US20070173452A1 - Use of glp-1 analogs and derivatives administered peripherally in regulation of obesity - Google Patents

Use of glp-1 analogs and derivatives administered peripherally in regulation of obesity Download PDF

Info

Publication number
US20070173452A1
US20070173452A1 US11/693,877 US69387707A US2007173452A1 US 20070173452 A1 US20070173452 A1 US 20070173452A1 US 69387707 A US69387707 A US 69387707A US 2007173452 A1 US2007173452 A1 US 2007173452A1
Authority
US
United States
Prior art keywords
glp
gly
peptide
ala
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/693,877
Inventor
Richard DiMarchi
Suad Efendic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26705788&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20070173452(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US11/693,877 priority Critical patent/US20070173452A1/en
Publication of US20070173452A1 publication Critical patent/US20070173452A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents

Definitions

  • This invention relates to the use of glucagon-like peptide-1 (GLP-1), analogs and derivatives of GLP-1, in methods and compositions, in particular pharmaceutical formulations, that promote is weight-loss.
  • GLP-1 glucagon-like peptide-1
  • Obesity and especially upper body obesity, is the most common nutritional disorder in the over-nourished populations of the world. Numerous studies indicate that lowering body weight dramatically reduces risk for chronic diseases, such as diabetes, hypertension, hyperlipidemia, coronary heart disease, and musculoskeletal diseases. For example, various measures of obesity, including, simple body weight, waist-to-hip ratios, and mesenteric fat depot, are strongly correlated with risk for non-insulin dependent diabetes (NIDDM), also known as type II diabetes. According to the American Diabetes Association (1995) about 80% of NIDDM patients are overweight. Weight-reduction is a specific goal of medical treatment of many chronic diseases, including NIDDM.
  • NIDDM non-insulin dependent diabetes
  • GLP-1 Glucagon-like peptide 1
  • GLP-1R G protein-coupled cell surface receptor
  • GLP-1 stimulates insulin secretion (insulinotropic action) and cAMP formation (Mojsov et al., 1992).
  • GLP-1(-7-36) amide stimulates insulin releaser lowers glucagon secretion, and inhibits gastric secretion and emptying (Nauck, 1993; Gutniak et al, 1992). These gastrointestinal effects of GLP-1 are not found in vagotomized subjects, pointing to a centrally-mediated effect (Orskov et al., 1995).
  • GLP-1 binds with high affinity to isolated rat adipocytes, activating cAMP production (Valverde et al., 1993) and stimulating lipogenesis (Oben, et al., 1991) or lipolysis (Ruiz-Grande et al., 1992). GLP-1 stimulates glycogen synthesis, glucose oxidation, and lactate formation in rat skeletal muscle (Villanueva et al., 1994).
  • m-RNA encoding the pancreatic-type GLP-1 receptor is found in relatively high quantities in rat pancreatic islets, lung, hypothalamus, and stomach (Billock et al., 1996).
  • GLP-1 and GLP-1 receptors are found in the hypothalamus (Krcymann et al., 1989; Kanse et al., 1988)
  • no central role for GLP-1 was determined until a recent report that GLP-1 administered by the intracerebroventricular route (ICV) markedly inhibits feeding in fasted rats (Turton et al., 1996).
  • Turton et al. (1996) specifically state that the effects of GLP-1 on body weight and food intake are caused only by administration of GLP-1 directly in the cerebroventriculum, that intraperitoneal administration of GLP-1, even at relatively high does, does not affect early dark-phase feeding, and that GLP-1 fragments are inactive when administered peripherally, citing (Suzuki et al., 1989).
  • Such statements discourage the use of GLP-1 as a composition (pharmaceutical agent) for reducing body weight, because central routes of administration, such as the ICV route, are not feasible for treating obesity in humans.
  • the physiological effects of GLP-1 documented above have led to the suggestion of its beneficial use for treating diabetes and obesity by transplanting recombinant cell lines encoding GLP-1 or GLP or GLP-1 receptors, for example (WO 96/25487).
  • Methods and compositions in particular pharmaceutical formulations, medicaments, using glucagon-like peptide-1 analogs, derivatives, and active peptides thereof, are effective in reducing body weight and in treating obesity.
  • the definition of obesity varies with geographical location, clinical focus, and social preferences.
  • the methods and compositions of the present invention are suitable for any subject in which weight reduction is desired.
  • the invention is not limited for use in, e.g. diabetic patients.
  • an aspect of the present invention is a method of reducing body weight which includes preparing a composition having a glucagon-like peptide-1 compound and administering it to a subject.
  • Suitable glucagon-like peptide-1 compounds include GLP-1 GLP-1 analogs, GLP-1 derivatives, agonists of the GLP-1 receptor, agonists of the GLP-1 signal transduction cascade, compounds that stimulate synthesis of endogenous GLP-1, compounds that stimulate release of endogenous GLP-1, and pharmaceutically-acceptable salts thereof.
  • a pharmaceutically effective dose that is, a dose sufficient to cause reduction in body weight, is administered.
  • Methods and compositions, in particular medicaments (pharmaceutical compositions or formulations) using glucagon-like peptide-1, analogs or derivatives thereof, are effective in reducing body weight and in treating obesity.
  • Analogs and derivatives of GLP-1 that are useful for the practice of the invention are those with an increased half life compared to GLP-1 and the ability to effect weight lose when administered to a subject over a period of time.
  • the definition of obesity varies with geographical location, clinical focus, and social preferences.
  • the methods and compositions of the present invention are suitable for any subject in which weight reduction is desired.
  • the invention is not limited for use in, e.g. diabetic patients.
  • GLP-1 analogs, derivatives, variants, precursors and homologues are all suitable for the practice of the invention as long as the active fragment that effects weight loss is included.
  • GLP-1 means GLP-1(7-37).
  • the amino-terminus of GLP-1(7-37) has been assigned number 7 and the carboxy-terminus, number 37.
  • the amino acid sequence of GLP-1(7-37) is well-known in the art, but is presented below for the reader's convenience: (SEQ ID NO:1) NH 2 -His 7 -Als-Glu-Gly 10 - Thr-Phe-Thr-Ser-Asp 15 -Val-Ser-Ser-Tyr-Leu 20 - Glu-Gly-Gln-Ala-Ala 25 -Lys-Glu-Phe-Ile-Ala 30 - Trp-Leu-Val-Lys-Gly 35 -Arg-Gly 37 -COOH
  • GLP-1 analog is defined as a molecule having a modification including one or more amino acid substitutions, deletions, inversions, or additions when compared with GLP-1.
  • GLP-1 analogs known in the art include, for example, GLP-1(7-34) and GLP-1(7-35), GLP-1(7-36), Val 8 -GLP-1(7-37), Gln 9 -GLP-1(7-37), D-Gln 9 -GLP-1(7-37), Thr 16 -Lys 18 -GLP-1(7-37), and Lys 18 -GLP-1(7-37).
  • Preferred GLP-1 analogs are GLP-1(7-34) and GLP-1(7-35) which are disclosed in U.S. Pat. No. 5,118,666, and also GLP-1(7-36). These compounds are the biologically processed forms of GLP-1 having insulinotropic properties. Other GLP-1 analogs are disclosed in U.S. Pat. No. 5,545,618.
  • a “GLP-1 derivative” is defined as a molecule having the amino acid sequence of GLP-1 or of a GLP-1 analog, but additionally having at least one chemical modification of one or more of its amino acid side groups, a-carbon atoms, terminal amino group, or terminal carboxylic acid group.
  • a chemical modification includes adding chemical moieties, creating new bonds, and removing chemical moieties. Modifications at amino acid side groups include acylation of lysine e-amino groups, N-alkylation of arginine, histidine, or lysine, alkylation of glutamic or aspartic carboxylic acid groups, and deamidation of glutamine or asparagine.
  • Modifications of the terminal amino include the des-amino, N-lower alkyl, N-di-lower alkyl, and N-acyl modifications.
  • Modifications of the terminal carboxy group include the amide, lower alkyl amide, dialkyl amide, and lower alkyl ester modifications.
  • a lower alkyl is a C 1 -C 4 alkyl.
  • one or more side groups, or terminal groups may be protected by protective groups known to the ordinarily-skilled protein chemist.
  • the ⁇ -carbon of an amino acid may be mono- or di-methylated.
  • GLP-1 analogs and derivatives for use in the present invention is composed of the various GLP-1 molecules claimed in U.S. Pat. No. 5,545,618 ('618).
  • Effective analogs of the active GLP-1 peptides, 7-34, 7-35, 7-36 and 7-37 have amino acid substitutions as positions 7-10 and/or are truncated at the C-terminus and/or contain various other amino acid substitutions in the basic peptide.
  • Analogs having D-amino acid substitutions in the 7 and 8 positions and/or N-alkylated or N-acylated amino acids in the 7 position are particularly resistant to degradation in vivo.
  • analogs of the invention in '618 which show enhanced insulin stimulating properties have the sequence, of native GLP-1, 7-34, 7-35, 7-36, or 7-37, or the C-terminal amide thereof, with at least one modification selected from the group consisting of:
  • the substituted amino acids may be in the D form.
  • the amion acids substituted at position 7 can also be in the N-acylated or N-alkylated forms.
  • the invention of '618 is directed to peptides which show enhanced degradation resistance in plasma as compared to GLP-1 (7-37) wherein this enhanced resistance to degradation.
  • any of the abovementioned truncated forms of GLP-1(7-34) to GLP-1(7-37) or their C-terminal amidated forms is modified by
  • analogs which are resistant to degradation include (N-acyl (1-6C) AA) 7 GLP-1(7-37) and (N-alkyl (1-6C AA) 7 GLP-1 (7-37) wherein when AA is a lysyl residue, one or both nitrogens may be alkylated or acylated, AA symbolizes any amino acid consistent with retention of insulin stimulating activity.
  • the D residue of any acidic or neutral amino acid can be used at position 7 and of any amino acid at position 8, again consistent with insulin stimulating activity.
  • Either or both of position 7 and 8 can be substituted by a D-amino acid; the D-amino acid at position 7 can also be acylated or alkylated.
  • the preferred analogs of the '618 invention are those wherein the (7-34), (7-35), or (7-37) form of GLP-1 has been modified only by substitution of a neutral amino acid, arginine, or a D form of lysine for lysine at position 26 and/or 34 and/or a neutral amino acid, lysine, or a D form of arginine for arginine at position 36 (section (a)).
  • amino acid substituted for lysine at position 26 and 34 is selected from the croup consisting of K + ,G, S, A, L, I, Q, R, R + and M, and for arginine at position 36 is selected from the group of K, K + , G, S, A, L, I, Q, M, and R + . (where + indicates a D form).
  • analogs wherein the sole modification is the substitution of an oxidation-resistant amino acid for tryptophan at position 31 (section (b)).
  • Particularly favored substitutions are selected from the group consisting of F, V, L, I, A, and Y.
  • analogs wherein the only modification is at least one of those specific substitutions set forth in section (c).
  • Particularly preferred are those analogs wherein combined substitutions of S for G at position 22, R at positions 23 and 24 for Q and A respectively, and Q for K at position 26 have been made, ox substitutions of Y for V at position 26 and K for S at position 18 have been made, or these substitutions plus D for E at positions 21 have been made.
  • analogs wherein the sole modifications are those set forth in section (d). Particularly preferred among these are those wherein the small neutral amino acid substituted for alanine at position 8 is selected from the group consisting of S, S + , GC, C + , Sar, A + , beta-ala and Aib; and/or the acidic or neutral amino acid substituted for glutamic acid at position 9 is selected from the group consisting of E + , D, D + , Cya T, T + , N, N + , Q, Q + , Cit, MSO, and acetyl-K; and/or the alternative neutral amino acid substituted for glycine at position 10 is selected from the group consisting of S, S + , Y, Y + , T, T + , N, N + , Q, Q + , Cit, MSO, acetyl-K, F, and F+; and/or wherein D is substituted for E at position 15.
  • substitutions are those wherein the amino acid substituted for histidine at position 7 is selected from the group consisting of H + , Y, Y + , F, F + , R, R + , Orn, Orn + , M, M + , N-formyl-H, N-formyl-H + , N-acetyl-H, N-acetyl-H + , N-isopropyl-H, N-isopropyl-H + , N-acetyl-K; N-acetyl-K + , P and P + .
  • Preferred forms of analogs with enhanced stability also have only one, or at most two, amino acid modifications.
  • Preferred substitutions for the histidine at position 7 include the D-forms of acidic or neutral amino acids or the D-forms of histidines. Preferred are P + , D + , E + , N + , Q + , L + , V + , I + and H + .
  • the histidine at position 7, or a replacement (D or L), can also be N-alkylated (1-6C) or N-acylated (1-6C).
  • Alkyl groups are straight or branched chain (including cyclic) hydrocarbyl residues of the indicated member of C.
  • Acyl groups are of the formula RCO-wherein R is alkyl.
  • Preferred alkyl groups are t-propyl, ⁇ -propyl and ethyl; preferred acyl are acetyl and propionyl.
  • Preferred residues which may be alkylated or acylated include P, D, E, N, Q, V, L, I, K and H in either the D or L form.
  • Preferred substitutions for alanine at position 8 are the D-forms of P, V, L, I and A; also preferred are the D-forms of D, E, N, Q, K, T, S and H.
  • a preferred group of GLP-1 analogs and derivatives for use in the present invention is composed of molecules of the formula: (SEQ ID NO:2) R 1 - X -Glu-Gly 10 - Thr-Phe-Thr-Ser-Asp 15 -Val-Ser-Ser-Tyr-Leu 20 - Y -Gly-Gln-Ala-Ala 25 -Lys- Z -Phe-Ile-Ala 30 - Trp-Leu-Val-Lys-Gly 35 -Arg- R 2
  • R 1 is selected from the group consisting of L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, b-hydroxy-histidine, homohistidine, alpha-fluoromethyl-histidine, and alpha-methyl-histidine;
  • X is selected from the group consisting of Ala, Gly, Val, Thr, Ile, and alpha-methyl-Ala;
  • Y is selected from the group consisting of Glu, Gln, Ala, Thr, Ser, and Gly;
  • Z is selected from the group consisting of Glu, Gln, Ala, Thr, Ser, and Gly, and
  • R 2 is selected from the group consisting of NH 2 , and Gly-OH; provided that the compound has an isoelectric point in the range from about 6.0 to about 9.0 and further providing that when R 1 is His, X is Ala, Y is Glu, and Z is Glu, R 2 must be
  • GLP-1 analogs and derivatives having an isoelectric point in the range from about 6.0 to about 9.0 have been disclosed and include, for example;
  • WO 91/11457 Another preferred group of active compounds for use in the present invention is disclosed in WO 91/11457, (related to U.S. Pat. No. 5,545,618) and includes GLP-1(7-34), GLP-1(7-35), GLP-1(7-36), or GLP-1(7-37), or the amide form thereof, and pharmaceutically-acceptable salts thereof, having at least one modification including those shown below:
  • DPP IV dipeptidyl-peptidase IV
  • GLP-1 analogs and derivatives that are protected from the activity of DPP IV is preferred, and the administration of Gly 8 -GLP-1(7-36)NH 2 , Val 8 -GLP-1(7-37)OH, a-methyl-Ala 8 -GLP-1(7-36)NH 2 , and Gly 8 -Gln 21 -GLP-1(7-37)OH, or pharmaceutically-acceptable salts thereof, is more preferred.
  • Such a molecule includes a peptide having one of the following amino acid sequences. (SEQ ID NO:3) NH 2 -His 7 -Ala-Glu-Gly 10 - Thr-Phe-Thr-Ser-Asp 15 -Val-Ser-Ser-Tyr-Leu 20 - Glu-Gly-Gln-Ala-Ala 25 -Lys-Glu-Phe-Ile-Ala 30 - Trp-Leu-Val-X
  • X may be Lys and Lys-Gly; or a derivative of said peptide, and wherein said peptide may be a pharmaceutically-acceptable acid addition salt of said peptide; a pharmaceutically-acceptable carboxylate salt of said peptide; a pharmaceutically-acceptable lower alkylester of said peptide; or a pharmaceutically-acceptable amide of said peptide selected from the group consisting of amide, lower alkyl amide, and lower dialkyl amide.
  • the invention in '666 pertains to a peptide fragment which is insulinotropic and is derivable from a naturally occurring amino acid sequence.
  • the invention comprises a compound selected from the group consisting of:
  • the invention also includes a compound selected from the group consisting of:
  • A a peptide comprising the sequence: His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser- Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile- Ala-Trp-Leu-Val-X wherein X is selected form the group consisting of:
  • X is a peptide comprising the sequence: His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser- Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile- Ala-Trp-Leu-Val-Lys-Gly-Arg
  • Another preferred group of molecules for use in the present invention consists of compounds claimed in U.S. Pat. No. 5,512,549 having the general formula: (SEQ ID NO:4) R 1 -Ala-Glu-Gly 10 - Thr-Phe-Thr-Ser-Asp 15 -Val-Ser-Ser-Tyr-Leu 20 - Glu-Gly-Gln-Ala-Ala 25 - Xaa -Glu-Phe-Ile-Ala 30 - Trp-Leu-Val-Lys-Gly 35 -Arg- R 3
  • R 2 R 1 -Ala-Glu-Gly 10 - Thr-Phe-Thr-Ser-Asp 15 -Val-Ser-Ser-Tyr-Leu 20 - Glu-Gly-Gln-Ala-Ala 25 - Xaa -Glu-Phe-Ile-Ala 30 - Trp-Leu-Val-Lys-Gly 35 -
  • R 1 may be 4-imidazopropionyl, 4-imidazoacetyl, or 4-imidazo-a, a dimethyl-acetyl
  • R 2 may be C 6 -C 10 unbranched acyl, or absent
  • R 3 may be Gly-OH or NH 2
  • Xaa is Lys or Arg.
  • More preferred compounds of SEQ ID NO:4 for use in the present invention are those in which Xaa is Arg and R 2 is a C 6 -C 10 unbranched acyl.
  • Highly preferred compounds of SEQ ID NO:4 for use in the present invention are those in which Xaa is Arg, R 2 is C 6 -C 10 unbranched acyl, and R 3 is Gly-OH.
  • More highly preferred compounds of SEQ ID NO:4 for use in the present invention are those in which Xaa is Arg, R 2 is a C 6 -C 10 unbranched acyl, R 3 is Gly-OH, and R 1 is 4-imidazopropionyl.
  • the most preferred compound of SEQ ID NO:4 for use in the present invention is that in which Xaa is Arg, R 2 is C 8 unbranched acyl, R 3 is Gly-OH and R 1 is 4-imidazopropionyl.
  • Such a molecule includes a peptide having the amino acid sequence: (SEQ ID NO:1) NH 2 -His 7 -Ala-Glu-Gly 10 - Thr-Phe-Thr-Ser-Asp 15 -Val-Ser-Ser-Tyr-Leu 20 - Glu-Gly-Gln-Ala-Ala 25 -Lys-Glu-Phe-Ile-Ala 30 - Trp-Leu-Val-Lys-Gly 35 -Arg-Gly 37 -OH
  • said peptide may be a pharmaceutically-acceptable acid addition salt of said peptide; a pharmaceutically-acceptable carboxylate salt of said peptide; a pharmaceutically-acceptable lower alkylester of said peptide; or a pharmaceutically-acceptable amide of said peptide wherein the amide may be an amide, lower alkyl amide, or lower dialkyl amide.
  • GLP-1(7-36) amide or a pharmaceutically-acceptable salt thereof, in the present invention is most highly preferred.
  • the amino acid sequence of GLP-1 (7-36) amide is; (SEQ ID NO:5) NH 2 -His 7 -Ala-Glu-Gly 10 - Thr-Phe-Thr-Ser-Asp 15 -Val-Ser-Ser-Tyr-Leu 20 - Glu-Gly-Gln-Ala-Ala 25 -Lys-Glu-Phe-Ile-Ala 30 - Trp-Leu-Val-Lys-Gly 35 -Arg-NH 2
  • Val 8 -GLP-1(7-37)OH or a pharmaceutically-acceptable salt thereof, in the present invention is most highly preferred.
  • the amino acid sequence of Val 8 -GLP-1(7-37)OH is: (SEQ ID NO:6) NH 2 -His 7 -Ala-Glu-Gly 10 - Thr-Phe-Thr-Ser-Asp 15 -Val-Ser-Ser-Tyr-Leu 20 - Glu-Gly-Gln-Ala-Ala 25 -Lys-Glu-Phe-Ile-Ala 30 - Trp-Leu-Val-Lys-Gly 35 -Arg-Gly 37 -OH Preparation of the Compounds
  • the amino acid portion of the active compound used in the present invention is made by 1) solid-phase synthetic chemistry; 2) purification of GLP molecules from natural sources; 3) recombinant DNA technology or 4) a combination of these methods.
  • the amino acid portion may be synthesized by solid-phase methodology utilizing a 430A peptide synthesizer (PE-Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, Calif. 94404) and synthesis cycles supplied by PE-Applied Biosystems.
  • BOC-amino acids and other reagents are commercially available from PE-Applied Biosystems and other chemical supply houses. Sequential BOC chemistry using double couple protocols are applied to the starting p-methyl benzhydryl amine resins for the production of C-terminal carboxamides.
  • the corresponding PAM resin is used for the production of C-terminal acids.
  • Asn, Gln, and Arg are coupled using preformed hydroxy benzotriazole esters.
  • the following side chain protecting groups may be used:
  • BOC deprotection may be accomplished with trifluoroacetic acid in methylene chloride.
  • the peptides may be deprotected and cleaved from the resin with anhydrous hydrogen fluoride (HF) containing 10%: meta-cresol.
  • HF hydrous hydrogen fluoride
  • Cleavage of the side chain protecting group(s) and of the peptide from the resin as carried out at ⁇ 5° C. to 5° C., preferably on ice for 60 minutes.
  • the peptide/resin is washed with ether, and the peptide extracted with glacial acetic acid and lyophilized.
  • the coding sequences may be wholly synthetic or the result of modifications to the larger, native glucagon-encoding DNA.
  • a DNA sequence that encodes preproglucagon is presented in Lund et al. 1982 and may be used as starting material in the semisynthetic production of the compounds of the present invention by altering the native sequence to achieve the desired results.
  • Synthetic genes the in vitro or in vivo transcription and translation of which results in the production of a GLP-1 molecule, may be constructed by techniques well known in the art. Owing to the natural degeneracy of the genetic code, the skilled artisan will recognize that a sizable yet definite number of DNA sequences may be constructed, all of which encode GLP-1 molecules of the present invention.
  • the methodology of synthetic gene construction is well-known in the art (Brown et al. 1979.)
  • the DNA sequence is designed from the desired amino acid sequence using the genetic code, which is easily ascertained by the ordinarily-skilled biologist. Once designed, the sequence itself may be generated using conventional DNA synthesizing apparatus such as the Model 380A or 380B DNA synthesizers (PE-Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, Calif. 94404).
  • an engineered synthetic DNA sequence is inserted in any one of many appropriate recombinant DNA expression vectors through the use of appropriate restriction endonucleases (Maniatis et al., 1989). Restriction endonuclease cleavage sites are engineered into either end of the GLP-1 molecule-encoding DNA to facilitate isolation from, and integration into, amplification and expression vectors well-known in the art. The particular endonucleases employed will be dictated by the restriction endonuclease cleavage pattern of the parent expression vector employed. Restriction sites are chosen to properly orient the coding sequence with control sequences, thereby achieving proper in-frame reading and expression of the protein of interest. The coding sequence must be positioned to be in proper reading frame with the promoter and ribosome binding site of the expression vector, both of which are functional in the host cell in which the protein is to be expressed.
  • the promoter-operator region of the synthetic gene is placed in the same sequential orientation with respect to the ATG start codon of the synthetic gene.
  • the next step is to place the vector into a suitable cell and thereby construct a recombinant host cell useful for expressing the polypeptide.
  • Proteins expressed in high-level bacterial expression systems characteristically aggregate in granules or inclusion bodies, which contain high levels of the overexpressed protein. Such protein aggregates typically must be recovered, solubilized, denatured and refolded using techniques well known in the art (Kreuger et al., 1990; U.S. Pat. No. 4,923,967).
  • Alterations to a precursor GLP-1 or GLP-1 amino acid sequence to produce a desired GLP-1 analog or GLP-1 derivative, or active fragment thereof, are made by well-known methods: chemical modification, enzymatic modification, or a combination of chemical and enzymatic modifications.
  • the techniques of classical solution phase methods and semi-synthetic methods may also be useful for preparing the GLP-1 molecules used in the present invention.
  • Methods for preparing the GLP-1 molecules of the present invention are well known to an ordinarily skilled peptide chemist.
  • Addition of an acyl group to the epsilon amino group of Lys 34 may be accomplished using any one of a variety of methods known in the art ( Bioconjugate Chem. 1990: Hashimoto et al., 1989),
  • an N-hydroxy-succinimide ester of octanoic acid can be added to the lysyl-epsilon amine using 50% acetonitrile in borate buffer.
  • the peptide can be acylated either before or after the imidazolic group is added.
  • the lysine in the GLP-1 derivative can be acylated as taught in WO 96/29342.
  • GLP-1 (7-36)amide and GLP-1 (7-37) molecules have been described (U.S. Pat. Nos. 5,120,712; 5,545,618 and 5,118,666; Orskov et al., 1989; WO 91/11457).
  • amino and carboxy terminal amino acid residues of GLP-1 derivatives may be protected, or, optionally, only one of the termini is protected.
  • protecting groups include, for example, formyl, acetyl, isopropyl, butoxycarbonyl, fluorenylmethoxycarbonyl, carbobenzyloxy, and the like.
  • Representative carboxy-protecting groups include, fox example, benzyl ester, methyl ester, ethyl ester, t-butyl ester, p-nitro phenyl ester, and the like.
  • Carboxy-terminal, lower-alkyl-ester, GLP-1 derivatives used in the present invention are prepared by reacting the desired (C 1 -C 4 ) alkanol with the desired polypeptide in the presence of a catalytic acid such as hydrochloric acid.
  • a catalytic acid such as hydrochloric acid.
  • Appropriate conditions for such alkyl ester formation include a reaction temperature of about 50° C. and reaction time of about 1 hour to about 3 hours.
  • alkyl ester derivatives of the Asp and/or Glu residues can be formed.
  • a pharmaceutically-acceptable salt form of GLP-1, of a GLP-1 analog, or of a GLP-1 derivative may be used in the present invention.
  • Acids commonly employed to form acid addition salts are inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like, and organic acids such, as p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromophenyl-sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, and the like.
  • salts include the sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caproate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate
  • Base addition salts include those derived from inorganic bases, such as ammonium or alkali or alkaline earth metal hydroxides, carbonates, bicarbonates, and the like.
  • bases useful in preparing the salts of this invention thus include sodium hydroxide, potassium hydroxide, ammonium hydroxide, potassium carbonate, and the like.
  • the salt forms are particularly preferred,
  • a GLP-1, GLP-1 analog, or GLP-1 derivative used in the present invention may be formulated with one or more excipients before use in the present invention.
  • the active compound used in the present invention may be complexed with a divalent metal cation by well-known methods.
  • metal cations include, for example, Zn ++ , Mn ++ , Fe ++ , Co ++ , Cd ++ , Ni ++ , and the like.
  • the active compound used in the present invention may be combined with a pharmaceutically-acceptable buffer, and the pH adjusted to provide acceptable stability, and a pH acceptable for parenteral administration.
  • one or more pharmaceutically-acceptable anti-microbial agents may be added.
  • Meta-cresol and phenol are preferred pharmaceutically-acceptable anti-microbial agents.
  • One or more pharmaceutically-acceptable salts may be added to adjust the ionic strength or tonicity.
  • One or more excipients may be added to further adjust the isotonicity of the formulation. Glycerin is an example of an isotonicity-adjusting excipient.
  • GLP-1 receptors and the signal transduction cascade initiated by ligand binding to the GLP-1 receptor are described in WO 96/25487; Thorens, 1992; Thorens et al., 1993; Widmann et al., 1994.
  • the GLP-1 receptor is a membrane protein with seven transmembrane domains, coupled to heterotrimeric G-proteins that link activation of the receptor by ligand binding to production of intracellular secondary messengers, especially, cyclic adenosine monophosphate (cAMP).
  • cAMP cyclic adenosine monophosphate
  • cAMP activates a specific protein kinase, cAMP-dependent protein kinase (protein kinase A, PKA).
  • This enzyme phosphorylates a number of key response elements present in the promoter region of certain genes.
  • phosphorylation of some specific proteins of the regulated secretary pathway stimulates peptide secretion by stimulating exocytosis of secretory granules.
  • STC-1 cells Various compounds are known to stimulate secretion of endogenous GLP-1. For example, exposure of STC-1 cells to certain secretagogues, such as, the adenylate cyclase activator, forskolin, or the protein kinase-C-stimulating agent, 12-O-tetradecanoylphobol-13-acetate (TPA), caused significant increases in release of GLP-1 (Abello et al., 1994).
  • secretagogues such as, the adenylate cyclase activator, forskolin, or the protein kinase-C-stimulating agent, 12-O-tetradecanoylphobol-13-acetate (TPA)
  • TPA 12-O-tetradecanoylphobol-13-acetate
  • the STC-1 cell line originated from an intestinal tumor in transgenic mice carrying insulin-promoting oncogenes, and STC-1 cells are known to contain m-RNA transcripts of pro-glucagon, from which GLP-1
  • somatostatin gastric inhibitory polypeptide
  • glucose-dependent insulinotropic peptide bombesin
  • calcitonin gene-related peptide gastrin-releasing peptide
  • cholinergic agonists the b-adrenergic agonist, isoproterenol
  • muscarinic cholinergic agonist bethanechol
  • Administration may be via any route known to be effective by the physician of ordinary skill, except that parenteral administration directly into the central nervous system is not a route taught or claimed in this invention. Peripheral, parenteral administration is preferred. Parenteral administration is commonly understood in the medical literature as the injection of a dosage form into the body by a sterile syringe or some other mechanical device such as an infusion pump. For the purpose of this invention, peripheral parenteral routes include intravenous, intramuscular, subcutaneous, and intraperitoneal routes of administration. Intravenous, intramuscular, and subcutaneous routes of administration of the compounds used in the present invention are more preferred. Intravenous and subcutaneous routes of administration of the compounds used in the present invention are yet more highly preferred. For parenteral administration, an active compound used in the present invention preferably is combined with distilled water at an appropriate pH.
  • Certain compounds used in the present invention to effect weight-loss may also be amenable to administration by the oral, rectal, nasal, or lower respiratory routes, which are non-parenteral routes.
  • the lower respiratory route is preferred for administration of peptides used in the instant invention.
  • Various formulations of peptide compounds for administration by the lower respiratory tract are disclosed in U.S. Pat. Nos. 5,284,656 and 5,364,838.
  • Publication WO 96/19197 discloses aerosol formulations of various peptides suitable for enhancing lower respiratory tract absorption of the compounds used in the instant invention.
  • the oral route of administration is preferred for compounds used in the instant invention.
  • Controlled release preparations may be achieved by the use of polymers to complex or absorb the active compound used in the present invention.
  • Extended duration may be obtained by selecting appropriate macromolecules, for example, polyesters, polyamino acids, polyvinylpyrrolidone, ethylenevinyl acetate, methylcellulose, carboxymethylcellulose, or protamine sulfate, and by selecting the concentration of macromolecules, as well as the methods of incorporation, in order to prolong release.
  • Another possible method to extend the duration of action by controlled release preparations is to incorporate an active compound used in the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly (lactic acid) or ethylene vinylacetate copolymers.
  • microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules, or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules, or in macroemulsions.
  • the dose of GLP-1, GLP-1 analog, or GLP-1 derivatives, or active fragments effective in a particular subject to cause weight-loss will depend on a number of factors, among which are included the subject's sex, weight and age, the underlying causes of obesity, the route of administration and bioavailability, the persistence of the administered compound in the body, the formulation, and the potency. Where administration is intermittent, the dose per administration should also take into account the interval between doses, and the bioavailability of the administered compound. Where administration is continuous, a suitable dosage rate is between 0.25 and 6 pmol/kg body weight/min, preferably from about 0.5 to about 1.2 pmol/kg/min. It is within the skill of the ordinary physician to titrate the dose and rate of administration of compositions containing GLP-1, GLP-1 analogs, or GLP-1 derivatives, or active fragments thereof to achieve the desired clinical result, that is weight loss.
  • “Pharmaceutically acceptable” means suitable for administration to a human, that is, does not contain toxic elements, undesirable contaminants or the like, and does not interfere with the activity of the active compounds therein.
  • NIDDM non-insulin dependent diabetes mellitus
  • GLP-1 solutions of GLP-1 were prepared by combining 100 nmol of GLP-1(7-36) amide and 0.025 mL human albumin solution (20%), then adjusting the pH to 4 using 5 molar acetic acid, and finally bringing the volume to 1 mL using normal saline.
  • the solution was administered at a GLP-1 dose rate of 1.2 pmol/kg/minute.
  • the volumetric delivery rate of the Minimed pump (Minimed Europe, Paris) used to administer the GLP-1 solution was 0.05-0.07 mL/h.
  • the subcutaneous site of administration was the abdomen.
  • This treatment with GLP-1 was compared with two weeks of intensive insulin therapy prior to and after the GLP-1 infusion.
  • insulin was administered subcutaneously before each meal (see Table 1).
  • the GLP-1 infusion no insulin was administered.
  • the patients adhered to a standard diabetic diet consisting of, on a caloric basis, about 55% carbohydrate, 30% fat, and 15% protein. No exercise regimen was followed. The patients were not hospitalized, and remained out-patients throughout the entire trial period.
  • the four patients lost an average of 3.5 ⁇ 1.2 kg body weight, while they lost only 1.3 ⁇ 0.6 kg during the first two weeks of intensive insulin treatment, and actually gained weight, on average, during the second two weeks of intensive insulin treatment. All values are individual values, or mean ⁇ SEM (standard error of the mean). No data are available for patient MP for the second insulin treatment period. TABLE 1 Insulin Treatment Regimes. The four values represent the amount of insulin administered subcutaneously (IU) to each patient just prior to four daily meals.
  • IU subcutaneously
  • GLP-1 (7-36) amide was administered by continuous subcutaneous infusion for four weeks, immediately preceded and followed by two weeks of intensive insulin therapy.
  • GLP-1 Insulin Insulin GLP-1 Insulin Patient Initial 2 weeks 4 weeks 2 weeks 2 weeks 4 weeks 2 weeks VN 101.5 99.0 92.0 95.0 ⁇ 2.5 ⁇ 7.0 3.0 NW 113.0 111.0 108.0 108.0 ⁇ 2.0 ⁇ 3.0 0.0 HF 94.0 93.5 91.5 91.5 ⁇ 0.5 ⁇ 2.0 0.0 MP 82.0 81.9 80.0 — ⁇ 0.1 ⁇ 1.9 — 97.5 ⁇ 6.5 96.4 ⁇ 6.0 92.9 ⁇ 5.8 98.2 ⁇ 5.0 ⁇ 1.3 ⁇ 0.6 ⁇ 3.5 ⁇ 1.2 +1.0 ⁇ 1.0 ⁇ 1.0

Abstract

This invention relates the use of glucagon-like peptides such as GLP-1, a GLP-1 analog, or a GLP-1 derivative in methods and compositions for reducing body weight.

Description

  • This application claims priority from co-pending U.S. provisional application 60/030,213, filed Nov. 5, 1996.
  • BACKGROUND OF THE INVENTION
  • This invention relates to the use of glucagon-like peptide-1 (GLP-1), analogs and derivatives of GLP-1, in methods and compositions, in particular pharmaceutical formulations, that promote is weight-loss.
  • Obesity, and especially upper body obesity, is the most common nutritional disorder in the over-nourished populations of the world. Numerous studies indicate that lowering body weight dramatically reduces risk for chronic diseases, such as diabetes, hypertension, hyperlipidemia, coronary heart disease, and musculoskeletal diseases. For example, various measures of obesity, including, simple body weight, waist-to-hip ratios, and mesenteric fat depot, are strongly correlated with risk for non-insulin dependent diabetes (NIDDM), also known as type II diabetes. According to the American Diabetes Association (1995) about 80% of NIDDM patients are overweight. Weight-reduction is a specific goal of medical treatment of many chronic diseases, including NIDDM.
  • Current methods for promoting weight loss are not completely satisfactory. Some obese patients may lose weight through deliberate modification of behavior, such as changing diet and increased exercise. Failure to achieve weight loss by these methods may be due to genetic factors that cause increased appetite, a preference for high-fat foods, or a tendency for lipogenic metabolism. Unfortunately, an estimated 33 billion dollars a year are spent on weight-loss measures that are largely futile. Thus, new methods and compositions such as pharmaceutical agents that promote weight-loss are urgently needed to complement old approaches.
  • Glucagon-like peptide 1 (GLP-1) is known to play a critical role in the regulation of the physiological response to feeding. GLP-1 is processed from proglucagon and is released into the blood from the endocrine L-cells mainly located in the distal small intestine and colon in response to ingestion of a meal (Nilsson et al., 1991; Krcymann et al., 1987: Mojsov at al. 1986). GLP-1 acts through a G protein-coupled cell surface receptor (GLP-1R) and enhances nutrient-induced insulin synthesis (Fehmann et all 1992) and release (Fehmann et al., 1995). GLP-1 stimulates insulin secretion (insulinotropic action) and cAMP formation (Mojsov et al., 1992). GLP-1(-7-36) amide stimulates insulin releaser lowers glucagon secretion, and inhibits gastric secretion and emptying (Nauck, 1993; Gutniak et al, 1992). These gastrointestinal effects of GLP-1 are not found in vagotomized subjects, pointing to a centrally-mediated effect (Orskov et al., 1995). GLP-1 binds with high affinity to isolated rat adipocytes, activating cAMP production (Valverde et al., 1993) and stimulating lipogenesis (Oben, et al., 1991) or lipolysis (Ruiz-Grande et al., 1992). GLP-1 stimulates glycogen synthesis, glucose oxidation, and lactate formation in rat skeletal muscle (Villanueva et al., 1994).
  • m-RNA encoding the pancreatic-type GLP-1 receptor is found in relatively high quantities in rat pancreatic islets, lung, hypothalamus, and stomach (Billock et al., 1996). Interestingly, despite the knowledge that both GLP-1 and GLP-1 receptors are found in the hypothalamus (Krcymann et al., 1989; Kanse et al., 1988), no central role for GLP-1 was determined until a recent report that GLP-1 administered by the intracerebroventricular route (ICV) markedly inhibits feeding in fasted rats (Turton et al., 1996). The same report indicates that after ICV administration of GLP-1, c-fos, a marker of neuronal activation, appears exclusively in the paraventricular nucleus of the hypothalamus and in the central nucleus of the amygdala, two regions of the brain of primary importance in the regulation of feeding (Morley, 1987) ICV GLP-1 also significantly reduces food intake following injection of the powerful feeding stimulant, neuropeptide Y, in animals fed ad libitum, (Turton et al., 1996). A subsequent report demonstrates that GLP-1 administered centrally or peripherally is involved in control of body temperature regulation, but does not affect food intake after acute intraperitoneal administration in rats (O'Shea et al., 1996). A recent article reports that lateral ventricular injections of GLP-1 in sated rats induce extensive stimulation of Fos-ir in the paraventricular nucleus and parvocellular central nucleus of the amygdala, substantiating Turton, et al. (Rowland et al., 1996). Additionally, these investigators described strong activation of other centers involved in the regulation of feeding, including the immediate early gene protein product in the nucleus of the tractus solitarius, the pontine lateral parabrachial nucleus, the basal nucleus of the stria terminals, and the area postrema. GLP-1 receptors accessible to peripheral GLP-1 are found in the rat subfornical organ and area postrema (Orskov et al., 1996).
  • Turton et al. (1996) specifically state that the effects of GLP-1 on body weight and food intake are caused only by administration of GLP-1 directly in the cerebroventriculum, that intraperitoneal administration of GLP-1, even at relatively high does, does not affect early dark-phase feeding, and that GLP-1 fragments are inactive when administered peripherally, citing (Suzuki et al., 1989). Such statements discourage the use of GLP-1 as a composition (pharmaceutical agent) for reducing body weight, because central routes of administration, such as the ICV route, are not feasible for treating obesity in humans. The physiological effects of GLP-1 documented above have led to the suggestion of its beneficial use for treating diabetes and obesity by transplanting recombinant cell lines encoding GLP-1 or GLP or GLP-1 receptors, for example (WO 96/25487).
  • Another publication discouraged the use of GLP-1 by interpreting the art to show that “peripheral administration of GLP-1 had no effect on feeding behavior.” (WO 97/31943, page 3). This publication also reported an effect of GLP-2 on food intake when administered peripherally.)
  • SUMMARY OF THE INVENTION
  • Methods and compositions, in particular pharmaceutical formulations, medicaments, using glucagon-like peptide-1 analogs, derivatives, and active peptides thereof, are effective in reducing body weight and in treating obesity. The definition of obesity varies with geographical location, clinical focus, and social preferences. The methods and compositions of the present invention however, are suitable for any subject in which weight reduction is desired. The invention is not limited for use in, e.g. diabetic patients.
  • Peripheral administration of GLP-1 (7-36) amide to obese patients quite unexpectedly, and contrary to the implications of Turton et al. (1996), causes a significant reduction in body weight. Thus, an aspect of the present invention is a method of reducing body weight which includes preparing a composition having a glucagon-like peptide-1 compound and administering it to a subject. Suitable glucagon-like peptide-1 compounds include GLP-1 GLP-1 analogs, GLP-1 derivatives, agonists of the GLP-1 receptor, agonists of the GLP-1 signal transduction cascade, compounds that stimulate synthesis of endogenous GLP-1, compounds that stimulate release of endogenous GLP-1, and pharmaceutically-acceptable salts thereof. A pharmaceutically effective dose, that is, a dose sufficient to cause reduction in body weight, is administered.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Methods and compositions, in particular medicaments (pharmaceutical compositions or formulations) using glucagon-like peptide-1, analogs or derivatives thereof, are effective in reducing body weight and in treating obesity. Analogs and derivatives of GLP-1 that are useful for the practice of the invention are those with an increased half life compared to GLP-1 and the ability to effect weight lose when administered to a subject over a period of time. The definition of obesity varies with geographical location, clinical focus, and social preferences. The methods and compositions of the present invention, however, are suitable for any subject in which weight reduction is desired. The invention is not limited for use in, e.g. diabetic patients.
  • Compounds
  • GLP-1 analogs, derivatives, variants, precursors and homologues are all suitable for the practice of the invention as long as the active fragment that effects weight loss is included.
  • “GLP-1” means GLP-1(7-37). By custom in the art, the amino-terminus of GLP-1(7-37) has been assigned number 7 and the carboxy-terminus, number 37. The amino acid sequence of GLP-1(7-37) is well-known in the art, but is presented below for the reader's convenience:
    (SEQ ID NO:1)
                         NH2-His7-Als-Glu-Gly10-
    Thr-Phe-Thr-Ser-Asp15-Val-Ser-Ser-Tyr-Leu20-
    Glu-Gly-Gln-Ala-Ala25-Lys-Glu-Phe-Ile-Ala30-
    Trp-Leu-Val-Lys-Gly35-Arg-Gly37-COOH
  • A “GLP-1 analog” is defined as a molecule having a modification including one or more amino acid substitutions, deletions, inversions, or additions when compared with GLP-1. GLP-1 analogs known in the art include, for example, GLP-1(7-34) and GLP-1(7-35), GLP-1(7-36), Val8-GLP-1(7-37), Gln9-GLP-1(7-37), D-Gln9-GLP-1(7-37), Thr16-Lys18-GLP-1(7-37), and Lys18-GLP-1(7-37). Preferred GLP-1 analogs are GLP-1(7-34) and GLP-1(7-35) which are disclosed in U.S. Pat. No. 5,118,666, and also GLP-1(7-36). These compounds are the biologically processed forms of GLP-1 having insulinotropic properties. Other GLP-1 analogs are disclosed in U.S. Pat. No. 5,545,618.
  • A “GLP-1 derivative” is defined as a molecule having the amino acid sequence of GLP-1 or of a GLP-1 analog, but additionally having at least one chemical modification of one or more of its amino acid side groups, a-carbon atoms, terminal amino group, or terminal carboxylic acid group. A chemical modification includes adding chemical moieties, creating new bonds, and removing chemical moieties. Modifications at amino acid side groups include acylation of lysine e-amino groups, N-alkylation of arginine, histidine, or lysine, alkylation of glutamic or aspartic carboxylic acid groups, and deamidation of glutamine or asparagine. Modifications of the terminal amino include the des-amino, N-lower alkyl, N-di-lower alkyl, and N-acyl modifications. Modifications of the terminal carboxy group include the amide, lower alkyl amide, dialkyl amide, and lower alkyl ester modifications. A lower alkyl is a C1-C4 alkyl. Furthermore, one or more side groups, or terminal groups, may be protected by protective groups known to the ordinarily-skilled protein chemist. The α-carbon of an amino acid may be mono- or di-methylated.
  • In the present invention a preferred group of GLP-1 analogs and derivatives for use in the present invention is composed of the various GLP-1 molecules claimed in U.S. Pat. No. 5,545,618 ('618). Effective analogs of the active GLP-1 peptides, 7-34, 7-35, 7-36 and 7-37 have amino acid substitutions as positions 7-10 and/or are truncated at the C-terminus and/or contain various other amino acid substitutions in the basic peptide. Analogs having D-amino acid substitutions in the 7 and 8 positions and/or N-alkylated or N-acylated amino acids in the 7 position are particularly resistant to degradation in vivo.
  • The analogs of the invention in '618 which show enhanced insulin stimulating properties have the sequence, of native GLP-1, 7-34, 7-35, 7-36, or 7-37, or the C-terminal amide thereof, with at least one modification selected from the group consisting of:
  • (a) substitution of a neutral amino acid, arginine, or a D form of lysine for lysine at position 26 and/or 34 and/or a neutral amino acid, lysine, or a D form of arginine for arginine at position 36;
  • (b) substitution of an oxidation-resistant amino acid for tryptophan at position 31;
  • (c) substitution according to at least one of:
  • Y for V at position 16;
  • K for S at position 18;
  • D for E at position 21;
  • S for G at position 22;
  • R for Q at position 23;
  • R for A at position 24; end
  • Q for K at position 26;
  • (Using the Single Letter Codes for Amino Acids)
  • (d) a substitution comprising at least one of:
  • an alternative small neutral amino acid for A at position 8;
  • an alternative acidic amino acid or neutral amino acid for E at position 9.
  • an alternative neutral amino acid for G at position 10; and
  • an alternative acidic amino acid for D at position 15; and
  • (e) substitution of an alternative neutral amino acid or the D or N-acylated or alkylated form of histidine for histidine at position 7.
  • With respect to modifications (a), (b), (d) and (e), the substituted amino acids may be in the D form. The amion acids substituted at position 7 can also be in the N-acylated or N-alkylated forms.
  • In another aspect, the invention of '618 is directed to peptides which show enhanced degradation resistance in plasma as compared to GLP-1 (7-37) wherein this enhanced resistance to degradation. In these analogs, any of the abovementioned truncated forms of GLP-1(7-34) to GLP-1(7-37) or their C-terminal amidated forms is modified by
  • (a) substitution of a D-neutral or D-acidic amino acid for H at position 7, or
  • (b) substitution of a D-amino acid for A at position 8, or
  • (c) both, or
  • (d) substitution of an N-acylated or N-alkylated form of any naturally occurring amino acid for H at position 7.
  • Thus analogs which are resistant to degradation include (N-acyl (1-6C) AA)7 GLP-1(7-37) and (N-alkyl (1-6C AA)7 GLP-1 (7-37) wherein when AA is a lysyl residue, one or both nitrogens may be alkylated or acylated, AA symbolizes any amino acid consistent with retention of insulin stimulating activity.
  • For substitutions of D-amino acids in the 7 and 8 positions, the D residue of any acidic or neutral amino acid can be used at position 7 and of any amino acid at position 8, again consistent with insulin stimulating activity. Either or both of position 7 and 8 can be substituted by a D-amino acid; the D-amino acid at position 7 can also be acylated or alkylated. These modified forms are applicable not only to GLP-1(7-37) but also to shorter truncated analogs.
  • Thus, among the preferred analogs of the '618 invention are those wherein the (7-34), (7-35), or (7-37) form of GLP-1 has been modified only by substitution of a neutral amino acid, arginine, or a D form of lysine for lysine at position 26 and/or 34 and/or a neutral amino acid, lysine, or a D form of arginine for arginine at position 36 (section (a)). Particularly preferred are those wherein the amino acid substituted for lysine at position 26 and 34 is selected from the croup consisting of K+,G, S, A, L, I, Q, R, R+ and M, and for arginine at position 36 is selected from the group of K, K+, G, S, A, L, I, Q, M, and R+. (where + indicates a D form).
  • Also preferred are analogs wherein the sole modification is the substitution of an oxidation-resistant amino acid for tryptophan at position 31 (section (b)). Particularly favored substitutions are selected from the group consisting of F, V, L, I, A, and Y.
  • Also preferred are those analogs wherein the only modification is at least one of those specific substitutions set forth in section (c). Particularly preferred are those analogs wherein combined substitutions of S for G at position 22, R at positions 23 and 24 for Q and A respectively, and Q for K at position 26 have been made, ox substitutions of Y for V at position 26 and K for S at position 18 have been made, or these substitutions plus D for E at positions 21 have been made.
  • Also preferred are analogs wherein the sole modifications are those set forth in section (d). Particularly preferred among these are those wherein the small neutral amino acid substituted for alanine at position 8 is selected from the group consisting of S, S+, GC, C+, Sar, A+, beta-ala and Aib; and/or the acidic or neutral amino acid substituted for glutamic acid at position 9 is selected from the group consisting of E+, D, D+, Cya T, T+, N, N+, Q, Q+, Cit, MSO, and acetyl-K; and/or the alternative neutral amino acid substituted for glycine at position 10 is selected from the group consisting of S, S+, Y, Y+, T, T+, N, N+, Q, Q+, Cit, MSO, acetyl-K, F, and F+; and/or wherein D is substituted for E at position 15.
  • Also preferred are analogs wherein position 7 alone has been altered (section (e)). Preferred substitutions are those wherein the amino acid substituted for histidine at position 7 is selected from the group consisting of H+, Y, Y+, F, F+, R, R+, Orn, Orn+, M, M+, N-formyl-H, N-formyl-H+, N-acetyl-H, N-acetyl-H+, N-isopropyl-H, N-isopropyl-H+, N-acetyl-K; N-acetyl-K+, P and P+.
  • Also preferred are embodiments with a combination of only two of the above-referenced classes of modified forms, in addition to the following specific embodiments.
  • The following specific analogs are preferred:
  • (H+)7-GLP-1(7-37);
  • (Y)7-GLP-1(7-37);
  • (N-acetyl-H)7-GLP-1(7-37);
  • (N-isopropyl-H)7-GLP-1(7-37);
  • (A+)8-GLP-1(7-37);
  • (E+)9-GLP-1(7-37);
  • (D)9-GLP-1(7-37);
  • (D+)9-GLP-1(7-37);
  • (F+)10-GLP-1(7-37);
  • (S)22(R)23(R)24(Q)26-GLP-1(7-37);
  • (S)22(R)23(R)24(Q)26-GLP-1(7-37);
  • Preferred forms of analogs with enhanced stability also have only one, or at most two, amino acid modifications.
  • Preferred substitutions for the histidine at position 7 include the D-forms of acidic or neutral amino acids or the D-forms of histidines. Preferred are P+, D+, E+, N+, Q+, L+, V+, I+ and H+.
  • The histidine at position 7, or a replacement (D or L), can also be N-alkylated (1-6C) or N-acylated (1-6C). Alkyl groups are straight or branched chain (including cyclic) hydrocarbyl residues of the indicated member of C. Acyl groups are of the formula RCO-wherein R is alkyl. Preferred alkyl groups are t-propyl, α-propyl and ethyl; preferred acyl are acetyl and propionyl. Preferred residues which may be alkylated or acylated include P, D, E, N, Q, V, L, I, K and H in either the D or L form.
  • Preferred substitutions for alanine at position 8 are the D-forms of P, V, L, I and A; also preferred are the D-forms of D, E, N, Q, K, T, S and H.
  • Some specific analogs show both enhanced insulin release stimulating activity and enhanced stability.
  • A preferred group of GLP-1 analogs and derivatives for use in the present invention is composed of molecules of the formula:
    (SEQ ID NO:2)
                           R 1-X-Glu-Gly10-
    Thr-Phe-Thr-Ser-Asp15-Val-Ser-Ser-Tyr-Leu20-
    Y -Gly-Gln-Ala-Ala25-Lys- Z -Phe-Ile-Ala30-
    Trp-Leu-Val-Lys-Gly35-Arg-R 2
  • and the pharmaceutically-acceptable salts thereof, wherein: R1 is selected from the group consisting of L-histidine, D-histidine, desamino-histidine, 2-amino-histidine, b-hydroxy-histidine, homohistidine, alpha-fluoromethyl-histidine, and alpha-methyl-histidine; X is selected from the group consisting of Ala, Gly, Val, Thr, Ile, and alpha-methyl-Ala; Y is selected from the group consisting of Glu, Gln, Ala, Thr, Ser, and Gly; Z is selected from the group consisting of Glu, Gln, Ala, Thr, Ser, and Gly, and R2 is selected from the group consisting of NH2, and Gly-OH; provided that the compound has an isoelectric point in the range from about 6.0 to about 9.0 and further providing that when R1 is His, X is Ala, Y is Glu, and Z is Glu, R2 must be NH2.
  • Numerous GLP-1 analogs and derivatives having an isoelectric point in the range from about 6.0 to about 9.0 have been disclosed and include, for example;
  • GLP-1(7-36)NH2
  • Gly8-GLP-1(7-36)NH2
  • Gln9-GLP-1(7-37)
  • D-Gln9-GLP-1(7-37)
  • acetyl-Lys9-GLP-1(7-37)
  • Thr9-GLP-1(7-37)
  • D-Thr9-GLP-1(7-37)
  • Asn9-GLP-1(7-37)
  • D-Asn9-GLP-1(7-37)
  • Ser22-Arg23-Arg24-Gln26-GLP-1(7-37)
  • Thr16-Lys18-GLP-1(7-37)
  • Lys18-GLP-1(7-37)
  • Arg23-GLP-1(7-37)
  • Arg24-GLP-1(7-37)
  • Another preferred group of active compounds for use in the present invention is disclosed in WO 91/11457, (related to U.S. Pat. No. 5,545,618) and includes GLP-1(7-34), GLP-1(7-35), GLP-1(7-36), or GLP-1(7-37), or the amide form thereof, and pharmaceutically-acceptable salts thereof, having at least one modification including those shown below:
  • (a) substitution of glycine, serine, cysteine, threonine, asparagine, glutamine, tyrosine, alanine, valine, isoleucine, leucine, methionine, phenylalanine, arginine, or D-lysine for lysine at position 26 and/or position 34; or substitution of glycine, serine, cysteine, threonine, asparagine, glutamine, tyrosine, alanine, valine, isoleucine, leucine, methionine, phenylalanine, lysine, or a D-arginine for arginine at position 36;
  • (b) substitution of an oxidation-resistant amino acid for tryptophan at position 31;
  • (c) substitution of at least one of: tyrosine for valine at position 16; lysine for serine at position 18; aspartic acid for glutamic acid at position 21; serine for glycine at position 22; arginine for glutamine at position 23; arginine for alanine at position 24; and glutamine for lysine at position 26; and
  • (d) substitution of at least one of: glycine, serine, or cysteine for alanine at position 8; aspartic acid, glycine, serine, cysteine, threonine, asparagine, glutamine, tyrosine, alanine, valine, isoleucine, leucine, methionine, or phenylalanine for glutamic acid at position 9; serine, cysteine, threonine, asparagine, glutamine, tyrosine, alanine, valine, isoleucine, leucine, methionine, or phenylalanine for glycine at position 10; and glutamic acid for aspartic acid at position 15; and
  • (e) substitution of glycine, serine, cysteine, threonine, asparagine, glutamine, tyrosine, alanine, valine, isoleucine, leucine, methionine, or phenylalanine, or the D- or N-acylated or alkylated form of histidine for histidine at position 7; wherein, in the substitutions is (a), (b), (d), and (e), the substituted amino acids can optionally be in the D-form and the amino acids substituted at position 7 can optionally be in the N-acylated or N-alkylated form.
  • Because the enzyme, dipeptidyl-peptidase IV (DPP IV), may be responsible for the observed rapid in vivo inactivation of administered GLP-1, (Mentlein et al., 1993), administration of GLP-1 analogs and derivatives that are protected from the activity of DPP IV is preferred, and the administration of Gly8-GLP-1(7-36)NH2, Val8-GLP-1(7-37)OH, a-methyl-Ala8-GLP-1(7-36)NH2, and Gly8-Gln21-GLP-1(7-37)OH, or pharmaceutically-acceptable salts thereof, is more preferred.
  • The use in the present invention of a molecule claimed in U.S. Pat. No. 5,188,666 ('666) is also preferred. Such a molecule includes a peptide having one of the following amino acid sequences.
    (SEQ ID NO:3)
                         NH2-His7-Ala-Glu-Gly10-
    Thr-Phe-Thr-Ser-Asp15-Val-Ser-Ser-Tyr-Leu20-
    Glu-Gly-Gln-Ala-Ala25-Lys-Glu-Phe-Ile-Ala30-
    Trp-Leu-Val-X
  • wherein X may be Lys and Lys-Gly; or a derivative of said peptide, and wherein said peptide may be a pharmaceutically-acceptable acid addition salt of said peptide; a pharmaceutically-acceptable carboxylate salt of said peptide; a pharmaceutically-acceptable lower alkylester of said peptide; or a pharmaceutically-acceptable amide of said peptide selected from the group consisting of amide, lower alkyl amide, and lower dialkyl amide.
  • The invention in '666 pertains to a peptide fragment which is insulinotropic and is derivable from a naturally occurring amino acid sequence.
  • The invention comprises a compound selected from the group consisting of:
  • (A) a peptide comprising the sequence:
  • His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-X wherein X is selected form the group consisting of:
  • (a) Lys,
  • (b) Lys-Gly,
  • (c) Lys-Gly-Arg,
  • and (B) a derivative of the peptide; wherein the compound is substantially free of natural contaminants, and has an insulinotropic activity which exceeds the insulinotropic activity of GLP-1 (1-36) or GLP-1 (1-37).
  • The invention also includes a compound selected from the group consisting of:
  • (A) a peptide comprising the sequence:
        His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-
    Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-
    Ala-Trp-Leu-Val-X

    wherein X is selected form the group consisting of:
  • (a) Lys,
  • (b) Lys-Gly,
  • (c) Lys-Gly-Arg;
      • and (B) a derivative of the peptide; wherein the compound is substantially free of natural contaminants, and has an insulinotropic activity at a concentration of at least 10−10 M,
  • Of particular interest are peptides of the following formula:
    H2N—X—CO—R1   (1)
    wherein R1 is OH, OM, or —NR2R3;
      • M is a pharmaceutically acceptable cation or a lower branched or unbranched alkyl group;
      • R2 and R3 are the same or different and selected from the croup consisting of hydrogen and a lower branched or unbranched alkyl group;
  • X is a peptide comprising the sequence:
        His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-
    Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-
    Ala-Trp-Leu-Val-Lys-Gly-Arg
      • NH2 is the amine group of the amino terminus of X; and CO is the carbonyl group of the carboxy terminus of X;
      • (2) the aced addition salts thereof; and
      • (3) the protected or partially protected derivatives thereof;
        wherein said compound has an insulinotropic activity which exceeds the insulinotropic activity of GLP-1 (1-36) or GLP-1 (1-37).
  • Another preferred group of molecules for use in the present invention consists of compounds claimed in U.S. Pat. No. 5,512,549 having the general formula:
    (SEQ ID NO:4)
                               R 1-Ala-Glu-Gly10-
    Thr-Phe-Thr-Ser-Asp15-Val-Ser-Ser-Tyr-Leu20-
    Glu-Gly-Gln-Ala-Ala25-Xaa-Glu-Phe-Ile-Ala30-
    Trp-Leu-Val-Lys-Gly35-Arg-R 3
                 |
                 R 2
  • and pharmaceutically-acceptable salts thereof, wherein R1 may be 4-imidazopropionyl, 4-imidazoacetyl, or 4-imidazo-a, a dimethyl-acetyl; R2 may be C6-C10 unbranched acyl, or absent; R3 may be Gly-OH or NH2; and, Xaa is Lys or Arg.
  • More preferred compounds of SEQ ID NO:4 for use in the present invention are those in which Xaa is Arg and R2 is a C6-C10 unbranched acyl.
  • Highly preferred compounds of SEQ ID NO:4 for use in the present invention are those in which Xaa is Arg, R2 is C6-C10 unbranched acyl, and R3 is Gly-OH.
  • More highly preferred compounds of SEQ ID NO:4 for use in the present invention are those in which Xaa is Arg, R2 is a C6-C10 unbranched acyl, R3 is Gly-OH, and R1 is 4-imidazopropionyl.
  • The most preferred compound of SEQ ID NO:4 for use in the present invention is that in which Xaa is Arg, R2 is C8 unbranched acyl, R3 is Gly-OH and R1 is 4-imidazopropionyl.
  • The use in the present invention of a molecule claimed in U.S. Pat. No. 5,120,712 is highly preferred. Such a molecule includes a peptide having the amino acid sequence:
    (SEQ ID NO:1)
                         NH2-His7-Ala-Glu-Gly10-
    Thr-Phe-Thr-Ser-Asp15-Val-Ser-Ser-Tyr-Leu20-
    Glu-Gly-Gln-Ala-Ala25-Lys-Glu-Phe-Ile-Ala30-
    Trp-Leu-Val-Lys-Gly35-Arg-Gly37-OH
  • and a derivative of said peptide, wherein said peptide may be a pharmaceutically-acceptable acid addition salt of said peptide; a pharmaceutically-acceptable carboxylate salt of said peptide; a pharmaceutically-acceptable lower alkylester of said peptide; or a pharmaceutically-acceptable amide of said peptide wherein the amide may be an amide, lower alkyl amide, or lower dialkyl amide.
  • The use of GLP-1(7-36) amide, or a pharmaceutically-acceptable salt thereof, in the present invention is most highly preferred. The amino acid sequence of GLP-1 (7-36) amide is;
    (SEQ ID NO:5)
                         NH2-His7-Ala-Glu-Gly10-
    Thr-Phe-Thr-Ser-Asp15-Val-Ser-Ser-Tyr-Leu20-
    Glu-Gly-Gln-Ala-Ala25-Lys-Glu-Phe-Ile-Ala30-
    Trp-Leu-Val-Lys-Gly35-Arg-NH2
  • The use of Val8-GLP-1(7-37)OH, or a pharmaceutically-acceptable salt thereof, in the present invention is most highly preferred. The amino acid sequence of Val8-GLP-1(7-37)OH is:
    (SEQ ID NO:6)
                         NH2-His7-Ala-Glu-Gly10-
    Thr-Phe-Thr-Ser-Asp15-Val-Ser-Ser-Tyr-Leu20-
    Glu-Gly-Gln-Ala-Ala25-Lys-Glu-Phe-Ile-Ala30-
    Trp-Leu-Val-Lys-Gly35-Arg-Gly37-OH

    Preparation of the Compounds
  • Methods for preparing the active compounds used in the present invention, namely, GLP-1, an GLP-1 analog, or a GLP-1 derivative, or any related compound including an active fragment effecting weight loss when administered peripherally, are well-known, and are described in U.S. Pat. Nos. 5,118,666, 5,120,712, and 5,523,549.
  • The amino acid portion of the active compound used in the present invention, or a precursor thereto, is made by 1) solid-phase synthetic chemistry; 2) purification of GLP molecules from natural sources; 3) recombinant DNA technology or 4) a combination of these methods.
  • Solid phase chemical synthesis of polypeptides is well known in the art and may be found in general texts in the area such as Dugas and Penney 1981; Merrifield 1962; Stewart and Young 1969.
  • For example, the amino acid portion may be synthesized by solid-phase methodology utilizing a 430A peptide synthesizer (PE-Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, Calif. 94404) and synthesis cycles supplied by PE-Applied Biosystems. BOC-amino acids and other reagents are commercially available from PE-Applied Biosystems and other chemical supply houses. Sequential BOC chemistry using double couple protocols are applied to the starting p-methyl benzhydryl amine resins for the production of C-terminal carboxamides. For the production of C-terminal acids, the corresponding PAM resin is used. Asn, Gln, and Arg are coupled using preformed hydroxy benzotriazole esters. The following side chain protecting groups may be used:
  • Arg, Tosyl
  • Asp, cyclohexyl
  • Glu, cyclohexyl
  • Ser, Benzyl
  • Thr, Benzyl
  • Tyr, 4-bromo carbobenzoxy
  • BOC deprotection may be accomplished with trifluoroacetic acid in methylene chloride. Following completion of the synthesis the peptides may be deprotected and cleaved from the resin with anhydrous hydrogen fluoride (HF) containing 10%: meta-cresol. Cleavage of the side chain protecting group(s) and of the peptide from the resin as carried out at −5° C. to 5° C., preferably on ice for 60 minutes. After removal of the HF, the peptide/resin is washed with ether, and the peptide extracted with glacial acetic acid and lyophilized.
  • Techniques well-known to the ordinarily-skilled artisan in recombinant DNA technology may be used to prepare the active compound used in present invention. In fact, recombinant DNA methods may be preferable because of higher yield. The basic steps in recombinant production are:
  • a) isolating a natural DNA sequence encoding a GLP-1 molecule of the present invention or constructing a synthetic or semi-synthetic DNA coding sequence for a GLP-1 molecule,
  • b) placing the coding sequence into an expression vector in a manner suitable for expressing proteins either alone or as a fusion proteins,
  • c) transforming an appropriate eukaryotic or prokaryotic host cell with the expression vector,
  • d) culturing the transformed host cell under conditions that will permit expression of a GLP-1 molecule, and
  • e) recovering and purifying the recombinantly produced GLP-1 molecule.
  • As previously stated, the coding sequences may be wholly synthetic or the result of modifications to the larger, native glucagon-encoding DNA. A DNA sequence that encodes preproglucagon is presented in Lund et al. 1982 and may be used as starting material in the semisynthetic production of the compounds of the present invention by altering the native sequence to achieve the desired results.
  • Synthetic genes, the in vitro or in vivo transcription and translation of which results in the production of a GLP-1 molecule, may be constructed by techniques well known in the art. Owing to the natural degeneracy of the genetic code, the skilled artisan will recognize that a sizable yet definite number of DNA sequences may be constructed, all of which encode GLP-1 molecules of the present invention.
  • The methodology of synthetic gene construction is well-known in the art (Brown et al. 1979.) The DNA sequence is designed from the desired amino acid sequence using the genetic code, which is easily ascertained by the ordinarily-skilled biologist. Once designed, the sequence itself may be generated using conventional DNA synthesizing apparatus such as the Model 380A or 380B DNA synthesizers (PE-Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, Calif. 94404).
  • To express the amino acid portion of a compound used in the present invention, an engineered synthetic DNA sequence is inserted in any one of many appropriate recombinant DNA expression vectors through the use of appropriate restriction endonucleases (Maniatis et al., 1989). Restriction endonuclease cleavage sites are engineered into either end of the GLP-1 molecule-encoding DNA to facilitate isolation from, and integration into, amplification and expression vectors well-known in the art. The particular endonucleases employed will be dictated by the restriction endonuclease cleavage pattern of the parent expression vector employed. Restriction sites are chosen to properly orient the coding sequence with control sequences, thereby achieving proper in-frame reading and expression of the protein of interest. The coding sequence must be positioned to be in proper reading frame with the promoter and ribosome binding site of the expression vector, both of which are functional in the host cell in which the protein is to be expressed.
  • To achieve efficient transcription of the synthetic gene, it must be operably associated with a promoter-operator region. Therefore, the promoter-operator region of the synthetic gene is placed in the same sequential orientation with respect to the ATG start codon of the synthetic gene.
  • A variety of expression vectors useful for transforming prokaryotic and eukaryotic cells are well known in the art (Promega Catalogue, 1992; Stratagene Catalogue, 1992). Also, U.S. Pat. No. 4,710,473 describes circular DNA plasmid transformation vectors useful for expression of exogenous genes in E. coli at high levels. These plasmids are useful as transformation vectors in recombinant DNA procedures and
  • (a) confer on the plasmid the capacity for autonomous replication in a host cell;
  • (b) control autonomous plasmid replication in relation to the temperature at which host cell cultures are maintained;
  • (c) stabilize maintenance of the plasmid in host cell populations;
  • (d) direct synthesis of a protein product indicative of plasmid maintenance in a host cell population;
  • (e) provide in-series restriction endonuclease recognition sites unique to the plasmid; and
  • (f) terminate mRNA transcription. These circular DNA plasmids are useful as vectors in recombinant DNA procedures for securing high levels of expression of exogenous genes.
  • Having constructed an expression vector for the amino acid portion of a compound used in the present invention, the next step is to place the vector into a suitable cell and thereby construct a recombinant host cell useful for expressing the polypeptide. Techniques for transforming cells with recombinant DNA vectors are well known in the art and may be found in such general references as Maniatis, et al. supra. Host cells made be constructed from either eukaryotic or prokaryotic cells.
  • Prokaryotic host cells generally produce the protein at higher rates and are easier to culture. Proteins expressed in high-level bacterial expression systems characteristically aggregate in granules or inclusion bodies, which contain high levels of the overexpressed protein. Such protein aggregates typically must be recovered, solubilized, denatured and refolded using techniques well known in the art (Kreuger et al., 1990; U.S. Pat. No. 4,923,967).
  • Preparation of GLP-1 Analogs and Derivatives
  • Alterations to a precursor GLP-1 or GLP-1 amino acid sequence to produce a desired GLP-1 analog or GLP-1 derivative, or active fragment thereof, are made by well-known methods: chemical modification, enzymatic modification, or a combination of chemical and enzymatic modifications. The techniques of classical solution phase methods and semi-synthetic methods may also be useful for preparing the GLP-1 molecules used in the present invention. Methods for preparing the GLP-1 molecules of the present invention are well known to an ordinarily skilled peptide chemist.
  • Addition of an acyl group to the epsilon amino group of Lys34 may be accomplished using any one of a variety of methods known in the art (Bioconjugate Chem. 1990: Hashimoto et al., 1989),
  • For example, an N-hydroxy-succinimide ester of octanoic acid can be added to the lysyl-epsilon amine using 50% acetonitrile in borate buffer. The peptide can be acylated either before or after the imidazolic group is added. Moreover, if the peptide is prepared recombinantly, acylation prior to enzymatic cleavage is possible. Also, the lysine in the GLP-1 derivative can be acylated as taught in WO 96/29342.
  • The existence and preparation of a multitude of protected, unprotected, and partially-protected, natural and unnatural, functional analogs and derivatives of GLP-1 (7-36)amide and GLP-1 (7-37) molecules have been described (U.S. Pat. Nos. 5,120,712; 5,545,618 and 5,118,666; Orskov et al., 1989; WO 91/11457).
  • Optionally, the amino and carboxy terminal amino acid residues of GLP-1 derivatives may be protected, or, optionally, only one of the termini is protected. Reactions for the formation and removal of such protecting groups are described in works known to those of skill in the art including, for example, Protective Groups in Organic Chemistry 1973; Green, 1981; Schröder and Lübke, 1965. Representative amino-protecting groups include, for example, formyl, acetyl, isopropyl, butoxycarbonyl, fluorenylmethoxycarbonyl, carbobenzyloxy, and the like. Representative carboxy-protecting groups include, fox example, benzyl ester, methyl ester, ethyl ester, t-butyl ester, p-nitro phenyl ester, and the like.
  • Carboxy-terminal, lower-alkyl-ester, GLP-1 derivatives used in the present invention are prepared by reacting the desired (C1-C4) alkanol with the desired polypeptide in the presence of a catalytic acid such as hydrochloric acid. Appropriate conditions for such alkyl ester formation include a reaction temperature of about 50° C. and reaction time of about 1 hour to about 3 hours. Similarly, alkyl ester derivatives of the Asp and/or Glu residues can be formed.
  • Preparation of a carboxamide derivative of a compound used in the present invention is formed, for example, as described in Stewart et al., 1984.
  • A pharmaceutically-acceptable salt form of GLP-1, of a GLP-1 analog, or of a GLP-1 derivative may be used in the present invention. Acids commonly employed to form acid addition salts are inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like, and organic acids such, as p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromophenyl-sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, and the like. Examples of such salts include the sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caproate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, gamma-hydroxybutyrate, glycolate, tartrate, methanesulfonate, propanesulfonate, naphthalene-1-sulfonate, naphthalene-2-sulfonate, mandelate, and the like. Preferred acid addition salts are those formed with mineral acids such as hydrochloric acid and hydrobromic acid, and, especially, hydrochloric acid.
  • Base addition salts include those derived from inorganic bases, such as ammonium or alkali or alkaline earth metal hydroxides, carbonates, bicarbonates, and the like. Such bases useful in preparing the salts of this invention thus include sodium hydroxide, potassium hydroxide, ammonium hydroxide, potassium carbonate, and the like. The salt forms are particularly preferred,
  • A GLP-1, GLP-1 analog, or GLP-1 derivative used in the present invention may be formulated with one or more excipients before use in the present invention. For example, the active compound used in the present invention may be complexed with a divalent metal cation by well-known methods. Such metal cations include, for example, Zn++, Mn++, Fe++, Co++, Cd++, Ni++, and the like.
  • COMPOSITIONS OF THE INVENTION
  • Optionally, the active compound used in the present invention may be combined with a pharmaceutically-acceptable buffer, and the pH adjusted to provide acceptable stability, and a pH acceptable for parenteral administration.
  • Optionally, one or more pharmaceutically-acceptable anti-microbial agents may be added. Meta-cresol and phenol are preferred pharmaceutically-acceptable anti-microbial agents. One or more pharmaceutically-acceptable salts may be added to adjust the ionic strength or tonicity. One or more excipients may be added to further adjust the isotonicity of the formulation. Glycerin is an example of an isotonicity-adjusting excipient.
  • GLP-1 receptors and the signal transduction cascade initiated by ligand binding to the GLP-1 receptor are described in WO 96/25487; Thorens, 1992; Thorens et al., 1993; Widmann et al., 1994. The GLP-1 receptor is a membrane protein with seven transmembrane domains, coupled to heterotrimeric G-proteins that link activation of the receptor by ligand binding to production of intracellular secondary messengers, especially, cyclic adenosine monophosphate (cAMP). cAMP, in turn, activates a specific protein kinase, cAMP-dependent protein kinase (protein kinase A, PKA). This enzyme phosphorylates a number of key response elements present in the promoter region of certain genes. In pancreatic b-cells and other neuroendocrine cells, phosphorylation of some specific proteins of the regulated secretary pathway stimulates peptide secretion by stimulating exocytosis of secretory granules.
  • Various compounds are known to stimulate secretion of endogenous GLP-1. For example, exposure of STC-1 cells to certain secretagogues, such as, the adenylate cyclase activator, forskolin, or the protein kinase-C-stimulating agent, 12-O-tetradecanoylphobol-13-acetate (TPA), caused significant increases in release of GLP-1 (Abello et al., 1994). The STC-1 cell line originated from an intestinal tumor in transgenic mice carrying insulin-promoting oncogenes, and STC-1 cells are known to contain m-RNA transcripts of pro-glucagon, from which GLP-1 is generated. Other compounds, such as, somatostatin, gastric inhibitory polypeptide, glucose-dependent insulinotropic peptide, bombesin, calcitonin gene-related peptide, gastrin-releasing peptide, cholinergic agonists, the b-adrenergic agonist, isoproterenol, and the muscarinic cholinergic agonist, bethanechol, are similarly known to cause release of endogenous GLP-1 (Plaisancie et al., 1994; Orskov et al., 1986; Brubaker, 1991; Buchan,
  • Administration of Compositions
  • Administration may be via any route known to be effective by the physician of ordinary skill, except that parenteral administration directly into the central nervous system is not a route taught or claimed in this invention. Peripheral, parenteral administration is preferred. Parenteral administration is commonly understood in the medical literature as the injection of a dosage form into the body by a sterile syringe or some other mechanical device such as an infusion pump. For the purpose of this invention, peripheral parenteral routes include intravenous, intramuscular, subcutaneous, and intraperitoneal routes of administration. Intravenous, intramuscular, and subcutaneous routes of administration of the compounds used in the present invention are more preferred. Intravenous and subcutaneous routes of administration of the compounds used in the present invention are yet more highly preferred. For parenteral administration, an active compound used in the present invention preferably is combined with distilled water at an appropriate pH.
  • Certain compounds used in the present invention to effect weight-loss may also be amenable to administration by the oral, rectal, nasal, or lower respiratory routes, which are non-parenteral routes. Of the said non-parenteral routes, the lower respiratory route is preferred for administration of peptides used in the instant invention. Various formulations of peptide compounds for administration by the lower respiratory tract are disclosed in U.S. Pat. Nos. 5,284,656 and 5,364,838. Publication WO 96/19197 discloses aerosol formulations of various peptides suitable for enhancing lower respiratory tract absorption of the compounds used in the instant invention. The oral route of administration is preferred for compounds used in the instant invention.
  • Additional pharmaceutical methods may be employed to control the duration of action. Controlled release preparations may be achieved by the use of polymers to complex or absorb the active compound used in the present invention. Extended duration may be obtained by selecting appropriate macromolecules, for example, polyesters, polyamino acids, polyvinylpyrrolidone, ethylenevinyl acetate, methylcellulose, carboxymethylcellulose, or protamine sulfate, and by selecting the concentration of macromolecules, as well as the methods of incorporation, in order to prolong release. Another possible method to extend the duration of action by controlled release preparations is to incorporate an active compound used in the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly (lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating a compound into these polymeric particles, it is possible to entrap a compound used in the present invention in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules, or in macroemulsions. Such teachings are known to those of skill in the art and disclosed, e.g. in Remington's Pharmaceutical Sciences, 1980.
  • Dose
  • The dose of GLP-1, GLP-1 analog, or GLP-1 derivatives, or active fragments effective in a particular subject to cause weight-loss will depend on a number of factors, among which are included the subject's sex, weight and age, the underlying causes of obesity, the route of administration and bioavailability, the persistence of the administered compound in the body, the formulation, and the potency. Where administration is intermittent, the dose per administration should also take into account the interval between doses, and the bioavailability of the administered compound. Where administration is continuous, a suitable dosage rate is between 0.25 and 6 pmol/kg body weight/min, preferably from about 0.5 to about 1.2 pmol/kg/min. It is within the skill of the ordinary physician to titrate the dose and rate of administration of compositions containing GLP-1, GLP-1 analogs, or GLP-1 derivatives, or active fragments thereof to achieve the desired clinical result, that is weight loss.
  • “Pharmaceutically acceptable” means suitable for administration to a human, that is, does not contain toxic elements, undesirable contaminants or the like, and does not interfere with the activity of the active compounds therein.
  • The present invention will be more readily understood by reference to a specific example, which is provided to illustrate, not to limit, the present invention.
  • EXAMPLE 1
  • Four patients having non-insulin dependent diabetes mellitus (NIDDM) (3 male, 1 female; age: 60.2±1, 8 years; starting BMI: 33.5±1.4 kg/m2; starting body weight: 97.5±6.5 kg; starting waist/hip: 0.946±0.036; starting HbA1c: 7.1±0.3%; fasting blood glucose:. 7.2±1.1 mM) received continuous, subcutaneous infusions of GLP-1(7-36) amide for four weeks. Solutions of GLP-1 were prepared by combining 100 nmol of GLP-1(7-36) amide and 0.025 mL human albumin solution (20%), then adjusting the pH to 4 using 5 molar acetic acid, and finally bringing the volume to 1 mL using normal saline. The solution was administered at a GLP-1 dose rate of 1.2 pmol/kg/minute. The volumetric delivery rate of the Minimed pump (Minimed Europe, Paris) used to administer the GLP-1 solution was 0.05-0.07 mL/h. The subcutaneous site of administration was the abdomen.
  • This treatment with GLP-1 was compared with two weeks of intensive insulin therapy prior to and after the GLP-1 infusion. During the insulin treatment periods, insulin was administered subcutaneously before each meal (see Table 1). During the GLP-1 infusion, no insulin was administered. During both the insulin treatment periods, and the GLP-1 treatment period, the patients adhered to a standard diabetic diet consisting of, on a caloric basis, about 55% carbohydrate, 30% fat, and 15% protein. No exercise regimen was followed. The patients were not hospitalized, and remained out-patients throughout the entire trial period.
  • During GLP-1 treatment, the four patients lost an average of 3.5±1.2 kg body weight, while they lost only 1.3±0.6 kg during the first two weeks of intensive insulin treatment, and actually gained weight, on average, during the second two weeks of intensive insulin treatment. All values are individual values, or mean±SEM (standard error of the mean). No data are available for patient MP for the second insulin treatment period.
    TABLE 1
    Insulin Treatment Regimes. The four values represent the amount of
    insulin administered subcutaneously (IU) to each patient just prior
    to four daily meals. The first insulin treatment preceded, and the
    second insulin treatment followed 4 weeks of GLP-1 treatment
    First Insulin Second Insulin
    Treatment Treatment
    Patient (2 weeks) (2 weeks)
    VN 47; 39; 35; 53 21; 20; 28; 26
    NW 12; 13; 11; 12 11; 10; 12; 12
    HF 11; 10; 12; 56 11; 10; 12; 12
    MP 20; 14; 34; 30
  • TABLE 2
    Patient Weight and Weight Change. GLP-1 (7-36) amide was administered
    by continuous subcutaneous infusion for four weeks, immediately preceded
    and followed by two weeks of intensive insulin therapy.
    Patient Weight (kg) Weight Change (kg)
    First Second First Second
    Insulin GLP-1 Insulin Insulin GLP-1 Insulin
    Patient Initial 2 weeks 4 weeks 2 weeks 2 weeks 4 weeks 2 weeks
    VN 101.5 99.0 92.0 95.0 −2.5 −7.0 3.0
    NW 113.0 111.0 108.0 108.0 −2.0 −3.0 0.0
    HF 94.0 93.5 91.5 91.5 −0.5 −2.0 0.0
    MP 82.0 81.9 80.0 −0.1 −1.9
    97.5 ± 6.5 96.4 ± 6.0 92.9 ± 5.8 98.2 ± 5.0 −1.3 ± 0.6 −3.5 ± 1.2 +1.0 ± 1.0
  • DOCUMENTS CITED
  • The documents cited below provide information useful for practice of the invention; the U.S. Patents are incorporated by reference in the U.S.
      • Abello, J., et al. Endocrinol. 134:2011-2017 (1994)
      • American Diabetes Association, Detection and Management of Lipid Disorders in Diabetes, Consensus Statement, Diabetes Care 18:86-93 (1995)
      • American Diabetes Association, Standards of Medical Care for Patients with Diabetes Mellitus, Consensus Statement, Diabetes Care 18:8-15 (1995)
      • Billock, S. F., et al., Endocrinology 137:2968-2978 (1996)
      • Bioconjugate Chem. “Chemical Modifications of Proteins: History and Applications” pages 1, 2-12 (1990)
      • Brown, et al. Methods in Enzymology, Academic Press, N.Y., 68:109-151 (3979)
      • Brubaker, P. L. Endocrinol. 128:3175-3182 (1991)
      • Buchan, A. M. J., et a). Gastroenterol. 93:791-800 (1987)
      • Dugas, H. and Penney, C., Bioorganic Chemistry, Springer-Verlag, New York, pp. 54-92 (1961)
      • Fehmann, E.-C et al., Endocrinology 130:159-166 (1992)
      • Fehmann, H.-C., et al., Endocr. Rev. 16:390-410 (1995)
      • Green, T. H., “Protective Groups in Organic Synthesis”, Wiley, N.Y. (1981)
      • Gutniak M., et al., New England J. Med. 326:1316-1322 (1992)
      • Hashimoto et al., Pharmaceutical Res. 6(2):171-176 (1989)
      • Kanse, S. M., et al., FEBS Lett. 241, 209-212 (1988)
      • Krcymann B., et al., Lancet 2:1300-1303 (1987)
      • Krcymann, B., et al., Brain Research 502:325-331 (1969)
      • Kreuger, et al. in Protein Folding, Gierasch and King, eds., pgs 136-142, American Association for the Advancement of Science Publication No. 89-18S, Washington, D.C. (1990)
      • Lund, et al., Proc. Natl. Acad. Sci. U.S.A. 79:345-349 (1982)
      • Maniatis et al. Molecular Cloning; A Laboratory Manual, Cold Springs Harbor Laboratory Press, N.Y., Vol. 1-3 (1989)
      • Mentlein, P., et al., Eur. J. Biochem., 214:829-835 (1993)
      • Merrifield, J. M., Chem. Soc., 85:2149 (1962)
      • Mojsov, S., et al., J. Biol. Chem. 261:11880-11889 (1986)
      • Mojsov, S., Int. J. Peptide Protein Research, 40:333-343 (1992)
      • Morley, G. E., Endocr. Rev. 8:256-287 (1987).
      • Nauck, M. A. et al., J. Clin. Invest. 91:301-307 (1993)
      • Nilsson, O., et al., Endocrinol. 129:139-148 (1991)
      • Oben, J. et al. J Endocrinol. 130:267-272 (1991)
      • Orskov, C., et al., Endocrinol. 119:1467-1475 (1986)
      • Orskov, C., et al., J. Biol. Chem. 264(22):12826-12829 (1989)
      • Orskov, C., et al., Diabetologia 38 (Suppl. 1, Abstract):A39 (1995)
      • Orskov, C., et al. Diabetes 45:832-835 (1996)
      • O'Shea, et al., NeuroReport 7:830-832 (1996)
      • Plaisancie, P., et al., Endocrinol. 135:2398-2403 (1994)
      • The Promega Biological Research Products Catalogue Promega Corp., 2800 Woods Hollow Road, Madison, Wis., 53711-5399 (1992)
      • Protective Groups in Organic Chemistry, Plenum Press, London and New York (1973)
      • Remington's Pharmaceutical Sciences (1980)
      • Rowland, N. E., et al., Nutrition 12:626-639 (1996)
      • Ruiz-Grande, C., et al., Peptides 13:13-16 (1992)
      • Schröder and Lübke, “The Peptide”, Vol. I, Academic Press London and New York,(1965)
      • Stewart and Young, Solid Phase Peptide Synthesis, Freeman, San Francisco pp. 24-66 (1969)
      • Stewart, J. M., et al., Solid Phase Peptide Synthesis, Pierce Chemical Company Press, (1984)
      • The Stratagene Cloning Systems Catalogue Stratagene Corp., 11011 North Torrey Pines Road, La Jolla, Calif., 92037 (1992)
      • Suzuki, S., et al. Endocrinol. 125:3109-3114 (1989),
      • Thorens, B., Proc. Natl. Acad. Sci. USA 89:8641-8645 (1992)
      • Thorens, B., et al., Diabetes 42:1678-1682 (1993)
      • Turton., M. D. et al., Nature 379:69-72 (1996)
      • U.S. Pat. No. 4,710,473
      • U.S. Pat. No. 4,923,967
      • U.S. Pat. No. 5,116,666
      • U.S. Pat. No. 5,120,712
      • U.S. Pat. No. 5,284,656
      • U.S. Pat. No. 5,364,838
      • U.S. Pat. No. 5,512,549
      • U.S. Pat. No. 5,523,549
      • U.S. Pat. No. 5,545,618
      • Valverde, I., et al. Endocrinology 132:75-79 (1993)
      • Villanueva, M. L., et al., Diabetologia 37:1163-1166 (1994)
      • Widmann, C., et al., Mol. Pharmacol. 45.1029-1035 (1994)
      • WO 91/11457 (Buckley, D. T., et al., published Aug. 8, 1991)
      • WO 96/19197
      • WO 96/25487 (Thorens, B. et al., published Aug. 22, 1996)
      • WO 96/29342
      • WO 97/31943 (Thim, L. et al., published Sep. 4, 1997)

Claims (9)

1.-14. (canceled)
15. A method of reducing body weight in a subject in need of body weight reduction by administering to the subject a composition comprising an agonist of the GLP-1 receptor wherein the agonist is a peptide that is resistant to cleavage by the enzyme dipeptidyl-peptidase IV.
16. The method of claim 15 wherein the composition further comprises a pharmaceutically acceptable buffer.
17. The method of claim 16 wherein the composition further comprises an anti-microbial agent.
18. The method of claim 17 wherein the anti-microbial agent is selected from phenol and meta-cresol.
19. The method of claim 17 further comprising an isotonicity agent.
20. The method of claim 15 wherein the composition is administered by a non-parenteral route selected from the group consisting of: oral, rectal, nasal, and lower respiratory.
21. The method of claim 15 wherein the composition is a controlled release preparation
22. The method of claim 21 wherein the controlled release preparation comprises particles of a polymeric material.
US11/693,877 1996-11-05 2007-03-30 Use of glp-1 analogs and derivatives administered peripherally in regulation of obesity Abandoned US20070173452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/693,877 US20070173452A1 (en) 1996-11-05 2007-03-30 Use of glp-1 analogs and derivatives administered peripherally in regulation of obesity

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US3021396P 1996-11-05 1996-11-05
US08/961,405 US6191102B1 (en) 1996-11-05 1997-10-30 Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
US09/585,186 US6583111B1 (en) 1996-11-05 2000-06-01 Use of GLP-1 analogs and derivative adminstered peripherally in regulation of obesity
US10/429,522 US7211557B2 (en) 1996-11-05 2003-05-05 Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
US11/693,877 US20070173452A1 (en) 1996-11-05 2007-03-30 Use of glp-1 analogs and derivatives administered peripherally in regulation of obesity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/429,522 Continuation US7211557B2 (en) 1996-11-05 2003-05-05 Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity

Publications (1)

Publication Number Publication Date
US20070173452A1 true US20070173452A1 (en) 2007-07-26

Family

ID=26705788

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/961,405 Expired - Lifetime US6191102B1 (en) 1996-11-05 1997-10-30 Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
US09/585,186 Expired - Lifetime US6583111B1 (en) 1996-11-05 2000-06-01 Use of GLP-1 analogs and derivative adminstered peripherally in regulation of obesity
US10/429,522 Expired - Fee Related US7211557B2 (en) 1996-11-05 2003-05-05 Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
US11/693,877 Abandoned US20070173452A1 (en) 1996-11-05 2007-03-30 Use of glp-1 analogs and derivatives administered peripherally in regulation of obesity

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/961,405 Expired - Lifetime US6191102B1 (en) 1996-11-05 1997-10-30 Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
US09/585,186 Expired - Lifetime US6583111B1 (en) 1996-11-05 2000-06-01 Use of GLP-1 analogs and derivative adminstered peripherally in regulation of obesity
US10/429,522 Expired - Fee Related US7211557B2 (en) 1996-11-05 2003-05-05 Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity

Country Status (19)

Country Link
US (4) US6191102B1 (en)
EP (1) EP0946191B1 (en)
CN (1) CN1268391C (en)
AT (1) ATE234112T1 (en)
AU (1) AU734042B2 (en)
CA (1) CA2271169C (en)
DE (1) DE69719798T2 (en)
DK (1) DK0946191T3 (en)
ES (1) ES2194224T3 (en)
HK (1) HK1024874A1 (en)
HU (1) HUP0003314A3 (en)
IL (1) IL129852A (en)
MY (1) MY129220A (en)
NO (1) NO992557L (en)
NZ (1) NZ335995A (en)
PT (1) PT946191E (en)
UA (1) UA65549C2 (en)
WO (1) WO1998019698A1 (en)
YU (1) YU24199A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137456A1 (en) * 2005-11-07 2009-05-28 Indiana University Research And Technology Glucagon analogs exhibiting physiological solubility and stability
WO2009155258A3 (en) * 2008-06-17 2010-02-18 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
US20100190699A1 (en) * 2007-01-05 2010-07-29 Indiana University Research And Technology Corporation GLUCAGON ANALOGS EXHIBITING ENHANCED SOLUBILITY IN PHYSIOLOGICAL pH BUFFERS
US20110065633A1 (en) * 2008-01-30 2011-03-17 Indiana University Research And Technology Corporation Ester-based peptide prodrugs
US20110098217A1 (en) * 2007-10-30 2011-04-28 Indiana University Research And Technology Corporation Compounds exhibiting glucagon antagonist and glp-1 agonist activity
US20110166062A1 (en) * 2008-06-17 2011-07-07 Indiana University Research And Technology Corporation Gip-based mixed agonists for treatment of metabolic disorders and obesity
US20110190200A1 (en) * 2008-06-17 2011-08-04 Dimarchi Richard D GLUCAGON ANALOGS EXHIBITING ENHANCED SOLUBILITY AND STABILITY IN PHYSIOLOGICAL pH BUFFERS
US8454971B2 (en) 2007-02-15 2013-06-04 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US20130172244A1 (en) * 2011-12-29 2013-07-04 Thomas Klein Subcutaneous therapeutic use of dpp-4 inhibitor
US8481485B2 (en) 2008-12-19 2013-07-09 Indiana University Research And Technology Corporation Insulin analogs
US8507428B2 (en) 2010-12-22 2013-08-13 Indiana University Research And Technology Corporation Glucagon analogs exhibiting GIP receptor activity
US8551946B2 (en) 2010-01-27 2013-10-08 Indiana University Research And Technology Corporation Glucagon antagonist-GIP agonist conjugates and compositions for the treatment of metabolic disorders and obesity
US8697632B2 (en) 2008-12-19 2014-04-15 Indiana University Research And Technology Corporation Amide based insulin prodrugs
US8703701B2 (en) 2009-12-18 2014-04-22 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US8729017B2 (en) 2011-06-22 2014-05-20 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US8778872B2 (en) 2010-06-24 2014-07-15 Indiana University Research And Technology Corporation Amide based glucagon superfamily peptide prodrugs
US8859491B2 (en) 2011-11-17 2014-10-14 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting glucocorticoid receptor activity
US8940860B2 (en) 2010-06-16 2015-01-27 Indiana University Research And Technology Corporation Single-chain insulin agonists exhibiting high activity at the insulin receptor
US8946147B2 (en) 2010-06-24 2015-02-03 Indiana University Research And Technology Corporation Amide-based insulin prodrugs
US8969288B2 (en) 2008-12-19 2015-03-03 Indiana University Research And Technology Corporation Amide based glucagon and superfamily peptide prodrugs
US8981047B2 (en) 2007-10-30 2015-03-17 Indiana University Research And Technology Corporation Glucagon antagonists
US9127088B2 (en) 2010-05-13 2015-09-08 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting nuclear hormone receptor activity
US9145451B2 (en) 2010-05-13 2015-09-29 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhbiting G protein coupled receptor activity
US9150632B2 (en) 2009-06-16 2015-10-06 Indiana University Research And Technology Corporation GIP receptor-active glucagon compounds
US9156902B2 (en) 2011-06-22 2015-10-13 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US9340600B2 (en) 2012-06-21 2016-05-17 Indiana University Research And Technology Corporation Glucagon analogs exhibiting GIP receptor activity
US9415016B2 (en) 2008-04-03 2016-08-16 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US9457029B2 (en) 2009-11-27 2016-10-04 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
US9486526B2 (en) 2008-08-06 2016-11-08 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US9493462B2 (en) 2006-05-04 2016-11-15 Boehringer Ingelheim International Gmbh Polymorphs
US9499546B2 (en) 2004-11-05 2016-11-22 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US9526730B2 (en) 2012-05-14 2016-12-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US9556175B2 (en) 2002-08-21 2017-01-31 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and thier use as pharmaceutical compositions
US9573987B2 (en) 2011-12-20 2017-02-21 Indiana University Research And Technology Corporation CTP-based insulin analogs for treatment of diabetes
US9593156B2 (en) 2012-09-26 2017-03-14 Indiana University Research And Technology Corporation Insulin analog dimers
US9603851B2 (en) 2010-05-05 2017-03-28 Boehringer Ingelheim International Gmbh Combination therapy
US9713618B2 (en) 2012-05-24 2017-07-25 Boehringer Ingelheim International Gmbh Method for modifying food intake and regulating food preference with a DPP-4 inhibitor
US10080754B2 (en) 2006-05-04 2018-09-25 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition
US10232020B2 (en) 2014-09-24 2019-03-19 Indiana University Research And Technology Corporation Incretin-insulin conjugates
US10385107B2 (en) 2014-09-24 2019-08-20 Indiana Univeresity Researc and Technology Corporation Lipidated amide-based insulin prodrugs
US10696726B2 (en) 2013-03-14 2020-06-30 Indiana University Research And Technology Corporation Insulin-incretin conjugates
US11033552B2 (en) 2006-05-04 2021-06-15 Boehringer Ingelheim International Gmbh DPP IV inhibitor formulations
US11510990B2 (en) 2020-01-11 2022-11-29 Beijing Ql Biopharmaceutical Co., Ltd. Conjugates of fusion proteins of GLP-1 and FGF21
US11911388B2 (en) 2008-10-16 2024-02-27 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug
US11911387B2 (en) 2010-11-15 2024-02-27 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy

Families Citing this family (255)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138486B2 (en) * 1986-05-05 2006-11-21 The General Hospital Corporation Insulinotropic hormone derivatives and uses thereof
US6849708B1 (en) * 1986-05-05 2005-02-01 The General Hospital Corporation Insulinotropic hormone and uses thereof
US5614492A (en) * 1986-05-05 1997-03-25 The General Hospital Corporation Insulinotropic hormone GLP-1 (7-36) and uses thereof
FR2686899B1 (en) * 1992-01-31 1995-09-01 Rhone Poulenc Rorer Sa NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES, THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
US6861053B1 (en) 1999-08-11 2005-03-01 Cedars-Sinai Medical Center Methods of diagnosing or treating irritable bowel syndrome and other disorders caused by small intestinal bacterial overgrowth
US7048906B2 (en) 1995-05-17 2006-05-23 Cedars-Sinai Medical Center Methods of diagnosing and treating small intestinal bacterial overgrowth (SIBO) and SIBO-related conditions
US6852690B1 (en) 1995-08-22 2005-02-08 Amylin Pharmaceuticals, Inc. Method and composition for enhanced parenteral nutrition
US6458924B2 (en) 1996-08-30 2002-10-01 Novo Nordisk A/S Derivatives of GLP-1 analogs
US6268343B1 (en) 1996-08-30 2001-07-31 Novo Nordisk A/S Derivatives of GLP-1 analogs
US7235627B2 (en) 1996-08-30 2007-06-26 Novo Nordisk A/S Derivatives of GLP-1 analogs
UA65549C2 (en) * 1996-11-05 2004-04-15 Елі Ліллі Енд Компані Use of glucagon-like peptides such as glp-1, glp-1 analog, or glp-1 derivative in methods and compositions for reducing body weight
ES2237790T3 (en) * 1996-11-12 2005-08-01 Novo Nordisk A/S USE OF GLP-1 PEPTIDES.
DK0996459T3 (en) 1997-01-07 2006-01-16 Amylin Pharmaceuticals Inc Use of exendins and agonists thereof to reduce food intake
US7157555B1 (en) 1997-08-08 2007-01-02 Amylin Pharmaceuticals, Inc. Exendin agonist compounds
DE59811840D1 (en) * 1997-09-12 2004-09-23 Pharis Biotec Gmbh COMPOSITION FOR THE THERAPY OF DIABETES MELLITUS AND FETISH ADDICTION
ES2294822T3 (en) 1997-11-14 2008-04-01 Amylin Pharmaceuticals, Inc. NEW COMPOUNDS OF EXENDINE AGONISTS.
US7223725B1 (en) 1997-11-14 2007-05-29 Amylin Pharmaceuticals, Inc. Exendin agonist compounds
US6380357B2 (en) 1997-12-16 2002-04-30 Eli Lilly And Company Glucagon-like peptide-1 crystals
WO1999047161A1 (en) * 1998-03-19 1999-09-23 Bionebraska, Inc. Human appetite control by glucagon-like peptide receptor binding compounds
US6998387B1 (en) * 1998-03-19 2006-02-14 Amylin Pharmaceuticals, Inc. Human appetite control by glucagon-like peptide receptor binding compounds
US6720407B1 (en) 1998-08-28 2004-04-13 Eli Lilly And Company Method for administering insulinotropic peptides
CN1314818A (en) * 1998-08-28 2001-09-26 伊莱利利公司 Method for administering insulinotropic peptides
EP1666054A1 (en) * 1998-08-28 2006-06-07 Eli Lilly & Company Method for administering insulinotropic peptides
JP2002538081A (en) 1998-12-07 2002-11-12 ソシエテ・ドゥ・コンセイユ・ドゥ・ルシェルシュ・エ・ダプリカーション・シャンティフィック・エス・ア・エス Analogs of GLP-1
CA2778047A1 (en) * 1998-12-07 2000-06-15 Ipsen Pharma S.A.S Analogues of glp-1
BR9915961A (en) 1998-12-07 2001-08-21 Sod Conseils Rech Applic Glp-1 analogs
US6605648B1 (en) * 1999-04-06 2003-08-12 Phillips Plastics Corporation Sinterable structures and method
US6514500B1 (en) * 1999-10-15 2003-02-04 Conjuchem, Inc. Long lasting synthetic glucagon like peptide {GLP-!}
CN1191273C (en) * 1999-05-17 2005-03-02 康久化学公司 Long lasting insulinotropic peptides
US20090175821A1 (en) * 1999-05-17 2009-07-09 Bridon Dominique P Modified therapeutic peptides with extended half-lives in vivo
US6344180B1 (en) 1999-06-15 2002-02-05 Bionebraska, Inc. GLP-1 as a diagnostic test to determine β-cell function and the presence of the condition of IGT and type II diabetes
PT1196430E (en) 1999-06-29 2012-04-18 Mannkind Corp Purification and stabilization of peptide and protein pharmaceutical agents
US9006175B2 (en) * 1999-06-29 2015-04-14 Mannkind Corporation Potentiation of glucose elimination
US6528486B1 (en) * 1999-07-12 2003-03-04 Zealand Pharma A/S Peptide agonists of GLP-1 activity
EP1076066A1 (en) 1999-07-12 2001-02-14 Zealand Pharmaceuticals A/S Peptides for lowering blood glucose levels
US6569901B2 (en) * 2000-01-28 2003-05-27 Novo Nordisk A/S Alkynyl-substituted propionic acid derivatives, their preparation and use
EP1832599A3 (en) * 2000-04-12 2007-11-21 Human Genome Sciences, Inc. Albumin fusion proteins
US20020061838A1 (en) * 2000-05-17 2002-05-23 Barton Holmquist Peptide pharmaceutical formulations
AU785444B2 (en) * 2000-05-19 2007-06-14 Jefferson Pharmaceuticals, Llc Peptide pharmaceutical formulations
DE60124710T2 (en) 2000-06-16 2007-09-13 Eli Lilly And Co., Indianapolis ANALOG OF GLUCAGON SIMILAR PEPTIDE-1
US7090869B2 (en) 2000-12-01 2006-08-15 Takeda Pharmaceutical Company Limited Method for producing preparation containing bioactive substance
SI1724284T1 (en) * 2000-12-07 2009-12-31 Lilly Co Eli GLP-1 fusion proteins
US7259233B2 (en) * 2000-12-13 2007-08-21 Eli Lilly And Company Chronic treatment regimen using glucagon-like insulinotropic peptides
US7803982B2 (en) 2001-04-20 2010-09-28 The Mount Sinai School Of Medicine Of New York University T1R3 transgenic animals, cells and related methods
EP1572871A4 (en) * 2001-04-20 2007-11-14 Sinai School Medicine T1r3 a novel taste receptor
CA2446739A1 (en) * 2001-05-25 2002-12-05 Human Genome Sciences, Inc. Chemokine beta-1 fusion proteins
AU2002327430A1 (en) * 2001-08-08 2003-02-24 Genzyme Corporation Methods for treating diabetes and other blood sugar disorders
US20040143104A1 (en) * 2001-08-08 2004-07-22 Wadsworth Samuel C. Methods of treating diabetes and other blood sugar disorders
EP1432730A4 (en) * 2001-08-23 2006-10-11 Lilly Co Eli Glucagon-like peptide-1 analogs
CN1635900A (en) * 2001-08-28 2005-07-06 伊莱利利公司 Pre-mixes of GLP-1 and basal insulin
GB0121709D0 (en) * 2001-09-07 2001-10-31 Imp College Innovations Ltd Food inhibition agent
US7459432B2 (en) 2001-09-24 2008-12-02 Imperial College Innovations Ltd. Modification of feeding behavior
CN1571676A (en) * 2001-10-19 2005-01-26 伊莱利利公司 Biphasic mixtures of GLP-1 and insulin
AU2002364587A1 (en) 2001-12-21 2003-07-30 Human Genome Sciences, Inc. Albumin fusion proteins
DK1463751T3 (en) * 2001-12-21 2013-08-26 Human Genome Sciences Inc Albumin Fusion Proteins.
EP1474163A2 (en) * 2002-01-10 2004-11-10 Imperial College Innovations Limited Modification of feeding behavior
US8058233B2 (en) * 2002-01-10 2011-11-15 Oregon Health And Science University Modification of feeding behavior using PYY and GLP-1
KR101165431B1 (en) * 2002-02-20 2012-07-12 에미스페어 테크놀로지스, 인코포레이티드 Method for administering glp-1 molecules
US20050260259A1 (en) * 2004-04-23 2005-11-24 Bolotin Elijah M Compositions for treatment with glucagon-like peptide, and methods of making and using the same
US7635463B2 (en) * 2002-02-27 2009-12-22 Pharmain Corporation Compositions for delivery of therapeutics and other materials
DE60335608D1 (en) * 2002-02-27 2011-02-17 Pharmain Corp COMPOSITIONS FOR THE DELIVERY OF THERAPEUTICS AND OTHER MATERIALS AND METHOD FOR THE PRODUCTION AND USE THEREOF
EP1894591B1 (en) 2002-03-20 2013-06-26 MannKind Corporation Cartridge for an inhalation apparatus
WO2003092614A2 (en) * 2002-05-02 2003-11-13 Hickle Randall S Lipid removal from the body
US7374930B2 (en) * 2002-05-21 2008-05-20 Expression Genetics, Inc. GLP-1 gene delivery for the treatment of type 2 diabetes
US7329798B2 (en) * 2002-06-28 2008-02-12 University Of Guelph Harvest-inducible regulatory elements and methods of using same
CA2490564A1 (en) 2002-07-04 2004-01-15 Zealand Pharma A/S Glp-1 and methods for treating diabetes
US20080260838A1 (en) * 2003-08-01 2008-10-23 Mannkind Corporation Glucagon-like peptide 1 (glp-1) pharmaceutical formulations
KR20050083713A (en) * 2002-10-02 2005-08-26 질랜드 파마 에이/에스 Stabilized exendin-4 compounds
DK1569680T3 (en) * 2002-10-22 2009-05-18 Waratah Pharmaceuticals Inc Treatment of diabetes
US7229966B2 (en) * 2002-12-17 2007-06-12 Nastech Pharmaceutical Company Inc. Compositions and methods for enhanced mucosal delivery of Y2 receptor-binding peptides and methods for treating and preventing obesity
US7166575B2 (en) * 2002-12-17 2007-01-23 Nastech Pharmaceutical Company Inc. Compositions and methods for enhanced mucosal delivery of peptide YY and methods for treating and preventing obesity
BR0316685A (en) * 2002-12-17 2005-11-01 Nastech Pharm Co Compositions and methods for the improved mucosal administration of γ2 receptor-fixing peptides and methods for treating and preventing obesity
US7186692B2 (en) 2002-12-17 2007-03-06 Nastech Pharmaceutical Company Inc. Compositions and methods for enhanced mucosal delivery and non-infused administration of Y2 receptor-binding peptides and methods for treating and preventing obesity
US7731947B2 (en) 2003-11-17 2010-06-08 Intarcia Therapeutics, Inc. Composition and dosage form comprising an interferon particle formulation and suspending vehicle
GB0300571D0 (en) * 2003-01-10 2003-02-12 Imp College Innovations Ltd Modification of feeding behaviour
KR101198346B1 (en) * 2003-04-08 2012-11-06 노보 노르디스크 에이/에스 Regeneration of chromatographic stationary phases
WO2004089985A1 (en) * 2003-04-11 2004-10-21 Novo Nordisk A/S Stable pharmaceutical compositions
ES2737835T3 (en) 2003-04-23 2020-01-16 Valeritas Inc Hydraulically driven pump for long-term medication administration
WO2004103993A1 (en) 2003-05-14 2004-12-02 Syrrx, Inc. Dipeptidyl peptidase inhibitors
EA011351B1 (en) 2003-05-23 2009-02-27 Нектар Терапеутикс Ал, Корпорейшн Polymeric reagents, methods for production thereof, conjugates containing them and pharmaceutical compositions
UA87458C2 (en) * 2003-06-12 2009-07-27 Елі Ліллі Енд Компані Hybrid proteins - glp-1 analogs
US7678909B1 (en) 2003-08-13 2010-03-16 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US7169926B1 (en) 2003-08-13 2007-01-30 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
US20050244810A1 (en) * 2003-09-29 2005-11-03 Egan Josephine M Taste signaling in gastrointestinal cells
US20050107318A1 (en) * 2003-11-17 2005-05-19 Samuel Wadsworth Methods of treating diabetes and other blood sugar disorders
ATE498404T1 (en) * 2003-12-09 2011-03-15 Novo Nordisk As REGULATION OF FOOD PREFERENCE WITH GLP-1 AGONISTS
TWI353250B (en) 2003-12-16 2011-12-01 Ipsen Pharma Sas Glp-1 pharmaceutical compositions
ES2393335T3 (en) 2003-12-16 2012-12-20 Ipsen Pharma GLP-1 analogues
US20060286129A1 (en) * 2003-12-19 2006-12-21 Emisphere Technologies, Inc. Oral GLP-1 formulations
US7538185B2 (en) 2004-01-08 2009-05-26 Theratechnologies Inc. Glucagon-like peptide-1 analogs with long duration of action
BRPI0507189A (en) * 2004-01-30 2007-06-26 Waratah Pharmaceuticals Inc combined use of a glp-1 agonist and gastrin compounds
DK1729795T3 (en) * 2004-02-09 2016-04-11 Human Genome Sciences Inc Albumin fusion proteins
US7732446B1 (en) 2004-03-11 2010-06-08 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
CA2563379A1 (en) * 2004-03-31 2005-10-20 Centocor, Inc. Human glp-1 mimetibodies, compositions, methods and uses
AU2005235634B2 (en) * 2004-04-23 2011-10-20 Conjuchem Biotechnologies Inc. Method for the purification of albumin conjugates
JP2008501714A (en) * 2004-06-04 2008-01-24 武田薬品工業株式会社 Dipeptidyl peptidase inhibitor
CN1950078A (en) * 2004-06-11 2007-04-18 诺和诺德公司 Counteracting drug-induced obesity using glp-1 agonists
WO2006014425A1 (en) * 2004-07-02 2006-02-09 Biovalve Technologies, Inc. Methods and devices for delivering glp-1 and uses thereof
WO2006019965A2 (en) 2004-07-16 2006-02-23 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors
CN101010305B (en) 2004-08-20 2010-08-11 曼金德公司 Catalysis of diketopiperazine synthesis
PL2322180T3 (en) 2004-08-23 2015-10-30 Mannkind Corp Diketopiperazine salts for drug delivery
US11246913B2 (en) 2005-02-03 2022-02-15 Intarcia Therapeutics, Inc. Suspension formulation comprising an insulinotropic peptide
WO2006083761A2 (en) 2005-02-03 2006-08-10 Alza Corporation Solvent/polymer solutions as suspension vehicles
JP2008536881A (en) * 2005-04-21 2008-09-11 ガストロテック・ファルマ・アクティーゼルスカブ Pharmaceutical formulation of GLP-1 molecule and antiemetic
DK1881850T3 (en) 2005-05-13 2011-01-03 Lilly Co Eli GLP-1-PEGylated Compounds
AU2006250347A1 (en) * 2005-05-27 2006-11-30 Asubio Pharma Co., Ltd. Agent for improvement of insulin resistance
GB0511986D0 (en) * 2005-06-13 2005-07-20 Imp College Innovations Ltd Novel compounds and their effects on feeding behaviour
CA2617859A1 (en) 2005-06-30 2007-01-11 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R Glp-1 pharmaceutical compositions
US20070016262A1 (en) 2005-07-13 2007-01-18 Betastim, Ltd. Gi and pancreatic device for treating obesity and diabetes
US10022457B2 (en) 2005-08-05 2018-07-17 Gholam A. Peyman Methods to regulate polarization and enhance function of cells
CN104324362B (en) 2005-09-14 2018-04-24 曼金德公司 Method for preparation of drug based on improving affinity of the active agent to crystalline microparticle surfaces
US8039432B2 (en) * 2005-11-09 2011-10-18 Conjuchem, Llc Method of treatment of diabetes and/or obesity with reduced nausea side effect
JP2009523122A (en) * 2005-12-13 2009-06-18 ハルクネスス プハルマセウティカルス,インコーポレイテッド How to treat obesity with enterostatin
US20070149457A1 (en) * 2005-12-13 2007-06-28 Byron Rubin Stable solid forms of enterostatin
JP2009519343A (en) * 2005-12-13 2009-05-14 ハルクネスス プハルマセウティカルス,インコーポレイテッド Non-hygroscopic composition of enterostatin
EP2364735A3 (en) 2005-12-16 2012-04-11 Nektar Therapeutics Branched PEG conjugates of GLP-1
KR101872061B1 (en) 2005-12-19 2018-06-27 파마인 코포레이션 Hydrophobic core carrier compositions for delivery of therapeutic agents, methods of making and using the same
CA2634495A1 (en) * 2005-12-22 2007-06-28 Conjuchem Biotechnologies Inc. Process for the production of preformed conjugates of albumin and a therapeutic agent
CN104383546B (en) 2006-02-22 2021-03-02 曼金德公司 Method for improving the pharmaceutical properties of microparticles comprising diketopiperazines and an active agent
WO2007112347A1 (en) 2006-03-28 2007-10-04 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
AU2007233231B2 (en) 2006-03-30 2011-02-24 Mannkind Corporation Multi-cartridge fluid delivery device
US20100087365A1 (en) * 2006-04-13 2010-04-08 Roland Cherif-Cheikh Pharmaceutical Compositions of Hglp-1, Exendin-4 and Analogs Thereof
MX2008014870A (en) 2006-05-30 2009-02-12 Intarcia Therapeutics Inc Two-piece, internal-channel osmotic delivery system flow modulator.
UA96602C2 (en) * 2006-06-23 2011-11-25 Ф. Хоффманн-Ля Рош Аг Insulinotropic peptide synthesis
AU2007272954A1 (en) * 2006-07-11 2008-01-17 Harkness Pharmaceuticals, Inc. Methods of treating obesity using satiety factors
JP5102833B2 (en) 2006-07-24 2012-12-19 バイオレクシス ファーマシューティカル コーポレーション Exendin fusion protein
CN102274557B (en) 2006-08-09 2014-12-03 精达制药公司 Osmotic delivery systems and piston assemblies
US7839952B2 (en) * 2006-12-05 2010-11-23 Provigent Ltd Data rate coordination in protected variable-rate links
TWI428346B (en) * 2006-12-13 2014-03-01 Imp Innovations Ltd Novel compounds and their effects on feeding behaviour
CA2677230A1 (en) * 2007-02-02 2008-08-14 Redpoint Bio Corporation Use of a trpm5 inhibitor to regulate insulin and glp-1 release
NZ580447A (en) * 2007-04-23 2011-06-30 Intarcia Therapeutics Inc Suspension formulations of insulinotropic peptides and uses thereof
ES2646614T3 (en) * 2007-08-03 2017-12-14 Eli Lilly And Company Use of a compound of FGF 21 and a compound of GLP 1 for the treatment of obesity
US7960336B2 (en) * 2007-08-03 2011-06-14 Pharmain Corporation Composition for long-acting peptide analogs
US8563527B2 (en) * 2007-08-20 2013-10-22 Pharmain Corporation Oligonucleotide core carrier compositions for delivery of nucleic acid-containing therapeutic agents, methods of making and using the same
WO2011163272A1 (en) 2010-06-21 2011-12-29 Mannkind Corporation Dry powder drug delivery system and methods
US8785396B2 (en) 2007-10-24 2014-07-22 Mannkind Corporation Method and composition for treating migraines
JP5813323B2 (en) * 2007-10-24 2015-11-17 マンカインド コーポレイション Active drug delivery method
WO2009055740A2 (en) * 2007-10-24 2009-04-30 Mannkind Corporation Method of preventing adverse effects by glp-1
EP2231191A2 (en) * 2007-12-11 2010-09-29 ConjuChem Biotechnologies Inc. Formulation of insulinotropic peptide conjugates
US20090176892A1 (en) * 2008-01-09 2009-07-09 Pharmain Corporation Soluble Hydrophobic Core Carrier Compositions for Delivery of Therapeutic Agents, Methods of Making and Using the Same
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
CA2726861C (en) 2008-02-13 2014-05-27 Intarcia Therapeutics, Inc. Devices, formulations, and methods for delivery of multiple beneficial agents
DK2293833T3 (en) 2008-06-13 2016-05-23 Mannkind Corp DRY POWDER INHALER AND MEDICINAL ADMINISTRATION SYSTEM
US8485180B2 (en) 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
WO2009153960A1 (en) 2008-06-17 2009-12-23 大塚化学株式会社 Glycosylated glp-1 peptide
KR101628410B1 (en) 2008-06-20 2016-06-08 맨카인드 코포레이션 An interactive apparatus and method for real-time profiling of inhalation efforts
TWI494123B (en) 2008-08-11 2015-08-01 Mannkind Corp Use of ultrarapid acting insulin
WO2010029159A1 (en) * 2008-09-12 2010-03-18 Novo Nordisk A/S Method of acylating a peptide or protein
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
AU2009293019A1 (en) 2008-09-19 2010-03-25 Tandem Diabetes Care Inc. Solute concentration measurement device and related methods
WO2010043566A2 (en) 2008-10-17 2010-04-22 Sanofi-Aventis Deutschland Gmbh Combination of an insulin and a glp-1 agonist
JO2870B1 (en) 2008-11-13 2015-03-15 ميرك شارب اند دوهم كورب Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
US8314106B2 (en) 2008-12-29 2012-11-20 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
EP2216042A1 (en) 2009-02-09 2010-08-11 Ipsen Pharma S.A.S. GLP-1 analogues pharmaceutical compositions
DK2405963T3 (en) 2009-03-11 2013-12-16 Mannkind Corp DEVICE, SYSTEM AND PROCEDURE FOR MEASURING RESISTANCE IN AN INHALATOR
US8614185B2 (en) 2009-05-04 2013-12-24 Centocor Ortho Biotech Inc. Fusion proteins of alpha-MSH derivatives and Fc
WO2010129248A1 (en) 2009-05-06 2010-11-11 Centocor Ortho Biotech Inc. Melanocortin receptor binding conjugates
US20110066175A1 (en) * 2009-05-07 2011-03-17 Rainbow Medical Ltd. Gastric anchor
US20100286628A1 (en) * 2009-05-07 2010-11-11 Rainbow Medical Ltd Gastric anchor
US8414559B2 (en) * 2009-05-07 2013-04-09 Rainbow Medical Ltd. Gastroretentive duodenal pill
BRPI1013154B1 (en) 2009-06-12 2020-04-07 Mannkind Corp MICROPARTICLES OF DICETOPIPERAZINE WITH SPECIFIC SURFACE AREAS DEFINED, DRY POWDER UNDERSTANDING THE REFERRED MICROPARTICLES, METHOD FOR FORMATION OF THE REFERENCESMICROPARTICLES AND THE FORMATION OF MICROPARTYSTEMS
AU2010278894B2 (en) 2009-07-30 2014-01-30 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
CA2771352A1 (en) 2009-09-02 2011-03-10 Merck Sharp & Dohme Corp. Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
CA2775676C (en) 2009-09-28 2016-08-16 Intarcia Therapeutics, Inc. Rapid establishment and/or termination of substantial steady-state drug delivery
AU2010312655A1 (en) 2009-10-30 2012-05-03 Glytech, Inc. Glycosylated form of antigenic GLP-1 analogue
EP2496295A1 (en) 2009-11-03 2012-09-12 MannKind Corporation An apparatus and method for simulating inhalation efforts
PL2498802T3 (en) * 2009-11-13 2015-06-30 Sanofi Aventis Deutschland Pharmaceutical composition comprising a glp-1 agonist, an insulin, and methionine
AU2010317994B2 (en) 2009-11-13 2014-03-06 Sanofi-Aventis Deutschland Gmbh Pharmaceutical composition comprising a GLP-1 agonist and methionine
BR112012012945A2 (en) 2009-11-25 2020-12-29 Arisgen Sa MUCOSAL RELEASE COMPOSITION, ITS PRODUCTION METHOD, PRE-FORMED PEPTIDE COMPLEX, KIT AND USE OF AN ACTIVE PEPTIDE AGENT
EP2460527A1 (en) * 2010-01-21 2012-06-06 Sanofi Pharmaceutical composition for treating a metabolic syndrome
WO2011103256A1 (en) 2010-02-22 2011-08-25 Merck Sharp & Dohme Corp. Substituted aminotetrahydrothiopyrans and derivatives thereof as dipeptidyl peptidase-iv inhibitors for the treatment of diabetes
WO2011123943A1 (en) 2010-04-09 2011-10-13 Mount Sinai Hospital Methods for treating disorders of the gastrointestinal tract using a glp-1 agonist
CN103003300B (en) 2010-04-27 2017-06-09 西兰制药公司 Peptide conjugate of the receptor stimulating agents of GLP 1 and gastrin and application thereof
WO2011146358A1 (en) 2010-05-21 2011-11-24 Merck Sharp & Dohme Corp. Substituted seven-membered heterocyclic compounds as dipeptidyl peptidase-iv inhibitors for the treatment of diabetes
SG186764A1 (en) * 2010-06-24 2013-02-28 Zealand Pharma As Glucagon analogues
RU2013103763A (en) 2010-07-02 2014-08-10 Ангиохем Инк. SHORT AND CONTAINING D-AMINO ACIDS POLYEPEPTIDES FOR THERAPEUTIC CONJUGATES AND THEIR APPLICATION
AU2010360116B2 (en) 2010-08-30 2014-06-26 Sanofi-Aventis Deutschland Gmbh Use of AVE0010 for the manufacture of a medicament for the treatment of diabetes mellitus type 2
US20120208755A1 (en) 2011-02-16 2012-08-16 Intarcia Therapeutics, Inc. Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers
CN102643339B (en) * 2011-02-21 2014-04-09 天津药物研究院 GLP-1 analogs, preparation method thereof application thereof
SG194034A1 (en) 2011-04-01 2013-11-29 Mannkind Corp Blister package for pharmaceutical cartridges
US9821032B2 (en) 2011-05-13 2017-11-21 Sanofi-Aventis Deutschland Gmbh Pharmaceutical combination for improving glycemic control as add-on therapy to basal insulin
WO2012174472A1 (en) 2011-06-17 2012-12-20 Mannkind Corporation High capacity diketopiperazine microparticles
US20130090285A1 (en) * 2011-06-27 2013-04-11 Phasebio Pharmaceuticals, Inc. Methods of treatment with glp-1 receptor agonists
WO2013030160A1 (en) 2011-08-29 2013-03-07 Sanofi-Aventis Deutschland Gmbh Pharmaceutical combination for use in glycemic control in diabetes type 2 patients
AR087744A1 (en) 2011-09-01 2014-04-16 Sanofi Aventis Deutschland PHARMACEUTICAL COMPOSITION FOR USE IN THE TREATMENT OF A NEURODEGENERATIVE DISEASE
US9458214B2 (en) 2011-09-26 2016-10-04 Novartis Ag Dual function fibroblast growth factor 21 proteins
AU2012328885B2 (en) 2011-10-24 2017-08-31 Mannkind Corporation Methods and compositions for treating pain
JP2014530892A (en) * 2011-10-28 2014-11-20 ファリス バイオテック ゲーエムベーハー Polypeptides for protection against cardiac ischemia-reperfusion injury
US20140336118A1 (en) * 2011-10-28 2014-11-13 Pharis Biotec Gmbh Polypeptide for the protection against heart ischemia-reperfusion injury
BR112014010780A2 (en) 2011-11-03 2017-04-25 Zealand Pharma As glp-1-gastrin receptor agonist peptide conjugates
ES2623786T3 (en) 2011-12-22 2017-07-12 Pfizer Inc. Purification procedure of an H38C2 antibody sample
KR20140145624A (en) 2012-04-16 2014-12-23 카네크 파마 인코포레이티드 Fused aromatic phosphonate derivatives as precursors to ptp-1b inhibitors
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
JP6224586B2 (en) 2012-07-10 2017-11-01 武田薬品工業株式会社 Injectable preparation
CN108057154B (en) 2012-07-12 2021-04-16 曼金德公司 Dry powder drug delivery system and method
CN104662038B (en) 2012-07-23 2018-11-06 西兰制药公司 Glucagon analogue
TWI608013B (en) 2012-09-17 2017-12-11 西蘭製藥公司 Glucagon analogues
WO2014066856A1 (en) 2012-10-26 2014-05-01 Mannkind Corporation Inhalable influenza vaccine compositions and methods
TWI780236B (en) 2013-02-04 2022-10-11 法商賽諾菲公司 Stabilized pharmaceutical formulations of insulin analogues and/or insulin derivatives
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
ES2928365T3 (en) 2013-03-15 2022-11-17 Mannkind Corp Microcrystalline diketopiperazine compositions, methods of preparation and use thereof
LT3004155T (en) 2013-05-28 2021-12-27 Takeda Pharmaceutical Company Limited Peptide compound
CN103344764B (en) * 2013-06-19 2014-11-26 天津美德太平洋科技有限公司 Reagent, method and kit for detection of biological activity of glucagon-like peptide-1 (GLP-1)
EP3021834A1 (en) 2013-07-18 2016-05-25 MannKind Corporation Heat-stable dry powder pharmaceutical compositions and methods
CN105517607A (en) 2013-08-05 2016-04-20 曼金德公司 Insufflation apparatus and methods
CN104371019B (en) 2013-08-13 2019-09-10 鸿运华宁(杭州)生物医药有限公司 It is a kind of can with GLP-1R specifically bind antibody and its with the fused protein of GLP-1
MY176022A (en) 2013-10-17 2020-07-21 Boehringer Ingelheim Int Acylated glucagon analogues
US9988429B2 (en) 2013-10-17 2018-06-05 Zealand Pharma A/S Glucagon analogues
US20160235810A1 (en) 2013-10-18 2016-08-18 Novartis Ag Methods of treating diabetes and related disorders
EP3065767B1 (en) 2013-11-06 2020-12-30 Zealand Pharma A/S Gip-glp-1 dual agonist compounds and methods
AU2014345570B2 (en) 2013-11-06 2019-01-24 Zealand Pharma A/S Glucagon-GLP-1-GIP triple agonist compounds
CA2929555A1 (en) 2013-11-08 2015-05-14 Baylor Research Institute Nuclear localization of glp-1 stimulates myocardial regeneration and reverses heart failure
US9339482B2 (en) 2013-11-22 2016-05-17 Regents Of The University Of Minnesota Methods to treat dysregulated blood glucose disorders
KR20160101195A (en) 2014-01-09 2016-08-24 사노피 Stabilized pharmaceutical formulations of insulin aspart
SG11201604710XA (en) 2014-01-09 2016-07-28 Sanofi Sa Stabilized pharmaceutical formulations of insulin analogues and/or insulin derivatives
CN111658604A (en) 2014-01-09 2020-09-15 赛诺菲 Stabilized glycerol-free pharmaceutical formulations of insulin analogues and/or insulin derivatives
EP3107560A1 (en) * 2014-02-18 2016-12-28 Novo Nordisk A/S Stable glucagon analogues and use for treatment of hypoglycaemia
US10307464B2 (en) 2014-03-28 2019-06-04 Mannkind Corporation Use of ultrarapid acting insulin
CN106456674B (en) * 2014-04-11 2020-06-30 卢万天主教大学 Transgenic porcine islets and their use for the treatment of diabetes
US9889085B1 (en) 2014-09-30 2018-02-13 Intarcia Therapeutics, Inc. Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler
US10413593B2 (en) 2014-10-24 2019-09-17 Merck Sharp & Dohme Corp. Co-agonists of the glucagon and GLP-1 receptors
DK3212218T3 (en) 2014-10-29 2021-08-30 Zealand Pharma As GIP agonist compounds and methods
HUE062573T2 (en) 2014-12-12 2023-11-28 Sanofi Aventis Deutschland Insulin glargine/lixisenatide fixed ratio formulation
US11419543B1 (en) 2016-03-03 2022-08-23 Gholam A. Peyman Early disease detection and therapy
KR101825048B1 (en) 2014-12-31 2018-02-05 주식회사 제넥신 Fusion Polypeptide Comprising GLP and Immunoglobulin Hybrid Fc and use thereof
JP6731953B2 (en) 2015-02-11 2020-07-29 ジーエムエーエックス バイオファーム エルエルシー. Stable pharmaceutical solution formulation of GLP-1R antibody fusion protein
TWI748945B (en) 2015-03-13 2021-12-11 德商賽諾菲阿凡提斯德意志有限公司 Treatment type 2 diabetes mellitus patients
TW201705975A (en) 2015-03-18 2017-02-16 賽諾菲阿凡提斯德意志有限公司 Treatment of type 2 diabetes mellitus patients
CN107636010B (en) 2015-04-16 2021-10-01 西兰制药公司 Acylated glucagon analogues
CN113598842A (en) 2015-06-03 2021-11-05 因塔西亚制药公司 Implant placement and removal system
US11090385B2 (en) 2015-12-21 2021-08-17 Gholam A. Peyman Early cancer detection and enhanced immunotherapy
US10300121B2 (en) 2015-12-21 2019-05-28 Gholam A. Peyman Early cancer detection and enhanced immunotherapy
US11433260B2 (en) 2015-12-21 2022-09-06 Gholam A. Peyman Cancer treatment methods using thermotherapy and/or enhanced immunotherapy
US11660229B2 (en) 2015-12-21 2023-05-30 Gholam A. Peyman Cancer treatment methods using thermotherapy and/or enhanced immunotherapy
US9849092B2 (en) 2015-12-21 2017-12-26 Gholam A. Peyman Early cancer detection and enhanced immunotherapy
US10136820B2 (en) 2015-12-21 2018-11-27 Gholam A. Peyman Method to visualize very early stage neoplasm or other lesions
US10376600B2 (en) 2016-03-03 2019-08-13 Gholam A. Peyman Early disease detection and therapy
EP3458084B1 (en) 2016-05-16 2020-04-01 Intarcia Therapeutics, Inc Glucagon-receptor selective polypeptides and methods of use thereof
US10501516B2 (en) 2016-05-24 2019-12-10 Takeda Pharmaceutical Company Limited Peptide compound
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
USD840030S1 (en) 2016-06-02 2019-02-05 Intarcia Therapeutics, Inc. Implant placement guide
EP3551651B1 (en) 2016-12-09 2024-03-06 Zealand Pharma A/S Acylated glp-1/glp-2 dual agonists
CN107266556A (en) * 2016-12-14 2017-10-20 江苏师范大学 A kind of Africa xenopus glucagon-like peptide 1(GLP‑1)Analog and its application
KR20190104039A (en) 2017-01-03 2019-09-05 인타르시아 세라퓨틱스 인코포레이티드 Methods Including Continuous Administration of GLP-1 Receptor Agonists and Co-administration of Drugs
MA46990A (en) 2017-08-24 2019-05-01 Novo Nordisk As COMPOSITIONS OF GLP-1 AND THEIR USES
US11752173B2 (en) 2017-12-19 2023-09-12 Beijing Jiyuan Biological Technology Co., Ltd. FGF21 and GLP1 double gene-modified mesenchymal stem cell and use in treating a metabolic disease
CN110237239A (en) 2018-03-09 2019-09-17 上海仁会生物制药股份有限公司 For treating the GLP-1 composition of fat and Weight management
CN110305211A (en) 2018-03-20 2019-10-08 鸿运华宁(杭州)生物医药有限公司 GIPR antibody and its with the fused protein of GLP-1 and its pharmaceutical composition and application
WO2020077129A1 (en) 2018-10-11 2020-04-16 Intarcia Therapeutics, Inc. Human amylin analog polypeptides and methods of use
CN112521501A (en) 2019-09-18 2021-03-19 鸿运华宁(杭州)生物医药有限公司 GIPR antibody and fusion protein thereof with GLP-1, and pharmaceutical composition and application thereof
GB201917723D0 (en) 2019-12-04 2020-01-15 Nv Rose Llc Stable liquid formulations of glucagon-like peptide 1 or analogues thereof
WO2021136223A1 (en) 2019-12-31 2021-07-08 Beijing Ql Biopharmaceutical Co., Ltd. Fusion proteins of glp-1 and gdf15 and conjugates thereof
BR112022013746A2 (en) 2020-02-18 2022-10-11 Novo Nordisk As CAGRILINTIDE AQUEOUS FORMULATION, SEMAGLUTIDE AQUEOUS FORMULATION, MEDICAL DEVICE, AND, FIXED DOSE COMBINATION
CN115925995A (en) 2020-09-30 2023-04-07 北京质肽生物医药科技有限公司 Polypeptide Conjugates and Methods of Use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053389A (en) * 1986-04-18 1991-10-01 Per Balschmidt Insulin preparation for non-parenteral administration
US5118666A (en) * 1986-05-05 1992-06-02 The General Hospital Corporation Insulinotropic hormone
US5120712A (en) * 1986-05-05 1992-06-09 The General Hospital Corporation Insulinotropic hormone
US5462928A (en) * 1990-04-14 1995-10-31 New England Medical Center Hospitals, Inc. Inhibitors of dipeptidyl-aminopeptidase type IV
US5512549A (en) * 1994-10-18 1996-04-30 Eli Lilly And Company Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
US5545618A (en) * 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
US5693609A (en) * 1994-11-17 1997-12-02 Eli Lilly And Company Acylated insulin analogs

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991011457A1 (en) 1990-01-24 1991-08-08 Buckley Douglas I Glp-1 analogs useful for diabetes treatment
WO1993016105A1 (en) 1992-02-07 1993-08-19 Merrell Dow Pharmaceuticals Inc. Phenylalanine analogs of bombesin
DK36392D0 (en) 1992-03-19 1992-03-19 Novo Nordisk As USE OF CHEMICAL COMPOUND
AU671117B2 (en) 1992-06-15 1996-08-15 Scios Inc. Glucagon-like peptide and insulinotropin derivatives
WO1995005848A1 (en) 1993-08-24 1995-03-02 Novo Nordisk A/S Protracted glp-1
EP0658568A1 (en) 1993-12-09 1995-06-21 Eli Lilly And Company Glucagon-like insulinotropic peptides, compositions and methods
GB9409496D0 (en) 1994-05-12 1994-06-29 London Health Ass Method for improving glycaemic control in diabetes
US6309853B1 (en) 1994-08-17 2001-10-30 The Rockfeller University Modulators of body weight, corresponding nucleic acids and proteins, and diagnostic and therapeutic uses thereof
GB9502830D0 (en) 1995-02-14 1995-04-05 Ecole Polytech Regulation of polypeptide production in cells
US5869602A (en) 1995-03-17 1999-02-09 Novo Nordisk A/S Peptide derivatives
WO1997031943A1 (en) 1996-03-01 1997-09-04 Novo Nordisk A/S Use of a pharmaceutical composition comprising an appetite-suppressing peptide
ATE417622T1 (en) 1996-08-08 2009-01-15 Amylin Pharmaceuticals Inc REGULATION OF GASTROINTESTINAL MOBILITY
US5762953A (en) * 1996-08-22 1998-06-09 Theratech, Inc. Transdermal propentofylline compositions for the treatment of Alzheimers disease
AU4112497A (en) 1996-08-30 1998-03-19 Novo Nordisk A/S Glp-2 derivatives
HU227021B1 (en) 1996-08-30 2010-05-28 Novo Nordisk As Glp-1 derivatives
UA65549C2 (en) 1996-11-05 2004-04-15 Елі Ліллі Енд Компані Use of glucagon-like peptides such as glp-1, glp-1 analog, or glp-1 derivative in methods and compositions for reducing body weight
ES2237790T3 (en) 1996-11-12 2005-08-01 Novo Nordisk A/S USE OF GLP-1 PEPTIDES.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053389A (en) * 1986-04-18 1991-10-01 Per Balschmidt Insulin preparation for non-parenteral administration
US5118666A (en) * 1986-05-05 1992-06-02 The General Hospital Corporation Insulinotropic hormone
US5120712A (en) * 1986-05-05 1992-06-09 The General Hospital Corporation Insulinotropic hormone
US5545618A (en) * 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
US5462928A (en) * 1990-04-14 1995-10-31 New England Medical Center Hospitals, Inc. Inhibitors of dipeptidyl-aminopeptidase type IV
US5512549A (en) * 1994-10-18 1996-04-30 Eli Lilly And Company Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
US5693609A (en) * 1994-11-17 1997-12-02 Eli Lilly And Company Acylated insulin analogs

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202383B2 (en) 2002-08-21 2019-02-12 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9556175B2 (en) 2002-08-21 2017-01-31 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and thier use as pharmaceutical compositions
US10023574B2 (en) 2002-08-21 2018-07-17 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9499546B2 (en) 2004-11-05 2016-11-22 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US9751855B2 (en) 2004-11-05 2017-09-05 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US9018164B2 (en) 2005-11-07 2015-04-28 Indiana University Research And Technology Corporation Glucagon analogs exhibiting physiological solubility and stability
US20090137456A1 (en) * 2005-11-07 2009-05-28 Indiana University Research And Technology Glucagon analogs exhibiting physiological solubility and stability
US8338368B2 (en) 2005-11-07 2012-12-25 Indiana University Research And Technology Corporation Glucagon analogs exhibiting physiological solubility and stability
US10080754B2 (en) 2006-05-04 2018-09-25 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US9493462B2 (en) 2006-05-04 2016-11-15 Boehringer Ingelheim International Gmbh Polymorphs
US10301313B2 (en) 2006-05-04 2019-05-28 Boehringer Ingelheim International Gmbh Polymorphs
US11033552B2 (en) 2006-05-04 2021-06-15 Boehringer Ingelheim International Gmbh DPP IV inhibitor formulations
US11919903B2 (en) 2006-05-04 2024-03-05 Boehringer Ingelheim International Gmbh Polymorphs
US11084819B2 (en) 2006-05-04 2021-08-10 Boehringer Ingelheim International Gmbh Polymorphs
US9815837B2 (en) 2006-05-04 2017-11-14 Boehringer Ingelheim International Gmbh Polymorphs
US11291668B2 (en) 2006-05-04 2022-04-05 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US8669228B2 (en) 2007-01-05 2014-03-11 Indiana University Research And Technology Corporation Glucagon analogs exhibiting enhanced solubility in physiological pH buffers
US20100190699A1 (en) * 2007-01-05 2010-07-29 Indiana University Research And Technology Corporation GLUCAGON ANALOGS EXHIBITING ENHANCED SOLUBILITY IN PHYSIOLOGICAL pH BUFFERS
US9447162B2 (en) 2007-02-15 2016-09-20 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US8454971B2 (en) 2007-02-15 2013-06-04 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US8900593B2 (en) 2007-02-15 2014-12-02 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US20110098217A1 (en) * 2007-10-30 2011-04-28 Indiana University Research And Technology Corporation Compounds exhibiting glucagon antagonist and glp-1 agonist activity
US8980830B2 (en) 2007-10-30 2015-03-17 Indiana University Research And Technology Corporation Peptide compounds exhibiting glucagon antagonist and GLP-1 agonist activity
US8981047B2 (en) 2007-10-30 2015-03-17 Indiana University Research And Technology Corporation Glucagon antagonists
US20110065633A1 (en) * 2008-01-30 2011-03-17 Indiana University Research And Technology Corporation Ester-based peptide prodrugs
US8697838B2 (en) 2008-01-30 2014-04-15 Indiana University Research And Technology Corporation Ester-based insulin prodrugs
US9089539B2 (en) 2008-01-30 2015-07-28 Indiana University Research And Technology Corporation Ester-based insulin prodrugs
US9415016B2 (en) 2008-04-03 2016-08-16 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US10022379B2 (en) 2008-04-03 2018-07-17 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US10973827B2 (en) 2008-04-03 2021-04-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US20110190200A1 (en) * 2008-06-17 2011-08-04 Dimarchi Richard D GLUCAGON ANALOGS EXHIBITING ENHANCED SOLUBILITY AND STABILITY IN PHYSIOLOGICAL pH BUFFERS
US8969294B2 (en) 2008-06-17 2015-03-03 Istituto Di Recerche Di Biologia Molecolare P. Angeletti S.R.L. Glucagon/GLP-1 receptor co-agonists
AU2009260302B2 (en) * 2008-06-17 2014-10-23 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US9062124B2 (en) 2008-06-17 2015-06-23 Indiana University Research And Technology Corporation GIP-based mixed agonists for treatment of metabolic disorders and obesity
US8546327B2 (en) 2008-06-17 2013-10-01 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
EA019203B1 (en) * 2008-06-17 2014-01-30 Индиана Юниверсити Рисерч Энд Текнолоджи Корпорейшн Glucagon/glp-1 receptor co-agonists
US20110166062A1 (en) * 2008-06-17 2011-07-07 Indiana University Research And Technology Corporation Gip-based mixed agonists for treatment of metabolic disorders and obesity
EA019203B9 (en) * 2008-06-17 2014-03-31 Индиана Юниверсити Рисерч Энд Текнолоджи Корпорейшн Glucagon/glp-1 receptor co-agonists
WO2009155258A3 (en) * 2008-06-17 2010-02-18 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
US8450270B2 (en) 2008-06-17 2013-05-28 Indiana University Research And Technology Corporation Glucagon analogs exhibiting enhanced solubility and stability in physiological pH buffers
US9486526B2 (en) 2008-08-06 2016-11-08 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US10034877B2 (en) 2008-08-06 2018-07-31 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US11911388B2 (en) 2008-10-16 2024-02-27 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug
US8969288B2 (en) 2008-12-19 2015-03-03 Indiana University Research And Technology Corporation Amide based glucagon and superfamily peptide prodrugs
US8481485B2 (en) 2008-12-19 2013-07-09 Indiana University Research And Technology Corporation Insulin analogs
US8697632B2 (en) 2008-12-19 2014-04-15 Indiana University Research And Technology Corporation Amide based insulin prodrugs
US9150632B2 (en) 2009-06-16 2015-10-06 Indiana University Research And Technology Corporation GIP receptor-active glucagon compounds
US9790263B2 (en) 2009-06-16 2017-10-17 Indiana University Research And Technology Corporation GIP receptor-active glucagon compounds
US9457029B2 (en) 2009-11-27 2016-10-04 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
US10092571B2 (en) 2009-11-27 2018-10-09 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
US8703701B2 (en) 2009-12-18 2014-04-22 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US8551946B2 (en) 2010-01-27 2013-10-08 Indiana University Research And Technology Corporation Glucagon antagonist-GIP agonist conjugates and compositions for the treatment of metabolic disorders and obesity
US9487571B2 (en) 2010-01-27 2016-11-08 Indiana University Research And Technology Corporation Glucagon antagonist-GIP agonist conjugates and compositions for the treatment of metabolic disorders and obesity
US10004747B2 (en) 2010-05-05 2018-06-26 Boehringer Ingelheim International Gmbh Combination therapy
US9603851B2 (en) 2010-05-05 2017-03-28 Boehringer Ingelheim International Gmbh Combination therapy
US9127088B2 (en) 2010-05-13 2015-09-08 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting nuclear hormone receptor activity
US9783592B2 (en) 2010-05-13 2017-10-10 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting nuclear hormone receptor activity
US9145451B2 (en) 2010-05-13 2015-09-29 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhbiting G protein coupled receptor activity
US10233225B2 (en) 2010-06-16 2019-03-19 Indiana University Research And Technology Corporation Single chain insulin agonists exhibiting high activity at the insulin receptor
US9458220B2 (en) 2010-06-16 2016-10-04 Indiana University Research And Technology Corporation Single-chain insulin agonists exhibiting high activity at the insulin receptor
US8940860B2 (en) 2010-06-16 2015-01-27 Indiana University Research And Technology Corporation Single-chain insulin agonists exhibiting high activity at the insulin receptor
US8778872B2 (en) 2010-06-24 2014-07-15 Indiana University Research And Technology Corporation Amide based glucagon superfamily peptide prodrugs
US8946147B2 (en) 2010-06-24 2015-02-03 Indiana University Research And Technology Corporation Amide-based insulin prodrugs
US11911387B2 (en) 2010-11-15 2024-02-27 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US8507428B2 (en) 2010-12-22 2013-08-13 Indiana University Research And Technology Corporation Glucagon analogs exhibiting GIP receptor activity
US9249206B2 (en) 2010-12-22 2016-02-02 Indiana University Research And Technology Corporation Glucagon analogs exhibiting GIP receptor activity
US9309301B2 (en) 2011-06-22 2016-04-12 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US9758562B2 (en) 2011-06-22 2017-09-12 Indiana University and Technology Corporation Glucagon/GLP-1 receptor co-agonists
US10174093B2 (en) 2011-06-22 2019-01-08 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US8729017B2 (en) 2011-06-22 2014-05-20 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US10730923B2 (en) 2011-06-22 2020-08-04 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US9156902B2 (en) 2011-06-22 2015-10-13 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
US8859491B2 (en) 2011-11-17 2014-10-14 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting glucocorticoid receptor activity
US9573987B2 (en) 2011-12-20 2017-02-21 Indiana University Research And Technology Corporation CTP-based insulin analogs for treatment of diabetes
US20130172244A1 (en) * 2011-12-29 2013-07-04 Thomas Klein Subcutaneous therapeutic use of dpp-4 inhibitor
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US10195203B2 (en) 2012-05-14 2019-02-05 Boehringr Ingelheim International GmbH Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9526730B2 (en) 2012-05-14 2016-12-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9713618B2 (en) 2012-05-24 2017-07-25 Boehringer Ingelheim International Gmbh Method for modifying food intake and regulating food preference with a DPP-4 inhibitor
US9340600B2 (en) 2012-06-21 2016-05-17 Indiana University Research And Technology Corporation Glucagon analogs exhibiting GIP receptor activity
US9593156B2 (en) 2012-09-26 2017-03-14 Indiana University Research And Technology Corporation Insulin analog dimers
US10696726B2 (en) 2013-03-14 2020-06-30 Indiana University Research And Technology Corporation Insulin-incretin conjugates
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
US10385107B2 (en) 2014-09-24 2019-08-20 Indiana Univeresity Researc and Technology Corporation Lipidated amide-based insulin prodrugs
US10232020B2 (en) 2014-09-24 2019-03-19 Indiana University Research And Technology Corporation Incretin-insulin conjugates
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition
US11510990B2 (en) 2020-01-11 2022-11-29 Beijing Ql Biopharmaceutical Co., Ltd. Conjugates of fusion proteins of GLP-1 and FGF21

Also Published As

Publication number Publication date
AU734042B2 (en) 2001-05-31
HUP0003314A3 (en) 2001-12-28
DE69719798T2 (en) 2004-02-12
ES2194224T3 (en) 2003-11-16
UA65549C2 (en) 2004-04-15
YU24199A (en) 2002-12-10
IL129852A (en) 2007-10-31
DE69719798D1 (en) 2003-04-17
EP0946191B1 (en) 2003-03-12
CN1242707A (en) 2000-01-26
NZ335995A (en) 2001-02-23
EP0946191A1 (en) 1999-10-06
ATE234112T1 (en) 2003-03-15
HUP0003314A2 (en) 2001-02-28
US6191102B1 (en) 2001-02-20
MY129220A (en) 2007-03-30
US7211557B2 (en) 2007-05-01
AU5245798A (en) 1998-05-29
NO992557L (en) 1999-06-15
IL129852A0 (en) 2000-02-29
CA2271169C (en) 2012-09-04
DK0946191T3 (en) 2003-07-14
US20040018975A1 (en) 2004-01-29
CA2271169A1 (en) 1998-05-14
WO1998019698A1 (en) 1998-05-14
NO992557D0 (en) 1999-05-27
PT946191E (en) 2003-06-30
HK1024874A1 (en) 2000-10-27
US6583111B1 (en) 2003-06-24
CN1268391C (en) 2006-08-09

Similar Documents

Publication Publication Date Title
US6191102B1 (en) Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
AU766375B2 (en) Use of GLP-1 or analogs in treatment of stroke
EP0964873B1 (en) Use of glucagon-like peptide-1 (glp-1) or analogs to abolish catabolic changes after surgery
US6747006B2 (en) Use of GLP-1 or analogs in treatment of myocardial infarction
EP1306092A2 (en) Use of GLP-1 and analogs administered peripherally, in regulation of obesity
US20060160740A1 (en) Use of GLP-1 or analogs in treatment of stroke
AU2003270960B2 (en) Use of GLP-1 or Analogs in Treatment of Stroke
CZ165199A3 (en) Medicament for reducing body weight or obesity
MXPA99004662A (en) Use of glp-1 analogs and derivatives administered peripherally in regulation of obesity
EP1652531A1 (en) Use of GLP-1 or Analogues in Treatment of Stroke
PL191627B1 (en) Application of peripherally administered glp-1 analoques and derivatives in treating obesity
EP1566180A2 (en) Use of GLP-1 or Analogs in Treatment of Myocardial Infarction
MXPA01003008A (en) Use of glp-1 or analogs in treatment of stroke

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION