US20070196428A1 - Nitric oxide generating medical devices - Google Patents

Nitric oxide generating medical devices Download PDF

Info

Publication number
US20070196428A1
US20070196428A1 US11/356,696 US35669606A US2007196428A1 US 20070196428 A1 US20070196428 A1 US 20070196428A1 US 35669606 A US35669606 A US 35669606A US 2007196428 A1 US2007196428 A1 US 2007196428A1
Authority
US
United States
Prior art keywords
medical device
metal complex
polymer
coating
nitric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/356,696
Inventor
Thierry Glauser
Stephen Pacetti
Paul Consigny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Cardiovascular Systems Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/356,696 priority Critical patent/US20070196428A1/en
Assigned to ADVANCED CARDIOVASCULAR SYSTEMS, INC. reassignment ADVANCED CARDIOVASCULAR SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PACETTI, STEPHEN, GLAUSER, THIERRY, CONSIGNY, PAUL
Priority to JP2008555247A priority patent/JP2009526605A/en
Priority to PCT/US2007/002124 priority patent/WO2007097875A2/en
Priority to EP07717041A priority patent/EP1996247A2/en
Priority to US11/726,135 priority patent/US8067025B2/en
Publication of US20070196428A1 publication Critical patent/US20070196428A1/en
Priority to US13/276,666 priority patent/US8470358B2/en
Priority to US13/923,559 priority patent/US8986724B2/en
Assigned to ABBOTT CARDIOVASCULAR SYSTEMS INC. reassignment ABBOTT CARDIOVASCULAR SYSTEMS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ADVANCED CARDIOVASCULAR SYSTEMS, INC.
Priority to US14/622,131 priority patent/US9421223B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/114Nitric oxide, i.e. NO
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings

Definitions

  • This invention is generally related to medical devices capable of in vivo generation of nitric oxide.
  • Stents are used not only as a mechanical intervention in vascular conditions but also as a vehicle for providing biological therapy.
  • stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway.
  • stents are capable of being compressed, so that they can be inserted through small vessels via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in patent literature disclosing stents that have been applied in PTCA procedures include stents illustrated in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor.
  • Biological therapy can be achieved by medicating the stents.
  • Medicated stents provide for the local administration of a therapeutic substance at the diseased site.
  • systemic administration of such medication often produces adverse or toxic side effects on the patient.
  • Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results.
  • stentable lesions are focal manifestations of widespread vascular disease.
  • the advent of drug eluting stents has brought relief from restenosis of the treated lesion, but leaves progression of regional vascular disease unaddressed.
  • Nitric oxide has numerous physiologic and pathophysiologic functions. For example, NO can inhibit the inflammatory process by lowering cytokine synthesis and inactivating nuclear factor (NF)- ⁇ B,3 as several cytokines contain a binding site for NF- ⁇ B in their promoter regions. It has been reported that blood level NO can inhibit platelet adhesion and aggregation, inflammation, and smooth muscle cell migration and proliferation and can stimulate endothelial cell migration and proliferation. In addition, NO has vasorelaxant effect and can regulate smooth muscle contractility and platelet reactivity (see, e.g., Lindberg, L., et al., Nitric Oxide gives maximal response after coronary artery bypass surgery. J. Cardiothorac Vasc. Anesth. 8:182-87 (1994)).
  • NF nuclear factor
  • the present invention provides means of generating nitric oxide to cure the deficiencies of a conventional drug eluting stent.
  • a medical device comprising a polymer and a metal complex attached to the polymer, wherein the metal complex catalyzes the generation of nitric oxide in the blood stream or in tissue adjacent to the medical device.
  • the polymer is included in a coating for the medical device.
  • the medical device is a bioabsorbable stent made from at least the polymer.
  • the metal complex can be a copper complex.
  • the metal complex can comprise Cyclen, Cyclam, DTTCT, or a bipyridine ligand.
  • the metal complex can be attached to the polymer with a spacer.
  • the spacer can be a short-chain alkyl group, phenyl group, an aryl group, or poly(ethylene glycol).
  • the metal complex comprises a metal selected from the group consisting of Cu 2+ , Co 2+ , Ni 2+ , Zn +2+ , Mn 2+ , Al 3+ , or Fe 3+ .
  • the medical device can include a drug adapted to be released from the device.
  • the drug can be included in a coating.
  • the coating can be made from the polymer to which the complex is attached.
  • the nitric oxide can be released from a nitrosylated biomolecule present in the blood stream or a tissue adjacent to the medical device.
  • the nitric oxide can be released from a nitrosylated protein or S-nitrosothiols present in the blood stream or in tissue adjacent to the medical device.
  • a medical device comprising a metal complex
  • the metal complex is attached to the surface of the medical device or a coating on the medical device, and wherein the metal complex catalyzes the generation of nitric oxide in the blood stream or in tissue adjacent to the medical device.
  • the present invention provides methods for generating NO in blood.
  • NO can be released from a nitric oxide source present in the blood stream or a tissue when the nitric oxide source meets a metal catalyst in the blood stream or the tissue.
  • the metal catalyst can be attached to a coating (e.g., a topcoat) on a medical device with a spacer.
  • the metal catalyzes the release of NO from the NO source.
  • the nitric oxide source can comprise nitrosylated biomolecules such as nitrosylated proteins (e.g., S-nitrosothiols).
  • NO has numerous physiologic and pathophysiologic functions. For example, NO can inhibit the inflammatory process by lowering cytokine synthesis and inactivating nuclear factor (NF)- ⁇ B,3 as several cytokines contain a binding site for NF- ⁇ B in their promoter regions. It has been reported that blood level NO can inhibit platelet adhesion and aggregation, inflammation, and smooth muscle cell migration and proliferation and can stimulate endothelial cell migration and proliferation. In addition, NO has vasorelaxant effect and can regulate smooth muscle contractility, and platelet reactivity.
  • NF nuclear factor
  • the metal catalyst includes a metal, which can be a metal ion or a metal atom, and one or more ligands.
  • the ligand can have two or more coordination sites.
  • the ligand has four nitrogen atoms that serve as coordination sites in the ligand.
  • the metal catalyst can be formed prior to the ligand's attachment to a polymer coating or after the ligand's attachment to the polymer coating.
  • the catalyst is formed after the ligand's attachment to the coating.
  • a coating including the metal complex described herein can be formed directly on the surface of a medical device or on top of a layer of a coating that includes a biocompatible polymer.
  • the coating can be formed on top of a drug reservoir, which can be a layer of neat or pure drug(s) or a layer that includes a biocompatible polymer combined with a drug or combination of drugs.
  • the medical device itself can be bioabsorbable (e.g., a bioabsorbable stent) and the catalyst can be attached directly to the surface of the device. In some embodiments, the catalyst can also be attached to a coating of the bioabsorbable device.
  • bioabsorbable e.g., a bioabsorbable stent
  • the medical device having the catalyst described herein can include one or more biocompatible polymer(s) and optionally one or more biobeneficial material(s).
  • the coating can include a bioactive agent such as a drug.
  • bioactive agents include, but are not limited to, paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl(4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin(everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N1-tetrazolyl
  • the medical device including a catalyst described herein can be used to treat, prevent, or ameliorate a vascular medical condition such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
  • a vascular medical condition such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
  • Copper complexes have been shown to generate biologically relevant levels of NO for up to 6 hours (see, e.g., Oh, B. K. and Meyerhoff, M. E., Biomaterials 25:283-293 (2005)). NO generation occurs as long as the copper catalyst is present and a nitrosylated biomolecule (e.g., nitrosylated proteins or S-nitrosothiols) in the blood reaches the copper catalyst (see, e.g., Oh, B. H., Meyerhoff, M. E., J. Amer. Chem. Soc., 125(32):9552-53) (2003).
  • a nitrosylated biomolecule e.g., nitrosylated proteins or S-nitrosothiols
  • NO generation can be achieved when a metal ion (e.g., copper or zinc) is bound to a ligand such as Cyclen (see Scheme I), Cyclan (see Scheme I), or macrocycles having four nitrogen groupings.
  • a metal ion e.g., copper or zinc
  • a ligand such as Cyclen (see Scheme I), Cyclan (see Scheme I), or macrocycles having four nitrogen groupings.
  • One such macrocycle ligand is dibenzo[e,k]-2,3,8,9-tetraphenyl-1,4,7,10-tetraaza-cyclododeca-1,3,7,9-tetraene (DTTCT).
  • DTTCT dibenzo[e,k]-2,3,8,9-tetraphenyl-1,4,7,10-tetraaza-cyclododeca-1,3,7,9-tetraene
  • DTTCT dibenzo[e,k]-2,3,8,9-tetrapheny
  • the metal catalyst can be any metal complex capable of catalyzing the generation of nitric oxide in the blood stream or the tissue.
  • the metal complex is a copper complex.
  • the metal complex contains a metal such as Co 2+ , Ni 2+ , Zn +2+ , Mn 2+ , Al 3+ , or Fe 3+ .
  • the metal complex can be formed by mixing a metal compound and the ligand described herein and allowing the ligand to complex with the metal. Methods for forming a metal complex are well documented in the art. Some references can be found in A. B. P. Lever, Editor-in-Chief, Coordination Chemistry Reviews, published by Elsevier.
  • Ligands useful for forming the metal complex described herein are chelating ligands having multiple coordination sites.
  • the ligands can have at least two coordination sites, preferably three coordination sites, more preferably four coordination sites.
  • the ligand is an N4 macrocycle ligand (a ligand having four nitrogen coordination sites).
  • Some representative N4 ligands include, but are not limited to, Cyclen, Cyclam, and DTTCT.
  • the ligand can have two coordination sites. Two or more equivalents of the ligands can complex to a metal to form a metal complex. For example, two equivalents of an N2 ligand (ligand having two nitrogen coordination sites) can complex to a metal such as copper to form a metal complex having four nitrogen coordination sites.
  • Some representative N2 ligands are, for example, 2,2′-bipyridine ligands.
  • Standard procedures can be used to introduce the metal (e.g., a metal ion) into the macrocycle.
  • the metal complex described herein is attached to the surface of a medical device or a coating on the device through a spacer.
  • the spacer can be, for example, an alkyl chain or a poly(ethylene glycol) (PEG) chain.
  • the spacer has a length of at least two carbon atoms or longer. This can allow the copper complex to be at the blood polymer interface and have the active center accessible to nitrosylated biomolecules (e.g., nitrosylated proteins or nitrosothiols) in the blood.
  • the metal complex can either be coupled to the spacer and then to the polymer or coupled to a spacer that is already attached to the polymer. The order of the reactions is dictated by the compatibility of the chemistry, which can be readily appreciated by one of ordinary skill in the art.
  • the spacer can be a biocompatible polymer or oligomer.
  • Attachment of a spacer to ligands can be achieved by functionalizing the ligand and then coupling the functionalized ligand to a spacer.
  • Functionalization of the ligand can be carried out using standard procedures in organic synthesis.
  • Cyclen and Cyclam both having N—H groups in their molecules, can be coupled to a spacer that has a leaving group such as a halo group and a reactive group R, which can be any reactive group such as carboxyl, hydroxyl, thiol, or amine groups (Scheme I).
  • the reactive group can be used to attach Cyclen or Cyclam to the reactive groups available on the polymer.
  • the free reactive groups on a ligand can be selectively protected by a protective group such as t-bock. The remaining reactive group can then be used to attach the ligand to a spacer.
  • Other N4 macrocycles such as DTTCT, can be synthesized to bear functional groups by selecting functionalized starting materials.
  • two molecules of a diamine with an R1 group which can have a protected functional group such as hydroxyl, amine or carboxylic acid group, can react with two molecules of a diketone having R2 groups to form a N4 macrocycle (Scheme II).
  • the diamine is 1,2-di-amine-benzene and the R2 group of the diketone is a phenyl group
  • the N4 macrocycle is DTTCT, which can form a copper complex as shown below:
  • acylations of phenyls can be done by a Friedel-Crafts reaction (Bryce-Smith D. J.; J. Chem. Soc., 1963, 5983, and Benkeser et al. J. Am. Chem. Soc. 1963, 85, 3984).
  • Acyl halides (Byce-Smith D. J. et al., J. Chem. Soc. 1954, 2743 and Pocker Y. et al. J. Am. Chem. Soc. 1968, 90, 6764) are the most common reagents, but carboxylic acids, anhydrides and ketenes can also be used.
  • a Suzuki coupling (Miyaura N. and Suzuki A. Chem. Rev. 1995, 95, 2457) can be performed between an organo-boronic acid and halides using a palladium catalyst. It is noteworthy that the Suzuki coupling is a milder reaction. In some embodiments, reactive groups on the ligand or the polymer may need to be protected (t-BOC, etc.) to avoid undesirable side reactions. In some embodiments, to obtain a single attachment point, less than 1 equivalent of acid chloride can be added. Subsequent purification can be needed.
  • Coupling of spacers to a polymer in a coating or on the surface of a medical device can be achieved using two mechanisms.
  • the metal complex can be coupled to a polymer and then sprayed as a coating onto the medical device.
  • the polymer can be applied to the medical device and the metal complex can be subsequently coupled to the polymer coating. This approach can generate a coating having a higher surface density of the metal complex.
  • the polymer should have reactive side groups such as hydroxyls, carboxylic acids, amines, etc.
  • the medical device such as a bioabsorbable polymer stent, can be made to include the metal complex.
  • the polymer e.g., coating or the device surface
  • the spacer should have reactive groups such as a carboxylic acid, N-hydroxysuccinimide (NHS), an acid halide (e.g., acid chloride) or equivalent thereof, or a vinyl sulphone.
  • a carboxylic acid or NHS can be readily coupled to a hydroxyl group in the presence of N,N′-carbonyldiimidazole or dicyclohexylcarbodiimide (DCC), which are commercially available.
  • the spacer can be poly(ethylene glycol) (PEG).
  • PEG poly(ethylene glycol)
  • PEG can be readily functionalized using acryloyl chloride to bear an acryloyl chloride end group. This end group can serve to couple PEG to the reactive groups on the polymer.
  • the spacer can comprise vinyl sulphone, which can be readily coupled to the polymer under acidic conditions.
  • Vinyl sulphone is commercially available.
  • Scheme III shows coupling of a copper complex to a hydroxyl functional methacrylate via a PEG spacer.
  • a biocompatible polymer can be applied to a device and then coupled to the metal complex so as to form a coating.
  • the biocompatible polymer can be coupled with the metal complex, and afterwards be sprayed onto a device as a coating.
  • the biocompatible polymer can be biodegradable (either bioerodable or bioabsorbable or both) or nondegradable and can be hydrophilic or hydrophobic.
  • Representative biocompatible polymers include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA), poly(3-hydroxyalkanoates) such as poly(3-hydroxypropanoate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(3-hydroxyheptanoate) and poly(3-hydroxyoctanoate), poly(4-hydroxyalkanaote) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanote), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers described herein or blends thereof, poly(D,L-l
  • poly(ethylene oxide-co-lactic acid) PEO/PLA
  • polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as 2-hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-P
  • poly(D,L-lactide), poly(L-lactide), poly(D,L-lactide-co-glycolide), and poly(L-lactide-co-glycolide) can be used interchangeably with the terms poly(D,L-lactic acid), poly(L-lactic acid), poly(D,L-lactic acid-co-glycolic acid), or poly(L-lactic acid-co-glycolic acid), respectively.
  • the medical device having the metal complex described herein can include one or more bioactive agent(s), which can be therapeutic, prophylactic, or diagnostic agent(s). These agents can have anti-proliferative or anti-inflammatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombogenic, antimitotic, antibiotic, antiallergic, and antioxidant.
  • the agents can be cystostatic agents, agents that promote the healing of the endothelium such as NO releasing or generating agents, agents that attract endothelial progenitor cells, agents that promote the attachment, migration and proliferation of endothelial cells (e.g., natriuretic peptides such as CNP, ANP or BNP peptide or an RGD or cRGD peptide), while impeding smooth muscle cell proliferation.
  • suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities.
  • bioactive agent examples include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy.
  • anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, paclitaxel and its functional and structural derivatives.
  • Examples of rapamycin derivatives include 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin.
  • Examples of paclitaxel derivatives include docetaxel.
  • Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g.
  • Adriamycin® from Pharmacia & Upjohn, Peapack, N.J.), and mitomycin e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.
  • antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omeg
  • anti-inflammatory agents including steroidal and non-steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, or combinations thereof.
  • cytostatic substances include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.).
  • An example of an antiallergic agent is permirolast potassium.
  • Other therapeutic substances or agents which may be appropriate include alpha-interferon, pimecrolimus, imatinib mesylate, midostaurin, bioactive RGD, SIKVAV peptides, elevating agents such as cANP or cGMP peptides, and genetically engineered endothelial cells.
  • the foregoing substances can also be used in the form of prodrugs or co-drugs thereof.
  • the foregoing substances also include metabolites thereof and/or prodrugs of the metabolites.
  • the foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
  • the dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than non-therapeutic levels.
  • the dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient, the nature of the trauma, the nature of the therapy desired, the time over which the administered ingredient resides at the vascular site, and if other active agents are employed, the nature and type of the substance or combination of substances.
  • Therapeutically effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
  • a medical device may be any suitable medical substrate that can be implanted in a human or veterinary patient.
  • medical devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), heart valve prostheses, cerebrospinal fluid shunts, electrodes, pacemaker electrodes, catheters, sensors, endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.), anastomotic devices and connectors, orthopedic implants such as screws, spinal implants, and electro-stimulatory devices.
  • the underlying structure of the device can be of virtually any design.
  • the device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
  • ELGILOY cobalt chromium alloy
  • stainless steel 316L
  • high nitrogen stainless steel e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
  • BIODUR 108 cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol)
  • tantalum nickel-t
  • MP35N consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum.
  • MP20N consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
  • Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.
  • the device is a bioabsorbable stent, with or without a coating, such that the complex is attached to the coating or the surface of the device itself.
  • a medical device having the metal complex described herein can be used for the generation of nitric oxide in the blood stream or tissue adjacent to the medical device.
  • the medical device is a stent.
  • the stent described herein is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways.
  • a stent having the above-described coating is particularly useful for treating diseased regions of blood vessels caused by lipid deposition, monocyte or macrophage infiltration, or dysfunctional endothelium or a combination thereof, or occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis.
  • Stents may be placed in a wide array of blood vessels, both arteries and veins.
  • the device described herein can be in dialysis, as grafts, or fistulae.
  • sites include the iliac, renal, carotid and coronary arteries.
  • an angiogram is first performed to determine the appropriate positioning for stent therapy.
  • An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken.
  • a guidewire is then advanced through the lesion or proposed site of treatment.
  • Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway.
  • the delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance.
  • a stent having the above-described features may then be expanded at the desired area of treatment.
  • a post-insertion angiogram may also be utilized to confirm appropriate positioning.

Abstract

Medical devices having a catalyst capable of catalyzing the generation of nitric oxide attached to the medical device and methods of treating a vascular condition using the devices are provided.

Description

    FIELD OF THE INVENTION
  • This invention is generally related to medical devices capable of in vivo generation of nitric oxide.
  • DESCRIPTION OF THE STATE OF THE ART
  • Stents are used not only as a mechanical intervention in vascular conditions but also as a vehicle for providing biological therapy. As a mechanical intervention, stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically, stents are capable of being compressed, so that they can be inserted through small vessels via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in patent literature disclosing stents that have been applied in PTCA procedures include stents illustrated in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor.
  • Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects on the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results.
  • In many patients, especially diabetic patients, stentable lesions are focal manifestations of widespread vascular disease. The advent of drug eluting stents has brought relief from restenosis of the treated lesion, but leaves progression of regional vascular disease unaddressed.
  • Nitric oxide (NO) has numerous physiologic and pathophysiologic functions. For example, NO can inhibit the inflammatory process by lowering cytokine synthesis and inactivating nuclear factor (NF)-κB,3 as several cytokines contain a binding site for NF-κB in their promoter regions. It has been reported that blood level NO can inhibit platelet adhesion and aggregation, inflammation, and smooth muscle cell migration and proliferation and can stimulate endothelial cell migration and proliferation. In addition, NO has vasorelaxant effect and can regulate smooth muscle contractility and platelet reactivity (see, e.g., Lindberg, L., et al., Nitric Oxide gives maximal response after coronary artery bypass surgery. J. Cardiothorac Vasc. Anesth. 8:182-87 (1994)).
  • Therefore, the present invention provides means of generating nitric oxide to cure the deficiencies of a conventional drug eluting stent.
  • SUMMARY
  • A medical device is provided comprising a polymer and a metal complex attached to the polymer, wherein the metal complex catalyzes the generation of nitric oxide in the blood stream or in tissue adjacent to the medical device. In some embodiments, the polymer is included in a coating for the medical device. In some embodiments, the medical device is a bioabsorbable stent made from at least the polymer. The metal complex can be a copper complex. The metal complex can comprise Cyclen, Cyclam, DTTCT, or a bipyridine ligand. The metal complex can be attached to the polymer with a spacer. The spacer can be a short-chain alkyl group, phenyl group, an aryl group, or poly(ethylene glycol). In some embodiments, the metal complex comprises a metal selected from the group consisting of Cu2+, Co2+, Ni2+, Zn+2+, Mn2+, Al3+, or Fe3+. The medical device can include a drug adapted to be released from the device. The drug can be included in a coating. The coating can be made from the polymer to which the complex is attached. The nitric oxide can be released from a nitrosylated biomolecule present in the blood stream or a tissue adjacent to the medical device. The nitric oxide can be released from a nitrosylated protein or S-nitrosothiols present in the blood stream or in tissue adjacent to the medical device.
  • In accordance with another aspect of the invention, a medical device comprising a metal complex is provided, wherein the metal complex is attached to the surface of the medical device or a coating on the medical device, and wherein the metal complex catalyzes the generation of nitric oxide in the blood stream or in tissue adjacent to the medical device.
  • DETAILED DESCRIPTION
  • The present invention provides methods for generating NO in blood. According to embodiments of the present invention, NO can be released from a nitric oxide source present in the blood stream or a tissue when the nitric oxide source meets a metal catalyst in the blood stream or the tissue. The metal catalyst can be attached to a coating (e.g., a topcoat) on a medical device with a spacer. Upon exposure to the blood stream or the tissue, the metal catalyzes the release of NO from the NO source. The nitric oxide source can comprise nitrosylated biomolecules such as nitrosylated proteins (e.g., S-nitrosothiols).
  • NO has numerous physiologic and pathophysiologic functions. For example, NO can inhibit the inflammatory process by lowering cytokine synthesis and inactivating nuclear factor (NF)-κB,3 as several cytokines contain a binding site for NF-κB in their promoter regions. It has been reported that blood level NO can inhibit platelet adhesion and aggregation, inflammation, and smooth muscle cell migration and proliferation and can stimulate endothelial cell migration and proliferation. In addition, NO has vasorelaxant effect and can regulate smooth muscle contractility, and platelet reactivity.
  • The metal catalyst includes a metal, which can be a metal ion or a metal atom, and one or more ligands. The ligand can have two or more coordination sites. Preferably, the ligand has four nitrogen atoms that serve as coordination sites in the ligand. The metal catalyst can be formed prior to the ligand's attachment to a polymer coating or after the ligand's attachment to the polymer coating. Preferably, the catalyst is formed after the ligand's attachment to the coating.
  • In some embodiments, a coating including the metal complex described herein can be formed directly on the surface of a medical device or on top of a layer of a coating that includes a biocompatible polymer. In some embodiments, the coating can be formed on top of a drug reservoir, which can be a layer of neat or pure drug(s) or a layer that includes a biocompatible polymer combined with a drug or combination of drugs.
  • In some embodiments, the medical device itself can be bioabsorbable (e.g., a bioabsorbable stent) and the catalyst can be attached directly to the surface of the device. In some embodiments, the catalyst can also be attached to a coating of the bioabsorbable device.
  • The medical device having the catalyst described herein can include one or more biocompatible polymer(s) and optionally one or more biobeneficial material(s). In some embodiments, the coating can include a bioactive agent such as a drug. Some examples of the bioactive agents include, but are not limited to, paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl(4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin(everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N1-tetrazolyl)-rapamycin(ABT-578), pimecrolimus, imatinib mesylate, midostaurin, clobetasol, bioactive RGD, CD-34 antibody, abciximab (REOPRO), progenitor cell capturing antibody, prohealing drugs, prodrugs thereof, co-drugs thereof, or a combination thereof.
  • The medical device including a catalyst described herein can be used to treat, prevent, or ameliorate a vascular medical condition such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
  • Metal Complexes
  • Copper complexes have been shown to generate biologically relevant levels of NO for up to 6 hours (see, e.g., Oh, B. K. and Meyerhoff, M. E., Biomaterials 25:283-293 (2005)). NO generation occurs as long as the copper catalyst is present and a nitrosylated biomolecule (e.g., nitrosylated proteins or S-nitrosothiols) in the blood reaches the copper catalyst (see, e.g., Oh, B. H., Meyerhoff, M. E., J. Amer. Chem. Soc., 125(32):9552-53) (2003). NO generation can be achieved when a metal ion (e.g., copper or zinc) is bound to a ligand such as Cyclen (see Scheme I), Cyclan (see Scheme I), or macrocycles having four nitrogen groupings. One such macrocycle ligand is dibenzo[e,k]-2,3,8,9-tetraphenyl-1,4,7,10-tetraaza-cyclododeca-1,3,7,9-tetraene (DTTCT). The electronic and steric environment provided by the ligands influences the metal ion's reactivity and selectivity. Therefore, it is important not to significantly modify the structure of the macrocycle in attaching the ligand to a polymer in the coating on a medical device.
  • The metal catalyst can be any metal complex capable of catalyzing the generation of nitric oxide in the blood stream or the tissue. In some embodiments, the metal complex is a copper complex. In some embodiments, the metal complex contains a metal such as Co2+, Ni2+, Zn+2+, Mn 2+, Al3+, or Fe3+.
  • The metal complex can be formed by mixing a metal compound and the ligand described herein and allowing the ligand to complex with the metal. Methods for forming a metal complex are well documented in the art. Some references can be found in A. B. P. Lever, Editor-in-Chief, Coordination Chemistry Reviews, published by Elsevier.
  • Ligands useful for forming the metal complex described herein are chelating ligands having multiple coordination sites. The ligands can have at least two coordination sites, preferably three coordination sites, more preferably four coordination sites. In some embodiments, the ligand is an N4 macrocycle ligand (a ligand having four nitrogen coordination sites). Some representative N4 ligands include, but are not limited to, Cyclen, Cyclam, and DTTCT.
  • In some embodiments, the ligand can have two coordination sites. Two or more equivalents of the ligands can complex to a metal to form a metal complex. For example, two equivalents of an N2 ligand (ligand having two nitrogen coordination sites) can complex to a metal such as copper to form a metal complex having four nitrogen coordination sites. Some representative N2 ligands are, for example, 2,2′-bipyridine ligands.
  • Standard procedures can be used to introduce the metal (e.g., a metal ion) into the macrocycle.
  • To have a local generation of NO, in some embodiments, the metal complex described herein is attached to the surface of a medical device or a coating on the device through a spacer. The spacer can be, for example, an alkyl chain or a poly(ethylene glycol) (PEG) chain. The spacer has a length of at least two carbon atoms or longer. This can allow the copper complex to be at the blood polymer interface and have the active center accessible to nitrosylated biomolecules (e.g., nitrosylated proteins or nitrosothiols) in the blood. The metal complex can either be coupled to the spacer and then to the polymer or coupled to a spacer that is already attached to the polymer. The order of the reactions is dictated by the compatibility of the chemistry, which can be readily appreciated by one of ordinary skill in the art.
  • Exemplary spacers that can be used in the present invention include, but are not limited to, PEG, poly(alkylene oxide) such as poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), C2-C20 alkyls, and short peptides. In some embodiments, the spacer can be a biocompatible polymer or oligomer.
  • Synthesis and/or Functionalization of Ligands
  • Attachment of a spacer to ligands can be achieved by functionalizing the ligand and then coupling the functionalized ligand to a spacer. Functionalization of the ligand can be carried out using standard procedures in organic synthesis. To illustrate, Cyclen and Cyclam, both having N—H groups in their molecules, can be coupled to a spacer that has a leaving group such as a halo group and a reactive group R, which can be any reactive group such as carboxyl, hydroxyl, thiol, or amine groups (Scheme I). The reactive group can be used to attach Cyclen or Cyclam to the reactive groups available on the polymer.
    Figure US20070196428A1-20070823-C00001

    In some embodiments, the free reactive groups on a ligand (such as N—H groups on Cyclam) can be selectively protected by a protective group such as t-bock. The remaining reactive group can then be used to attach the ligand to a spacer. Other N4 macrocycles, such as DTTCT, can be synthesized to bear functional groups by selecting functionalized starting materials. As shown in Scheme II, two molecules of a diamine with an R1 group, which can have a protected functional group such as hydroxyl, amine or carboxylic acid group, can react with two molecules of a diketone having R2 groups to form a N4 macrocycle (Scheme II).
    Figure US20070196428A1-20070823-C00002

    In Scheme II, where the diamine is 1,2-di-amine-benzene and the R2 group of the diketone is a phenyl group, the N4 macrocycle is DTTCT, which can form a copper complex as shown below:
    Figure US20070196428A1-20070823-C00003
  • Other methods for functionalizating macrocyclic ligands are well documented. For example, acylations of phenyls can be done by a Friedel-Crafts reaction (Bryce-Smith D. J.; J. Chem. Soc., 1963, 5983, and Benkeser et al. J. Am. Chem. Soc. 1963, 85, 3984). Acyl halides (Byce-Smith D. J. et al., J. Chem. Soc. 1954, 2743 and Pocker Y. et al. J. Am. Chem. Soc. 1968, 90, 6764) are the most common reagents, but carboxylic acids, anhydrides and ketenes can also be used. For example an acid chloride (RCOCl) can attack the hydrogen on the phenyl (R2 in Scheme II=phenyl) to yield ROCR2. Alternatively, a Suzuki coupling (Miyaura N. and Suzuki A. Chem. Rev. 1995, 95, 2457) can be performed between an organo-boronic acid and halides using a palladium catalyst. It is noteworthy that the Suzuki coupling is a milder reaction. In some embodiments, reactive groups on the ligand or the polymer may need to be protected (t-BOC, etc.) to avoid undesirable side reactions. In some embodiments, to obtain a single attachment point, less than 1 equivalent of acid chloride can be added. Subsequent purification can be needed.
  • Coupling of Spacer to Polymer
  • Coupling of spacers to a polymer in a coating or on the surface of a medical device can be achieved using two mechanisms. In some embodiments, the metal complex can be coupled to a polymer and then sprayed as a coating onto the medical device. In some embodiments, the polymer can be applied to the medical device and the metal complex can be subsequently coupled to the polymer coating. This approach can generate a coating having a higher surface density of the metal complex. The polymer should have reactive side groups such as hydroxyls, carboxylic acids, amines, etc. In some embodiments the medical device, such as a bioabsorbable polymer stent, can be made to include the metal complex.
  • In some embodiments, the polymer (e.g., coating or the device surface) has mildly reactive hydroxyl groups. The spacer should have reactive groups such as a carboxylic acid, N-hydroxysuccinimide (NHS), an acid halide (e.g., acid chloride) or equivalent thereof, or a vinyl sulphone. A carboxylic acid or NHS can be readily coupled to a hydroxyl group in the presence of N,N′-carbonyldiimidazole or dicyclohexylcarbodiimide (DCC), which are commercially available.
  • In some embodiments, the spacer can be poly(ethylene glycol) (PEG). PEG can be readily functionalized using acryloyl chloride to bear an acryloyl chloride end group. This end group can serve to couple PEG to the reactive groups on the polymer.
  • In some embodiments, the spacer can comprise vinyl sulphone, which can be readily coupled to the polymer under acidic conditions. Vinyl sulphone is commercially available.
  • As an example, Scheme III shows coupling of a copper complex to a hydroxyl functional methacrylate via a PEG spacer.
    Figure US20070196428A1-20070823-C00004
  • Biocompatible Polymers
  • A biocompatible polymer can be applied to a device and then coupled to the metal complex so as to form a coating. In some embodiments, the biocompatible polymer can be coupled with the metal complex, and afterwards be sprayed onto a device as a coating.
  • The biocompatible polymer can be biodegradable (either bioerodable or bioabsorbable or both) or nondegradable and can be hydrophilic or hydrophobic. Representative biocompatible polymers include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA), poly(3-hydroxyalkanoates) such as poly(3-hydroxypropanoate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(3-hydroxyheptanoate) and poly(3-hydroxyoctanoate), poly(4-hydroxyalkanaote) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanote), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers described herein or blends thereof, poly(D,L-lactide), poly(L-lactide), polyglycolide, poly(D,L-lactide-co-glycolide), poly(L-lactide-co-glycolide), polycaprolactone, poly(lactide-co-caprolactone), poly(glycolide-co-caprolactone), poly(dioxanone), poly(ortho esters), poly(anhydrides), poly(tyrosine carbonates) and derivatives thereof, poly(tyrosine ester) and derivatives thereof, poly(imino carbonates), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyphosphazenes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, such as polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, poly(glyceryl sebacate), poly(propylene fumarate), poly(n-butyl methacrylate), poly(sec-butyl methacrylate), poly(isobutyl methacrylate), poly(tert-butyl methacrylate), poly(n-propyl methacrylate), poly(isopropyl methacrylate), poly(ethyl methacrylate), poly(methyl methacrylate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, polyethers such as poly(ethylene glycol) (PEG), copoly(ether-esters) (e.g. poly(ethylene oxide-co-lactic acid) (PEO/PLA)), polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as 2-hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as collagen, chitosan, alginate, fibrin, fibrinogen, cellulose, starch, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, or combinations thereof. In some embodiments, the topcoat can exclude any one of the aforementioned polymers.
  • As used herein, the terms poly(D,L-lactide), poly(L-lactide), poly(D,L-lactide-co-glycolide), and poly(L-lactide-co-glycolide) can be used interchangeably with the terms poly(D,L-lactic acid), poly(L-lactic acid), poly(D,L-lactic acid-co-glycolic acid), or poly(L-lactic acid-co-glycolic acid), respectively.
  • Bioactive Agents
  • The medical device having the metal complex described herein can include one or more bioactive agent(s), which can be therapeutic, prophylactic, or diagnostic agent(s). These agents can have anti-proliferative or anti-inflammatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombogenic, antimitotic, antibiotic, antiallergic, and antioxidant. The agents can be cystostatic agents, agents that promote the healing of the endothelium such as NO releasing or generating agents, agents that attract endothelial progenitor cells, agents that promote the attachment, migration and proliferation of endothelial cells (e.g., natriuretic peptides such as CNP, ANP or BNP peptide or an RGD or cRGD peptide), while impeding smooth muscle cell proliferation. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Some other examples of the bioactive agent include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, paclitaxel and its functional and structural derivatives. Examples of rapamycin derivatives include 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin. Examples of paclitaxel derivatives include docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack, N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti-inflammatory agents including steroidal and non-steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, or combinations thereof. Examples of cytostatic substances include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, pimecrolimus, imatinib mesylate, midostaurin, bioactive RGD, SIKVAV peptides, elevating agents such as cANP or cGMP peptides, and genetically engineered endothelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. The foregoing substances also include metabolites thereof and/or prodrugs of the metabolites. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
  • The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than non-therapeutic levels. The dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient, the nature of the trauma, the nature of the therapy desired, the time over which the administered ingredient resides at the vascular site, and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutically effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
  • Examples of Medical device
  • As used herein, a medical device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such medical devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), heart valve prostheses, cerebrospinal fluid shunts, electrodes, pacemaker electrodes, catheters, sensors, endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.), anastomotic devices and connectors, orthopedic implants such as screws, spinal implants, and electro-stimulatory devices. The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.
  • In some embodiments, the device is a bioabsorbable stent, with or without a coating, such that the complex is attached to the coating or the surface of the device itself.
  • Method of Use
  • In accordance with embodiments of the invention, a medical device having the metal complex described herein can be used for the generation of nitric oxide in the blood stream or tissue adjacent to the medical device.
  • Preferably, the medical device is a stent. The stent described herein is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating diseased regions of blood vessels caused by lipid deposition, monocyte or macrophage infiltration, or dysfunctional endothelium or a combination thereof, or occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. In some embodiments, the device described herein can be in dialysis, as grafts, or fistulae.
  • Representative examples of sites include the iliac, renal, carotid and coronary arteries.
  • For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described features may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.
  • I would like you to add some prophetic examples including producing a stent with an NO-generating coating.
  • While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims (42)

1. A medical device comprising a polymer and a metal complex attached to the polymer wherein the metal complex catalyzes the in vivo generation of nitric oxide
2. The medical device of claim 1 wherein in vivo generation of nitric oxide is nitric oxide generation in the blood stream or tissue adjacent to the medical device.
3. The medical device of claim 1 further comprising a coating for the medical device wherein the coating comprises the polymer.
4. The medical device of claim 1 wherein the medical device is a bioabsorbable stent comprising the polymer.
5. The medical device of claim 1 wherein the metal complex comprises copper.
6. The medical device of claim 1 wherein the metal complex comprises Cyclen, Cyclam, DTTCT, or a bipyridine ligand.
7. The medical device of claim 1 where in the metal complex comprises copper and at least one of Cyclen, Cyclam, DTTCT, or a bipyridine ligand.
8. The medical device of claim 1 wherein the metal complex attaches to the polymer via a spacer.
9. The medical device of claim 7 wherein the metal complex attaches to the polymer via a spacer.
10. The medical device of claim 8, wherein the spacer is a short chain alkyl group, phenyl group, aryl group, or poly(ethylene glycol).
11. The medical device of claim 1 wherein the metal complex comprises a metal selected from the group consisting of Cu, Co, Ni, Zn, Mn, Al, or Fe.
12. The medical device of claim 1 wherein the metal complex comprises an ion selected from the group consisting of Cu2+, Co2+, Ni2+, Zn+2+, Mn2+, Al3+, or Fe3+.
13. The medical device of claim 1 further comprising a drug adapted to be released from the device.
14. The medical device of claim 1 additionally including a coating having a drug.
15. The medical device of claim 14 wherein the coating includes the polymer.
16. The medical device of claim 1, which is a stent.
17. The medical device of claim 1 which is a bioabsorbable stent.
18. The medical device of claim 1 wherein the nitric oxide is released from a nitrosylated biomolecule present in the blood stream or tissue adjacent to the medical device.
19. The medical device of claim 1 wherein the nitric oxide is released from a nitrosylated protein or S-nitrosothiols present in the blood stream or a tissue adjacent to the medical device.
20. A medical device comprising a metal complex,
wherein the metal complex attaches to a surface of the medical device or a coating on the medical device, and
wherein the metal complex catalyzes the generation of nitric oxide in the blood stream or a tissue adjacent to the medical device.
21. The medical device of claim 20, wherein the nitric oxide is released from a nitrosylated biomolecule present in the blood stream or a tissue adjacent to the medical device.
22. The medical device of claim 20, wherein the nitric oxide is released from a nitrosylated protein or S-nitrosothiol present in the blood stream or a tissue adjacent to the medical device.
23. The medical device of claim 20, wherein the metal complex is a copper complex.
24. The medical device of claim 20, wherein the metal complex comprises Cyclen, Cyclam, DTTCT, or a bipyrridine liand.
25. The medical device of claim 20, wherein the metal complex is attached to the surface of the medical device or the coating via a spacer.
26. The medical device of claim 25, wherein the spacer is a short chain alkyl group, phenyl group, aryl group, or poly(ethylene glycol).
27. The medical device of claim 20, wherein the metal complex comprises an ion selected from the group consisting of Cu2+, Co2+, Ni2+, Zn+2+, Mn2+, Al3+, or Fe3+.
28. The medical device of claim 20 which is a bioabsorbable polymer stent.
29. The medical device of claim 20 which is a biodurable polymer stent.
30. A medical device comprising a coating wherein the coating comprises:
a polymer, and
a metal complex that catalyzes the in vivo generation of nitric oxide in the blood stream or tissue adjacent to the medical device,
wherein the metal complex comprises an ion selected from the group consisting of Cu2+, Co2+, Ni2+, Zn+2+, Mn+2, Al3+, or Fe3+; and
a ligand selected from Cyclen, Cyclam, DTTCT, or a bipyridine ligand.
31. The medical device of claim 30 wherein the metal complex attaches to the polymer via a spacer that is at least one of a short chain alkyl group, phenyl group, aryl group, or poly(ethylene glycol).
32. The medical device of claim 30 further comprising a drug.
33. The medical device of claim 30 wherein the coating further comprises a drug.
34. The medical device of claim 30 in which the medical device is an endovascular stent.
35. A medical device comprising:
a polymer, and
a metal complex that catalyzes the in vivo generation of nitric oxide in the blood stream or tissue adjacent to the medical device,
wherein the metal complex comprises
an ion selected from the group consisting of Cu2+, Co2+, Ni2+, Zn+2+, Mn2+, Al3+, or Fe3+; and
a ligand selected from Cyclen, Cyclam, DTTCT, or a bipyridine ligand.
36. The medical device of claim 35 wherein the metal complex attaches to the polymer via a spacer that is at least one of a short chain alkyl group, phenyl group, aryl group, or poly(ethylene glycol).
37. The medical device of claim 35 further comprising a coating on the polymer wherein the coating comprises the metal complex.
38. The medical device of claim 35 further comprising a drug.
39. The medical device of claim 37 wherein the coating further comprises a drug.
40. The medical device of claim 35 in which the medical device is a bioabsorbable stent.
41. A method of treating a disorder in a patient comprising implanting in the patient the medical device of claim 1 wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, diabetic vascular disease, and combinations thereof.
42. A method of treating a disorder in a patient comprising implanting in the patient the medical device of claim 20, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, diabetic vascular disease, and combinations thereof.
US11/356,696 2006-02-17 2006-02-17 Nitric oxide generating medical devices Abandoned US20070196428A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/356,696 US20070196428A1 (en) 2006-02-17 2006-02-17 Nitric oxide generating medical devices
JP2008555247A JP2009526605A (en) 2006-02-17 2007-01-26 Medical devices that generate nitric oxide
PCT/US2007/002124 WO2007097875A2 (en) 2006-02-17 2007-01-26 Nitric oxide generating medical devices
EP07717041A EP1996247A2 (en) 2006-02-17 2007-01-26 Nitric oxide generating medical devices
US11/726,135 US8067025B2 (en) 2006-02-17 2007-03-20 Nitric oxide generating medical devices
US13/276,666 US8470358B2 (en) 2006-02-17 2011-10-19 Nitric oxide generating medical devices
US13/923,559 US8986724B2 (en) 2006-02-17 2013-06-21 Nitric oxide generating medical devices
US14/622,131 US9421223B2 (en) 2006-02-17 2015-02-13 Nitric oxide generating medical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/356,696 US20070196428A1 (en) 2006-02-17 2006-02-17 Nitric oxide generating medical devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/726,135 Division US8067025B2 (en) 2006-02-17 2007-03-20 Nitric oxide generating medical devices

Publications (1)

Publication Number Publication Date
US20070196428A1 true US20070196428A1 (en) 2007-08-23

Family

ID=38283651

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/356,696 Abandoned US20070196428A1 (en) 2006-02-17 2006-02-17 Nitric oxide generating medical devices
US11/726,135 Expired - Fee Related US8067025B2 (en) 2006-02-17 2007-03-20 Nitric oxide generating medical devices
US13/276,666 Expired - Fee Related US8470358B2 (en) 2006-02-17 2011-10-19 Nitric oxide generating medical devices
US13/923,559 Expired - Fee Related US8986724B2 (en) 2006-02-17 2013-06-21 Nitric oxide generating medical devices
US14/622,131 Expired - Fee Related US9421223B2 (en) 2006-02-17 2015-02-13 Nitric oxide generating medical devices

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/726,135 Expired - Fee Related US8067025B2 (en) 2006-02-17 2007-03-20 Nitric oxide generating medical devices
US13/276,666 Expired - Fee Related US8470358B2 (en) 2006-02-17 2011-10-19 Nitric oxide generating medical devices
US13/923,559 Expired - Fee Related US8986724B2 (en) 2006-02-17 2013-06-21 Nitric oxide generating medical devices
US14/622,131 Expired - Fee Related US9421223B2 (en) 2006-02-17 2015-02-13 Nitric oxide generating medical devices

Country Status (4)

Country Link
US (5) US20070196428A1 (en)
EP (1) EP1996247A2 (en)
JP (1) JP2009526605A (en)
WO (1) WO2007097875A2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039950A1 (en) * 2004-08-23 2006-02-23 Zhengrong Zhou Multi-functional biocompatible coatings for intravascular devices
US20070014686A1 (en) * 2004-01-07 2007-01-18 Arnold Ernst V Sterilization system and device
US20080241208A1 (en) * 2005-06-30 2008-10-02 Charles Shanley Methods, Compositions and Devices For Promoting Anglogenesis
US20080317626A1 (en) * 2004-01-07 2008-12-25 Ernst Vaughn Arnold Sterilization System and Method
US20090198308A1 (en) * 2008-01-31 2009-08-06 Enopace Biomedical Ltd. Intra-aortic electrical counterpulsation
US20090198271A1 (en) * 2008-01-31 2009-08-06 Rainbow Medical Ltd. Electrode based filter
US20090287072A1 (en) * 2005-12-02 2009-11-19 The Regents Of The University Of Michigan Polymer compositions, coatings and devices, and methods of making and using the same
US20110202108A1 (en) * 2010-02-18 2011-08-18 Rainbow Medical Ltd. Electrical menorrhagia treatment
US8425837B2 (en) 2009-02-23 2013-04-23 Noxilizer, Inc. Device and method for gas sterilization
WO2013081684A2 (en) * 2011-08-19 2013-06-06 Northeastern University Chemical sensor based on highly organized single walled carbon nanotube networks
US8538535B2 (en) 2010-08-05 2013-09-17 Rainbow Medical Ltd. Enhancing perfusion by contraction
US8626299B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US8626290B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta
US8649863B2 (en) 2010-12-20 2014-02-11 Rainbow Medical Ltd. Pacemaker with no production
US8855783B2 (en) 2011-09-09 2014-10-07 Enopace Biomedical Ltd. Detector-based arterial stimulation
US8986724B2 (en) 2006-02-17 2015-03-24 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
US9386991B2 (en) 2012-02-02 2016-07-12 Rainbow Medical Ltd. Pressure-enhanced blood flow treatment
US9526637B2 (en) 2011-09-09 2016-12-27 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US20200164122A1 (en) * 2017-06-08 2020-05-28 Case Western Reserve University Devices and methods for nitrosylation of blood
US10779965B2 (en) 2013-11-06 2020-09-22 Enopace Biomedical Ltd. Posts with compliant junctions
US20210338461A1 (en) * 2020-04-30 2021-11-04 Becton, Dickinson And Company Nitric oxide infused surgical tissue repair technologies
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
US11462358B2 (en) 2017-08-18 2022-10-04 Northeastern University Method of tetratenite production and system therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744928B2 (en) 2006-04-14 2010-06-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treatment of lesioned sites of body vessels
US8709072B2 (en) * 2010-05-13 2014-04-29 Boston Scientific Scimed, Inc. Endoprosthesis
US20150073535A1 (en) 2013-09-12 2015-03-12 Abbott Cardiovascular Systems Inc. Treatment of coronary artery lesions with a scaffold having vessel scaffold interactions that reduce or prevent angina
CN104673096B (en) 2014-08-12 2017-05-17 西南交通大学 Method for preparing coating with nitric oxide (NO) catalytic activity
CN107376035B (en) * 2016-05-16 2020-12-01 深圳生命谷科技研究院有限公司 Intravascular stent and preparation method thereof
CN106620897B (en) * 2016-12-22 2019-10-18 湖南省人民医院 A kind of endoluminal stent material of anti-restenosis
WO2022113069A1 (en) 2020-11-24 2022-06-02 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. E protein channel blockers and orf3 inhibitors as anti-covid-19 agents
CA3177537A1 (en) 2020-05-01 2021-11-04 Isaiah Arkin E protein channel blockers and orf3 inhibitors as anti-covid-19 agents

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072303A (en) * 1932-10-18 1937-03-02 Chemische Forschungs Gmbh Artificial threads, bands, tubes, and the like for surgical and other purposes
US4656242A (en) * 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5100992A (en) * 1989-05-04 1992-03-31 Biomedical Polymers International, Ltd. Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
US5292516A (en) * 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5298260A (en) * 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5380299A (en) * 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5485496A (en) * 1994-09-22 1996-01-16 Cornell Research Foundation, Inc. Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
US5605696A (en) * 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5607467A (en) * 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5610241A (en) * 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
US5711958A (en) * 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5721131A (en) * 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
US5723219A (en) * 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5857998A (en) * 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5858746A (en) * 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5865814A (en) * 1995-06-07 1999-02-02 Medtronic, Inc. Blood contacting medical device and method
US5869127A (en) * 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5873904A (en) * 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5877224A (en) * 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5879713A (en) * 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US6011125A (en) * 1998-09-25 2000-01-04 General Electric Company Amide modified polyesters
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US6034204A (en) * 1997-08-08 2000-03-07 Basf Aktiengesellschaft Condensation products of basic amino acids with copolymerizable compounds and a process for their production
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US6042875A (en) * 1997-04-30 2000-03-28 Schneider (Usa) Inc. Drug-releasing coatings for medical devices
US6172167B1 (en) * 1996-06-28 2001-01-09 Universiteit Twente Copoly(ester-amides) and copoly(ester-urethanes)
US6171232B1 (en) * 1997-06-26 2001-01-09 Cordis Corporation Method for targeting in vivo nitric oxide release
US6177523B1 (en) * 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
US6180632B1 (en) * 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6203551B1 (en) * 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US20020007214A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007215A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007213A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US6344035B1 (en) * 1998-04-27 2002-02-05 Surmodics, Inc. Bioactive agent release coating
US6358556B1 (en) * 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US20030004141A1 (en) * 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US6503538B1 (en) * 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6503556B2 (en) * 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6503954B1 (en) * 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6506437B1 (en) * 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US20030028243A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030028244A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030032767A1 (en) * 2001-02-05 2003-02-13 Yasuhiro Tada High-strength polyester-amide fiber and process for producing the same
US20030036794A1 (en) * 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US6524347B1 (en) * 1997-05-28 2003-02-25 Avantis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US20030039689A1 (en) * 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US20030040790A1 (en) * 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US6527863B1 (en) * 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6530951B1 (en) * 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6530950B1 (en) * 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US20030059520A1 (en) * 2001-09-27 2003-03-27 Yung-Ming Chen Apparatus for regulating temperature of a composition and a method of coating implantable devices
US6673154B1 (en) * 2001-06-28 2004-01-06 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
US6673385B1 (en) * 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US20040018296A1 (en) * 2000-05-31 2004-01-29 Daniel Castro Method for depositing a coating onto a surface of a prosthesis
US6689099B2 (en) * 1999-07-13 2004-02-10 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6689350B2 (en) * 2000-07-27 2004-02-10 Rutgers, The State University Of New Jersey Therapeutic polyesters and polyamides
US20040029952A1 (en) * 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6695920B1 (en) * 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US20040044405A1 (en) * 2001-10-25 2004-03-04 Wolff Matthew R. Vascular stent or graft coated or impregnated with protein tyrosine kinase inhibitors and method of using same
US20040047980A1 (en) * 2000-12-28 2004-03-11 Pacetti Stephen D. Method of forming a diffusion barrier layer for implantable devices
US20040047978A1 (en) * 2000-08-04 2004-03-11 Hossainy Syed F.A. Composition for coating an implantable prosthesis
US6706013B1 (en) * 2001-06-29 2004-03-16 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
US20040054104A1 (en) * 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040052858A1 (en) * 2001-05-09 2004-03-18 Wu Steven Z. Microparticle coated medical device
US6709514B1 (en) * 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
US6712845B2 (en) * 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US6713119B2 (en) * 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US20050038497A1 (en) * 2003-08-11 2005-02-17 Scimed Life Systems, Inc. Deformation medical device without material deformation
US20050038134A1 (en) * 1997-08-18 2005-02-17 Scimed Life Systems, Inc. Bioresorbable hydrogel compositions for implantable prostheses
US20050037052A1 (en) * 2003-08-13 2005-02-17 Medtronic Vascular, Inc. Stent coating with gradient porosity
US20050043786A1 (en) * 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue
US6861088B2 (en) * 2002-03-28 2005-03-01 Boston Scientific Scimed, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
US20050049694A1 (en) * 2003-08-07 2005-03-03 Medtronic Ave. Extrusion process for coating stents
US20050049693A1 (en) * 2003-08-25 2005-03-03 Medtronic Vascular Inc. Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease
US20050055044A1 (en) * 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coatings for medical device
US20050054774A1 (en) * 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coating
US20050055078A1 (en) * 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US6865810B2 (en) * 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US20050060020A1 (en) * 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US6869443B2 (en) * 1991-10-04 2005-03-22 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US20050064088A1 (en) * 2003-09-24 2005-03-24 Scimed Life Systems, Inc Ultrasonic nozzle for coating a medical appliance and method for using an ultrasonic nozzle to coat a medical appliance
US20050065593A1 (en) * 2003-09-19 2005-03-24 Medtronic Vascular, Inc. Delivery of therapeutics to treat aneurysms
US20050065501A1 (en) * 2003-09-23 2005-03-24 Scimed Life Systems, Inc. Energy activated vaso-occlusive devices
US20060013853A1 (en) * 2004-07-19 2006-01-19 Richard Robert E Medical devices having conductive substrate and covalently bonded coating layer
US20060039950A1 (en) * 2004-08-23 2006-02-23 Zhengrong Zhou Multi-functional biocompatible coatings for intravascular devices
US20060067908A1 (en) * 2004-09-30 2006-03-30 Ni Ding Methacrylate copolymers for medical devices

Family Cites Families (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386454A (en) 1940-11-22 1945-10-09 Bell Telephone Labor Inc High molecular weight linear polyester-amides
US3849514A (en) 1967-11-17 1974-11-19 Eastman Kodak Co Block polyester-polyamide copolymers
US3773737A (en) 1971-06-09 1973-11-20 Sutures Inc Hydrolyzable polymers of amino acid and hydroxy acids
US4329383A (en) 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
SU790725A1 (en) 1979-07-27 1983-01-23 Ордена Ленина Институт Элементоорганических Соединений Ан Ссср Process for preparing alkylaromatic polyimides
US4226243A (en) 1979-07-27 1980-10-07 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
SU811750A1 (en) 1979-08-07 1983-09-23 Институт Физиологии Им.С.И.Бериташвили Bis-bicarbonates of aliphatic diols as monomers for preparing polyurethanes and process for producing the same
SU872531A1 (en) 1979-08-07 1981-10-15 Институт Физиологии Им.И.С.Бериташвили Ан Гсср Method of producing polyurethans
SU876663A1 (en) 1979-11-11 1981-10-30 Институт Физиологии Им. Академика И.С.Бериташвили Ан Гсср Method of producing polyarylates
US4529792A (en) 1979-12-17 1985-07-16 Minnesota Mining And Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
SU1016314A1 (en) 1979-12-17 1983-05-07 Институт Физиологии Им.И.С.Бериташвили Process for producing polyester urethanes
US4343931A (en) 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
SU905228A1 (en) 1980-03-06 1982-02-15 Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср Method for preparing thiourea
SU1293518A1 (en) 1985-04-11 1987-02-28 Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий Installation for testing specimen of cross-shaped structure
US4611051A (en) 1985-12-31 1986-09-09 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
JPH0696023B2 (en) 1986-11-10 1994-11-30 宇部日東化成株式会社 Artificial blood vessel and method for producing the same
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US4894231A (en) 1987-07-28 1990-01-16 Biomeasure, Inc. Therapeutic agent delivery system
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
JP2561309B2 (en) 1988-03-28 1996-12-04 テルモ株式会社 Medical material and manufacturing method thereof
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
US5496557A (en) 1990-01-30 1996-03-05 Akzo N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
US5300295A (en) 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
WO1991017724A1 (en) 1990-05-17 1991-11-28 Harbor Medical Devices, Inc. Medical device polymer
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
CA2038605C (en) 1990-06-15 2000-06-27 Leonard Pinchuk Crack-resistant polycarbonate urethane polymer prostheses and the like
WO1991019529A1 (en) 1990-06-15 1991-12-26 Cortrak Medical, Inc. Drug delivery apparatus and method
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US5462990A (en) 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
GB9027793D0 (en) 1990-12-21 1991-02-13 Ucb Sa Polyester-amides containing terminal carboxyl groups
US5330768A (en) 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5599352A (en) 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
GB9206736D0 (en) 1992-03-27 1992-05-13 Sandoz Ltd Improvements of organic compounds and their use in pharmaceutical compositions
US5219980A (en) 1992-04-16 1993-06-15 Sri International Polymers biodegradable or bioerodiable into amino acids
DE69325845T2 (en) 1992-04-28 2000-01-05 Terumo Corp Thermoplastic polymer composition and medical devices made therefrom
DE4224401A1 (en) 1992-07-21 1994-01-27 Pharmatech Gmbh New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.
US5405919A (en) * 1992-08-24 1995-04-11 The United States Of America As Represented By The Secretary Of Health And Human Services Polymer-bound nitric oxide/nucleophile adduct compositions, pharmaceutical compositions and methods of treating biological disorders
FR2699168B1 (en) 1992-12-11 1995-01-13 Rhone Poulenc Chimie Method of treating a material comprising a polymer by hydrolysis.
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
US20020055710A1 (en) 1998-04-30 2002-05-09 Ronald J. Tuch Medical device for delivering a therapeutic agent and method of preparation
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
JPH0767895A (en) 1993-06-25 1995-03-14 Sumitomo Electric Ind Ltd Antimicrobial artificial blood vessel and suture yarn for antimicrobial operation
EG20321A (en) 1993-07-21 1998-10-31 Otsuka Pharma Co Ltd Medical material and process for producing the same
DE4327024A1 (en) 1993-08-12 1995-02-16 Bayer Ag Thermoplastically processable and biodegradable aliphatic polyesteramides
WO1995010989A1 (en) 1993-10-19 1995-04-27 Scimed Life Systems, Inc. Intravascular stent pump
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
WO1995019796A1 (en) 1994-01-21 1995-07-27 Brown University Research Foundation Biocompatible implants
US6051576A (en) 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
CA2190121A1 (en) 1994-03-15 1995-09-21 Edith Mathiowitz Polymeric gene delivery system
US5567410A (en) 1994-06-24 1996-10-22 The General Hospital Corporation Composotions and methods for radiographic imaging
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5788979A (en) 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5516881A (en) 1994-08-10 1996-05-14 Cornell Research Foundation, Inc. Aminoxyl-containing radical spin labeling in polymers and copolymers
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
FR2724938A1 (en) 1994-09-28 1996-03-29 Lvmh Rech POLYMERS FUNCTIONALIZED BY AMINO ACIDS OR AMINO ACID DERIVATIVES, THEIR USE AS SURFACTANTS, IN PARTICULAR, IN COSMETIC COMPOSITIONS AND IN PARTICULAR NAIL POLISH.
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5569198A (en) 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
US6017577A (en) 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US5854376A (en) 1995-03-09 1998-12-29 Sekisui Kaseihin Kogyo Kabushiki Kaisha Aliphatic ester-amide copolymer resins
RU2169742C2 (en) 1995-04-19 2001-06-27 Катаока Казунори Heterotelochelate block copolymer and method of preparation thereof
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5658995A (en) 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
DE19545678A1 (en) 1995-12-07 1997-06-12 Goldschmidt Ag Th Copolymers of polyamino acid esters
DK2111876T3 (en) 1995-12-18 2011-12-12 Angiodevice Internat Gmbh Crosslinked polymer preparations and methods for their use
US6054553A (en) 1996-01-29 2000-04-25 Bayer Ag Process for the preparation of polymers having recurring agents
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5955509A (en) 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5874165A (en) 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US6232434B1 (en) 1996-08-02 2001-05-15 Duke University Medical Center Polymers for delivering nitric oxide in vivo
US6060518A (en) 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
US5797887A (en) 1996-08-27 1998-08-25 Novovasc Llc Medical device with a surface adapted for exposure to a blood stream which is coated with a polymer containing a nitrosyl-containing organo-metallic compound which releases nitric oxide from the coating to mediate platelet aggregation
US5783657A (en) 1996-10-18 1998-07-21 Union Camp Corporation Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
US6120491A (en) 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
DE69826639T2 (en) 1997-01-28 2005-10-06 United States Surgical Corp., Norwalk SURGICAL ARTICLES MADE FROM POLYESTERAMIDES WITH GROUPS DERIVED FROM AMINO ACIDS AND ALTERNATIVELY WITH GROUPS DERIVED FROM ALPHA HYDROXYLIC ACIDS
WO1998032779A1 (en) 1997-01-28 1998-07-30 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
DE69828387T2 (en) 1997-01-28 2005-12-08 United States Surgical Corp., Norwalk POLYESTERAMIDE, ITS PRESENTATION AND SURGICAL FABRICATED SURGICAL ARTICLES
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6211249B1 (en) 1997-07-11 2001-04-03 Life Medical Sciences, Inc. Polyester polyether block copolymers
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US6120788A (en) 1997-10-16 2000-09-19 Bioamide, Inc. Bioabsorbable triglycolic acid poly(ester-amide)s
US6541116B2 (en) 1998-01-30 2003-04-01 Advanced Cardiovascular Systems, Inc. Superoxide dismutase or superoxide dismutase mimic coating for an intracorporeal medical device
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US7658727B1 (en) 1998-04-20 2010-02-09 Medtronic, Inc Implantable medical device with enhanced biocompatibility and biostability
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
KR100314496B1 (en) 1998-05-28 2001-11-22 윤동진 Non-thrombogenic heparin derivatives, process for preparation and use thereof
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
GB9815158D0 (en) * 1998-07-13 1998-09-09 William Harvey Research Limite Stents
WO2000010622A1 (en) 1998-08-20 2000-03-02 Cook Incorporated Coated implantable medical device
US6248127B1 (en) 1998-08-21 2001-06-19 Medtronic Ave, Inc. Thromboresistant coated medical device
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6494862B1 (en) 1999-07-13 2002-12-17 Advanced Cardiovascular Systems, Inc. Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6749626B1 (en) 2000-03-31 2004-06-15 Advanced Cardiovascular Systems, Inc. Actinomycin D for the treatment of vascular disease
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6759054B2 (en) 1999-09-03 2004-07-06 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol composition and coating
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
EP1235598A2 (en) 1999-11-12 2002-09-04 Angiotech Pharmaceuticals, Inc. Compositions of a combination of radioactive therapy and cell-cycle inhibitors
US6251136B1 (en) 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6613432B2 (en) 1999-12-22 2003-09-02 Biosurface Engineering Technologies, Inc. Plasma-deposited coatings, devices and methods
US6908624B2 (en) 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
AU2599501A (en) 1999-12-29 2001-07-09 Advanced Cardiovascular Systems Inc. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
AU2623201A (en) 1999-12-30 2001-07-16 Kam W Leong Controlled delivery of therapeutic agents by insertable medical devices
JP4473390B2 (en) 2000-01-07 2010-06-02 川澄化学工業株式会社 Stent and stent graft
US6270779B1 (en) 2000-05-10 2001-08-07 United States Of America Nitric oxide-releasing metallic medical devices
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US6585765B1 (en) 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US20020077693A1 (en) 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US6585926B1 (en) 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
US6716444B1 (en) 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US7261735B2 (en) 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US6746773B2 (en) 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US6558733B1 (en) 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US6758859B1 (en) 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US6824559B2 (en) 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US6544543B1 (en) 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US6540776B2 (en) 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US20020087123A1 (en) 2001-01-02 2002-07-04 Hossainy Syed F.A. Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US6645195B1 (en) 2001-01-05 2003-11-11 Advanced Cardiovascular Systems, Inc. Intraventricularly guided agent delivery system and method of use
US7335383B2 (en) * 2001-01-16 2008-02-26 The Regents Of The University Of Michigan Generation of nitric oxide in vivo from nitrite, nitrate or nitrosothiols endogenous in blood
JP4430867B2 (en) * 2001-01-16 2010-03-10 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Generation of biomimetic nitric oxide generated by biocatalysts in situ at the substrate / blood interface
US7128904B2 (en) * 2001-01-16 2006-10-31 The Regents Of The University Of Michigan Material containing metal ion ligand complex producing nitric oxide in contact with blood
US6740040B1 (en) 2001-01-30 2004-05-25 Advanced Cardiovascular Systems, Inc. Ultrasound energy driven intraventricular catheter to treat ischemia
WO2002064014A2 (en) 2001-02-09 2002-08-22 Endoluminal Therapeutics, Inc. Endomural therapy
US6613077B2 (en) 2001-03-27 2003-09-02 Scimed Life Systems, Inc. Stent with controlled expansion
US6780424B2 (en) 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US6645135B1 (en) 2001-03-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance
US6623448B2 (en) 2001-03-30 2003-09-23 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
US7396582B2 (en) * 2001-04-06 2008-07-08 Advanced Cardiovascular Systems, Inc. Medical device chemically modified by plasma polymerization
US6625486B2 (en) 2001-04-11 2003-09-23 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US6660034B1 (en) 2001-04-30 2003-12-09 Advanced Cardiovascular Systems, Inc. Stent for increasing blood flow to ischemic tissues and a method of using the same
US7651695B2 (en) 2001-05-18 2010-01-26 Advanced Cardiovascular Systems, Inc. Medicated stents for the treatment of vascular disease
US6605154B1 (en) 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US6743462B1 (en) 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US7862495B2 (en) 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US6666880B1 (en) 2001-06-19 2003-12-23 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
US6572644B1 (en) 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
US6641611B2 (en) 2001-11-26 2003-11-04 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US20030083739A1 (en) 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US7195640B2 (en) 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US6753071B1 (en) 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US20030073961A1 (en) 2001-09-28 2003-04-17 Happ Dorrie M. Medical device containing light-protected therapeutic agent and a method for fabricating thereof
US20030088307A1 (en) * 2001-11-05 2003-05-08 Shulze John E. Potent coatings for stents
US7585516B2 (en) 2001-11-12 2009-09-08 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices
US6663880B1 (en) 2001-11-30 2003-12-16 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
US7445629B2 (en) 2002-01-31 2008-11-04 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US6887270B2 (en) 2002-02-08 2005-05-03 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
US20040063805A1 (en) 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
US7087263B2 (en) 2002-10-09 2006-08-08 Advanced Cardiovascular Systems, Inc. Rare limiting barriers for implantable medical devices
WO2004060283A2 (en) 2002-12-16 2004-07-22 Nitromed, Inc. Nitrosated and nitrosylated rapamycin compounds, compositions and methods of use
US8088404B2 (en) 2003-03-20 2012-01-03 Medtronic Vasular, Inc. Biocompatible controlled release coatings for medical devices and related methods
US7789891B2 (en) 2003-09-23 2010-09-07 Boston Scientific Scimed, Inc. External activation of vaso-occlusive implants
US8801692B2 (en) 2003-09-24 2014-08-12 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US7055237B2 (en) 2003-09-29 2006-06-06 Medtronic Vascular, Inc. Method of forming a drug eluting stent
US20050074406A1 (en) 2003-10-03 2005-04-07 Scimed Life Systems, Inc. Ultrasound coating for enhancing visualization of medical device in ultrasound images
US6984411B2 (en) 2003-10-14 2006-01-10 Boston Scientific Scimed, Inc. Method for roll coating multiple stents
ATE513568T1 (en) * 2005-06-30 2011-07-15 Accord Biomaterials Inc NITROGEN OXIDE COATINGS FOR MEDICAL DEVICES
US20070196428A1 (en) 2006-02-17 2007-08-23 Thierry Glauser Nitric oxide generating medical devices
US7954639B2 (en) * 2007-12-31 2011-06-07 Andrew Carney Dugout organizer

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072303A (en) * 1932-10-18 1937-03-02 Chemische Forschungs Gmbh Artificial threads, bands, tubes, and the like for surgical and other purposes
US4656242A (en) * 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US5721131A (en) * 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5100992A (en) * 1989-05-04 1992-03-31 Biomedical Polymers International, Ltd. Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
US5292516A (en) * 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5298260A (en) * 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5607467A (en) * 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US6869443B2 (en) * 1991-10-04 2005-03-22 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5858746A (en) * 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5716981A (en) * 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5380299A (en) * 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5857998A (en) * 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5485496A (en) * 1994-09-22 1996-01-16 Cornell Research Foundation, Inc. Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
US5879713A (en) * 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US5869127A (en) * 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5605696A (en) * 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US6358556B1 (en) * 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US5865814A (en) * 1995-06-07 1999-02-02 Medtronic, Inc. Blood contacting medical device and method
US5873904A (en) * 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US20030028243A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US20030036794A1 (en) * 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US20030028244A1 (en) * 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US5877224A (en) * 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5723219A (en) * 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5610241A (en) * 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US6172167B1 (en) * 1996-06-28 2001-01-09 Universiteit Twente Copoly(ester-amides) and copoly(ester-urethanes)
US5711958A (en) * 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
US6530951B1 (en) * 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6042875A (en) * 1997-04-30 2000-03-28 Schneider (Usa) Inc. Drug-releasing coatings for medical devices
US6528526B1 (en) * 1997-05-28 2003-03-04 Aventis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6180632B1 (en) * 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6524347B1 (en) * 1997-05-28 2003-02-25 Avantis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6171232B1 (en) * 1997-06-26 2001-01-09 Cordis Corporation Method for targeting in vivo nitric oxide release
US6034204A (en) * 1997-08-08 2000-03-07 Basf Aktiengesellschaft Condensation products of basic amino acids with copolymerizable compounds and a process for their production
US20050038134A1 (en) * 1997-08-18 2005-02-17 Scimed Life Systems, Inc. Bioresorbable hydrogel compositions for implantable prostheses
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US20030040790A1 (en) * 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US7008667B2 (en) * 1998-04-27 2006-03-07 Surmodics, Inc. Bioactive agent release coating
US6344035B1 (en) * 1998-04-27 2002-02-05 Surmodics, Inc. Bioactive agent release coating
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US6011125A (en) * 1998-09-25 2000-01-04 General Electric Company Amide modified polyesters
US6530950B1 (en) * 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US6689099B2 (en) * 1999-07-13 2004-02-10 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6177523B1 (en) * 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
US6713119B2 (en) * 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US20040029952A1 (en) * 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6203551B1 (en) * 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6346110B2 (en) * 1999-10-04 2002-02-12 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implantable device
US6503954B1 (en) * 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US20020007215A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007214A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007213A1 (en) * 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20040018296A1 (en) * 2000-05-31 2004-01-29 Daniel Castro Method for depositing a coating onto a surface of a prosthesis
US6673385B1 (en) * 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US6689350B2 (en) * 2000-07-27 2004-02-10 Rutgers, The State University Of New Jersey Therapeutic polyesters and polyamides
US20040047978A1 (en) * 2000-08-04 2004-03-11 Hossainy Syed F.A. Composition for coating an implantable prosthesis
US6503538B1 (en) * 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6506437B1 (en) * 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US20040047980A1 (en) * 2000-12-28 2004-03-11 Pacetti Stephen D. Method of forming a diffusion barrier layer for implantable devices
US6503556B2 (en) * 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US20030032767A1 (en) * 2001-02-05 2003-02-13 Yasuhiro Tada High-strength polyester-amide fiber and process for producing the same
US20030004141A1 (en) * 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US6712845B2 (en) * 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US20030039689A1 (en) * 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US20040052858A1 (en) * 2001-05-09 2004-03-18 Wu Steven Z. Microparticle coated medical device
US20040052859A1 (en) * 2001-05-09 2004-03-18 Wu Steven Z. Microparticle coated medical device
US6695920B1 (en) * 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6673154B1 (en) * 2001-06-28 2004-01-06 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
US6706013B1 (en) * 2001-06-29 2004-03-16 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
US6527863B1 (en) * 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US20030059520A1 (en) * 2001-09-27 2003-03-27 Yung-Ming Chen Apparatus for regulating temperature of a composition and a method of coating implantable devices
US20040044405A1 (en) * 2001-10-25 2004-03-04 Wolff Matthew R. Vascular stent or graft coated or impregnated with protein tyrosine kinase inhibitors and method of using same
US6709514B1 (en) * 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
US6861088B2 (en) * 2002-03-28 2005-03-01 Boston Scientific Scimed, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
US6865810B2 (en) * 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US20040054104A1 (en) * 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20050049694A1 (en) * 2003-08-07 2005-03-03 Medtronic Ave. Extrusion process for coating stents
US20050038497A1 (en) * 2003-08-11 2005-02-17 Scimed Life Systems, Inc. Deformation medical device without material deformation
US20050037052A1 (en) * 2003-08-13 2005-02-17 Medtronic Vascular, Inc. Stent coating with gradient porosity
US20050043786A1 (en) * 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue
US20050049693A1 (en) * 2003-08-25 2005-03-03 Medtronic Vascular Inc. Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease
US20050055078A1 (en) * 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US20050054774A1 (en) * 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coating
US20050055044A1 (en) * 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coatings for medical device
US20050060020A1 (en) * 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US20050065593A1 (en) * 2003-09-19 2005-03-24 Medtronic Vascular, Inc. Delivery of therapeutics to treat aneurysms
US20050065501A1 (en) * 2003-09-23 2005-03-24 Scimed Life Systems, Inc. Energy activated vaso-occlusive devices
US20050064088A1 (en) * 2003-09-24 2005-03-24 Scimed Life Systems, Inc Ultrasonic nozzle for coating a medical appliance and method for using an ultrasonic nozzle to coat a medical appliance
US20060013853A1 (en) * 2004-07-19 2006-01-19 Richard Robert E Medical devices having conductive substrate and covalently bonded coating layer
US20060039950A1 (en) * 2004-08-23 2006-02-23 Zhengrong Zhou Multi-functional biocompatible coatings for intravascular devices
US20060067908A1 (en) * 2004-09-30 2006-03-30 Ni Ding Methacrylate copolymers for medical devices

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014686A1 (en) * 2004-01-07 2007-01-18 Arnold Ernst V Sterilization system and device
US20080317626A1 (en) * 2004-01-07 2008-12-25 Ernst Vaughn Arnold Sterilization System and Method
US8808622B2 (en) 2004-01-07 2014-08-19 Noxilizer, Inc. Sterilization system and device
US8703066B2 (en) 2004-01-07 2014-04-22 Noxilizer, Inc. Sterilization system and method
US8017074B2 (en) 2004-01-07 2011-09-13 Noxilizer, Inc. Sterilization system and device
US9180217B2 (en) 2004-01-07 2015-11-10 Noxilizer, Inc. Sterilization system and device
US20060039950A1 (en) * 2004-08-23 2006-02-23 Zhengrong Zhou Multi-functional biocompatible coatings for intravascular devices
US20080241208A1 (en) * 2005-06-30 2008-10-02 Charles Shanley Methods, Compositions and Devices For Promoting Anglogenesis
US20090287072A1 (en) * 2005-12-02 2009-11-19 The Regents Of The University Of Michigan Polymer compositions, coatings and devices, and methods of making and using the same
US8986724B2 (en) 2006-02-17 2015-03-24 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
US9421223B2 (en) 2006-02-17 2016-08-23 Abbott Cardiovascular Systems Inc. Nitric oxide generating medical devices
US20090198308A1 (en) * 2008-01-31 2009-08-06 Enopace Biomedical Ltd. Intra-aortic electrical counterpulsation
US8626299B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US8626290B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta
US9005106B2 (en) 2008-01-31 2015-04-14 Enopace Biomedical Ltd Intra-aortic electrical counterpulsation
US20090198271A1 (en) * 2008-01-31 2009-08-06 Rainbow Medical Ltd. Electrode based filter
US8425837B2 (en) 2009-02-23 2013-04-23 Noxilizer, Inc. Device and method for gas sterilization
US8721984B2 (en) 2009-02-23 2014-05-13 Noxilizer, Inc. Device and method for gas sterilization
US20110202108A1 (en) * 2010-02-18 2011-08-18 Rainbow Medical Ltd. Electrical menorrhagia treatment
US9649487B2 (en) 2010-08-05 2017-05-16 Enopace Biomedical Ltd. Enhancing perfusion by contraction
US8538535B2 (en) 2010-08-05 2013-09-17 Rainbow Medical Ltd. Enhancing perfusion by contraction
US8649863B2 (en) 2010-12-20 2014-02-11 Rainbow Medical Ltd. Pacemaker with no production
US9518950B2 (en) 2011-08-19 2016-12-13 Northeastern University Chemical sensor based on highly organized single walled carbon nanotube networks
WO2013081684A2 (en) * 2011-08-19 2013-06-06 Northeastern University Chemical sensor based on highly organized single walled carbon nanotube networks
WO2013081684A3 (en) * 2011-08-19 2014-05-01 Northeastern University Chemical sensor based on highly organized single walled carbon nanotube networks
US8855783B2 (en) 2011-09-09 2014-10-07 Enopace Biomedical Ltd. Detector-based arterial stimulation
US9526637B2 (en) 2011-09-09 2016-12-27 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US10828181B2 (en) 2011-09-09 2020-11-10 Enopace Biomedical Ltd. Annular antenna
US9386991B2 (en) 2012-02-02 2016-07-12 Rainbow Medical Ltd. Pressure-enhanced blood flow treatment
US10779965B2 (en) 2013-11-06 2020-09-22 Enopace Biomedical Ltd. Posts with compliant junctions
US11432949B2 (en) 2013-11-06 2022-09-06 Enopace Biomedical Ltd. Antenna posts
US20200164122A1 (en) * 2017-06-08 2020-05-28 Case Western Reserve University Devices and methods for nitrosylation of blood
US11462358B2 (en) 2017-08-18 2022-10-04 Northeastern University Method of tetratenite production and system therefor
US20210338461A1 (en) * 2020-04-30 2021-11-04 Becton, Dickinson And Company Nitric oxide infused surgical tissue repair technologies
CN115297909A (en) * 2020-04-30 2022-11-04 贝克顿·迪金森公司 Surgical tissue repair technique by nitric oxide infusion
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator

Also Published As

Publication number Publication date
US20150157658A1 (en) 2015-06-11
US20070196424A1 (en) 2007-08-23
US9421223B2 (en) 2016-08-23
US8986724B2 (en) 2015-03-24
WO2007097875A2 (en) 2007-08-30
US8067025B2 (en) 2011-11-29
US8470358B2 (en) 2013-06-25
US20130287833A1 (en) 2013-10-31
JP2009526605A (en) 2009-07-23
US20120034222A1 (en) 2012-02-09
WO2007097875A3 (en) 2008-04-17
EP1996247A2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
US9421223B2 (en) Nitric oxide generating medical devices
US8048441B2 (en) Nanobead releasing medical devices
US8703167B2 (en) Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US7601383B2 (en) Coating construct containing poly (vinyl alcohol)
US8778376B2 (en) Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US20070198080A1 (en) Coatings including an antioxidant
US8591934B2 (en) Coatings of acrylamide-based copolymers
US20070003589A1 (en) Coatings for implantable medical devices containing attractants for endothelial cells
US20070005130A1 (en) Biodegradable polymer for coating
US8105391B2 (en) Merhods of treatment with devices having a coating containing pegylated hyaluronic acid and a pegylated non-hyaluronic acid polymer
WO2006124365A2 (en) Endothelial cell binding coatings for rapid encapsulation of bioerodable stents
US20080175882A1 (en) Polymers of aliphatic thioester

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLAUSER, THIERRY;PACETTI, STEPHEN;CONSIGNY, PAUL;REEL/FRAME:017491/0762;SIGNING DATES FROM 20060331 TO 20060414

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ABBOTT CARDIOVASCULAR SYSTEMS INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CARDIOVASCULAR SYSTEMS, INC.;REEL/FRAME:034982/0041

Effective date: 20070213