAGAGGAAACTGTTTT
    CTCTTTATTTGCTTATATGTTAATATGGTTTTTAAATTGGTAACTTTTAT
    ATAGTATGGTAACAGTATGTTAATACACACATACATATGCACACATGCTT
    TGGGTCCTTCCATAATACTTTTATATTTGTAAATCAATGTTTTTGGAGCA
    ATCCCAAGTTTAAGGGAAATATTTTTGTAAA
    Sequence ID - 706  nt: 496
    CAACCCTCTCTCCTCAGCGCTTCTTCTTTCTTGGTTTGATCCTGACTGCT
    GTCATGGCGTGCCCTCTGGAGAAGGCCCTGGATGTGATGGTGTCCACCTT
    CCACAAGTACTCGGGCAAAGAGGGTGACAAGTTCAAGCTCAACAAGTCAG
    AACTAAAGGAGCTGCTGACCCGGGAGCTGCCCAGCTTCTTGGGGAAAAGG
    ACAGATGAAGCTGCTTTCCAGAAGCTGATGAGCAACTTGGACAGCAACAG
    GGACAACGAGGTGGACTTCCAAGAGTACTGTGTCTTCCTGTCCTGCATCG
    CCATGATGTGTAACGAATTCTTTGAAGGCTTCCCAGATAAGCAGCCCAGG
    AAGAAATGAAAACTCCTCTGATGTGGTTGGGGGGTCTGCCAGCTGGGGCC
    CTCCCTGTCGCCAGTGGGCACTTTTTTTTTTCCACCCTGGCTCCTTCAAC
    ACGTGCTTGATGCTGAGCAAAGTTCAATAAAGATTTTGGGAAGTTT
    Sequence ID - 707  nt: 397
    CGGATGTGGTGGCAGGCGCCTCTAGTCCCAGCTACTCGGCAGGCTGAGGT
    AGGAGAATGGCTTGAACCCAGGAGGTGGAGCTGACAGTGAGCCGAGATCG
    CGCCACTGCACTCCAGCCTGGGCGGCAGAGCGAGACTCCATCTCAAAAAA
    AAAAAAAAAAAAAATAGACTTTGAGACCAGCCTGACCAACATAGTGAAAC
    CCGTCACTACTAAAAATACAAAAATTACCCGGGCGTGGTGACGGGCGCCT
    GTAATCCCAGCTACTTGGGAGGCTGAGACAGGAGAATCACTTGAACCAGG
    GAGGCGGAGGTTGTAGTGAACTGAAATCGTGCCCCTGCACTCCAGCCTGG
    GTAACAAGAGCGAAACTCCGTCTCAAAAATAAATAAATAAATAAAAT
    Sequence ID - 708  nt: 293
    CCAGCTTTTTATGGTGTTTAATCTAATACACTTAAGCTGCAGTCCCAAAA
    TTAGGGGTCCTTCAGTCTTGGAGACTATAAGGGAGCCTCTGCACCCAGGG
    AAAATGTTACCCTTTACAGGGGGGAAGGGTAAACCAGTAGGGAATACAGT
    ACAATCCCAACCCTACTGGGAGGGGCGGGAGGGAGGTGTTGCCGTCACTG
    TATTAAGTCGATGTTGGGAAACGTTTTAACATCTGGAGCCTTTGTGGGTG
    GAAATATGTCTCCAGTTACAACTCCGCAGTGGATGTGAAGAAG
    Sequence ID 709
    GGAAGCTACAATGATTTTGGGAATTACAACAATCAGTCTTCAAATTTTGG
    ACCCATGAAGGGAGGAAATTTTGGAGGCAGAAGCTCTGGCCCCTATGGCG
    GTGGAGGCCAATACTTTGCAAAACCACGAAACCAAGGTGGCTATGGCGGT
    TCCAGCAGCAGCAGTAGCTATGGCAGTGGCAGAAGATTTTAATTAGGAAA
    CAAAGCTTANCAGGAGAGGAGAGCCAGAGAAGTGACAGGGAAGCTACAGG
    TTACAACAGATTTGTGAACTCAGCCAAGCACAGTGGTGGCAGGGCCTAGC
    TGCTACAAAGAAGACATGTTTTAGACAAATACTCATGTGTATGGGCAAAA
    AACTCGAGGACTGTATTTGTGACTAATTGTATAACAGGTTATTTTAGTTT
    CTGTTCTGTGGAAAGTGTAAAGCATTCCAACAAAGGGGTTTTAATGTANA
    TT
    Sequence ID 710
    TGGATTCCCGTCGTAACTTAAAGGGAAACTTTCACAATGTCCGGAGCCCT
    TGATGTCCTGCAAATGAAGGAGGAGGATGTCCTTAAGTTCCTTGCAGCAG
    GAACCCACTTAGGTGGCACCAATCTTGACTTCCAGATGGAACAGTACATC
    TATAAAAGGAAAAGTGATGGCATCTATATCATAAATCTCAAGAGGACCTG
    GGAGAAGCTTCTGCTGGCAGCTCGTGCAATTGTTGCCATTGAAAACCCTG
    CTGATGTCAGTGTTATATCCTCCAGGAATACTGGCCAGAGGGCTGTGCTG
    AAGTTTGCTGCTGCCACTGGAGCCACTCCAATTGCTGGCCGCTTCACTCC
    TGGAACCTTCACTAACCAGATCCAGGCAGCCTTCCGGGAGCCACGGCTTC
    TTGTGGTTACTGACCCCAGGGCTGACCACCAGCCTCTCACGGAGGCATCT
    TATGTTAACCTACCTACCATTGCCCTGTGT
    Sequence ID - 711  nt: 498
    GTGGTACATATACACAAAGGAAAACTATGTAGCCATTAAAAGAAAAGGAA
    CTCCTATCATTTGTAACAACATAAATAAATCTGGAGGAGATTAGGCTAAG
    GTGAAATAAGCCAGGCACAAAAAGACAACTACCATATGATCTTACTTATA
    CGTGTGTGGAATCTAAAAAGGTGGAATTTACAGAAGCAGAGAGTAGAATG
    GTGATTACCAGAGGCTGGGGAGTGAGGGCAGGAGGTTGGAGAAATGTTGG
    TCAAAGGATACAAAGTTTCAGTTATACAGGATGAATAAGTTCAAGAGATC
    TATTGTACAACGTGGTGGCTATAGTTGATAACAATGTATTGTGTTCTTGA
    AAAATGCTGAGAGAGTAGATTTTAAGTGTTCTCACCACAAAACATAAGTA
    TGTGAGGTAATGCATGTGTTAATTANCTTAATTTAGACATTTCATAATGT
    ATTATACATATTTCAAAACCACGTTGTACATGAGAAAGATACACAATT
    Sequence ID 713
    GCCCAGTCGACCCATGTTCTCCTTTCTACACCAGCATTAGACGCTGTCTT
    CACAGATTTGGAAATCCTGGCTGCCATTTTTGCAGCTGCCATCCATGACG
    TTGATCATCCTGGAGTCTCCAATCAGTTTCTCATCAACACAAATTCAGAA
    CTTGCTTTGATGTATAATGATGAATCTGTGTTGGAAAATCATCACCTTGC
    TGTGGGTTTCAAACTGCTGCAAGAAGAACACTGTGACATCTTCATGAATC
    TCACCAAGAAGCAGCGTCAGACACTCAGGAAGATGGTTATTGACATGGTG
    TTAGCAACTGATATGTCTAAACATATGAGCCTGCTGGCAGACCTGAAGAC
    AATGGTAGAAACGAAGAAAGTTACAAGTTCAGGCGTTCTTCTCCTAGACA
    ACTATACCCGATCGCATTCAGGTCCTTCGCAACATGGTCACTGTGCAGAC
    CTGAGCAACCCCACCAAGTCCTTG
    Sequence ID 714
    CTGTAACAGAGATTCCTTTTTTCAATAATCTTAATTCAAAAGCATTATTA
    GACTTGAAAGGGTTTGATAATCTCCCAGTCCTTAGTAAAGATTGAGAGAG
    GCTGGAGCAGTTTTCAGTTTTAAATGAGTCTGCAGTTAATATCAAATGTG
    AGTTTGGGACTGCCTGGCAACATTTATATTTCTTATTCAGAACCCTTGAT
    GAGACTATTTTTAAACATACTAGTCTGCTGATAGAAAGCACTATACATCC
    TATTGTTTCTTTCTTTCCAAAATCAGCCTTCTGTCTGTAACAAAAATGTA
    CTTTATAGAGATGGAGGAAAAGGTCTAATACTACATAGCCTTAAGTGTTT
    CTGTCATTGTTCAAGTGTATTTTCTGTAACAGAAACATATTTGGAATGTT
    TTTCTTTTCCCCTTATAAATTGTAATTCCTGAAATACTGCTGCTTTAAAA
    AGTCCCACTGTCAGATTATATTATCTAACAATTGAATATTGNAAATATAC
    TTGGCTTACCTCTCAATAAAAGGGTCTTTTCTATT
    Sequence ID 717
    TCCACCCACCTTGACCTCCCAAAGTGCTGGGATTATAGGCGTGAGCCACC
    TCGCCCAGCCCGATACTAGGACTTATGCAGAAAAAACCTTGACATGGAGG
    AAAGTAAGATCTAAATAAATACTGTATTCATAGATTAAAAGACTCAGCAT
    AATAAATATACCATTTCTCCCCAGATTGATGTACAGATTTAACACAATTC
    CTATCAAGATCCCAGCAAGATTTTTGTAGATATGTAAAAGATTATTCAAA
    AATGTAAAAGGAAGGACAAAGGACTAGAATAGATAAAACAAAATGGAGAA
    AGATTTAATAGGAATCACTGTAACTGATTTTAAGACATACAGAACAATAA
    TAGAAACTGCTTGTATTAGTCCATTTTCACGCTGCTGATAAAGACATACC
    TGAGATTGGCAATTACAAAGGAAAGANGTTTATTGGCTTACAGTTCCCAT
    GGCTGGGGAGGCCT
    Sequence ID 718
    CTCCTCTGGGTTGAAACCCGGGCGCCGCCAAGATGCCGGCTTACCACTCT
    TCTCTCATGGATCCTGATACCAAACTCATCGGAAACATGGCACTGTTGCC
    TATCAGAAGTCAATTCAAAGGACCTGCCCCCAGAGAGACAAAAGATACAG
    ATATTGTGGATGAAGCCATCTATTACTTCAAGGCCAATGTCTTCTTCAAA
    AACTATGAAATTAAGAATGAAGCTGATAGGACCTTGATATATATAACTCT
    CTACATTTCTGAATGTCTGAAGAAACTGCAAAAGTGCAATTCCAAAAGCC
    AAGGTGAGAAAGAAATGTATACGCTGGGAATCACTAATTTTCCCATTCCT
    GGAGAGCCTGGTTTTCCACTTAACGCAATTTATGCCAAACCTGCAAACAA
    ACAGGAAGATGAAGTGATGAGAGCCTATTTACAACAGCTAAGGCAAGAGA
    CTGGACTGAGACTTTGTGAGAAAAGTTTTCGACCCTCAGAATGATAAACC
    CAGCAAGTGGNGGGCTTGCTTTGTGAAGAGACAGTTCATGAACAANAGTC
    TTTCAGGACCTGGACAGTGAAGGGAGCCCGGGCAGCCA
    Sequence ID 719
    CGNGGCCGCGTNAACTTTTGATCGTCAGCTGGGGCTGGCAGGCACCTAAA
    TGGGAAGGGTGATAGCAGTGTGTTGGGGGGAGTTTAGGGAACGGTCCTCT
    ACCGATAGAGGCAGCANCTCATTGGAATTTCCTCCTGAAGTTGTCTTGCC
    CCTTGAATCCTGCAGGAAGGCTGGCAAATGGCCATTTCCCTTCCACTTGA
    ATAGAGACCCATAACTCAAGTATCTGCCCTTAAGACACCACAGGACTGTT
    CTTCGCGGGCCCTGCCCCTGGATTTGGGAGAGGCAGTCCANCTCACCCAA
    CTAGGCTCTGCANGGGGACCANGAGGGATGGGTTGTGTCCACAGGACCAG
    CCAGACTGATGAGGGATGCGGCAAGCATATTCTCACCACCTTCTTTCACG
    TTTACAACANACCAGCNTTCCCTGTGTGGCAGGGGTTACATTGGTCACCG
    AGGACCTANAATCATGGAGTGCTCTGGGGATCCGGGCTTGGA
    Sequence ID 720
    TCAGTGTTGAATTTTGTCAGACACTTTCTCTGCATCAATTGGTATGACCA
    TGTGATTTTTTTTCTGTAGCCTGTTAATATGGTTAATTTTCAAATATTGA
    GCTGATTAATTTTCAAATATTGAGCTCTCCTTGCATCTCTGGAATAAGTA
    CCACTTGGTCGTGGTATATATTTCTTTTAATATATTGCTGAATTCTGTTT
    GATCATGTTTTCTTAAAGACTTTCGTGTCTGTTTTCATGATAGATACTGG
    TCTATAGTTTTGTTGTAATATCTTGGTTTGATTTTGATATCAGGATAATG
    CTACCTTAATAGAATGAATTGGAGCCAAGTATGGTGGCAAATGCCTATAG
    TCCTAGCTACTCAGGAGGCTGAGGTGGTGGGGACTGCTTGACCCANGAGT
    TCAAATCTAGCTTGGGCAATGTAGCAAGAC
    Sequence ID 721
    TAGAAGGAATGACTATTCATGTCCAAAGTGAATGGTTTTGTGCAGTGAAC
    AACACATGGCGAGGTACTAACTGAGAAACTTTTTCATGCTTTATGCCTAC
    CTCTTGTAGTTGTTGCAGAGCAAATATAAATTGTAATAAGATAGCTAGGC
    CTTGCAGAAACAAACAGAAAAACTTAAAAAAAAATGATATAAGAGCTGGA
    GTCTAGTATTTATATGAATCTGTGAGAGATAATTTTTTTGGTCTCACTGC
    AATGAACCAAAAGCGGCTGAGTTTGGTTTTTAATTGTAGCCATGTATTGA
    AGGCATCTTTTTGACCAACTCTTGTTGGTTCTGTCTTGAACCATTGTTAA
    TCACTGTGCTGTAATTAGTATAGCTAAATCTTTTCCTTCCTTGCTCCTCC
    CCCAGCCCACCCCGTCTTCCCTTAACATTTTTTCAGGGGGGGTTGGGAGT
    GGTTTCATTTTAATGTGAGTGGATGTTTTGATAGTTGTAAGGAAAAAATG
    CATTTCAGACACATTTCACACATGAGCTATTTTCTTACACAGTATGTCTT
    ATTGGTAATAAGAATGTAATTCAT
    Sequence ID 722
    CNTTCCNTAAGAATACAAAAAATTAGCTGGGCGTGGTGGCAGGCGCCTGT
    AATCCCATCTACTCAGGAAGCTGAGGCTGGAGAATCGCTTGAACCCGGGA
    GGCGGAGGTTGCAGTGAGCAGAGATCACGCCACTGCAGTCCAGCCTGGGC
    AACAGTGCGAGACTCTGTCTCAAAAAAAAAATAAATAAATTACCTGGGTG
    TGGCAGCGCGTGCCTGTAATCCCAGCTACCCAGGAGGCTGAGGCAAGAGA
    ACTGCTTGAACCCAGGAGGCAGAGGTTGCATGGAGCTGAGATGGCGCCAC
    TGCACTCCAGTCTGGTGACAGAGTGAG
    Sequence ID 724
    CTCTCTACTAAAAATACAAAAATTAGCTGGGCACGGNGGTGCATGCCTGT
    AAACCCAGCTACCAGGTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAA
    CCAGGGAGTCGGAGGTTGCGGCGAGCTGAGATCATGCCACTGCACTGCGG
    CCTGGAGACAAGAGCAAGACTCCGTCTCAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAGACNTCACCTAATTGCAGNGNGNGGACCTTATTTGGCTNTTAAT
    TCAAACTATTAAAAATGTGAACN
    Sequence ID - 726  nt: 260
    CGGGGTCTGTACCGGGCTGGCCTGTGCCTATCACCTCTTATGCACACCTC
    CCACCCCCTGTATTCCCACCCCTGGACTGGTGGCCCCTGCCTTGGGGAAG
    GTCTCCCCATGTGCCTGCACCAGGAGACAGACAGAGAAGGCAGCAGGCGG
    CCTTTGTTGCTCAGCAAGGGGCTCTGCCCTCCCTCCTTCCTTCTTGCTTC
    TCATAGCCCCGGTGTGCGGTGCATACACCCCCACCTCCTGCAATAAAATA
    GTAGCATCGG
    Sequence ID 727
    CTGAGTNTAGAAATGATGCCATTAATACTGATTGCAAAAACATTACAACT
    CAGTACTGCAGCTTTCATTCAAATAGGTTATATGTATAAACTGAGTTCAA
    CAATATTGTATTTGAGATGGTAAAGTTAAAGAAATGCAATAATGTAAATA
    ATACTTAAGAAAATAAGATCTCAGGAAACTGTATATACTCTGTACTTTTA
    TGCAACTTTATCAGATCATTTCAGTATATGCATCAAGGATATAGTGTATA
    TGACATGAACTTTGAGTGCAAAAACTGTACTATGTACCTTTTGTTTATTT
    TGCTGTCAACATCTAAATAAAGGTTTTTTTGTTTGTTTTTTGTTTTTTTA
    ATTGTTTTGTTTTAAAGATTGTTTTAATTAATTAAAAAATTAATTGTTTT
    AATTAAACAATTGTTTAATTGTTTTAAAGTCGCCAGGCTGAGGCAGGTGA
    ATCACAAGCTTAGGAGTTGGAGGCTAGCCTGCCAACATGGTGAAACCCCG
    TCTCTACTAAAAATACAAAAAAATTAACTGGGTGTGGG
    Sequence ID 728
    CCCATCTGCACCAGTACACAGGCAGGCATTATCATTCTTCACCTACTTTT
    TAAATAGTGGCAACTTGGGATTCATTCTGGTGATTCTGAACCTTGCCTCA
    TAGCTTAAAGTATAAAAAAGATTCAAGAGCAGTGAGGTTTGTTCTTTCCA
    GTGAATGGTGGACTGAGTGGTGCGAGGTGGAGGGCTAACAAGAGGAAAGA
    ACTACATTCTTCAGAATACAGTGATGAAAATTCATTTTGAAACTCAAATA
    TTTTCATTTTGGATATTCTCCTGTTTTTATTAAACCAGTGATTACACCTG
    GCCATCCCTCTAAATGTTCTAGGAAGGCATGTCTATTGTGATTTTGATGA
    AGACAGAATTATTTTTCTCTGTAGAAACACAGATACCACTTTATCAGGGG
    AAGTTAGTCAAATGAAATGGAAATTGGTAAATGGACAAAAGCTAGCTAGT
    AAAAAGGACGACCCAGCAACATGCTTTAACCCCATTGTATGTTTGTGGAA
    AGAGCATAGTTTAACATCTTGAGAAATTTGGGACATAAAAGTTTTCATNG
    GTAGACAGTTCATGGCAGTATATGAATTGACATAATGGAAATAATCTGAT
    TTTATTTTTACAACTAACATCCTTTCCCC
    Sequence ID - 736  nt: 641
    GGAATTCCAAGTGCTTGGGGATAATGATACCTCTGACCTTTCTTCCTTTT
    GGGAAGTACTTGAGTGTGCAGCTGCATGAGGCCTCAGCAGGAGAGAGATT
    TTAGGTCCAAGAAGCTATACCAGTAGGACAAGGCAGGAAAATACTACACT
    TTCAGGATCAAGCCCCTCTGACTCTCATTTGGAAACTGGATGTTTGCTAA
    GCACCTGCTTCTTAAGGATGCCGAGGGATTTAATGATACTCCCAGAAACC
    TGGAGAGATTAATGGGGCCTATGGAGAAGTGCTCTGAACTCAGTGTTGGG
    ACTTGAATAAAATTAACCATTGTCATGTTTTCAGAACAACTAAGCTGTTT
    TATATTTCATGTGCATGAAAGCCCTAGAACTAAGTTGTGTTATTTCCAGA
    AATGAAATAGATCCCACAGTTAGATGATGTGGCCATTAGGAAGTACCAAA
    TTTATAAAAATCACTGGAGGTCTGTCTGAGCAGTACCTAATAAAATATAG
    TATACTGAAAGTGAACAGATACTTTGTCTCTTTCTTTGGCTGCTTGATCT
    TTATCTGTGTCTGCCGTACAGTGCACCCTTAAAGTATTCTACACCAGTGC
    TTCTCAAACTGGAAATGTGCATGTAAGTCACCCANGGGTCT
    Sequence ID 739
    TGCATGCCCATAGTCCCAGCTATTTGGGAGGCTGAGGCAGGAAAATCGCT
    TGAACCCGGGAGCCAGAGGTTGCAGTGAGCCGAGATCGCACTCCAGCTTG
    GCGACAGAACAAGACTCTGTCTCAAAAAAAAAAAAAAAAGAAATCTTGGG
    ATCCTGAACCCCTTACTCGAAGGGCTAAGGTAGCATCTCAGCATGTCTTA
    TTCGAGACTTCGTANAACCAGACCTGCTGTTTGTAGATGTTAATTAATCA
    AACCTTTCTCTACTCATTCTGGACCAGTTAAGGTTTTCTCCTTCTCCGTA
    TGAGTTTTGATTTTCGTCCTCCTTGGTTGGAGATCACACTTTGGTCTGCT
    GCTAAGTTGGATGCCTCCCACTGTCTTTCCCTAAGTCTAGGGCTTCANAC
    CCCAGTGTGGGGAGAGGGACTTTCGTTTCCTGCCCCTCACCACATCAGAC
    ACAGGCAGGCAAGAATAAGATGGCCAAAAGGCCGATGAACTTCTTGACCT
    AGCCTGGGACATTACCTGTTACTAGGTGGACTTCACTGCCTGTGAATGGA
    AGCTGAAGGGCTGTTTTTTTGGTTTGTATTTGGAGAGGCCAGGCTTANAG
    AGGGAGAGAACTGGGCTACTCTTCAGCAGTGATCTTTAAAATGCC
    Sequence ID 747
    CAGAGTGCAAGACGATGACTTGCAAAATGTCGCAGCTGGAACGCAACATA
    GAGACCATCATCAACACCTTCCACCAATACTCTGTGAAGCTGGGGCACCC
    AGACACCCTGAACCAGGGGGAATTCAAAGAGCTGGTGCGAAAAGATCTGC
    AAAATTTTCTCAAGAAGGAGAATAAGAATGAAAAGGTCATAGAACACATC
    ATGGAGGACCTGGACACAAATGCAGACAAGCAGCTGAGCTTCGAGGAGTT
    CATCATGCTGATGGCGAGGCTAACCTGGGCCTCCCACGAGAAGATGCACG
    AGGGTGACGAGGGCCCTGGCCACCACCATAAGCCAGGCCTCGGGGAGGGC
    ACCCCCTAAGACCACAGTGGCCAAGATCACAGTGGCCACGGCCACGGCCA
    CAGTCATGGTGGCCACGGCCACAGCCACTAATCAGGAGGCCAGGCCACCC
    TGCCTCTACCCAACCAGGGCCCCGGGGCCTGTTATGTCAAACTGTCTTGG
    CTGTGGGGCTAGGGGCTGGGGCCAAATAAAGTCTCTTTCCTC
    Sequence ID - 757  nt: 583
    GAACCCTGCGGAGGGACTTCAATCACATCAATGTAGAACTCAGCCTTCTT
    GGAAAGAAAAAAAAGAGGCTCCGGGTTGACAAATGGTGGGGTAACAGAAA
    GGAACTGGCTACCGTTCGGACTATTTGTAGTCATGTACAGAACATGATCA
    AGGGTGTTACACTGGGCTTCCGTTACAAGATGAGGTCTGTGTATGCTCAC
    TTCCCCATCAACGTTGTTATCCAGGAGAATGGGTCTCTTGTTGAAATCCG
    AAATTTCTTGGGTGAAAAATACATCCGCAGGGTTCGGATGAGACCAGGTG
    TTGCTTGTTCAGTATCTCAAGCCCAGAAAGATGAATTAATCCTTGAAGGA
    AATGACATTGAGCTTGTTTCAAATTCAGCGGCTTTGATTCAGCAAGCGAC
    AACAGTTAAAAACAAGGATATCAGGAAATTTTTGGATGGTATCTATGTCT
    CTGAAAAAGGAACTGTTCAGCAGGCTGATGAATAAGATCTAAGAGTTACC
    TGGCTACAGAAAGAAGATGCCAGATGACACTTAAGACCTACTTGTGATAT
    TTAAATGATGCAATAAAAGACCTATTGATTTGG
    Sequence ID - 758  nt: 424
    CTTGGCTCCTGTGGAGGCCTGCTGGGAACGGGACTTCTAAAAGGAACTAT
    GTCTGGAAGGCTGTGGTCCAAGGCCATTTTTGCTGGCTATAAGCGGGGTC
    TCCGGAACCAAAGGGAGCACACAGCTCTTCTTAAAATTGAAGGTGTTTAC
    GCCCGAGATGAAACAGAATTCTATTTGGGCAAGAGATGCGCTTATGTATA
    TAAAGCAAAGAACAACACAGTCACTCCTGGCGGCAAACCAAACAAAACCA
    GAGTCATCTGGGGAAAAGTAACTCGGGCCCATGGAAACAGTGGCATGGTT
    CGTGCCAAATTCCGAAGCAATCTTCCTGCTAAGGCCATTGGACACAGAAT
    CCGAGTGATGCTGTACCCCTCAAGGATTTAAACTAACGAAAAATCAATAA
    ATAAATGTGGATTTGTGCTCTTGT
    Sequence ID - 764  nt: 626
    GATTTTTTTTTTTTTTTTGAGATGGAGTCTTTCTCTGTCGCCCAGGCTGG
    AGTGCAGTGGTGAAATCTCGACTCACTGCAACCTCCGTCTCCTGGGTTCA
    AGCAATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCACCAG
    CCACCACGCCCGGCTAATTTTTGTATTTTTAGTAGAGACAGGTTTTCACC
    ATGTTGGCTAGGCTGATTTTGAACTCATGACCCCAAGTGATCTGCCCGCC
    TCGGCCTCCCAAAGTGCTGGAATTACAGGTGTGAGCTACCACTCCCAGCC
    AATGATTACATTTATAAGGTAAAATAACTTGTGCCAATCTGTACAAGTGA
    ATTCAGATTTAAAATTTTAATTGTAAAAAGATATCCAGGTGATATTTCTC
    CCTGAATAATTTAGTTTCCTTTTCTATTTCTTGATATAAAAGTACTCAGC
    ATTGAAGTAATTGCTATCTTCACATTTCTTCCTATTTGAGCTGTCTAAAT
    AAGTAGTCCTACATATTTTCCCCCCAACACAAAAAACCCAGAAAAGAATT
    ATTTTATACTGGATTTTTTTGGTTGTAGCAGGAACCTAAAGGNGCCAATT
    GTAACATGCATGTTCTTTTTGGCAAA
    Sequence ID 766
    GTCCATCCTGCAGGCCACAAGCTCTGGATGAGGAACTTGAGGCAAGTCAC
    CAGCCCCTGATCATTTCGCCTAAAAGAGCAAGGACTAGAGTTCCTGACCT
    CCAGGCCAGTCCCTGATCCCTGACCTAATGTTATCGCGGAATGATGATAT
    ATGTATCTACGGGGGCCTGGGGCTGGGCGGGCTCCTGCTTCTGGCAGTGG
    TCCTTCTGTCCGCCTGCCTGTGTTGGCTGCATCGAAGAGTAAAGAGGCTG
    GAGAGGAGCTGGGCCCAGGGCTCCTCAGAGCAGGAACTCCACTATGCATC
    TCTGCAGAGGCTGCCAGTGCCCAGCAGTGAGGGACCTGACCTCAGGGGCA
    GAGACAAGAGAGGCACCAAGGAGGATCCAAGAGCTGACTATGCCTGCATT
    GCTGAGAACAAACCCACCTGAGCACCCCAGACACCTTCCTCAACCCAGGC
    GGGTGGACAGGGTCCCCCTGTGGTCCAbCCAGTAAAAACCATGGTCCCCC
    CACTTCTGTGTCTCAGTCCTCTCAGTCATCTCGAGCCTCCGTTCAAAATG
    ATCATCATCAAAACTTATGTGGCTTTTTGACCTTTGAATAGGGAATTTTT
    TAAAATTTTTTAAAAATT
    Sequence ID 768
    CCAGCGCAGGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGAGGAAACCGC
    AGATAAGTTTTTTTCTCTTTGAAAGATAGAGATTAATACAACTACTTAAA
    AAATATAGTCAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTTAAC
    GTAATTTTAATAGCTTAAGATTTTAAGAGAAAATATGAAGACTTAGAAGA
    GTAGCATGAGGAAGGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTT
    GAGATGAAGCTTCTTCATGGAGTAAAAAATGTATTTAAAAGAAAATTGAG
    AGAAAGGACTACAGAGCCCCGAATTAATACCAATAGAAGGGCAATGCTTT
    TAGATTAAAATGAAGGTGACTTAAACAGCTTAAAGTTTAGTTTAAAAGTT
    GTAGGTGATTAAAATAATTTGAAGGCGATCTTTTAAAAAGAGATTAAACC
    GAAGGTGATTAAAAGACCTTGAAATCCATGACGCAGGGAGAATTGCGTCA
    TTTAAAGCCTAGTTAACGCATTTACTAAACGCAGACGAAAATGGAAAGAT
    TAATTGGGAGTGGTAGGATGAAACAATTTGGAGAAGATAGAAGTTT
    Sequence ID 773
    GAGGAAAGGGGAGTTAATATTTAGTGGACAGAATTTCAGTTTTACAGATG
    AAAAGAGTTCTGGAGATAGACGGTGTTGATAGTTGCACAGCAGTGTGAAT
    GTGCTCATTGTTACCGAACTTAAAAATGTTTAACATAGTATTATGTGATT
    TTTATTTTGCCACTTAAAAAAAAAGAATGAAGTACTGATACATGCTACAA
    CATGGGTGAGCTTTAAATACATTCTGCTCAGTGAAATAAGCCAGATGCAA
    AAGATCACATATTATATAATCCACTTATACGAGATACCTAGAATAGGCAA
    ATTCATAGAGACAGAAAGTAGAATAGTGGTTCCCAGGGGCTGGGGACAAG
    GGGGCAGTGAGAGATTGAGAGTTATTATTAATGCGTACAGAGTTTCAGTT
    TGGGCTGATAAAAAAGTTCTGAAGATGGATGGTGATGATGGTTGTACATC
    AATGTGAGTGTAATTACCGCCACTGAACTGCCCTTAAAAACGTTTAAAAG
    AGTAAATTTTATGTTGNGTATATTTTACCATAAT
    Sequence ID 776
    TTTTTTTTTCATAAGAGGCAAGTACAAGAAAAAGCTTAATTACTTTAACT
    TCTAAGTAGTTTGGAATCTAAATAAATAGGAGTTACCAAATATATGCGCT
    TCTGTGAATAGTTTTCCCCCACATGTTTATTTATATTTTTGCATCTCATC
    AAACCTAACAGATTCTAAAGTCTCTGGTGATAATGACAATATCTGCTACG
    GAGAGACTAGCCTGGGGGAAGAGGATCTCCCTGAACAAGGATAGCGGAGT
    TGCTGCAGCTTTCAAATGAAGCTGGACATTTAGCTGCGGGGGTAGCACCC
    TTTGATCAAGGCAGCCCAAAGATGAGTTTCAGGGATGGGACTGACAGAAG
    AGAAAAGTTCTTCCCAGCCCTTTCTACTTTTTCTCTTTGTTTCTCAGGCT
    TCTGGCCGTCTTCAGTTTTCACAAGTTTCACTCTCAACCCTAAACAGTAC
    TTCTGTGAAGTACCCTTTGGCCCCTCGTTTTCAGCTCCTAAACTCACCTG
    GAAATAGATGTCAATCTAATTTTGGGTCTGACTAGTGCAGTAGGCATTTT
    TGGTGA
    Sequence ID 782
    CTCACACAGAACAAAAATGAATGAGTGTGGCTGTGTGCCACTATCACTGT
    GTCTACAAAAACAGCCAGTGGGCCTGATTTGGCCCTTGGCTGCAGTGCGC
    CCGTCTCTGTTTTTGAGGAATAAAATCGCATCATTTCATATGGCTAATGC
    AATTTTTTTCCCATCTGGAAGCAACATCTGATTGGACTCATCTTGTATGG
    TGCTTGTTACAGTCTCTGTAAATGGGAGAGGGTCCGAGAATAGCTCTTCC
    TGTTTTCATCAGGACTGTTTTTAGGGATGGCAAAGAAGTCAGTGTGTCCA
    GCCTGTGTCCTCCTCACCACGTGGCTGATTCCTGAATCTGCATGTGCANC
    ACNTGCCGTTGTCTGGGGCATGATCTGTGTGA
    Sequence ID - 785  nt: 556
    CTTTTCTCTGGGTATAGATTTACCCTAGCACCTATCTCATTATATTGAAT
    TTTCCAGCATATTTAAATAAACTATTAATTAGTCACACTATTTCTTAAAA
    GTCACACTATCAACTAATCGTGACCGCAATTATCTAGGGGTGATAATCTG
    CTGAGTCTACTCTTTAAATACACTGGGACCCAGCATATTGAGTTATATTG
    GCACAGAAACTTCACTCTGGGTATAGATTTACCCTAGTACCTTGCCGGCA
    GGATCCTATTATTCATGGTTGTACAAGCAAGGTTCAGGGAAGAGGCTGGC
    ACAGAGAAGGTACCTGGTAACTGTTGTTTGAGGCTGAATTCAGCTCAACT
    CAGCTCCAGTAGAGATGGTGTCCCCTTCTCTACCGTGTTGAGATAGTGTG
    CAGTCCCTTCCTAAGGGCTGTTACCCACCGCAATAGGACTTGTCAGCTTC
    AACTTTTAAATTTCTCTGCTCCCGCTGGGACCCACCCGCTTCAAAAATCA
    TCATGGNGGNTTTAGCACCAATTTAGTAAACACAAACTGTCTGAAATATT
    TTGGAT
    Sequence ID 796
    GAACATTCAAGATAGTGAGAGGAAGAAAAAGATATGGCTGTACGGGACCG
    AGGTCTCTTCTATTATCGCCTCCTCTTAGTTGGCATTGATGAAGTTAAGC
    GGATTCTGTGTAGCCCTAAATCTGACCCTACTCTTGGACTTTTGGAGGAT
    CCGGCAGAAAGACCTGTGAATAGCTGGGCCTCAGACTTCAACACACTGGT
    GCCAGTGTATGGCAAAGCCCACTGGGCAACTATCTCTAAATGCCAGGGGG
    CAGAGCGTTGTGACCCAGAGCTTCCTAAAACTTCATCCTTTGCCGCATCA
    GGACCCTTGATTCCTGAAGAGAACAAGGAGAGGGTACAAGAACTCCCTGA
    TTCTGGAGCCCTCATGCTAGTCCCCAATCGCCAGCTTACTGCTGATTATT
    TTGAGAAAACTTGGCTTAGCCTTAAAGTTGCTCATCAGCAAGTGTTGCCT
    TGGCGGGGAGAATTCCATCCTGACACCCTCCAGATGGCTCTTCAAGTAGT
    GAACATCCAGACCATCGCAATGAGTAGGGCTGGGTCTCGGCCATGGAAAG
    CATACCTCAGTGCTCANGATGATACTGGCTGTCTGTTCTTAACAGAACTG
    CTATTGGAGCCTGGAAACTCAGAATGCAGATCTTTTGTGAACAAAATGAA
    GCAAGAACCGGAGACNCTGAATAGTTTTATTTCTGTATTAAAAACTGNGA
    TTGGAACAATTGAAGA
    Sequence ID 801
    CCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATA
    AAGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCA
    AGGGAAAGATGAAAAATTATAACCAAGCATAATATAGCAAGGACTAACCC
    CTATACCTTCTGCATAATGAATTAACTAGAAATGAGGATTCTGACCTTGA
    CTTTGATATCAGCAAATTGGAACAGCAGAGCAAGGTGCAAAACACAGGAC
    ATGGAAAACCAAGAGAAAAGTCCATAATAGACGAGAAATTCTTCCAACTC
    TCTGAAATGGAGGCTTATTTAGAAAACAGAGAAAAAGAAGAGGAACGAAA
    AGATGATAATGATGATGAGTCAGGTAAAAGTTCCAGAAATGTGAACAACA
    AAGATTTTTTTGATCCAGTTGAAAGTGATGAAGACATAGCAAGTGATCAT
    GATGATGAGCTGGGTTCAAACAAGATGATGAAATTGCTGAAGAAGAAGCA
    GAAGAAGGAAGCATTTCTGAAATATGAATGAAAAAAATTACATCTTTAGA
    AAAAGAGTTATTAGAAAAAAGCCTTGGCAGCCGTCNGGGGGAAGTGACGC
    ACAGAAGAGACCAGAGAATAGCTTCCTGGANGAGACCCTGCACTTTACCC
    ATGCTGCTGGATGG
    Sequence ID - 808  nt: 641
    CCGGGTTTTAGTATTTAACCAAGAGCCTTTTAAATATTGAAAACCCATAG
    TTCAGAAAATGTTAGTATTGCTGCCCTTCTTCACATAAATTTTTTTTTAA
    ATTATACTATTATTTTGCTTAATTTTATATTGGGTTAAAACAACCTTCAA
    GAAGGTTAACTAGGAAAGAAGACCTTTTTGTTTTATTTTTACTATTTATA
    TATAGAAGACAAATCAGCATTTGGTGATAGTTTTACATGACCAGTTATCA
    AACGGTCATAGTATGAAGTGTGCAGTTGTTCATTATTAGTAAATTATGTT
    TGATTTTTAAACTATTTAGTACTAATAGTTGAGATGAAAACTGAAGAAAA
    ATGCCAATGTGACGTTTGTGTATAGCTAGCCTTAAAAAACTTCCCATGTT
    TTTAGGTGACTTTTTTCCCCCTCTTAGTACTCTGGAGAAACAATGAAGAT
    GGGCCATCTCAATTCCAGATGTAAACAAAAAGTAATTTTTATTTCAACAT
    TTAATGTAACTGCTATTATTGNGGATTCTTGNCTTGNGTATTTTCTTTCC
    CTTATTCAAGTAATATAGAATAACTTTCCTTAAAATGATTTGATCCAAGA
    TACGTCATTTCTGTATTGGCAAAATGCCNCTATTAAAGTGT
    Sequence ID - 814  nt: 132
    GTTAAAGTGATACATTTTTATACCAAATGTGTTTATTTTTTTGTGCAAGT
    AATCCTTAAAATTGCAATTGTATTAGGTGTTAAAATAAAGTTTTTAAAAA
    ATTAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    Sequence ID 817
    GACAACCTTAGCCAAACCATTTACCCAAATAAAGTATAGGCGATAGAAAT
    TGAAACCTGGCGCAATAGATATAGTACCGTAAGGGAAAGATGAAAAATTA
    TAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATG
    AATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAA
    ACCAGACGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAG
    CAAAATAGTGGGAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTG
    GTGATAGCTGGTTGTCCAAGATAGAATCTTAGTTCAACTTTAAATTTGCC
    CACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTCCAAAGAGG
    AACAGCTCTTTGGACACTAGGAAAAAACCTTGTAGAGAGAGTAAAAAATT
    TAACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAA
    GCTCAACACCCACTACCTAAAAAAATCCCAAACATATAACTGAACTCCTC
    ACACCCAATTGGACCAATCTATCACCCTATAGAAGACTAATGTTAGTATA
    AGTAACATGAAAACATTCTTCTNCGCATAAGCCTGCGTCAGATTAAAACA
    CTGAACTGACAATTAA
    Sequence ID - 821  nt: 370
    AAAGAGCTCCCAAATGCTATATCTATTCAGGGGCTCTCAAGAACAATGGA
    ATATCATCCTGATTTANAAAATTTGGATGAAGATGGATATACTCAATTAC
    ACTTCGACTCTCAAAGCAATACCAGGATAGCTGTTGTTTCANAGAAAGGA
    TCGTGTGCTGCATCTCCTCCTTGGCGCCTCATTGCTGTAATTTTGGGAAT
    CCTATGCTTGGTAATACTGGTGATAGCTGTGGTCCTGGGTACCATGGCTG
    GTTTCAAAGCTGTGGAATTCAAAGGATAAATTAATGAAGAAAACAAGCGG
    AGCTGAAGAAGAAAGTACAATATGGTGCTGTCTTCCTAATGAAATAAATT
    CACTAAATGGACATTAAAAA
    Sequence ID 825
    AGACTCGAGCAAGCTTATGCATGCATGCGGCCGCAATTCGAGCTCGGCCA
    CTTGGCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCG
    TTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGC
    CTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCG
    CACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGAAAT
    TGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCA
    GCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCA
    AAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAG
    TCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCT
    ATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTG
    GGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCG
    ATTTAAAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGA
    AAAAAGCCAAANGGAGCCGGCGCTAGGGCCTGGCAAGTGTACGGGCACGC
    TGCGCGTAACCACCCACACCCCGCCGNGCTTAATGCCCCNTTCAGGGCGC
    GTNCTGATGCCGNATTTTNTCTTACNCATNTGTGCNGGNTT
    Sequence ID 833
    TAAAATAATGGCAAAAAACAAACAAAAAACAAGTTCTCTAAACAGAAAGG
    AAATTACTAAAGAAGGAATCTTGAAATAACAGGAAAGAGGAAATACCACA
    GTAGGCAACATTATGGGTAAATAAAACAGACTTTCCTTCTTTAGTTTCCT
    AAAATATGTTTGATGATTAATGCAAAAATTACAATATTTTCTTATGTAGC
    ACTAAAGGTATGTAGAGAAAATATTTAAGATAATTGTACTGTAAGCGGGA
    GATGACAGTGACATAAAGGCAACGTTTTTATACTTCACTCAAACTTTATG
    TATTAATGTAATCCATAAAGCAACCAAAAAAGCTATACTAAGTACATTCA
    AAAACACAATAGATAAACCAAACAAAATTCTAAAGGATGTACAAGTAACC
    CACTGGAAGCTGCAAAAAATGTAAACAGAAACTAAAAACAGAGAATAAAT
    GAAAAATTAAAAACGAAATGGCAGACTTAGGCCCTAATATACAAATTATC
    ACATTAAATATAAATGGTCTAAATACACCAACTGTAAGACAGAGATTAGC
    AAAGTCGATTTAAAAACATGACTCAACTACGTGCTGTCTACAAGAAACTC
    ACTTCAAATATACCAAGATAGGAAGGTTGAAAGTAAAACGATGGAAAAAG
    ATGTATCATGTGAACATTAATCAAAGGAAAGCAGGGGTGGCTATATTAAC
    ATCAGGTAAAATAAACTTT
    Sequence ID - 837  nt: 603
    TGAGGNTGGTCATGATGCANAAGCTACTCAAATGCAGTCGGCTTGTCCTG
    GCTCTTGCCCTCATCCTGGTTCTGGAATCCTCAGTTCAAGGTTATCCTAC
    GCGGAGAGCCAGGTACCAATGGGTGCGCTGCAATCCAGACAGTAATTCTG
    CAAACTGCCTTGAAGAAAAAGGACCAATGTTCGAACTACTTCCAGGTGAA
    TCCAACAAGATCCCCCGTCTGAGGAGTGACCTTTTTCCAAAGACGAGAAT
    CCAGGACTTGAATCGTATCTTCCCACTTTCTGAGGACTACTCTGGATCAG
    GCTTCGGCTCCGGCTCCGGCTCTGGATCAGGATCTGGGAGTGGCTTCCTA
    ACGGAAATGGAACAGGATTACCAACTAGTAGACGAAAGTGATGCTTTCCA
    TGACAACCTTAGGTCTCTTGACAGGAATCTGCCCTCAGACAGCCAGGACT
    TGGGTCAACATGGATTAGAAGAGGATTTTATGTTATAAAAGAGGATTTTC
    CCACCTTGACACCAGGCAATGTAGTTAGCATATTTTATGTACCATGGNTA
    TATGATTAATCTTGGGACAAAGAATTTTATAGAAATTTTTAAACATCTGA
    AAA
    Sequence ID - 839  nt: 71
    ATTTATCTAATATTTGGTTTAATAAAATGTGAATAATGAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAA
    Sequence 849  nt: 622
    TTTTTTTTTATTTTTTGAGAATGGAGTCTTGCTCTGCCGTCCAGGCTAGA
    GTTCAGTGGTGCGATCTCAGCTCACTGCCACCTCACCTCCTAGGTTCCAG
    AGATTCTTGTGCTTCAGCCTCCTCAGTAGTTGAGAATACAGGAACACGCC
    ACCACGCCTAGCTAATTTTTGTATTTTTAGTAGAGATGGGGTTTCACCAT
    GTTGGCCAGGCTGGTCTCAAACTCCTGGCCTAAGTGACCCACCTGCCTCA
    GCCTCCCAAAGTGCTGGGATTATAGGCGTGAGTCATTGTCCCCAGCCGGA
    TGTTTTCATCTTGATTTGCCTTAGTTTCTAAATCTCATCCTCTCCATTTT
    CTCCTGTTAGTAGTCACAGAGAACCAAATTCTGTCAAGTTATGAAACTAA
    AGTCTCTCTTCCACAAGTCTTCCTGTGTTCTGCCTCAAGTGAACTTGAAA
    GAACATCAGTTTGTGGGAAGGTTGAAGACCGAATGATCTGCTGGGAAATC
    ACTGAGGCATTGCCATTCTCTTGAGGAATTTCATTTTCATCGAAGTTTCG
    GTTTATATCCCTTTCTTGGTGAGTACTATTGCTGTTATGTAAATTAAATG
    AGTCGTCATCCTTCTTNTGAGC
    Sequence ID - 860  nt: 501
    GTGAAATCACTTTCATGGATTATTAATGGATTTAAGAGGGCATCAATCAG
    CTCAACTCAAGATTTCATAATCATTTTTAGTATTTAGATTGTGCCTCAAA
    GTTGTAGTACCTCACAATACCTCCACTGGTTTCCTGTTGTAAAAACCTTC
    AGTGAGTTTGACCATTGTGCTCTTGGCTCTTGGGCTGGAGTACCGTGGTG
    AGGGAGTAAACACTAGAAGTCTTTAGTACAAAACTGCTCTAGGGACACCT
    GGTGATTCCTACACAAGTGATGTTTATATTTCTCATAAAGAGTCTTCCCT
    ATCCCAAGGTCTTCATGATGCCAGTAGCCATATATGATAAATTATGTTCA
    GTGATAACTTAGTTATCAGAAATCAGCTCAGTGGTCTTCCCCGCCATGAT
    TCACATTTGATGAGTTTTTAAAAATCAAAGTGATTTTGAAAATCTCTAAT
    GGCTCAGAAAATAAAAACATCCAGTTTGTGGATGACTATATTTAGATTTC
    T
    Sequence ID 864
    TTGTGTTTTTAGGACTCCTTATCTAAATTAAGGCAGAGAAGTTACAGTAT
    TTATATCTGCATTAAATCTCAATTCCAGAAAAACCTTTTGAAAAATTATT
    TAATCCTCTGGAAACTATTGATATGATACAGGAGAAATTTTCAGAAGTTT
    ATTGAATAATTTAATATCATTTAATAGGACACTCTGGCTTGTATATAAGC
    AGATACGTTACTCAGACTTCTTGGCTGTACTCTAAAATAATATATGTACT
    AGTCTCCTAAATATTACTAGCTCACCTTTCAAAATGCATACTAATATTTC
    AATGTCTTTCTTCAATTTGAAAAGCTCTTGAATATCTACTTGTGATAGCC
    CTAAGAGCTGAGATAATTATTTCCAGGAGGTTGAATCCCTGATTCTTAAC
    TGTTCAGCAATGCATAAGCAAGAGAGAATATGACATAAGAGGACCATTTC
    TACATTAGCCATTTTTTTTCACAAGATACCTATGTGAATACAGGGCACCT
    GGGAGGGTAAGTGGAGGACTATTTCTAACTATATTTATAAGCACATACTG
    ATATTGGTGAATCAAAACCTACAGCAGTGCTTCTCAGATGGGAAGGGAGA
    CAATGTGTAAGGAGATCAGGAATTCATTAG
    Sequence ID - 865  nt: 122
    CCANAATCCACTCTCCAGTCTCCCTCCCCTGACTCCCTCTGCTGTCCTCC
    CCTCTCACGAGAATAAAGTGTCAAGCAAGAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAA
    Sequence ID 867
    TTTTTTTTTTTTTTTTTTTCAGAGTCACAGATATTGTATAGCTGAGGTAA
    GCATTTTACAACTTTTCAGACACAAGTAAGTACATAAATATTATTTTACA
    ACCAACAATNTTTAATATTTCCACATTGAANAATAGATGTGATAATTAAA
    TCTTTTATAAGGTTTTAAAAAGACATGAAACATAAACCTAATTATACATA
    AAAGAAAAGAATTTTAAACAAGAGCTTATTGNGATGACATTACTCATAAC
    TTTTACCTTTAAAACCTTTTCTTGGGTAGCTATTCAAAAGTAAAGACCAC
    AAGTTTTGTTGCCCANATTTCTTATGTTTNGTATATTTAAGCTCTTTATT
    TATTGAACAGATGNGTCATTAATTCATTNGGAGCATTACTATTATCAGTA
    AAATTTGATTTTTTTTTCCCCTCAGTCATAGGTAAATCAGCTCCACCTGG
    AATTTCTAAGGACCCAGTTTTAGTCAATATTTTCAAGTAATCATGACCTC
    AGAAATAGTCTTAATTAAGATAACAAATATTAGCCATCAAAATGGAACCA
    AGACAAGATTCTAATGTTTGTAAACAGTCAATCCATATTTATGAATATTA
    GCATATATTGGNGAATAGTTAAGGCAAAAGGGTCTAGCAG
    Sequence ID - 869  nt: 667
    TTGTGTTTTTAGGACTCCTTATCTAAATTAAGGCAGAGAAGTTACAGTAT
    TTATATCTGCATTAAATCTCAATTCCAGAAAAACCTTTTGAAAAATTATT
    TAATCCTCTGGAAACTATTGATATGATACAGGAGAAATTTTCAGAAGTTT
    ATTGAATAATTTAATATCATTTAATAGGACACTCTGGCTTGTATATAAGC
    AGATACGTTACTCAGACTTCTTGGCTGTACTCTAAAATAATATATGTACT
    AGTCTCCTAAATATTACTAGCTCACCTTTCAAAATGCATACTAATATTTC
    AATGTCTTTCTTCAATTTGAAAAGCTCTTGAATATCTACTTGTGATAGCC
    CTAAGAGCTGAGATAATTATTTCCAGGAGGTTGAATCCCTGATTCTTAAC
    TGTTCAGCAATGCATAAGCAAGAGAGAATATGACATAAGAGGACCATTTC
    TACATTAGCCATTTTTTTTCACAAGATACCTATGTGAATACAGGGCACCT
    GGGANGGTAAGTGGAGGACTATTTCTAACTATATTTATAAGCACATACTG
    ATATTGNTGAATCAAAACCTACAGCAGTGCTTCTCAGATGGGAAGGGAGA
    CAATGTGTAAGGAGATCAGGAATTCATTAGTCACCTTTCAGATGGTTTAA
    TGCATACAGCTGTACCG
    Sequence ID 870
    GGAGTTTGAGCAGATCCTTCAGGAGCGGAATGAACTCAAAGCCAAAGTGT
    TCCTGCTCAAGGAGGAACTGGCCTACTTCCAGCGGGAGCTGCTCACAGAC
    CACCGGGTCCCCGGCCTTCTGCTCGAGGCCATGAAGGTGGCTGTCCGGAA
    GCAGCGGAAGAAGATCAAGGCCAAGATGTTAGGGACACCAGAGGAAGCAG
    AGAGCAGTGAGGATGAGGCTGGCCCATGGATCCTGCTCTCCGATGACAAG
    GGAGACCATCCCCCACCCCCGGAGTCCAAAATACAGAGTTTCTTTGGCCT
    ATGGTATCGGGGTAAAGCTGAATCCTCTGAGGATGAGACCAGCAGCCCTG
    CACCCAGCAAGCTAGGGGGAGAAGAGGAGGCCCAACCACAGTCTCCAGCT
    CCTGATCCGCCCTGTTCTGCCCTCCACGAACACCTTTGTCTGGGGGCCTC
    AGCCGCCCCAGAGGCCTGACTTAGGGGTCTGGCTGTGGAAGGATGTGTGG
    CCTCAAATGAGGACAGGGCTCCCGCCTTCACAGCCCTCGCCAGGGGTCTG
    CCCCAATCCTGGCCTGCATCAGGCAAGGACGGGGTCTCAGC
    Sequence ID - 871  nt: 642
    GCAAGTCTTCAGTATGTACATTTATCCCCTAGAAGAAGAAAAATTAGTTG
    TGCATGAAAAAGAAACATTAACTGCAAAGCTAAATGCTCACACTCTAAAT
    CAGTGCTCTCCAAAGTACAGCAGGCGGGAAAAGAAAATGGTAGATTTTTT
    TCTTCCAATTACTTTAACTTATTCTTTTTAATGGACACTTCATACATAAA
    TATATTCACAATATATTAATATATACATAATGTATAAGCATACATATTGA
    ATGTGCAGTCAAAAAATGTACTAATGGAATGCTCTACCAAAACAAGTTCA
    CGTTCATCTGTAAAATGGGAATAATATTTTTAAAAGGCATACAGTCTGAA
    CATTTTTAGATTATTCATAAAATCTATTCAGAAAGTTAAACTAAAAAATT
    TAACGTATGCCTATAACAAATTTTGTACTTAATGTAATTGNTTTTCATCC
    TGAGATCTAATATCCTCGTTTTTAAGTAGAGCCACTTGTTTGCTACAGTT
    TAGTCAAAACGTTAACATTAGATGGGTAAAGTAATATGAAATCTTTCTAC
    TACTCCAAAATAGAAAACAGAACATTAAAAAGATAAAAATTCAAACATAC
    TTACCAGTAGATTTTCAACTGNGCAAAAGCTCATTGCATGGG
    Sequence ID 873
    GTTTTCCACCGTGAAGAGAACATTTCCTCTGGGAATGACAAAGCCCTCAG
    GAACNGCTTTTATTTCTATTGGAAGATGCCCATCATACTTCTGGCAGGAT
    AAAATGATAAATTTATTTATTCAACAGATGATACTCAATTCCCTGCTGTT
    TTACTAAAGGTTCTTTACGTTTTATAGAAGCTAAATTTACTGTCATAGAA
    ATTGCAATTGTAGATGTTACTGTAATCTAGTCAGAATATCCTTATCCTTC
    TAAAATAAAACTAGTTAAAATTATTAACATACGTACTGATATTAATTTTT
    AAGTTTAATGCTGCCACGTGCTTCTGCTAAGAACATTTATCACTACAAGT
    GGCAGAAAATTCCAAACTCATCAAAACCAAACTGTTGCTTCTTCCCTGCT
    TTTTCAGAAAATGAGAAAGGATGACTTTATTCCAACATATTCTAAAAGTA
    TTCCAAGAACACTACCTTTATTCTAAATTCGTTATTTTCACAAAATAAAG
    GCTGCAGATTGAAAGATAAAGGATTGCTATTAAAGAACAAAAGAAAACAA
    AACCGAGAGAGAAGGAGAGCTAGGGAAATCCCTGCANAANAACCGAATAN
    GGTCCCTCTATTCTGGGCCGGGGCCTGAAACTATGAAACAGGCCAACACA
    GAATCTTGGCA
    Sequence ID 875
    CCTCTGACTCGCTCAGCTCACCCACGCTGCTGGCCCTGTGAGGGGGCAGG
    GAAGGGGAGGCAGCCGGCACCCACAAGTGCCACTGCCCGAGCTGGTGCAT
    TACAGAGAGGAGAAACACATCTTCCCTAGAGGGTTCCTGTANACCTAGGG
    AGGACCTTATCTGTGCGTGAAACACACCAGGCTGTGGGCCTCAAGGACTT
    GAAAGCATCCATGTGTGGACTCAAGTCCTTACCTCTTCCGGAGATGTAGC
    AAAACGCATGGAGTGTGTATTGTTCCCAGTGACACTTCANAGAGCTGGTA
    GTTAGTAGCATGTTGAGCCAGGCCTGGGTCTGTGTCTCTTTTCTCTTTCT
    CCTTAGTCTTCTCATAGCATTAACTAATCTATTGGGTTCATTATTGGAAT
    TAACCTGGTGCTGGATATTTTCAAATTGTATCTAGTGCAGCTGATTTTAA
    CAATAACTACTGTGTTCCTGGCAATAGTGTGTTCTGATTAGAAATGACCA
    ATATTATACTAAGAAAAGATACGACTTTATTTTCTGGTAGATAGAAATAA
    ATAGCTATATCCATGTACTGNAGTTTTTCTTCAACATCAATGGTCATTGN
    AATGTTACTGATCATGCATTGGTGAGGNGGTCTGAATGTTCTGACATTAA
    CAATTTTCCAT
    Sequence ID - 876  nt: 115
    AAACTTTTGTGGCAACAGTGCACTAATTTGGATAATGTTTGTTCCCAATA
    AATTAAGAGCCAAATTGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAA
    Sequence ID - 878  nt: 634
    GCCAGGCTTTGTGAATTACAGGACATTTGAGACAATCGTGAAACAGCAAA
    TCAAGGCACTGGAAGAGCCGGCTGTGGATATGCTACACACCGTGACGGAT
    ATGGTCCGGCTTGCTTTCACAGATGTTTCGATAAAAAATTTTGAAGAGTT
    TTTTAACCTCCACAGAACCGCCAAGTCCAAAATTGAAGACATTAGAGCAG
    AACAAGAGAGAGAAGGTGAGAAGCTGATCCGCCTCCACTTCCAGATGGAA
    CAGATTGTCTACTGCCAGGACCAGGTATACAGGGGTGCATTGCAGAAGGT
    CAGAGAGAAGGAGCTGGAAGAAGAAAAGAAGAAGAAATCCTGGGATTTTG
    GGGCTTTCCAATCCAGCTCGGCAACAGACTCTTCCATGGAGGAGATCTTT
    CAGCACCTGATGGCCTATCACCAGGAGGCCAGCAAGCGCATCTCCAGCCA
    CATCCCTTTGATCATCCAGTTCTTCATGCTCCAGACGTACGGCCAGCAGC
    TTCAAAAGGCCATGCTGCAGCTCCTGCAGGGACAAGGACACCTACAGCTG
    GCTCCTGAAGGAGCGGAGCGACACCAGCGACAAGCGGAAGTTNCTGAAGG
    AGCGGCTTGCACGGCTGACGCAGGCTCGGCGCCG
    Sequence ID 879
    GTTGCCGGGTCCTGTGATAACTCTGTTTAACATTTTGAGGAACTGTTGAA
    TGGTTTTTCACAGCAGCTGCCTCATTTTTTATTCCCATCAGCAGTACTTC
    TTGGTTCTAATACCTCCACGTTCTCGCCAACACTTGTTGTTGTCTGTAAT
    TTCGTTGTTAGCCATCCCAGTGGGGATGAAGTAGTATCTTACTGTGGTTT
    TCAGTTGCGTTTCCCTGATAATTAATGATGGTGAACATCTTTTCATGTTC
    TTGTTGGCCATTTGTATGTCTTCTTGGGAAAAAAAAAATGTCTGTTCAAA
    TCCTTTACAAAGTATTTATTTTTTATGTCAACAATATAACCACTCAGTAC
    ACTGCTTTTTANACAATGATCTTTTAAAGGTTTGTTTACAACATTTAGCA
    CTTGAAATTTTAAGGTTATGCCCTCAAAAAAATTGCTGAGGGAGCTAAGC
    TATGAAGATGCAAAGGCATAANAATTATACAATGGACTTTGGGGGAATCC
    AGGGAAAGGGTGGGAGGGGGGTGANGGA
    Sequence ID 881
    TCGACTCTGATTTTTTTTTCTCCTTCCTCGCAGCCGCGCCAGGGAGCTCG
    CGGNGCGCGGCCCCTGTCCTCCGGCCCGAGATGAATCCTGCGGCAGAAGC
    CGAGTTCAACATCCTCCTGGCCACCGACTCCTACAAGGTTACTCACTATA
    AACAATATCCACCCAACACAAGCAAAGTTTATTCCTACTTTGAATGCCGT
    GAAAAGAAGACAGAAAACTCCAAATTAAGGAAGGTGAAATATGAGGAAAC
    AGTATTTTATGGGTTGCAGTACATTCTTAATAAGTACTTAAAAGGTAAAG
    TAGTAACCAAAGAGAAAATCCAGGAAGCCAAAGATGTCTACAAAGAACAT
    TTCCAAGATGATGTCTTTAATGAAAAGGGATGGAACTACATTCTTGAGAA
    GTATGATGGGCATCTTCCAATANAAATAAAAGCTGTTCCTGAGGGCTTTG
    TCATTCCCAGAGGAAATGTTCTCTTCACGGTGGAAAACACAGATCCAGAG
    TGTTACTGGCTTACAAATTGGATTGAGACTATTCTTGTTCAGTCCTGGTA
    TCCAATCACAGTGGCCACAAATT
    Sequence ID 883
    TCATTTACATTAATACTCAAAACTGCTCGATTAAGCAGGTGCTGTTCTTA
    TCGCCATTTTGCATATGATGAGAAAGGGTAAGGTCACCCAGCTAGTATTT
    GGCTCACAGCAGGCCTTAAGACTTGGTTTGTGTGACTCATCAGTCCACGC
    TCCTAAAACCACTAAGTTGTTCTACCCTTTAATGTTGAATTAACATTGGA
    TAGTGTTCAAGTTTANATGGGTGGGTGAGGGCCCAAGGACCTTTCAAACT
    CAGATCTCTTATTTAATAACCTGGTCCCAGATCCATTCCTCTGTCGAAGA
    GGAAGTCATCCTTCAGTGGCTATTCATTGTGGGGTTAAGAGCGCAGACTA
    TGAATTCAGTCTTTTTGGGTCCCAGTTTGCCAGACCTTGAGTGAGTGCCC
    CGAGTTTACTTACTTGTAAAGGTAGGTGGAGGTAATATAATTAAATAAAC
    TTAAAAAACTAATTAAAAACAAAACAAATGAACTAAGGTCTTAGGATATC
    TGGCGTCTATTTTGCGCCAAATCACATAATGTCTATTGTTGTGTGTTGGA
    CTATAGGATTGTCCTTTAACAGGGAAGGGTTTATTTCTGTAATCAAGTCT
    GTCAATATTATGACCATGTTGATAATAGCTACCTTTAATTGAGGGCTTCC
    ATGTGCCAA
    Sequence ID 885
    TCAGTGGAAAAGGGCAGGTTGAATCAAGGTGAATCAATCTGAAATTGAGC
    ACACCTGCCTGCCATCGCTGTTCCTTCAACTGAGTGCTGCACATCATGGG
    CTCTGTCTGTGAGAGAAAAATCCCGGTGCTTGGTGTCCTTGCATGACATG
    GAGTTTTGCATGTAGATCAATTTAAAATGTACCTCTTGTTTACATAATTT
    GCATAATTTTAAAAGATAATGTTGCCAAACTTTGGAAATGTTAATGTTCA
    NACTGAAAATCTCCACTACATGTAACTTTCTTCCTCTGGATCAGTGGCAT
    GGCTTATAATCCCAGCCAGTGGTTTGAACTGTTCCAGTGTCAACTGCCAT
    GTGCTCTGCTTCAAGGGGGAACTAGCCTTTTGTGAATTTTTTGTACATAA
    GTATTTGTTACAAATATTTTAGCAAATGCTTTCTATTTCTCTTGCTTGTG
    CATATCTTGGCTGGCGTTACAGAAAAATAGTGTAAACATTATTTCCTTAC
    CGGGGAATGAGGGTTTT
    Sequence ID 887
    AGCACCTGGCACAGAGTAGTAGCTAACACAGATGTTAATTTTGCTGCGTC
    AAATGTTTTCACTTTGAATCTCTCTTGAGTATTGTTCTCCTTATTGATTA
    CATGATGACATCCTGTTTTCTCTCCCTGACCTTTACTGTTTGTTTAGAAA
    AAAAAAAAAAAAAAAAAAAAAAAA
    Sequence ID 889
    CAGAGAGCTTGTTCCCTCCCTCCCTGTGCATGCAAACAAGAGGGCATGGG
    AGCACACAGAGAGATGGCAGCCACCTACAAGCCAAGAGGAGAAGCCTCAC
    AATCAAACTCTCGCTGCTGGCGAGAGTCTTGGACTCTGTCTTGGACTTCC
    AGCCTCCAGACTGTGAGAAACAAATTTCTGTTGTTTCAGCTTCTCAGTCT
    CTGGTGTTTTGTTATTGCAGCCTGAGAACACAGCTGTACNATTATNAGGG
    AAACAGAAAACACTGATACTTAACAATGCTAATGCAATTATTTATTTGCT
    TTTCAGTCTCTACAAAACGTTCTAAAACACTAATCTAAATATTAACAGTA
    AAATATTTGCATAACTAATGGAAACTAAGAAATCATATGACCAATATTTC
    ACTTATTGGTAATCTTACTCTACTGATTTCCCCCCAGACTGTGATTTTTG
    AACTTCCTTGCCTTTCTCCTGTCTTTCTGNGTTTATTCATGGAATTCCAG
    TTATCTGGGCTTGAAATTGCAGGCTCTCCTAACTTAAGCAAAATCTGACA
    GATCAGCAAAATGAGATAAATGTTTCTTTTTTCTTTCTGACTGCATTAAA
    TCAGATACAACTCAGCATTAAAAAGCTATCTTTGNAAAATGNTGGTACTA
    ATAAATTAGTCTTA
    Sequence ID 890
    CCAGTTCCACATTCAGTGAAGTCATGAACTTGAAATTGGCCATGATCAAA
    AAGTATTTAAATCACAGAAGTTGCAAATGCCACAAATCAAGGTCTTTTTC
    TCTTGGAGAACCTGTTAAACATTTACCAACTCACGACCGCCATGCACCCA
    ATACTGCAATAGGTCTATAGATGCAGATACTGTCTCCATGAATCTTATAG
    GCTAGAAAGGAAATAGATAAGTAGTCCTACCAGAAGAACATGATGAAGGC
    ATTTGTGGTAAACAGAATGATGGCCCCCCAAAGATGTCCACATCCTAATC
    CCTGAAGCCTATGAATATACTACTTTACTTGGCAAAAGGGACTTTGCCAC
    AGGTTTTTAATTAAGGACCTTGAAATAGAGAGATTATCCTGGATAATCCA
    AGCCAGAGTCAGAGAAGGAGACGTAGCAATGGAGGCAGAGGTCANAGAGA
    GATCTGCAGATGCTGCTGTGTTGGCTTTGAAAATGAGGAATGGAGGTGAC
    CTCAANGNGCTAGATGATGCAAGGAAACAAATAATCTCCTATGAACCCTA
    GGATGGGCATTATTATGAGTCCTATTTTATAAACAAGGAACTGACNTCCA
    GAAAGATAAATGC
    Sequence ID - 891  nt: 626
    GGCAGAGGTTGCAGTGAACTGAGATCATGCCATTGCAATCCAGCCTGGGC
    AACANGAGTGAGACTCCATCTCAAAAAAAAAAAAAAAAAGACAAGAGTNT
    CCACTCTAAACACTTNTATTCAACATAGTCCTGAAAGTCGTAGCCACAGC
    AATTTAACAAGATAAAGCAATAAAATGTATTCAAATAGAAAAAGAGGAAG
    TCAAATTATCTTCACTGGNGATATAATTCTCTACCTGGGAAACTTCACCG
    AAAAAGATTTCACCAAAAGATTTCTAAGCCTAAATAATGACTTCAGCAAA
    GTCTCACCATACAAAATCAACATACACAAATGAGTAGCATTTCTGTGCAC
    CAATAATATTCAAGCTGAGAAAAAAAGAACATGGTTCTATTTACAATAGC
    TACAAACAAAAAAATATGTACCTAGTAATACATTAAATCAAGGNGGTAAA
    ATATCTNTACAACAAGAACTACAAAACTGCTGAAAAAAAATAGAGACACG
    CAAATAAGTAAAAAGGCACTCCATGCTCATGAATTTAAAGAATCAATATA
    ATTAAAATGTCCGNGCTGCCTAAAGCAACTTACAGATTAAAGGCTATTTC
    TCTCAAACTATAAATGCACCTTTTTA
    Sequence ID - 893  nt: 585
    GTCATTGCTGGGTGGCGCCAGCCCTCAGACTTGCCTCTTTGCAGTAGGAA
    GAAGGCCTCCCCACATACCTTCCCACACTCATCACCTTAAGCCAGACTCG
    GTGTCCAGTGAATATGACCATCTCTTGCCCATTTTCTAATGAGTGTTTTC
    ATTAATGAGTTATAAGAATGTGGTGGGTAAATCTATGGGCTTTGAACTAG
    TGAATCAACTTGGTTTCAGAATCTGGCACTGCTACTTACTAGTGAATTTA
    AGCAAGTTATTTCACCTTTCAGAGTGTCAGTTCCCTCATGCATACAAGGA
    AGATAAAAAATAATGTNTACNAAAGTATTGGAGTAATTAATACATGGAGA
    ACTACATGTAAAGCGTTTAGCATGATGTCTGACATATTAAGCATCCAATA
    TTAGTNGCTTGCAGAATTATTAGTAAAAGAGATTGCTTCTGAAAGCCATT
    CCAATTCTTAAATTTTATAATGCCACATTTGAGGTCACCTGAAGTCGTGT
    ATAACATGTGTACATTTTTGCGATTTATTTTTTCAATTCCCANATTAAAG
    GCATAGAGATATCCTAGCNANGGACTCCAAGTGTG
    Sequence ID - 895  nt: 560
    GTAATTGCAGCCTGGGCAACGGAGTGAGAGACTGTCTCAGGAAAAAAAAA
    AGAAAAAAAACTACTGAGGTAGTTGAATATATCCTCCATTCCCCATTTGT
    GGATTAGTTAGTAAATGGGGCATCTTAGGGTTTAAATATGTCCAGGGTCA
    CTGAGGATCAGATCCTAGGGTTCCTTTGACTCAAGGCTTTTGTCTCAGCA
    AAACGTCACCTTCCAGCAGGAAGGCTTTCTCAGGCAAGTAGCAGGGTGGC
    TACTATGTATCGCTTCTTTATTTTTTCTTTTTTAAAATAATGCAGGCACC
    GTGCGCATAATTTAAAAAATCAGTGCTAAAACCCTTAAAAAAAAAAAGCT
    GTTCTCATCTCCTGTCTTTCTTTTTTTTTTCTTTTTATTTTTTTCTTTTA
    TTATTATTATACTTTAAGTTTTAGGGTACATGTGCACAACGTGCAGGTTT
    GTTACATATGTATACATGTGCCATGTNGGTGAGCTGCACCCATTAACTCG
    TCATTTAGCATTAGGTATATCTCCTAATGCTATCCCTCCCCCCTCCCCCC
    TTTTTTTTTT
    Sequence ID 896
    GGGAATGTCTTAGGCACTGGGACTGTAAGTGCAAAGACCCTGTGGCACAA
    GGGAATGTTAATTATCTACCTTTCANAAACTGGAANAAGGCCTAGCCTAG
    AGCATTGAAAACAATAAGGGAAAGGAGGAGTAAGGCTGGANAGATAGGAA
    TGGTTTAAAGTCTTTGTTAAAAATTTTTTTAAAAAAATCTTTATCACAAG
    AAGAGGATTGGCNTGATCAAATTTGACTTTTAAAAANATTACTTGGGTTG
    GGCATGATCAAATACTACTTAGGGAGATTAGTTTANATGATAATGGCATT
    CTGGACCANAGTGGAGTCAGAGGTGAAAAGAGGTAGATATTCCANAATTG
    AGGGATTTGTGAGGTGAAATCATTTGTTACAGATATTAAAGGATAAGGAG
    CTTTGTCAAAGGGGATCTTAAGTTTCTGGTATGGTAACTGGGTTAGAGAG
    CCCTGGAACATGACCAGCTTTAAGGGAAGAGAGCTTGAGCTCTGTTCTTG
    TTAAGCTCAGTTTGAGATCTTTGTGGAATCAAGTGGAGAGGTCTAAGCAG
    GGAACTGGCTTGGCTAGGCTGTAAAGATGAATCTGAGAGTCCCAAGAATA
    TGGTAATTATTAATAAAAGCCTTAGGTANATGAAATTGTTTTGGG
    Sequence ID - 897  nt: 509
    GCAAATCTACACATTTGATTAAATGATAGGGAACTATGCACACACATAAT
    ACATATAATGCTAGTTTCTTGGTTTTGATATTGTACCATAGTTATGTAAG
    ATGTAACCATTGGGGGAAACTGGGTGAAGGCTACATGAGACCTCTCTGTA
    CTTAATCTTTGCAACTTATGTGAATCTATAATTATTCCAAAATAAAAAGT
    TTTAAAGAACCTAAGTATCCTTATTACTGAGGGTCATCGTGCTAGACAGC
    AAGGTTGGGCCAGAGCTTCTAGTTATTTAAAATACTAAATACCAGCCTGG
    GCAACATAGCAAGACCCTGCCTCTACAAAAAGCAAAAAAATTAGCTGGGC
    ATGGTGGTACATGCCTGTGGTCCTAGTTACTCTTGGAGGAGTCTGAGGTG
    GGGAGCTTGAGCCTAGGAGTTTGAGGCCGCAGTGAGCCTTGATTGTGTCT
    CTGTACTCCAGTCTGGGCCACAGAGCAAGACCCGGTCTCTAAAAATAAAT
    AAATAAATA
    Sequence ID 898
    ANTGCACTCCAGCTTGGTGACAGAGGGAGACTCCATNTTAAAAAAAAAAA
    AAAAAAAAAAAAAGGGAGTAGCTTGAAGCCACATAGTAGTTAGTGGTAAA
    GGCCACCCCTTTTCCCACAACTCACACCAGCACCACAAGCTAGCCTTTNT
    AATTTCCAAGCCAGTGCCCTTTCAACGCACACACCCCTGTGTCAGTTCCC
    TTTCTGCTGCAAGCTCTCTGGAGGCAGATACTGTTGAGTCCCTGGCCTGC
    CTATGAGAACGGCTCATGATCTCTATTTCTTCTGCTTAATGACCATCTCG
    AAGTAACAAGTTTAGCCTAAAATAAACTTGCTAAGTTAGCAAAGGAAGTC
    CTTAGCAGCCACCATTTCTCGATTCCTCCATCACCTCCCCTGCCCCTCAA
    CTCCCTCATTTCTCCCAAGATATGGGCTCCAGGCTGGGCGCGGTGGCTCA
    CGCCTATAATCCTAGCACTTTGGGAGGCTGAGGTGAGCAGATCACTGAGG
    TCAGGAGTTCG
    Sequence ID 899
    TCNTTCGGAACGCGCC
    Sequence ID 900
    CTGGAGGGATGGGTAGGATTTTGACAAGAGTGGTTGAAGGTATTCTAATT
    CACTTAGTACCTACATGTGCGAGGCAGCATGAAGGCAAAAAAGCCTGGGG
    CATGTTCAGAGAATAGCAAGTATTCTAGTTTGAGTGGCACCTGGTACGTA
    TATAAGGGAATAGTAAAAGATCTGGCTGGAAAGGAAAAGTAGGGGCAGGT
    TACGAAGGACCTCTGAAAGTCAGACTGTGGAACTGGAACTTTTATCAGGA
    AGCAGTAGTTAGTTTTTTCAAGCAAAAGCTAATTAGAGTTGATATTTAGG
    AGGATGAATCTAACAGTTGTGTGCAAGGATGCCTTCAAACTGAGTGAGAC
    TAGTACTGGAGACTGGTTAAGAGACTACAACAATAACCTGAGTAAGAATT
    AATACAGGCCTGACCTAGTTTTGAGTGAGTAGGATTGGAAACAAGAGTTT
    TAGGTATTATAGGATTTATGCATATAAAATGGACTTGACAGAACTTGAAG
    AAAGAGAAAGTGTCAAAAGGACACAGAAAGTGAGGCAGGATATCTTACAA
    TGTTAAAGGAAAGGAATAATAGAAGTTAC
    Sequence ID 903
    GGAAACATAAGCTTGTTTCAGTACACTCACGCTGTAGATTAATTCTGATA
    TTACATATCTCCATCAGACTTTGTACCCTCTCTCTTCCATCCCTTACCCT
    TACCGATTAGGTTGGTATTACCTAAAAATCCATAGAAAATGTCCAGGTGA
    ATTGCCTTATGCTTTCTACCCCATAAGGTATAATT
    Sequence ID 904
    CTCTGTGGTGTGAGAACACAGTGGGTGACCAAGGCTTTCCAGATGAACCC
    AAGGAAAGTGAAAAAGCTGATGCTAATAACCAGACAACAGAACCTCAGCT
    TAAGAAAGGCAGCCAAGTGGAGGCACTCTTCAGTTATGAGGCTACCCAAC
    CAGAGGACCTGGAGTTTCAGGAAGGGGATATAATCCTGGTGTTATCAAAG
    GTGAATGAAGAATGGCTGGAAGGGGAGTGCAAAGGGAAGGTGGGCATTTT
    CCCCAAAGTTTTTGTTGAAGACTGCGCAACTACAGATTTGGAAAGCACTC
    GGAGAGAAGTCTAGGATGTTTCACAAACTACAAAGCTGAAGAAAATGAAG
    CCCTATTACTTGTTTGTAAGATTTAGCACCCTTCTGCTGTATACTGTACT
    GAGACATTACAGTTTGGAAGTGTTAACTATTTATTCCCTGTTAAAATTTA
    ACCTACTAGACAATGATGTGAGTACCCAGGATGATTTCCTGGGGCACAGT
    GGGTGAGGAGATGGGGACAGGTGAATGGAGGAGTTAGGGGAGAGGAAAAG
    TGGATGGAAGTGTCTGGAAAGGGCACCAAAAAAGTCTTCCAGGTCTGATC
    CTGTTTCTTGCTCTGAGTGCTAGCTACCACTGTGTCACACTGTAACATN
    Sequence ID - 905  nt: 655
    CTCAGCTCTTGCCTGGTCACCTTGTGGCTTTTACCATCCTCATCCCCTGT
    GCCACCCACATCCTGCCACTTCTGCATGGAGTTGGGGTGGGGCCATTGGA
    GAAAAGAGGTTAAACAAGCAGTAATTTACTTGAGTACAGTCTTTGAGCCA
    ATGAAATGCCAGTCATCATTTCCCAGGGGTACTTGTCATCTTGTCAACAA
    CCCGCTGATAATGCTCCTTCAATGTGAATAGCAAAAGTAGGGAGAGACGC
    TGAATGAAGAAGATGCCTACCCCTCAGGAAGACTGCTGTCCGCCTCCAGG
    CCTGCATGCACACACCCATGCCCACCTGCACCCCCAGCACCACGCCCACA
    CTCACTCGCACACACCCACATGCCAGTGTTTTGGGGTTGGCAGCCTGGAC
    ACTGCTGAGGCAAACACAAGTCATCAAGGATAATTCTCATTCTCTCCTTC
    TGTCTCTGTTTTAGTTACAGGAATTTGGTCAGTTTAGAGGATTTAATAAG
    TCCGTGGAAAATTTGTTTCTGTCTCTTGCTACCCACGTGAAAAGTAAGTG
    CATGCTTCATGATGTGTTTTCCCACTACCTTCCAGGCCAGCCGAGCCCAC
    TGGCCANGGCCTGGCCCGGTGACCTCGGTTGACACTGTCCTCANGCCACT
    CACTT
    Sequence ID 906
    CAGAATTTCATGTTTATGCTGCACAAGGCCTGTATTTTATAATGGTGGCT
    CTTTTGGACGATGACTTCCTCGATGGTGAAACTTCCAGTAATCTCCCTCA
    TCATACTGAAATGATATCAGTATATCATCAGAACACCATGGAGCTTGTCA
    TTTGAGGGACACAGCTTGCTTGTGTGCTTGGGAAAGAAGAGGTTTAGCAT
    GGTTTCAGGTCAGTGATGAGTCCAATGATCTCTGCAAGTTCCCTTAGCTC
    TGANAATTCTGATGTCATATGCACTTCTGCCGCCAGAGTTGCTGCTTACT
    GGATGCGTAAGAAGAAAAGAAAAAAAAAAAAAAA
    Sequence ID - 907  nt: 582
    CTTCCATTGGGGGTAAAGATCAAACTTTAGGCGAGCCAGGTCTGTATCTC
    CATTCCTGTCTCTGACTGCTTCCCTGTAGGGATTGTCTGCAAGCGCACAC
    CTGCATTTTCTTGTCCACAAGTCTATGCTCTAACTCTGTCACCTGCATGG
    CTGCAAATTAGCTTCCTTCTTCCTGCCCTCTTCTCTCTAGCTTGGATTTT
    GAATTTGAATGGCAGGCATGGGATGTCCGTGTGTGTGTACTGCTGATGTG
    TACAGCCGCTTGTTAGCGCTCTCATTGTCTTCAAATGTAAGTCATTTTGG
    CTGGGTGCGGTGGCTCATGCGTATAATCCCACGCTTTGGGAGGCTGAGGT
    GAGCTGATCATTTGAGGTTAGGAGTTCGAGACCAGCCTGGCCAACATGGC
    AAAACTCCATCTCTACCAAAAATACAAAAATTAGCTGGGTATGGTAGTGC
    ACGCCTGTAATCCCAGCTACTTGGAATGCTGAAGCAGGAGAATTGCCTGA
    ACCCANGAGGCGGAGGTTGCGGTGAGCCAAGATCACGCCACTGCACTCCA
    ACCTGGGTGACAGAGCAAGGCTGTGTCTCAAA
    Sequence ID 908
    ACCTGACTTCAAACTATACTACGAGGCTACAGTAATCAAAACAGCATGGT
    ACTAGTACAAAAACAGACCAATGGAACAGAATAGAGATCTCAGAAATAAA
    ACTGCACATCTACAACCATCTGATCTTCAACAAACCTGACAAAACGAGCA
    ATGGGGAAAGGATTCCCTATTTAATAAATGGTGCTGGGAGAACTGGCT-A
    GCCATGTGCAGAAAATTGAAACTGGACCCCTTCCTTACACCTTATACAAA
    AATTAACTCAAGATGGATTAAAGACTTAAATGTAGAACCCAAAACGATAA
    AAACCCTAGAAGAAAATCTAGGCAATATCATTAAGGACATAGACATGGGC
    AAAAATTTCATGATGAAAACATCAAAAGCAATGGCAACAAAAGCAGAAAC
    TGACAAATGGGCTTCTGCACAGCAAAAGAAACTATCGTCAGAGTGAACAG
    ACAACCTACAGAATGGGAGACAGTTTTTGCAATCTATCCATCTGACAAAA
    GTCTAATATCCAGAATCTACAAGGAATTTAA
    Sequence ID 910
    CAAAAAACAAGAATTACCCGGGCTTGGTGGTGCATGTCTGTAGTCCTATC
    TACTCAGGAGGCTGAGGCTGAAGGATCACTTGAGCCCAGGAGTTTGAGGC
    TGCAGTGAGTGAGCCATGATCATGCCAGTGTACTCCAGCCTTGGCAGACT
    GAGCAAAACTTGGTCCCTCGCAAAATGTTGAAGCCCAGTTTTCACTATTA
    ACCTGTATTTCAGTTTCCCCATGCTAACTTTGAAACACTGGGGCTGGCCT
    GAGGGTATAAAGGCTTATTCAAACTCAGTAATTTAAACTTAAAATCCTAA
    GGAACTTCAAAAAGTGTAATCTAGTCCAAATGGGGCATCAATTCTAAAGC
    ATTTGCTTGTTTGAGCAGATTTTCTGTGTCTGAGGTATATAGATAACTTA
    TCTTTTTATGACTAAATCCAAGTCCTTAGTTCCTGTTGGAATTCAAAATC
    ATATTTAAAAATTGATGCTTTGTTCTATAATTAATGCTTTGATTGTATAA
    ATAATAAGTATTCTTCCAAATCCCTTTTTACAGATGATGATTCTGATACC
    GAGACGTCAAATGACTTGCCAAAATTTGCAGATGGAATCAAGGCCNGAAA
    CAGAAATCAGAACTACCTGGNTCCCAGTCCTGTNCTTAAAATTCTAACTC
    GAC
    Sequence ID - 911  nt: 595
    GAGGGTGTAGAAGAGAAGAAGAAGGAGGTTCCTGCTGTGCCANAAACCCT
    TAAGAAAAAGCGAAGGAATTTCGCAGAGCTGAAGATCAAGCGCCTGAGAA
    AGAAGTTTGCCCAAAAGATGCTTCGAAAGGCAAGGAGGAAGCTTATCTAT
    GAAAAANCAAAGCACTATCACAAGGAATATAGGCAGATGTACAAANCTGA
    AATTCGAATGGCGAGGATGGCAAGAAAAGCTGGCAACTTCTATGTACCTG
    CAGAACCCAAATTGGCGTTTGTCATCAGAATCAGAGGTATCAATGGAGTG
    AGCCCAAAGGTTCGAAAGGTGTTGCAGCTTCTTCGCCTTCGTCAAATCTT
    CAATGGAACCTTTGTGAAGCTCAACAAGGCTTCGATTAACATGCTGAGGA
    TTGTAGAGCCATATATTGCATGGGGGTACCCCAATCTGAAGTCAGTAAAT
    GAACTAATCTACAAGCGTGGTTATGGCAAAATCAATAAGAAGCGAATTGC
    TTTGACAGATAACGCTTTGATTGCTCGATCTCTTGGTAAATACNGCATCA
    TCTGCATGGAGGATTTGATTCATGAGATCTATACTGTTGGAAAAC
    Sequence ID - 912  nt: 651
    CATTTCCAGAGTTTATGTGAATTGAATTGAACTATGGTTTTATGTTACTG
    TCAGTAGAATGAAGTACGAATATTTGAAAAATACACCTTCAACTTCAAAG
    TGATTCTTGACAAAAATTATAAGGAATCATTTTGGACACATTTTCTGGTA
    GAGCCTTGTAAAAATTAAAACCAAGTGTTGTTTTCAAGAAGAACTGTAAT
    ACATAATCAGGAATTTGAGTAGGGAGATTATTTTGTTATTTAAAATTAAA
    GTGGCTGTGTAGTTTTAACTTTAGTATTGCAGGTAGAGTAAGCTTACATG
    ATAACAAAAATCTTGGTCTTAGTGACTTAATGATTCTGATATTTATTGAT
    TGATTGGTTATCATTCCAAATATTTTAAAAGATAATAGCTGGCTGGGTGC
    GGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCAGGACGGGCGGA
    TCACGAGGTCAGGAGATCAAGACCATCCTGGCTAACACGGTGAAACCCCG
    TCTCTACTAAAAATCAAAAAATTAGCCGGGTGTAGTGGCGGGCACCTGTA
    GTCCCAGCTACTCAGGAGGCTGAGGCAGGAGAATGGCATGAACCTGGGAG
    GCGGAGCTTGCAGTGAGCTGAAATCGTGCCACTGCCTCCACCTGGCGACA
    A
    Sequence ID 913
    GTGAGGTGGGGACTTCATTCATTGTCCTATTTCTATCTCCACTTTGTGCC
    TGGAGAGCTTTCAGGGGAGGTGGAGGAGGAGGGTCTGCCAAGCTACTGCA
    ACATCTGTCACCCACTATACCCAGTTACTTGGGGGAGGACAGACACTGTG
    GTGTCATTAAAGTTGTTTGAACCAAAGTGGCGGCTGCATCTTTGTCCCGA
    TGCTAGCCGTGCCGGTCTCCCATCATCCGCTCGCCCTCCTTTNCCCTGGG
    CTGCGCCCACTTGTCTTCCTGGATATTTGGGGGTGACTCGCCATGCTTGG
    CACCCTCTGCTTCCTGGTGCTGCTCTGACTCGAAGACGGGACAGTCCCTG
    GTGCACATCCAGGGAAGAGGAGTGTCGGTAGTTCTTGCAGTAGGCACTTT
    ATCAGGACCTGACCTGTTGCTGGGTGATTTTAGTCTCTACAAACAGAAAG
    CGTTTCAAAGCGTCAGCTGTGGGAGCAGAGTGACCCTTTGCTGATGCTGG
    GGGGAGGGGATCTAAATCCTCATTTATCTCT
    Sequence ID 914
    GGCGCCTGCTGGAGGAGGAGAGAGCTCTGCTGGCATGAGCCACAGTTTCT
    TGACTGGAGGCCATCAACCCTCTTGGTTGAGGCCTTGTTCTGAGCCCTGA
    CATGTGCTTGGGCACTGGTGGGCCTGGGCTTCTGAGGTGGCCTCCTGCCC
    TGATCAGGGACCCTCCCCGCTTTCCTGGGCCTCTCAGTTGAACAAAGCAG
    CAAAACAAAGGCAGTTTTATATGAAAGATTANAAGCCTGGAATAATCAGG
    CTTTTTAAATGATGTAATTCCCACTGTAATAGCATAGGGATTTTGGAAGC
    AGCTGCTGGTGGCTTGGGACATCAGTGGGGCCAAGGGTTCTCTGTCCCTG
    GTTCAACTGTGATTTGGCTTTCCCGTGTCTTTCCTGGTGATGCCTTGTTT
    GGGGTTCTGTGGGTTTGGGTGGGAAGAGGGCCATCTGCCTGAATGTAACC
    TGCTAGCTCTCCGAAGCCCTGCGGGCCTGCTTGTGTGAACCGTGTGGACA
    GTGGTGGCCGCGCTGTGCCTGCTCGTGTTGCCTACATGTCCCTGGCTGTT
    GAGGCGCTGCTTTAACCTGCACCCCTNCCTTG-CTCATANATGCTCCTTT
    TGA
    Sequence ID - 915  nt: 230
    TTTGAGACCAGCCTAGCCAACATGGTGAAACCCCATCTCTACTAAAAATA
    CAAAAATTAGCCGGGCGTGGCGGCACATGCCTATAATCCCACTTACTTGG
    GAGGCTGANGTAGGAGAATCGCTTGAACCCANANAGGCAGAGTTTGCAGT
    GAGCCGAGATTGTGCCATTGCACTCCAGCCTGGGCGACAGAGCGAGACTC
    CATCTAAAANAAAATAAATGAATAAAATAA
    Sequence ID 917
    NNCAGATTTTTTTTTTTTTTTCAGNGTTAGACCATCTTTCAATTCCTGGA
    ACAAACTTAACTTTCCATGATATGTATTTTTTATACATTGCTGGATTTTA
    TTTGCTAATATTTTACTTAGGATTTAATTTTCTAAGTNGACCTATAATTN
    TCCTGTATAAAATTGCATTTGTCACATTTTAGTATCAAGGTTGTCCTANC
    NCCATGAAATGGATTTANAATGGTTTATGTAANATAAAGTACATTTCTTC
    TAAAGGTTTGNGTGGATTAACTTTCAAATCTGCCANAGNGNGTTTTTTTC
    CTTTTTTTTTTTTTTTCATTTNAAGGGAGNGCAAGTANCTTTTCAAATNC
    TGATTTAATTTTTAAAATATTTNCAAGTNTNTTTANAGTTTTTATTTNTT
    NTNGAANGTTAACATTTTTATANAAAANGGTNTTATCTTTTTAAATTCTT
    TGACATCAGTTTCTTCANAATTCCTTCTTTTAA
    Sequence ID 926
    GTCATATCTCTTCCCAGGGAAAGCAGGAGCCCTTCTGGAGCCCTTCAGCA
    GGGTCAGGGCCCCTCGTCTTCCCCTCCTTTCCCAGAGCCATCTTCCCAGT
    CCACCATCCCCATCGTGGGCATTGTTGCTGGCCTGGCTGTCCTAGCAGTT
    GTGGTCATCGGAGCTGTGGTCGCTACTGTGATGTGTAGGAGGAAGAGCTC
    AGGTAGGGAAGGGGTGAGGGGTGGGGTCTGGGTTTTCTTGTCCCACTGGG
    GGTTTCAAGCCCCAGGTAGAAGTGTTCCCTGCCTCATTACTGGGAAGCAG
    CATCCACACAGGGGCTAACGCAGCCTGGGACCCTGTGTGCCAGCACTTAC
    TCTTTTGTGCAGCACATGTGACAATGAAGGACGGATGTATCACCTTGATG
    GTTGTGGTGTTGGGGTCCTGATTTCAGCATTCATGAGTCAGGGGAAGGTC
    CCTGCTAAGGACAGACCTTAGGAGGGCAGTTGGTCCAGGACCCACACTTG
    CTTTCCTCGTGTTTCCTGATCCTGCCTTGGGTCTGTAG
    Sequence ID 938
    TGGCCATCCTTTTCCCCCCAAACACACCCCCTTAACCTATCTCTTGGGAC
    TTAGCCCGACCCTCCCTCTCATTTCCCATTAAGTCTGAGAGGCAAGAGCT
    AGGTTAGGCAAGGAGGTGGTTGGCCAGAGATGGGGAACAGCCAGGTGCCC
    CAGTCCTCTGATTTTTCCTCCATCCTGCTTACCACCTCCCTGGGTACTTA
    CAGCCTTCTCTTGGGAACAGCCGGGGCCAGGACTGGGTCACCTATGAGCT
    GAATCAGCATCTCCTCCTGAGTCCCAGGGCCCCTGCAGTTCCCAGTCTCT
    TCTGTCCTGCAGCCCTTGCCTCTTTCCCACAGGTTCCACTTTATATCCAC
    CTTTTCCTTTTGTTCAATTTTTATTTTTATTTTTTTTATTATTAAATGAT
    GTGGTCTATGGAAAAAAAAATAAAAATCTGACTTAGTTTT
    Sequence ID - 939  nt: 513
    GGAACCCAGTGTATTACCTGCTGGAACCAAGGAAACTAACAATGTAGGTT
    ACTAGTGAATACCCCAATGGTTTCTCCAATTATGCCCATGCCACCAAAAC
    AATAAAACAAAATTCTCTAACACTGCAAAGAGTGAGCCATGCCTGTTAAC
    ACTGTAAAGAATGTAACATGTGGGGGACACACAGGGGCAGATGGGATGGT
    TTAGTTTAGGATTTTATTAGTGCATGCCCTACCCTCTGGGGGAACGTCCC
    ATCTGAGGTTTTCTTCTCGGTGGGGGGATTTAACTTCTGTCCTAGGGAAA
    ACAGTGTCTGATGAGGAGTGTTTCCAACACAGGCTACATGAATTCCCCTA
    TACCAGTGCGAAAGCAGCCAGGAGTCCCCGTTGGAAAAGAACAATGCCAC
    TCTCTTTTATGTATCTTGGTTCTGCAACTCATTTGTTGTAAGTAGGGTTA
    ATCGAGTATCAGGTTCACAGTATCCTGCCCTTATTATTTTATGATTCACT
    GACTCAAGTTCCA
    Sequence ID 947
    GAGAGTGAAAAAATTCTGGTACAAATTGGGAAATTAGTATATAACAACAT
    AGTGTTAAATTCAATGGGAAAAGTTTAATAAGAGGATTTGGTATCAACTG
    GCTGTCCAAAGATAAAAATGGACCGTCCTATCACATACAAAATTGTTTTT
    TAGATAAAGATTTAAATACAGGCACTCCTTCATTTGCGTGGTGCACCTTG
    AGGTGTTGCAGAAATGATGAGAGCTGAAACTGCAAAGCAATTTTAATACT
    TTATCTGTTGGAAATCTTATAGTTTTCCTGTGACCGTTAAAATTTTCATT
    AAACTATTAAAAACACCCATGACTGGTCACAAATGTATTGGGAAATGGAA
    AAGAATTAATACACTAAAAATACAAAAAATAGAAAATATTTAAAATTATC
    TAAAAATTTGAAACATTAGAAAAATTGAGAACTAGGCAGGGCGTGGTGGC
    TCACATCTGTAATTTTAGCCCTTTGGGAGGCTGANGCAGGTGGATCACCT
    GANGTCAGGAGTTCGAGACCAGCCTGCCAACGTGGGGAAACCCCGTCTCT
    ACTGAAAATACAAAAATTANCCGGGCATGGTGGCACAAGCCTGTAATNCT
    TGCTNACCAGGANGCTGAGGCAGGAGAATCACTTGAACCCANGANG
    Sequence ID 949
    GTTTCACATGAGAAGGTAGTATTATGTACAGTGACCTTGTTTAAAGTGTC
    NGTTTAATGTTACCACTAAGGCCCTGCCCCAGCTTTATCACCTGAGCACT
    AACAAGTGCTGTGTGGAGTTCAGTCCATGCTGGTAACTNTTGAGTATTCA
    GTGGGTCTTTTAACAATTACCACCGTGGAGGANANAGCAAGGAAGAGAAA
    TGCTGTGATCTTTTNCTGTTTTTAATTAGNGAAAGAGGGATTANATTAAA
    CAAATGTTACAGAGNTGTGACTNTGATCCCCCAGNGGTAAGCAATAATTG
    TANAGACTGGATTTNANAAGCCCTGAGAGTTTATTTTCAACCTATNTATT
    ATAGNNCAATCC
    Sequence ID 1028
    ACAAGGCTTGGGGGCTGGACTCCCTCTACTGCCTCTGGCCATACCCCCTC
    CTGGAGATGGGGTCAAGGCACCAGGACTGA
    Sequence ID - 1056 nt: 435
    TCGCTTGTAAAGCCTGAGACAGCTGCCTGTGTGGGACTGAGATGCAGGAT
    TTCTTCACACCTCTCCTTTGTGACTTCAAGAGCCTCTGGCATCTCTTTCT
    GCAAAGGCATCTGAATGTGTCTGCGTTCCTGTTAGCATAATGTGAGGAGG
    TGGAGAGACAGCCCACCCCCGTGTCCACCGTGACCCCTGTCCCCACACTG
    ACCTGTGTTCCCTCCCCGATCATCTTTCCTGTTCCAGAGAAGTGGGCTGG
    ATGTCTCCATCTCTGTCTCAACTTCATGGTGCGCTGAGCTGCAACTTCTT
    ACTTCCCTAATGAAGTTAAGAACCTGAATATAAATTTGTTTTCTCAAATA
    TTTGCTATGAAGGGTTGATGGATTAATTAAATAAGTCAATTCCTGGAAGT
    TGAGAGAGCAAATAAAGACCTGAGAACCTTCCAGA
    Sequence ID 1071
    NGATATAGTNCCGCATGGGAAAGATGANCAGGTATAACCNAGCNTNATAT
    AGCAAGGACTAACCCCCCTGCCTTCTGCATAATGAATTAACTAGAAATAA
    CTTNGCAAGGAGAGCCAAAGCTAAGACCCCNGAAACCAGACGAGCTACCT
    AAGAACAGNTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGA
    TTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTC
    CAAGATAGAATCTTAGTTCAACTTTAAATTNGCCCACAGAACCCTCTAAA
    TCCCCTTGTAAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACA
    CTAGGAAAAAACCTTGTAGAGAGAGTAAAAAATTTAACACCCATAGTAGG
    CCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAACACCCACTAC
    CTAAAAAATCCCAAACATATAACTGAACTCCTNACACCCAATTGGACCAA
    TCTATCACCCTATAGAAGAACTAATGTTAGTATAAGTAACATGAAAACAT
    TCTCCTCCGCATAAGCCTGCN
    Sequence ID - 1074 nt: 689
    GGGAGGCGGAGGCTGCAGTGAGCTGAGATCGTGCCACTTCATTCCAGCCT
    GGGCAACAAAGCGAAACTCTGTCTCAAAAAAAAAAAAAAAAAAAATTTGT
    TGACTGTTGTAATTTAAAGCTTGTCATTTTTTATTTAGTAATAACACTCA
    TTAGTGTAGTATCTATGATGAACCAGGTTCTGCACAAAGTACCTTATGTT
    CATGGCCTCATATCGTCTTCTCCAAAACTCTGCAAGATAGGATTCATCAC
    CACTTATAGGGAGAGATCTGAAAGTTTAAAATTGTACCCAAGGTCACACA
    GCTGGTAAGTGCCAGAGCTGGGATTCCGTAGGGTGTTCANAGTGCCTCTC
    CTGCCGTAGGCTTATCACAAAAAGTCAAAGTTTGGTCATAATAAAGCCTG
    AAGTTTGGCAGGATTTAAAAATAGTCACCANACTTTTGAGTTGGAGCATC
    CCACCTCACTGCTGTTCACCTTCTGTGGCAGGGAGAGTCATCATTTCCAT
    TTCAGCTTGTGGAATATCTTGTCATTAACATTCTCATGCAAAAGCCATTT
    TATGGTGCCCAATGAANATGGTTAAGCTACTGCCCCAAGCCTNTGGAAGC
    CTTCCTAATTTTGGACTTGCACTATGCAAATTGNATAATATTTTCTCTAC
    CCTAAGCCAAATATTTTCTTCACTTTTCATTCATTCTAC
    Sequence ID 1081
    CGCCGCCGCGCCGCCGTCGCTCTCCAACGCCAGCGCCGCCTCTCGCTCGC
    CGAGCTCCAGCCGAAGGAGAAGGGGGGTAAGTAAGGAGGTCTCTGTACCA
    TGGCTCGTACAAAGCAGACTGCCCGCAAATCGACCGGTGGTAAAGCACCC
    AGGAAGCAACTGGCTACAAAAGCCGCTCGCAAGAGTGCGCCCTCTACTGG
    AGGGGTGAAGAAACCTCATCGTTACAGGCCTGGTACTGTGGCGCTCCGTG
    AAATTAGACGTTATCAGAAGTCCACTGAACTTCTGATTCGCAAACTTCCC
    TTCCAGCGTCTGGTGCGAGAAATTGCTCAGGACTTTAAAACAGATCTGCG
    CTTCCAGAGCGCANCTATCGGTGCTTTGCAGGAGGCAAGTGAGGCCTATC
    TGGTTGGCCTTTTTGAAGACACCAACCTGTGTGCTATCCATGCCAAACGT
    GTAACAATTATGCCAAAAGACATCCAGCTAGCACGCCGCATACGTGGAGA
    ACGTGCTTAAGAATCCACTATGATGGGAAACATTTCATTCTC
    Sequence ID - 1083 nt: 198
    GCGCGTCGACTTTGTTTAGACATTGAATGACTTTGTTAAAGGCACAATTA
    ATCACATTGGTTGTACTCTGNNGACAGCCTTCTTTAAAAAAAAAATAAAC
    AATTTAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTTTTAACC
    Sequence ID - 1084 nt: 198
    GCGCGTCGACTTTGTTTAGACATTGAATGACTTTGTTAAAGGCACAATTA
    ATCACATTGGTTGTACTCTGNNGACAGCCTTCTTTAAAAAAAAAATAAAC
    AATTTAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTTTTAACC
    Sequence ID - 1099 nt: 561
    TGCATGCTTGTGGATTGGAAAAACTTTGGAGACTGATTACTTTTCATTAT
    ATATGTGTCACAGTGAAACAGCTTTTATGTGTCATGTAAGATTACTGCTT
    GCCTCTCTAAGGAAGGTCGTGACTGTTTAAATAGACGGGCAAGGTGGAAC
    CTTTTGAAAGATGAGCTTTTGAATATAAGTTGTCTGCTAGATCATGGTTT
    GTATTGAACTAACAAGGTTTGCAGATCTGCTGACTTATATAAAGCTTTTT
    GATTCCTACTAAGCTTTAAGATTTAAAAAATGTTCAATGTTGAAATTTCT
    GTGGGGCTCTATTTTTGCTTTGGCTTTCTGGTGAGAGAGTGAGGAAGCAT
    TCTTTCCTTCACTAAGTTTGTCTTTCTTGTCTTCTGGATAGATTGATTTT
    AAGAGACTAAGGGAATTTACAAACTAAAGATTTTAGTCATCTGGTGGAAA
    AGGAGACTTTAAGATTGTTTAGGGCTGGGCGGGGTGACTCACATCTGTAA
    TCCCAGCACTTTGGGAGGCCAAGGCAGGCAGAACACTTGAAGGAGTTCAA
    GACCAGCGTGG
    Sequence ID 1109
    TTTGNCGGTNTTGGANNNNNANAANTTTCTTCCANNCNTNACNTNTTGGT
    GGNCTAAATTAANATGGNTTTNGNGGGTTCNTTNCTNNNTNNNNCATGGG
    ANANAATTNATTNTCNTNCNNNTTCCTTNNCCCTNAANCTACCTTCCCCC
    NATTTTCTCCCCTNTTCNTNAATTANCATCCTCTCCNCNTANNTCNANAC
    NTTAATGGCAANACTATCTAATANCNANNATAANANCTCCTGTNNNCCAC
    ATNTCTTATTNNNCGCNNCANGTTNCANNCCCNCAGAGTNAACTCATCCT
    CNNCNNAANTTCATATCGTGNNCTNTNNNCNNTNGCGCGANATATTAANN
    ANACCNGTANNTNNNANACANNANNTNNGNAANAANCCTTCTNANNTTTT
    AGCNTCNNGCNNTAACNNNNNTCTTNGTGNNNNCNCAGCTTTCNCNNCAT
    NATNCTNCNNCGAANTNTCANNCNTCTCCNCTTNAATGNNTTCCCATGNA
    TTAANTNCCTCGNNNANAGCACTATCGTNNNNGAGNNNATTATNGNCNNT
    TTACNTCATGTGGTCCANTNNCGTTNGNCGCNNNNAATNTTCGTNNNNCN
    N
    Sequence ID 1118
    GGATTTTAGAGGAAGGCGCTNGGTTACATTGGAGAACTGGAGTGGTCTGG
    AGTTCCACGGTGTAGTGGACCAGAGGCCACCTCTCCTGGGCTTCTCAGTG
    TCTCGCCGGCGGGGTTCGGCCTGAGCTGGATTGACATAGCCCTTGGCGGA
    TTTAAACAACCTAAACATTAAGCAGTACAGCTGCCTCAAACCTTTGGGAT
    TTTCAGAATGACTGACACTGCCGAAGCTGTTCCAAAGTTTGAAGAGATGT
    TTGCTAGTAGATTCACAGAAAATGACAAGGAGTATCAGGAATACCTGAAA
    CGCCCTCCTGAGTCTCCTCCAATTGTTGAGGAATGGAATAGCANAGCTGG
    TGGGAACCAAAGAAACAGAGGCAATCGGTTGCAAGACAACAGACAGTTCA
    GAGGCAGGGACAACAGATGGGGGTGGCCAAGTGACAATCGATCCAATCAG
    TGGCATGGACGATCCTGGGGTAACAACTACCCGCAACACAGACAAGAACC
    TTACTATCCCCAGCAATATGGACATTATGGTTACAACCAGCGGCCTCCTT
    ACGGTTACTACTGATAGAAATGTTGGCAGCTTTTAGTAAAAGCATTTACT
    CTGTTACCATGAGAAA
    Sequence ID 1125
    NGACTGGCTCCCGAAAAGAAGGGTGGCGAGAANAAAAAGGGCCGTTCTGC
    CATGGACGAAGTGGTAACCCGCGAATACACCATCAACATTNACAAGCGCA
    TCCATGGAGTGGGCTTCAAGAANCGTGCACCTCGGGCACTCAAAGAGATT
    CGGAAATTTGCCATGAAGGAGATGGGAACTCCATATGTGCGCATTGACAC
    CAGGCTCAACAAANCTGTCTGGGCCAAAGGAATAAGGAATGTGCCATACC
    GAATCCGTGTGCGGCTGTCCANAAAACGTAATGAGGATGAAGATTCACCA
    AATAAGCTNTATACTTTGGTTACCTATGTACCTGTTACCACTTTCAAAAA
    TCTACAGACAGTCAATGTGGATGANAACNAATCGCTGATCGTCAGATCAA
    ANAAANT
    Sequence ID - 1139 nt: 503
    CAGCACTGCCAGTGGAGATGGGCGTCACTACTGCTACCCTCATTTCACCT
    GCGCTGTGGACACTGAGAACATCCGCCGTGTGTTCAACGACTGCCGTGAC
    ATCATTCAGCGCATGCACCTTCGTCAGTACGAGCTGCTCTAAGAAGGGAA
    CCCCCAAATTTAATTAAAGCCTTAAGCACAATTAATTAAAAGTGAAACGT
    AATTGTACAAGCAGTTAATCACCCACCATAGGGCATGATTAACAAAGCAA
    CCTTTCCCTTCCCCCGAGTGATTTTGCGAAACCCCCTTTTCCCTTCAGCT
    TGCTTAGATGTTCCAAATTTAGAAAGCTTAAGGCGGCCTACAGAAAAAGG
    AAAAAAGGCCACAAAAGTTCCCTCTCACTTTCAGTAAAAATAAATAAAAC
    AGCAGCAGCAAACAAATAAAATGAAATAAAAGAAACAAATGAAATAAATA
    TTGTGTTGTGCAGCATTAAAAAAAATCAAAATAAAAATTAAATGTGAGCA
    AAG
    Sequence ID - 1148 nt: 587
    TGAAAAATAAAGTTTTTATGTATATTCTACATATGTATATGTTGGTAGAA
    AGCAAAAACGCTAGGTAAAAATAAATGTAATACAATTTTAGCTATGAACC
    AAAAAACCATTTGTGGTGTGGATGCAAGAAAGTCTGGATGGGTGCAGAGT
    TCTCCATGTTTCACTTCTGACATTTGAAAATACGCAGTTTGCATTTGATA
    CGTCAAATGTTATTTTTAAGAAAACCAATAAAATCATTAAAACCGAAAAG
    GCAGTTTTGCTTGTTTTTACCTTAGTTGGAGTTATCTGCAATTGCCGTAT
    TAGTGTTTTAAGGAACTTGTAAGTAAGCTCCTTAGTCCCCTTTAGAGCTA
    CGAAACATGTCAATTTTACTTTTCTCCAGCTTTTTGGAATCTTATCTAAA
    TTACCATGTAGAGTTCTGCATAGCTTCAAATTCTCTTAGCCAATGTGGTC
    TGTAAGTGTCTATCGATGAATTTCACCGTTAATTGCCGTAGTATACTGTC
    CTGTACCGGATGTGAAGAGGAGCAACTCTGCACAGTGCACTGGTTGCTCC
    CATGGTAGGAANGAATGGCTTATCAATGGTCGGATTT
    Sequence ID - 1160 nt: 650
    GGAGGATGGAGCAGTGAGCGGGTCTGGGCGGCTGCTGGCAGCGCCATGGA
    GACGGTACAGCTGAGGAACCCGCCGCGCCGGCAGCTGAAAAAGTTGGATG
    AAGATAGTTTAACCAAACAACCAGAAGAAGTATTTGATGTCTTAGAGAAA
    CTTGGAGAAGGGTGAGTGTAAAGAAACTATAGGTAGGTCATTGGGTCCCA
    GTCTTTTTCCTGCCCCAGAAGAAGCAGAAGGATATGAACCTTTCAGCATT
    GTTCTAGGTGGGGTGGAAGGTAAATTTACAGCTTGTGATGTCCTTCTTCG
    CTTTACTCCAATCCCTATTATAGACAGATTTAGTGATTCCTGGTCTTTTT
    AACACGAAGAATATCTATTGTTTTCTCTTTTGTAGGATCTGTATGATTTT
    ATCTACTTAACAGATAGCACTAATTAGATTAAAATTCTATAAGAAACTTT
    TTAATTTGCTGTTCATAATTTCTGATTGGTATGCAATAACTGTTTCAATG
    AAAATCAATGTAATTTAGTATTTTAATATTTGCACCTTTGTGAAATATAG
    TAAATAAATTAAGCACTATCACCACCTTCACAGCTACTTAGGAGATCCAC
    AATCCTGGGTTGGGAGCCAGTGGATTTCCTGAAACACAGATTTGTTAATG
    Sequence ID - 1165 nt: 502
    CTCAAGTGAATCCTGGCTTCTTGGAAGCGCTTGCCTAGACGAGACACAGT
    GCATAAAAACAACTTTTGGGGGACAGGTATGTTTTCTTGCAGCTGCGGTT
    GTAAGGTCTTGGCAAGACAAGCAGTGTGGCCAGAATTTTGAACTTCTGAT
    GAATGTGTAATGCAAAGGACCTTGTACATTTTTTTGTTTCAAGGTCCTCA
    AAATGAGCACATGAAGAGGTTGCTGTGAAACTTTAAGTGGCCCTACTGCG
    CAGAAGCATTCAGATGTCACTTGATGATCTGTAAGGGAACTTGCTGATTT
    GGGAATGTGCTTAGGGAACACACATTCCTTTTGACAGGGTCTGTCACTGG
    GTGGGTGATGAATTATACAGATGACATGTGCTTTTTTTTCTTTTTTCAAC
    CTCAATGGTATTCCTACAGGAAATGGATAACCATTTTAACTGTATTTTTT
    GCAGCCCGTACCTTCTTGGGAATACAATTGTCTAACTTTTTATTTTTGGT
    CT
    Sequence ID - 1172 nt: 648
    CCACAATAATAAGAGAAAAACAGGAGCAAAAGGATATACAAAACCACCAG
    AAAACAAATAACAAAGTGACAGGAGTAAGTCCTTAACTGGCAATAATAAC
    CATGAATCTAAATGGATTCCATTTCCCACTTAAAAGATAAAGACATGCTG
    AATGGATAAAAAGCTGTCACCCAGTTATATGCTGCCTACAACAAACTCAC
    TTCACCTGTAAACATACATATGGATGGAAAGAGAAGGCATGGGAAAAGAT
    ACTCTACTCAAATGAAAACAAAAACCAAACAAAGGTGGCTATTCTTATAT
    GAGATAATACAGACATTAAATCAAAAACTGGAAACAAACACAAAGTCATT
    GTATAATGATGAATTCAATTATATCATGATGAATTCAATTATATCCTCCT
    TCCTGATCAATTCAGAAAGGAGGATATAATCTTTTTAAATATATATACAC
    CCAACACCAGAGCATATAAATATGTAAAGGAAGATAAAGGGAGTCCTGTG
    ATCAAGAATAAATATAACAATTATAAATATTTTATCTAAAGTGATAGATA
    GACTGTAATACAATAATAGGGTGGTGACATTAACACCCCCTCTCACATTG
    GACTGATCATCTAGAAGGGAGAAAAAGCTTTATGATTGGAAAAGCCAT
    Sequence ID 1178
    ATTGTGTTGGCCACCCGGGAATTCGCGGCCGCGTCGACCTACGCACACGA
    GAACATGCCTCTCGCAAAGGATCTCCTTCATCCCTCTCCAGAAGAGGAGA
    AGAGGAAACACAAGAAGAAACGCCTGGTGCAGAGCCCCAATTCCTACTTC
    ATGGATGTGAAATGCCCAGGTGAGGAGACGGCTTGCTGTAGTGGGGAAAG
    CACTGGACCTCAACAGTTGGAAAATGTTGTAGTGTTAGCTGTCTCGTATC
    CTTGAAGCTGTGCAGCAGCTTCAGTTTCTTCGCCTGTGGAAAATATTTTC
    CCTGATACTCTTAAAATTTGAATGTATGAGACTGGCAAAGTTTTGCATCT
    TAGGAGGAGTGATTCATTTCACCGTGATCTCTCATCACATTTCACATACA
    ACCCCTACGTTTTTTTGTGTTGGGAAACAATGTAATGGATGATGAGTTGG
    GCATAAGTGCAGGAAAGACGGGTGTAATAGAGGAAAAAAATGTTATCTGC
    TTTTCTTTCAGGATGCTATAAAATCACCACGGTCTTTAGCCATGCACAAA
    CGGTAGTTTTGTGTGTTGGCTGCTCCACTGTCCTCTGCCAGCCTACAGGA
    GGAAAAGCAAGGCTTACAGAAGGATGTTCCTTCAGGAGGAAGCAGCACTA
    AAAGCACTCTGAGTCAANATGAGTGGGAAACCATCTCAATAAACACATTT
    TGGAT
    Sequence ID - 1180 nt: 622
    CTTTTCCTCCCGCTGTCCCCCACGGGAGGGGACTGCTCTCCCCCGCTGCA
    TCCTTTCTGTGAGGTACCTTACCCACCTCAGCACCTGAGAGGGTGAAATA
    GAATTCTAACCTCGACATTCGGGAAGTGTTTTTGAGAAGTCTCGGTCGGT
    AAGGGAAGTCTTCCAAGTCCGTGCAGCACTAACGTATTGGCACCTGCCTC
    CTCTTCGGCCACCCCCCAGATGAGGCAGCTGTGACTGTGTCAAGGGAAGC
    CACGACTCTGACCATAGTCTTCTCTCAGCTTCCACTGCCGTCTCCACAGG
    AAACCCAGAAGTTCTGTGAACAAGTCCATGCTGCCATCAAGGCATTTAAT
    GCAGTGTACTATTTGCTTCCAAAGGATCAGGCCCTGAGAACAATGACCTT
    ATTTCCTACAACAGTGTCTGGGTTGCGTGCCAGCAGATGCCTCAGATACC
    AAGAGATAACAAAGCTGCAGCTCTTTTGATGCTGACCAAGAATGTGGATT
    TTGTGAAGGATGCACATGAAGAAATGGAGCAGGCTGTGGAAGAATGTGAC
    CCTTACTCTGGCCTCTTGAATGATACTGAGGAGAACAACTCTGACANCCA
    CAATCATGAGGATGATGTGTTG
    Sequence ID - 1181 nt: 155
    CGCCACTTATCCAGTGAACCACTATCACGAAAAAAACTCTACCTCTCTAT
    ACTAATCTCCCTACAAATCTCCTTAATTATAACATTCACAGCCACAGAAC
    TAATCATATTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAA
    Sequence ID 1182
    CATTGTGTTGGCNCCCGGGAATTCGCGGCCGCGTCGACTTTTTGTGTTGT
    TTGGAGCAGAAATACTAAAGAAGATTCCGGGCCGAGTATCCACAGAAGTG
    GACGCAAGGCTCTCCTTTGATAAAGATGCGATGGTGGCCAGAGCCAGGCG
    GCTCATCGAGCTCTACAAGGAAGCTGGGATCAGCAAGGACCGAATTCTTA
    TAAAGCTGTCATCAACCTGGGAAGGAATTCAGGCTGGAAAGGAGCTCGAG
    GAGCAGCACGGCATCCACTGCAACATGACGTTACTCTTCTCCTTCGCCCA
    GGCTGTGGCCTGTGCCGAGGCGGGTGTGACCCTCATCTCCCCATTTGTTG
    GGCGCATCCTTGATTGGCATGTGGCAAACACCGACAAGAAATCCTATGAG
    CCCCTGGAAGACCCTGGGGTAAAGAGTGTCACTAAAATCTACAACTACTA
    CAAGAAGTTTAGCTACAAAACCATTGTCATGGGCGCCTCCTTCCGCAACA
    CGGGCGAGATCAAAGCACTGGCCGGCTGTGACTTCCTCACCATCTCACCC
    AAGCTCCTGGGAGAGCTGCTGCAGGACAACGCCAAGCTGGTGCCTGTGCT
    CTCAGCCAAGGCGGCCCAAGCCAGTGACCTGGAAAAAATCCACCTGGATG
    AGAAGTCTTTCCGTTGGTTGCACAACGAGGACCAGATGGCTGTGGAGAAG
    Sequence ID - 1183 nt: 479
    CGTGGCAGCCATCTCCTTCTCGGCATCATGGCCGCCCTCAGACCCCTTGT
    GAAGCCCAAGATCGTCAAAAAGAGAACCAAGAAGTTCATCCGGCACCAGT
    CAGACCGATATGTCAAAATTAAGCGTAACTGGCGGAAACCCAGAGGCATT
    GACAACAGGGTTCGTAGAAGATTCAAGGGCCAGATCTTGATGCCCAACAT
    TGGTTATGGAAGCAACAAAAAAACAAAGCACATGCTGCCCAGTGGCTTCC
    GGAAGTTCCTGGTCCACAACGTCAAGGAGCTGGAAGTGCTGCTGATGTGC
    AACAAATCTTACTGTGCCGAGATCGCTCACAATGTTTCCTCCAAGAACCG
    CAAAGCCATCGTGGAAAGAGCTGCCCAACTGGCCATCAGAGTCACCAACC
    CCAATGCCAGGCTGCGCAGTGAAGAAAATGAGTAGGCAGCTCATGTGCAC
    GTTTTCTGTTTAAATAAATGTAAAAACTG
    Sequence ID - 1185 nt: 628
    CTTTGATTACCTTTGAGTATTAGGTTGAAAGCTTCTCTGTGCTTGATTGA
    ACATTGTGATGATGTTGATTGGGTCATGTCAGATTTAGACAGTGTTGTGT
    TTAAGATAAATGTTTAATGGCTCTTAGCAGTGTTCATGCCTCCCCTTTTC
    CCCTGATACTTTAAAAACAGAATATACAGAAAAGGGGAGTTGGGTGAAGA
    ATCACCATATTCTCATTACCAGAGTAGTGTCTACCAGCTGTTTTCACATT
    TTTCTGTTTCCTTCTGTCCTTGGAATCCTTTTTTTAGATCCTTGTAATAC
    TAGTAAAGATATTCCACTCTGTGTTGTAAGCATTTTTCCATTTTGCTCCA
    TGGTCTTCATAATGCCCTGTGGTCCTTTATTAAGGGGATGCACCATGTAG
    AGGTGAAAGGCTTTCCTTGACTTGGCCACCATTTCTGTATTTTCCTTAGA
    GGAGGAGGTTTCCAACATTTCTTTTTTAGAGACAGAGTCTCGTTCTGACA
    CGCAGGCAGGAGTGCAGTGGCATGATAACAGCTCACTGCAGCCTCGAACT
    CCTGGGCTCAAGTTATCCTCCCACCTCAGCTTCCTGAGTAGCTAGGACTG
    CAGGTGCCTGCCACCACACCCAGCTAAT
    Sequence ID - 1186 nt: 494
    CAGCCCTCCGTCACCTCTTCACCGCACCCTCGGACTGCCCCAAGGCCCCC
    GCCGCCGCCTCCAGCGCCGCGCAGCCACCGCCGCCGCCGCCGCCTCTCCT
    TAGTCGCCGCCATGACGACCGCGTCCACCTCGCAGGTGCGCCAGAACTAC
    CACCAGGACTCAGAGGCCGCCATCAACCGCCAGATCAACCTGGAGCTCTA
    CGCCTCCTACGTTTACCTGTCCATGTCTTACTACTTTGACCGCGATGATG
    TGGCTTTGAAGAACTTTGCCAAATACTTTCTTCACCAATCTCATGAGGAG
    AGGGGAACATGCTGAGAAACTGATGAAGCTGCAGAACCAACGAGGGTGGC
    CGAATCTTCCTTCAGGATATCAAGAAACCAGACTGTGATGACTGGGAGAG
    CGGGCTGAATGCAATGGAGTGTGCATTACATTTGGAAAAAAATGTGAATC
    AGTCACTACTGGAACTGCACAAACTGGCCACTGACAAAAATGAC
    Sequence ID - 1188 nt: 599
    GGGAGACAAGCCCAGCCTTTCGGCGAGNATACGTCTAACCCTGTGCAACA
    GCCACTACATTACTTCAAACTGAGATCCTTCCTTTTGAGGGAGCAAGTCC
    TTCCCTTTCATTTTTTCCAGTCTTCCTCCCTGTGTATTCATTCTCATGAT
    TATTATTTTAGTGGGGGCGGGGTGGGAAAGATTACTTTTTCTTTATGTGT
    TTGACGGGAAACAAAACTAGGTAAAATCTACAGTACACCACAAGGGTCAC
    AATACTGTTGTGCGCACATCGCGGTAGGGCGTGGAAAGGGGCAGGCCANA
    GCTACCCGCAGAGTTCTCAGAATCATGCTGAGAGAGCTGGAGGCACCCAT
    GCCATCTCAACCTCTTCCCCGCCCGTTTTACAAAGGGGGAGGCTAAAGCC
    CAGAGACAGCTTGATCAAAGGCACACAGCAAGTCAGGGTTGGAGCAGTAG
    CTGGAGGGACCTTGTCTCCCAGCTCAGGGCTCTTTCCTCCACACCATTCA
    GGTCTTTCTTTCCGAGGCCCCTGTCTCAGGGTGAGGTGCTTGAGTCTCCA
    ACGGCAAGGGAACAAGTACTTCTTGATACCTGGGATACTGTGCCCAGAG
    Sequence ID 1189
    GGGAGACAAGCCCAGCCTTTCGGCGAGATACGTCTAACCCTGTGCAACAG
    CCACTACATTACTTCAAACTGAGATCCTTCCTTTTGAGGGAGCAAGTCCT
    TCCCTTTCATTTTTTCCAGTCTTCCTCCCTGTGTATTCATTCTCATGATT
    ATTATTTTAGTGGGGGCGGGGTGGGAAAGATTACTTTTTCTTTATGTGTT
    TGACGGGAAACAAAACTAGGTAAAATCTACAGTACACCACAAGGGTCACA
    ATACTGTTGTGCGCACATCGCGGTAGGGCGTGGAAAGGGGCAGGCCAGAG
    CTACCCGCAGAGTTCTCAGAATCATGCTGAGAGAGCTGGAGGCACCCATG
    CCATCTCAACCTCTTCCCCGCCCGTTTTACAAAGGGGGAGGCTAAAGCCC
    AGAGACAGCTTGATCAAAGGCACACAGCAAGTCAGGGTTGGAGCAGTAGC
    TGGAGGGACCTTGTCTCCCAGCTCAGGGCTCTTTCCTCCACACCATTCAG
    GTCTTTCTTTCCGAGGCCCCTGTCTCAGGGTGAGGTGCTTGAGTCTCCAA
    CGGCAAGGGAACAAGTACTTCTTGATACCTGGGATACTGTGCCCAGAGCC
    TCGAGGAGGT
    Sequence ID 1190
    GTTTAAATTTGACAAACTAAAGCTNAThACTGCTATAAGAGTAATAACTG
    CTCATTTTCCATAACTCATTCTTAAAGTTTTAGTAATGTAAAAGTTATTT
    TTTTGCAGTAAGTTATAATGATAGAAGCTTACATGTTTTTTCATGCCTCA
    TCTGTTTCCCCTTAAAACTATAATTATCAGTAAAAGTCCTGTGGTATTTT
    TCAATTTGTAAGAACTAGGCTATATATACATTGGGAAAAACAGCCTTCAT
    TTGTCAATGCACTAGTGTTCCAAAGGTTTCTGGTAATTGTGTGCTATTGC
    TTTTTGTTGACTTGCAAAAAAAAAAAAAAAAAAATTACTATGACTTGNGG
    TAGCCCTGCAACCTTCGGAAGTGCTTAGCCCAGTCTGACCATACATTTAT
    ATTTANAATGCTTAGGTAAATAAATAATATGCCTAAACCCAATGCTATAA
    GATACTATATAATATCTCATAATTTTAAAAATCACTGTTTTGTATAATAA
    TAAAACAAGGCAGGCAAGCTGTTCTACAATGACTGTTGGTAAGGGTGCTG
    AGGAAGAAAAACAAACAATCTTGATTCAGGGATAGTGAATAGACAAAAAA
    TGTCCTAATCAATGAAGCTGTGTGATGATTCTGATTGACAGAGA
    Sequence ID 1191
    GTGCAAAGTGTTATATCCACTTTCAACAAAGAGAGAAGCTGAAAAGCTAA
    CCCAATGTTAATTTTGGATCACACACATTCAGTGTAGACTTTAAGATTTT
    ACTTCTGTTGGAGTAGCTATATTATTTCTAGTTAAAAAACTCTCTATATA
    CATATTTATTTGTTTTTCTACTTGTTTAATATTTTTCTCTTCCAATTAGG
    AACTCAATATGGAATAAAAAATATTTAAATGTATTTTACTCAAACGTGTG
    TGTATATATGTTTGTGTGCATGATAAGGAGAGTGAGAGCAAGAGTAAGAG
    AGAGAGAGCACGCATAGATGGAAGCACACATTTAATGTCTATGAAATGAG
    AAAACATTAAGGCTAAGATATTTTTCCTTCTGAACTAGCAGATTGTATCA
    ATGGCTGGTCACTTAAATTAATCAGTTTGTAAAGATATTTAAAAGGTATG
    TCTACCTTCTTGCAATTAATTTGATTATGTTCTAATGGCATGGCAAGAGA
    AATGAAAGAAGATAACTAAAAGTTAAAAGTCGTTGCATGTTTTTGTTGCA
    GCATACCCTTCTTTCAGGCTACCGAATAACCTTGATTGACATTGGATTAG
    TAGTAGAATACCTCATTGGTAGAGCATATCGCAGCANCTACACTAGAAAA
    CAT
    Sequence ID 1192
    GTCTGGAACTCCAGACCTCAGGTGATACCCCTGCCTCAGCCTCCCAATGT
    GCTGGGATTACAGCTGTGAAGCCACCGCGCCCGGCTGCTGTGATAGTTGA
    GATGTAAACCAAAAATAAAATTCTAAGCCACCCAATCCGACTGAATGGAC
    CCTTCCTGTTGAGCAAGGACATTCCAAAGTAAACTGAAAAGACCAGCTTA
    GGCCATGATGGGAAGGGGAGGTGTCAACATGCCTCATTCTACCTTCCTCC
    CTCTGGAATCCAGACACAACTGACCAGCATTAACATTAAAACAGAGATCT
    TAAGCTGGGCACGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCC
    AAGGTGGGATCACCTGAGGTCGGAAGTTCAAGACCAGCCTGGCCGGTATG
    GTGAAGCCATGTCTCTACTGAAAATGCAAAATTGGCCGGACATTGTGGTG
    CA
    Sequence ID 1193
    TNCNTTTTTTTTCCCNCGGGAAAGCGCGCCATTGTGTTGGTCCCCGGGAA
    TTCGCGGCCGCGTCGACGAGAAATGGCTTGAACCCAGTAGGCAGAGGTTG
    TAGTGAGCCCAGAATNGGNCACCTGCACNTTTANCCNTGGGTGACAAAAN
    TGAAAACTTTGTCTNAAAAAAAAAAAAAAAAAATTTTAANTNAAATNAAA
    AANCCTTTNCNTTNTTTTTNAAANNGGGGGGGGNNTTTTTNGGGNTTNGN
    NNTGGTAAAAANTNNNTTTTTTTTTTTTTAGGGGCCNANNCCCCNTTTTA
    NAAAANCCNGNTTTTNAAAAAANTTTTTTNCCCNCNNTTNGGGGGGGGGG
    NTTTTNANCNNTNTTNGGGGGGGNNCCCCTNTTANNACCNNCAAANTTTT
    TANTTTTTTGNNNAANNNCCCCCTTTTTTNNTTTTTTTTGNGGGGGGGGG
    GNNGCCCCCNNCCTTTNGGGGGGGGGGNTTNNGNAAAANNACTTTTNAAA
    ANNAAGGGNNGGGGGNANATNNCCCCCCCNGGNTTTTTTTTTTAAAAANT
    NAANNGGGGGGGGNNNCTNANTNGGGGCNCCCANNGGGGGNTTANAANNA
    TTTTCTNCCCAAACCCCCNGNTTTTATNNCCCCCCCCCCCCNCNNNNGAA
    NGGGNGGNCCNTTTTTTTTATTTTTNNGGNGGGNAAAAAANTTTNAAAAA
    NNANNATNTTTTTTCCCCCCCCCCCCNCTTTTNGGNAAANCCNNGGGGGG
    NTCCTTTTTNAAANNNNCCCCCAAAAAAAANTTTTTTTNTTNTNTTTTTC
    TCTNGGGGNCCNNANTTNTANANTTTTNCNCCNAAAAAAAANGGGNCCCC
    TTTTTTTNGNGGNNGGNNCCCAAAANNTTTTTTTTNAAAAAAAAAAAAAA
    Sequence ID 1195
    GTTCGTGACNTTCGGAGCTACCTGACAGAGCAGAGTCAACCAGGNTCTGC
    CCAAAGAGAGTGTTAGGCCTGAGCTTGAGAGCCCTGGAGAGACGTGTGCA
    CAAAATGTGACCTGAGGCCCTAGTCTAGCAAGAGGACATAGCACCCTCAT
    CTGGGAATAGGGAAGGCACCTTGCAGAAAATATGAGCAATTTGATATTAA
    CTAACATCTTCAATGTGCCATAGACCTTCCCACAAAGACTGTCCAATAAT
    AAGAGATGCTTATCTATTTTA
    Sequence ID - 1196 nt: 412
    GTCGACGCGGCCGCGGTCGCTGGAGNCGATCAACTCTAGGCTCCAACTCG
    TTATGAAAAGTGGGAAGTACGTCCTGGGGTACAAGCAGACTCTGAAGATG
    ATCAGACAAGGCAAAGCGAAATTGGTCATTCTCGCTAACAACTGCCCAGC
    TTTGAGGAAATCTGAAATAGAGTACTATGCTATGTTGGCTAAAACTGGTG
    TCCATCACTACAGTGGCAATAATATTGAACTGGGCACAGCATGCGGAAAA
    TACTACAGAGTGTGCACACTGGCTATCATTGATCCAGGTGACTCTGACAT
    CATTAGAAGCATGCCAGAACAGACTGGTGAAAAGTAAACCTTTTCACCTA
    CAAAATTTCACCTGCAAACCTTAAACCTGCAAAATTTTCCTTTAATAAAA
    TTTGCTTGTTTT
    Sequence ID 1197
    CCGCCAACATGGGCCGCGTTCGCACCAAAACCGTGAAGAAGGCGGCCCGG
    GTCATCATAGAAAAGTACTACACGCGCCTGGGCAACGACTTCCACACGAA
    CAAGCGCGTGTGCGAGGAGATCGCCATTATCCCCAGCAAAAAGCTCCGCA
    ACAAGATAGCAGGTTATGTCACGCATCTGATGAAGCGAATTCAGAGAGGC
    CCAGTAAGAGGTATCTCCATCAAGCTGCAGGAGGAGGAGAGAGAAAGGAG
    AGACAATTATGTTCCTGAGGTCTCAGCCTTGGATCAGGAGATTATTGAAG
    TAGATCCTGACACTAAGGAAATGCTGAAGCTTTTGGACTTCGGCAGTCTG
    TCCAACCTTCAGGTCACTCAGCCTACAGTTGGGATGAATTTCAAAACGCC
    TCGGGGACCTGTTTGAATTTTTTCTGTAGTGCTGTATTATTTTCAATAAA
    TCTGGGACAA
    Sequence ID 1198
    CAGAGGTGGGAGGATTGCTTCAGTTCAAGAGTTTGAGACCAGCCTGGGTA
    ACATGGCGAAACCCTGTCTTTACAAAAAATGCAAACCTTTGCCGCATGTG
    TTGGGGTGCGCCTGTAGTCCCAGCTTCTCGGGAGGCTGAGGTGGGGGGAC
    CACCTGAGCCATGGAGGTTGAGGCTGCAGTGAGCCGTGATACCACCACTG
    TACTCTAGCCTGGGCCATAGAGTGAGACACCCTGCCTCAGAAATA
    Sequence ID - 1199 nt: 439
    CCCATCCCCTCGACCGCTCGCGTCGCATTTGGCCGCCTCCCTACCGCTCC
    AAGCCCAGCCCTCAGCCATGGCATGCCCCCTGGATCAGGCCATTGGCCTC
    CTCGTGGCCATCTTCCACAAGTACTCCGGCAGGGAGGGTGACAAGCACAC
    CCTGAGCAAGAAGGAGCTGAAGGAGCTGATCCAGAAGGAGCTCACCATTG
    GCTCGAAGCTGCAGGATGCTGAAATTGCAAGGCTGATGGAAGACTTGGAC
    CGGAACAAGGACCAGGAGGTGAACTTCCAGGAGTATGTCACCTTCCTGGG
    GGCCTTGGCTTTGATCTACAATGAAGCCCTCAAGGGCTGAAAATAAATAG
    GGAAGATGGAGACACCCTCTGGGGGTCCTCTCTGAGTCAAATCCAGTGGT
    GGGTAATTGTACAATAAATTTTTTTTTGGTCAAATTTAA
    Sequence ID - 1200 nt: 526
    CTGGAGACGACGTGCAGAAATGGCACCTCGAAAGGGGAAGGAAAAGAAGG
    AAGAACAGGTCATCAGCCTCGGACCTCAGGTGGCTGAAGGAGAGAATGTA
    TTTGGTGTCTGCCATATCTTTGCATCCTTCAATGACACTTTTGTCCATGT
    CACTGATCTTTCTGGCAAGGAAACCATCTGCCGTGTGACTGGTGGGATGA
    AGGTAAAGGCAGACCGAGATGAATCCTCACCATATGCTGCTATGTTGGCT
    GCCCAGGATGTGGCCCAGAGGTGCAAGGAGCTGGGTATCACCGCCCTACA
    CATCAAACTCCGGGCCACAGGAGGAAATAGGACCAAGACCCCTGGACCTG
    GGGCCCAGTCGGCCCTCANAGCCCTTGCCCGCTCGGGTATGAAGATCGGG
    CGGATTGAGGATGTCACCCCCATCCCCTCTGACAGCACTCGCAGGAAGGG
    GGGTCGCCGTGGTCGCCGTCTGTGAACAAGATTCCTCAAAATATTTTCTG
    TTAATAAATTGCCTTCATGTAAACTG
    Sequence ID - 1201 nt: 613
    CTTAAGTATGCCCTGACAGGAGNATGAAGTAAAGAAGATTTGCATGCAGC
    GGTTCATTAAAATCGATGGCAAGGTCCGAACTGATATAACCTACCCTGCT
    GGATTCATGGATGTCATCAGCATTGACAAGACGGGAGAGAATTTCCGTCT
    GATCTATGACACCAAGGGTCGCTTTGCTGTACATCGTATTACACCTGAGG
    AGGCCAAGTACAAGTTGTGCAAAGTGAGAAAGATCTTTGTGGGCACAAAA
    GGAATCCCTCATCTGGTGACTCATGATGCCCGCACCATCCGCTACCCCGA
    TCCCCTCATCAAGGTGAATGATACCATTCAGATTGATTTAGAGACTGGCA
    AGATTACTGATTTCATCAAGTTCGACACTGGTAACCTGTGTATGGTGACT
    GGAGGTGCTAACCTAGGAAGAATTGGTGTGATCACCAACAGAGAGAGGCA
    CCCTGGATCTTTTGACGTGGTTCACGTGAAAGATGCCAATGGCAACAGCT
    TTGCCACTCGACTTTCCAACATTTTTGTTATTGGCAAGGGCAACAAACCA
    TGGATTTCTCTTCCCCGAGGAAAGGGTATCCGCCTCACCATTGCTGAAGA
    GAGAGACAAAAGA
    Sequence ID 1202
    GGAATTCGCGGCCGCGTCGACCTCTGCTCGAATTGACAGAAAAGGATTCT
    GTGAAGAGTGATGAGATTTCCATCCATGCTGACTTTGAGAATACATGTTC
    CCGAATTGTGGTCCCCAAAGCTGCCATTGTGGCCCGCCACACTTACCTTG
    CCAATGGCCAGACCAAGGTGCTGACTCAGAAGTTGTCATCAGTCAGAGGC
    AATCATATTATCTCAGGGACATGCGCATCATGGCGTGGCAAGAGCCTTCG
    GGTTCAGAAGATCAGGCCTTCTATCCTGGGCTGCAACATCCTTCGAGTTG
    AATATTCCTTACTGATCTATGTTAGCGTTCCTGGATCCAAGAAGGTCATC
    CTTGACCTGCCCCTGGTAATTGGCAGCAGATCAGGTCTAAGCAGCAGAAC
    ATCCAGCATGGCCAGCCGAACCAGCTCTGAGATGAGTTGGGTAGATCTGA
    ACATCCCTGATACCCCAGAAGCTCCTCCCTGCTATATGGATGTCATTCCT
    GAAGATCACCGATTGGAGAGCCCAACCACTCCTCTGCTAGATGACATGGA
    TGGCTCTCAAGACAGCCCTATCTTTATGTATGCCCCTGAGTTCAAGTTCA
    TGCCACCACCGACTTATACTGAGGTGGATCCCTGCATCCTCAACAACAAT
    GTGCAGTGAGCAT
    Sequence ID - 1203 nt: 692
    TGCAGAGGGGTCCATACGGCGTTGTTCTGGATTCCCGTCGTAACTTAAAG
    GGAAACTTTCACAATGTCCGGAGCCCTTGATGTCCTGCAAATGAAGGAGG
    AGGATGTCCTTAAGTTCCTTGCAGCAGGAACCCACTTAGGTGGCACCAAT
    CTTGACTTCCAGATGGAACAGTACATCTATAAAAGGAAAAGTGATGGCAT
    CTATATCATAAATCTCAAGAGGACCTGGGAGAAGCTTCTGCTGGCAGCTC
    GTGCAATTGTTGCCATTGAAAACCCTGCTGATGTCAGTGTTATATCCTCC
    AGGAATACTGGCCAGAGGGCTGTGCTGAAGTTTGCTGCTGCCACTGGAGC
    CACTCCAATTGCTGGCCGCTTCACTCCTGGAACCTTCACTAACCAGATCC
    AGGCAGCCTTCCGGGAGCCACGGCTTCTTGTGGTTACTGACCCCAGGGCT
    GACCACCAGCCTCTCACGGAGGCATCTTATGTTAACCTACCTACCATTGC
    GCTGTGTAACACAGATTCTCCTCTGCGCTATGTGGACATTGCCATCCCAT
    GCAACAACAAGGGAGCTCACTCAGTGGGTTTAATGTGGTGGATGCTGGCT
    CGGGAAGTTCTGCGCATGCGTGGCACCATTTCCCGTGAACACCCATGGGA
    GGTCATGCCTGATCTGTACTTCTACAGAGATCCTGAAGAGAT
    Sequence ID 1204
    TTTTTTTTTTTTTCCTGCGGGAAAGCGCGCCATTGTGTTGGTACCCGGGA
    AATTCGCGGCCGCGTCGACACAGGCCCCAGCATCAAGATCTGGGATTTAG
    AGAGGAAAGATCATTGTAGATGAACTGAAGCAAGAAGTTATCAGTACCAG
    CAGCAAGGCAGAACCACCCCAGTGCACCTCCCTGGCCTGGTCTGCTGATG
    ACACAGGTTGGGCNGGNNCNCNGGGGNGGNNNNGNNNNGCNGNNGGNNCN
    GNNNNCNNNNNGCNNNNGNNNNTNNNCNNNGNNCNNNNNNNNNNNNNNNN
    NGNTCNNGNNGCNGGGGCCNGGNCGNCGCGGNCGCGNNTNNNNGGGTNCN
    NNCNCNNNGGCGCGC
    Sequence ID 1205
    CAGACTCTGACCCAGCCTCAGTCCTAACTCCTGGGGCTGGGCTGAGGGGA
    ACAAGCATTTGCTGAAACTTGAAAAAACAAAGCAAATCAAAAACAGGAAA
    AAATTGTACCTGGTACTTTTTTTTAGAAAAAAAGATTAAAAAAGAAAGAA
    TAAATTCTTGTTTGGAAACTTGAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTAAACTCTNNNNNTNNC
    NNCNANTAANNCANNTCNANNNNANNNAATTACTTNNANGTNNNTCACN
    Sequence ID - 1207 nt: 642
    ACGAGAAGCCAGATACTAAAGAGAAGAANCCCGAAGCCAAGAAGGTTGAT
    GCTGGTGGCAAGGTGAAAAAGGGTAACCTCAAAGCTAAAAAGCCCAAGAA
    GGGGAAGCCCCATTGCAGCCGCAACCCTGTCCTTGTCAGAGGAATTGGCA
    GGTATTCCCGATCTGCCATGTATTCCANAAAGGCCATGTACAAGAGGAAG
    TACTCAGCCGCTAAATCCAAGGTTGAAAAGAAAAAGAAGGAGAAGGTTCT
    CGCAACTGTTACAAAACCAGTTGGTGGTGACAAGAACGGCGGTACCCGGG
    TGGTTAAACTTCGCAAAATGCCTAGATATTATCCTACTGAAGATGTGCCT
    CGAAAGCTGTTGAGCCACGGCAAAAAACCCTTCAGTCAGCACGTGAGAAA
    ACTGCGAGCCAGCATTACCCCCGGGACCATTCTGATCATCCTCACTGGAC
    GCCACAGGGGCAAGAGGGTGGTTTTCCTGAAGCAGCTGGCTAGTGGCTTA
    TTACTTGTGACTGGACCTCTGGTCCTCAATCGAGTTCCTCTACGAAGAAC
    ACACCAGAAATTTGTCATTGCCACTTCAACCAAAATCGATATCAGCAATG
    TAAAAATCCCAAAACATCTTACTGATGCTTACTTCAAAAAGA
    Sequence ID 1208
    CCCTATACCTTCTGCATAATGAATTANCTAGAAATAACTTTGCAAGGGAG
    AGCCAAAGCTAAGACCCCCGAAACCAGACGAGCTACCTAAGAACAGCTAA
    AAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATAGGTAGA
    GGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATC
    TTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAA
    TTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAAC
    CTTGTAGAGAGAGTAAAAAATTTAACACCCATAGTAGGCCTAAAAGCAGC
    CACCAATTAAGAAAGCGTTCAAGCTCAACACCCACTACCTAAAAAATCCC
    AAACATATAACTGAACTCCTCACACCCAATTGGACCAATCTATCACCCTA
    TAGAAGAACTAATGTTAGTATAAGTAACATGAAAACATTCTCCTCCGCAT
    AAG
    Sequence ID - 1209 nt: 620
    CTCTCCTGTCAACAGCGGCCAGCCTCCCAACTACGAGAATGCTCAAGGAG
    GAGCAGGAAGTGGCTATGCTGGGGGCGCCCCACAACCCTGCTCCCCCGAC
    GTCCACCGTGATCCACATCCGCAGCGAGACCTCCGTGCCCGACCATGTCG
    TCTGGTCCCTGTTCAACACCCTCTTCATGAACACCTGCTGCCTGGGCTTC
    ATAGCATTCGCCTACTCCGTGAAGTCTAGGGACAGGAAGATGGTTGGCGA
    CGTGACCGGGGCCCAGGCCTATGCCTCCACCGCCAAGTGCCTGAACATCT
    GGGCCCTGATTTTGGGCATCTTCATGACCATTCTGCTCGTCATCATCCCA
    GTGTTGGTCGTCCAGGCCCAGCGATAGATCAGGAGGCATCATTGAGGCCA
    GGAGCTCTGCCCGTGACCTGTATCCCACGTACTCTATCTTCCATTCCTCG
    CCCTGCCCCCAGAGGCCAGGAGCTCTGCCCTTGACCTGTATTCCACTTAC
    TCCACCTTCCATTCCTCGCCCTGTCCCCACAGCCGAGTCCTGCATCAGCC
    CTTTATCCTCACACGCTTTTCTACAATGGCATTCAATAAAGTGTATATGT
    TTCTGGTGCTGCTGTGACTT
    Sequence ID 1210
    TTCGTAATTAGAATACTGTTTGGACTTGCTCAACAAGCACCTTATCTTAA
    CAAAAAGTAACTTATAGAAAAGGGAGACATTCATTTAACTTCAAGCCCAT
    ATTATTCTTAAAAGCTGACTCTTGAAATAGTATTTATTGAGTCATAGTGG
    AGTCATGGGACTTTTTAAGGGCCGGAAGGGACTATTTAGATCATCCAGTC
    CCACCCTGTCATTTTATGGAGGAGGAAACTGAGGCCTAGATAAGATAACC
    AGTTAGTGGGTCCACTGACCTTTAGGACAGTAGTCTATCCGTAAGAGACA
    ACATGGAGAAAGAAATACAACGTTTTTATAGTGAATTATCATCTTACAAA
    GAATATTCTTCCCATATCGCACTTTTAAAAAGTGGGTACCTTAGTCAAAT
    AGGAGAAAAAACCACTTGAGTAGTTTCATCCTCAGGTTTTAGGTGAGGAA
    ACTGATACTCAGATTAAATAACTTTAAGCACACAGAGCCTGAATGATAGT
    CTTATTTGAGCTCATCTGTGCTTTTAATGTGTACTACGTTAGGTGTTTTC
    ACTTGCATTTCCTTTAGTCTTATTTGAGCTCATCTGTGCTTTTAATGTGT
    ACTACGTTAGGTGTTTTCACTTGCATTTCCTTGTTTGACGTTGACAATAA
    ATCGTGAAGCTGCCTTATCTAAGGAAGTCCTAAAGTAAATCATTGGAACA
    CA
    Sequence ID 1211
    CCATTGTGTTGGNACCCGGGAATTCGCGGCCGCGTCGACGGAGTTTTACC
    TTATTACACTTTAATCTCTGGATTTACCCCATCTCATTTCTCTTTTAGGA
    AAACTGTTTGTATGTGGTGGCTTTGATGGTTCTCATGCCATCAGTTGTGT
    GGAAATGTATGATCCAACTAGAAATGAATGGAAGATGATGGGAAATATGA
    CTTCACCAAGGAGCAATGCTGGGATTGCAACTGTAGGGAACACCATTTAT
    GCAGTGGGAGGATTCGATGGCAATGAATTTCTGAATACGGTGGAAGTCTA
    TAACCTTGAGTCAAATGAATGGAGCCCCTATACAAAGATTTTCCAGTTTT
    AACAAATTTAAGACCCTCTCAAACTAACAGGCTTAGTGATGTAATTATGG
    TTAGCAGAGGTACACTTGTGAATAAAGAGGGTGGGTGGGTATAGATGTTG
    CTAACAGCAACACAAAGCTTTTGCATATTGCATACTATTAAACATGCTGT
    ACATACTTTTTGGGTTTATTTGGAAAGGAATGCAAAGATGAAGGTCTGTT
    TTGTGTACTTTTAAGACTTTGGTTATTTTACTTTTTGGAAAAGAATAAAC
    CAAGAATTGATTGGGCACATCATTTCAAGAAG
    Sequence ID - 1212 nt: 374
    AGAGCAGCAGCCATGGCCCTACGCTACCCTATGGCCGTGGGCCTCAACAA
    GGGCCACAAAGTGACCAAGAACGTGAGCAAGCCCAGGCACAGCCGACGCC
    GCGGGCGTCTGACCAAACACACCAAGTTCGTGCGGGACATGATTCGGGAG
    GTGTGTGGCTTTGCCCCGTACGAGCGGCGCGCCATGGAGTTACTGAAGGT
    CTCCAAGGACAAACGGGCCCTCAAATTTATCAAGAAAAGGGTGGGGACGC
    ACATCCGCGCCAAGAGGAAGCGGGAGGAGCTGAGCAACGTACTGGCCGCC
    ATGAGGAAAGCTGCTGCCAAGAAAGACTGAGCCCCTCCCCTGCCCTCTCC
    CTGAAATAAAGAACAGCTTGACAG
    Sequence ID - 1213 nt: 567
    GAATTATTGACTTTGAATTGCATTTCAGTACCATGAAGTCAAAGTCAGTG
    GTGTATTTGCTCATTTGTTCATTCTTTCTTTTCCACCAACATTACTGCCT
    GCAGAGCCAGAGGTGAGTGCAGAAATCCTGTCAATTCGTCACTTGTGGAC
    AACCTGCAGCTTGCCACAGCCTACAGTTCCACCACTGTGACCTCTGAAAA
    CCTCCTGAACAAAAGGAAGGAGACTTGGAAATCCTGAATGGGCTTGGAGA
    CATTAAGGGAGAACTGCCTCCCTGGACCAAGGCAGAATTCAATAGAACCA
    GCAAGAAATTTTCCTATGAATGGGAAAGCAGGTGGCAGGGGGCAGGGGTG
    GAAAAGCTTTGTACAGGAATTGTGGAAAAGCTTTTGCATTATCTCTAGTC
    TGAAAGTCACATTTCTCAGTTCCTTTCCACTCTCTTCTGTCAACTTGCTG
    TGAGTAAATGACATCTGTCACCTGTGACACGGGCCAGGGACTATCACCAT
    ATGGCCCCCACACATTATCTAGTACCAGCCTGCCTGGGCCATGCCTTTTC
    CAGTCACTGTACCAGCC
    Sequence ID - 1214 nt: 620
    CTCTCCTGTCAACAGCGGCCAGCCTCCCAACTACGAGAATGCTCAAGGAG
    GAGCAGGAAGTGGCTATGCTGGGGGCGCCCCACAACCCTGCTCCCCCGAC
    GTCCACCGTGATCCACATCCGCAGCGAGACCTCCGTGCCCGACCATGTCG
    TCTGGTCCCTGTTCAACACCCTCTTCATGAACACCTGCTGCCTGGGCTTC
    ATAGCATTCGCCTACTCCGTGAAGTCTAGGGACAGGAAGATGGTTGGCGA
    CGTGACCGGGGCCCAGGCCTATGCCTCCACCGCCAAGTGCCTGAACATCT
    GGGCCCTGATTTTGGGCATCTTCATGACCATTCTGCTCGTCATCATCCCA
    GTGTTGGTCGTCCAGGCCCAGCGATAGATCAGGAGGCATCATTGAGGCCA
    GGAGCTCTGCCCGTGACCTGTATCCCACGTACTCTATCTTCCATTCCTCG
    CCCTGCCCCCAGAGGCCAGGAGCTCTGCCCTTGACCTGTATTCCACTTAC
    TCCACCTTCCATTCCTCGCCCTGTCCCCACAGCCGAGTCCTGCATCAGCC
    CTTTATCCTCACACGCTTTTCTACAATGGCATTCAATAAAGTGTATATGT
    TTCTGGTGCTGCTGTGACTT
    Sequence ID 1215
    CACAAGATAGAATGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    TTTTAAGTGACAGTGCCATAGTTTGGACAGTACCTTTCAATGATTAATTT
    TAATAGCCTGTGAGTCCAAGTAAATGATCACTTTATTTGCTAGGGAGGGA
    AGTCCTAGGGTGGTTTCAGTTTCTCCCAGACATACCTAAATTTTTACATC
    AATCCTTTTAAAGAAAATCTGTATTTCAAAGAATCTTTCTCTGCAGTAAA
    TCTCGCAGGGGAATTTGCACTATTACACTTGAAAGTTGTTATTGTTAACC
    TTTTCGGCAGCTTTTAATAGGAAAGTTAAACGTTTTAAACATGGTAGTAC
    TGGAATTTTACAAGACTTTTACCTAGCACTTAAAATATGTATAAATGTAC
    ATAAAGACAAACTAGTAAGCATGACCTGGGGAAATGGTCAGACCTTGTAT
    TGTGTTTTTGGCCTTGAAAGTAGCAAGTGACCAGAATCTGCCATGGCAAC
    AGGCTTTAAAAAAGACCCTTAAAAAGACACTGTCTCAACTGTGGTGTTAG
    CACCAGCCAGCTCTCTGTACATTTGCTAGCTTGTAGTTTTCTAAGACTGA
    GTAAACTTCTTATTTTTAGAAAGTGGAGGTCTGGTTTGTAACTTTCCTTG
    TACTTAATTGGGTAAAAGT
    Sequence ID - 1216 nt: 484
    CAACCTTAGCCAAACCATTTACCCAAATAAAGTATAGGCGATAGAAATTG
    AAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATGAAAAATTATA
    ACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA
    TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAAC
    CAGACGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCA
    AAATAGTGGGAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGT
    GATAGCTGGTTGTCCAAGATAGAATCTTAGTTCAACTTTAAATTTGCCCA
    CAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTCCAAAGAGGAA
    CAGCTCTTTGGACACTAGGAAAAAACCTTGTAGAGAGAGTAAAAAATTTA
    ACACCCATAGTAGGCCTAAAAGCAGCCACCAATT
    Sequence ID 1217
    GACAGGCGGGGGCCCAGCGGCCGGGTGAAGGCCGGGTGGCTCTGTGAATC
    AAAGGAGAGTCCCAGAAAACCTGTGACTGTTGAAGAAAATTCATCTGTGA
    ATTTTTATATTCAAGGAGTCAGTATTTATATTCATCTTTTAAACTGGGAA
    GATTTATATTTTACTTTAAAACTTCTTGATAATAATTTACAATGAATGGA
    CACAGTGATGAAGAAAGTGTTAGAAACAGTAGTGGAGAATCAAGGTAAGT
    AAGCACTTTGTTATCAATTGTTTACTATGAAGAGAGTTGAAAACTTGACT
    TTTTTCTTTATTGTTATTGTTGTTATTTAGTTTTCCTCATAGGTAGCAGA
    GTTTTCAGGTTTTCCTCTTAGCTATCCAAATACTAAAAAAATTCTGATAT
    ACGAACCTTTTTTCATAATACAGGTTTTAATTATATTTTTCATTCAGATA
    CACAGTAGATCTTAAATATAGAAAGTTTTTGTTTACTTAAATCTATTTGG
    AAGTTTATATTTGAGCTAATAATTAAGCTGGAGCATGTATAATAGATTTA
    AATTGTTTTGACTGTTAGTGAAATTT
    Sequence ID 1218
    CTCACTTGGTGGGTGAGCCTCCAATGACTACACCCAAGGAGGATTTAACA
    CAGGGATTTTATGACTTGCAACAAGTCAGGAGGACATGGGGTTGGGGTAG
    TTCAGCAGTGCCTGTCTGAACAAAGGTGAAAATTGGGCTTTTATTGGGCT
    GATCAAGGGGGAGTAAAGGCAGCCAGGAGCAGTCGCCTGTCATGCTTCTA
    CCTATATTGCATGTATAGAAAAGGGAAAATAAACTCCTTCCTGGGCAGGG
    TTTTAGTATGCTAAGGAGGGGAGTTATTCAACTTCAATCCAACTCAAGCA
    TCAGCATTGCTGCGTCCATCCCAGTTTTGTTTTGCTGGGGCTGAACTTCT
    TCCTATAACTTTTTGAAACAACAAGAACTCAAGGTGTGACAGTTACAAGT
    GGGCCCTTTTTCACAGTGTGTACCTAAACACGTGAGGACCCTGGATTACA
    GAATGACAGACTCGAAGTGACTCAAGTTCCGGTTGTTCATCTTTAGATGG
    TAAAGATGGCTGTACGTACTATCCTTGCTTATTTCCAATCTATTGTTTAA
    ACTCTTGTATATGTAATACCGCAGAGGCTAGAGATACAACCTTTGACCAA
    ATGAGTGAATTCAAGTAATCCATTACTAATGTGATCTGGAAACAAACATG
    GTGTTGAATGTGCATATGT
    Sequence ID - 1219 nt: 559
    CTTGGCAGCTCCGTTATGTGCCCAGCTCTTTGCAAGGGCATACTGGGAAA
    TGAGTGGAGATAAAGGACCCAATCATAAGCATTTTACAGTATGGATACCC
    CATTTTAAAAAGGTAAACTGAGGCACAATGCAATTTTTTTTTTTTTTTAA
    GGAGTTTATTTGAGCAAACAGTGATTCATGAATCAGGCAGCACCAAACCA
    GAAGGAGGCTTTGCTGAANAAGGATGAGGGACAAGCATTTATAAAGTGAA
    TGTAGATGTAATACAAAGAAAATATTTGAACCGGGTGCGGTGGCTTACAC
    TTGTAATCCCAACACTTTGGGAGGCCAAGGCGGGCAGATCACAAGATCAA
    GAGATCGAGACCATCCTGGTCAACATGGTGAAACCCCATCTNTACTAAAA
    AATACAAAAATTANCTGGGCGTGGTGGTGCGTGCCTGTAGTCCCAGCTAC
    TTGGGCGGCTGAGGCAGGANAATTGCTTGAACCCGGGAGGTGGAGGTTGC
    AGTAAGCCGAGATTGCACCATTGCACTACTCCAGCCTGGTGACAGAGAGA
    GACTCCATC
    Sequence ID 1220
    GANNNGTGCGATANNATGNNTGTCTTTTTTTTAAAGTNTTTCNNATNGNA
    GNGAANCCCCCNNANNTNNCATAANGAGAGATNACTACNGTACANATAGN
    GNCANACNGATAGTAGTANCAANATTGTNTTAGCTANATNANTCAATAGA
    TATCNAGATANAANAANANCNNGGATATACAGCGATGTNTNANNGGNNNN
    NNNANGGAACGAACATCNACNTTAANNATAAGCTNGNGGAGAGAGACANG
    TANGTTATANANNAGAATNGNAGTAGGNGTGATCATAATAGNNNNNANNT
    ANTATATANGATNTTANTGNNCTNTNNTNNGTTTATCNNNAATNTCTATN
    CTNGAGAGNAGCNNNATNNNNAGGCGANGANATTGGGNNNTNCTCNTNAT
    AGANANCTGGTGTCNNANAANTACNTCATCTATTNANCTCTCACNANATG
    GNANNATANAGNAGNGNNNTNNANAGGANTANGCATAGNGNNTNNCTNAA
    ACAAAANNNATAAGANNTCTCGNNAANANGGGCCTNTNNTNTAGCGAGGN
    NTTANTTTNTATANTTNTTCNCTCTTNNAATANNTANGATANATGANCTN
    GNNGTGATANATANNNNNTACNGTNAANNTNTANTCNTATAATAGATANA
    AATATAGGATNTTNCTCTGGCNGGTNGAANANTTNNTNCNNTTTNAATAA
    TGNTGTTAGNGACNGNGNTNTNANANNNNNTTAGAAAGGTACTCTATATA
    CTNNTATGNTNCGGCNNATAATANAACAGATGTTTGTATNAATATNAAAN
    AAGGTCNNTTTCGNCAAGAGAANNNTGNCTGGTNATAGAATTAGCATAAN
    TTANNTANTATGATNNANTNNTNCTACNANTNTTAGCNNTTNGCAGNAGT
    CATTNNGNATNTATNNNGNNTANTAGTNANTTGGGNCTNNTNCAGANTAT
    ATTNTGNGAANATGAANNTACGNANTCCTNNGNANTATNATNNTGANTAN
    GANAANCNANANNTNTTNTANNANTGNCTATANATTGCCNNGATANATTN
    TNNNAATGAANCGATAGCCCGCNCTAAGGANNTNNGTNANNTAAANNTCT
    CAGATAANNTACNTNTTNNTTATTAANCNANNATCACANTATANCNGNGA
    CANNNGCGANANTATATGTATGNNANTATNACNGNTCCNNNCCGNGAANN
    TANTCNTANNAGGCATTCNGNNGAGCTNTTCTNCTAGACNATTTNNANTG
    AAANNATGCNGNNAAAAACGACNNNCTTNAANTTNTGTCTACANTCCGCN
    NTNTTTNTACAGATNGCAGNTAAGNNNANTNANNGCTCTCANCTNGCTNN
    NACT
    Sequence ID - 1221 nt: 741
    AAGCAGAANTNTCTCTAAAAACATTATCTCCTTAAAATCTTGAGGTGCAT
    ATNAGAGCCACAGGCAATCTCTGACATATAAAATTGCAGTACAGGCCTTT
    CAAATTTGGCATTTCACTGGTACAATACAACAACCAAGATATATAATAAC
    TGTACAGTGCCTAGACATTCCAGTAAGAACCATTATTTTCTTTAATGTAG
    AATGATTAATACATATTCTACAAGGGGCAGTAAGGTTAGTAATTCTATAG
    GGTATGTCCCGACATAATTTTCAAATTGTACAATAACACAAACAACTTTG
    TTAAGGCCATGTTTTATTTGCTGATTAATGGACAAAAGGCAATGTAATTT
    ATTTTCAAGTATTTTCTTGAAAGTCTGTGCTCATAAAAATCATGAAAAGT
    TGGAAAGACTGTTAAATCACTGAAACTTCAAATATATCTTACACAATCTT
    GTTTGTACAAAAATACAAGTTAAATATAAACATAAAGCAATCATGGTAAT
    TTTATGCAAATCTGTTTTATGTGATCATCAGTTATATATAAAAGTTTCTC
    AGTTCTGTTATTTGTGAAAAGATCAATACCAGATTGAATGACTACCTATT
    GGCAAAGGGCCCTAAAAAGCTTACTTTAGCACTCATCTTTTACATGGTTA
    AATGCATTTCCTAATTTGAGATCACCTAAACACTGGAAAAGAAAAAAAAT
    GAAAGGGCAGTATGTCCATAAACCAACAAATAATTTGGCTG
    Sequence ID - 1224 nt: 485
    CGAAATTTCCTTGTGACACAGAGGAAGGGCAAAGGTCTGAGCCCAGAGTT
    GACGGAGGGAGTATTTCAGGGTTCACTTCAGGGGCTCCCAAAGCGACAAG
    ATCGTTAGGGAGAGAGGCCCAGGGTGGGGACTGGGAATTTAAGGAGAGCT
    GGGAACGGATCCCTTAGGTTCAGGAAGCTTCTGTGCAAGCTGCGAGGATG
    GCTTGGGCCGAAGGGTTGCTCTGCCCGCCGCGCTAGCTGTGAGCTGAGCA
    AAGCCCTGGGCTCACAGCACCCCAAAAGCCTGTGGCTTCAGTCCTGCGTC
    TGCACCACACAATCAAAAGGATCGTTTTGTTTTGTTTTTAAAGAAAGGTG
    AGATTGGCTTGGTTCTTCATGAGCACATTTGATATAGCTCTTTTTCTGTT
    TTTCCTTGCTCATTTCGTTTTGGGGAAGAAATCTGTACTGTATTGGGATT
    GTAAAGAACATCTCTGCACTCAGACAGTTTACAGA
    Sequence ID 1226
    GGTTTTTATACTTGCCATGAAACTGTTCTTTGGGATATTATTTTGTTCAG
    GTTCCCCACTTGGACAGCAGAGGGGGTGACTCTGCCCATCCCTGCCACTG
    GTAGCCAGGCGGGCAATGTCTGCTAGCAGTCTGCTTCTGTCTGAACTCAG
    CCAGCAGAGGCAAACTCCCGGTTCCCCGAGAAACACTCTGAAGGCAGGGT
    GGGTGACTCCACCCACCACCGCCTCTCCTAGCCATGCAGGCCATGTCTGC
    TAGAGCTTCCAGCGCAGTGGTCCTAATTCTGTCTGAATCCGGCTGAGGGG
    TGCAGCCTCCTGTTACTGCCCAGGGAAACACCCAGATGGCAGGGTGGGTG
    ACTCCAACCACCTCTGCCTGTGGTAGCCAGATGGGCCACACCTGCTAGAG
    CTTCCAGCCCAGCAGTCCCGCTACTCTGTGGGTGGGTGCCATCCCCTGTT
    CCTCTGGGAAGCACCCAGACAGCTGATTACGTGACCCCACCCACTTCTGC
    AGATCCTAGCTGAGCAGGACTTGCTGGTTTGGACAATGCCCAAGCAGGGA
    AGAGCCCTCATTCTCTTATCACTGACAGAGGTGAGATGTCCGANTTTGTA
    NGCTGGTGGAGGAGTGAGGTGGAGGAGGTATGCCTCT
    Sequence ID 1228
    GTTATTCAGGTATCCATCAAAATTTTATAAGAGGGCCGGAAACATCGGCT
    CACACCTGTAATCCCAGCACTTTGGGAGGCTGAGGCAGGTGGTTCACTTG
    AGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGCAAAACCCCGTCACT
    ATTAAAAATACAAAACATTAGCTGGGTGTAGTGGCAGGTGCCTGTAATCC
    CAGCTATTCGGGAGGCCTAGGAAGGAAAATGGCTTGAACCTGGGGGTGGA
    GGTTGGAGTGAGGCAAGATCACACCACTGCACTCCAGCCTGGGCGACAGA
    GCGAGACTCCATCTCAAAAGAAGAAAAAAAAAACAACAAAAAAACCTTTA
    TCAGATTATCAGAGGTTATCACTACAGAGGGAGGTAAAATTGGAGGGAAA
    AGGGTACAAATTTATTTCAC
    Sequence ID - 1230 nt: 741
    AAGCAGAANTNTCTCTAAAAACATTATCTCCTTAAAATCTTGAGGTGCAT
    ATNAGAGCCACAGGCAATCTCTGACATATAAAATTGCAGTACAGGCCTTT
    CAAATTTGGCATTTCACTGGTACAATACAACAACCAAGATATATAATAAC
    TGTACAGTGCCTAGACATTCCAGTAAGAACCATTATTTTCTTTAATGTAG
    AATGATTAATACATATTCTACAAGGGGCAGTAAGGTTAGTAATTCTATAG
    GGTATGTCCCGACATAATTTTCAAATTGTACAATAACACAAACAACTTTG
    TTAAGGCCATGTTTTATTTGCTGATTAATGGACAAAAGGCAATGTAATTT
    ATTTTCAAGTATTTTCTTGAAAGTCTGTGCTCATAAAAATCATGAAAAGT
    TGGAAAGACTGTTAAATCACTGAAACTTCAAATATATCTTACACAATCTT
    GTTTGTACAAAAATACAAGTTAAATATAAACATAAAGCAATCATGGTAAT
    TTTATGCAAATCTGTTTTATGTGATCATCAGTTATATATAAAAGTTTCTC
    AGTTCTGTTATTTGTGAAAAGATCAATACCAGATTGAATGACTACCTATT
    GGCAAAGGGCCCTAAAAAGCTTACTTTAGCACTCATCTTTTACATGGTTA
    AATGCATTTCCTAATTTGAGATCACCTAAACACTGGAAAAGAAAAAAAAT
    GAAAGGGCAGTATGTCCATAAACCAACAAATAATTTGGCTG
    Sequence ID - 1231 nt: 203
    TTGAGGAAGGGTCTACTGTCTTTTTAAATGGCACAATTTTAAGAGGTTTG
    AGAGGTACAGTCCCTTAACCTGCCACGGGAGAGGGGCCCCCAAACTTTCT
    TCCCCCCACACTTCTGGTTTTCTGTGTGGAGGGGGAGCAGGGATATCTAA
    GCTGTGGTGTGAAAGGGTAGGAGAGATGCTGGAGGTGGGGGTGCTGTGTT
    CTA
    Sequence ID 1239
    TTTCCTCGGGAAGCGCGCCATTGTGTTGGTACCCGGGAATTCGCGGCCGC
    GTCGACATTTTTTTTTTTTTTTTTTTTTAGAATGATTAACAATTTATTGA
    GTTTTATTTATCTACAAAAATATAGCAATACAGNGAACTTCACCAAATCC
    TAAATATTCAGTACCTGAACTGGCTACAACACCGNGTGCACACCCAGTTC
    CTGCAGAATCTCTTGCAGATATGGGAGAGTCAGCCAGTGAAAAGATCCAT
    TTCTTGGGAATCCTTGTCAACAAGACCAGTTCAGAAATCCAGGATATATA
    GAAGCCTACTGTAATTTAAAAACAGTAACAAAAACCCCAACAAAACCCAA
    ATCAACAAAGACCAAGATAAAGGNGTGATAAACATTAATTGTAATGGTTT
    TCCTTTACATGCAATACATGCATTTTAAAATCACTAAGAAACACGAAATT
    TTGTAGAGCAAAGTTTGNGTTTCACGTAAGTGCAAATGAATATATATTTT
    ATTTTTTATACTATTAAATTATATATATTTTTTCCATACAAAAGCACACA
    GTGTTAATCTATAAAATGACATCCAAGTGGATGATGATTGTTTTTGCATG
    TCCCCCTGCTTAGATTTTTTTAAAATATATAGTCAAAAATTAACATCCTT
    CTTTAAAAATACAGAAGGGAAAAANGGGCAAAAAAAAAAATCTAGACTCG
    AGCAAGCTTATGCATGCATGCGGCCGCAATTCGANCTCGGNCGACTTGGC
    CAATTCGCCCTATAGNGAGTCGNATTACAATTCACTGGGCCGNCGNTTTA
    CAACGTCGNGACTGGGAAAACCCTGGCGTTACCCNNCTNATCGNCTTGNA
    ACAATNCCCNTTTNGCCAGNGGGG
    Sequence ID 1255
    TCACTTCGTATNGAANCTGTTTGGACTTGCTCAACAAGACCTTATCTTAA
    CAAAAAGTAACTTATAGAAAAGGGAGACATTCATTTAACTTCAAGCCCAT
    ATTATTCTTAAAAGCTGACTCTTGAAATAGTATTTATTGAGTCATAGTGG
    AGTCATGGGACTTTTTAAGGGCCGGAAGGGACTATTTAGATCATCCAGTC
    CCACCCTGTCATTTTATGGAGGAGGAAACTGAGGCCTAGATAAGATAACC
    AGTTAGTGGGTCCACTGACCTTTAGGACAGTAGTCTATCCGTAAGAGACA
    ACATGGAGAAAGAAATACAACGTTTTTATAGTGAATTATCATCTTACAAA
    GAATATTCTTCCCATATCGCACTTTTAAAAAGTGGGTACCTTAGTCAAAT
    AGGAGAAAAAACCACTTGAGTAGTTTCATCCTCAGGTTTTAGGTGAGGAA
    ACTGATACTCAGATTAAATAACTTTAAGCACACAGAGCCTGAATGATAGT
    CTTATTTGAGCTCATCTGTGCTTTTAATGTGTACTACGTTAGGTGTTTTC
    ACTTGCATTTCCTTTAGTCTTATTTGAGCTCATCTGTGCTTTTAATGTGT
    ACTACGTTAGGTGTTTTCACTTGCATTTCCTTGTTTGACGTTGACAATAA
    ATCGTGAAGCTGCCTTATCTAAGNAGTCCTAAAGTAAATCATTGGAACAC
    ATGTANCCAGTTTGTTGTTTTTATTTGCCAGGTNTCAAATATAACTGAAA
    ACCCATGCTAACTGACTNATTTTAAAAGNTGTNTGGGGCATGAAANGATT
    GCTCTGCCTGGGCGGGNGGTTNANCCTGNGTCCCCCNTTTNGGAGNCCAC
    CCANGANGCGATATTTNAGGGNNGATTCNAAACCCCTGGCACGNGNNAAC
    CCCNTTTTTAAANANAAAANANCGGNNG
    Sequence 1256
    TTGTGTTGGTACCCGGGAATTCGCGGCCGCGTCGACGGAGTTTTACCTTA
    TTACACTTTAATCTCTGGATTTACCCCATCTCATTTCTCTTTTAGGAAAA
    CTGTTTGTATGTGGTGGCTTTGATGGTTCTCATGCCATCAGTTGTGTGGA
    AATGTATGATCCAACTAGAAATGAATGGAAGATGATGGGAAATATGACTT
    CACCAAGGAGCAATGCTGGGATTGCAACTGTAGGGAACACCATTTATGCA
    GTGGGAGGATTCGATGGCAATGAATTTCTGAATACGGTGGAAGTCTATAA
    CCTTGAGTCAAATGAATGGAGCCCCTATACAAAGATTTTCCAGTTTTAAC
    AAATTTAAGACCCTCTCAAACTAACAGGCTTAGTGATGTAATTATGGTTA
    GCAGAGGTACACTTGTGAATAAAGAGGGTGGGTGGGTATAGATGTTGCTA
    ACAGCAACACAAAGCTTTTGCATATTGCATACTATTAAACATGCTGTACA
    TACTTTTTGGGTTTATTTGGAAAGGAATGCAAAGATGAAGGTCTGTTTTG
    TGTACTTTTAAGACTTTGGTTATTTTACTTTTTGGAAAAGAATAAACCAA
    GAATTGATTGGGCACATCATTTCAAGAAGTCCCCTCTCCTCCACATTTGT
    TTTGCCAATTTGCACATTAAATGACTCTTCCCTCAAATGTGTACTATGGG
    GTAAAAGGGGTAGGGNTTAAANATGTAAACAGTTGGGTTTTTTAAGGGNC
    CTTTTTCATAACTGGAACACTCTNTACAAGGNTNCTTNTTAAATAAATAA
    CTTGACTTTTTTGTTTTNTAAANGNANCTTCNTGCTTCCATAAAAAAAAA
    AATTTAANTNGNCANCTNTGCTGCTGCGNCCANTTNGCTNGNCCNTGGCA
    TTCCCTAGGGANGNTNAATANTGGCNNNTTAACNNGGCNGNAACNNNNNC
    CANT
    Sequence ID 1331
    GGGCGATGCATGCTTTATTAAGGCTCTTGTTTCACCTGGCAGTGTACTGT
    ATCAACGTATAATACAGAAAAAAAATCTCTTTAAGGTCCTCCTTCACAAA
    GACATAGAGTGAAACTCCCTTTACATGTCAGTATTTGTTCAACACTTTAG
    GCAACTTGACTGTCAGTGTTAAAATGGAAAACAGGAAAATGGAAAAATCT
    GACCAATTCTGCCACCTTGAGACTTTCATATAGACCTTGCACAACAATTG
    TATAGATCACACACCGGCTGTATTTAATATGTAACATTTTCACACATATT
    AAAGATACAGAAGTATTAAAAAACCCCCAATGTTAATGTATTTGCTTAAA
    AGGCACAAGTTTCACATATCTGTCTAGCTATCTGTTGGTAATACAGAAAG
    TATACTACTTTTTTAAAAAAGTGGGCAGAATTCTTGTGTATGTATATTTG
    TGTGTACAGTATGTGTATGTGTGTATATATATATATTATATATATAGATA
    ATATATAAATATTTTTTTTAAGGAGAAACTAGAATGTTTAGCTAGAAAAT
    TCCACAGCCTGTGAAGAAATATTTCAAAATGGCCATAAAGGAGGTAAAAA
    TGAAAACCATAACCTAACTTTTATAGAGGCTTTATCTTTAATTTAACGAT
    GTGCGGAGGACTTTCTTGCTTGAATCTGTTCCGGGCTGTCTGCTCTGTCC
    ATCAAATGGGCAGGTCTGGGAATGAGGCACCTTCGGCCGTTCAGAAGTGG
    CCTGAACAGAATGCTGGAACCCAGGCTGGACTCGGAC
    Sequence ID 1332
    CAAACCTGCATGTTCTGCACATGTATCCAGGAACTTAAAAAAAAAAAAAG
    ATAGTTTGTGTGTCTTAATTGAATAATAGTAGATTTATAGATTAAAGATC
    TATGGGTTTTTAATATGGATTAGAAATCTGTGGGTTTTTGATATGGATTA
    GAAATCTGTGGGTTTTTAATATGGATTGGAAATCTGTGGGTTTTTAATAT
    GGATTAAAAAACATCTGTGGGTTTTTAATATGGATTAAACATCTGTGGGT
    TTTTAATATGGATTAAACATCTGGGTTTTTAATATGGATTAAACATCTGT
    GGGTTTTTAATATGGGTTAAAAATCAAAAGAAAATGAACTATTTGCTCCA
    GTGCAGGAAAATACAGGCAATACTGGATACAATTAGATGGTCAGGAGCGA
    TAACCCGGTTGCCATTGTTTGAAGAAGAGAATAAGGTGCTAGCATTCCTA
    TCCGTAGATAATTTGACAGCTAGGAAATAGGGGGAGTCTTCTATGTAGTT
    AGTGAAGGCTAAATGAACTATTATATGCAGTTATCGTAGAAGAGTACTCA
    AAAAAATCTGTAAAAAATAAAGAAAGGCCGGGCGCGGTGGCTCACGCCTG
    TAATCCCAGCACTTTGGGAGGCCGAGGCGGGTGGATCATGAGGTCAGGAG
    ATCGAGACCATCCTGGCTACCANGGTGAAACCCCCGTCT
    Sequence ID 1335
    CAAGACTCCATCTCAAAAAAAAAAAAAAATCTACAGTGCTGAGTATATAA
    AATTATTAACACATTTCACAACAATATGTGTTTGTGGAGTTAAATATTTT
    TTGTCTTTAAAACAGGTAATTTTAGTGCATACTTAATTTGATGATTAAAT
    ATGGTAGAATTAAGCATTTTAAATGTTAATGTTTGTTACATTGTTCAAGA
    AATAAGTAGAAATATATTCCTTTGTTTTTTATTTAAATTTTTGTTCCTCT
    GTAAACTAAAAGAACACGAAGTAATTGGTCACAATTACTGGTGTTTAACT
    GCCAAATATGGGTAAATAAGGGAAAATTTTGTTTAATATTTAGTCCTTCT
    GAGATGGCTTGAATATTTGAATTTTGTTGTACGTCTATACTGGGTAGTCA
    CAAGTCTTATAAACACTTTAGAGGAAAGATGGATTTCAGTCTGTATTTTT
    AAACATCATTTATTTTAAATCTGGTGCTGAAAAATAAGAAAAAAATTAAA
    CTGCATTCTGCTGTTCTTCTTTAGAAGCATTCCTGCGTAAATACTGCTGT
    AATACTGTCATGCAAAGTGTATCCTTTCTTGTCGTATCCTTTTTGGGGCA
    GTGTTTTTTTGTTTTTTTCCTAGAAATGTTTGTCCTTCCCCCACCTGTTG
    ATCCAGGTTAAGGAATACTTTTTTACACTTTATTCAAA
    Sequence ID 1336
    CTTTTCCTCCCGCTGTCCCCCACGGAGGGGACTGCTCTCCCCCGCTGCAT
    CCTTTCTGTGAGGTACCTTACCCACCTCAGCACCTGAGAGGGTGAAATAG
    AATTCTAACCTCGACATTCGGGAAGTGTTTTTGAGAAGTCTCGGTCGGTA
    AGGGAAGTCTTCCAAGTCCGTGCAGCACTAACGTATTGGCACCTGCCTCC
    TCTTCGGCCACCCCCCAGATGAGGCAGCTGTGACTGTGTCAAGGGAAGCC
    ACGACTCTGACCATAGTCTTCTCTCAGCTTCCACTGCCGTCTCCACAGGA
    AACCCAGAAGTTCTGTGAACAAGTCCATGCTGCCATCAAGGCATTTATTG
    CAGTGTACTATTTGCTTCCAAAGGATCAGGCCCTGAGAACAATGACCTTA
    TTTCCTACAACAGTGTCTGGGTTGCGTGCCAGCAGATGCCTCAGATACCA
    AGAGATAACAAAGCTGCAGCTCTTTTGATGCTGACCAAGAATGTGGATTT
    TGTGAAGGATGCACATGAAGAAATGGAGCAGGCTGTGGAAGAATGTGACC
    CTTACTCTGGCCTCTTGAATGATACTGAGGAGAACAACTCTGACAACCAC
    AATCATGAGGATGATGTGTTGGGGTTTCCCAGCAATCAGGACTTGTATTG
    GTCAGAGGACGATCAAGAGCTCATAATCCCATGCCTTGCGCTGGTGAGAG
    CATCCAAAGCCTGCCTGAAGAAAA
    Sequence ID 1337
    CAAGAACTCTGGGACATTTGCAAAGGGTATGGCATATGTGTAATGGGAAT
    ACCAGAGGAGAGGAAAGACAGGAAGTCAAAAAAAGAATTTTTCCAAATTA
    ATGATAGGTTCCAAACCACAGATGCAGGAAGCTTAAACACCAACAGGATA
    AATAAAACAAAATCTACGCTTAAGCATATCATACTTAACCTGCAGAAAAT
    TACAGACAAAGAAAAAACACCAGAGGGGAAGCTGGCAGAAACATACCACC
    TATAGCGGAAGAAGAATAAGAATTACATCAGACTTCCCTTCAGAAATCTT
    GCAAACAAAAAGATGTAGCACAATATTTAAAGTATTAAAGGAGGCCGGGC
    CCGGTGGCTCGGGCCTGTAATCCTAACACTTTGGGAGGCTGAGGCAGGAG
    GACCATGAGGTCAGGAGATCGAGACCATCCTGGTGATGGTGATACCCCAT
    CTCTACTAAAAATACAAAAAATTAACCGGGCATGGTGACACGCACCTGTA
    ATCCCAGCTACTTGGGAGGCTGAAGCAGGAGAATCGTTTGAGCCCAGGAG
    GTGGAGGTTGCAGTGAGCCGAGATCACATCACTGCACGCCTGGGCAACAG
    AGCGAGACTCCATCTCAAAAAA
    Sequence ID 1338
    CGACCCGTTTTAGTCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCC
    TGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCC
    GGCGTAAATCAGGTTTTTTAAATGTTTGCCAAACCTTATCACTGACTTTT
    ATAACAAAATTATTTACTATAATCATTAGGGAATATTTAAGTTCTGCTAA
    TACTTAAAATTGCAGAGTGCTAAAACCAGCAGTGAGTTTAGAATCAAGCT
    AAGCTTTATTGTTGCTACTATTTGAGGCATATTAGTTGACTGGTGTTCAT
    ATGCAAGGCAGTCTACTGGGTGCAACAAGGGTTAGAAGGATATTTTTAAA
    AAACTGACCCTATTCTCAGGATGAAAATAATACACTAGTAATAGTCTGCT
    CTGTTGGTTAACTCCTCGTAAGGAGGTACAATTAAAATGCTGTAGTGTTG
    CAAGGGAAGGAGAGGAAGAATCATATTCCTTCACTAGCAGGATCAAGAAA
    GCTTTTATAGAAATATACAAAATCTTCACTTCTTGAAGGATTGGTAAAAT
    TTAATAGCCAACATTGGGCACTTATTCATTCTCTGAGTAAATATTTATTG
    CATGCTTATCTTGTATCAAGCATTGTGATGAAAGCACAAGAATGAAAGAG
    GAGGGAGAATGTTTAGAGAATAAGGGCTGAAACACAGATTTTGTAGGGAG
    CGTAGGGGAGACTGANAAGACAGGTTCAGGTTAGTAAGGGCGCTCATATT
    TTGACCCTGAATGTTAACTATGTGCACATCATGCTAGCTATTCTAAATCA
    GGCATTTTCAAATGGAAGCAGGCACTGACATTTT
    Sequence ID 1344
    CGTGAAGGGTCTTTATGTATTAGTATTAGAGTGATCTTTTGATTATTTTC
    CTCACTATAAGGAAATTATTTCCTCAGGATGAGCTGCCATAACATTCCAC
    TGTCTGATGGCAATTTTAAAGCCTGAAATTGAAGCCCATGGCTAGGCTAT
    GAGAACCCTAGTTCGTATAGTAAAGTTGATATCTTCTGGATGTATACTAA
    TTTTAGGCTTTATTTTAAAACTGCTGGAAACTGAAACTTAGACAAAAGTA
    TTTTCAGGACATCATTTACAATGTTTAGCCCTAAAGAGTCAAGCTGTGGG
    ATTCTGAGTCTTTCATATGTTACAGCAGAAACTTAAAAGCAAGAGGAAAT
    TGGCTGGGCACAGTGGCTCTGTAATCCCAGCACTTTGGGAGGCTGAGGTG
    GGTGGATCATGAGGTCAAGAGATTGAGACCATCCTAGCCAACATGGTGAA
    ACCCCATCTCTACTAAAAATACAAAAATTAGCTGGGCGTGGTGGCACACG
    CCTGTAATCCCAGCTAGTCAGGAGGCTGAGGCAGGAGAATATCTTGAACT
    TGGGAGGCAGAGGTTGCAGTGAGCCAAGATTACATCACTGCACTCCAGCC
    TGGTGACAGAGCGAGACTCCGACT
    Sequence ID 1348
    CTGAAACTGCACTGAACCCACAGGTAGGTTACATCACAGGACAGAAATCT
    GAGGAGCTGGAGAAAGCAAAAGAATAAAGGATGGGCTGACACCAGAAGGA
    ATTAAAGGAATTTTTATACTGAACTTCAATTACTTGTTCATTTGAAGTTT
    GTTTTTTTAATGAACGTTTTTGCTGTTACTTAAATATAGTGTTTTGAAAG
    TGTTTCAAATGTATTCAAGTTGGGATTTTCCATATTTTACTACAGTTCTG
    TCTTAGTATGTTCACCATAAAACACTTATCATTAAAGCTCACAAAGTGCT
    TTTTTGTAATATGAGGATAAAATGAAGCCATATAAGAATTTTTTTATATC
    TGTACATTTAACCCACATTTGAGCTTTAGCCAAAATATATAGCTTTTTTT
    TTTCTGACCTGGCCAACGTATTATCCAGCAAACATCAACTGAAGCAATAT
    GGAAACACTTCCAAATGTTTGCCAATAATGCTATTAAGTGACTGATGTCA
    ACATTAGTTACATGGCAAACTAAAGAGGCATTATACATTTTTAAAACACA
    CTAACATATAACTGTAGATAATGTAAGGTTTATTTATATGCATATTTCAT
    AGTATATTTAAATGTTTAAATATAAAAAAGGGTTTTTAAACACTTTTAAT
    TTTTATCTTTGATTTTTTTTATTGATATCTCTTTCCAGGCTACTAATAAA
    ATTGCCAGAACTAAACTATCAGGTAAAGGTTAAGGCATCAATTGACAAGT
    AAGTTTTCTAATTTCGTTTTGAATTACAATTCCAAATGTAAGACTTTTAA
    AAATGAATGGCCTTTATTTTATAGAATAATTTTGACCTTTTAAATTTACT
    TATCTAACATTATATAATGAATGTACTTCAAATATTTGACTTTGAAGTCA
    ACATTAACAAATTCATGGATCCTAATTAAAATTTACTATAAAACTGGAAT
    CATTTATTACTTCCTT
    Sequence ID 1351
    TTTTTTTTTTTTTAAAAGAGATGGGTTCTCACTATGTTGCCCATAATGTT
    TATGAGATTAAGTTCATCTTTTTTATCTGAGTAGTATTTTATTGTATGAA
    TATACCACCATTTATTTATCTGTTGGTTATTTCCAGTTTTGGGCTATAAT
    CCAAAATGCTTTTTTCAAACAATAGGCTATATATCATTAATGTCCGTTTA
    TCAGCAGTATAAAATATCTTACCATAAATATTAATAAAAGAAGCATTCAT
    ATATAAAATATAGATATTTCAAACCCTACAGAGGGCCTTTTAATGATTAA
    ATATTTTGTCCTTACAAAAAGGTCCAGGTAATTACACCCATGAGGTTAAC
    CTGCCTTAGTGCAGGACTTAAAATAAGGCTTCTCCTGCCATCTCTCTCCA
    TTTGTAGAATGTGAAATTCTTTAAAATGCATCCTATATTAGGAATACTAT
    AGCTGTGCACTGGTGTTTGTTCTCTTCTTTAAACTCGGGACCGTATATAT
    CTGCTCAAATTGCCCAAGTATACATATGCTGCACTCCATCAAGTGTCAGG
    CCACATTCTATCAGCACAGCGTGACTGCCTATCAGTGACAATATAAGTGA
    GCTCTATTTGGATCCCTCTTACCCTACCTTTTATATTTATGACAGCATTA
    TCATAAAACTCCAATATTCTTCAATAACTTACATGTTTGTTGTAGGATAA
    AATTATTACCCTCAATGAACTACAT
    Sequence ID 1352
    ACCAGCTTCTTCACAGGTTCCACGAGTCATGTCAACACAGCGTGTTGCTA
    ACACATCAACACAGACAATGGGTCCACGTCCTGCAGCTGCAGCCGCTGCA
    GCTACTCCTGCTGTCCGCACCGTTCCACAGTATAAATATGCTGCAGGAGT
    TCGCAATCCTCAGCAACATCTTAATGCACAGCCACAAGTTACAATGCAAC
    AGCCTGCTGTTCATGTACAAGGTCAGGAACCTTTGACTGCTTCCATGTTG
    GCATCTGCCCCTCCTCAAGAGCAAAAGCAAATGTTGGGTGAACGGCTGTT
    TCCTCTTATTCAAGCCATGCACCCTACTCTTGCTGGTAAAATCACTGGCA
    TGTTGTTGGAGATTGATAATTCAGAACTTCTTCATATGCTCGAGTCTCCA
    GAGTCACTCCGTTCTAAGGTTGATGAAGCTGTAGCTGTACTACAAGCCCA
    CCAAGCTAAAGAGGCTGCCCAGAAAGCAGTTAACAGTGCCACCGGTGTTC
    CAACTGTTTAAAATTGATCAGGGACCATGAAAAGAAACTTGTGCTTCACC
    GAAGAAAAATATCTAAACATCGAAAAACTTAAATATTATGGAAAAAAAAC
    ATTGCAAAATATAAAATAAATAAAAAAAGGAAAGGAAACTTTGAACCTTA
    TGTACCGAGCAAATGCCAGGTCTAGCAAACATAATGCTAGTCCTAGATTA
    CTTATTGATTTAAAA
    Sequence ID 1353
    ACATTCTGGAAAAGGCAAAAGGGAGGAAGAACTGATTAGTGGTTAGCCCA
    GGGTTAGAGTTGGGGAGAGGATATAATGAGGGAACTTTTGTGGATTCTGT
    ACCATGATTATGATTACACAAACCTATGCATACATTGAAACACATAGAAC
    TATACGTTGAAAAAAGTGAATCTGCCTGTATGTAAATTTAAAAGAAAAAT
    ATTTTTTTAAAAAAACAGATGCTTCTTAACACATTATCATCTATGTCAGT
    TTAACAGTTAGTAGACTTAGGCCAGGTGTCATGGCTCACTCCTGTAATCC
    CAGTGCTTTGGGAGTCTGAGGTGGGACGATCTCTTGAGACTAGGAGGGAG
    TTTGAGACAAACCTAGGCAATGTAATGAGACTCTTTCTCTACAAAAAATT
    TTAAAGTTATCTGGACATGGTGGTGCCTGCCTGTAGTCCCAGCTACTTGG
    GAGGCTGAGGTGGGAGGATTCCTTGAGCCCAGAAGTTCAAGGCTACAGTG
    TGCTATGATAGAGCCACTGCACTCCAGCCTGGGCAACCAGGTGAGACCTT
    GTCTCTAAAATGAATAAATAAAT
    Sequence ID 1355
    TGGTCTTTCACCCAGCCAGGGAGAAGGTTCTTCGCTCAGTATGAAGAAAA
    GCAACCCAAAACTCTCAATCTGATTTGTTTTTGTTTATGTCGATGCCCTG
    TAGTTTGAAAGTGAAGTAAAGATTTAGAATTCACCTAAGTCCAAAGGAAA
    ACACGTGGTTTTTAAAGCCATTAGGTAAAAAAAGTTCTCAATAAAGGCAT
    TACAATTTTTTAGGTTTAGAAAGATGGACTTTTCTGATAAATCTTGGCAG
    ACATCTAAAAAAAAAACCATATTTTTCACAAGAAAATGCAAGTTACTTTT
    TTTGGAAATAATACTCACTGATTATGGATAAAATGGAATATTTTCAGATA
    CTATATTGGCTGTTTCAAAATAGTACTATTCTTTAAACTTGTAATTTTTG
    CTAAGTTATTTGTCTTTGTTGTATCTATAAATATGTAAAAAATATTTAAA
    TAGATGTACCTGTTTTGCTTTCACACTTAATAAAAAATTTTTTTTTGT
    Sequence ID 1359
    CGGGATCCCTAGTATAACACATTCAGTGTTCCCCTTTCAGTCTTACTACT
    TTGACCGCGATGATGTGGCTTTGAAGAACTTTGCCAAATACTTTCTTCAC
    CAATCTCATGAGGAGAGGGAACATGCTGAGAAACTGATGAAGCTGCAGAA
    CCAACGAGGTGGCCGAATCTTCCTTCAGGATATCAAGAAACCAGACTGTG
    ATGACTGGGAGAGCGGGCTGAATGCAATGGAGTGTGCATTACATTTGGAA
    AAAATGTGAATCAGTCACTACTGGAACTGCACAAACTGGCCACTGACAAA
    AATGACCCCCATGTGAGTATTGGAACCCCAGGAAATAAATGGAGGAAATC
    ATTTGCCTTAGGGATTGGGAAAGCTGCCCACTAACTGTCTTCCCCATTGT
    TTTGCAGTTGTGTGACTTCATTGAGACACATTACCTGAATGAGCAGGTGA
    AAGCCATCAAAGAATTGGGTGACCACGTGACCAACTTGCGCAAGATGGGA
    GCGCCCGAATCTGGCTTGGCGGAATATCTCTTTGACAAGCACACCCTGGG
    AGACAGTGATAATGAAAGCTAAGCCTCGGGCTAATTTCCCCATAGCCGTG
    GGGTGACTTCCCTGGTCACCAAGGCAGTGCATGCATGTTGGGGTTTCCTT
    TACCTTTTCTATAAGTTGTACCAAAACATCCACTTAAGTTCTTTGATTTG
    TACCATTCCTTCAAATAAAGAAATTTGGTACC
    Sequence ID 1360
    TGCGCAGACCAGACTTCGCTCGTACTCGTGCGCCTCGCTTCGCTTTTCCT
    CCGCAACCATGTCTGACAAACCCGATATGGCTGAGATCGAGAAATTCGAT
    AAGTCGAAACTGAAGAAGACAGAGACGCAAGAGAAAAATCCACTGCCTTC
    CAAAGAAACGATTGAACAGGAGAAGCAAGCAGGCGAATCGTAATGAGGCG
    TGCGCCGCCAATATGCACTGTACATTCCACAAGCATTGCCTTCTTATTTT
    ACTTCTTTTAGCTGTTTAACTTTGTAAGATGCAAAGAGGTTGGATCAAGT
    TTAAATGACTGTGCTGCCCCTTTCACATCAAAGAACTACTGACAACGAAG
    GCCGCGCCTGCCTTTCCCATCTGTCTATCTATCTGGCTGGCAGGGAAGGA
    AAGAACTTGCATGTTGGTGAAGGAAGAAGTGGGGTGGAAGAAGTGGGGTG
    GGACGACAGTGAAAT
    Sequence ID 1361
    TATAAATACACTCCGGGATGATTTACCCCCGGAGGTCAGCTAGTAAAATA
    CATGAGTAGAATTCCTTAAAGTATGTGATAATTGCTCATCACTATCCAAG
    TGTGACATAAATCATAAAAAGAATTGACAAAATCAGGGTCGCAAAGAGAA
    TTGAAAAAAATCTGTCACAACCAAAATTTAAATTGACCTCTGTCCTAGAG
    TATGAGAGCCACACTGAACAGAAAAACCAGATAAATCTTTTATAAAATAT
    TCATTTGCAGCCCCATTAACGTTGCTTGTCACCCCACCTCCCCATGTCCT
    TGGACAAACTGAATGTATAGTAACATCATCCCAGGCCAGGCGCGGTGGCT
    CATGCCTGTAATCCCAGCACTTTGTGAGGCTAAGGCAGGCAGATCAGGAG
    GTCAGGAGTTCAGGACCAGCCTGGCCAAAAAGGTGAAACTCCGTCTCTAC
    TAACAATACAAAAATTAGCTGGGTGCGGTAGTAGGCGCCTGTAATCCCAG
    CTACTCGGGAGGCTGAGGCAGGAGAATTGCTCAAACCCGGAAGGTGGAGG
    TTGCAGTGAGCTGAGATCGTGCCACTGCACTCCAGCCTGGGTGACAGAGC
    AAGACTCTGTCTCGGGGAGGGGGGTGGCGGAGATAAAGAAATAACATCAT
    CTTATACTGTCAAGCTCAAGGTGTCTGCAGCCTTATCTTCAGGGGAAGTT
    GTGTCTTTCTCAGGGAAGATACAGATTTCAATTTAGAGCAAGACAGAGAG
    AAGTTACATTCAGAGAGGAAAATGCAGTAGTCTAACTG
    Sequence ID 1364
    GCGGCCGCGCTCTTTTCAATTTTTAAAAAGAAGTTTGTTTTCCATTTCAG
    TAATTTCTGCTTTGATCTTCCTTATGTCCTCCTATTGAGTTGATCAGCTT
    TCTTTATTCTTGCCTTTTCTCCTCTGTGTGCCCTTTCTATTAACGTATTT
    ACCCTTAGGCTGGGCACAATGGCTGATGCCTGTAATCCCTGCACTTTGGG
    AGGCCGAGGCAGGTGGATCACCTAAGGTCAGGAGTTCAAGACCAGCCTGG
    CCAACATGGTGAAACCTGGTCTCTACTAAAAACACAAAAATTAGCCAGGC
    ATGGTGGTGTGCACCTGTAATCCCAGCTACTCAGGAGGCTGAGGCAGGAG
    AATTGCTTGAACCTGGGAGGCGGAGATTGTGCCAAAGCACTCCAGCCTGG
    GCAACAAAATGAGACTTTGTGTC
    Sequence ID 1365
    CACCAGGCTGTCTTCAGATACTTCATACAGAAATGAGCCTCCCTGTGGGG
    TCCTCTTCCCTCCTTCAGCCTGTCCATCAACACAGCATTGCGGGATCCTT
    ACCATGGCATCCAGCCCTGGAGATGCTTCAGGAAAGTTGCAGGTCCATGC
    TGCAGGACAGGCTCAGATCAGCAGAGACGCATCTCACATCGGGCTGTGAA
    ATTCAAGTTGAGCTGCAATTGGCAATGAGAA
    Sequence ID 1366
    GTTATTCACTGAGACCGTGCCCCGGTTATGAGGTTGTACCAGAAAGCAAG
    TATTCACTATGCACACTATTCACCGCTCACCCTAGCATTGAAGCCAGCCT
    GTAGCCTGAAAGCCTTTGCTTTGAGGGCAGGTCTTTCCCCAAAATGCAGA
    CACGAAGGTGCAAAGTGAAGCTGCCAGTCTTGCAAAAGATGTAACTTGTC
    ACGAAGGCCACGAGTGGCAGGGAGAGCTGTCCCACATTTGCGGAAGTGGC
    TATGTGAGGACGGGGGAGGCGGGTCCCTTAGAGATGAGACAATCATAAGG
    GGAGATATCAGAGAAAATCGTAAGGGGAGCAGATGGTTGTCAAGAGAATA
    GGCTGACCATCGAAGGACTGGCAGAAGCTTTCAGAAAACCACTGGACGGC
    TGGGCACAGTGGCTTAGGCCTGTAATCCCAGCACTTTGGGAGGCTGACGC
    AGGTGAATCACTTGAGGTCAGGAGTTCCAGACCAGCCTGGCCAACATGGT
    GAAACCCCATCTCTACAGAAAATATAAAAATTAGCCAGGCGTGGTGGCAC
    AAGCCTAGAATCCCAGCTACTTGGGAGGCTGAGGCAGGCGAATGGCTTGA
    ACCCAGGAGTCAGAGGCTGCAGTGAGTCGAGATTGTTCCACTGCACTCCA
    GCCTGGGTGACAGTGCAAGACTCCTTCCAAAAAAAAA
    Sequence ID 1367
    TTCGTGAGTGATGGCGTCCCGGGTTGCTTGCCGGTGCTGGCCGCCGCCGG
    GAGAGCCCGGGGCAGAGCAGAGGTGCTCATCAGCACTGTAGGCCCGGAAG
    ATTGTGTGGTCCCGTTCCTGACCCGGCCTAAGGTCCCTGTCTTGCAGCTG
    GATAGCGGCAACTACCTCTTCTCCACTAGTGCAATCTGCCGATATTTTTT
    TTTGTTATCTGGCTGGGAGCAAGATGACCTCACTAACCAGTGGCTGGAAT
    GGGAAGCGACAGAGCTGCAGCCAGCTTTGTCTGCTGCCCTGTACTATTTA
    GTGGTCCAAGGCAAGAAGGGGGAAGATGTTCTTGGTTCAGTGCGGAGAGC
    CCTGACTCACATTGACCACAGCTTGAGTCGTCAGAACTGTCCTTTCCTGG
    CTGGGGAGACAGAATCTCTAGCCGACATTGTTTTGTGGGGAGCCCTATAC
    CCATTACTGCAAGATCCCGCCTACCTCCCTGAGGAGCTGAGTGCCCTGCA
    CAGCTGGTTCCAGACACTGAGTACCCAGGAACCATGTCAGCGAGCTGCAG
    AGACTGTACTGAAACAGCAAGGTGTCCTGGCTCTCCGGCCTTACCTCCAA
    AAGCAGCCCCAGCCCAGCCCCGCTGAGGGAAGGGCTGTCACCAATGAGCC
    TGAGGAGGAGGAGCTGGCTACCCTATCTGAGGAGGAGATTGCTATGGCTG
    TTACTGCTTGGGAGAANGGCCTAGAAAGTTTTGCCCCCGCTGCGGCCCCA
    GCANAATCCAGTGTTGCCTGTGGCTGGAGAAAGGAATGTGCTCATCACCA
    GTGCCCTCCNTTACGTCAACAATGTCCCCCACCTTGGGAACATCATTGGT
    TGTGTGCTCAGTGCCCGATGTCTT
    Sequence ID 1368
    CAGTGAGCCAAGATCACACCACTGCACTCCAGCCTGGACAACAGAACGAG
    ACTCCATATCAAAAAAATTAAATTAAAATATAATAAATTTCTTGCCGGGC
    GCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCG
    GATCACGAAGTCAGGAGATTGAGACCATCCTGGCTAATACAGTGAAACCC
    CGTCTCTACTATAAATACAAAAAATTAGCTGGGCATGGTGGCGGGCGTCT
    GTAGTCCCAGCTACTCAGGAGTCTGAGGCAGGAGAATGGTGTGAACCCGG
    GAGGCGGAGCTTGCAGTGAGCCGAGATCGTGCCACTGCAATCCAGCCTGG
    GCAGCAGAACGAGACTCCATCTCAAATAAATAAATAAATAAAATGAATTT
    CAGCTAGAAGAGCCTTATTCCATTTTCCTTTTTATTAAACATCTGGCATA
    AGTTGGTAAGTATGTGAAGTTTATCATATATTCTTATGCGAATTATTATT
    TTCGCCTTTTTTTTTATAATTCTGTCTGGGATTTGAATAGTAGAGTTTGA
    ATTCAGGAAGGACACCTGTGATAGGACAATAAAAT
    Sequence ID 1369
    CTGATTGCAAAAACATTACAACTCAGTACTGCGGCTTTCATTCAAATAGG
    TTATATGTATAAACTGAGGTTCAACAATATTGTATTTGAGATGGGAAAGT
    TAAAGAAATGCAATAATGTAAATAATACTTAAGAAAATAAGATCTCAGGA
    AACTGTGTATACTCTGTACTTTTATGCAACTTTATCAGATCATTTCAGTA
    TATGCATCAAGGATATAGTGTATATGACATGAACTTTGAGTGCAAAAACT
    GTACTATGTACCTTTTGTTTATTTTGCTGTCAACATCTAAATAAAGGTTT
    TTTTG
    Sequence ID 1370
    CGAAAGGACTACAGAGCCCCGAATTAATACCAATAGAAGGGCAATGCTTT
    TAGATTAAAATGAAGGTGACTTAAACAGCTTAAAGTTTAGTTTAAAAGTT
    GTAGGTGATTAAAATAATTTGAAGGCGATCTTTTAAAAAGAGATTAAACC
    GAAGGTGATTAAAAGACCTTGAAATCCATGACGCAGGGAGAATTGCGTCA
    TTTAAAGCCTAGTTAACGCATTTACTAAACGCAGACGAAAATGGAAAGAT
    TAATTGGGAGTGGTAGGATGAAACAATTTGGAGAAGATAGAAGTTTGAAG
    TGGAAAACTGGAAGACAGAAGTACGGGAAGGCGAAGAAAAGAATAGATAA
    GATAGGGAAATTAGAAGATAAAAACATACTTTTAGAAGAAAAAAGATAAA
    TTTAAACCTGAAAAGTAGGAAG
    Sequence ID 1371
    GTCCAGNAGAAAGTTCAGTGACTTGTCCAGAGCTGCAGGTCTTAAGAGGC
    TGAAATCTCGCCTCTGCCTCGAGGCTGCGGTTCCACTGACCCATACTACT
    TGCCTTCAGGAAAGAGAAATGGTGTAGGAAGGCTGTGGATGAAGACGCTT
    ACATTCATGAAGGATTTGGATAGGCGAACATGAGCTTTTCCACCAAATTT
    CAGAATTTTAAGAAATGCCTTAAATTATTTCTTAAAAATCAATTTGGGGC
    AGACGAGAAGTTCTGATAATAGTTTTTAGGGAACATGATAAAATTCTGAC
    CTTAGAAGTGGTATACCAGTTTGAGAAGAAGAACAAGCTATAAACGGTGT
    AGATAACATTCACGGCTATTTAAGAAAGAGTTACTAAGGGAAACCAGAAT
    GACTTAAGAGTGTTACTCTTCTTTTTCTGAGAGAACAATAGCATCATCTC
    AGAAAGCCTTTCATGCCATTAATAGGTAAGAATCTGGGCTTCTTGGACCA
    TGGGTTAGACTTTCTTACAAAACCATAATATGCATTTCCTAGCAAAATTT
    ATGCTATTACATTTCCTTATCTCAACAAAGACTGGTAAATTCAGTACTTA
    TTCCTCAATTTTCCTACCCTTAAAATGGGGATATTCTGCCTCTCCAAGGA
    ATGCTGGGAACAAGCAAGTCCTCATGTTAGGGGTCTTTGAGTTTTCATGG
    AAGTTTAGGTTATTTATATGATGACATAGTTGTCAACTTACTTTCAGGAT
    GGACTTTTCTTTTGTGAGTTTGTGACCTAAATACAATAGTTGTTATGCAT
    GTCCAGTTTATGGAAGTACCACTGCAATANCAG
    Sequence ID 1372
    CAGTGCAGCCAAGTATCACACCACTGCACTCCAGTCCTGGACAACAGAAA
    CGANTACTCCATATCAAAAAAATTAAATTAAANGATAATAAATTTCTTGC
    CGGGCGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCGAGGT
    GGGCGGATCACGAAGTCAGGAGATTGAGACCATCCTGGCTAATACAGTGA
    AATCCCCGTCTCTACTATAAATACAAAAAATTAGCTGGGCATGGTGGCGG
    GCGTCTGTAGTCCCAGCTACTCAGGAGTCTGAGGCAGGAGAATGGTGTGA
    ACCCGGGAGGCGGAGCTTGCAGTGAGCCGAGATCGTGCCACTGCAATCCA
    GCCTGGGCAGCAGAACGAGACTCCATCTCAAATAAATAAATAAATAAAAT
    GAATTTCAGCTAGAAGAGCCTTATTCCATTTTCCTTTTTATTAAACATCT
    GGCATAAGTTGGTAAGTATGTGAAGTTTATCATATATTCTTATGCGAATT
    ATTATTTTCGCCTTTTTTTTTATAATTCTGTCTGGGATTTGAATAGTAGA
    GTTTGAATTCAGGAAGGACACCTGTGATAGGACAATAAAATCTA
    Sequence ID 1374
    GAAAGCACATATGATATACATGTGTGTCATATGTATTATTTTGTTTGCCA
    TCTGAGTCTTCAAAATTTGTTACAGAATACCTGCATATTAATATTTCAAG
    GTATGGATTAAT
    Sequence ID 1378
    CTGAGTATTAACTAAAAAAAAAAAAAAAAAAAAAAAAAAA
    Sequence ID 1380
    CCAAACCCAACTGGTCCAGTAGGATACTCACCTTACAGGGGGCGTCTCAA
    GAGTCTCACAGTTCCCTTGGGTCTTAAGAGACTCACTGTTGGACCAGGCG
    TGGTGACTCACGCCTGTAAAACCAGCACTTTGGGAGGCCGAGGCGGGCGG
    ATCAGTTGAGGTCAAGAGTTCAAGACCAGCCTGACCAAGGTGCTGAAACC
    CCGTCTCTACTAAAAATACAAAAATTAGCCAGGCATGGTGGTGTGCGCCT
    GTAATCCCAGCTACTCCAGAGGCTGAGGCAGGAGAATCTCTTGAACCCAG
    GAGGTGGAGGTTGCAGTGAGTCGAGATCATGCCACTGCACTCCAGCCTGG
    GTGACAGAGCGAGACTCCGTCTTAGAAAAAAAAAAAAAAAAAAAAAGAAC
    CTCACAGTTCAGCAGGGTTCTAGCATGAGACAATGAGGACAAGGGTAGGT
    GAGCAGGTGGAAAGAGTGAGAACAGGTCAATTGTGATGGAGAAAATAATA
    AAGACAGAAAAGGCAGAAGACTGCCTGGCAGAAGACCTGTCCCAGCAGAT
    ACAAAAATACAGACAACAGGAGCCAGCATAGACCCTTGACCTGTGTAAGT
    CTTTCTCAGGCCTTCTTTTAAGTAGAAACATGCCTTTGAAAAAAAGTTTT
    AATAAACAGGAAAATCATAAATCCCTATTTACATAAATAATATATCCTGG
    TCTTATTCTTAAAACCATTGATTTTTCACGGCTCATTAANAAAGCTGGGC
    GAGGTGGCTCACGCCCGTCATCCTAGCACTTTGGGAGGCCGAGGCGGGCA
    NATCACAAGGTGAGGAGTTGGGAGACCAGCCTGACCAACACGGTGAAACC
    CAGTCTCTACTAAAAATACAAAAATTANCTGGGGGTGGTGGTGTGTGCCT
    GTAATCCAAGCTACTCGGGAGGCTGAGGCAGGA
    Sequence ID 1382
    CTTACTACCTCCAACATGAAACAAGCAGCCCCGCACTTCTCGAAGGTCTG
    AGTTACTTGGAATCGTTTTACCACATGATGGACAGAAGGAATATTTCAGA
    TATCTCTGAAAACCTCAAGCGTTACCTTCTTCAGTATTTTAAGCCAGTGA
    TTGACAGGCAAAGCTGGAGTGACAAGGGCTCAGTCTGGGACAGGATGCTC
    CGCTCGGCTCTCTTGAAGCTGGCCTGTGACCTGAACCATGCTCCTTGCAT
    CCAGAAAGCTGCTGAACTCTTCTCCCAGTGGATGGAATCCAGTGGAAAAT
    TAAATATACCAACAGATGTTTTAAAGATTGTGTATTCTGTGGGTGCTCAG
    ACAACAGCAGGATGGAATTACCTTTTAGAGCAATATGAACTGTCAATGTC
    AAGTGCTGAACAAAACAAAATTCTGTATGCTTTGTCAACGAGCAAGCATC
    AGGAAAAGTTACTGAAGTTAATTGAACTAGGAATGGAAGGAAAGGTTATC
    AAGACACAGAACTTGGCAGCTCTCCTTCATGCGATTGCCAGACGTCCAAA
    GGGGCAGCAACTAGCATGGGATTTTGTAAGAGAAAATTGGACCCATCTTC
    TGAAAAAATTTGACTTGGGCTCATATGACATAAGGATGATCATCTCTGGC
    ACAACAGCTCACTTTTCTTCCAAGGATAAGTTGCAAGAGGTGAAACTATT
    TTTTGAATCTCTTGAGGCTCAAGGATCACATCTGGATATTTTTCAAACTG
    TTCTGGAAACGATAACCAAAAATATAAAATGGCTGGAGAAGAATCTTCCG
    ACTCTGAGGACTTGGCTAATGGTTAATACTTAAATGGTCAATAGAAAAAG
    TAGGCTGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGA
    Sequence ID 1387
    AAAATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
    TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
    TTTTTTTTCAGTGTTAAAGTAGGTTTGTCGACGCGGCCACGAATTTCCCG
    GGGACCAA
    Sequence ID 1389
    TTTTTTTTTTTTTTTGGGAGTCAGTTTTCTTTTCTTTTCTTTCTTTTTTT
    TTTTTTGNTTTTCGGAAACGGAGTCTCGCTTTCTCGCCCACTCTGGAGTG
    GNGCAGTGGGGNGGTCTCAGCTCACCACAGCCTCCACCTCCTGGGCCCAA
    GCGATCCTNTCACCTCAGCCTCCTGCGTAGCTGGGACTACAGGCGTGCAC
    CACCATTCCCAGGTAATTTTTGTATTTTTTTGTANANACAGGTTTCACTG
    TTGTTGCCCAGGCTGGTCTCGAACTCCTGCTTCAGTCTGCCANAATGCTG
    GATTCTAGGCGTGAGCCACCGNGCCTGGCCCAAAAGTTACTTTTCTTACA
    GAAGCAAAGCTTTAATGCATTTTACTGAATGCTTATAGCTTTGTAGATAC
    TGAAAAGAGTATGAGCGTCACATACAGACACATNTAACAGCACTGCCTCC
    AACCAGCCCCTACCCACTGGTCAGGNGAGTAANAATCAAAATTCTTTTCT
    GNGAGTGGAACGGAAATTTCATCTCTCCTCCTCAGGCAAGTAGTTAANAG
    GCTGGNGGGAGTCATGGCCCCATTTTGTTCAAAATACAAGCTCCACAGGA
    ACAAAAGGCTGAACTGCTCACCTCCCAACTGATGAACCTCGTCTTTGTTC
    CATGTCAAAGGGGCCTTTGTGTTACTGCAGCAGAAACTCCAGCTATCAAA
    CCATCAGGCACCAAAAGTAAAACTCCTTTCTCTAAAAAGACCTCTCTTTA
    CCTGAGCCTTTCAATGCATCTTTGCCCCCANATAATCCTGGATGAGATAA
    TCCCCAGAGGAANACCAGCGCTTGCCTAGTGAAATTATACTATGAGACAA
    GGGTAAAAGACCTCAAANACCGGGTTGGCAGGTAAGGGAGTAGGGN
    Sequence ID 1390
    TCNGTGGCACCCGTTTCCGGCACCTTCAGACTCTGAAGAGCCACCTGCGA
    ATCCACACAGGAGAGAAACCTTACCATGTACGTAAGCCTCTTGAGGCCGC
    TCTCTGACCTGCGGGGATGTGGAGGGCAGGGAAGGAGGTGGAGCGCAGGG
    AAGGAGGTGGAGCAGGGAGGCAGTGGAACTGTTTGCTCCCATCTCAAGCA
    CACAGTGGGGCAACCACTACGCTAATGGTTGGAAGACCTAGATCTGGGCC
    CAATGGCCAGACACCCTGCTTGACCTTGGCCCAAGCATTAGGGGACTCAT
    CTTTAAAATGAGGGTATGGGACTAGATGATCTGGGCCTTAGGAGAGGAGT
    Sequence ID 1391
    CGGCTNCTACCCTGCGGAGATCACACTGACCTGGCAGTGGGATGGGGAGG
    ACCAAACTCAGGACACCGAGCTTGTGGAGACCAGGCCAGCAGGAGATGGA
    ACCTTCCAGAAGTGGGCAGCTGTGGTGGTGCCTTCTGGAGAAGAGCAGAG
    ATACACGTGCCATGTTCAGCACGAGGGGCTGCCGGAGCCCCTCACCCTGA
    GATGGAAGCCGTCTTCCCAGCCCACCATCCCCATCGTGGGCATCGTTGCT
    GGCCTGGCTGTCCTGGCTGTCCTAGCTGTCCTAGGAGCTATGGTGGCTGT
    TGTGATGTGTAGGAGGAAGAGCTCAGGTGGAAAAGGAGGGAGCTGCTCTC
    AGGCTGCGTCCAGCAACAGTGCCCAGGGCTCTGATGAGTCTCTCATCGCT
    TGTAAAGCCTGAGACAGCTGCCTGTGTGGGACTGAGATGCAGGATTTCTT
    CACACCTCTCCTTTGTGACTTCAAGAGCCTCTGGCATCTCTTTCTGCAAA
    GGCATCTGAATGTGTCTGCGTTCCTGTTAGCATAATGTGAGGAGGTGGAG
    AGACAGCCCACCCCCGTGTCCACCGTGACCCCTGTCCCCACACTGACCTG
    TGTTCCCTCCCCGATCATCTTTCCTGTTCCAGAGAAGTGGGCTGGATGTC
    TCCATCTCTGTCTCAACTTCATGGTGCGCTGAGCTGCAACTTCTTACTTC
    CCTAATGAAGTTAAGAACCTGAATATAAATTTGTTTTCTCAAATATTTGC
    TATGAAGGGTTGATGGATTAATTAAATAAGTCAATTCCTGGAAGTTGAGA
    GAGCAAATAAAGACCTGAGAACCTTCCANAATCCG
    Sequence ID 1392
    TGAAACAAAATGAATTTNTATGGGTAAGAGAGGGTAATATTTTAGAGTTG
    TGTTACAAAACTACAAATTTTTATTAAATTAATAAATCAGAATACTAAAT
    CCATGTGTTTTTTTCTTTCTTAAAAAATATCTTTTGGCTGGGCACGGTAG
    CTCATGGCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGGTGGATCGCC
    TGATGTCAGGAGTTCAAGACCAGCCTGGTCAACATGTTGAAACCCCATCT
    CTACTAAAAATATAAAAATTAGCCGGTGTGGTGGTGGGCGCCTGTAATCC
    CAGCTACTCAGGAGGCTAAGGCAGGAGAATTGCGTGAACCCAGGAGTTCA
    GTGATGTAGCGGGGAGCTGAGATTGTGCCACTACACTCCAGCCTGGATGA
    CAGAGTGAGACTCCATCTCAAAAAAAAAAAAAAAAAA
    Sequence ID 1394
    GCATAATGTGAGGAGGTGGAGAGACAGCCCACCCCCGTGTCCACCGTGAC
    CCCTGTTCCCATGCTGACTTGTGTTTCCTCCCCAGTCATCTTTCCTGTTC
    CAGAGAGGTGGGGCTGGATGTCTCCATCTCTGTCTCAACTTTATGTGCAC
    TGAGCTGCAACTTCTTACTTCCCTACTGAAAATAAGAATCTGAATATAAA
    TTTGTTTTCTCAAATATTTGCTATGAGAGGTTGATGGATTAATTAAATAA
    GTCAATTCCTGGAATTTGAGAGAGCAAATAAAGACCTGAGAACCTTCCAG
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAA
    Sequence ID 1395
    CTTACCATGTCAGTGCACAGAAATGCTGTCTTGGGATGTAGGAAAAATAA
    ATCCACAAAAGCTACCAAGTTTGAAGGGGACCATGAGTCTTCAGGCTGGA
    GCTTCCAAACCAGATGAAAACCCCACAATTAACCTGCAGTTTAAGATCCA
    GCAGCTGGCCATTTCTGGACTCAAGGTGAATCGTCTGGATATGTATGGAG
    AAAAGTACAAACCCTTTAAGGGCATAAAATACATGACCAAAGCTGGGAAG
    TTCCAAGTTCGAACCTGAAGGGAGCATTTGCTGAGGGAATAGTCTTGCAC
    ATTTTTTCATTTCTTACTTGTCTAAAAGTAAAAAAAAATATCAGCCTGTC
    TCCTAGGTCAGTCCCCTCCTGGACCCACCCGCTCCCTTTTTTCCTTAGCC
    TTCAGTGCCATGGAACTAATCAAGGGAGGAAAAGGTCACCAGGGAGAACT
    GGACAGAACTGAAACACAGCAACACCAGTTCTCAAGGACAAGGTGTGTGA
    TGGGGGTAGGAAGCTTGGTGCTTATGTAACCATTTTAAACGTGGTTTCTA
    TAGGAAAGACCAACATTTGTTTAGCTTGCTTGGCTTTAATTATCTAAAGC
    CAATGAAAGACTTCTTTGTTGATTTTTTAAGATAGAAAGATT
    Sequence ID 1396
    CAAACACTATGTTATTTTATGAANAAGACTTGAACATCTATGGATTTTGG
    TATTTGCAAGGGGTGAATGGGGTATTTGCAAGCAGTGAATGAGGAGGCCT
    GGAACCAATCTTCTGCTGATATTGAGGCACAACTGAAAAAGGTATATTAC
    TTAAATCTCTTATTGTATTGTAAACTGTATAAGTAATGAAATTAAAAGGC
    AGAAATTGTCAGACTGAATAAAATGAAAAGACCAAACAATATGCTGCTTA
    CAAGAAACACAATTCAAATATAAGGACACAATTAGTTTAAAGGAAAAGAA
    CTGGAAAAGATATACCATGATAACACAAGTCAGAAGAAAGCTGCTGTGGA
    TATATTAATATGAGATGTAGATTTCAGAGCAGTGAATATTGCCAGGCATA
    AAGAAAGTTATTACATAATAATTAAGGTATCAGTTCATCAAGAAGATGTA
    ATAACCCTAAGTATTTATACAACTAATATCAGAGCTTCAAAATACATGAA
    GCAAAAACCAGTGGAATTGATAGGAGAAACACACAATTACACAATTATAG
    TCAGAATTTTCAACATATCTTTCTCAATGGAGAAAACAACTAGACAGGAA
    ATCATTAAGGATATAGATGATTTAAATTATATGATCAACTACCTGGACGT
    AATTGGCATTTATGGAACACTGCACCACCAACAGCAGAGTACATATTATT
    TTCAAGTACACAGAAAACAGTTACCAATATAGACCATTTTCTGGGTCATA
    AAACACATCTCAATAAATGTAAAACAATTAATGTTATATAAAGTATGTGC
    TCTGACCNCAAAGGAATTAGAGATCAATAAAAGAACATCTTTGAAAAATC
    TCACNTATTTAAAAACTAATAACTCACTTCTAAATAACTCCTGTNTCAAG
    AGAATNAAANGG
    Sequence ID 1397
    CCCAGCCTCACTGCGCCCCGTCAGGCCAGGCAGCTGCCCTCAGGGTCTGC
    CAAGGTGGGGGTCAAGGGCCATGGGGGCAGGTAGCTCTGCCTGCAAAGCC
    CACAAGCATGTCAGATCACCTGGGCTGCAGACAGACAAACACCTGAGCTG
    TTCTGAATACCTTCAGGTTCCTGGCCTCGCTGAGCAAGTGCAGAAATTTT
    TACCTTCAAGGATCAGGGTTTTTCTGTTTGTTTGTTTTTTAACACACACA
    TATGTGAACAAAGAGTATGCGTTTGTACTGGCAGAAGAAGCGTCTGGTAA
    GACAACCAGCAAGTTAACAATGGTCACCTCCAGAAATGGGCTGGGTAAAC
    CAAAGAATTTTTTTGTTTTTGTTTTTTTTGAGTCAGGGTCTAGCTCTGTC
    ACCCAGGCTGGAACGCACTGGTGTGATCACGGCTCACTGCAGCCTTGACC
    TCCCTGGCTCAAGCAATCCTCCCAGCTCAGCCTCCTGAGTCGTTGGGACT
    ACAGGCACGTGCCACCACGCCTGACACATTTTTTAAATTTTTGTAGAGAC
    AGTGTTTCACCATGTTGCCCAGGCAGGTCTCAAACTCCTGGGCTCAAGTG
    GTCCTCCAGCTTCAGCCTCCCAAAGTGCTAGGATTATAGGTGTGAGCCAC
    AGTGCCCAGCCCCGTAGTGGAGAATTTCTGTTGAATGAACCAAAAGCAAC
    TGCCAACCTCTCCATGCACCATGTGTTTCAGAGGAGAAAGCACAGTGAAG
    AATGCAGTGTGTTCTGAGGTCCTGTCACCCCTGAGGCTGTGTGTGTCCTT
    TGCCAAATTAAAGAGTCTTACTGAATGCGGTGCATCCAGGAGACAGGCCN
    AGGTTTGGACTGGTAAAAAAAAA
    Sequence ID 1399
    CAGACACCTGGNAGAACGGGAAGGAGACGCTGCAGCGCGCGGACCCCCCA
    AAGACACATGTGACCCACCACCCCATCTNTGACCATGAGGCCACCCTGAG
    GTGCTGGGCCCTGGGCTTCTACCCTGCGGAGATCACACTGACCTGGCAGC
    GGGATGGCGAGGACCAAACTCAGGACACCGAGCTTGTGGAGACCAGACCA
    GCAGGAGACAGAACCTTCCAGAAGTGGGCAGCTGTGGTGGTGCCTTCTGG
    AGAAGAGCAGAGATACACATGCCATGTACAGCATGAGGGGCTGCCGAAGC
    CCCTCACCCTGAGATGGGAGCCATCTTCCCAGTCCACCGTCCCCATCGTG
    GGCATTGTTGCTGGCCTGGCTGTCCTAGCAGTTGTGGTCATCGGAGCTGT
    GGTCGCTGCTGTGATGTGTAGGAGGAAGAGTTCAGGTGGAAAAGGAGGGA
    GCTACTCTCAGGCTGCGTCCAGCGACAGTGCCCAGGGCTCTGATGTGTCT
    CTCACAGCTTGAAAAGCCTGAGACAGCTGTNTTGTGAGGGACTGAGATGC
    AGGATTTCTTCACGCCTCCCCTTTGTGACTTCAAGAGCCTCTGGCATCTC
    TTTCTGCAAAGGCACCTGAATGTGTCTGCGTCCTTGTTAGCATAATGTGA
    GGAGGTGGAGAGACAGCCCACCCTTGTGTCAACTGTGACCCCCTGTTCCC
    ATGCTGACCTGTGTTTCCTCCCCAGTCATCTTTTTTGTTCNCAATAGGTG
    GGGCCTGGATGTCTCCATCTCTGTNTCA
    Sequence ID 1440
    TTATAAGGTACTTTTAAGGTATTTTAGTTGTCTTAGTCTATATTTCTGTA
    CTCACCTTTCTTTATCCACTCATCAGTTGATGGGCATGTAGGTTGGTTCC
    ATATCTTTGCAATTCTGAATTGTGCTGTGATCAGGTGTCTTTTTAGTATA
    ATGATTTACTCTCCTTTGGGTAGATACCCAGTAGTGGGATTGCTGGATCG
    AATGGTTTTTATAATTTTCTATTTTACCACAGTTTCTCTCTGCATTTTTC
    CTCTTTGACCACTAACCATGTGAAATTCTCATATTGACCTTTATAATGAT
    CATGAACTCTTAGTATCATTGGGAAGGCCACATTTGCCACTTATGATTGT
    AAACCTTATCCTCCATTTTTCCTGTTATTGTTGGTGCAAAAAGCACCTAT
    TATACCAGGACTTTAAAAATCAGTCTGATAAGTCTTTGATAAGTCTAATA
    ATAATAACTGATAAGTCCATTGAATTTGCTTCTGATTACTTTTTCTTTAG
    TAGCTAAACATGTATGTACTCCTATGATTACAATGAACACTCCTCTCCAT
    TTAAATTAATTATTTACATTGATGAAATAGCAAAATGTTAATGACTAAAT
    ACTGTCTTGGTTTTTTCGTTCCAGGTCAGTCAATATTAACTTCTTATAAT
    TTTCTTTTTTTTCTTT
    Sequence ID 1447
    GCAAGGACTAACCCCTATACCTTCTGCATAATGAATTAACTAGAAATAAC
    TTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCTACCTA
    AGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGAT
    TTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCC
    AAGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAAT
    CCCCTTGTAAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACAC
    TAGGAAAAAACCTTGTAGAGAGAGTAAAAAATTTAACACCCATAGTAGGC
    CTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAACACCCACTACC
    TAAAAAATCCCAAACATATAACTGAACTCCTCACACCCAATTGGACCAAT
    CTATCACCCTATAGAAGAACTAATGTTAGTATAAGTAACATGAAAACATT
    CTCCTCCGCATAAGCCTGCGTCAGATTAAAACACTGAACTGACAATTAAC
    AGCCCAATATCTACAATCAACCAACAAGTCATTATTACCCTCACTGTCAA
    CCCAACACAGGCATGCTCATAAGGAAAGGT
    Sequence ID 1448
    GGCCACCGGGTGCAAGGTCAGGGCTGGGGTGGAGGCTGGGAAGCCCAGGG
    CTTGGCCCACTGTGGCCGCCTTGTGTGGTCACTGCTTTCCTGGGCCTGCT
    GTGAGCTCCCTCTAGGACCCCAGGCCTGTCTGGTGGGTCACTGTGACCAC
    CACCTTGCACAGCACCTGGCGCGTGGCAGGTGCTCAAACATTACTTGTTT
    CGGAATGAACTTCATCTTGCTCTTGGCTTTTTGACTAATGCTGTGGAACA
    TCTGACTAATTAGTGACTCTTTGGGGCCCCCAGTTTCCCAGCTATAAAGT
    GGTAATATTAAGATAATAATTCGGCCGGGCGCGGTGGCTCACGCCTGTAA
    TCCCAGCAGCACTTTGGGAGGCCGAGGTGGGCAGATCACGAGGTCAGAAG
    ATCGAGACCATCCTGGCTAACACGGTGAAACCCCATCTCTACTAAAAATA
    CAAAAAATTANCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACTCA
    NGAGGCTGANGCAGGAGAATGGTGTGAACCCGGGAGGCAGAGGTTGCAGT
    GAACCAAGATCGNNCCACTGCACTCCAGCCTGGGCAACAGAGCGAGACTC
    CATCTTAAAAAA
    Sequence ID 1449
    AATCAGGGCCGCAGTGTGTTCTGCGCCTGCCCAGAGCTGACTCCTGATTT
    AACCGCTGGCGTAACCGCGGGTTGCACGCATGCGTGCTGAAAAGCCTTTC
    ACCCTCACGTGGTTTCTTTTTTAACCAGTCATCAAGCGAGGCTCGCGCGC
    AGGCCCCGCGTTGGAAAATGGCGGGGAAGCTGAAACCTCTGAATGTGGAG
    GCGCCAGAAGCTGCTGAGGAGGCTGAAGGTAGTGAGGGCAAGTGGGCTGC
    ACTCCTTTCTCTCCAACCAGGGCAGAAAGGAGGGAGGATTCGTCCCATTA
    CAATAATGAAATAATGATATTCTAATTTTTTTAAATAAAATGTTAAGCCT
    TTTGTTATTGAA
    Sequence ID 1450
    GGAAANCATGAGGCTTCGGGAGCCGCTCCTGAGCGGCAGCGCCGCGATGC
    CAGGCGCGTCCCTACAGCGGGCCTGCCGCCTGCTGGTGGCCGTCTGCGCT
    CTGCACCTTGGCGTCACCCTCGTTTACTACCTGGCTGGCCGCGACCTGAG
    CCGCCTGCCCCAACTGGTCGGAGTCTCCACACCGCTGCAGGGCGGCTCGA
    ACAGTGCCGCCGCCATCGGGCAGTCCTCCGGGGAGCTCCGGACCGGAGGG
    GCCCGGCCGCCGCCTCCTNTAGGCGCCTCCTCCCAGCCGCGCCCGGGTGG
    CGACTCCAGCCCAGTCGTGGATTCTGGCCCTGGCCCCGCTAGCAACTTGA
    CCTCGGTCCCAGTGCCCCACACCACCGCACTGTCGCTGCCCGCCTGCCCT
    GAGGAGTCCCCGCTGCTTGGTAAGGACTCGGGTCGGCGCCAGTCGGAGGA
    TTGGGACCCCCCCGGATTTCCCCGACAGGGTCCCCCANACATTCCCTCAG
    GCTGGCTCTTCTACGACAGCCAGCCTCCCTCTTCTGGATCAGAGTTTTAA
    ATCCCANACAGAGGCTTGGGACTGGATGGGAGAGAAGGTTTGCGAGGTGG
    GTCCCTGGGGAGTCCTGTTGGAGGCGTGGGGCCGGGACCGCACAGGGAAG
    TCCCGAGGCCCCTCTAGCCCCAAAACCANAGAAGGCCTTGGAGACTTCCC
    TGCTGTGGCCCGAGGCTNAGGAAGTTTTGGAGTTTTGGGTCTGCTTANGG
    CTTCNAGCAGCCTTGCACTGAGAACTTTGGTAGGGACCTCGAGTAATCCA
    CTCCNTTTTNGGGACTGACGTGAGGCTCCCGGTGGGGAAAGANACTGACC
    TNTC
    Sequence ID 1453
    CCGACCTGTCTCGCTCCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTT
    TCTGGCCTGGAGGCTATCCAGCGTACTCCAAAGATTCAGGTTTACTCACG
    TCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTG
    GGTTTCATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGA
    ATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACTGGTCTTT
    CTATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGAGTATG
    CCTGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGG
    GATCGAGACATGTAAGCAGCATCATGGAGGTTTGAAGATGCCGCATTTGG
    ATTGGATGAATTCCAAATTCTGCTTGCTTGCTTTTTAATATTGATATGCT
    TATACACTTACACTTTATGCACAAAATGTAGGGTTATAATAATGTTAACA
    TGGACATGATCTTCTTTATAATTCTACTTTGAGTGCTGTCTCCATGTTTG
    ATGTATCTGAGCAGGTTGCTCCACAGGTAGCTCTAGGAGGGCTGGCAACT
    TAGAGGTGGGGAGCAGAGAATTCTCTTATCCAACATCAACATCTTGGTCA
    GATTTGAACTCTTCAATCTCTTGCACTCAAAGCTTGTTAAGATAGTTAAG
    CGTGCATAAGTTAACTTCCAATTTACATACTCTGCTTAGAATTTGGGGGA
    AAATTTAGAAATATAATTGACAGGATTATTGGAAATTTGTTATAATGAAT
    GAAACATTTTTGTCATATAAGATTCATATTTACTTCTTATACA
    Sequence ID 1454
    TAAATAGGGAATCCTTTCCCCATTGCTTGTTTTTCTCAGGTTTGTCAAAG
    ATCAGATAGTTGTAGATATGCGACGTTATTTCTGAGGGCTCTGTTCTGTT
    CCATTGATCTATATCTCTGTCACATGCACACGTATGTTTGTTGTGGCACT
    ATTCACAGTGGCAAAGACTTGGAACCAACCCAAATGTCCAACAATGATAG
    ACCGGGTTAAGAAAATGCGGCACATATACACCATGGAATACTATGTAGCC
    ATAAAAAATGATGAGTTCGTGTCCTTTGTAGGGACATGGATGAAATTGGA
    AATCATCATTCTCAGTAAACTATCGCAGGAACAAAAAACCAAACACTGCA
    TATTCTCACTCATAGGTGGGAATTGAACAGTGGGAACACATGGACACAGG
    AAGGGGAACATCACACTCTGAGGACTGTTGTGGGGTGGGGGGAGGGAGGA
    GGGATAGCATTGGGAGATATACCTAGTGCTGGATGACGAGTTAGTGGGTG
    CAGCGCACCAGCATGTCACATGTATACATATGTAACTAACCTGCACATTG
    TGCACATGTACCCTAAAACTTAAGGTAT
    Sequence ID 1456
    CCGCAACAAACACGGGAGTGCAGATATCGCTGCGATGGGCTGATTTCCTT
    TATTTGGGTATATACCCAGCAGTGGGATTGCTGGATTGTATGGTAGCTCT
    ATTAGTTTTTTGAGGAACCTCCAAACTGTTCTNCATAGTGGTTGTACTCA
    TTTACATTCCCACTGTGAACCCTGAAAATTTGAGGCAGGTCTCAGTTAAA
    TTAGAAAGTTGATTTTGCCAAGTTGGGGACACGCACTCGTGACACAGCCT
    CAGGAGGAACTGATGACATGTGCCCAGGTGGTCAGAGCACAGCTTGGTTT
    TATACATTTTAGGGAAACCTGAGCCATCAATCAACATACGTAAAATGGGC
    CGGGCACAGCAGCTCAAGCTGTAATCCCAGCACTCTGGGAGGCCGAGGCG
    GGTGGATCACTTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTG
    AAACCCCGTCTCTATTAAAAATACAAAGCTTAGCTGGATGTGGTGGCGCA
    TGCCTGTAGTCCCAGCTGCTCTAGGAGGCTGAGGCATGAGAATTGCTTGA
    ACCTGGGAGGCAGAGGCTGCAGTGAGCCGAGATCGAGCCACTATACTCCA
    GCCTGGTCAACAGAGTGAGACCCTGTCT
    Sequence ID 1460
    CCACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCACCTGA
    CTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG
    GATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTGGTCTACCCTTG
    GACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTG
    TTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCC
    TTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCAC
    ACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCA
    GGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAA
    GAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGT
    GGCTAATGCCCTGGCCCACAAGTATCACTAAGCTCGCTTTCTTGCTGTCC
    AATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGG
    GGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACAT
    TTATTTTCATTG
    Sequence ID 1490
    ATGGGCATCTCTCGGGACAACTGGCACAAGCGCCGCAAAACCGGGGGCAA
    GAGAAAGCCCTACCACAAGAAGCGGAAGTATGAGTTGGGGCGCCCAGCTG
    CCAACACCAAGATTGGCCCCCGCCGCATCCACACAGTCCGTGTGCGGGGA
    GGTAACAAGAAATACCGTGCCCTGAGGTTGGACGTGGGGAATTTCTCCTG
    GGGCTCANAGTGTTGTACTCGTAAAACAAGGATCATCGATGTTGTCTACA
    ATGCATCTAATAACGAGCTGGTTCGTACCAAGACCCTGGTGAAGAATTGC
    ATCGTGCTCATCGACAGCACACCGTACCGACAGTGGTACGAGTCCCACTA
    TGCGCTGCCCCTGGGCCGCAAGAAGGGAGCCAAGCTGACTCCTGAGGAAG
    AAGAGATTTTAAACAAAAAACGATCTAAAAAAATTCAGAAGAAATATGAT
    GAAAGGAAAAAGAATGCCAAAATCAGCAGTCTCCTGGAGGAGCAGTTCCA
    GCAGGGCAAGCTTCTTGCGTGCATCGCTTCAAGGCCGGGACAGTGTGGCC
    GAGCAGATGGCTATGTGCTAGAGGGCAAAGAGTTGGAGTTCTATCTTAGG
    AAAATCAAGGCCCGCAAAGGCAAATAAATCCTTGTTTTGTCTTCACCCAT
    GTAATAAAGGTGTTTATTGTTTTTGTT
    Sequence ID 1491
    CTTNCACATACTGATTGATGTCTCATGTCTCTCTAAAATGTGTAAAACCA
    AGCTGTGCCCCAACCACCTTGGGNACATGTGGNGAGGACCTCCTGAGGCT
    GTGTCATGGGCACACCTTAACCCTGGGAAAATAAACTTTCTAAACTGACT
    TGAGAGCTGTCTCAGATATTCTGAGCTTACAGTTATTGTGAAATCATTTT
    AATTATAAATTAAGTGGAGATTTACTTAAAATCATGTGTAGAAGTAGCCT
    GTGATATAGTCCTAGATACATACATTATCATCTTATGTATCTTCCCTCCC
    TCTTCCAGGTTCTGATAAAAACAGATGAAATCTGAAAGACCATGACAGTA
    GTATTTTGAAAATGACAGTATTTGAAATTAAAAAATTGTAAAAGTGTTCT
    GTTCTATCACTGCCAAAGGATAAGTTACAAATTGGTTCTTGGAACGTAAT
    ATGTACTATGTGCTTGCTATTTAATAATTTACCAGTCTTAGTCTTTTTTA
    TTCAGACTAATTTTACCTTTTTTTAACCTATGACTCTTTAGTTATAGTAG
    TACAAAAAAGTAGTTTTAGTTATAGTTTTAGTTGTAGTACAAAAAAGCAT
    TTTCTGTAAGCTTAATTTCTTTCCCCTTCCCGCTTTCCCAGTCAGATGAC
    TTTAGTGATTTGGAGTTGTGTGCTTTATAAGTGCATTCCTCAGAGGACTT
    AATATTACTAAGATTTTAGCAACNCTGAAATATGTT
    Sequence ID 1492
    TGTNCCTGTAGTCCTGTGTGGGAGGATTGCCTGAGCCTAGGAGCTCAAAG
    TTGCAGTGAGCCCAGATCGNGNCATTGCAGTCCAGCCTGGGTGACAGAGT
    GAGACCCCATGTCAAAAAAAAAAAAACAAAAAACAGGGGCCTGCCTCANC
    CAGCAGGTGAGGTCTGCCACTGAGAGCACTTCTAGCAGCAGGAACAGCCT
    CCACCCCCACACTGCAATCAAGTTTTTTGGGTCAGCCTTAGGAGCTAANA
    AAGGGCCTAGTTTGNCTAAATAGCAGGAGTTATATCCAGGGATCTTCAGG
    CCCAGGAATGCTAATGAGTAGGCATTCCATGGGCCCTGGGAATGGCTTTG
    TGTGCCANAAATGATGGCCACAAAGGCCTTGCTGCCTTTTTTCAAAATGG
    CTGCATCCAGCTGAGTGCTCTCTGCCAAAGGGGANAANAAAATAAGTCTC
    CAGTGCATTTAGATTGGTCTCTCATCATCTCTCTCCTTTTTGTTTTTATT
    AGTCTCCTTAACCAAAACTGCCAAGAAAGGCTTGGAATTGAAACAAAACC
    TGATANAANAGGTAAGAGGTTGTTCTTTT
    Sequence ID 1493
    TGTNTCAAAAAAAAAAAAAAGAACGGNAATGTACTGGAGATGTATTTGAT
    AACCAAGGNTTTAGGTAAATTTTCACCAGTATTAGTTNTATTTGCAAACT
    GAAAAATGTTGTAGGCTTAATATAAAATAACCACATTAGTGAACATTATA
    TCTCTTAGAAGAAAGGCCATATTTTGCTCCTGCTTCTGTAAAAATATTAT
    TTGTTTGAAGGGGAAATAATGGTAGTGTGACCTTTCACTTAATTCCTACT
    CCCTTAATGTGAGAGAGACAAAATGAGCTGAAGAAGGAAAATTCTGGAGT
    TACACTCCACAACCTTGAACATACTGACGGACATCTCTGTTTTGACAACG
    ATTTCTCCATGCCACCCATGCTNTAATGCCTTGTGGATCACGGACAACCC
    TCTTTGCACAAGCTACAGCATCAGCGATGTTATCTTGCAGCAAAGCACTG
    CAGGATAAATGACAGGCATTAACTGCTCCTGGGGTTTTGCCATCATTACA
    CCAGTAGCGGCTATTGATCTGAAATATCCCATAATCAGTGCTTCTGTCTC
    CAGCATTGTAGTTTGTAGCTCGTGTGTTGTAACCACTCTCCCATTTGGCC
    AAACACATCCAGTTTGCTAGGCTGATTCCCCTGTAGCCATCCATTCCCAA
    TCTTTTCAGAGTTCTGGCCAACTCACACCTTTCAAAGACCTTGCCCTGGA
    CCGTAACAGAAAGGAGGACAAGCCCCAGAACAATGAGAGCCTTCATGTTG
    AC
    Sequence ID 1494
    TTGGTACCCGGGAAATTCTTTGCCGCGTCGACGGCCGGTGAGGCAGATCA
    CCTGAGCCCAGGAGTTCAGGACCAGCCTGGGCAGCATACCGGGATTCCAT
    CTNNACTAAAAACAGTAGGCTGGGTGTGGTGGCTCATGTCTGTAAGCTCA
    GGACTTTGGAAGGCCAAGATGGGAGGATCACTTGAGCCTGGGAGTTTGAC
    ACCAGCTTGAGCATCGTAGCCAGGCCCTGACTCTACAAAAAAGTGAAATA
    ATTAGCCGAGTGTGGTGGTTCACACCTGTAATCCCAGCTGCTCAGGAGGC
    TGAGGTAGGAGAATCATTTGAACCCGGGAGGTGGAGGTTGCAGTTAGCCG
    AGATCACGCCATTGCACTCCGGCCTGGGCGATAAAGCGAGACTCTGTCTC
    AAAAAAAAAAAAAA
    Sequence ID 1495
    ATTCGGGCCGAGATGTCTCGCTCCGTGGCCTTAGCTGTGCTCGCGCTACT
    CTCTCTTTCTGGCCTGGAGGCTATCCAGCGTACTCCAAAGATTCAGGTTT
    ACTCACGTCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTAT
    GTGTCTGGGTTTCATCCATCCGACATTGAAGTTGACTTACTGAAGAATGG
    AGAGAGAATTGAAAAAGTGGAGCATTCAGACTTGTCTTTCAGCAAGGACT
    GGTCTTTCTATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGAT
    GAGTATGCCTGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGT
    TAAGTGGGATCGAGACATGTAAGCAGCATCATGGAGGTTTGAAGATGCCG
    CATTTGGATTGGATGAATTCCAAATTCTGCTTGCTTGCTTTTTAATATTG
    ATATGCTTATACACTTACACTTTATGCACAAAATGTAGGGTTATAATAAT
    GTTAACATGGACATGATCTTCTTTATAATTCTACTTTGAGTGCTGTCTCC
    ATGTTTGATGTATCTGAGCAGGTTGCTCCACAGGTAGCTCTAGGAGGGCT
    GGCACCTTAGAGGTGGGGAGCAGAGAATTCTCTTATCCAACATCAACATC
    TTGGTCAGATTTGAACTCTT
    Sequence ID G6
    GGATTTTTGGTCCGCACGCTCCTGCTCCTGACTCACCGCTGTTCGCTCTC
    GCCGAGGAACAAGTCGGTCAGGAAGCCCGCGCGCAACAGCCATGGCTTTT
    AAGGATACCGGAAAAACACCCGTGGAGCCGGAGGTGGCAATTCACCGAAT
    TCGAATCACCCTAACAAGCCGCAACGTAAAATCCTTGGAAAAGGTGTGTG
    CTGACTTGATAAGAGGCGCAAAAGAAAAGAATCTCAAAGTGAAAGGACCA
    GTTCGAATGCCTACCAAGACTTTGAGAATCACTACAAGAAAAACTCCTTG
    TGGTGAAGGTTCTAAGACGTGGGATCGTTTCCAGATGAGAATTCACAAGC
    GACTCATTGACTTGCACAGTCCTTCTGAGATTGTTAAGCAGATTACTTCC
    ATCAGTATTGAGCCAGGAGTTGAGGTGGAAGTCACCATTGCAGATGCTTA
    AGTCAACTATTTTAATAAATTGATGACCAGTTGTTAAAA
    Sequence ID - 61   nt: 362
    CTTATTGAAAATTTTACTAATTTCTTACTTTTTAGGTTTTAGGAGAATAC
    TTTTGGATAATTGACTAGCCTCACATTATATTGATAGAGGTTCTTGAAAA
    CTTTAATGCCAATTCATGTATCTTATGACTAAAATAGATAATCCATTTAG
    AAATTTAAGTCATTCTTGCGTGCTTGATATGTGTCAGCACTATCCAAGTT
    GCTAGGGGATACAATGGTGAAGTGAAAATATCAGCTAGGTGCCGGTGGCT
    CACACCTGTTATCCCAACAGTTTGGGAGGCCAGGGTGGGAGGATCACTCA
    AGCACANGCGTTTCACACCAGCCTGGACAACATACAAGACCCCATCTTTA
    CCAAAAGTTAAG
    Sequence ID - 490  nt: 382
    TTTTCTTAGAACTTTATTTTTTCTGGCCAGGCGCAGTGGCTCACACCTGT
    AATCCCAGCACTTTGGGAGGCCAAGGCAGGTCGATCACCTGAGGTCAGGA
    GCTCAAGACCAGCCTGGCCAACATGGTGAAACCCTGTCTCTACTAAAAAT
    ACAAAAATTAGCTGGGCGTGGTGGCGCATGCCTGTAATCCCANCTACTCA
    GGAGGCTGAGGCAGGAGAATTGTTTGAACCCGGGAGGCGGAGGTTGCANT
    GAGCCGAGATTGCGCCACTGCACTCCAGCCTGGGCAACAGAGCGAAACTC
    CATCTCAAAAAAAAAAAAAAAAAACAACCTTTATTTTTTCTGATTTTAAA
    AGTAATAACTAGTTTGTAGAAACATTAAAAGT
    Sequence ID - 892  nt: 559
    TCTTTCGGAAGCGCGCCTTGTGTTGGTACCCGGGAATTCGCGGCCGCGTC
    GACGCGGTCGTAAGGGCTGAGGATTTTTGGTCCGCACGCTCCTGCTCCTG
    ACTCACCGCTGTTCGCTCTCGCCGAGGAACAAGTCGGTCAGGAAGCCCGC
    GCGCAACAGCCATGGCTTTTAAGGATACCGGAAAAACACCCGTGGAGCCG
    GAGGTGGCAATTCACCGAATTCGAATCACCCTAACAAGCCGCAACGTAAA
    ATCCTTGGAAAAGGTGTGTGCTGACTTGATAAGAGGCGCAAAAGAAAAGA
    ATCTCAAAGTGAAAGGACCAGTTCGAATGCCTACCAAGACTTTGAGAATC
    ACTACAAGAAAAACTCCTTGTGGTGAAGGTTCTAAGACGTGGGATCGTTT
    CCAGATGAGAATTCACAAGCGACTCATTGACTTGCACAGTCCTTCTGAGA
    TTGTTAAGCAGATTACTTCCATCAGTATTGAGCCAGGAGTTGAGGTGGAA
    GTCACCATTGCAGATGCTTAAGTCAACTATTTTAATAAATTGATGACCAG
    TTGTTT
    Sequence ID - 77   nt: 464
    GCGGCTGCTGTTGGTTGGGGGCCGTCCCGCTCCTAAGGCAGGAAGATGGT
    GGCCGCAAAGAAGACGAAAAAGTCGCTGGAGTCGATCAACTCTAGGCTCC
    AACTCGTTATGAAAAGTGGGAAGTACGTCCTGGGGTACAAGCAGACTCTG
    AAGATGATCAGACAAGGCAAAGCGAAATTGGTCATTCTCGCTAACAACTG
    CCCAGCTTTGAGGAAATCTGAAATAGAGTACTATGCTATGTTGGCTAAAA
    CTGGTGTCCATCACTACAGTGGCAATAATATTGAACTGGGCACAGCATGC
    GGAAAATACTACAGAGTGTGCACACTGGCTATCATTGATCCAGGTGACTC
    TGACATCATTAGAAGCATGCCAGAACAGACTGGTGAAAAGTAAACCTTTT
    CACCTACAAAATTTCACCTGCAAACCTTAAACCTGCAAAATTTTCCTTTA
    ATAAAATTGCTTG

Claims (27)

1. A set of oligonucleotide probes, wherein said set comprises at least 10 different oligonucleotides, wherein each oligonucleotide is selected from:
an oligonucleotide having a sequence as set forth in SEQ ID No. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 1:49, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 342, 343, 344, 345, 346, 347, 348, 351, 352, 353, 355, 356, 357, 359, 361, 363, 364, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 409, 411, 414, 415, 416, 418, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 444, 445, 447, 448, 451, 452, 454, 455, 458, 459, 460, 461, 463, 464, 465, 467, 468, 471, 472, 473, 474, 475, 476, 480, 481, 482, 484, 487, 489, 490, 496, 497, 498, 499, 500 or 501,
or an oligonucleotide fragment of said sequence, which fragment is at least 15 bases in length, or an oligonucleotide with a complementary sequence, or a functionally equivalent oligonucleotide which hybridizes under conditions of high stringency to any of said aforementioned oligonucleotides.
2. A set of oligonucleotide probes as claimed in claim 1, wherein said oligonucleotide probes are each selected from:
an oligonucleotide having a sequence as set forth in SEQ ID No. 1, 2, 3, 4, 5, 11, 12, 13, 19, 25, 31, 32, 33, 34, 36, 37, 39, 45, 46, 47, 48, 50, 55, 56, 60, 61, 64, 66, 68, 73, 74, 75, 76, 77, 78, 80, 83, 85, 86, 90, 96, 98, 99, 100, 101, 105, 106, 107, 109, 111, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 125, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 168, 169, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 190, 191, 195, 197, 198, 199, 200, 202, 204, 206, 207, 210, 212, 214, 216, 217, 218, 219, 220, 221, 222, 224, 225, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 243, 244, 245, 249, 251, 256, 258, 259, 260, 261, 262, 267, 268, 270, 272, 273, 274, 275, 276, 278, 279, 280, 282, 284, 286, 287, 289, 291, 292, 295, 296, 297, 298, 299, 301, 303, 305, 307, 308, 309, 310, 311, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 355, 356, 357, 359, 361, 363, 364, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 487, 489, 490, 496, 497, 498, 499 or 501,
or an oligonuceotide fragment of said sequence, which fragment is at least 15 bases in length, or an oligonucleotide with a complementary sequence, or a functionally equivalent oligonucleotide which hybridizes under conditions of high stringency to any of said aforementioned oligonucleotides.
3. A set of oligonucleotide probes as claimed in claim 1, wherein said oligonucleotide probes are each selected from:
an oligonucleotide having a sequence as set forth in SEQ ID No. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 339, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 415, 445, 447, 448, 451, 452, 454, 455, 456, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 471, 472, 473, 474, 475, 480, 481, 482, 483, 484, 485, 486, 487, 488, 491, 492, 493, 494, 495, 496, 500 or 501,
or an oligonucleotide fragment of said sequence, which fragment is at least 15 bases in length, or an oligonucleotide with a complementary sequence, or a functionally equivalent oligonucleotide which hybridizes under conditions of high stringency to any of said aforementioned oligonucleotides.
4. A set of oligonucleotide probes as claimed in claim 1, wherein each probe in said set binds to a different transcript.
5. A set as claimed in claim 1, wherein said set consists of from 10 to 500 oligonucleotide probes.
6-8. (canceled)
9. A set of oligonucleotide probes as claimed in claim 1, wherein said probes are immobilized on one or more solid supports.
10-12. (canceled)
13. A kit comprising a set of oligonucleotide probes as claimed in claim 1 immobilized on one or more solid supports.
14-15. (canceled)
16. A method for determining the gene expression pattern of a cell, comprising at least the steps of:
a) isolating mRNA from said cell, which may optionally be reverse transcribed to cDNA;
b) hybridizing the mRNA or cDNA of step a) to a set of oligonucleotide probes as defined in claim 1; and
c) assessing the amount of mRNA or cDNA hybridizing to each of said probes to produce said pattern.
17. A method of preparing a standard gene transcript pattern characteristic of a disease or condition or stage thereof in an organism comprising at least the steps of:
a) isolating mRNA from the cells of a sample of one or more organisms having the disease or condition or stage thereof, which may optionally be reverse transcribed to cDNA;
b) hybridizing the mRNA or cDNA of step a) to a set of oligonucleotide probes as defined in any claim 1 specific for said disease or condition or stage thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
c) assessing the amount of mRNA or cDNA hybridizing to each of said probes to produce a characteristic pattern reflecting the level of gene expression of genes to which said oligonucleotide probes bind, in the sample with the disease, condition or stage thereof.
18. A method of preparing a test gene transcript pattern comprising at least the steps of:
a) isolating mRNA from the cells of a sample of said test organism, which may optionally be reverse transcribed to cDNA;
b) hybridizing the mRNA or cDNA of step a) to a set of oligonucleotidee probes as defined in claim 1 specific for a disease or condition or stage thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation; and
c) assessing the amount of mRNA or cDNA hybridizing to each of said probes to produce said pattern, which reflects the level of gene expression of genes to which said oligonucleotide probes bind, in said sample.
19. A method of diagnosing or identifying or monitoring a disease or condition or stage thereof in an organism, comprising the steps of:
a) isolating mRNA from the cells of a sample of said organism, which may optionally be reverse transcribed to cDNA;
b) hybridizing the mRNA or cDNA of step a) to a set of oligonucleotide probes as defined in claim 1 specific for said disease or condition thereof in an organism and sample thereof corresponding to the organism and sample thereof under investigation;
c) assessing the amount of mRNA or cDNA hybridizing to each of said probes to produce a characteristic pattern reflecting the level of gene expression of genes to which said oligonucleotide probes bind in said sample; and
d) comparing said pattern to a standard diagnostic pattern prepared by
i) isolating mRNA from the cells of a sample of one or more organisms having the disease or condition or stage thereof, which may optionally be reverse transcribed to cDNA;
ii) hybridizing the mRNA or cDNA of step i) to said set of oligonucleotides probes; and
iii) assessing the amount of mRNA or cDNA hybridizing to each of said probes to produce a characteristic pattern reflecting the level of gene expression of genes to which said oligonucleotides bind, in the sample with the disease, condition or stage thereof, wherein the sample is from an organism corresponding to the organism and sample under investigation,
to thereby determine the degree of correlation indicative of the presence of said disease or condition or a stage thereof in the organism under investigation.
20-21. (canceled)
22. A method as claimed in claim 17, wherein said probes are oligonucleotide probes selected from:
an oligonucleotide having a sequence as set forth in SEQ ID No. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 2701, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 339, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 415, 445, 447, 448, 451, 452, 454, 455, 456, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 471, 472, 473, 474, 475, 480, 481, 482, 483, 484, 485, 486, 487, 488, 491, 492, 493, 494, 495, 496, 500 or 501,
or an oligonucleotide fragment of said sequence, which fragment is at least 15 bases in length, or an oligonucleotide with a complementary sequence, or a functionally equivalent oligonucleotide which hybridizes under conditions of high stringency to any of said aforementioned oligonucleotides and said disease is Alzheimer's disease.
23. A method as claimed in claim 17, wherein said probes are oligonucleotide probes selected from:
an oligonucleotide having a sequence as set forth in SEQ ID No. 1, 2, 3, 4, 5, 11, 12, 13, 19, 25, 31, 32, 33, 34, 36, 37, 39, 45, 46, 47, 48, 50, 55, 56, 60, 61, 64, 66, 68, 73, 74, 75, 76, 77, 78, 80, 83, 85, 86, 90, 96, 98, 99, 100, 101, 105, 106, 107, 109, 111, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 125, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 168, 169, 171, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 185, 186, 187, 190, 191, 195, 197, 198, 199, 200, 202, 204, 206, 207, 210, 212, 214, 216, 217, 218, 219, 220, 221, 222, 224, 225, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 243, 244, 245, 249, 251, 256, 258, 259, 260, 261, 262, 267, 268, 270, 272, 273, 274, 275, 276, 278, 279, 280, 282, 284, 286, 287, 289, 291, 292, 295, 296, 297, 298, 299, 301, 303, 305, 307, 308, 309, 310, 311, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342; 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 355, 356, 357, 359, 361, 363, 364, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 487, 489, 490, 496, 497, 498, 499 or 501,
or an oligonuceotide fragment of said sequence, which fragment is at least 15 bases to length, or an oligonucleotide with a complementary sequence, or a functionally equivalent oligonucleotide which hybridizes under conditions of high stringency to any of said aforementioned oligonucleotides and said disease is breast cancer.
24-27. (canceled)
28. A method as claimed in claim 17, wherein said pattern is expressed as an array of numbers relating to the expression level associated with each probe.
29. A method as claimed in claim 17, wherein said organism is a eukaryotic organism, preferably a mammal.
30. A method as claimed in claim 29 wherein said organism is a human.
31. (canceled)
32. A method as claimed in claim 17, wherein said disease is cancer or a degenerative brain disorder.
33. A method as claimed in claim 17, wherein said sample is tissue, body fluid or body waste.
34. A method as claimed in claim 17, wherein said sample is peripheral blood.
35. A method as claimed in claim 17, wherein the cells in the sample are not disease cells, have not been in contact with such cells and do not originate from the site of the disease or condition.
36-37. (canceled)
US10/535,414 2002-11-21 2003-11-21 Product and method Abandoned US20070134656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/735,740 US20130143761A1 (en) 2002-11-21 2013-01-07 Product and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0227238.3A GB0227238D0 (en) 2002-11-21 2002-11-21 Product and method
GB0227238.3 2002-11-21
PCT/GB2003/005102 WO2004046382A2 (en) 2002-11-21 2003-11-21 Product and method

Publications (1)

Publication Number Publication Date
US20070134656A1 true US20070134656A1 (en) 2007-06-14

Family

ID=9948301

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/535,414 Abandoned US20070134656A1 (en) 2002-11-21 2003-11-21 Product and method
US13/735,740 Abandoned US20130143761A1 (en) 2002-11-21 2013-01-07 Product and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/735,740 Abandoned US20130143761A1 (en) 2002-11-21 2013-01-07 Product and method

Country Status (19)

Country Link
US (2) US20070134656A1 (en)
EP (1) EP1565574B1 (en)
CN (2) CN102191319A (en)
AP (1) AP2333A (en)
AT (1) ATE459726T1 (en)
AU (1) AU2003286262C1 (en)
CA (1) CA2506887A1 (en)
CY (1) CY1110543T1 (en)
DE (1) DE60331577D1 (en)
DK (1) DK1565574T3 (en)
ES (1) ES2342161T3 (en)
GB (1) GB0227238D0 (en)
HK (1) HK1079554A1 (en)
NO (1) NO20052544L (en)
NZ (1) NZ540750A (en)
PT (1) PT1565574E (en)
SI (1) SI1565574T1 (en)
WO (1) WO2004046382A2 (en)
ZA (1) ZA200503797B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110013820A1 (en) * 2009-06-16 2011-01-20 Reed Jason C Methods and systems for measuring a property of a macromolecule
WO2013064702A3 (en) * 2011-11-03 2013-06-27 Diagenic Asa Probes for diagnosis and monitoring of neurodegenerative disease
US20180336681A1 (en) * 2016-01-21 2018-11-22 Riverside Research Institute Method for gestational age estimation and embryonic mutant detection

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0412301D0 (en) 2004-06-02 2004-07-07 Diagenic As Product and method
GB0422211D0 (en) * 2004-10-06 2004-11-03 Randox Lab Ltd Method
FR2900936B1 (en) * 2006-05-15 2013-01-04 Exonhit Therapeutics Sa METHOD AND METHODS FOR DETECTING ALZHEIMER'S DISEASE
GB201000688D0 (en) 2010-01-15 2010-03-03 Diagenic Asa Product and method
US10339527B1 (en) 2014-10-31 2019-07-02 Experian Information Solutions, Inc. System and architecture for electronic fraud detection
CN110669830B (en) * 2019-10-24 2023-05-23 裕策医疗器械江苏有限公司 Processing method, device and storage medium of low-quality FFPE DNA

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981783A (en) * 1986-04-16 1991-01-01 Montefiore Medical Center Method for detecting pathological conditions
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US5633137A (en) * 1992-12-01 1997-05-27 The University Of South Florida Method for measuring specific gene expression: transcriptional activity per gene dose
US5677125A (en) * 1994-01-14 1997-10-14 Vanderbilt University Method of detection and diagnosis of pre-invasive cancer
US5800992A (en) * 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5830645A (en) * 1994-12-09 1998-11-03 The Regents Of The University Of California Comparative fluorescence hybridization to nucleic acid arrays
US5871928A (en) * 1989-06-07 1999-02-16 Fodor; Stephen P. A. Methods for nucleic acid analysis
US5925525A (en) * 1989-06-07 1999-07-20 Affymetrix, Inc. Method of identifying nucleotide differences
US5994076A (en) * 1997-05-21 1999-11-30 Clontech Laboratories, Inc. Methods of assaying differential expression
US6004755A (en) * 1998-04-07 1999-12-21 Incyte Pharmaceuticals, Inc. Quantitative microarray hybridizaton assays
US6040138A (en) * 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US6190857B1 (en) * 1997-03-24 2001-02-20 Urocor, Inc. Diagnosis of disease state using MRNA profiles in peripheral leukocytes
US20020022222A1 (en) * 1997-04-30 2002-02-21 Praveen Sharma Method of preparing a standard diagnostic gene transcript pattern
US20020169560A1 (en) * 2001-05-12 2002-11-14 X-Mine Analysis mechanism for genetic data
US6607879B1 (en) * 1998-02-09 2003-08-19 Incyte Corporation Compositions for the detection of blood cell and immunological response gene expression
US20040014059A1 (en) * 1999-01-06 2004-01-22 Choong-Chin Liew Method for the detection of gene transcripts in blood and uses thereof
US20040241728A1 (en) * 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of lung disease related gene transcripts in blood
US20040241727A1 (en) * 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of schizophrenia related gene transcripts in blood
US20040241726A1 (en) * 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of allergies related gene transcripts in blood
US20040241729A1 (en) * 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of Chagas disease related gene transcripts in blood
US20040248170A1 (en) * 1999-01-06 2004-12-09 Chondrogene Limited Method for the detection of hyperlipidemia related gene transcripts in blood
US20040248169A1 (en) * 1999-01-06 2004-12-09 Chondrogene Limited Method for the detection of obesity related gene transcripts in blood
US20040265869A1 (en) * 1999-01-06 2004-12-30 Chondrogene Limited Method for the detection of type II diabetes related gene transcripts in blood
US20040265868A1 (en) * 1999-01-06 2004-12-30 Chondrogene Limited Method for the detection of depression related gene transcripts in blood
US20050003394A1 (en) * 1999-01-06 2005-01-06 Chondrogene Limited Method for the detection of rheumatoid arthritis related gene transcripts in blood
US20050042630A1 (en) * 1999-01-06 2005-02-24 Chondrogene Limited Method for the detection of asthma related gene transcripts in blood

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059271A2 (en) * 2001-01-25 2002-08-01 Gene Logic, Inc. Gene expression profiles in breast tissue

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981783A (en) * 1986-04-16 1991-01-01 Montefiore Medical Center Method for detecting pathological conditions
US5800992A (en) * 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5871928A (en) * 1989-06-07 1999-02-16 Fodor; Stephen P. A. Methods for nucleic acid analysis
US5925525A (en) * 1989-06-07 1999-07-20 Affymetrix, Inc. Method of identifying nucleotide differences
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5633137A (en) * 1992-12-01 1997-05-27 The University Of South Florida Method for measuring specific gene expression: transcriptional activity per gene dose
US5677125A (en) * 1994-01-14 1997-10-14 Vanderbilt University Method of detection and diagnosis of pre-invasive cancer
US5830645A (en) * 1994-12-09 1998-11-03 The Regents Of The University Of California Comparative fluorescence hybridization to nucleic acid arrays
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US5874219A (en) * 1995-06-07 1999-02-23 Affymetrix, Inc. Methods for concurrently processing multiple biological chip assays
US6040138A (en) * 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US6190857B1 (en) * 1997-03-24 2001-02-20 Urocor, Inc. Diagnosis of disease state using MRNA profiles in peripheral leukocytes
US20020022222A1 (en) * 1997-04-30 2002-02-21 Praveen Sharma Method of preparing a standard diagnostic gene transcript pattern
US5994076A (en) * 1997-05-21 1999-11-30 Clontech Laboratories, Inc. Methods of assaying differential expression
US6607879B1 (en) * 1998-02-09 2003-08-19 Incyte Corporation Compositions for the detection of blood cell and immunological response gene expression
US6004755A (en) * 1998-04-07 1999-12-21 Incyte Pharmaceuticals, Inc. Quantitative microarray hybridizaton assays
US20040241727A1 (en) * 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of schizophrenia related gene transcripts in blood
US20040014059A1 (en) * 1999-01-06 2004-01-22 Choong-Chin Liew Method for the detection of gene transcripts in blood and uses thereof
US20040241728A1 (en) * 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of lung disease related gene transcripts in blood
US20040241726A1 (en) * 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of allergies related gene transcripts in blood
US20040241729A1 (en) * 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of Chagas disease related gene transcripts in blood
US20040248170A1 (en) * 1999-01-06 2004-12-09 Chondrogene Limited Method for the detection of hyperlipidemia related gene transcripts in blood
US20040248169A1 (en) * 1999-01-06 2004-12-09 Chondrogene Limited Method for the detection of obesity related gene transcripts in blood
US20040265869A1 (en) * 1999-01-06 2004-12-30 Chondrogene Limited Method for the detection of type II diabetes related gene transcripts in blood
US20040265868A1 (en) * 1999-01-06 2004-12-30 Chondrogene Limited Method for the detection of depression related gene transcripts in blood
US20050003394A1 (en) * 1999-01-06 2005-01-06 Chondrogene Limited Method for the detection of rheumatoid arthritis related gene transcripts in blood
US20050042630A1 (en) * 1999-01-06 2005-02-24 Chondrogene Limited Method for the detection of asthma related gene transcripts in blood
US20020169560A1 (en) * 2001-05-12 2002-11-14 X-Mine Analysis mechanism for genetic data

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110013820A1 (en) * 2009-06-16 2011-01-20 Reed Jason C Methods and systems for measuring a property of a macromolecule
US9995766B2 (en) * 2009-06-16 2018-06-12 The Regents Of The University Of California Methods and systems for measuring a property of a macromolecule
WO2013064702A3 (en) * 2011-11-03 2013-06-27 Diagenic Asa Probes for diagnosis and monitoring of neurodegenerative disease
US20180336681A1 (en) * 2016-01-21 2018-11-22 Riverside Research Institute Method for gestational age estimation and embryonic mutant detection
US10140708B2 (en) * 2016-01-21 2018-11-27 Riverside Research Institute Method for gestational age estimation and embryonic mutant detection
US10354380B2 (en) * 2016-01-21 2019-07-16 Riverside Research Institute Method for gestational age estimation and embryonic mutant detection

Also Published As

Publication number Publication date
ATE459726T1 (en) 2010-03-15
US20130143761A1 (en) 2013-06-06
CY1110543T1 (en) 2015-04-29
ZA200503797B (en) 2006-11-29
AU2003286262C1 (en) 2008-09-18
GB0227238D0 (en) 2002-12-31
NZ540750A (en) 2008-07-31
DK1565574T3 (en) 2010-06-21
NO20052544L (en) 2005-06-20
WO2004046382A2 (en) 2004-06-03
PT1565574E (en) 2010-06-07
CN102191319A (en) 2011-09-21
DE60331577D1 (en) 2010-04-15
AU2003286262B2 (en) 2008-02-21
AU2003286262A1 (en) 2004-06-15
CA2506887A1 (en) 2004-06-03
HK1079554A1 (en) 2006-04-07
WO2004046382A3 (en) 2004-07-22
AP2333A (en) 2011-12-06
CN1742101A (en) 2006-03-01
ES2342161T3 (en) 2010-07-02
EP1565574B1 (en) 2010-03-03
EP1565574A2 (en) 2005-08-24
AP2005003317A0 (en) 2005-06-30
SI1565574T1 (en) 2010-07-30

Similar Documents

Publication Publication Date Title
US20130143761A1 (en) Product and method
EP0979308B1 (en) Method of preparing a standard diagnostic gene transcript pattern
AU2005250219B2 (en) Oligonucleotides for cancer diagnosis
CA2786860A1 (en) Diagnostic gene expression platform
AU2011265523A1 (en) Alzheimer&#39;s probe kit
CN110418850A (en) Identification and the method for using tiny RNA predictive factor
US20030036077A1 (en) Methods for generating an mRNA expression profile from an ecellular mRNA containing blood sample and using the same to identify functional state markers
US20230058214A1 (en) Identification of Unique Blood-Based Gene Expression Profiles in Children with Regressive Autism Spectrum Disorder (ASD) and Ileocolitis
KR101054952B1 (en) UCCR, a marker for diagnosing liver cancer and predicting patient survival, a kit including the same, and prediction of liver cancer patient survival using the marker
US20070122810A1 (en) Brain tumor marker and method of diagnosing brain tumor
JP2021175381A (en) Method for detecting infant atopic dermatitis
US20120004122A1 (en) Diagnostic Marker for Migraine and Use Thereof
KR101054953B1 (en) SNP 14, a molecule for diagnosing and treating liver cancer, and a kit comprising the same
KR100969856B1 (en) MGP, the markers for diagnosing hepatocellular carcinoma, a kit comprising the same and method for predicting hepatocellular carcinoma using the marker
WO2024059913A1 (en) Methods and kits for assessing medical risk
WO2023057467A1 (en) Screening method for rheumatoid arthritis
CN113416778A (en) Gene combination as molecular marker for diagnosing Alzheimer disease

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIAGENIC AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHARMA, PRAVEEN;SAHNI, NARINDER S.;LONNEBORG, ANDERS;REEL/FRAME:017984/0162

Effective date: 20050622

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION