US20070208019A1 - Vasculostatic agents and methods of use thereof - Google Patents

Vasculostatic agents and methods of use thereof Download PDF

Info

Publication number
US20070208019A1
US20070208019A1 US11/653,190 US65319007A US2007208019A1 US 20070208019 A1 US20070208019 A1 US 20070208019A1 US 65319007 A US65319007 A US 65319007A US 2007208019 A1 US2007208019 A1 US 2007208019A1
Authority
US
United States
Prior art keywords
iii
substituted
mmol
disease
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/653,190
Inventor
Wolfgang Wrasidlo
John Doukas
Ivor Royston
Glenn Noronha
John Hood
Elena Dneprovskaia
Xianchang Gong
Ute Splittgerber
Ningning Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TargeGen Inc
Original Assignee
TargeGen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TargeGen Inc filed Critical TargeGen Inc
Priority to US11/653,190 priority Critical patent/US20070208019A1/en
Publication of US20070208019A1 publication Critical patent/US20070208019A1/en
Priority to US12/628,306 priority patent/US20100278811A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/498Pyrazines or piperazines ortho- and peri-condensed with carbocyclic ring systems, e.g. quinoxaline, phenazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/88Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/88Oxygen atoms
    • C07D239/90Oxygen atoms with acyclic radicals attached in position 2 or 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/95Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/42Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/08Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 condensed with carbocyclic rings or ring systems
    • C07D253/10Condensed 1,2,4-triazines; Hydrogenated condensed 1,2,4-triazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates generally to treating disorders associated with vascular functioning, and more specifically to compounds and methods of treating such disorders.
  • the vascular system is a prime mediator of homeostasis, playing key roles in the maintainence of normal physiologic functioning.
  • the vascular endothelium's barrier function serves to regulate the entry of fluid, electrolytes, and proteins into tissues
  • blood vessel tone contributes to the regulation of tissue perfusion
  • the vascular endothelium's low mitotic index contributes to the regulation of tissue growth.
  • vasculostasis refers to the maintenance of this homeostatic vascular functioning, and “vasculostatic agents” as agents that seek to address conditions in which vasculostasis is compromised by preventing the loss of or restoring or maintaining vasculostasis.
  • Compromised vasculostasis has serious pathologic consequences. For example, if vascular permeability increases beyond manageable levels, the resulting edema may negatively impact tissue and organ function and ultimately survival. Examples where excessive vascular permeability leads to particularly deleterious effects include pulmonary edema, cerebral edema, and cardiac edema (Ritchie A C: Boyd's Textbook of Pathology. London Lea and Febiger, 1990). In general, however, edema in any tissue or organ leads to some loss of normal function, and therefore to the risk of morbidity or even mortality. Similarly, excessive endothelial proliferation may damage tissues (such as the retina in proliferative retinopathies) or fuel unwanted tissue growth (such as with tumor growth).
  • Angiogenesis for example, encompasses both enhanced vascular proliferation and permeability, as newly-formed blood vessels do not generally exhibit the same level of vascular barrier function as well-established or mature vessels. Examples of such hyper-permeable vasculature can be found in cancers, vasculoproliferative diseases, retinal diseases, and rheumatoid arthritis.
  • the connection between angiogenesis and hyperpermeability may partly result from the dual action of factors such as vascular endothelial growth factor (VEGF), which induces both endothelial proliferation and vascular permeability.
  • VEGF vascular endothelial growth factor
  • This connection may also reflect the immature nature of angiogenic vessels, in which the intracellular and/or extracellular structures or mechanisms that establish normal vascular barrier function have not yet fully formed. It may also be the case that angiogenesis and vascular permeability are linked by a co-dependence on common cellular mechanisms, for example in the case of cellular junction disassembly which would serve to enhance both paracellular permeability and cellular migration (both being components of the angiogenic process).
  • a comprehensive treatment for many diseases might involve vasculostatic agents that act upon one or more components of vasculostasis disregulation (based, for example, upon their level of action along intracellular signaling cascades).
  • vasculostatic agents that act upon one or more components of vasculostasis disregulation (based, for example, upon their level of action along intracellular signaling cascades).
  • One such example would be a single therapeutic agent that impacts both angiogenesis and vascular permeability.
  • vasculostasis is by influencing endothelial cell responses to environmental signals (such as hypoxia) or vasoactive agents.
  • environmental signals such as hypoxia
  • vasoactive agents such as vasoactive agents.
  • the vascular endothelium regulates fluid balance by adjusting both transcellular permeability (movement of fluid and proteins across endothelial cells via a network of vesicles) and paracellular permeability (movement of fluid and proteins between inter-endothelial cell junctions).
  • Edema is most commonly thought to result from a breakdown in the inter-endothelial cell barrier, leading to increased paracellular permeability at the capillary and postcapillary venule level.
  • vasoactive mediators can trigger dissolution of these cellular elements, including histamine, bradykinin, thrombin, nitric oxide, eicosanoids (e.g., thromboxanes and leukotrienes), platelet activating factor (PAF), tumor necrosis factor (TNF), interleukins (e.g., IL-1 and IL-6), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF).
  • PAF platelet activating factor
  • TNF tumor necrosis factor
  • interleukins e.g., IL-1 and IL-6
  • HGF hepatocyte growth factor
  • VEGF vascular endothelial growth factor
  • VEGF vascular endothelial growth factor
  • tissue hypoxia leading to the upregulation of VEGF production, which leads to induction of vascular leakage.
  • This VEGF effect is at the level of the endothelial cell, in other words VEGF binding to specific VEGF receptors expressed on endothelial cells leads to a cascade of intracellular events culminating in the loss of normal intercellular barrier function. Therefore, by affecting these intracellular events, vasulostatic agents could counter the negative effects of environmental signals such as hypoxia or vasoactive mediators such as VEGF, and thereby work to restore vasculostasis.
  • VEGF-mediated edema has been shown to involve intracellular signaling by Src family kinases, protein kinase C, and Akt kinase.
  • Kinases are believed to mediate the phosphorylation of junctional proteins such as beta-catenin and vascular endothelial (VE)-cadherin, leading to the dissolution of adherens junctions and the dissociation of cadherin-catenin complexes from their cytoskeletal anchors.
  • proteins which regulate the intercellular contractile machinery such as myosin light chain kinase (MLCK) and myosin light chain (MLC) are also activated, resulting in cellular contraction, and therefore an opening of intercellular junctions.
  • MLCK myosin light chain kinase
  • MLC myosin light chain
  • vasculostasis should be beneficial to overall patient outcome in situations such as inflammation, allergic diseases, cancer, cerebral stroke, myocardial infarction, pulmonary and cardiac insufficiency, renal failure, and retinopathies, to name a few.
  • edema formation is a recognized but unwanted consequence of many therapeutic interventions, such as immunotherapy, cancer chemotherapy and radiation therapy, therefore vasculostatic agents that inhibit vascular permeability could be used in a co-therapy approach to reduce the deleterious side-effects of such therapies.
  • vasculostatic agents that inhibit vascular permeability could be used in a co-therapy approach to enhance delivery and efficacy of such therapies.
  • tissue hypoxia As edema is a general consequence of tissue hypoxia, it can also be concluded that inhibition of vascular leakage represents a potential approach to the treatment of tissue hypoxia. For example, interruption of blood flow by pathologic conditions (such as thrombus formation) or medical intervention (such as cardioplegia, organ transplantation, and angioplasty) or physical trauma, could be treated both acutely and prophylactically using vasculostatic agents that reduce vascular permeability.
  • pathologic conditions such as thrombus formation
  • medical intervention such as cardioplegia, organ transplantation, and angioplasty
  • physical trauma could be treated both acutely and prophylactically using vasculostatic agents that reduce vascular permeability.
  • the present invention is based on the discovery that certain chemical compounds are effective vasculostatic agents.
  • Compounds of the invention are effective for the treatment of such indications as myocardial infarction (MI), stroke, ischemia or reperfusion related tissue injury and cancer, for example.
  • MI myocardial infarction
  • compositions and methods are provided for treating disorders associated with compromised vasculostasis, examples of which are edema resulting from excess vascular permeability or vascular leakage and angiogenesis associated with retinal diseases and cancer.
  • Some of the compounds described herein are effective kinase inhibitors, including but not limited to tyrosine, serine or threonine kinase inhibitors, for example, Src-family inhibitors.
  • vasculostatic agents are effective in blocking vascular permeability or leakage or angiogenesis.
  • the invention provides a composition containing a therapeutically effective amount of a compound of the invention in a pharmaceutically acceptable carrier.
  • the invention provides a method for treating a disorder associated with compromised vasculostasis in a subject, comprising administering to a subject in need thereof an effective amount of a compound that is a vasculostatic agent.
  • the method includes use of at least one of the compounds as set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof.
  • the compound is set forth in FIG. 1 .
  • R 0 , R 1 , R 2 , x, and y are as defined above.
  • invention methods include administering to a subject in need thereof an effective amount of a compound having the structure (VII):
  • the invention provides a method for treating a disorder associated with compromised vasculostasis, comprising administering to a subject in need thereof an effective amount of a compound having the structure:
  • the invention provides a method for treating a disorder associated with compromised vasculostasis, comprising administering to a subject in need thereof an effective amount of a compound having the structure:
  • the invention provides a method for treating a disorder associated with compromised vasculostasis, comprising administering to a subject in need thereof an effective amount of a compound having the structure:
  • the invention provides a method for treating a disorder associated with compromised vasculostasis comprising administering to a subject in need thereof an effective amount of a compound having structure (VII):
  • the invention provides a method for treating a disorder associated with compromised vasculostasis, comprising administering to a subject in need thereof an effective amount of a compound, wherein the compound is set forth in Structures I, II, III, IIIa, IV, V, or any combination thereof.
  • the disorder is for example, but not limited to, myocardial infarction, stroke, congestive heart failure, an ischemia or reperfusion injury, cancer, arthritis or other arthropathy, retinopathy or vitreoretinal disease, macular degeneration, autoimmune disease, vascular leakage syndrome, inflammatory disease, edema, transplant rejection, burn, or acute or adult respiratory distress syndrome (ARDS).
  • ARDS adult respiratory distress syndrome
  • articles of manufacture including packaging material and a pharmaceutical composition contained within the packaging material, wherein the pharmaceutical composition is capable of treating a disorder associated with compromised vasculostasis, wherein the pharmaceutical composition comprises at least one compound having any one of the structures as set forth above.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound as set forth in Structures I, II, III, IIIa, IV, V, or VII, or any combination thereof, in a pharmaceutically acceptable carrier.
  • the invention provides an article of manufacture comprising packaging material and a pharmaceutical composition contained within said packaging material, wherein said packaging material comprises a label which indicates that said pharmaceutical composition can be used for treatment of disorders associated with compromised vasculostasis and wherein said pharmaceutical composition comprises a compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof.
  • the invention provides an article of manufacture comprising packaging material and a pharmaceutical composition contained within said packaging material, wherein said packaging material comprises a label which indicates that said pharmaceutical composition can be used for treatment of disorders associated with vascular permeability leakage or compromised vasculostasis selected from is myocardial infarction, stroke, congestive heart failure, an ischemia or reperfusion injury, cancer, arthritis or other arthropathy, retinopathy or vitreoretinal disease, macular degeneration, autoimmune disease, vascular leakage syndrome, inflammatory disease, edema, transplant rejection, burns, or acute or adult respiratory distress syndrome (ARDS) and wherein said pharmaceutical composition comprises a compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof.
  • ARDS acute or adult respiratory distress syndrome
  • the invention provides a method of treating a compromised vasculostasis disorder, comprising the administration of a therapeutically effective amount of at least one compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof, or pharmaceutically acceptable salts, hydrates, solvates, crystal forms and individual diastereomers thereof, to a subject in need of such treatment.
  • the invention provides a method of treating a disorder associated with vasculostasis, comprising the administration of a therapeutically effective amount of at least one compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof, or pharmaceutically acceptable salts, hydrates, solvates, crystal forms and individual diastereomers thereof, in combination with an anti-inflammatory, chemotherapeutic agent, immunomodulatory agent, therapeutic antibody or a protein kinase inhibitor, to a subject in need of such treatment.
  • the invention provides a method of treating a subject having or at risk of having myocardial infarction comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having vascular leakage syndrome (VLS) comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • VLS vascular leakage syndrome
  • the invention provides a method of treating a subject having or at risk of having cancer comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having stroke comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having ARDS comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having burns comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having arthritis comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having edema comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having vascular leakage syndrome (VLS) comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • VLS vascular leakage syndrome
  • the invention provides a method of treating a subject having or at risk of having retinopathy or vitreoretinal disease comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having ischemic or reperfusion related tissue injury or damage, comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having autoimmune disease, comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having transplant rejection, comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a method of treating a subject having or at risk of having inflammatory disease, comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • the invention provides a process for making a pharmaceutical composition comprising combining a combination of a compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof or its pharmaceutically acceptable salts, hydrates, solvates, crystal forms salts and individual diastereomers thereof and a pharmaceutically acceptable carrier.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound as set forth in Structure I, II, III, IIIa, IV, V, VII, or VIII in a pharmaceutically acceptable carrier.
  • the invention provides a method for inhibiting or reducing vascular leakage in a subject, comprising administering to a subject in need thereof an effective amount of IL-2 in combination with a compound of Structure set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof., thereby reducing vascular leakage in the subject.
  • the compound may be N-(2-(1H-Indol-2-yl)-phenyl)-phthalamic acid or 6,7-bis-(3-hydroxyphenyl)-pteridine-2,4-diamine.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising IL-2 and at least one compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof, in a concentration effective to reduce vascular leakage associated with IL-2 administration.
  • the invention provides a method for treating cancer or a tumor in a subject, comprising administering to a subject in need thereof an effective amount of a therapeutic antibody, chemotherapeutic agent or immunotoxic agents, in combination with a compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof, thereby treating the cancer or tumor in the subject.
  • the invention provides a pharmaceutical composition comprising a therapeutic agent and at least one compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof, in a concentration effective to treat cancer in a subject.
  • the cancer may be any cancer, including but not limited to an alimentary/gastrointestinal tract cancer, colon cancer, liver cancer, skin cancer, breast cancer, ovarian cancer, prostate cancer, lymphoma, leukemia, kidney cancer, lung cancer, muscle cancer, bone cancer, bladder cancer or brain cancer.
  • the invention provides a method for treating a T-cell mediated disorder, comprising the administration of a therapeutically effective amount of at least one compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof or pharmaceutically acceptable salts, hydrates, solvates, crystal forms salts and individual diastereomers thereof, to a subject in need of such treatment.
  • FIGS. 1A-1F shows exemplary compounds of the invention.
  • FIG. 2 shows the results of 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt and doxorubicin for treatment of lung metastases.
  • FIG. 3 illustrates the effect of compounds administered in conjunction with doxorubicin in an in vivo model of metastatic colon cancer (CT-26 adenocarcinoma).
  • compound A is 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt
  • compound B is 6,7-diphenyl-pteridine-2,4-diamine.
  • FIG. 4 illustrates the effects of compounds of the present invention for co-drug therapy with Taxotere as described herein.
  • Syngeneic CT-26 Colon carcinoma cells were used in order to establish lung metastases in Balb/C mice as described for FIG. 3 .
  • 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt (compound A) and 6,7-diphenyl-pteridine-2,4-diamine (compound B) from FIG. 1 are shown in FIG. 4 .
  • FIG. 5 shows a photo of representative lung samples from the experiment shown in FIG. 4 with 6,7-diphenyl-pteridine-2,4-diamine (compound B) and doxorubicin.
  • FIG. 6 illustrates the effect of compounds administered in conjunction with docetaxel in the in vivo model of metastatic colon cancer (CT-26 adenocarcinoma) described for FIG. 4 .
  • CT-26 adenocarcinoma metastatic colon cancer
  • FIGS. 7 and 8 illustrate the effects of compounds of the invention for their capacity to inhibit IL-2 induced VLS.
  • the graphs present representative examples of compounds cited in this application and their effects on VLS.
  • compound D is N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid and compound E is 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine.
  • FIG. 9 illustrates the effects of compounds of the invention for their effect on IL-2 induced anti-tumor actions.
  • the graph presents representative examples of compounds cited in this application and their effects on IL-2 mediated reductions in metastatic melanoma tumor burden.
  • compound D is N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid and compound E is 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine.
  • Invention compound concentrations are listed in parenthesis in mg/kg while IL-2 concentration is given in parenthesis kilounits.
  • FIGS. 10 and 11 illustrate the effects of compounds of the invention for their capacity to inhibit IL-2 induced T-cell proliferation.
  • the graphs present representative examples of compounds cited in this application and their effects on T-cell proliferation.
  • compound D is N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid and compound E is 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine.
  • FIG. 12 illustrates the effects of invention compounds for their capacity to inhibit edema associated with Acute Respiratory Distress Syndrome (ARDS).
  • NIH Swiss mice were given an intraperitoneal injection of 1.5 mg/kg Oleic Acid of (in this example formulated in saline) and/or invention compounds.
  • Four hours subsequent to injection animals were sacrificed followed by collection, blotting and weighing (wet weight) of the lungs. Lungs were then dried at 80° C. for 24 hours and weighed (dry weight).
  • N 4/group, 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.5 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced ARDS-associated edema by >50% while 4-[4-amino-6-(3,4-dihydroxyphenyl)pteridin-7-yl]benzene-1,2-diol (compound F—in the 0.5 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced ARDS-induced edema by >100%.
  • FIG. 13 and 14 illustrate the effects of invention compounds for their capacity to inhibit angiogenesis in vivo.
  • the graph presents representative examples of compounds cited in this application which successfully inhibited angiogenesis in vivo.
  • Tumor extracellular matrix infused with the 160 ng of the described growth factors were injected subcutaneously in a Balb/C mouse.
  • the described invention compound was injected daily at the described concentration for 5 days. After 5 days the animals were sacrificed and angiogenesis quantified based on the binding of fluorescently labeled, endothelium specific FITC-lectin.
  • compound A is 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt.
  • the invention provides compounds which are vasculostatic agents and methods of use thereof.
  • Invention compounds are useful in treating a variety of disorders, including but not limited to myocardial infarction, stroke, cancer, vascular leakage syndrome (VLS), ocular and retinal disease, bone disease, pleural effusion, edema, and ischemia.
  • VLS vascular leakage syndrome
  • ocular and retinal disease bone disease
  • pleural effusion edema
  • ischemia ischemia
  • vasculostasis is hereby defined as referring to the maintenance of a homeostatic vascular functioning, and “vasculostatic agents” as agents that seek to address conditions in which vasculostasis is compromised by preventing the loss of or restoring or maintaining vasculostasis.
  • the present invention provides compounds of structure (I):
  • R 0 is —COOH
  • x 1
  • each R 1 and R 2 is hydrogen
  • Exemplary compounds of structure I include:
  • R 0 is —COOH
  • Exemplary compounds of structure III include pteridines and quinoxalines, such as
  • vasculostatic agents of structure (III) include compounds bearing hydroxy-substituted aryl rings.
  • Exemplary compounds according to this embodiment are set forth below:
  • Additional exemplary compounds of structure (III) include pteridines having the structure:
  • Y 1 and Y 2 include but are not limited to the following structures III-1 to III-24: Structure Y 1 Y 2 III-1 C 6 H 5 H III-2 H C 6 H 5 III-3 C 6 H 5 C 6 H 5 III-4 4-C 6 H 4 OH H III-5 H 4-C 6 H 4 OH III-6 3,4-C 6 H 3 (OH) 2 H III-7 H 3,4-C 6 H 3 (OH) 2 III-8 4-C 6 H 4 F C 6 H 5 III-9 C 6 H 5 4-C 6 H 4 F III-10 4-C 6 H 4 Br C 6 H 5 III-11 C 6 H 5 4-C 6 H 4 Br III-12 4-C 6 H 4 OPh C 6 H 5 III-13 C 6 H 5 4-C 6 H 4 OPh III-14 4-C 6 H 4 OH C 6 H 5 III-15 C 6 H 5 4-C 6 H 4 OH III-16 C 5 H 4 N (pyr) C 5 H 4 N (pyr) C 5 H 4 N (pyr) C 5 H 4 N (pyr) C 5 H 4 N (pyr) C 5 H 4 N (pyr) C
  • exemplary pteridines have the structure X 1 ⁇ X 2 ⁇ OR, wherein R is —H, aryl, or substituted aryl, and Y 1 and Y 2 include but are not limited to the following the structures III-25 to III-48: Structure Y 1 Y 2 III-25 C 6 H 5 H III-26 H C 6 H 5 III-27 C 6 H 5 C 6 H 5 III-28 4-C 6 H 4 OH H III-29 H 4-C 6 H 4 OH III-30 3,4-C 6 H 3 (OH) 2 H III-31 H 3,4-C 6 H 3 (OH) 2 III-32 4-C 6 H 4 F C 6 H 5 III-33 C 6 H 5 4-C 6 H 4 F III-34 4-C 6 H 4 Br C 6 H 5 III-35 C 6 H 5 4-C 6 H 4 Br III-36 4-C 6 H 4 OPh C 6 H 5 III-37 C 6 H 5 4-C 6 H 4 OPh III-38 4-C 6 H 4 OH C 6 H 5 III-39 C 6 H 5 4-C
  • exemplary pteridines have the structure X 1 ⁇ OR and X 2 ⁇ NHR, wherein R is —H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures Structure Y 1 Y 2 III-49 C 6 H 5 H III-50 H C 6 H 5 III-51 C 6 H 5 C 6 H 5 III-52 4-C 6 H 4 OH H III-53 H 4-C 6 H 4 OH III-54 3,4-C 6 H 3 (OH) 2 H III-55 H 3,4-C 6 H 3 (OH) 2 III-56 4-C 6 H 4 F C 6 H 5 III-57 C 6 H 5 4-C 6 H 4 F III-58 4-C 6 H 4 Br C 6 H 5 III-59 C 6 H 5 4-C 6 H 4 Br III-60 4-C 6 H 4 OPh C 6 H 5 III-61 C 6 H 5 4-C 6 H 4 OPh III-62 4-C 6 H 4 OH C 6 H 5 III-63 C 6 H 5 4-C 6 H 4 OH
  • exemplary pteridines have the structure X 1 ⁇ NHR and X 2 ⁇ OR, wherein R is —H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures Structure Y 1 Y 2 III-73 C 6 H 5 H III-74 H C 6 H 5 III-75 C 6 H 5 C 6 H 5 III-76 4-C 6 H 4 OH H III-77 H 4-C 6 H 4 OH III-78 3,4-C 6 H 3 (OH) 2 H III-79 H 3,4-C 6 H 3 (OH) 2 III-80 4-C 6 H 4 F C 6 H 5 III-81 C 6 H 5 4-C 6 H 4 F III-82 4-C 6 H 4 Br C 6 H 5 III-83 C 6 H 5 4-C 6 H 4 Br III-84 4-C 6 H 4 OPh C 6 H 5 III-85 C 6 H 5 4-C 6 H 4 OPh III-86 4-C 6 H 4 OH C 6 H 5 III-87 C 6 H 5 4-C 6 H 4
  • X 1 ⁇ NHR, wherein R is —H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-97 C 6 H 5 H III-98 H C 6 H 5 III-99 C 6 H 5 C 6 H 5 III-100 4-C 6 H 4 OH H III-101 H 4-C 6 H 4 OH III-102 3,4-C 6 H 3 (OH) 2 H III-103 H 3,4-C 6 H 3 (OH) 2 III-104 4-C 6 H 4 F C 6 H 5 III-105 C 6 H 5 4-C 6 H 4 F III-106 4-C 6 H 4 Br C 6 H 5 III-107 C 6 H 5 4-C 6 H 4 Br III-108 4-C 6 H 4 OPh C 6 H 5 III-109 C 6 H 5 4-C 6 H 4 OPh III-110 4-C 6 H 4 OH C 6 H 5 III-111 C 6 H 5 4-C 6 H 4 OH III-112 C 5 H 4 N (pyr) C 5
  • Still further exemplary pteridines have the structure:
  • X 1 ⁇ NHR, wherein R is —H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-121 C 6 H 5 H III-122 H C 6 H 5 III-123 C 6 H 5 C 6 H 5 III-124 4-C 6 H 4 OH H III-125 H 4-C 6 H 4 OH III-126 3,4-C 6 H 3 (OH) 2 H III-127 H 3,4-C 6 H 3 (OH) 2 III-128 4-C 6 H 4 F C 6 H 5 III-129 C 6 H 5 4-C 6 H 4 F III-130 4-C 6 H 4 Br C 6 H 5 III-131 C 6 H 5 4-C 6 H 4 Br III-132 4-C 6 H 4 OPh C 6 H 5 III-133 C 6 H 5 4-C 6 H 4 OPh III-134 4-C 6 H 4 OH C 6 H 5 III-135 C 6 H 5 4-C 6 H 4 OH III-136 C 5 H 4 N (pyr) C 5
  • X 1 ⁇ OR wherein R is —H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-145 C 6 H 5 H III-146 H C 6 H 5 III-147 C 6 H 5 C 6 H 5 III-148 4-C 6 H 4 OH H III-149 H 4-C 6 H 4 OH III-150 3,4-C 6 H 3 (OH) 2 H III-151 H 3,4-C 6 H 3 (OH) 2 III-152 4-C 6 H 4 F C 6 H 5 III-153 C 6 H 5 4-C 6 H 4 F III-154 4-C 6 H 4 Br C 6 H 5 III-155 C 6 H 5 4-C 6 H 4 Br III-156 4-C 6 H 4 OPh C 6 H 5 III-157 C 6 H 5 4-C 6 H 4 OPh III-158 4-C 6 H 4 OH C 6 H 5 III-159 C 6 H 5 4-C 6 H 4 OH III-160 C 5 H 4 N (pyr) C 5 H 5 H
  • X 1 ⁇ OR wherein R is —H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-169 C 6 H 5 H III-170 H C 6 H 5 III-171 C 6 H 5 C 6 H 5 III-172 4-C 6 H 4 OH H III-173 H 4-C 6 H 4 OH III-174 3,4-C 6 H 3 (OH) 2 H III-175 H 3,4-C 6 H 3 (OH) 2 III-176 4-C 6 H 4 F C 6 H 5 III-177 C 6 H 5 4-C 6 H 4 F III-178 4-C 6 H 4 Br C 6 H 5 III-179 C 6 H 5 4-C 6 H 4 Br III-180 4-C 6 H 4 OPh C 6 H 5 III-181 C 6 H 5 4-C 6 H 4 OPh III-182 4-C 6 H 4 OH C 6 H 5 III-183 C 6 H 5 4-C 6 H 4 OH III-184 C 5 H 4 N (pyr) C 5 H 1 H
  • exemplary pteridines have the structure:
  • X 1 ⁇ X 2 ⁇ Cl or NHR wherein R is H, (CH 2 ) 2 NHEt, (CH 2 ) 3 morpholyn-1-yl, (CH 2 ) 3 (N-methylpiperazinyn-1-yl); Y 1 ⁇ CH 2 glycinyl, CH 2 NHethoxy, CH 2 NHCH 2 alkyl, CH 2 NHCH 2 t-Bu, CH 2 NHCH 2 aryl, CH 2 NHCH 2 substituted aryl, CH 2 NHCH 2 heteroaryl, CH 2 NHCH 2 substituted heteroaryl with substituents being OH, and OMe, and Y 2 includes but is not limited to the following structures: Structure Y 2 III-193 C 6 H 5 III-194 H III-195 4-C 6 H 4 OH III-196 3-C 6 H 4 OH III-197 2-C 6 H 4 OH III-198 naphthyl III-199 isonaphthyl III-200 4-tBupheny
  • Additional exemplary compounds of structure (III) include compounds having the structure:
  • X 1 ⁇ NHR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-212 C 6 H 5 H III-213 H C 6 H 5 III-214 C 6 H 5 C 6 H 5 III-215 4-C 6 H 4 OH H III-216 H 4-C 6 H 4 OH III-217 3,4-C 6 H 3 (OH) 2 H III-218 H 3,4-C 6 H 3 (OH) 2 III-219 4-C 6 H 4 F C 6 H 5 III-220 C 6 H 5 4-C 6 H 4 F III-221 4-C 6 H 4 Br C 6 H 5 III-222 C 6 H 5 4-C 6 H 4 Br III-223 4-C 6 H 4 OPh C 6 H 5 III-224 C 6 H 5 4-C 6 H 4 OPh III-225 4-C 6 H 4 OH C 6 H 5 III-226 C 6 H 5 4-C 6 H 4 OH III-227 C 5 H 4 N (pyr) C 5 H 4
  • Still further exemplary compounds of structure (III) include the following:
  • X 1 ⁇ OR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-236 C 6 H 5 H III-237 H C 6 H 5 III-238 C 6 H 5 C 6 H 5 III-239 4-C 6 H 4 OH H III-240 H 4-C 6 H 4 OH III-241 3,4-C 6 H 3 (OH) 2 H III-242 H 3,4-C 6 H 3 (OH) 2 III-243 4-C 6 H 4 F C 6 H 5 III-244 C 6 H 5 4-C 6 H 4 F III-245 4-C 6 H 4 Br C 6 H 5 III-246 C 6 H 5 4-C 6 H 4 Br III-247 4-C 6 H 4 OPh C 6 H 5 III-248 C 6 H 5 4-C 6 H 4 OPh III-249 4-C 6 H 4 OH C 6 H 5 III-250 C 6 H 5 4-C 6 H 4 OH III-251 C 5 H 4 N (pyr) C 5 H 4 N
  • Compounds of structure (III) also include the following:
  • X 1 ⁇ NHR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-260 C 6 H 5 H III-261 H C 6 H 5 III-262 C 6 H 5 C 6 H 5 III-263 4-C 6 H 4 OH H III-264 H 4-C 6 H 4 OH III-265 3,4-C 6 H 3 (OH) 2 H III-266 H 3,4-C 6 H 3 (OH) 2 III-267 4-C 6 H 4 F C 6 H 5 III-268 C 6 H 5 4-C 6 H 4 F III-269 4-C 6 H 4 Br C 6 H 5 III-270 C 6 H 5 4-C 6 H 4 Br III-271 4-C 6 H 4 OPh C 6 H 5 III-272 C 6 H 5 4-C 6 H 4 OPh III-273 4-C 6 H 4 OH C 6 H 5 III-274 C 6 H 5 4-C 6 H 4 OH III-275 C 5 H 4 N (pyr) C 5 H 4
  • Still further exemplary compounds of structure (III) include;
  • X 1 ⁇ OR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-284 C 6 H 5 H III-285 H C 6 H 5 III-286 C 6 H 5 C 6 H 5 III-287 4-C 6 H 4 OH H III-288 H 4-C 6 H 4 OH III-289 3,4-C 6 H 3 (OH) 2 H III-290 H 3,4-C 6 H 3 (OH) 2 III-291 4-C 6 H 4 F C 6 H 5 III-292 C 6 H 5 4-C 6 H 4 F III-293 4-C 6 H 4 Br C 6 H 5 III-294 C 6 H 5 4-C 6 H 4 Br III-295 4-C 6 H 4 OPh C 6 H 5 III-296 C 6 H 5 4-C 6 H 4 OPh III-297 4-C 6 H 4 OH C 6 H 5 III-298 C 6 H 5 4-C 6 H 4 OH III-299 C 5 H 4 N (pyr) C 5 H 4 N
  • X 1 ⁇ NHR and X 2 ⁇ NHR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-308 C 6 H 5 H III-309 H C 6 H 5 III-310 C 6 H 5 C 6 H 5 III-311 4-C 6 H 4 OH H III-312 H 4-C 6 H 4 OH III-313 3,4-C 6 H 3 (OH) 2 H III-314 H 3,4-C 6 H 3 (OH) 2 III-315 4-C 6 H 4 F C 6 H 5 III-316 C 6 H 5 4-C 6 H 4 F III-317 4-C 6 H 4 Br C 6 H 5 III-318 C 6 H 5 4-C 6 H 4 Br III-319 4-C 6 H 4 OPh C 6 H 5 III-320 C 6 H 5 4-C 6 H 4 OPh III-321 4-C 6 H 4 OH C 6 H 5 III-322 C 6 H 5 4-C 6 H 4 OH III-323 C 5 H 4
  • X 1 ⁇ X 2 ⁇ OR wherein R is —H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-332 C 6 H 5 H III-333 H C 6 H 5 III-334 C 6 H 5 C 6 H 5 III-335 4-C 6 H 4 OH H III-336 H 4-C 6 H 4 OH III-337 3,4-C 6 H 3 (OH) 2 H III-338 H 3,4-C 6 H 3 (OH) 2 III-339 4-C 6 H 4 F C 6 H 5 III-340 C 6 H 5 4-C 6 H 4 F III-341 4-C 6 H 4 Br C 6 H 5 III-342 C 6 H 5 4-C 6 H 4 Br III-343 4-C 6 H 4 OPh C 6 H 5 III-344 C 6 H 5 4-C 6 H 4 OPh III-345 4-C 6 H 4 OH C 6 H 5 III-346 C 6 H 5 4-C 6 H 4 OH III-347 C 5 H 4 N (pyr
  • Still further exemplary quinoxalines include:
  • X 1 ⁇ OR and X 2 ⁇ NHR wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-356 C 6 H 5 H III-357 H C 6 H 5 III-358 C 6 H 5 C 6 H 5 III-359 4-C 6 H 4 OH H III-360 H 4-C 6 H 4 OH III-361 3,4-C 6 H 3 (OH) 2 H III-362 H 3,4-C 6 H 3 (OH) 2 III-363 4-C 6 H 4 F C 6 H 5 III-364 C 6 H 5 4-C 6 H 4 F III-365 4-C 6 H 4 Br C 6 H 5 III-366 C 6 H 5 4-C 6 H 4 Br III-367 4-C 6 H 4 OPh C 6 H 5 III-368 C 6 H 5 4-C 6 H 4 OPh III-369 4-C 6 H 4 OH C 6 H 5 III-370 C 6 H 5 4-C 6 H 4 OH III-371 C 5 H 4
  • X 1 ⁇ NHR and X 2 ⁇ OR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-380 C 6 H 5 H III-381 H C 6 H 5 III-382 C 6 H 5 C 6 H 5 III-383 4-C 6 H 4 OH H III-384 H 4-C 6 H 4 OH III-385 3,4-C 6 H 3 (OH) 2 H III-386 H 3,4-C 6 H 3 (OH) 2 III-387 4-C 6 H 4 F C 6 H 5 III-388 C 6 H 5 4-C 6 H 4 F III-389 4-C 6 H 4 Br C 6 H 5 III-390 C 6 H 5 4-C 6 H 4 Br III-391 4-C 6 H 4 OPh C 6 H 5 III-392 C 6 H 5 4-C 6 H 4 OPh III-393 4-C 6 H 4 OH C 6 H 5 III-394 C 6 H 5 4-C 6 H 4 OH III-395 C 5 H 4 N
  • X 1 ⁇ NHR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-404 C 6 H 5 H III-405 H C 6 H 5 III-406 C 6 H 5 C 6 H 5 III-407 4-C 6 H 4 OH H III-408 H 4-C 6 H 4 OH III-409 3,4-C 6 H 3 (OH) 2 H III-410 H 3,4-C 6 H 3 (OH) 2 III-411 4-C 6 H 4 F C 6 H 5 III-412 C 6 H 5 4-C 6 H 4 F III-413 4-C 6 H 4 Br C 6 H 5 III-414 C 6 H 5 4-C 6 H 4 Br III-415 4-C 6 H 4 OPh C 6 H 5 III-416 C 6 H 5 4-C 6 H 4 OPh III-417 4-C 6 H 4 OH C 6 H 5 III-418 C 6 H 5 4-C 6 H 4 OH III-419 C 5 H 4 N (pyr) C 5 H 4
  • X 1 ⁇ NHR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-428 C 6 H 5 H III-429 H C 6 H 5 III-430 C 6 H 5 C 6 H 5 III-431 4-C 6 H 4 OH H III-432 H 4-C 6 H 4 OH III-433 3,4-C 6 H 3 (OH) 2 H III-434 H 3,4-C 6 H 3 (OH) 2 III-435 4-C 6 H 4 F C 6 H 5 III-436 C 6 H 5 4-C 6 H 4 F III-437 4-C 6 H 4 Br C 6 H 5 III-438 C 6 H 5 4-C 6 H 4 Br III-439 4-C 6 H 4 OPh C 6 H 5 III-440 C 6 H 5 4-C 6 H 4 OPh III-441 4-C 6 H 4 OH C 6 H 5 III-442 C 6 H 5 4-C 6 H 4 OH III-443 C 5 H 4 N (pyr) C 5 H 4
  • X 1 ⁇ OR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-452 C 6 H 5 H III-453 H C 6 H 5 III-454 C 6 H 5 C 6 H 5 III-455 4-C 6 H 4 OH H III-456 H 4-C 6 H 4 OH III-457 3,4-C 6 H 3 (OH) 2 H III-458 H 3,4-C 6 H 3 (OH) 2 III-459 4-C 6 H 4 F C 6 H 5 III-460 C 6 H 5 4-C 6 H 4 F III-461 4-C 6 H 4 Br C 6 H 5 III-462 C 6 H 5 4-C 6 H 4 Br III-463 4-C 6 H 4 OPh C 6 H 5 III-464 C 6 H 5 4-C 6 H 4 OPh III-465 4-C 6 H 4 OH C 6 H 5 III-466 C 6 H 5 4-C 6 H 4 OH III-467 C 5 H 4 N (pyr) C 5 H 4 N
  • X 1 ⁇ OR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-476 C 6 H 5 H III-477 H C 6 H 5 III-478 C 6 H 5 C 6 H 5 III-479 4-C 6 H 4 OH H III-480 H 4-C 6 H 4 OH III-481 3,4-C 6 H 3 (OH) 2 H III-482 H 3,4-C 6 H 3 (OH) 2 III-483 4-C 6 H 4 F C 6 H 5 III-484 C 6 H 5 4-C 6 H 4 F III-485 4-C 6 H 4 Br C 6 H 5 III-486 C 6 H 5 4-C 6 H 4 Br III-487 4-C 6 H 4 OPh C 6 H 5 III-488 C 6 H 5 4-C 6 H 4 OPh III-489 4-C 6 H 4 OH C 6 H 5 III-490 C 6 H 5 4-C 6 H 4 OH III-491 C 5 H 4 N (pyr) C 5 H 4 N
  • Still further exemplary compounds of structure (III) include:
  • X 1 ⁇ NHR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-500 C 6 H 5 H III-501 H C 6 H 5 III-502 C 6 H 5 C 6 H 5 III-503 4-C 6 H 4 OH H III-504 H 4-C 6 H 4 OH III-505 3,4-C 6 H 3 (OH) 2 H III-506 H 3,4-C 6 H 3 (OH) 2 III-507 4-C 6 H 4 F C 6 H 5 III-508 C 6 H 5 4-C 6 H 4 F III-509 4-C 6 H 4 Br C 6 H 5 III-510 C 6 H 5 4-C 6 H 4 Br III-511 4-C 6 H 4 OPh C 6 H 5 III-512 C 6 H 5 4-C 6 H 4 OPh III-513 4-C 6 H 4 OH C 6 H 5 III-514 C 6 H 5 4-C 6 H 4 OH III-515 C 5 H 4 N (pyr) C 5 H 4
  • Additional compounds of structure (III) include the following:
  • X 1 ⁇ OR, wherein R is H, aryl or substituted aryl, and Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-524 C 6 H 5 H III-525 H C 6 H 5 III-526 C 6 H 5 C 6 H 5 III-527 4-C 6 H 4 OH H III-528 H 4-C 6 H 4 OH III-529 3,4-C 6 H 3 (OH) 2 H III-530 H 3,4-C 6 H 3 (OH) 2 III-531 4-C 6 H 4 F C 6 H 5 III-532 C 6 H 5 4-C 6 H 4 F III-533 4-C 6 H 4 Br C 6 H 5 III-534 C 6 H 5 4-C 6 H 4 Br III-535 4-C 6 H 4 OPh C 6 H 5 III-536 C 6 H 5 4-C 6 H 4 OPh III-537 4-C 6 H 4 OH C 6 H 5 III-538 C 6 H 5 4-C 6 H 4 OH III-539 C 5 H 4 N (pyr) C 5 H 4 N (
  • Still further exemplary compounds of structure (III) include:
  • Y 1 and Y 2 include but are not limited to the following structures: Structure Y 1 Y 2 III-547 C 6 H 5 H III-548 C 6 H 5 C 6 H 5 III-549 4-C 6 H 4 OH H III-550 3,4-C 6 H 3 (OH) 2 H III-551 4-C 6 H 4 F C 6 H 5 III-552 4-C 6 H 4 Br C 6 H 5 III-553 4-C 6 H 4 OPh C 6 H 5 III-554 C 6 H 5 4-C 6 H 4 OH III-555 C 5 H 4 N (pyr) C 5 H 4 N (pyr) III-556 4-C 6 H 4 F 4-C 6 H 4 F III-557 3-C 6 H 4 F 3-C 6 H 4 F III-558 4-C 6 H 4 OMe 4-C 6 H 4 OMe III-559 3-C 6 H 4 OMe 3-C 6 H 4 OMe III-560 4-C 6 H 4 OH 4-C 6 H 4 OH III-561 3-C 6 H 4 OH 3-C 6 H 4 OH III-562 3,4-C 6 H
  • Additional exemplary compounds of structure (III) include:
  • X 1 ⁇ NHR wherein R is H, aryl, substituted aryl, or aroyl, Y 1 ⁇ NHR, or R, wherein R ⁇ H, alkyl or branched alkyl, and Y 2 includes but is not limited to the following structures: Structure Y 2 III-564 C 6 H 5 III-565 H III-566 4-C 6 H 4 OH III-567 3-C 6 H 4 OH III-568 2-C 6 H 4 OH III-569 naphthyl III-570 isonaphthyl III-571 4-tBuphenyl III-572 biphenyl III-573 2,3-diMephenyl III-574 fluorenyl III-575 oxophenyl III-576 thioindole III-577 C 5 H 4 N (pyr) III-578 4-C 6 H 4 F III-579 3-C 6 H 4 F III-580 4-C 6 H 4 OMe III-581 3-C 6 H 4 OMe III-582 2-C 6 H 4 OMe
  • Still further exemplary compounds of structure (III) include asymmetric triazines, such as:
  • Y 1 ⁇ NHR or R wherein R ⁇ H, alkyl or branched alkyl, and Y 2 includes but is not limited to the following structures: Structure Y 2 III-583 C 6 H 5 III-584 H III-585 4-C 6 H 4 OH III-586 3-C 6 H 4 OH III-587 2-C 6 H 4 OH III-588 naphthyl III-589 isonaphthyl III-590 4-tBuphenyl III-591 biphenyl III-592 2,3-diMephenyl III-593 fluorenyl III-594 oxophenyl III-595 thioindole III-596 C 5 H 4 N (pyr) III-597 4-C 6 H 4 F III-598 3-C 6 H 4 F III-599 4-C 6 H 4 OMe III-600 3-C 6 H 4 OMe III-601 2-C 6 H 4 OMe
  • the linking moiety L is an arylene moiety
  • Z is N, as exemplified by the following structures: wherein, Z ⁇ N or CH, X 1 ⁇ H or OH, and X 2 ⁇ NH 2 or OH.
  • the linking moiety L is an oxyarylene moiety, as exemplified by the following structures: wherein, Z ⁇ N or CH, X 1 ⁇ H or OH, and X 2 ⁇ NH 2 or OH.
  • heterocyclic when used to describe an aromatic ring, means that the aromatic ring contains at least one heteroatom.
  • heteroatom refers to N, O, S, and the like.
  • alkyl refers to a monovalent straight or branched chain hydrocarbon group having from one to about 12 carbon atoms, including methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-hexyl, and the like.
  • substituted alkyl refers to alkyl groups further bearing one or more substituents selected from hydroxy, alkoxy, mercapto, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, substituted aryloxy, halogen, cyano, nitro, amino, amido, —C(O)H, acyl, oxyacyl, carboxyl, sulfonyl, sulfonamide, sulfuryl, and the like.
  • lower alkyl refers to alkyl groups having from 1 to about 6 carbon atoms.
  • alkenyl refers to straight or branched chain hydrocarbyl groups having one or more carbon-carbon double bonds, and having in the range of about 2 up to 12 carbon atoms
  • substituted alkenyl refers to alkenyl groups further bearing one or more substituents as set forth above.
  • alkynyl refers to straight or branched chain hydrocarbyl groups having at least one carbon-carbon triple bond, and having in the range of about 2 up to 12 carbon atoms
  • substituted alkynyl refers to alkynyl groups further bearing one or more substituents as set forth above.
  • aryl refers to aromatic groups having in the range of 6 up to 14 carbon atoms and “substituted aryl” refers to aryl groups further bearing one or more substituents as set forth above.
  • heteroaryl refers to aromatic rings containing one or more heteroatoms (e.g., N, O, S, or the like) as part of the ring structure, and having in the range of 3 up to 14 carbon atoms and “substituted heteroaryl” refers to heteroaryl groups further bearing one or more substituents as set forth above.
  • heteroatoms e.g., N, O, S, or the like
  • alkoxy refers to the moiety —O-alkyl-, wherein alkyl is as defined above, and “substituted alkoxy” refers to alkoxyl groups further bearing one or more substituents as set forth above.
  • cycloalkyl refers to ring-containing alkyl groups containing in the range of about 3 up to 8 carbon atoms
  • substituted cycloalkyl refers to cycloalkyl groups further bearing one or more substituents as set forth above.
  • heterocyclic when not used with reference to an aromatic ring, refers to cyclic (i.e., ring-containing) groups containing one or more heteroatoms (e.g., N, O, S, or the like) as part of the ring structure, and having in the range of 3 up to 14 carbon atoms and “substituted heterocyclic” refers to heterocyclic groups further bearing one or more substituents as set forth above.
  • heteroatoms e.g., N, O, S, or the like
  • alkylaryl refers to alkyl-substituted aryl groups and “substituted alkylaryl” refers to alkylaryl groups further bearing one or more substituents as set forth above.
  • arylalkyl refers to aryl-substituted alkyl groups and “substituted arylalkyl” refers to arylalkyl groups further bearing one or more substituents as set forth above.
  • arylalkenyl refers to aryl-substituted alkenyl groups and “substituted arylalkenyl” refers to arylalkenyl groups further bearing one or more substituents as set forth above.
  • arylalkynyl refers to aryl-substituted alkynyl groups and “substituted arylalkynyl” refers to arylalkynyl groups further bearing one or more substituents as set forth above.
  • divalent aromatic groups having in the range of 6 up to 14 carbon atoms and “substituted arylene” refers to arylene groups further bearing one or more substituents as set forth above.
  • oxyarylene refers to the moiety “O-arylene”, wherein arylene is as defined above and “substituted oxyarylene” refers to oxyarylene groups further bearing one or more substituents as set forth above.
  • invention compounds can be prepared by a variety of methods well-known to those skilled in the art. For example, Scheme A illustrates three exemplary syntheses for invention compounds of structure (I).
  • Scheme B illustrates an exemplary synthesis for invention compounds of structure (II).
  • Scheme C illustrates two of several exemplary syntheses for invention compounds of structure (III).
  • Scheme D illustrates an exemplary synthesis for invention compounds of structure (IV).
  • Rings A and B taken together may form a variety of fused aromatic heterocyclic groups suitable for use in the practice of the present invention.
  • rings A and B taken together may form aromatic heterocycles such as quinoxaline, pteridine, benzoxazine, benzoxazole, benzimidazole, 1,2-benzodiazole, indole, isoindole, quinoline, isoquinoline, phthalazine, naphthyridine, quinazoline, cinnoline, purine, benzothiazole, benzofuran, isobenzofuran, benzothiophene, chromene, and the like.
  • rings A and B taken together form a quinoxaline.
  • rings A and B taken together form a pteridine.
  • rings A and B taken together form a benzimidazole.
  • quinoxalines contemplated for use in the methods of the present invention have the structure:
  • Pteridines contemplated for use in the methods of the present invention have the structure:
  • pteridines contemplated for use in the methods of the present invention have the structure:
  • Benzimidazoles, oxazoles, or thiazoles contemplated for use in the methods of the present invention have the structure:
  • benzimidazoles contemplated for use in the methods of the present invention have the structure:
  • a disorder such as those associated with vascular permeability and/or angiogenesis and/or other aspects of compromised vasculostasis
  • administering to a subject in need thereof an effective amount of a compound having structure (VII):
  • the compound has the structure:
  • the compound has the structure:
  • the present invention is based on the discovery that a combination therapy including interleukin-2 (IL-2) and chemical compounds described herein, some of which are effective kinase inhibitors, administered during IL-2 therapy, mitigates or lessens the adverse effects of IL-2. While not wanting to be bound by a particular theory, it is likely that the effect occurs while preserving or enhancing the beneficial effect of IL-2 such that the disease or disorder is treated.
  • IL-2 interleukin-2
  • chemical compounds described herein some of which are effective kinase inhibitors
  • IL-2 is described in the present application as an illustrative example, it should be understood that the invention includes combination therapy including a compound of the invention, including but not limited to vasculostatic agents, such as tyrosine, serine or threonine kinase inhibitors, for example, Src-family inhibitors, and immunomodulatory molecules.
  • vasculostatic agents such as tyrosine, serine or threonine kinase inhibitors, for example, Src-family inhibitors
  • immunomodulatory molecules include those that result in vascular leakage.
  • Cytokines, and in particular IL-2 are examples of such immunomodulatory molecules.
  • compositions and methods are provided for treating disorders associated with VLS.
  • the invention provides a composition containing a therapeutically effective amount of IL-2 and a vasculostatic agent or compound as described herein in a pharmaceutically acceptable carrier.
  • kinase inhibitors such as Src-family tyrosine kinases
  • kinase-associated disorders are those disorders which result from aberrant kinase activity, and/or which are alleviated by the inhibition of one or more enzymes within a kinase family.
  • Lck inhibitors are of value in the treatment of a number of such disorders (e.g., the treatment of autoimmune diseases), as Lck inhibition blocks T cell activation.
  • Src family inhibitors are of value in treating a variety of cancers as Src inhibition impacts tumor cell invasion, metastases and survival.
  • the compounds and methods of the present invention are useful in treating a variety of disorders associated with compromised vasculostasis including but not limited to, for example: stroke, cardiovascular disease, myocardial infarction, congestive heart failure, cardiomyopathy, myocarditis, ischemic heart disease, coronary artery disease, cardiogenic shock, vascular shock, pulmonary hypertension, pulmonary edema (including cardiogenic pulmonary edema), cancer, pleural effusions, rheumatoid arthritis, diabetic retinopathy, retinitis pigmentosa, and retinopathies, including diabetic retinopathy and retinopathy of prematurity, inflammatory diseases, restenosis, edema (including edema associated with pathologic situations such as cancers and edema induced by medical interventions such as chemotherapy), asthma, acute or adult respiratory distress syndrome (ARDS), lup
  • T-cell mediated hypersensitivity diseases including contact hypersensitivity, delayed-type hypersensitivity, and gluten-sensitive enteropathy (Celiac disease); Type I diabetes; psoriasis; contact dermatitis (including that due to poison ivy); Hashimoto's thyroiditis; Sjogren's syndrome; Autoimmune Hyperthyroidism, such as Graves' disease; Addison's disease (autoimmune disease of the adrenal glands); autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome); autoimmune alopecia; pernicious anemia; vitiligo; autoimmune hypopituatarism; Guillain-Barre syndrome; other autoimmune diseases; cancers, including those where kinases such as Src-family kinases are activated or overexpressed, such as colon carcinoma and thymoma, or cancers where kinase activity facilitates tumor growth or survival; glomerulonephritis, serum sickness; uticaria; allergic diseases such as respiratory allergies
  • Treating cancer refers to providing a therapeutic benefit to the cancer patient, e.g. the therapy extends the mean survival time of patients, increases the percentage of patients surviving at a given timepoint, extends the mean time to disease progression, reduces or stabilizes tumor burden or improves quality of life for the patient or any of the above, for example. While not wanting to be bound by a particular theory, some of the compounds of the invention may be cytostatic and therefore have activity directly on the tumor cells.
  • kinase refers to any enzyme that catalyze the addition of phosphate groups to a protein residue, for example serine and threonine kinases catalyze the addition of phosphate groups to serine and threonine residues.
  • the terms “Src kinase” or “Src kinase family” or “Src family” refer to the related homologs or analogs belonging to the mammalian family of Src kinases, including, for example, the widely expressed c-Src, Fyn, Yes and Lyn kinases and the hematopoietic-restricted kinases Hck, Fgr, Lck and Blk.
  • the terms “Src kinase signaling pathway” or “Src cascade” refer to both the upstream and downstream components of the Src signaling cascade.
  • Src-family tyrosine kinases other than Lck are important in the Fc gamma receptor induced respiratory burst of neutrophils as well as the Fc gamma receptor responses of monocytes and macrophages.
  • the compositions and methods of the present invention may be useful in inhibiting the Fc gamma induced respiratory burst response in neutrophils, and may also be useful in inhibiting the Fc gamma dependent production of TNF alpha.
  • the ability to inhibit Fc gamma receptor dependent neutrophil, monocyte and macrophage responses would result in additional anti-inflammatory activity for the compounds employed in invention methods.
  • compositions and methods of the present invention may also be useful in the treatment of autoimmune glomerulonephritis and other instances of glomerulonephritis induced by deposition of immune complexes in the kidney that trigger Fc gamma receptor responses and which can lead to kidney damage.
  • Fc epsilon receptor induced degranulation of mast cells and basophils may be important in the Fc epsilon receptor induced degranulation of mast cells and basophils that plays an important role in asthma, allergic rhinitis, and other allergic disease.
  • Fc epsilon receptors are stimulated by IgE-antigen complexes.
  • Compounds employed in the methods of the present invention may inhibit the Fc epsilon induced degranulation responses.
  • the ability to inhibit Fc epsilon receptor dependent mast cell and basophil responses may result in additional anti-inflammatory activity for the present compounds beyond their effect on T cells.
  • the present invention also provides articles of manufacture comprising packaging material and a pharmaceutical composition contained within said packaging material, wherein said packaging material comprises a label which indicates that said pharmaceutical composition can be used for treatment of disorders and wherein said pharmaceutical composition comprises a compound according to the present invention.
  • the invention provides a pharmaceutical composition including both a therapeutic and a compound of the invention (e.g, as shown in FIG. 1 ), wherein the compound is present in a concentration effective to reduce vascular leakage associated with indications or therapeutics which have vascular leak as a side-effect.
  • administration of a compound of the invention in conjunction with IL-2, immunotoxins, antibodies or chemotherapeutics can be determined by one of skill in the art according to standard treatment regimen or as determined by an in vivo animal assay, for example.
  • the present invention also provides pharmaceutical compositions comprising IL-2, immunotoxin, antibody or chemotherapeutic and at least one invention compound in an amount effective for inhibiting vascular permeability, and a pharmaceutically acceptable vehicle or diluent.
  • the compositions of the present invention may contain other therapeutic agents as described below, and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (for example, excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.
  • the compounds of the invention may be formulated into therapeutic compositions as natural or salt forms.
  • Pharmaceutically acceptable non-toxic salts include the base addition salts (formed with free carboxyl or other anionic groups) which may be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino-ethanol, histidine, procaine, and the like.
  • Such salts may also be formed as acid addition salts with any free cationic groups and will generally be formed with inorganic acids such as, for example, hydrochloric, sulfuric, or phosphoric acids, or organic acids such as acetic, citric, p-toluenesulfonic, methanesulfonic acid, oxalic, tartaric, mandelic, and the like.
  • Salts of the invention include amine salts formed by the protonation of an amino group with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like.
  • Salts of the invention also include amine salts formed by the protonation of an amino group with suitable organic acids, such as p-toluenesulfonic acid, acetic acid, and the like.
  • suitable organic acids such as p-toluenesulfonic acid, acetic acid, and the like.
  • Additional excipients which are contemplated for use in the practice of the present invention are those available to those of ordinary skill in the art, for example, those found in the United States Pharmacopeia Vol. XXII and National Formulary Vol. XVII, U.S. Pharmacopeia Convention, Inc., Rockville, Md. (1989), the relevant contents of which is incorporated herein by reference.
  • polymorphs of the invention compounds are included in the present invention.
  • compositions may be administered by any suitable means, for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; buccally; parenterally, such as by subcutaneous, intravenous, intramuscular, intrathecal, or intracistemal injection or infusion techniques (e.g., as sterile injectable aqueous or non-aqueous solutions or suspensions); nasally such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally such as in the form of suppositories; in dosage unit formulations containing non-toxic, pharmaceutically acceptable vehicles or diluents.
  • suitable means for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; buccally; parenterally, such as by subcutaneous, intravenous, intramuscular, intrathecal, or intracistemal injection or infusion techniques (e.g., as sterile
  • the present compounds may, for example, be administered in a form suitable for immediate release or extended release. Immediate release or extended release may be achieved by the use of suitable pharmaceutical compositions comprising the present compounds, or, particularly in the case of extended release, by the use of devices such as subcutaneous implants or osmotic pumps.
  • suitable pharmaceutical compositions comprising the present compounds, or, particularly in the case of extended release, by the use of devices such as subcutaneous implants or osmotic pumps.
  • mammals including, but not limited to, cows, sheep, goats, horses, dogs, cats, guinea pigs, rats or other bovine, ovine, equine, canine, feline, rodent or murine species can be treated.
  • the method can also be practiced in other species, such as avian species (e.g., chickens).
  • terapéuticaally effective amount means the amount of the compound or pharmaceutical composition that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician, e.g., restoration or maintainance of vasculostasis or prevention of the compromise or loss or vasculostasis; reduction of tumor burden; reduction of morbidity and/or mortality.
  • pharmaceutically acceptable it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • administering should be understood to mean providing a compound of the invention or pharmaceutical composition to the subject in need of treatment.
  • compositions for the administration of the compounds of this embodiment either alone or in combination with IL-2, immunotoxin, antibody or chemotherapeutic may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the carrier which constitutes one or more accessory ingredients.
  • the pharmaceutical compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation.
  • the active object compound is included in an amount sufficient to produce the desired effect upon the process or condition of diseases.
  • compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs.
  • compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations.
  • Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets.
  • excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc.
  • the tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
  • a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated to form osmotic therapeutic tablets for control release.
  • Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
  • water or an oil medium for example peanut oil, liquid paraffin, or olive oil.
  • Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxy-propylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monoo
  • the aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin.
  • the oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives.
  • a dispersing or wetting agent e.g., glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerin, glycerin, glycerin, glycerin, glycerin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol, glycerol
  • Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
  • sweetening agents for example glycerol, propylene glycol, sorbitol or sucrose.
  • Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
  • the pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension.
  • This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a parenterally-acceptable diluent or solvent or coslvent or complexing agent or dispersing agent or excipient or combination thereof, for example 1,3-butane diol, polyethylene glycols, polypropylene glycols, ethanol or other alcohols, povidones, Tweens, sodium dodecyle sulfate, sodium deoxycholate,dimethylacetamide, polysorbates, poloxamers, cyclodextrins, lipids, and excipients such as inorganic salts (e.g., sodium chloride), buffering agents (e.g., sodium citrate, sodium phosphate), and sugar
  • Suitable vehicles and solvents that may be employed are water, dextrose solutions, Ringer's solutions and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • these pharmaceutical compositions may be formulated and administered systemically or locally. Techniques for formulation and administration may be found in the latest edition of “Remington's Pharmaceutical Sciences” (Mack Publishing Co, Easton Pa.). Suitable routes may, for example, include oral or transmucosal administration; as well as parenteral delivery, including intramuscular, subcutaneous, intramedullary, intrathecal, intraventricular, intravenous, intraperitoneal, or intranasal administration.
  • the pharmaceutical compositions of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline.
  • penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
  • Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
  • Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
  • the suspension may also contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
  • the compounds of the present invention may also be administered in the form of suppositories for rectal administration of the drug.
  • These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • Such materials are cocoa butter and polyethylene glycols.
  • topical application For topical use, creams, ointments, jellies, solutions or suspensions, etc., containing the compounds of the present invention are employed. (For purposes of this application, topical application shall include mouthwashes and gargles).
  • the invention compounds are administered in combination with an antiinflammatory, antihistamines, chemotherapeutic agent, immunomodulator, therapeutic antibody or a protein kinase inhibitor, e.g., a tyrosine kinase inhibitor, to a subject in need of such treatment.
  • chemotherapeutic agents include antimetabolites, such as methotrexate, DNA cross-linking agents, such as cisplatin/carboplatin; alkylating agents, such as canbusil; topoisomerase I inhibitors such as dactinomicin; microtubule inhibitors such as taxol (paclitaxol), and the like.
  • chemotherapeutic agents include, for example, a vinca alkaloid, mitomycin-type antibiotic, bleomycin-type antibiotic, antifolate, colchicine, demecoline, etoposide, taxane, anthracycline antibiotic, doxorubicin, daunorubicin, carminomycin, epirubicin, idarubicin, mithoxanthrone, 4-demethoxy-daunomycin, 1-deoxydaunorubicin, 13-deoxydaunorubicin, adriamycin-14-benzoate, adriamycin-14-octanoate, adriamycin-14-naphthaleneacetate, amsacrine, carmustine, cyclophosphamide, cytarabine, etoposide, lovastatin, melphalan, topetecan, oxalaplatin, chlorambucil, methtrexate,
  • therapeutic antibodies include antibodies directed against the HER2 protein, such as trastuzumab; antibodies directed against growth factors or growth factor receptors, such as bevacizumab, which targets vascular endothelial growth factor, and OSI-774, which targets epidermal growth factor; antibodies targeting integrin receptors, such as Vitaxin (also known as MEDI-522), and the like.
  • Classes of anticancer agents suitable for use in compositions and methods of the present invention include, but are not limited to: 1) alkaloids, including, microtubule inhibitors (e.g., Vincristine, Vinblastine, and Vindesine, etc.), microtubule stabilizers (e.g., Paclitaxel [Taxol], and Docetaxel, Taxotere, etc.), and chromatin function inhibitors, including, topoisomerase inhibitors, such as, epipodophyllotoxins (e.g., Etoposide [VP-16], and Teniposide [VM-26], etc.), and agents that target topoisomerase I (e.g., Camptothecin and Isirinotecan [CPT-11], etc.); 2) covalent DNA-binding agents [alkylating agents], including, nitrogen mustards (e.g., Mechlorethamine, Chlorambucil, Cyclophosphamide, Ifosphamide, and Busulfan [Myler
  • the pharmaceutical composition and method of the present invention may further comprise other therapeutically active compounds as noted herein which are usually applied in the treatment of the above mentioned pathological conditions.
  • other therapeutic agents include the following: cyclosporins (e.g., cyclosporin A), CTLA4-Ig, antibodies such as ICAM-3, anti-IL-2 receptor (Anti-Tac), anti-CD45RB, anti-CD2, anti-CD3 (OKT-3), anti-CD4, anti-CD80, anti-CD86, agents blocking the interaction between CD40 and gp39, such as antibodies specific for CD40 and/or gp39 (i.e., CD154), fusion proteins constructed from CD40 and gp39 (CD40Ig and CD8gp39), inhibitors, such as nuclear translocation inhibitors, of NF-kappa B function, such as deoxyspergualin (DSG), cholesterol biosynthesis inhibitors such as HMG CoA reductase inhibitors (lovastatin and simvastatin), non-steroidal antiinflammatory drugs (
  • cytokine encompasses chemokines, interleukins, lymphokines, monokines, colony stimulating factors, and receptor associated proteins, and functional fragments thereof.
  • functional fragment refers to a polypeptide or peptide which possesses biological function or activity that is identified through a defined functional assay.
  • the cytokines include endothelial monocyte activating polypeptide II (EMAP-II), granulocyte-macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF), macrophage-CSF (M-CSF), IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-1 2, and IL-1 3, interferons, and the like and which is associated with a particular biologic, morphologic, or phenotypic alteration in a cell or cell mechanism.
  • EMP-II endothelial monocyte activating polypeptide II
  • GM-CSF granulocyte-macrophage-CSF
  • G-CSF granulocyte-CSF
  • M-CSF macrophage-CSF
  • antibody as used in this invention is meant to include intact molecules of polyclonal or monoclonal antibodies, as well as fragments thereof, such as Fab and F(ab′) 2 , Fv and SCA fragments which are capable of binding an epitopic determinant.
  • an appropriate dosage level will generally be about 0.01 to 500 mg per kg patient body weight per day which can be administered in single or multiple doses.
  • the dosage level will be about 0.01 to about 250 mg/kg per day; more preferably about 0.5 to about 100 mg/kg per day.
  • a suitable dosage level may be about 0.01 to 250 mg/kg per day, about 0.05 to 100 mg/kg per day, or about 0.1 to 50 mg/kg per day or 1.0 mg/kg per day. Within this range the dosage may be 0.05 to 0.5, 0.5 to 5 or 5 to 50 mg/kg per day for example.
  • the compositions are preferably provided in the form of tablets containing 1.0 to 1000 milligrams of the active ingredient, particularly 1.0, 5.0, 10.0, 15.0. 20.0, 25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 600.0, 750.0, 800.0, 900.0, and 1000.0 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated.
  • the compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day. There may be a period of no administration followed by another regimen of administration.
  • administration of the compound is closely associated with the schedule of IL-2 administration. For example, administration can be prior to, simultaneously with or immediately following IL-2 administration
  • a compound that is a vasculostatic agent alone or in combination with an effective amount of therapeutic antibody (or therapeutic fragment thereof), chemotherapeutic or immunotoxic agent is an effective therapeutic regimen for treatment of tumors, for example.
  • doxorubicin, docetaxel, or taxol are described in the present application as illustrative examples of chemotherapeutic agents, it should be understood that the invention includes combination therapy including a compound of the invention, including but not limited to vasculostatic agents, such as tyrosine, serine or threonine kinase inhibitors, for example, Src-family inhibitors, and any chemotherapeutic agent or therapeutic antibody.
  • vasculostatic agents in combination with chemotherapeutic agents or therapeutic antibodies are effective in blocking vascular permeability and/or vascular leakage and/or angiogenesis.
  • the invention provides a composition containing a therapeutically effective amount of a chemotherapeutic agent and a vasculostatic agent in a pharmaceutically acceptable carrier.
  • the invention provides a method for reducing the tumor burden in a subject, comprising administering to a subject in need thereof an effective amount of chemotherapeutic agent in combination with a compound that is a vasculostatic agent.
  • the method includes use of at least one of the invention compounds e.g., as set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof, with the chemotherapeutic agent.
  • the compound is set forth in FIG. 1 . It should be understood that the tumor burden in a subject can be reduced prior to treatment with a compound of the invention through surgical resection, chemotherapy, radiation treatment or other methods known to those of skill in the art.
  • the compounds according to this invention may contain one or more asymmetric carbon atoms and thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers.
  • stereoisomer refers to a chemical compounds which differ from each other only in the way that the different groups in the molecules are oriented in space. Stereoisomers have the same molecular weight, chemical composition, and constitution as another, but with the atoms grouped differently. That is, certain identical chemical moieties are at different orientations in space and, therefore, when pure, have the ability to rotate the plane of polarized light. However, some pure stereoisomers may have an optical rotation that is so slight that it is undetectable with present instrumentation. All such isomeric forms of these compounds are included in the present invention.
  • Each stereogenic carbon may be of R or S configuration.
  • the specific compounds exemplified in this application may be depicted in a particular configuration, compounds having either the opposite stereochemistry at any given chiral center or mixtures thereof are also envisioned.
  • chiral centers are found in the derivatives of this invention, it is to be understood that this invention encompasses all possible stereoisomers.
  • optical pure compound or “optically pure isomer” refers to a single stereoisomer of a chiral compound regardless of the configuration of the compound.
  • kinases include Src-family tyrosine kinases and their associated disorders, which result from aberrant tyrosine kinase activity, and/or which are alleviated by the inhibition of one or more of the enzymes within the Src family.
  • Src inhibitors are of value in the treatment of cancer, as Src inhibition blocks tumor cell migration and survival.
  • Many compounds of the invention are also broad spectrum kinase inhibitors and inhibit other kinases in addition to Src-family tyrosine kinases or non-Src family kinases.
  • Cancers that may be treated by compounds of the invention alone or as a combination therapy of the invention include but are not limited to a carcinoma or a sarcoma, including one or more specific types of cancer, e.g., an alimentary/gastrointestinal tract cancer, a liver cancer, a skin cancer, a breast cancer, an ovarian cancer, a prostate cancer, a lymphoma, a leukemia, a kidney cancer, a lung cancer, a muscle cancer, a bone cancer, bladder cancer or a brain cancer.
  • a carcinoma or a sarcoma including one or more specific types of cancer, e.g., an alimentary/gastrointestinal tract cancer, a liver cancer, a skin cancer, a breast cancer, an ovarian cancer, a prostate cancer, a lymphoma, a leukemia, a kidney cancer, a lung cancer, a muscle cancer, a bone cancer, bladder cancer or a brain cancer.
  • the present invention also provides articles of manufacture comprising packaging material and a pharmaceutical composition contained within said packaging material, wherein said packaging material comprises a label which indicates that said pharmaceutical composition can be used for treatment of disorders and wherein said pharmaceutical composition comprises a compound according to the present invention.
  • the invention provides a pharmaceutical composition including both a chemotherapeutic agent, immunotoxin or therapeutic antibody and a compound of the invention (e.g, as shown in FIG. 1 ), wherein the compound is present in a concentration effective to reduce tumor burden, for example.
  • the invention provides a pharmaceutical composition including a compound of the invention, wherein the compound is present in a concentration effective to reduce vascular permeability, for example.
  • the concentration can be determined by one of skill in the art according to standard treatment regimen or as determined by an in vivo animal assay, for example.
  • compositions employed as a component of invention articles of manufacture can be used in the form of a solid, a solution, an emulsion, a dispersion, a micelle, a liposome, and the like, wherein the resulting composition contains one or more of the compounds described above as an active ingredient, in admixture with an organic or inorganic carrier or excipient suitable for enteral or parenteral applications.
  • Compounds employed for use as a component of invention articles of manufacture may be combined, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use.
  • the carriers which can be used include glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, medium chain length triglycerides, dextrans, and other carriers suitable for use in manufacturing preparations, in solid, semisolid, or liquid form.
  • auxiliary, stabilizing, thickening and coloring agents and perfumes may be used.
  • the present invention also provides pharmaceutical compositions including at least one invention compound in an amount effective for treating a tumor, or cancer, alone or in combination with a chemotherapeutic agent, immunotoxin, immunomodulator or therapeutic antibody and a pharmaceutically acceptable vehicle or diluent.
  • the present invention provides pharmaceutical compositions including at least one invention compound capable of treating a disorder associated with vasculostasis in an amount effective therefore.
  • compositions of the present invention may contain other therapeutic agents as described herein and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (for example, excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.
  • administration of the vasculostatic agent can be prior to, simultaneously with, or after administration of an invention compound or other agent.
  • the compounds of the invention are co-administered at the same time as a chemotherapeutic agent.
  • chemotherapeutic agents include antimetabolites, such as methotrexate, DNA cross-linking agents, such as cisplatin/carboplatin; alkylating agents, such as canbusil; topoisomerase I inhibitors such as dactinomicin; microtubule inhibitors such as taxol (paclitaxol), and the like.
  • chemotherapeutic agents include, for example, a vinca alkaloid, mitomycin-type antibiotic, bleomycin-type antibiotic, antifolate, amsacrine, carmustine, cyclophosphamide, cytarabine, etoposide, lovastatin, melphalan, topetecan, oxalaplatin, chlorambucil, methtrexate, lomustine, thioguanine, asparaginase, vinblastine, vindesine, tamoxifen, mechlorethamine.
  • a vinca alkaloid mitomycin-type antibiotic, bleomycin-type antibiotic, antifolate, amsacrine, carmustine, cyclophosphamide, cytarabine, etoposide, lovastatin, melphalan, topetecan, oxalaplatin, chlorambucil, methtrexate, lomustine, thioguanine, aspara
  • colchicine demecoline, etoposide, taxane, anthracycline antibiotic, doxorubicin, daunorubicin, carminomycin, epirubicin, idarubicin, mithoxanthrone, 4-demethoxy-daunomycin, 11-deoxydaunorubicin, 1 3-deoxydaunorubicin, adriamycin-14-benzoate, adriamycin-14-octanoate or adriamycin-14-naphthaleneacetate.
  • vasculostatic agents such as inhibitors of vascular permeability and/or vascular leakage and/or angiogenesis.
  • several illustrative compounds employed in the methods of the present invention are inhibitors of kinases and therefore are useful in treating a wide variety of disorders resulting from aberrant kinase activity.
  • Kinase-associated disorders are those disorders which result from aberrant kinase activity, and/or which are alleviated by the inhibition of one or more of the kinases.
  • a Water LC/MS system is used in identity and purity analysis. This system includes a 2795 separation module, a 996 photodidode array detector and a ZQ2000 mass spectrometer. A Zorbax SB column (150 ⁇ 4.6mm 3.5 ⁇ , Agilent Technologies) is used for the LC. Column temperature is 40° C.
  • the mass spectrometer is equipped with an electrospray probe. Source temperature is 120° C. All of the compounds are identified using the positive mode with mass scan range from 100 to 800.
  • the solvent was removed and the residue dissolved in methanol:ethylacetate (5-10%).
  • the solution was extracted with 1 M HCl as well as saturated sodium bicarbonate solution.
  • the aqueous phases were re-extracted with EtOAc, respectively.
  • the combined organic phases were dried over magnesium sulfate.
  • the product was purified by column chromatography (silica, typically using EtOAc-hexanes as mobile phase) and/or crystallization from different solvents including methanol and acetonitrile.
  • the product was prepared from N-[2-(1H-Indol-2-yl)-phenyl]-2-(2-methoxy-phenyl)-acetamide. Cleavage of the methylether was accomplished using 1.8 eq of BBr 3 (1M solution in dichloromethane) at ⁇ 78° C. to room temperature (23° C.) and subsequent hydrolysis (32% yield).
  • the pyridine or pyrimidine is made into the free base with sodium carbonate, sodium bicarbonate or sodium hydroxide using solid or solution by using the correct amount in equivalents to neutralize the acid or by adjusting the pH to neutral to slightly basic (ca. 7-9).
  • the benzil or glyoxal is added and the solution is heated for 1 h-5 h.
  • the free base formed precipitates out of solution and is washed successively with water, methanol and then ether.
  • the solid is vacuum dessicator dried.
  • This reaction was carried out by method A by using 23.5 mg of the pyrimidine and 22.5 mg of pyridyl. The reaction mixture was heated for 1 h. The product was precipitated into 5 mL of 1:1 EtOAc-ether, filtered and washed with 50 mL of ether. M+H calcd and found 400.
  • the crude 3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl] phenol may be dissolved in methanol, and an aqueous solution of 2.0 equiv.-2.2 equiv. of sodium bicarbonate (or excess sodium bicarbonate) may be added to neutralize the acid making sure the pH is between 6 and 8 to ensure free-base.
  • the free-base precipitates out of the methanol-water mixture within a few seconds. In case, precipitation does not occur, excess methanol ensures precipitation.
  • the yellowish solid may be isolated and washed with acetonitrile-water or isopropanol-water mixtures and then with methanol-ether, and then ether ( ⁇ 3).
  • the product is dried and stored as the free base, 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine.
  • the free base is protonated in MeOH by adding a conc. aqueous sulfuric acid (1.0 equiv) to a slurry of the compound in MeOH.
  • the homogeneous protonated product is precipitated out by adding ether to the methanol.
  • the salt is made by making a HBr containing solution of methanol using methanol and acetyl bromide (10 equiv-12 equiv) at ⁇ 78° C., and adding the free base to this solution so that the resulting solution concentration is below 0.4 M.
  • the light yellow solution is stirred for ca. 30 min-60 min, concentrated by rotary evaporation to a yellow solid and then washed with ether, or with ether-hexanes, and dried in a vacuum dessicator
  • a 5-mL reaction vial with a stirring vane and a teflon cap was charged with 3,3′,4,4′-tetrahydroxybenzil (Midori Kagaku Co Ltd; 548 mg; 2.00 mmol), 4,5,6-triaminopyrimidine sulfate and 3.00 mL of m-cresol.
  • the heterogeneous mixture was heated, it first goes orange while dissolving at ca. 150° C. and then on heating at 200° C.-220° C. for ca. 2 h goes to a dark blood-red solution.
  • This oily slurry was partitioned between sodium bicarbonate (satd. aq) and dichloromethane (DCM).
  • the aqueous layer was rewashed with 2 ⁇ 5 mL DCM, followed by extraction of the combined organics with 10 mL of 1 M HCl.
  • the DCM layer was dried (anhyd. MgSO 4 ), filtered and concentrated by rotary evaporation to yield the desired material as a light yellow slightly viscous oil.
  • the compound does not require any purification but is easily purified by column chromatography using DCM-EtOAc (1:1).
  • the chromatographically purified material is a yellow oil (911 mg; 89%).
  • the compound was made by the method B in the pteridine synthesis by using the pyrimidine and the phosphate ester of the 4,4′-dihydroxybenzil.
  • the above diethylester compound was deprotected in acetonitrile using TMSBr.
  • the reaction was completed by adding water and then concentration by rotary evaporation and drying of the solid.
  • This compound was made in a similar fashion to the one described above.
  • the benzil was modified using an acid chloride with DMAP as base in DCM.
  • the modified Benzil was then condensed with the pyrimidine to yield the product below.
  • This compound is made by stirring a 1:1 ratio of the appropriate glyoxal with the free base of the pyrimidine in water at a pH of 7 for ca. 3 h.
  • the product is isolated by filtering the precipitated free base, washing sequentially with water (2 ⁇ 40 mL), methanol (1 ⁇ 40 mL) and ether (2 ⁇ 40 mL) and drying in a vacuum dessicator.
  • This compound is made by stirring a 1:1 ratio of the appropriate glyoxal with the free base of the pyrimidine in water at a pH of 7 for ca. 3 h.
  • the product is isolated by filtering the precipitated free base, washing sequentially with water (2 ⁇ 40 mL), methanol (1 ⁇ 40 mL) and ether (2 ⁇ 40 mL) and drying in a vacuum dessicator.
  • This compound is made by stirring a 1:1 ratio of the appropriate glyoxal with the free base of the pyrimidine in water at a pH of 7 for ca. 3 h.
  • the product is isolated by filtering the precipitated free base, washing sequentially with water (2 ⁇ 40 mL), methanol (1 ⁇ 40 mL) and ether (2 ⁇ 40 mL) and drying in a vacuum dessicator.
  • This compound is made by stirring a 1:1 ratio of the appropriate glyoxal with the free base of the pyrimidine in water at a pH of 7 for ca. 3 h.
  • the product is isolated by filtering the precipitated free base, washing sequentially with water (2 ⁇ 40 mL), methanol (1 ⁇ 40 mL) and ether (2 ⁇ 40 mL) and drying in a vacuum dessicator.
  • This compound was prepared by heating ammonium acetate with the appropriate pyrazine in acetic acid for an hour.
  • the product is isolated by concentrating the solution by rotary evaporation and washing with ether.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 10 mg 7-Benzofuran-2-yl-benzo[1,2,4]triazin-3-ylamine was obtained.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 10 mg 7-Naphthalen-1-yl-benzo[1,2,4]triazin-3-ylamine was obtained.
  • the crude product was poured into 50 ml saturated NaHCO 3 solution, and CH 2 Cl 2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 15 mg 3-(3-Amino-benzo[1,2,4]triazin-7-yl)-phenol was obtained.
  • Triphenylphosphine (1 mg, 3.8 umol) and tris(dibenzylideneacetone)dipalladium (0) (0.7 mg, 0.78 umol) were added to the mixture which refluxed overnight.
  • the crude product was poured into 5 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 3.4 mg product was obtained.
  • a 3-mL reaction flask equipped with a stirring vane and a teflon cap was charged with the bis(benzil) species (122 mg; 0.324 mmol) and 5,6-diamino-2,4-dihydroxy pyrimidine sulfate (156 mg; 0.649 mmol; 2.00 equiv).
  • the vial was heated to ca. 210° C. for 2 h and then the contents were poured into 30 mL of ether, the resulting solid was sonicated vortexed and centrifuged.
  • FIG. 2 shows the synergistic results of co-drug therapy utilitizing 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt, (compound A—in this example formulated in 50% PEG400:50% water) illustrated in FIG. 1 , with doxorubicin (in this example formulated in 50% PEG400:50% water).
  • compound A in this example formulated in 50% PEG400:50% water
  • doxorubicin in this example formulated in 50% PEG400:50% water
  • FIG. 3 shows the results of using 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt (compound A—in this example formulated in 50% PEG400:50% water), and 6,7-diphenyl-pteridine-2,4-diamine (compound B—in this example formulated in 50% PEG400:50% water) with doxorubicin to treat colon carcinoma.
  • Syngeneic CT-26 Colon carcinoma cells were injected I.V. in order to establish lung metastases in Balb/C mice. Beginning 10 days after cells were injected, indicated test agents were given I.P. every 3 days for 3 cycles. Animals were sacrificed at day 20, lungs were collected, and weighed.
  • sulfate salt compound A
  • 6,7-diphenyl-pteridine-2,4-diamine compound B
  • compound B typically reduced tumor burden by 35% as a stand alone agent or by greater than 65% in combination with doxorubicin.
  • FIG. 4 illustrates the effects of the compounds of the present invention for co-drug therapy with docetaxel (Taxotere®—in this example formulated in 12.5% Cremaphore: 12.5% Ethanol:75% normal saline) as described herein.
  • 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt (compound A - in this example formulated in 50% PEG400:50% water) and 6,7-diphenyl-pteridine-2,4-diamine (compound B—in this example formulated in 50% PEG400:50% water) from FIG. 1 are shown in FIG. 4 .
  • 6,7-Bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt (compound A) typically reduced tumor burden by 25% as a stand alone agent or by greater than 80% in combination with docetaxel.
  • 6,7-diphenyl-pteridine-2,4-diamine (compound B) typically reduced tumor burden by 20% as a stand alone agent or by greater than 70% in combination with doxorubicin.
  • FIG. 5 shows a photo of representative lung samples from the experiment shown in FIG. 3 with 6,7-diphenyl-pteridine-2,4-diamine (compound B—in this example formulated in 50% PEG400:50% water) and doxorubicin (in this example formulated in 50% PEG400:50% water).
  • compound B in this example formulated in 50% PEG400:50% water
  • doxorubicin in this example formulated in 50% PEG400:50% water
  • FIG. 6 illustrates the effect of compounds administered in conjunction with docetaxel (Taxotere®—in this example formulated in 12.5% Cremaphore: 12.5% Ethanol:75% normal saline ) in the in vivo model of metastatic colon cancer (CT-26 adenocarcinoma) described for FIG. 4 .
  • docetaxel Taxotere®—in this example formulated in 12.5%
  • CT-26 adenocarcinoma metastatic colon cancer
  • 2,3-Bis(3,4-dihydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride salt typically reduced tumor burden by 65% as a stand alone agent or by greater than 85% in combination with docetaxel.
  • 2,3-bis(4-hydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride salt inhibited tumor burden alone or with co-drug therapy using docetaxel (Taxotere®—in this example formulated in 12.5% Cremaphore: 12.5% Ethanol:75% normal saline) as described herein.
  • Syngeneic CT-26 Colon carcinoma cells were injected I.V. in order to establish lung metastases in Balb/C mice. Beginning 10 days after cells were injected, indicated test agents were given I.P. every 3 days for 3 cycles. Animals were sacrificed at day 20, lungs were collected, and weighed.
  • Net tumor burden is the weight of tumor-bearing lungs minus the average weight of normal control lungs.
  • N 5/group, p ⁇ 0.02.
  • 2,3-Bis(4-hydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride salt in 50% PEG400:50% water) typically reduced tumor burden by 63% as a stand alone agent or by greater than 78% in combination with docetaxel.
  • IL-2 is used clinically to treat metastatic melanoma and renal cell carcinoma and the dose-limiting toxicity for IL-2 is Vascular Leak Syndrome (VLS).
  • VLS Vascular Leak Syndrome
  • Two representative examples from distinct chemotype series were selected for initial study in the reduction of IL-2-induced VLS (see FIG. 1 compounds). The compounds were pre-screened for in vivo reduction of vascular permeability and there was no observable gross toxicity as single agents at 20-fold higher doses.
  • FIGS. 7-8 The results of the studies shown in FIGS. 7-8 indicate that representative compounds of the invention show inhibition of vascular leak in vivo. There were no effects on T cell proliferation in prescribed dose range (see FIGS. 10-11 ) and no effects on anti-tumor activity of IL-2 (melanoma model; see FIG. 9 ). The following experiments exemplify the results for co-drug therapy.
  • N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid (compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water) and 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced VLS in the heart by >100%.
  • the results are shown in FIG. 7 .
  • N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid (compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water) and 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced VLS in the spleen by >100%.
  • the results are shown in FIG. 8 .
  • N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid (compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water) and 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water) typically had no significant impact on the anti-tumor activity of IL-2.
  • Invention compound concentrations are listed in parenthesis in mg/kg while IL-2 concentration is given in parenthesis kilounits. The results are shown in FIG. 9 .
  • IL-2 dependent human T cell line CTLL2
  • N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water
  • compound D typically had no significant impact on IL-2 induced T-cell proliferation.
  • the results are shown in FIG. 10 .
  • representative examples from two distinct chemotype series in the present application indicate that, for example, N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid (compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water) and 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water), are effective in reducing VLS by 80-100% in vivo.
  • compound D in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water
  • 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water
  • ARDS Acute Respiratory Distress Syndrome
  • Patients with ARDS experience severe shortness of breath and often require mechanical ventilation (life support) because of respiratory failure.
  • ARDS has also been called some of the following terms: Non-cardiogenic pulmonary edema; Increased-permeability pulmonary edema; Stiff lung; Shock lung; Adult respiratory distress syndrome; Acute respiratory distress syndrome.
  • Two representative compounds of the invention were selected for initial study in the reduction of ARDS.
  • NIH Swiss mice were given an intraperitoneal injection of 1.5 mg/kg Oleic Acid of (in this example formulated in saline) and/or invention compounds. Four hours subsequent to injection animals were sacrificed followed by collection, blotting and weighing (wet weight) of the lungs. Lungs were then dried at 80° C. for 24 hours and weighed (dry weight).
  • the results are shown in FIG. 12 .
  • a rodent model of vascular edema was used to screen compounds for their ability to inhibit VEGF-induced edema.
  • the table below presents several examples drawn from these studies, in which compounds cited in this application successfully inhibited edema formation.
  • Dose Score Treatment (mg/kg BW) (scale of 0-12) Vehicle 12 4- ⁇ [(2,4-Diamino-pteridin-6-ylmethyl)-amino]- 5 mg/kg 4 methyl ⁇ -benzene-1,2-diol 4-(2,4-Diamino-pteridin-6-yl)-phenol (sulfate 5 mg/kg 2 salt) 2-[2-(1H-Indol-2-yl)-phenyl]-isoindole-1,3- 1.5 mg/kg 3 dione 1.5 mg/kg 6,7-Bis-(3-hydroxy-phenyl)-pteridine-2,4-diol 1.5 mg/kg 3 3-(4-Hydroxy-phenyl)-N-[2-(1H-indol-2-yl)- 1.5 mg/kg 2 phenyl]-propionamide 2-(4-Hydroxy-phenyl)-N-[2-(1H-indol- 1.5 mg/kg
  • test agents to influence edema induced by agonists other than VEGF was also tested.
  • Compounds cited in this application inhibited edema formation induced using histamine as an agonist, for example, as shown below.
  • Score with Score with VEGF as histamine as Dose agonist agonist Treatment (mg/kg BW) (scale of 0-12) (scale of 0-12)
  • Vehicle 12 6,7-bis(4- 1.5 mg/kg 4 3 hydroxyphenyl)- pteridin-4-ylamine sulfate salt 6,7-Diphenyl- 1.5 mg/kg 3 4 pteridin-4-ol 3,4,5-Trihydroxy- 1.5 mg/kg 4 7 N-[2-(1H-indol-2- yl)-phenyl]- benzamide 3,4,5-Trihydroxy- 1.5 mg/kg 5 7 N-(1H-indol-2-yl)- benzamide
  • the ability of test agent to influence vascular edema was tested
  • a rodent model of acute myocardial infarct in which the proximal left anterior descending coronary artery (LAD) is occluded for 60 min followed by reperfusion, was used to determine whether test agents reduced infarct size at 24 hours.
  • LAD left anterior descending coronary artery
  • test agents reduced infarct size at 24 hours.
  • Cerebral strokes were created in mice by permanent ligation of the middle cerebral artery using a cauterizing tool, followed 60 min later by IV injection of either vehicle alone (50% PEG400 in water) or test agents (at 1 mg/kg BW). Twenty four hours later, brains were sectioned and stained using triphenyltetrazolium chloride to delineate viable from infarcted tissue. Photographic images were then analyzed using morphometric software to calculate infarct area.
  • ATP was determined using a luciferase-based assay (KinaseGlo, Promega Corp.) as a measure of kinase activity. Data from four wells were then averaged and used to determine IC 50 values for the test compounds (Prism software package, GraphPad Software, San Diego Calif.). ND: not determined.
  • a murine model of angiogenesis was used to screen compounds for their capacity to inhibit angiogenesis.
  • the graph presents representative examples of compounds cited in this application which successfully inhibited angiogenesis in vivo.
  • compound A is 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt.
  • Athymic WeHi (nu/nu) mice were first injected with 400 ⁇ ls of an ice-cold tumor-derived extracellular matrix substrate, matrigel (Becton-Dickinson) infused with 400 ng/ml of bFGF or VEGF (R&D Systems) which rapidly solidifies into a subdermal plug at body temperature.
  • mice were subsequently injected intaperitoneally with 10 mg/kg of the indicated compounds bid for four days.
  • mice were injected intravenously with 0.5 mgs of a FITC-conjugated endothelial specific lectin (Banderiea Simplifica, Vector Laboratories). Twenty minutes after injection of the lectin, mice were euthanized, matrigel plugs were then extracted, solublized in PBS with mechanical grinding and the fluorescent content of individual plugs was quantified. Values shown are normalized to control values from groups of 5.

Abstract

Compositions and methods and are provided for treating disorders associated with compromised vasculostasis. Invention methods and compositions are useful for treating a variety of disorders including for example, stroke, myocardial infarction, cancer, ischemia/reperfusion injury, autoimmune diseases such as rheumatoid arthritis, eye diseases such as retinopathies or macular degeneration or other vitreoretinal diseases, inflammatory diseases, vascular leakage syndrome, edema, transplant rejection, adult/acute respiratory distress syndrome (ARDS), and the like.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation application of U.S. application Ser. No. 10/679,209 filed Oct. 2, 2003, now pending; which claims the benefit under 35 USC §119(e) of U.S. Application Ser. Nos. 60/479,295 filed Jun. 17, 2003, 60/466,983 filed Apr. 30, 2003, 60/463,818 filed Apr. 17, 2003, 60/443,752 filed Jan. 29, 2003, 60/440,234 filed Jan. 14, 2003 and 60/415,981 filed Oct. 3, 2002. This disclosure each of the prior applications is considered part of and is incorporated by reference in the disclosure of this application.
  • FIELD OF THE INVENTION
  • The present invention relates generally to treating disorders associated with vascular functioning, and more specifically to compounds and methods of treating such disorders.
  • BACKGROUND OF THE INVENTION
  • The vascular system is a prime mediator of homeostasis, playing key roles in the maintainence of normal physiologic functioning. For example, the vascular endothelium's barrier function serves to regulate the entry of fluid, electrolytes, and proteins into tissues, blood vessel tone contributes to the regulation of tissue perfusion, and the vascular endothelium's low mitotic index contributes to the regulation of tissue growth. The term “vasculostasis” refers to the maintenance of this homeostatic vascular functioning, and “vasculostatic agents” as agents that seek to address conditions in which vasculostasis is compromised by preventing the loss of or restoring or maintaining vasculostasis.
  • Compromised vasculostasis has serious pathologic consequences. For example, if vascular permeability increases beyond manageable levels, the resulting edema may negatively impact tissue and organ function and ultimately survival. Examples where excessive vascular permeability leads to particularly deleterious effects include pulmonary edema, cerebral edema, and cardiac edema (Ritchie A C: Boyd's Textbook of Pathology. London Lea and Febiger, 1990). In general, however, edema in any tissue or organ leads to some loss of normal function, and therefore to the risk of morbidity or even mortality. Similarly, excessive endothelial proliferation may damage tissues (such as the retina in proliferative retinopathies) or fuel unwanted tissue growth (such as with tumor growth).
  • Many pathologic and disease situations are marked by multiple disregulations in vasculostasis. Angiogenesis, for example, encompasses both enhanced vascular proliferation and permeability, as newly-formed blood vessels do not generally exhibit the same level of vascular barrier function as well-established or mature vessels. Examples of such hyper-permeable vasculature can be found in cancers, vasculoproliferative diseases, retinal diseases, and rheumatoid arthritis. The connection between angiogenesis and hyperpermeability may partly result from the dual action of factors such as vascular endothelial growth factor (VEGF), which induces both endothelial proliferation and vascular permeability. This connection may also reflect the immature nature of angiogenic vessels, in which the intracellular and/or extracellular structures or mechanisms that establish normal vascular barrier function have not yet fully formed. It may also be the case that angiogenesis and vascular permeability are linked by a co-dependence on common cellular mechanisms, for example in the case of cellular junction disassembly which would serve to enhance both paracellular permeability and cellular migration (both being components of the angiogenic process). A comprehensive treatment for many diseases, then, might involve vasculostatic agents that act upon one or more components of vasculostasis disregulation (based, for example, upon their level of action along intracellular signaling cascades). One such example would be a single therapeutic agent that impacts both angiogenesis and vascular permeability.
  • One way of impacting vasculostasis is by influencing endothelial cell responses to environmental signals (such as hypoxia) or vasoactive agents. For example, the vascular endothelium regulates fluid balance by adjusting both transcellular permeability (movement of fluid and proteins across endothelial cells via a network of vesicles) and paracellular permeability (movement of fluid and proteins between inter-endothelial cell junctions). Edema is most commonly thought to result from a breakdown in the inter-endothelial cell barrier, leading to increased paracellular permeability at the capillary and postcapillary venule level. Mechanistically, paracellular vascular leakage results from a breakdown in inter-cellular junctional integrity, via the dissolution of tight junctions and coupled to changes in cytoskeletal support elements that maintain normal cell-to-cell apposition. Several vasoactive mediators can trigger dissolution of these cellular elements, including histamine, bradykinin, thrombin, nitric oxide, eicosanoids (e.g., thromboxanes and leukotrienes), platelet activating factor (PAF), tumor necrosis factor (TNF), interleukins (e.g., IL-1 and IL-6), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF). Using VEGF as an example, the sequence of events that lead to vascular leakage is generally believed to be as follows: reduced blood flow (e.g., as a result of thrombus formation) leads to tissue hypoxia, which leads to the upregulation of VEGF production, which leads to induction of vascular leakage. This VEGF effect is at the level of the endothelial cell, in other words VEGF binding to specific VEGF receptors expressed on endothelial cells leads to a cascade of intracellular events culminating in the loss of normal intercellular barrier function. Therefore, by affecting these intracellular events, vasulostatic agents could counter the negative effects of environmental signals such as hypoxia or vasoactive mediators such as VEGF, and thereby work to restore vasculostasis.
  • The cascade of events that leads to the loss of endothelial barrier function is complex and incompletely understood. Data support a role for kinases as at least one aspect of this process. For example, VEGF-mediated edema has been shown to involve intracellular signaling by Src family kinases, protein kinase C, and Akt kinase. Kinases are believed to mediate the phosphorylation of junctional proteins such as beta-catenin and vascular endothelial (VE)-cadherin, leading to the dissolution of adherens junctions and the dissociation of cadherin-catenin complexes from their cytoskeletal anchors. In addition, proteins which regulate the intercellular contractile machinery such as myosin light chain kinase (MLCK) and myosin light chain (MLC) are also activated, resulting in cellular contraction, and therefore an opening of intercellular junctions.
  • Maintaining or restoring vasculostasis should be beneficial to overall patient outcome in situations such as inflammation, allergic diseases, cancer, cerebral stroke, myocardial infarction, pulmonary and cardiac insufficiency, renal failure, and retinopathies, to name a few. In addition, edema formation is a recognized but unwanted consequence of many therapeutic interventions, such as immunotherapy, cancer chemotherapy and radiation therapy, therefore vasculostatic agents that inhibit vascular permeability could be used in a co-therapy approach to reduce the deleterious side-effects of such therapies. Furthermore, in many cases edema formation causes uneven delivery of therapeutic agents to diseased tissues, therefore vasculostatic agents that inhibit vascular permeability could be used in a co-therapy approach to enhance delivery and efficacy of such therapies. Finally, as edema is a general consequence of tissue hypoxia, it can also be concluded that inhibition of vascular leakage represents a potential approach to the treatment of tissue hypoxia. For example, interruption of blood flow by pathologic conditions (such as thrombus formation) or medical intervention (such as cardioplegia, organ transplantation, and angioplasty) or physical trauma, could be treated both acutely and prophylactically using vasculostatic agents that reduce vascular permeability.
  • SUMMARY OF THE INVENTION
  • The present invention is based on the discovery that certain chemical compounds are effective vasculostatic agents. Compounds of the invention are effective for the treatment of such indications as myocardial infarction (MI), stroke, ischemia or reperfusion related tissue injury and cancer, for example. Thus, compositions and methods are provided for treating disorders associated with compromised vasculostasis, examples of which are edema resulting from excess vascular permeability or vascular leakage and angiogenesis associated with retinal diseases and cancer. Some of the compounds described herein are effective kinase inhibitors, including but not limited to tyrosine, serine or threonine kinase inhibitors, for example, Src-family inhibitors.
  • Such vasculostatic agents, alone or in combination with other agents, are effective in blocking vascular permeability or leakage or angiogenesis. In one embodiment, the invention provides a composition containing a therapeutically effective amount of a compound of the invention in a pharmaceutically acceptable carrier.
  • In one embodiment, the invention provides a method for treating a disorder associated with compromised vasculostasis in a subject, comprising administering to a subject in need thereof an effective amount of a compound that is a vasculostatic agent. In an illustrative example, the method includes use of at least one of the compounds as set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof. In one aspect, the compound is set forth in FIG. 1.
  • In one embodiment, compounds are provided having the structure (I):
    Figure US20070208019A1-20070906-C00001
  • wherein:
      • each R0 is independently —H, —COOH, —OR′, —SO3H, wherein R′ is —H or lower alkyl, or when x=2, each R0 is taken together to form a 1,3-dioxolyl ring, or
      • each R0 is independently alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, halogen, amino, amido, nitro, or thioalkyl,
      • R1 and R2 are each independently hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, or substituted arylalkynyl,
      • G is NH, O, S, or (CR″2)p, wherein R″ is —H, lower alkyl, or acetamido, and wherein p is 0-3,
      • Ar is aryl or heteroaryl, and
      • x and y are each independently 1-4.
  • In another embodiment, compounds are provided having the structure (II):
    Figure US20070208019A1-20070906-C00002
  • wherein R0, R1, R2, x, and y are as defined above.
  • In yet another embodiment, compounds are provided having the structure (III):
    Figure US20070208019A1-20070906-C00003
  • wherein:
      • Z1—Z6 are each independently C, —C═O, N, or NRa, wherein Ra is —H, alkyl, or substituted alkyl, wherein said substituents are halogen, hydroxy, oxo, or amino,
      • each X is independently halogen, —ORb, —NRb 2, or —SRb, wherein Rb is —H lower alkyl, —(CH2)2NH(CH2CH3), —(CH2)3morpholyn-1-yl, —(CH2)3(N-methylpiperazinyn-1-yl), aryl, heteroaryl, —(NH—NH—Rc), —(N═N—NH—Rc), wherein Rc is H or lower alkyl,
      • each Y is independently —ORd, —NRd 2, —SRd, or —OPO3H2 wherein Rd is H, lower alkyl, aryl, heteroaryl, —(CH2)2NH(CH2CH3), —(CH2)3morpholyn-1-yl, or —(CH2)3(N-methylpiperazinyn-1-yl); or
      • each Y is independently alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, or halogen, wherein said substituents are selected from halogen, —ORe, —NRe 2, —SRe, —P(O)(OH)2, wherein Re is —H, lower alkyl, aryl, or heteroaryl; or each Y is independently CH2glycinyl, CH2NHethoxy, CH2NHCH2alkyl, CH2NHCH2t-Bu, CH2NHCH2aryl, CH2NHCH2substituted aryl, CH2NHCH2heteroaryl, CH2NHCH2substituted heteroaryl; or when n is 2, each Y is taken together to form a fused aromatic or heteroaromatic ring system; and
      • m and n are each independently 1 to 4,
  • wherein when Z1, Z3, Z5, and Z6 are each N, X is NH2, and m=n=2, Y is not phenyl or 4-hydroxyphenyl, or tautomers thereof.
  • In still another embodiment, compounds are provided having the structure (IV):
    Figure US20070208019A1-20070906-C00004
  • wherein:
      • L is an arylene, substituted arylene, oxyarylene, thioalkylene, substituted thioalkylene, or substituted oxyarylene linking moiety,
      • C is 5- or 6-membered aromatic or heteroaromatic ring,
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • Z1—Z4 are each independently CH or N, and
      • m is 1 to 4.
  • In still another embodiment, compounds are provided having the structure (V):
    Figure US20070208019A1-20070906-C00005
  • wherein:
      • R1, x, and y are as defined above,
      • R3 is —H, —SO3H, or —SO2NMe2,
      • M is NH, CO, SO2, (CH2)p, wherein p is 0 to 2,
      • G is aryl or heteroaryl, and
      • x and y are each independently 0-4.
  • In a further embodiment, there are provided methods for treating disorders associated with compromised vasculostasis, including administering to a subject in need thereof an effective amount of a compound having the structure (VI):
    Figure US20070208019A1-20070906-C00006
  • wherein:
      • A and B are each independently 5- or 6-membered aromatic rings, wherein at least one of A and B is an aromatic heterocyclic ring having at least one heteroatom in the heterocyclic ring,
      • each X is independently —H, OR, NR2, or SR, wherein R is H or lower alkyl,
        • each Y is independently hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl,
      • substituted arylalkynyl, or oxo, with the proviso that at least one Y is not hydrogen, or
      • when n is 2, each Y is taken together to form a fused aromatic ring system comprising at least one aromatic ring, and
      • m and n are each independently 1 to 4,
        thereby treating the disorder.
  • In yet another embodiment, invention methods include administering to a subject in need thereof an effective amount of a compound having the structure (VII):
    Figure US20070208019A1-20070906-C00007
  • wherein:
      • A, B, C, and D are each independently C, N, O, or S,
      • each X is independently OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl,
      • alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl,
      • substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl,
      • substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl,
      • substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl,
      • substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, with the proviso that at least one Y is not hydrogen, and
      • m and n are each independently 1 to 4, thereby treating the disorder.
  • In another embodiment, the invention provides a method for treating a disorder associated with compromised vasculostasis, comprising administering to a subject in need thereof an effective amount of a compound having the structure:
    Figure US20070208019A1-20070906-C00008
  • wherein:
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl, alkenyl substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, aroyl, substituted
      • aroyl, acyl, or substituted acyl, with the proviso that at least one Y is not hydrogen, or
      • when n is 2, each Y is taken together to form a fused aromatic ring system comprising at least one aromatic ring,
      • m is 1 to 4, and
      • n is 1 or 2,
        thereby treating the disorder.
  • In another embodiment, the invention provides a method for treating a disorder associated with compromised vasculostasis, comprising administering to a subject in need thereof an effective amount of a compound having the structure:
    Figure US20070208019A1-20070906-C00009
  • wherein:
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl, alkenyl substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, aroyl, substituted aroyl, acyl, or substituted acyl, with the proviso that at least one Y is not hydrogen, or
      • when n is 2, each Y is taken together to form a fused aromatic ring system comprising at least one aromatic ring, and
      • m and n are each independently 1 or 2.
  • In another embodiment, the invention provides a method for treating a disorder associated with compromised vasculostasis, comprising administering to a subject in need thereof an effective amount of a compound having the structure:
    Figure US20070208019A1-20070906-C00010
  • wherein:
      • Z is N, O, or S;
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl, alkenyl substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, aroyl, substituted aroyl, acyl, or substituted acyl, with the proviso that at least one Y is not hydrogen, or
      • when n is 2, each Y is taken together to form a fused aromatic ring system comprising at least one aromatic ring, and
      • m is 1 to 4, and
      • n is 1 or 2.
  • In another embodiment, the invention provides a method for treating a disorder associated with compromised vasculostasis comprising administering to a subject in need thereof an effective amount of a compound having structure (VII):
    Figure US20070208019A1-20070906-C00011
  • wherein:
      • A, B, C, and D are each independently C, N, O, or S,
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl,
      • alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, aroyl, substituted aroyl, acyl, or substituted acyl, with the proviso that at least one Y is not hydrogen, and
      • m and n are each independently 1 to 4,
        thereby treating the disorder.
  • In one embodiment, the invention provides a method for treating a disorder associated with compromised vasculostasis, comprising administering to a subject in need thereof an effective amount of a compound, wherein the compound is set forth in Structures I, II, III, IIIa, IV, V, or any combination thereof. The disorder is for example, but not limited to, myocardial infarction, stroke, congestive heart failure, an ischemia or reperfusion injury, cancer, arthritis or other arthropathy, retinopathy or vitreoretinal disease, macular degeneration, autoimmune disease, vascular leakage syndrome, inflammatory disease, edema, transplant rejection, burn, or acute or adult respiratory distress syndrome (ARDS).
  • In still another embodiment, there are provided articles of manufacture including packaging material and a pharmaceutical composition contained within the packaging material, wherein the pharmaceutical composition is capable of treating a disorder associated with compromised vasculostasis, wherein the pharmaceutical composition comprises at least one compound having any one of the structures as set forth above.
  • In one embodiment, the invention provides a pharmaceutical composition comprising a compound as set forth in Structures I, II, III, IIIa, IV, V, or VII, or any combination thereof, in a pharmaceutically acceptable carrier.
  • In one embodiment, the invention provides an article of manufacture comprising packaging material and a pharmaceutical composition contained within said packaging material, wherein said packaging material comprises a label which indicates that said pharmaceutical composition can be used for treatment of disorders associated with compromised vasculostasis and wherein said pharmaceutical composition comprises a compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof.
  • In one embodiment, the invention provides an article of manufacture comprising packaging material and a pharmaceutical composition contained within said packaging material, wherein said packaging material comprises a label which indicates that said pharmaceutical composition can be used for treatment of disorders associated with vascular permeability leakage or compromised vasculostasis selected from is myocardial infarction, stroke, congestive heart failure, an ischemia or reperfusion injury, cancer, arthritis or other arthropathy, retinopathy or vitreoretinal disease, macular degeneration, autoimmune disease, vascular leakage syndrome, inflammatory disease, edema, transplant rejection, burns, or acute or adult respiratory distress syndrome (ARDS) and wherein said pharmaceutical composition comprises a compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof.
  • In one embodiment, the invention provides a method of treating a compromised vasculostasis disorder, comprising the administration of a therapeutically effective amount of at least one compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof, or pharmaceutically acceptable salts, hydrates, solvates, crystal forms and individual diastereomers thereof, to a subject in need of such treatment.
  • In one embodiment, the invention provides a method of treating a disorder associated with vasculostasis, comprising the administration of a therapeutically effective amount of at least one compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof, or pharmaceutically acceptable salts, hydrates, solvates, crystal forms and individual diastereomers thereof, in combination with an anti-inflammatory, chemotherapeutic agent, immunomodulatory agent, therapeutic antibody or a protein kinase inhibitor, to a subject in need of such treatment.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having myocardial infarction comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having vascular leakage syndrome (VLS) comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having cancer comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having stroke comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having ARDS comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having burns comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having arthritis comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having edema comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having vascular leakage syndrome (VLS) comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having retinopathy or vitreoretinal disease comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having ischemic or reperfusion related tissue injury or damage, comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having autoimmune disease, comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having transplant rejection, comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a method of treating a subject having or at risk of having inflammatory disease, comprising administering to the subject a therapeutically effective amount of a compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof thereby treating the subject.
  • In one embodiment, the invention provides a process for making a pharmaceutical composition comprising combining a combination of a compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof or its pharmaceutically acceptable salts, hydrates, solvates, crystal forms salts and individual diastereomers thereof and a pharmaceutically acceptable carrier.
  • In one embodiment, the invention provides a pharmaceutical composition comprising a compound as set forth in Structure I, II, III, IIIa, IV, V, VII, or VIII in a pharmaceutically acceptable carrier.
  • In one embodiment, the invention provides a method for inhibiting or reducing vascular leakage in a subject, comprising administering to a subject in need thereof an effective amount of IL-2 in combination with a compound of Structure set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof., thereby reducing vascular leakage in the subject. In one aspect, the compound may be N-(2-(1H-Indol-2-yl)-phenyl)-phthalamic acid or 6,7-bis-(3-hydroxyphenyl)-pteridine-2,4-diamine.
  • In one embodiment, the invention provides a pharmaceutical composition comprising IL-2 and at least one compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof, in a concentration effective to reduce vascular leakage associated with IL-2 administration.
  • In one embodiment, the invention provides a method for treating cancer or a tumor in a subject, comprising administering to a subject in need thereof an effective amount of a therapeutic antibody, chemotherapeutic agent or immunotoxic agents, in combination with a compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof, thereby treating the cancer or tumor in the subject.
  • In one embodiment, the invention provides a pharmaceutical composition comprising a therapeutic agent and at least one compound as set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof, in a concentration effective to treat cancer in a subject. The cancer may be any cancer, including but not limited to an alimentary/gastrointestinal tract cancer, colon cancer, liver cancer, skin cancer, breast cancer, ovarian cancer, prostate cancer, lymphoma, leukemia, kidney cancer, lung cancer, muscle cancer, bone cancer, bladder cancer or brain cancer.
  • In one embodiment, the invention provides a method for treating a T-cell mediated disorder, comprising the administration of a therapeutically effective amount of at least one compound set forth in Structures I, II, III, IIIa, IV, V, VI or VII, or any combination thereof or pharmaceutically acceptable salts, hydrates, solvates, crystal forms salts and individual diastereomers thereof, to a subject in need of such treatment.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIGS. 1A-1F shows exemplary compounds of the invention.
  • FIG. 2 shows the results of 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt and doxorubicin for treatment of lung metastases. Syngeneic Lewis lung carcinoma cells were injected I.V. in order to establish lung metastases in Balb/C mice. Beginning 10 days after cells were injected, doxorubicin (3 mg/kg) and/or 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt (various doses as shown) was given I.P. every 3 days for 3 cycles. Animals were sacrificed at day 20, lungs were collected, and weighed. Net tumor burden is the weight of tumor-bearing lungs minus the average weight of normal control lungs. N=5/group, p<0.02.
  • FIG. 3 illustrates the effect of compounds administered in conjunction with doxorubicin in an in vivo model of metastatic colon cancer (CT-26 adenocarcinoma). Syngeneic CT-26 Colon carcinoma cells were injected I.V. in order to establish lung metastases in Balb/C mice. Beginning 10 days after cells were injected, indicated test agents were given I.P. every 3 days for 3 cycles. Animals were sacrificed at day 20, lungs were collected, and weighed. Net tumor burden is the weight of tumor-bearing lungs minus the average weight of normal control lungs. N=5/group, p<0.02. In these graphs, compound A is 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt, and compound B is 6,7-diphenyl-pteridine-2,4-diamine.
  • FIG. 4 illustrates the effects of compounds of the present invention for co-drug therapy with Taxotere as described herein. Syngeneic CT-26 Colon carcinoma cells were used in order to establish lung metastases in Balb/C mice as described for FIG. 3. 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt (compound A) and 6,7-diphenyl-pteridine-2,4-diamine (compound B) from FIG. 1 are shown in FIG. 4.
  • FIG. 5 shows a photo of representative lung samples from the experiment shown in FIG. 4 with 6,7-diphenyl-pteridine-2,4-diamine (compound B) and doxorubicin.
  • FIG. 6 illustrates the effect of compounds administered in conjunction with docetaxel in the in vivo model of metastatic colon cancer (CT-26 adenocarcinoma) described for FIG. 4. 2,3-Bis(3,4-dihydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride salt (compound C) from FIG. 1 is shown in FIG. 6 as compound C. N=5/group, p<0.02.
  • FIGS. 7 and 8 illustrate the effects of compounds of the invention for their capacity to inhibit IL-2 induced VLS. The graphs present representative examples of compounds cited in this application and their effects on VLS. In the graphs, compound D is N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid and compound E is 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine.
  • FIG. 9 illustrates the effects of compounds of the invention for their effect on IL-2 induced anti-tumor actions. The graph presents representative examples of compounds cited in this application and their effects on IL-2 mediated reductions in metastatic melanoma tumor burden. In the graphs, compound D is N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid and compound E is 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine. Invention compound concentrations are listed in parenthesis in mg/kg while IL-2 concentration is given in parenthesis kilounits.
  • FIGS. 10 and 11 illustrate the effects of compounds of the invention for their capacity to inhibit IL-2 induced T-cell proliferation. The graphs present representative examples of compounds cited in this application and their effects on T-cell proliferation. In the graphs, compound D is N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid and compound E is 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine.
  • FIG. 12 illustrates the effects of invention compounds for their capacity to inhibit edema associated with Acute Respiratory Distress Syndrome (ARDS). NIH Swiss mice were given an intraperitoneal injection of 1.5 mg/kg Oleic Acid of (in this example formulated in saline) and/or invention compounds. Four hours subsequent to injection animals were sacrificed followed by collection, blotting and weighing (wet weight) of the lungs. Lungs were then dried at 80° C. for 24 hours and weighed (dry weight). N=4/group, 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.5 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced ARDS-associated edema by >50% while 4-[4-amino-6-(3,4-dihydroxyphenyl)pteridin-7-yl]benzene-1,2-diol (compound F—in the 0.5 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced ARDS-induced edema by >100%.
  • FIG. 13 and 14 illustrate the effects of invention compounds for their capacity to inhibit angiogenesis in vivo. The graph presents representative examples of compounds cited in this application which successfully inhibited angiogenesis in vivo. Tumor extracellular matrix infused with the 160 ng of the described growth factors were injected subcutaneously in a Balb/C mouse. The described invention compound was injected daily at the described concentration for 5 days. After 5 days the animals were sacrificed and angiogenesis quantified based on the binding of fluorescently labeled, endothelium specific FITC-lectin. In the graph, compound A is 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention provides compounds which are vasculostatic agents and methods of use thereof. Invention compounds are useful in treating a variety of disorders, including but not limited to myocardial infarction, stroke, cancer, vascular leakage syndrome (VLS), ocular and retinal disease, bone disease, pleural effusion, edema, and ischemia. The term “vasculostasis” is hereby defined as referring to the maintenance of a homeostatic vascular functioning, and “vasculostatic agents” as agents that seek to address conditions in which vasculostasis is compromised by preventing the loss of or restoring or maintaining vasculostasis.
  • In one embodiment, the present invention provides compounds of structure (I):
    Figure US20070208019A1-20070906-C00012
  • wherein:
      • each R0 is independently —H, —COOH, —OR′, —SO3H, wherein R′ is —H or lower alkyl, or when x=2, each R0 is taken together to form a 1,3-dioxolyl ring, or
      • each R0 is independently alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, halogen, amino, amido, nitro, or thioalkyl,
      • R1 and R2 are each independently hydrogen, alkyl, substituted alkyl, alkenyl substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, or substituted arylalkynyl,
      • G is NH, O, S, or (CR″2)p, wherein R″ is —H, lower alkyl, or acetamido, and wherein p is 0-3,
      • Ar is aryl or heteroaryl, and
      • x and y are each independently 0-4.
  • In one embodiment, R0 is —COOH, x=1, and each R1 and R2 is hydrogen.
  • Exemplary compounds of structure I include:
    Figure US20070208019A1-20070906-C00013
    Figure US20070208019A1-20070906-C00014
    Figure US20070208019A1-20070906-C00015
    Figure US20070208019A1-20070906-C00016
  • In another embodiment of the invention, there are provided compounds of structure (II):
    Figure US20070208019A1-20070906-C00017
  • wherein:
      • wherein R0, R1, and R2, x, and y are as defined above.
  • In one embodiment, R0 is —COOH, x=1, and R1 and R2 are each hydrogen.
  • In yet another embodiment of the invention, there are provided compounds of structure (III):
    Figure US20070208019A1-20070906-C00018
  • wherein:
      • Z1—Z6 are each independently C, —C═O, N, or NRa, wherein Ra is —H, alkyl, or substituted alkyl, wherein said substituents are halogen, hydroxy, oxo, or amino,
      • each X is independently halogen, —ORb, —NRb 2, or —SRb, wherein Rb is —H lower alkyl, —(CH2)2NH(CH2CH3), —(CH2)3morpholyn-1-yl, —(CH2)3(N-methylpiperazinyn-1-yl), aryl, heteroaryl, —(NH—NH—Rc), —(N═N—NH—Rc), wherein Rc is H or lower alkyl,
      • each Y is independently —ORd, —NRd 2, —SRd, or —OPO3H2 wherein Rd is H, lower alkyl, aryl, heteroaryl, —(CH2)2NH(CH2CH3), —(CH2)3morpholyn-1-yl, or —(CH2)3(N-methylpiperazinyn-1-yl); or
      • each Y is independently alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, or halogen, wherein said substituents are selected from halogen, —ORe, —NRe 2, —SRe, —P(O)(OH)2, wherein Re is —H, lower alkyl, aryl, or heteroaryl; or each Y is independently CH2glycinyl, CH2NHethoxy, CH2NHCH2alkyl, CH2NHCH2t-Bu, CH2NHCH2aryl, CH2NHCH2substituted aryl, CH2NHCH2heteroaryl, CH2NHCH2substituted heteroaryl; or when n is 2, each Y is taken together to form a fused aromatic or heteroaromatic ring system; and
      • m and n are each independently 1 to 4,
  • wherein when Z1, Z3, Z5, and Z6 are each N, X is NH2, and m=n=2, Y is not phenyl or 4-hydroxyphenyl,
  • or tautomers thereof.
  • Exemplary compounds of structure III include pteridines and quinoxalines, such as
    Figure US20070208019A1-20070906-C00019
  • Particularly effective vasculostatic agents of structure (III) include compounds bearing hydroxy-substituted aryl rings. Exemplary compounds according to this embodiment are set forth below:
    Figure US20070208019A1-20070906-C00020
  • An additional exemplary compound of structure (III) is set forth below:
    Figure US20070208019A1-20070906-C00021
  • Additional exemplary compounds of structure (III) include pteridines having the structure:
    Figure US20070208019A1-20070906-C00022
  • wherein when X1═X2═—NHR, wherein R is —H, aryl, or substituted aryl, Y1 and Y2 include but are not limited to the following structures III-1 to III-24:
    Structure Y1 Y2
    III-1 C6H5 H
    III-2 H C6H5
    III-3 C6H5 C6H5
    III-4 4-C6H4OH H
    III-5 H 4-C6H4OH
    III-6 3,4-C6H3(OH)2 H
    III-7 H 3,4-C6H3(OH)2
    III-8 4-C6H4F C6H5
    III-9 C6H5 4-C6H4F
    III-10 4-C6H4Br C6H5
    III-11 C6H5 4-C6H4Br
    III-12 4-C6H4OPh C6H5
    III-13 C6H5 4-C6H4OPh
    III-14 4-C6H4OH C6H5
    III-15 C6H5 4-C6H4OH
    III-16 C5H4N (pyr) C5H4N (pyr)
    III-17 4-C6H4F 4-C6H4F
    III-18 3-C6H4F 3-C6H4F
    III-19 4-C6H4OMe 4-C6H4OMe
    III-20 3-C6H4OMe 3-C6H4OMe
    III-21 4-C6H4OH 4-C6H4OH
    III-22 3-C6H4OH 3-C6H4OH
    III-23 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-24 Y1 and Y2 taken together to form
    a phenathrolinyl group
  • Further exemplary pteridines have the structure X1═X2═OR, wherein R is —H, aryl, or substituted aryl, and Y1 and Y2 include but are not limited to the following the structures III-25 to III-48:
    Structure Y1 Y2
    III-25 C6H5 H
    III-26 H C6H5
    III-27 C6H5 C6H5
    III-28 4-C6H4OH H
    III-29 H 4-C6H4OH
    III-30 3,4-C6H3(OH)2 H
    III-31 H 3,4-C6H3(OH)2
    III-32 4-C6H4F C6H5
    III-33 C6H5 4-C6H4F
    III-34 4-C6H4Br C6H5
    III-35 C6H5 4-C6H4Br
    III-36 4-C6H4OPh C6H5
    III-37 C6H5 4-C6H4OPh
    III-38 4-C6H4OH C6H5
    III-39 C6H5 4-C6H4OH
    III-40 C5H4N (pyr) C5H4N (pyr)
    III-41 4-C6H4F 4-C6H4F
    III-42 3-C6H4F 3-C6H4F
    III-43 4-C6H4OMe 4-C6H4OMe
    III-44 3-C6H4OMe 3-C6H4OMe
    III-45 4-C6H4OH 4-C6H4OH
    III-46 3-C6H4OH 3-C6H4OH
    III-47 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-48 Y1 and Y2 taken together to form
    a phenathrolinyl group
  • Further exemplary pteridines have the structure X1═OR and X2═NHR, wherein R is —H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures
    Structure Y1 Y2
    III-49 C6H5 H
    III-50 H C6H5
    III-51 C6H5 C6H5
    III-52 4-C6H4OH H
    III-53 H 4-C6H4OH
    III-54 3,4-C6H3(OH)2 H
    III-55 H 3,4-C6H3(OH)2
    III-56 4-C6H4F C6H5
    III-57 C6H5 4-C6H4F
    III-58 4-C6H4Br C6H5
    III-59 C6H5 4-C6H4Br
    III-60 4-C6H4OPh C6H5
    III-61 C6H5 4-C6H4OPh
    III-62 4-C6H4OH C6H5
    III-63 C6H5 4-C6H4OH
    III-64 C5H4N (pyr) C5H4N (pyr)
    III-65 4-C6H4F 4-C6H4F
    III-66 3-C6H4F 3-C6H4F
    III-67 4-C6H4OMe 4-C6H4OMe
    III-68 3-C6H4OMe 3-C6H4OMe
    III-69 4-C6H4OH 4-C6H4OH
    III-70 3-C6H4OH 3-C6H4OH
    III-71 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-72 Y1 and Y2 taken together to form
    a phenathrolinyl group
  • Further exemplary pteridines have the structure X1═NHR and X2═OR, wherein R is —H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures
    Structure Y1 Y2
    III-73 C6H5 H
    III-74 H C6H5
    III-75 C6H5 C6H5
    III-76 4-C6H4OH H
    III-77 H 4-C6H4OH
    III-78 3,4-C6H3(OH)2 H
    III-79 H 3,4-C6H3(OH)2
    III-80 4-C6H4F C6H5
    III-81 C6H5 4-C6H4F
    III-82 4-C6H4Br C6H5
    III-83 C6H5 4-C6H4Br
    III-84 4-C6H4OPh C6H5
    III-85 C6H5 4-C6H4OPh
    III-86 4-C6H4OH C6H5
    III-87 C6H5 4-C6H4OH
    III-88 C5H4N (pyr) C5H4N (pyr)
    III-89 4-C6H4F 4-C6H4F
    III-90 3-C6H4F 3-C6H4F
    III-91 4-C6H4OMe 4-C6H4OMe
    III-92 3-C6H4OMe 3-C6H4OMe
    III-93 4-C6H4OH 4-C6H4OH
    III-94 3-C6H4OH 3-C6H4OH
    III-95 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-96 Y1 and Y2 taken together to form
    a phenathrolinyl group
  • Additional exemplary pteridines have the structure
    Figure US20070208019A1-20070906-C00023
  • wherein X1═NHR, wherein R is —H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-97 C6H5 H
    III-98 H C6H5
    III-99 C6H5 C6H5
    III-100 4-C6H4OH H
    III-101 H 4-C6H4OH
    III-102 3,4-C6H3(OH)2 H
    III-103 H 3,4-C6H3(OH)2
    III-104 4-C6H4F C6H5
    III-105 C6H5 4-C6H4F
    III-106 4-C6H4Br C6H5
    III-107 C6H5 4-C6H4Br
    III-108 4-C6H4OPh C6H5
    III-109 C6H5 4-C6H4OPh
    III-110 4-C6H4OH C6H5
    III-111 C6H5 4-C6H4OH
    III-112 C5H4N (pyr) C5H4N (pyr)
    III-113 4-C6H4F 4-C6H4F
    III-114 3-C6H4F 3-C6H4F
    III-115 4-C6H4OMe 4-C6H4OMe
    III-116 3-C6H4OMe 3-C6H4OMe
    III-117 4-C6H4OH 4-C6H4OH
    III-118 3-C6H4OH 3-C6H4OH
    III-119 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-120 Y1 and Y2 taken together to form
    a phenathrolinyl group.
  • Still further exemplary pteridines have the structure:
    Figure US20070208019A1-20070906-C00024
  • wherein X1═NHR, wherein R is —H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-121 C6H5 H
    III-122 H C6H5
    III-123 C6H5 C6H5
    III-124 4-C6H4OH H
    III-125 H 4-C6H4OH
    III-126 3,4-C6H3(OH)2 H
    III-127 H 3,4-C6H3(OH)2
    III-128 4-C6H4F C6H5
    III-129 C6H5 4-C6H4F
    III-130 4-C6H4Br C6H5
    III-131 C6H5 4-C6H4Br
    III-132 4-C6H4OPh C6H5
    III-133 C6H5 4-C6H4OPh
    III-134 4-C6H4OH C6H5
    III-135 C6H5 4-C6H4OH
    III-136 C5H4N (pyr) C5H4N (pyr)
    III-137 4-C6H4F 4-C6H4F
    III-138 3-C6H4F 3-C6H4F
    III-139 4-C6H4OMe 4-C6H4OMe
    III-140 3-C6H4OMe 3-C6H4OMe
    III-141 4-C6H4OH 4-C6H4OH
    III-142 3-C6H4OH 3-C6H4OH
    III-143 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-144 Y1 and Y2 taken together to form
    a phenathrolinyl group.
  • Additional exemplary pteridines have the structure
    Figure US20070208019A1-20070906-C00025
  • wherein X1═OR, wherein R is —H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-145 C6H5 H
    III-146 H C6H5
    III-147 C6H5 C6H5
    III-148 4-C6H4OH H
    III-149 H 4-C6H4OH
    III-150 3,4-C6H3(OH)2 H
    III-151 H 3,4-C6H3(OH)2
    III-152 4-C6H4F C6H5
    III-153 C6H5 4-C6H4F
    III-154 4-C6H4Br C6H5
    III-155 C6H5 4-C6H4Br
    III-156 4-C6H4OPh C6H5
    III-157 C6H5 4-C6H4OPh
    III-158 4-C6H4OH C6H5
    III-159 C6H5 4-C6H4OH
    III-160 C5H4N (pyr) C5H4N (pyr)
    III-161 4-C6H4F 4-C6H4F
    III-162 3-C6H4F 3-C6H4F
    III-163 4-C6H4OMe 4-C6H4OMe
    III-164 3-C6H4OMe 3-C6H4OMe
    III-165 4-C6H4OH 4-C6H4OH
    III-166 3-C6H4OH 3-C6H4OH
    III-167 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-168 Y1 and Y2 taken together to form
    a phenathrolinyl group.
  • Additional exemplary pteridines have the structure
    Figure US20070208019A1-20070906-C00026
  • wherein X1═OR, wherein R is —H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-169 C6H5 H
    III-170 H C6H5
    III-171 C6H5 C6H5
    III-172 4-C6H4OH H
    III-173 H 4-C6H4OH
    III-174 3,4-C6H3(OH)2 H
    III-175 H 3,4-C6H3(OH)2
    III-176 4-C6H4F C6H5
    III-177 C6H5 4-C6H4F
    III-178 4-C6H4Br C6H5
    III-179 C6H5 4-C6H4Br
    III-180 4-C6H4OPh C6H5
    III-181 C6H5 4-C6H4OPh
    III-182 4-C6H4OH C6H5
    III-183 C6H5 4-C6H4OH
    III-184 C5H4N (pyr) C5H4N (pyr)
    III-185 4-C6H4F 4-C6H4F
    III-186 3-C6H4F 3-C6H4F
    III-187 4-C6H4OMe 4-C6H4OMe
    III-188 3-C6H4OMe 3-C6H4OMe
    III-189 4-C6H4OH 4-C6H4OH
    III-190 3-C6H4OH 3-C6H4OH
    III-191 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-192 Y1 and Y2 taken together to form
    a phenathrolinyl group.
  • In further embodiments, exemplary pteridines have the structure:
    Figure US20070208019A1-20070906-C00027
  • wherein X1═X2═Cl or NHR, wherein R is H, (CH2)2NHEt, (CH2)3morpholyn-1-yl, (CH2)3(N-methylpiperazinyn-1-yl); Y1═CH2glycinyl, CH2NHethoxy, CH2NHCH2alkyl, CH2NHCH2t-Bu, CH2NHCH2aryl, CH2NHCH2substituted aryl, CH2NHCH2heteroaryl, CH2NHCH2substituted heteroaryl with substituents being OH, and OMe, and Y2 includes but is not limited to the following structures:
    Structure Y2
    III-193 C6H5
    III-194 H
    III-195 4-C6H4OH
    III-196 3-C6H4OH
    III-197 2-C6H4OH
    III-198 naphthyl
    III-199 isonaphthyl
    III-200 4-tBuphenyl
    III-201 biphenyl
    III-202 2,3-di-methylphenyl
    III-203 fluorenyl
    III-204 oxophenyl
    III-205 thioindole
    III-206 C5H4N (pyr)
    III-207 4-C6H4F
    III-208 3-C6H4F
    III-209 4-C6H4OMe
    III-210 3-C6H4OMe
    III-211 2-C6H4OMe.
  • Additional exemplary compounds of structure (III) include compounds having the structure:
    Figure US20070208019A1-20070906-C00028
  • wherein X1═NHR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-212 C6H5 H
    III-213 H C6H5
    III-214 C6H5 C6H5
    III-215 4-C6H4OH H
    III-216 H 4-C6H4OH
    III-217 3,4-C6H3(OH)2 H
    III-218 H 3,4-C6H3(OH)2
    III-219 4-C6H4F C6H5
    III-220 C6H5 4-C6H4F
    III-221 4-C6H4Br C6H5
    III-222 C6H5 4-C6H4Br
    III-223 4-C6H4OPh C6H5
    III-224 C6H5 4-C6H4OPh
    III-225 4-C6H4OH C6H5
    III-226 C6H5 4-C6H4OH
    III-227 C5H4N (pyr) C5H4N (pyr)
    III-228 4-C6H4F 4-C6H4F
    III-229 3-C6H4F 3-C6H4F
    III-230 4-C6H4OMe 4-C6H4OMe
    III-231 3-C6H4OMe 3-C6H4OMe
    III-232 4-C6H4OH 4-C6H4OH
    III-233 3-C6H4OH 3-C6H4OH
    III-234 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-235 Y1 and Y2 taken together to form
    a phenathrolinyl group.
  • Still further exemplary compounds of structure (III) include the following:
    Figure US20070208019A1-20070906-C00029
  • wherein X1═OR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-236 C6H5 H
    III-237 H C6H5
    III-238 C6H5 C6H5
    III-239 4-C6H4OH H
    III-240 H 4-C6H4OH
    III-241 3,4-C6H3(OH)2 H
    III-242 H 3,4-C6H3(OH)2
    III-243 4-C6H4F C6H5
    III-244 C6H5 4-C6H4F
    III-245 4-C6H4Br C6H5
    III-246 C6H5 4-C6H4Br
    III-247 4-C6H4OPh C6H5
    III-248 C6H5 4-C6H4OPh
    III-249 4-C6H4OH C6H5
    III-250 C6H5 4-C6H4OH
    III-251 C5H4N (pyr) C5H4N (pyr)
    III-252 4-C6H4F 4-C6H4F
    III-253 3-C6H4F 3-C6H4F
    III-254 4-C6H4OMe 4-C6H4OMe
    III-255 3-C6H4OMe 3-C6H4OMe
    III-256 4-C6H4OH 4-C6H4OH
    III-257 3-C6H4OH 3-C6H4OH
    III-258 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-259 Y1 and Y2 taken together to form a
    phenathrolinyl group.
  • Compounds of structure (III) also include the following:
    Figure US20070208019A1-20070906-C00030
  • wherein X1═NHR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-260 C6H5 H
    III-261 H C6H5
    III-262 C6H5 C6H5
    III-263 4-C6H4OH H
    III-264 H 4-C6H4OH
    III-265 3,4-C6H3(OH)2 H
    III-266 H 3,4-C6H3(OH)2
    III-267 4-C6H4F C6H5
    III-268 C6H5 4-C6H4F
    III-269 4-C6H4Br C6H5
    III-270 C6H5 4-C6H4Br
    III-271 4-C6H4OPh C6H5
    III-272 C6H5 4-C6H4OPh
    III-273 4-C6H4OH C6H5
    III-274 C6H5 4-C6H4OH
    III-275 C5H4N (pyr) C5H4N (pyr)
    III-276 4-C6H4F 4-C6H4F
    III-277 3-C6H4F 3-C6H4F
    III-278 4-C6H4OMe 4-C6H4OMe
    III-279 3-C6H4OMe 3-C6H4OMe
    III-280 4-C6H4OH 4-C6H4OH
    III-281 3-C6H4OH 3-C6H4OH
    III-282 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-283 Y1 and Y2 taken together to
    form a phenathrolinyl group.
  • Still further exemplary compounds of structure (III) include;
    Figure US20070208019A1-20070906-C00031
  • wherein X1═OR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-284 C6H5 H
    III-285 H C6H5
    III-286 C6H5 C6H5
    III-287 4-C6H4OH H
    III-288 H 4-C6H4OH
    III-289 3,4-C6H3(OH)2 H
    III-290 H 3,4-C6H3(OH)2
    III-291 4-C6H4F C6H5
    III-292 C6H5 4-C6H4F
    III-293 4-C6H4Br C6H5
    III-294 C6H5 4-C6H4Br
    III-295 4-C6H4OPh C6H5
    III-296 C6H5 4-C6H4OPh
    III-297 4-C6H4OH C6H5
    III-298 C6H5 4-C6H4OH
    III-299 C5H4N (pyr) C5H4N (pyr)
    III-300 4-C6H4F 4-C6H4F
    III-301 3-C6H4F 3-C6H4F
    III-302 4-C6H4OMe 4-C6H4OMe
    III-303 3-C6H4OMe 3-C6H4OMe
    III-304 4-C6H4OH 4-C6H4OH
    III-305 3-C6H4OH 3-C6H4OH
    III-306 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-307 Y1 and Y2 taken together to
    form a phenathrolinyl group.
  • Additional exemplary compounds of structure (III) include quinoxalines having the structure:
    Figure US20070208019A1-20070906-C00032
  • wherein X1═NHR and X2═NHR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-308 C6H5 H
    III-309 H C6H5
    III-310 C6H5 C6H5
    III-311 4-C6H4OH H
    III-312 H 4-C6H4OH
    III-313 3,4-C6H3(OH)2 H
    III-314 H 3,4-C6H3(OH)2
    III-315 4-C6H4F C6H5
    III-316 C6H5 4-C6H4F
    III-317 4-C6H4Br C6H5
    III-318 C6H5 4-C6H4Br
    III-319 4-C6H4OPh C6H5
    III-320 C6H5 4-C6H4OPh
    III-321 4-C6H4OH C6H5
    III-322 C6H5 4-C6H4OH
    III-323 C5H4N (pyr) C5H4N (pyr)
    III-324 4-C6H4F 4-C6H4F
    III-325 3-C6H4F 3-C6H4F
    III-326 4-C6H4OMe 4-C6H4OMe
    III-327 3-C6H4OMe 3-C6H4OMe
    III-328 4-C6H4OH 4-C6H4OH
    III-329 3-C6H4OH 3-C6H4OH
    III-330 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-331 Y1 and Y2 taken together to
    form a phenathrolinyl group.
  • Additional quinoxalines contemplated for use in the practice of the invention include the following:
    Figure US20070208019A1-20070906-C00033
  • wherein X1═X2═OR, wherein R is —H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-332 C6H5 H
    III-333 H C6H5
    III-334 C6H5 C6H5
    III-335 4-C6H4OH H
    III-336 H 4-C6H4OH
    III-337 3,4-C6H3(OH)2 H
    III-338 H 3,4-C6H3(OH)2
    III-339 4-C6H4F C6H5
    III-340 C6H5 4-C6H4F
    III-341 4-C6H4Br C6H5
    III-342 C6H5 4-C6H4Br
    III-343 4-C6H4OPh C6H5
    III-344 C6H5 4-C6H4OPh
    III-345 4-C6H4OH C6H5
    III-346 C6H5 4-C6H4OH
    III-347 C5H4N (pyr) C5H4N (pyr)
    III-348 4-C6H4F 4-C6H4F
    III-349 3-C6H4F 3-C6H4F
    III-350 4-C6H4OMe 4-C6H4OMe
    III-351 3-C6H4OMe 3-C6H4OMe
    III-352 4-C6H4OH 4-C6H4OH
    III-353 3-C6H4OH 3-C6H4OH
    III-354 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-355 Y1 and Y2 taken together to
    form a phenathrolinyl group.
  • Still further exemplary quinoxalines include:
    Figure US20070208019A1-20070906-C00034
  • wherein when X1═OR and X2═NHR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-356 C6H5 H
    III-357 H C6H5
    III-358 C6H5 C6H5
    III-359 4-C6H4OH H
    III-360 H 4-C6H4OH
    III-361 3,4-C6H3(OH)2 H
    III-362 H 3,4-C6H3(OH)2
    III-363 4-C6H4F C6H5
    III-364 C6H5 4-C6H4F
    III-365 4-C6H4Br C6H5
    III-366 C6H5 4-C6H4Br
    III-367 4-C6H4OPh C6H5
    III-368 C6H5 4-C6H4OPh
    III-369 4-C6H4OH C6H5
    III-370 C6H5 4-C6H4OH
    III-371 C5H4N (pyr) C5H4N (pyr)
    III-372 4-C6H4F 4-C6H4F
    III-373 3-C6H4F 3-C6H4F
    III-374 4-C6H4OMe 4-C6H4OMe
    III-375 3-C6H4OMe 3-C6H4OMe
    III-376 4-C6H4OH 4-C6H4OH
    III-377 3-C6H4OH 3-C6H4OH
    III-378 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-379 Y1 and Y2 taken together to
    form a phenathrolinyl group.
  • Additional exemplary quinoxalines have the structure:
    Figure US20070208019A1-20070906-C00035
  • wherein X1═NHR and X2═OR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-380 C6H5 H
    III-381 H C6H5
    III-382 C6H5 C6H5
    III-383 4-C6H4OH H
    III-384 H 4-C6H4OH
    III-385 3,4-C6H3(OH)2 H
    III-386 H 3,4-C6H3(OH)2
    III-387 4-C6H4F C6H5
    III-388 C6H5 4-C6H4F
    III-389 4-C6H4Br C6H5
    III-390 C6H5 4-C6H4Br
    III-391 4-C6H4OPh C6H5
    III-392 C6H5 4-C6H4OPh
    III-393 4-C6H4OH C6H5
    III-394 C6H5 4-C6H4OH
    III-395 C5H4N (pyr) C5H4N (pyr)
    III-396 4-C6H4F 4-C6H4F
    III-397 3-C6H4F 3-C6H4F
    III-398 4-C6H4OMe 4-C6H4OMe
    III-399 3-C6H4OMe 3-C6H4OMe
    III-400 4-C6H4OH 4-C6H4OH
    III-401 3-C6H4OH 3-C6H4OH
    III-402 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-403 Y1 and Y2 taken together to
    form a phenathrolinyl group.
  • Still further exemplary quinoxalines have the structure:
    Figure US20070208019A1-20070906-C00036
  • wherein X1═NHR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-404 C6H5 H
    III-405 H C6H5
    III-406 C6H5 C6H5
    III-407 4-C6H4OH H
    III-408 H 4-C6H4OH
    III-409 3,4-C6H3(OH)2 H
    III-410 H 3,4-C6H3(OH)2
    III-411 4-C6H4F C6H5
    III-412 C6H5 4-C6H4F
    III-413 4-C6H4Br C6H5
    III-414 C6H5 4-C6H4Br
    III-415 4-C6H4OPh C6H5
    III-416 C6H5 4-C6H4OPh
    III-417 4-C6H4OH C6H5
    III-418 C6H5 4-C6H4OH
    III-419 C5H4N (pyr) C5H4N (pyr)
    III-420 4-C6H4F 4-C6H4F
    III-421 3-C6H4F 3-C6H4F
    III-422 4-C6H4OMe 4-C6H4OMe
    III-423 3-C6H4OMe 3-C6H4OMe
    III-424 4-C6H4OH 4-C6H4OH
    III-425 3-C6H4OH 3-C6H4OH
    III-426 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-427 Y1 and Y2 taken together to
    form a phenathrolinyl group.
  • Additional exemplary quinoxalines have the structure:
    Figure US20070208019A1-20070906-C00037
  • wherein X1═NHR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-428 C6H5 H
    III-429 H C6H5
    III-430 C6H5 C6H5
    III-431 4-C6H4OH H
    III-432 H 4-C6H4OH
    III-433 3,4-C6H3(OH)2 H
    III-434 H 3,4-C6H3(OH)2
    III-435 4-C6H4F C6H5
    III-436 C6H5 4-C6H4F
    III-437 4-C6H4Br C6H5
    III-438 C6H5 4-C6H4Br
    III-439 4-C6H4OPh C6H5
    III-440 C6H5 4-C6H4OPh
    III-441 4-C6H4OH C6H5
    III-442 C6H5 4-C6H4OH
    III-443 C5H4N (pyr) C5H4N (pyr)
    III-444 4-C6H4F 4-C6H4F
    III-445 3-C6H4F 3-C6H4F
    III-446 4-C6H4OMe 4-C6H4OMe
    III-447 3-C6H4OMe 3-C6H4OMe
    III-448 4-C6H4OH 4-C6H4OH
    III-449 3-C6H4OH 3-C6H4OH
    III-450 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-451 Y1 and Y2 taken together to
    form a phenathrolinyl group.
  • Still further exemplary quinoxalines have the structure:
    Figure US20070208019A1-20070906-C00038
  • wherein X1═OR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-452 C6H5 H
    III-453 H C6H5
    III-454 C6H5 C6H5
    III-455 4-C6H4OH H
    III-456 H 4-C6H4OH
    III-457 3,4-C6H3(OH)2 H
    III-458 H 3,4-C6H3(OH)2
    III-459 4-C6H4F C6H5
    III-460 C6H5 4-C6H4F
    III-461 4-C6H4Br C6H5
    III-462 C6H5 4-C6H4Br
    III-463 4-C6H4OPh C6H5
    III-464 C6H5 4-C6H4OPh
    III-465 4-C6H4OH C6H5
    III-466 C6H5 4-C6H4OH
    III-467 C5H4N (pyr) C5H4N (pyr)
    III-468 4-C6H4F 4-C6H4F
    III-469 3-C6H4F 3-C6H4F
    III-470 4-C6H4OMe 4-C6H4OMe
    III-471 3-C6H4OMe 3-C6H4OMe
    III-472 4-C6H4OH 4-C6H4OH
    III-473 3-C6H4OH 3-C6H4OH
    III-474 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-475 Y1 and Y2 taken together to
    form a phenathrolinyl group.
  • Further exemplary quinoxalines have the structure:
    Figure US20070208019A1-20070906-C00039
  • wherein X1═OR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-476 C6H5 H
    III-477 H C6H5
    III-478 C6H5 C6H5
    III-479 4-C6H4OH H
    III-480 H 4-C6H4OH
    III-481 3,4-C6H3(OH)2 H
    III-482 H 3,4-C6H3(OH)2
    III-483 4-C6H4F C6H5
    III-484 C6H5 4-C6H4F
    III-485 4-C6H4Br C6H5
    III-486 C6H5 4-C6H4Br
    III-487 4-C6H4OPh C6H5
    III-488 C6H5 4-C6H4OPh
    III-489 4-C6H4OH C6H5
    III-490 C6H5 4-C6H4OH
    III-491 C5H4N (pyr) C5H4N (pyr)
    III-492 4-C6H4F 4-C6H4F
    III-493 3-C6H4F 3-C6H4F
    III-494 4-C6H4OMe 4-C6H4OMe
    III-495 3-C6H4OMe 3-C6H4OMe
    III-496 4-C6H4OH 4-C6H4OH
    III-497 3-C6H4OH 3-C6H4OH
    III-498 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-499 Y1 and Y2 taken together to form a
    phenathrolinyl group.
  • Still further exemplary compounds of structure (III) include:
    Figure US20070208019A1-20070906-C00040
  • wherein X1═NHR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-500 C6H5 H
    III-501 H C6H5
    III-502 C6H5 C6H5
    III-503 4-C6H4OH H
    III-504 H 4-C6H4OH
    III-505 3,4-C6H3(OH)2 H
    III-506 H 3,4-C6H3(OH)2
    III-507 4-C6H4F C6H5
    III-508 C6H5 4-C6H4F
    III-509 4-C6H4Br C6H5
    III-510 C6H5 4-C6H4Br
    III-511 4-C6H4OPh C6H5
    III-512 C6H5 4-C6H4OPh
    III-513 4-C6H4OH C6H5
    III-514 C6H5 4-C6H4OH
    III-515 C5H4N (pyr) C5H4N (pyr)
    III-516 4-C6H4F 4-C6H4F
    III-517 3-C6H4F 3-C6H4F
    III-518 4-C6H4OMe 4-C6H4OMe
    III-519 3-C6H4OMe 3-C6H4OMe
    III-520 4-C6H4OH 4-C6H4OH
    III-521 3-C6H4OH 3-C6H4OH
    III-522 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-523 Y1 and Y2 taken together to form a
    phenathrolinyl group.
  • Additional compounds of structure (III) include the following:
    Figure US20070208019A1-20070906-C00041
  • wherein X1═OR, wherein R is H, aryl or substituted aryl, and Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-524 C6H5 H
    III-525 H C6H5
    III-526 C6H5 C6H5
    III-527 4-C6H4OH H
    III-528 H 4-C6H4OH
    III-529 3,4-C6H3(OH)2 H
    III-530 H 3,4-C6H3(OH)2
    III-531 4-C6H4F C6H5
    III-532 C6H5 4-C6H4F
    III-533 4-C6H4Br C6H5
    III-534 C6H5 4-C6H4Br
    III-535 4-C6H4OPh C6H5
    III-536 C6H5 4-C6H4OPh
    III-537 4-C6H4OH C6H5
    III-538 C6H5 4-C6H4OH
    III-539 C5H4N (pyr) C5H4N (pyr)
    III-540 4-C6H4F 4-C6H4F
    III-541 3-C6H4F 3-C6H4F
    III-542 4-C6H4OMe 4-C6H4OMe
    III-543 3-C6H4OMe 3-C6H4OMe
    III-544 4-C6H4OH 4-C6H4OH
    III-545 3-C6H4OH 3-C6H4OH
    III-546 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-547 Y1 and Y2 taken together to form a
    phenathrolinyl group.
  • Still further exemplary compounds of structure (III) include:
    Figure US20070208019A1-20070906-C00042
  • wherein Y1 and Y2 include but are not limited to the following structures:
    Structure Y1 Y2
    III-547 C6H5 H
    III-548 C6H5 C6H5
    III-549 4-C6H4OH H
    III-550 3,4-C6H3(OH)2 H
    III-551 4-C6H4F C6H5
    III-552 4-C6H4Br C6H5
    III-553 4-C6H4OPh C6H5
    III-554 C6H5 4-C6H4OH
    III-555 C5H4N (pyr) C5H4N (pyr)
    III-556 4-C6H4F 4-C6H4F
    III-557 3-C6H4F 3-C6H4F
    III-558 4-C6H4OMe 4-C6H4OMe
    III-559 3-C6H4OMe 3-C6H4OMe
    III-560 4-C6H4OH 4-C6H4OH
    III-561 3-C6H4OH 3-C6H4OH
    III-562 3,4-C6H3(OH)2 3,4-C6H3(OH)2
    III-563 Y1 and Y2 taken together to form a
    phenathrolinyl group.
  • Additional exemplary compounds of structure (III) include:
    Figure US20070208019A1-20070906-C00043
  • wherein X1═NHR, wherein R is H, aryl, substituted aryl, or aroyl, Y1═NHR, or R, wherein R═H, alkyl or branched alkyl, and Y2 includes but is not limited to the following structures:
    Structure Y2
    III-564 C6H5
    III-565 H
    III-566 4-C6H4OH
    III-567 3-C6H4OH
    III-568 2-C6H4OH
    III-569 naphthyl
    III-570 isonaphthyl
    III-571 4-tBuphenyl
    III-572 biphenyl
    III-573 2,3-diMephenyl
    III-574 fluorenyl
    III-575 oxophenyl
    III-576 thioindole
    III-577 C5H4N (pyr)
    III-578 4-C6H4F
    III-579 3-C6H4F
    III-580 4-C6H4OMe
    III-581 3-C6H4OMe
    III-582 2-C6H4OMe
  • Still further exemplary compounds of structure (III) include asymmetric triazines, such as:
    Figure US20070208019A1-20070906-C00044
  • wherein Y1═NHR or R, wherein R═H, alkyl or branched alkyl, and Y2 includes but is not limited to the following structures:
    Structure Y2
    III-583 C6H5
    III-584 H
    III-585 4-C6H4OH
    III-586 3-C6H4OH
    III-587 2-C6H4OH
    III-588 naphthyl
    III-589 isonaphthyl
    III-590 4-tBuphenyl
    III-591 biphenyl
    III-592 2,3-diMephenyl
    III-593 fluorenyl
    III-594 oxophenyl
    III-595 thioindole
    III-596 C5H4N (pyr)
    III-597 4-C6H4F
    III-598 3-C6H4F
    III-599 4-C6H4OMe
    III-600 3-C6H4OMe
    III-601 2-C6H4OMe
  • In yet another embodiment of the invention, compounds are provided having structure (IV):
    Figure US20070208019A1-20070906-C00045
      • L is an arylene, substituted arylene, oxyarylene, or substituted oxyarylene linking moiety,
      • C is 5- or 6-membered aromatic or heteroaromatic ring, each X is independently OR, NR2, or SR, wherein R is H or lower alkyl,
      • Z1—Z4 are each independently CH or N, and
      • m is 1 to 4.
  • In some embodiments, the linking moiety L is an arylene moiety, and Z is N, as exemplified by the following structures:
    Figure US20070208019A1-20070906-C00046

    wherein, Z═N or CH, X1═H or OH, and X2═NH2 or OH.
  • In another embodiment, the linking moiety L is an oxyarylene moiety, as exemplified by the following structures:
    Figure US20070208019A1-20070906-C00047

    wherein, Z═N or CH, X1═H or OH, and X2═NH2 or OH.
  • In still another embodiment, compounds are provided having the structure (V):
    Figure US20070208019A1-20070906-C00048
  • wherein:
      • R1, x, and y are as defined above,
      • R3 is —H, —SO3H, or —SO2NMe2,
      • M is NH, CO, SO2, (CH2)p, wherein p is 0 to 2,
      • G is aryl or heteroaryl, and
      • x and y are each independently 0-4.
        In an additional embodiment, there are provided bis-pteridine compounds. An exemplary bis-pteridine compound according to the invention has the structure:
        Figure US20070208019A1-20070906-C00049
  • As used herein, the term “heterocyclic”, when used to describe an aromatic ring, means that the aromatic ring contains at least one heteroatom. As used herein, the term “heteroatom” refers to N, O, S, and the like.
  • As used herein, the term “alkyl” refers to a monovalent straight or branched chain hydrocarbon group having from one to about 12 carbon atoms, including methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-hexyl, and the like.
  • As used herein, “substituted alkyl” refers to alkyl groups further bearing one or more substituents selected from hydroxy, alkoxy, mercapto, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, substituted aryloxy, halogen, cyano, nitro, amino, amido, —C(O)H, acyl, oxyacyl, carboxyl, sulfonyl, sulfonamide, sulfuryl, and the like.
  • As used herein, “lower alkyl” refers to alkyl groups having from 1 to about 6 carbon atoms.
  • As used herein, “alkenyl” refers to straight or branched chain hydrocarbyl groups having one or more carbon-carbon double bonds, and having in the range of about 2 up to 12 carbon atoms, and “substituted alkenyl” refers to alkenyl groups further bearing one or more substituents as set forth above.
  • As used herein, “alkynyl” refers to straight or branched chain hydrocarbyl groups having at least one carbon-carbon triple bond, and having in the range of about 2 up to 12 carbon atoms, and “substituted alkynyl” refers to alkynyl groups further bearing one or more substituents as set forth above.
  • As used herein, “aryl” refers to aromatic groups having in the range of 6 up to 14 carbon atoms and “substituted aryl” refers to aryl groups further bearing one or more substituents as set forth above.
  • As used herein, “heteroaryl” refers to aromatic rings containing one or more heteroatoms (e.g., N, O, S, or the like) as part of the ring structure, and having in the range of 3 up to 14 carbon atoms and “substituted heteroaryl” refers to heteroaryl groups further bearing one or more substituents as set forth above.
  • As used herein, “alkoxy” refers to the moiety —O-alkyl-, wherein alkyl is as defined above, and “substituted alkoxy” refers to alkoxyl groups further bearing one or more substituents as set forth above.
  • As used herein, “cycloalkyl” refers to ring-containing alkyl groups containing in the range of about 3 up to 8 carbon atoms, and “substituted cycloalkyl” refers to cycloalkyl groups further bearing one or more substituents as set forth above.
  • As used herein, “heterocyclic”, when not used with reference to an aromatic ring, refers to cyclic (i.e., ring-containing) groups containing one or more heteroatoms (e.g., N, O, S, or the like) as part of the ring structure, and having in the range of 3 up to 14 carbon atoms and “substituted heterocyclic” refers to heterocyclic groups further bearing one or more substituents as set forth above.
  • As used herein, “alkylaryl” refers to alkyl-substituted aryl groups and “substituted alkylaryl” refers to alkylaryl groups further bearing one or more substituents as set forth above.
  • As used herein, “arylalkyl” refers to aryl-substituted alkyl groups and “substituted arylalkyl” refers to arylalkyl groups further bearing one or more substituents as set forth above.
  • As used herein, “arylalkenyl” refers to aryl-substituted alkenyl groups and “substituted arylalkenyl” refers to arylalkenyl groups further bearing one or more substituents as set forth above.
  • As used herein, “arylalkynyl” refers to aryl-substituted alkynyl groups and “substituted arylalkynyl” refers to arylalkynyl groups further bearing one or more substituents as set forth above.
  • As used herein, divalent aromatic groups having in the range of 6 up to 14 carbon atoms and “substituted arylene” refers to arylene groups further bearing one or more substituents as set forth above.
  • As used herein, “oxyarylene” refers to the moiety “O-arylene”, wherein arylene is as defined above and “substituted oxyarylene” refers to oxyarylene groups further bearing one or more substituents as set forth above.
  • Invention compounds can be prepared by a variety of methods well-known to those skilled in the art. For example, Scheme A illustrates three exemplary syntheses for invention compounds of structure (I).
    Figure US20070208019A1-20070906-C00050
    Figure US20070208019A1-20070906-C00051
  • Scheme B illustrates an exemplary synthesis for invention compounds of structure (II).
    Figure US20070208019A1-20070906-C00052
  • Scheme C illustrates two of several exemplary syntheses for invention compounds of structure (III).
    Figure US20070208019A1-20070906-C00053
  • Scheme D illustrates an exemplary synthesis for invention compounds of structure (IV).
    Figure US20070208019A1-20070906-C00054
  • Scheme E below illustrates an exemplary synthesis for compounds of structure (V).
    Figure US20070208019A1-20070906-C00055
  • In a further embodiment of the invention, there provided methods for treating a disorder, comprising administering to a subject in need thereof an effective amount of a compound having the structure (VI):
    Figure US20070208019A1-20070906-C00056
  • wherein:
      • A and B are each independently 5- or 6-membered aromatic rings, wherein at least one of A and B is an aromatic heterocyclic ring having at least one heteroatom in the heterocyclic ring,
      • each X is independently OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl, alkenyl substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, aroyl, substituted aroyl, acyl, or substituted acyl, with the proviso that at least one Y is not hydrogen, or
      • when n is 2, each Y is taken together to form a fused aromatic ring system comprising at least one aromatic ring, and
      • m and n are each independently 1 to 4,
        thereby treating the disorder.
  • Rings A and B taken together may form a variety of fused aromatic heterocyclic groups suitable for use in the practice of the present invention. For example, rings A and B taken together may form aromatic heterocycles such as quinoxaline, pteridine, benzoxazine, benzoxazole, benzimidazole, 1,2-benzodiazole, indole, isoindole, quinoline, isoquinoline, phthalazine, naphthyridine, quinazoline, cinnoline, purine, benzothiazole, benzofuran, isobenzofuran, benzothiophene, chromene, and the like. In one embodiment, rings A and B taken together form a quinoxaline. In a further embodiment, rings A and B taken together form a pteridine. In a still further embodiment, rings A and B taken together form a benzimidazole.
  • Quinoxalines contemplated for use in the methods of the present invention have the structure:
    Figure US20070208019A1-20070906-C00057
  • wherein:
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl, alkenyl substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl-, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, with the proviso that at least one Y is not hydrogen, or
      • when n is 2, each Y is taken together to form a fused
      • aromatic ring system comprising at least one aromatic ring,
      • m is 1 to 4, and
      • n is 1 or 2.
  • In one embodiment, quinoxalines contemplated for use in the methods of the present invention have the structure:
    Figure US20070208019A1-20070906-C00058
  • wherein:
      • X is OR, NR2, or SR, wherein R is H or lower alkyl,
      • Y is aryl, substituted aryl, heteroaryl, or substituted heteroaryl, and
      • n is 1 or 2.
  • Pteridines contemplated for use in the methods of the present invention have the structure:
    Figure US20070208019A1-20070906-C00059
  • wherein:
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl, alkenyl substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, aroyl, substituted aroyl, acyl, or substituted acyl, with the proviso that at least one Y is not hydrogen, or
      • when n is 2, each Y is taken together to form a fused aromatic ring system comprising at least one aromatic ring, and
      • m and n are each independently 1 or 2.
  • In one embodiment, pteridines contemplated for use in the methods of the present invention have the structure:
    Figure US20070208019A1-20070906-C00060
  • wherein:
      • X is OR, NR2, or SR, wherein R is H or lower alkyl,
      • Y is aryl, substituted aryl, heteroaryl, or substituted heteroaryl, and
      • n is 1 or 2.
  • Benzimidazoles, oxazoles, or thiazoles contemplated for use in the methods of the present invention have the structure:
    Figure US20070208019A1-20070906-C00061
  • wherein:
      • Z is N, O, or S,
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl, alkenyl substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, aroyl, substituted aroyl, acyl, or substituted acyl, with the proviso that at least one Y is not hydrogen, or
      • when n is 2, each Y is taken together to form a fused aromatic ring system comprising at least one aromatic ring, and
      • m is 1 to 4, and
      • n is 1 or 2.
  • In one embodiment, benzimidazoles contemplated for use in the methods of the present invention have the structure:
    Figure US20070208019A1-20070906-C00062
  • wherein:
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • Y is aryl, substituted aryl, heteroaryl, or substituted heteroaryl, and
      • m is 1-4.
  • In a further embodiment of the invention, there are provided methods for treating a disorder such as those associated with vascular permeability and/or angiogenesis and/or other aspects of compromised vasculostasis including administering to a subject in need thereof an effective amount of a compound having structure (VII):
    Figure US20070208019A1-20070906-C00063
  • wherein:
      • A, B, C, and D are each independently C, N, O, or S,
      • each X is independently H, OR, NR2, or SR, wherein R is H or lower alkyl,
      • each Y is independently hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkylaryl, substituted alkylaryl, arylalkyl, substituted arylalkyl, arylalkenyl, substituted arylalkenyl, arylalkynyl, substituted arylalkynyl, aroyl, substituted aroyl, acyl, or substituted acyl, with the proviso that at least one Y is not hydrogen, and m and n are each independently 1 to 4,
        thereby treating the disorder.
  • In one aspect of this embodiment, the compound has the structure:
    Figure US20070208019A1-20070906-C00064
  • wherein:
      • each X is independently H, OR, NR2, or SR, wherein R is H
      • or lower alkyl,
      • each Y is independently aryl or substituted aryl,
      • m is 1 or 2, and
      • n is 1-4.
  • In a further aspect of this embodiment, the compound has the structure:
    Figure US20070208019A1-20070906-C00065
  • In one embodiment, the present invention is based on the discovery that a combination therapy including interleukin-2 (IL-2) and chemical compounds described herein, some of which are effective kinase inhibitors, administered during IL-2 therapy, mitigates or lessens the adverse effects of IL-2. While not wanting to be bound by a particular theory, it is likely that the effect occurs while preserving or enhancing the beneficial effect of IL-2 such that the disease or disorder is treated. While IL-2 is described in the present application as an illustrative example, it should be understood that the invention includes combination therapy including a compound of the invention, including but not limited to vasculostatic agents, such as tyrosine, serine or threonine kinase inhibitors, for example, Src-family inhibitors, and immunomodulatory molecules. In particular, such immunomodulatory molecules include those that result in vascular leakage. Cytokines, and in particular IL-2, are examples of such immunomodulatory molecules.
  • Such inhibitors, in combination with IL-2, are effective in blocking vascular leakage typically associated with IL-2 adminstration. Thus, compositions and methods are provided for treating disorders associated with VLS. In one embodiment, the invention provides a composition containing a therapeutically effective amount of IL-2 and a vasculostatic agent or compound as described herein in a pharmaceutically acceptable carrier.
  • Some of the compounds are kinase inhibitors, such as Src-family tyrosine kinases, and therefore are useful in treating a wide variety of disorders resulting from aberrant kinase activity, in addition to treating disorders associates with IL-2 administration. Kinase-associated disorders are those disorders which result from aberrant kinase activity, and/or which are alleviated by the inhibition of one or more enzymes within a kinase family. For example, Lck inhibitors are of value in the treatment of a number of such disorders (e.g., the treatment of autoimmune diseases), as Lck inhibition blocks T cell activation. Similarly, Src family inhibitors are of value in treating a variety of cancers as Src inhibition impacts tumor cell invasion, metastases and survival.
  • The compounds and methods of the present invention, either when administered alone or in combination with other agents described herein (e.g., chemotherapeutic agents or protein therapeutic agents) are useful in treating a variety of disorders associated with compromised vasculostasis including but not limited to, for example: stroke, cardiovascular disease, myocardial infarction, congestive heart failure, cardiomyopathy, myocarditis, ischemic heart disease, coronary artery disease, cardiogenic shock, vascular shock, pulmonary hypertension, pulmonary edema (including cardiogenic pulmonary edema), cancer, pleural effusions, rheumatoid arthritis, diabetic retinopathy, retinitis pigmentosa, and retinopathies, including diabetic retinopathy and retinopathy of prematurity, inflammatory diseases, restenosis, edema (including edema associated with pathologic situations such as cancers and edema induced by medical interventions such as chemotherapy), asthma, acute or adult respiratory distress syndrome (ARDS), lupus, vascular leakage, transplant (such as organ transplant, acute transplant or heterograft or homograft (such as is employed in burn treatment)) rejection; protection from ischemic or reperfusion injury such as ischemic or reperfusion injury incurred during organ transplantation, transplantation tolerance induction; ischemic or reperfusion injury following angioplasty; arthritis (such as rheumatoid arthritis, psoriatic arthritis or osteoarthritis); multiple sclerosis; inflammatory bowel disease, including ulcerative colitis and Crohn's disease; lupus (systemic lupus crythematosis); graft vs. host diseases; T-cell mediated hypersensitivity diseases, including contact hypersensitivity, delayed-type hypersensitivity, and gluten-sensitive enteropathy (Celiac disease); Type I diabetes; psoriasis; contact dermatitis (including that due to poison ivy); Hashimoto's thyroiditis; Sjogren's syndrome; Autoimmune Hyperthyroidism, such as Graves' disease; Addison's disease (autoimmune disease of the adrenal glands); autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome); autoimmune alopecia; pernicious anemia; vitiligo; autoimmune hypopituatarism; Guillain-Barre syndrome; other autoimmune diseases; cancers, including those where kinases such as Src-family kinases are activated or overexpressed, such as colon carcinoma and thymoma, or cancers where kinase activity facilitates tumor growth or survival; glomerulonephritis, serum sickness; uticaria; allergic diseases such as respiratory allergies (asthma, hayfever, allergic rhinitis) or skin allergies; mycosis fungoides; acute inflammatory responses (such as acute or adult respiratory distress syndrome and ischemia/reperfusion injury); dermatomyositis; alopecia areata; chronic actinic dermatitis; eczema; Behcet's disease; Pustulosis palmoplanteris; Pyoderma gangrenum; Sezary's syndrome; atopic dermatitis; systemic schlerosis; morphea; peripheral limb ischemia and ischemic limb disease; bone disease such as osteoporosis, osteomalacia, hyperparathyroidism, Paget's disease, and renal osteodystrophy;vascular leak syndromes, including vascular leak syndromes induced by chemotherapies or immunomodulators such as IL-2; spinal cord and brain injury or trauma; glaucoma; retinal diseases, including macular degeneration; vitreoretinal disease; pancreatitis; vasculatides, including vasculitis, Kawasaki disease, thromboangiitis obliterans, Wegener's granulomatosis, and Behcet's disease; scleroderma; preeclampsia; thalassemia; Kaposi's sarcoma; von Hippel Lindau disease; and the like.
  • “Treating cancer” as used herein refers to providing a therapeutic benefit to the cancer patient, e.g. the therapy extends the mean survival time of patients, increases the percentage of patients surviving at a given timepoint, extends the mean time to disease progression, reduces or stabilizes tumor burden or improves quality of life for the patient or any of the above, for example. While not wanting to be bound by a particular theory, some of the compounds of the invention may be cytostatic and therefore have activity directly on the tumor cells.
  • As used herein, “kinase” refers to any enzyme that catalyze the addition of phosphate groups to a protein residue, for example serine and threonine kinases catalyze the addition of phosphate groups to serine and threonine residues.
  • As used herein, the terms “Src kinase” or “Src kinase family” or “Src family” refer to the related homologs or analogs belonging to the mammalian family of Src kinases, including, for example, the widely expressed c-Src, Fyn, Yes and Lyn kinases and the hematopoietic-restricted kinases Hck, Fgr, Lck and Blk. As used herein, the terms “Src kinase signaling pathway” or “Src cascade” refer to both the upstream and downstream components of the Src signaling cascade.
  • Src-family tyrosine kinases other than Lck, such as Hck and Fgr, are important in the Fc gamma receptor induced respiratory burst of neutrophils as well as the Fc gamma receptor responses of monocytes and macrophages. The compositions and methods of the present invention may be useful in inhibiting the Fc gamma induced respiratory burst response in neutrophils, and may also be useful in inhibiting the Fc gamma dependent production of TNF alpha. The ability to inhibit Fc gamma receptor dependent neutrophil, monocyte and macrophage responses would result in additional anti-inflammatory activity for the compounds employed in invention methods. This activity would be especially of value, for example, in the treatment of inflammatory diseases, such as arthritis or inflammatory bowel disease. The compositions and methods of the present invention may also be useful in the treatment of autoimmune glomerulonephritis and other instances of glomerulonephritis induced by deposition of immune complexes in the kidney that trigger Fc gamma receptor responses and which can lead to kidney damage.
  • In addition, certain Src-family tyrosine kinases, such as Lyn and Src, may be important in the Fc epsilon receptor induced degranulation of mast cells and basophils that plays an important role in asthma, allergic rhinitis, and other allergic disease. Fc epsilon receptors are stimulated by IgE-antigen complexes. Compounds employed in the methods of the present invention may inhibit the Fc epsilon induced degranulation responses. The ability to inhibit Fc epsilon receptor dependent mast cell and basophil responses may result in additional anti-inflammatory activity for the present compounds beyond their effect on T cells.
  • The present invention also provides articles of manufacture comprising packaging material and a pharmaceutical composition contained within said packaging material, wherein said packaging material comprises a label which indicates that said pharmaceutical composition can be used for treatment of disorders and wherein said pharmaceutical composition comprises a compound according to the present invention. Thus, in one aspect, the invention provides a pharmaceutical composition including both a therapeutic and a compound of the invention (e.g, as shown in FIG. 1), wherein the compound is present in a concentration effective to reduce vascular leakage associated with indications or therapeutics which have vascular leak as a side-effect. For example, administration of a compound of the invention in conjunction with IL-2, immunotoxins, antibodies or chemotherapeutics. In these cases, IL-2, immunotoxin, antibody or chemotherapeutic concentration can be determined by one of skill in the art according to standard treatment regimen or as determined by an in vivo animal assay, for example.
  • The present invention also provides pharmaceutical compositions comprising IL-2, immunotoxin, antibody or chemotherapeutic and at least one invention compound in an amount effective for inhibiting vascular permeability, and a pharmaceutically acceptable vehicle or diluent. The compositions of the present invention may contain other therapeutic agents as described below, and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (for example, excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.
  • The compounds of the invention may be formulated into therapeutic compositions as natural or salt forms. Pharmaceutically acceptable non-toxic salts include the base addition salts (formed with free carboxyl or other anionic groups) which may be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino-ethanol, histidine, procaine, and the like. Such salts may also be formed as acid addition salts with any free cationic groups and will generally be formed with inorganic acids such as, for example, hydrochloric, sulfuric, or phosphoric acids, or organic acids such as acetic, citric, p-toluenesulfonic, methanesulfonic acid, oxalic, tartaric, mandelic, and the like. Salts of the invention include amine salts formed by the protonation of an amino group with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like. Salts of the invention also include amine salts formed by the protonation of an amino group with suitable organic acids, such as p-toluenesulfonic acid, acetic acid, and the like. Additional excipients which are contemplated for use in the practice of the present invention are those available to those of ordinary skill in the art, for example, those found in the United States Pharmacopeia Vol. XXII and National Formulary Vol. XVII, U.S. Pharmacopeia Convention, Inc., Rockville, Md. (1989), the relevant contents of which is incorporated herein by reference. In addition, polymorphs of the invention compounds are included in the present invention.
  • Invention pharmaceutical compositions may be administered by any suitable means, for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; buccally; parenterally, such as by subcutaneous, intravenous, intramuscular, intrathecal, or intracistemal injection or infusion techniques (e.g., as sterile injectable aqueous or non-aqueous solutions or suspensions); nasally such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally such as in the form of suppositories; in dosage unit formulations containing non-toxic, pharmaceutically acceptable vehicles or diluents. The present compounds may, for example, be administered in a form suitable for immediate release or extended release. Immediate release or extended release may be achieved by the use of suitable pharmaceutical compositions comprising the present compounds, or, particularly in the case of extended release, by the use of devices such as subcutaneous implants or osmotic pumps. The
  • In addition to primates, such as humans, a variety of other mammals can be treated according to the method of the present invention. For instance, mammals including, but not limited to, cows, sheep, goats, horses, dogs, cats, guinea pigs, rats or other bovine, ovine, equine, canine, feline, rodent or murine species can be treated. However, the method can also be practiced in other species, such as avian species (e.g., chickens).
  • The term “therapeutically effective amount” means the amount of the compound or pharmaceutical composition that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician, e.g., restoration or maintainance of vasculostasis or prevention of the compromise or loss or vasculostasis; reduction of tumor burden; reduction of morbidity and/or mortality.
  • By “pharmaceutically acceptable” it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • The terms “administration of” and or “administering a” compound should be understood to mean providing a compound of the invention or pharmaceutical composition to the subject in need of treatment.
  • The pharmaceutical compositions for the administration of the compounds of this embodiment either alone or in combination with IL-2, immunotoxin, antibody or chemotherapeutic may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the carrier which constitutes one or more accessory ingredients. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation. In the pharmaceutical composition the active object compound is included in an amount sufficient to produce the desired effect upon the process or condition of diseases. The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs.
  • Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated to form osmotic therapeutic tablets for control release.
  • Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxy-propylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. Also useful as a solubilizer is polyethylene glycol, for example. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
  • Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
  • The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a parenterally-acceptable diluent or solvent or coslvent or complexing agent or dispersing agent or excipient or combination thereof, for example 1,3-butane diol, polyethylene glycols, polypropylene glycols, ethanol or other alcohols, povidones, Tweens, sodium dodecyle sulfate, sodium deoxycholate,dimethylacetamide, polysorbates, poloxamers, cyclodextrins, lipids, and excipients such as inorganic salts (e.g., sodium chloride), buffering agents (e.g., sodium citrate, sodium phosphate), and sugars (e.g., saccharose and dextrose). Among the acceptable vehicles and solvents that may be employed are water, dextrose solutions, Ringer's solutions and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
  • Depending on the condition being treated, these pharmaceutical compositions may be formulated and administered systemically or locally. Techniques for formulation and administration may be found in the latest edition of “Remington's Pharmaceutical Sciences” (Mack Publishing Co, Easton Pa.). Suitable routes may, for example, include oral or transmucosal administration; as well as parenteral delivery, including intramuscular, subcutaneous, intramedullary, intrathecal, intraventricular, intravenous, intraperitoneal, or intranasal administration. For injection, the pharmaceutical compositions of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. For tissue or cellular administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art. Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
  • The compounds of the present invention may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.
  • For topical use, creams, ointments, jellies, solutions or suspensions, etc., containing the compounds of the present invention are employed. (For purposes of this application, topical application shall include mouthwashes and gargles).
  • In one aspect, the invention compounds are administered in combination with an antiinflammatory, antihistamines, chemotherapeutic agent, immunomodulator, therapeutic antibody or a protein kinase inhibitor, e.g., a tyrosine kinase inhibitor, to a subject in need of such treatment. While not wanting to be limiting, chemotherapeutic agents include antimetabolites, such as methotrexate, DNA cross-linking agents, such as cisplatin/carboplatin; alkylating agents, such as canbusil; topoisomerase I inhibitors such as dactinomicin; microtubule inhibitors such as taxol (paclitaxol), and the like. Other chemotherapeutic agents include, for example, a vinca alkaloid, mitomycin-type antibiotic, bleomycin-type antibiotic, antifolate, colchicine, demecoline, etoposide, taxane, anthracycline antibiotic, doxorubicin, daunorubicin, carminomycin, epirubicin, idarubicin, mithoxanthrone, 4-demethoxy-daunomycin, 1-deoxydaunorubicin, 13-deoxydaunorubicin, adriamycin-14-benzoate, adriamycin-14-octanoate, adriamycin-14-naphthaleneacetate, amsacrine, carmustine, cyclophosphamide, cytarabine, etoposide, lovastatin, melphalan, topetecan, oxalaplatin, chlorambucil, methtrexate, lomustine, thioguanine, asparaginase, vinblastine, vindesine, tamoxifen, or mechlorethamine. While not wanting to be limiting, therapeutic antibodies include antibodies directed against the HER2 protein, such as trastuzumab; antibodies directed against growth factors or growth factor receptors, such as bevacizumab, which targets vascular endothelial growth factor, and OSI-774, which targets epidermal growth factor; antibodies targeting integrin receptors, such as Vitaxin (also known as MEDI-522), and the like. Classes of anticancer agents suitable for use in compositions and methods of the present invention include, but are not limited to: 1) alkaloids, including, microtubule inhibitors (e.g., Vincristine, Vinblastine, and Vindesine, etc.), microtubule stabilizers (e.g., Paclitaxel [Taxol], and Docetaxel, Taxotere, etc.), and chromatin function inhibitors, including, topoisomerase inhibitors, such as, epipodophyllotoxins (e.g., Etoposide [VP-16], and Teniposide [VM-26], etc.), and agents that target topoisomerase I (e.g., Camptothecin and Isirinotecan [CPT-11], etc.); 2) covalent DNA-binding agents [alkylating agents], including, nitrogen mustards (e.g., Mechlorethamine, Chlorambucil, Cyclophosphamide, Ifosphamide, and Busulfan [Myleran], etc.), nitrosoureas (e.g., Carmustine, Lomustine, and Semustine, etc.), and other alkylating agents (e.g., Dacarbazine, Hydroxymethylmelamine, Thiotepa, and Mitocycin, etc.); 3) noncovalent DNA-binding agents [antitumor antibiotics], including, nucleic acid inhibitors (e.g., Dactinomycin [Actinomycin D], etc.), anthracyclines (e.g., Daunorubicin [Daunomycin, and Cerubidine], Doxorubicin [Adriamycin], and Idarubicin [Idamycin], etc.), anthracenediones (e.g., anthracycline analogues, such as, [Mitoxantrone], etc.), bleomycins (Blenoxane), etc., and plicamycin (Mithramycin), etc.; 4) antimetabolites, including, antifolates (e.g., Methotrexate, Folex, and Mexate, etc.), purine antimetabolites (e.g., 6-Mercaptopurine [6-MP, Purinethol], 6-Thioguanine [6-TG], Azathioprine, Acyclovir, Ganciclovir, Chlorodeoxyadenosine, 2-Chlorodeoxyadenosine [CdA], and 2′-Deoxycoformycin [Pentostatin], etc.), pyrimidine antagonists (e.g., fluoropyrimidines [e.g., 5-fluorouracil (Adrucil), 5-fluorodeoxyuridine (FdUrd) (Floxuridine)] etc.), and cytosine arabinosides (e.g., Cytosar [ara-C] and Fludarabine, etc.); 5) enzymes, including, L-asparaginase, and hydroxyurea, etc.; 6) hormones, including, glucocorticoids, such as, antiestrogens (e.g., Tamoxifen, etc.), nonsteroidal antiandrogens (e.g., Flutamide, etc.), and aromatase inhibitors (e.g., anastrozole [Arimidex], etc.); 7) platinum compounds (e.g., Cisplatin and Carboplatin, etc.); 8) monoclonal antibodies conjugated with anticancer drugs, toxins, and/or radionuclides, etc.; 9) biological response modifiers (e.g., interferons [e.g., IFN-.alpha., etc.] and interleukins [e.g., IL-2, etc.], etc.); 10) adoptive immunotherapy; 11) hematopoietic growth factors; 12) agents that induce tumor cell differentiation (e.g., all-trans-retinoic acid, etc.); 13) gene therapy techniques; 14) antisense therapy techniques; 15) tumor vaccines; 16) therapies directed against tumor metastases (e.g., Batimistat, etc.); and 17) inhibitors of angiogenesis.
  • The pharmaceutical composition and method of the present invention may further comprise other therapeutically active compounds as noted herein which are usually applied in the treatment of the above mentioned pathological conditions. Examples of other therapeutic agents include the following: cyclosporins (e.g., cyclosporin A), CTLA4-Ig, antibodies such as ICAM-3, anti-IL-2 receptor (Anti-Tac), anti-CD45RB, anti-CD2, anti-CD3 (OKT-3), anti-CD4, anti-CD80, anti-CD86, agents blocking the interaction between CD40 and gp39, such as antibodies specific for CD40 and/or gp39 (i.e., CD154), fusion proteins constructed from CD40 and gp39 (CD40Ig and CD8gp39), inhibitors, such as nuclear translocation inhibitors, of NF-kappa B function, such as deoxyspergualin (DSG), cholesterol biosynthesis inhibitors such as HMG CoA reductase inhibitors (lovastatin and simvastatin), non-steroidal antiinflammatory drugs (NSAIDs) such as ibuprofen and cyclooxygenase inhibitors such as rofecoxib, steroids such as prednisone or dexamethasone, gold compounds, antiproliferative agents such as methotrexate, FK506 (tacrolimus, Prograf), mycophenolate mofetil, cytotoxic drugs such as azathioprine and cyclophosphamide, TNF-a inhibitors such as tenidap, anti-TNF antibodies or soluble TNF receptor, and rapamycin (sirolimus or Rapamune) or derivatives thereof.
  • Other agents that may be administered in combination with invention compounds include protein therapeutic agents such as cytokines, immunomodulatory agents and antibodies. As used herein the term “cytokine” encompasses chemokines, interleukins, lymphokines, monokines, colony stimulating factors, and receptor associated proteins, and functional fragments thereof. As used herein, the term “functional fragment” refers to a polypeptide or peptide which possesses biological function or activity that is identified through a defined functional assay.
  • The cytokines include endothelial monocyte activating polypeptide II (EMAP-II), granulocyte-macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF), macrophage-CSF (M-CSF), IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-1 2, and IL-1 3, interferons, and the like and which is associated with a particular biologic, morphologic, or phenotypic alteration in a cell or cell mechanism.
  • The term antibody as used in this invention is meant to include intact molecules of polyclonal or monoclonal antibodies, as well as fragments thereof, such as Fab and F(ab′)2, Fv and SCA fragments which are capable of binding an epitopic determinant.
  • When other therapeutic agents are employed in combination with the compounds of the present invention they may be used for example in amounts as noted in the Physician Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art.
  • In the treatment or prevention of conditions which involve compromised vasculostasis an appropriate dosage level will generally be about 0.01 to 500 mg per kg patient body weight per day which can be administered in single or multiple doses. Preferably, the dosage level will be about 0.01 to about 250 mg/kg per day; more preferably about 0.5 to about 100 mg/kg per day. A suitable dosage level may be about 0.01 to 250 mg/kg per day, about 0.05 to 100 mg/kg per day, or about 0.1 to 50 mg/kg per day or 1.0 mg/kg per day. Within this range the dosage may be 0.05 to 0.5, 0.5 to 5 or 5 to 50 mg/kg per day for example. The Examples section shows that one of the exemplary compounds was preferred at 0.1 mg/kg/day while another was effective at about 1.0 mg/kg/day. For oral administration, the compositions are preferably provided in the form of tablets containing 1.0 to 1000 milligrams of the active ingredient, particularly 1.0, 5.0, 10.0, 15.0. 20.0, 25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 600.0, 750.0, 800.0, 900.0, and 1000.0 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day. There may be a period of no administration followed by another regimen of administration. Preferably, administration of the compound is closely associated with the schedule of IL-2 administration. For example, administration can be prior to, simultaneously with or immediately following IL-2 administration
  • It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.
  • Another embodiment described herein is based on the discovery that a compound that is a vasculostatic agent alone or in combination with an effective amount of therapeutic antibody (or therapeutic fragment thereof), chemotherapeutic or immunotoxic agent, is an effective therapeutic regimen for treatment of tumors, for example. While doxorubicin, docetaxel, or taxol are described in the present application as illustrative examples of chemotherapeutic agents, it should be understood that the invention includes combination therapy including a compound of the invention, including but not limited to vasculostatic agents, such as tyrosine, serine or threonine kinase inhibitors, for example, Src-family inhibitors, and any chemotherapeutic agent or therapeutic antibody.
  • Such vasculostatic agents, in combination with chemotherapeutic agents or therapeutic antibodies are effective in blocking vascular permeability and/or vascular leakage and/or angiogenesis. In one embodiment, the invention provides a composition containing a therapeutically effective amount of a chemotherapeutic agent and a vasculostatic agent in a pharmaceutically acceptable carrier.
  • In one embodiment, the invention provides a method for reducing the tumor burden in a subject, comprising administering to a subject in need thereof an effective amount of chemotherapeutic agent in combination with a compound that is a vasculostatic agent. In an illustrative example, the method includes use of at least one of the invention compounds e.g., as set forth in Structures I, II, III, IIIa, IV, V, VI or VII or any combination thereof, with the chemotherapeutic agent. In one aspect, the compound is set forth in FIG. 1. It should be understood that the tumor burden in a subject can be reduced prior to treatment with a compound of the invention through surgical resection, chemotherapy, radiation treatment or other methods known to those of skill in the art.
  • The compounds according to this invention may contain one or more asymmetric carbon atoms and thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers. The term “stereoisomer” refers to a chemical compounds which differ from each other only in the way that the different groups in the molecules are oriented in space. Stereoisomers have the same molecular weight, chemical composition, and constitution as another, but with the atoms grouped differently. That is, certain identical chemical moieties are at different orientations in space and, therefore, when pure, have the ability to rotate the plane of polarized light. However, some pure stereoisomers may have an optical rotation that is so slight that it is undetectable with present instrumentation. All such isomeric forms of these compounds are included in the present invention.
  • Each stereogenic carbon may be of R or S configuration. Although the specific compounds exemplified in this application may be depicted in a particular configuration, compounds having either the opposite stereochemistry at any given chiral center or mixtures thereof are also envisioned. When chiral centers are found in the derivatives of this invention, it is to be understood that this invention encompasses all possible stereoisomers. The terms “optically pure compound” or “optically pure isomer” refers to a single stereoisomer of a chiral compound regardless of the configuration of the compound.
  • Several illustrative compounds employed in the methods of the present invention are inhibitors of kinases and therefore are useful in treating a wide variety of disorders resulting from aberrant kinase activity. Examples of kinases include Src-family tyrosine kinases and their associated disorders, which result from aberrant tyrosine kinase activity, and/or which are alleviated by the inhibition of one or more of the enzymes within the Src family. For example, Src inhibitors are of value in the treatment of cancer, as Src inhibition blocks tumor cell migration and survival. Many compounds of the invention are also broad spectrum kinase inhibitors and inhibit other kinases in addition to Src-family tyrosine kinases or non-Src family kinases.
  • Cancers that may be treated by compounds of the invention alone or as a combination therapy of the invention include but are not limited to a carcinoma or a sarcoma, including one or more specific types of cancer, e.g., an alimentary/gastrointestinal tract cancer, a liver cancer, a skin cancer, a breast cancer, an ovarian cancer, a prostate cancer, a lymphoma, a leukemia, a kidney cancer, a lung cancer, a muscle cancer, a bone cancer, bladder cancer or a brain cancer.
  • The present invention also provides articles of manufacture comprising packaging material and a pharmaceutical composition contained within said packaging material, wherein said packaging material comprises a label which indicates that said pharmaceutical composition can be used for treatment of disorders and wherein said pharmaceutical composition comprises a compound according to the present invention. Thus, in one aspect, the invention provides a pharmaceutical composition including both a chemotherapeutic agent, immunotoxin or therapeutic antibody and a compound of the invention (e.g, as shown in FIG. 1), wherein the compound is present in a concentration effective to reduce tumor burden, for example. In one aspect, the invention provides a pharmaceutical composition including a compound of the invention, wherein the compound is present in a concentration effective to reduce vascular permeability, for example. The concentration can be determined by one of skill in the art according to standard treatment regimen or as determined by an in vivo animal assay, for example.
  • Pharmaceutical compositions employed as a component of invention articles of manufacture can be used in the form of a solid, a solution, an emulsion, a dispersion, a micelle, a liposome, and the like, wherein the resulting composition contains one or more of the compounds described above as an active ingredient, in admixture with an organic or inorganic carrier or excipient suitable for enteral or parenteral applications. Compounds employed for use as a component of invention articles of manufacture may be combined, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use. The carriers which can be used include glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, medium chain length triglycerides, dextrans, and other carriers suitable for use in manufacturing preparations, in solid, semisolid, or liquid form. In addition auxiliary, stabilizing, thickening and coloring agents and perfumes may be used.
  • The present invention also provides pharmaceutical compositions including at least one invention compound in an amount effective for treating a tumor, or cancer, alone or in combination with a chemotherapeutic agent, immunotoxin, immunomodulator or therapeutic antibody and a pharmaceutically acceptable vehicle or diluent. Similarly, the present invention provides pharmaceutical compositions including at least one invention compound capable of treating a disorder associated with vasculostasis in an amount effective therefore. The compositions of the present invention may contain other therapeutic agents as described herein and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (for example, excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.
  • The terms “administration of” and or “administering a” compound should be understood to mean providing a compound of the invention or pharmaceutical composition to the subject in need of treatment. For example, administration of the vasculostatic agent can be prior to, simultaneously with, or after administration of an invention compound or other agent. In the Examples provided herein, typically the compounds of the invention are co-administered at the same time as a chemotherapeutic agent.
  • While not wanting to be limiting, chemotherapeutic agents include antimetabolites, such as methotrexate, DNA cross-linking agents, such as cisplatin/carboplatin; alkylating agents, such as canbusil; topoisomerase I inhibitors such as dactinomicin; microtubule inhibitors such as taxol (paclitaxol), and the like. Other chemotherapeutic agents include, for example, a vinca alkaloid, mitomycin-type antibiotic, bleomycin-type antibiotic, antifolate, amsacrine, carmustine, cyclophosphamide, cytarabine, etoposide, lovastatin, melphalan, topetecan, oxalaplatin, chlorambucil, methtrexate, lomustine, thioguanine, asparaginase, vinblastine, vindesine, tamoxifen, mechlorethamine. colchicine, demecoline, etoposide, taxane, anthracycline antibiotic, doxorubicin, daunorubicin, carminomycin, epirubicin, idarubicin, mithoxanthrone, 4-demethoxy-daunomycin, 11-deoxydaunorubicin, 1 3-deoxydaunorubicin, adriamycin-14-benzoate, adriamycin-14-octanoate or adriamycin-14-naphthaleneacetate.
  • Compounds, their prodrugs, or metabolites employed in the methods of the present invention are vasculostatic agents such as inhibitors of vascular permeability and/or vascular leakage and/or angiogenesis. In addition, several illustrative compounds employed in the methods of the present invention are inhibitors of kinases and therefore are useful in treating a wide variety of disorders resulting from aberrant kinase activity. Kinase-associated disorders are those disorders which result from aberrant kinase activity, and/or which are alleviated by the inhibition of one or more of the kinases.
  • It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.
  • The Examples set out below include representative examples of aspects of the present invention. The Examples are not meant to limit the scope of the invention but rather serve exemplery purposes. In addtion, various aspects of the invention can be summarized by the following description. However, this description is not meant to limit the scope of the invention but rather to highlight various aspects of the invention. One having ordinary skill in the art can readily appreciate additional aspects and embodiments of the invention.
  • EXAMPLE 1 Syntheses of Vasculostatic Agents
  • Experimentals
  • General Analytical Methods
  • All solvents are used without further purification. Reactions are usually run without an inert gas atmosphere unless specified otherwise. All 1H NMR are run on a 500 MHz Bruker NMR. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from tetramethylsilane. Coupling constants are reported in hertz (Hz). A Water LC/MS system is used in identity and purity analysis. This system includes a 2795 separation module, a 996 photodidode array detector and a ZQ2000 mass spectrometer. A Zorbax SB column (150×4.6mm 3.5μ, Agilent Technologies) is used for the LC. Column temperature is 40° C. Compounds are separated using gradient elution with mobile phases of water (0.05%TFA (A)) and acetonitrile (0.05%TFA (B)). Flow rate is 1 mL/min. The gradient program used in separation is 0-15 min: 5-60% B; 15-15.5 min: 60-100% B; 15.5-17 min: 100% B.
  • The following gradient programs were used based on the hydrophobicity of the analyzed sample: (1) 0-15 min: 30-70% B; 15-15.5 min: 70-90% B; 15.5-17 min: 90% B for the compounds: 4-Hydroxy-N-(2-(1H-indol-2-yl)-phenyl)-benzamide; 3,4-Dihydroxy-N-(2-(1H-indol-2-yl)-phenyl)-benzamide; N-(2-(1H-Indol-2-yl)-phenyl)-2-phenyl-acetamide; 2-(3,4-Dihydroxy-phenyl)-N-(2-(1H-indol-2-yl)-phenyl)-acetamide; N-(2-(1H-Indol-2-yl)-phenyl)-3-phenyl-propionamide; 3-(4-Hydroxy-phenyl)-N-(2-(1H-indol-2-yl)-phenyl)-propionamide; N-(2-(1H-Indol-2-yl)-phenyl)-3-(2-methoxy-phenyl)-propionamide; 3-(3,4-Dihydroxy-phenyl)-N-(2-(1H-indol-2-yl)-phenyl)-propionamide; (2) 0-15 min: 30-50% B; 15-15.5 min: 50-90% B; 15.5-17 min: 90% B for compound N-(2-(2,3-Dihydro-1H-indol-2-yl)-phenyl)-2-hydroxy-benzamide. (3) 0-15 min: 20-40% B; 15-15.5 min: 40-90% B; 15.5-17 min: 90% B for compound 4-(4-amino-6-(3,4-dihydroxyphenyl)pteridin-7-yl)benzene-1,2-diol. (4) 0-15 min: 5-60% B; 15-15.5 min: 60-90% B; 15.5-17 min: 90% B for compound 2-(4-Hydroxy-phenyl)-N-(2-(1H-indol-2-yl)-phenyl)-acetamide. (5) 0-15 min: 40-100% B; 15.-17 min: 100% B for compounds N-(2-(1H-Indol-2-yl)-phenyl)-2-(2-methoxy-phenyl)-acetamide and 2-Benzo(1,3)dioxol-5-yl-N-(2-(1H-indol-2-yl)-phenyl)-acetamide.
  • The mass spectrometer is equipped with an electrospray probe. Source temperature is 120° C. All of the compounds are identified using the positive mode with mass scan range from 100 to 800.
  • General Procedure for Indoles
  • 2-(2-Aminophenyl) indole and the starting material acid (2 equiv) were dissolved in acetonitrile. To the solution were added 2 equiv of EDC (dimethylaminopropyl ethylcarbodiimide hydrochloride) as powder. The mixture was stirred at either room temperature (23° C.) or at slightly elevated temperature (50° C.) for 3 to 16 hours.
  • The solvent was removed and the residue dissolved in methanol:ethylacetate (5-10%). The solution was extracted with 1 M HCl as well as saturated sodium bicarbonate solution. The aqueous phases were re-extracted with EtOAc, respectively. The combined organic phases were dried over magnesium sulfate. The product was purified by column chromatography (silica, typically using EtOAc-hexanes as mobile phase) and/or crystallization from different solvents including methanol and acetonitrile.
  • 2-(4-Hydroxy-phenyl)-N-[2-(1H-indol-2-yl)-phenyl]-acetamide
  • Figure US20070208019A1-20070906-C00066
  • 1 g (4.8 mmol) 2-(2-Aminophenyl) indole was dissolved in 200 ml acetonitrile. 1.46 g (9.6 mmol, 2 eq) of 4-hydroxyphenylacetic acid were dissolved in 50 ml acetonitrile and added to the solution. To the mixture were added 1.84 g (9.6 mmol, 2 eq) of EDC (dimethylaminopropyl ethylcarbodiimide hydrochloride). The reaction mixture was stirred at 23° C. for 16 hours. The solvent was removed and the residue was dissolved in 100 ml ethylacetate:methanol (10:1). It was extracted twice with 100 ml of aqueous 1M HCl as well as 100 ml of aqueous, saturated sodium bicarbonate solution. The aqueous phases were re-extracted with EtOAc, respectively. The combined organic phases were dried over magnesium sulfate. The crude product was chromatographed on silica using a ethylacetate/hexane gradient (10%-50%) to obtain 1.23 g of the amide as a pink colored powder in an overall yield of 75%. 100% Purity by LC/MS (230 DAD) Mass-spec [M+H+]=343.9 1H NMR (MeOH-d4): 3.60 s (2H), 6.10 s (1H), 6.70 d, 8 Hz (2h), 7.03 t, 8 Hz (1H), 7.09-7.13 m (3H), 7.25 t, 7Hz (1H), 7.34 m (2H), 7.49 d, 8 Hz (1H), 7.53 d, 8 Hz (1H), 7.95 d, 8 Hz (1H).
  • 4-Hydroxy-N-(2-(1H-indol-2-yl)-phenyl)-benzamide
  • Figure US20070208019A1-20070906-C00067
  • Prepared from 2-(2-aminophenyl) indole and 4-hydroxybenzoic acid in 35% overall yield following procedure 1. The product was chromatographed on silica and crystallized from acetonitrile. 95.6% Purity by LC/MS (230 DAD) Mass-spec (M+H+)=329.8 1H NMR (MeOH-d4): 6.65 s (1H), 6.83 m (2H), 7.01 t, 7Hz (1H), 7.12 td, 7,1 Hz (1H), 7.34 td, 7, 1 Hz (1H), 7.39-7.43 m (2H), 7.51 d, 7 Hz (1H), 7.66 dd, 8,1 Hz (1H), 7.76 m (2H), 7.91 dd, 8,1 Hz (1H).
  • 3,4-Dihydroxy-N-(2-(1H-indol-2-yl)-phenyl)-benzamide
  • Figure US20070208019A1-20070906-C00068
  • Prepared from 2-(2-aminophenyl) indole and 3,4-dihydroxybenzoic acid in 54% yield following procedure 1. The product was chromatographed on silica. 100% Purity by LC/MS (230 DAD), Mass-spec (M+H+)=345.83, 1H NMR (MeOH-d4): 6.645 s (1H), 6.80 d, 8 Hz (1H), 7.02 t, 8 Hz (1H), 7.12 td, 8, 1 Hz (1H), 7.23 dd, 8, 1 Hz (1H), 7.33-7.36 m (2H), 7.39-7.42 m (2H), 7.52 d, 7 Hz (1H), 7.65 dd, 8, 1 Hz (1H), 7.94 d, 8 Hz (1H).
  • 2-Hydroxy-N-(2-(1H-indol-2-yl)-phenyl)-benzamide
  • Figure US20070208019A1-20070906-C00069
  • Prepared from 2-(2-aminophenyl) indole and salicylic acid in 46% yield following procedure 1. The compound was chromatographed on silica using an ethylacetate/hexane gradient. % Purity by LC/MS (230 DAD), Mass-spec (M+H+)=329, 1H NMR (MeOH-d4): 6.66 s (1H), 6.86 dd,
  • N-[2-(1H-Indol-2-yl)-phenyl]-2-phenyl-acetamide
  • Figure US20070208019A1-20070906-C00070
  • Prepared from 2-(2-aminophenyl) indole and phenylacetic acid in 62% yield following procedure 1. The product was crystallized from methanol. 100% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=327, 1H NMR (MeOH-d4): 3.69 s (2H), 6.21 s (1H), 7.03 t, 7 Hz (1H), 7.12 t, 8 Hz (1H), 7.21-7.28 m (6H), 7.33-7.36 m (2H), 7.46 d, 8 Hz (1H), 7.54 dd, 7, 1 Hz (1H), 7.89 d, 8 Hz (1H).
  • N-[2-(1H-Indol-2-yl)-phenyl]-2-(2-methoxy-phenyl)-acetamide
  • Figure US20070208019A1-20070906-C00071
  • Prepared from 2-(2-aminophenyl) indole and 2-methoxyphenylacetic acid in 53% yield following procedure 1. The product was crystallized from acetonitrile. 100% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=357, 1H NMR (MeOH-d4): 3.45 s (3H, OMe), 3.67 s (2H), 6.17 s (1H), 6.75 d, 8 Hz (1H), 6.83 t, 8 Hz (1H), 7.06 t, 8 Hz (1H), 7.14 t, 8 Hz (1H), 7.17-7.21 m (3H), 7.23-7.36 m (2H), 7.49 t, 8 Hz (2H), 8.13 d, 8 Hz (1H).
  • 2-(2-Hydroxy-phenyl)-N-[2-(1H-indol-2-yl)-phenyl]-acetamide
  • Figure US20070208019A1-20070906-C00072
  • The product was prepared from N-[2-(1H-Indol-2-yl)-phenyl]-2-(2-methoxy-phenyl)-acetamide. Cleavage of the methylether was accomplished using 1.8 eq of BBr3 (1M solution in dichloromethane) at −78° C. to room temperature (23° C.) and subsequent hydrolysis (32% yield). 96% Purity by HPLC (ELSD), Mass-spec [M+H+]=343, 1H NMR (MeOH-d4): 3.69 s (2H), 6.25 s (1H), 6.71-6.74 m (2H), 7.01-7.07 m (2H), 7.10-7.13 m (2H), 7.22 t, 7 Hz (1H), 7.31-7.36 m (2H), 7.48 d, 8 Hz (1H), 7.52 dd, 8, 1 Hz (1H), 8.08 d, 8 Hz (1H).
  • 2-(3,4-Dihydroxy-phenyl)-N-[2-(1H-indol-2-yl)-phenyl]-acetamide
  • Figure US20070208019A1-20070906-C00073
  • Prepared from 2-(2-aminophenyl) indole and 3,4-dihydroxyphenylacetic acid in 17% yield. The product was chromatographed on silica. 100% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=359, 1H NMR (MeOH-d4): 3.56 s (2H), 6.10 s (1H), 6.59 dd, 8, 2 Hz (1H), 6.66 d, 8 Hz (1H), 6.78 d, 2 Hz (1H), 7.03 t, 8 Hz (1H), 7.11 t, 8 Hz (1H), 7.25 t, 8 Hz (1H), 7.31-7.35 m (2H), 7.51 d, 7 Hz (1H), 7.55 dd, 8, 1 Hz (1H), 7.99 d, 8 Hz (1H).
  • 2-Benzo[1,3]dioxol-5-yl-N-[2-(1H-indol-2-yl)-phenyl]-acetamide
  • Figure US20070208019A1-20070906-C00074
  • Prepared from 2-(2-aminophenyl) indole and 3,4-(methylenedioxy) phenylacetic acid in 55% yield. The product was purified by crystallization from acetonitrile. 100% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=371, 1H NMR (MeOH-d4): 3.61 s (2H), 5.82 s (2H), 6.20 s (1H), 6.66 d, 8 Hz (1H), 6.74 dd, 8, 1 Hz (1H), 6.76 d, 1Hz (1H), 7.03 t, 8 Hz (1H), 7.12 t, 8 Hz (1H), 7.25 t, 8 Hz (1H), 7.33-7.36 m (2H), 7.48 d, 8 Hz (1H), 7.52 d, 8 Hz (1H), 7.99 d, 8 Hz (1H).
  • N-[2-(1H-Indol-2-yl)-phenyl]-3-phenyl-propionamide
  • Figure US20070208019A1-20070906-C00075
  • Prepared from 2-(2-aminophenyl) indole and hydrocinnamic acid in 54% yield following procedure 1. The product was crystallized from methanol. 99% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=341, 1H NMR (DMSO-d6): 2.65 t, 7.5 Hz (2H), 2.91 t, 7.5 Hz (2H), 6.50 s (1H), 7.00 t, 7 Hz (1H), 7.10 t, 7 Hz (1H), 7.19-7.34 m (7H), 7.39 d, 8 Hz (1H), 7.51 d, 8 Hz (1H), 7.60-7.62 m (2H), 9.39 s (1H), 11.32 s (1H).
  • 3-(4-Hydroxy-phenyl)-N-[2-(1H-indol-2-yl)-phenyl]-propionamide
  • Figure US20070208019A1-20070906-C00076
  • Prepared from 2-(2-aminophenyl) indole and 3-(4-hydroxyphenyl) propionic acid in 55% yield following procedure 1. The product was chromatographed on silica and crystallized from acetonitrile. 100% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=357, 1H NMR (MeOH-d4): 2.61 t, 7.4 Hz (1H), 2.89 t, 7.4 Hz (1H), 6.37 s (1H), 6.72 d, 8 Hz (2H), 7.00-7.06 m (3H), 7.11 t, 7 Hz (1H), 7.27-7.35 m (2H), 7.38 d, 8 Hz (1H), 7.54 d, 7 Hz (1H), 7.58 dd, 7,1 Hz (1H), 7.67 d, 8 Hz (1H).
  • N-[2-(1H-Indol-2-yl)-phenyl]-3-(2-methoxy-phenyl)-propionamide
  • Figure US20070208019A1-20070906-C00077
  • Prepared from 2-(2-aminophenyl) indole and 3-(2-methoxyphenyl) propionic acid in 62% yield following procedure 1. The product was crystallized from acetonitrile. 96% Purity by LC/MS (TIC, DAD), Mass-spec [M+H+]=371, 1H NMR (MeOH-d4): 2.62 t, 7.5 Hz (2H), 2.97 t, 7.5 Hz (2H), 3.74 s (3H, OMe), 6.40 s (1H), 6.81 t, 7 Hz (1H), 6.88 d, 8 Hz (1H), 7.03 t, 8 Hz (1H), 7.10-7.14 m (2H), 7.17 t, 8 Hz (1H), 7.27 t, 7 Hz (1H), 7.33 td, 7.5, 1 Hz (1H), 7.40 d, 8 Hz (1H), 7.54 d, 8 Hz (1H), 7.57 dd, 7,1 Hz (1H), 7.76 d, 8 Hz (1H).
  • 3-(3,4-Dihydroxy-phenyl)-N-[2-(1H-indol-2-yl)-phenyl]-propionamide
  • Figure US20070208019A1-20070906-C00078
  • Prepared from 2-(2-aminophenyl) indole and 3,4-dihydroxyhydrocinnamic acid in 19% yield following procedure 1. The product was chromatographed on silica and crystallized from acetonitrile. 100% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=373, 1H NMR (MeOH-d4): 2.60 t, 7.4 Hz (2H), 2.85 t, 7.4 Hz (2H), 6.38 s (1H), 6.55 dd, 8,2 Hz (1H), 6.69 m (2H), 7.02 t, 8 Hz (1H), 7.11 t, 8Hz (1H), 7.27-7.35 m (2H), 7.38 d, 8 Hz (1H), 7.56 d, 8 Hz (1H), 7.58 dd, 7,1 Hz (1H), 7.70 d, 8 Hz (1H).
  • 2-(4-Hydroxy-phenoxy)-N-[2-(1H-indol-2-yl)-phenyl]-acetamide
  • Figure US20070208019A1-20070906-C00079
  • Prepared from 2-(2-aminophenyl) indole and (4-hydroxyphenoxy) acetic acid in 30% yield following procedure 1. The product was crystallized from methanol. 89% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=359, 1H NMR (MeOH-d4): 4.52 s (2H), 6.55 d, 9 Hz (2H), 6.58 s (1H), 6.61 d, 9 Hz (2H), 7.09 t, 8 Hz (1H), 7.18 t, 8 Hz (1H), 7.26 t, 8 Hz (1H), 7.37-7.43 m (2H), 7.56 t, 8 Hz (2H), 8.38 d, 8 Hz (1H).
  • 2-Acetylamino-3-(4-hydroxy-phenyl)-N-[2-(1H-indol-2-yl)-phenyl]-propionamide
  • Figure US20070208019A1-20070906-C00080
  • Prepared from 2-(2-aminophenyl) indole and N-acetyl-L-tyrosine in 69% yield following procedure 1. The product was chromatographed on silica. 99% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=414, 1H NMR (MeOH-d4): 1.79 s (3H, COMe), 2.83 dd, 14,9 Hz (1H), 3.14 dd, 14,6 Hz (1H), 4.58 dd, 9,6 Hz (1H), 6.51 s (1H), 6.70 d, 8 Hz (2H), 7.02 t, 7.5 Hz (1H), 7.07 d, 8 Hz (2H), 7.12 td, 8,1 Hz (1H), 7.27 td, 8, 1 Hz (1H), 7.33 td, 8,1 Hz (1H), 7.44 d, 8 Hz (1H), 7.56 d, 8 Hz (1H), 7.59 dd, 8,1 Hz (1H), 7.83 d, 8 Hz (1H).
  • Procedure 2:
  • N-[2-(1H-Indol-2-yl)-phenyl]-phthalamic acid
  • Figure US20070208019A1-20070906-C00081
  • 958 mg (4.6 mmol) 2-(2-Aminophenyl) indole and 675 mg (5.52 mmol, 1.2 eq) DMAP (dimethylamino pyridine) were dissolved in 35 ml anhydrous dichloromethane. The mixture was stirred for 10 min. 954 mg (6.44 mmol, 1.4 eq) of phthalic anhydride in 3 ml anhydrous dichloromethane were added and the mixture was stirred at 23° C. for three hours. To the mixture were added 20 ml dichloromethane. It was extracted with 50 ml aqueous 1 M HCl. The aqueous phase was re-extracted with 30 ml dichloromethane. The combined organic phases were dried over magnesium sulfate. The crude product was chromatographed on silica using an ethylacetate/hexane gradient (10%-90%) as mobile phase. The solvent was removed and the product was re-crystallized from ethylacetate:hexane (70:30) to obtain 654 mg of ivory colored crystals in 40% overall yield.
  • 95% Purity by LC/MS (230 DAD), Mass-spec [M+H+]=357, 1H NMR (MeOH-d4): 6.75 s (1H), 6.99 t, 8 Hz (1H), 7.09 t, 7Hz (1H), 7.35-7.43 m (3H), 7.52-7.57 m (3H), 7.63 t, 8 Hz (1H), 7.71 d, 8 Hz (1H), 7.84 d, 8 Hz (1H), 8.06 d, 7 Hz (1H).
  • 2-[2-(1H-Indol-2-yl)-phenylcarbamoyl]-nicotinic acid
  • Figure US20070208019A1-20070906-C00082
  • 104 mg (0.5 mmol) 2-(2-Aminophenyl) indole and 74 mg (0.6 mmol, 1.2 eq) DMAP (dimethylamino pyridine) were dissolved in 5 ml anhydrous dichloromethane. The mixture was stirred for 10 min. 104 mg (0.7 mmol, 1.4 eq) of 2,3-pyridinedicarboxylic anhydride were added and the mixture was stirred at 23° C. for three hours.
  • To the mixture were added 20 ml dichloromethane. It was extracted with 20 ml saturated NaCl solution. The aqueous phase was re-extracted with 20 ml dichloromethane. The combined organic phases were dried over magnesium sulfate. The crude product was chromatographed on silica and re-crystallized from acetonitrile. 100% Purity by HPLC (UV, 230 nm), Mass-spec [M+H+]=358, 1H NMR (MeOH-d4): 6.80 s (1H), 7.04 t, 7 Hz (1H), 7.14 t, 8 Hz (1H), 7.31 t, 7 Hz (1H), 7.42 t (2H), 7.57 d, 8 Hz (1H), 7.61 dd, 8, 5 Hz (1H), 7.67 dd, 8, 1 Hz (1H), 8.13 dd, 8,1 Hz (1H), 8.30 d, 8 Hz (1H), 8.61 dd, 5, 1 Hz (1H).
  • 3,4,5-trihydroxy-N-[2-(1H-indol-2-yl)-phenyl]-benzamide
  • Figure US20070208019A1-20070906-C00083
  • A 25-mL one-necked recovery flask equipped with a stirring bar and a septum was charged with gallic acid (176 mg; 1.03 mmol; 1.00 equiv). A clear, colorless solution was formed on addition of 5 mL of dichloromethane. Solid EDC (197 mg; 1.03 mmol; 1.00 equiv) and 2-(2-aminophenyl)indole (194 mg; 0.932 mmol; 0.904 equiv) were added sequentially as solids. The reaction was worked up after 24 h by extraction with 10 mL of NaHCO3 (satd aq). The organic layer was dried (anhydrous sodium sulfate), filtered and concentrated by rotary evaporation to yield a yellow oily paste. The crude was purified using DCM-MeOH (19:1) to yield a light yellow solid (230 mg; 68%).
    Representative Syntheses of Compounds of Structure II
    Figure US20070208019A1-20070906-C00084
  • A 100-mL, one-necked, round bottomed flask with a magnetic stirring bar and a septum was charged with 2-(2-aminophenyl) indole (210 mg; 1.01 mmol). The indole was dissolved in ca. 7 mL of dichloromethane to give a very pale yellow solution. DMAP (143 mg; 1.17 mmol; 1.16 equiv) and phthalic anhydride (179 mg; 1.21 mmol; 1.20 equiv) were added sequentially each dissolving completely with a resulting yellow solution. The solution was stirred at room temperature, and the reaction was followed by TLC, and showed complete conversion in ca. 30 min as indicated by the disappearance of the 2-(2-aminophenyl) indole. The reaction mixture was poured into a 125-mL separatory funnel and extracted with 15 mL HCl (aq, ca. 1 M). The aqueous layer was washed with 2×5 mL CH2Cl2, and the combined organic layer was dried (anhydrous Na2SO4), filtered, and concentrated by rotary evaporation to yield a canary yellow foamy solid (0.377 g) of N-[2-(1H-indol-2-yl)-phenyl]phthalamic acid. MS (M+H+: calcd 357; found 357).
  • A 5-mL reaction vial with a stirring vane and a teflon stopper was charged with N-(2-(1H-indol-2-yl)-phenyl)phthalamic acid, (140 mg; 0.393 mmol) and 0.500 mL of quinoline. To the solution, which was a dark brown-black, was added zinc acetate dihydrate (98.0 mg; 0.464 mmol; 1.16 equiv) and the resulting solution was heated to 120° C. for ca. 2 h. On adding 1 mL of ethyl acetate, a light tan solid resulted. The solid was washed with 4×10 mL 1 M HCl, then with 10 mL ethylacetate-hexane (1:1), followed by 10 mL ethyl acetate. The solid was dried in a vacuum dessicator over phosphorus pentoxide to yield 80.1 mg (71%) of a light tan solid. MS (M+H+: calcd 339; found 339).
    Pteridine, and Substituted Pteridine Syntheses
    Figure US20070208019A1-20070906-C00085
  • Experimental Procedure 6,7-(4,4′-Dihydroxyphenyl)-pteridin-4-yl-3-morpholin-4-yl-propyl)-amine hydrochloride Salt
  • Figure US20070208019A1-20070906-C00086
  • 1.19 g (3.59 mmol) of 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine was dissolved in 10 mL of N-(3-aminopropyl)morpholine and 0.697 g (7.18 mmol, 2.0 eq.) of sulfamic acid was added. The reaction mixture was heated at 160° C. for 18 hrs. Then it was cooled down to r.t., diluted with 20 mL of methanol and added dropwise to 1 L of diethyl ether. The resulting oil was purified by prep-HPLC, fractions were collected and solvent was removed in vacuo to give red oily residue, which was dissolved in 20 mL of methanol. 5 g of Amberlite chloride-exchange resin was added to the methanol solution. The reaction mixture was left to stir at r.t. overnight, then it was filtered and resin was washed with methanol. The methanol washes were combined, solvent was removed in vacuo. The resulting residue was re-dissolved in 2 mL of methanol and added dropwise to 45 mL of diethyl ether. The formed bright-yellow precipitate was centrifuged down, washed with 40 mL of diethyl ether twice and dried in vacuo to give 281.0 mg (26.2% overall) of the product as a yellow solid. Mass-spec [ES+]=459.2. 100% purity by LC/MS (230 DAD). 1H NMR (MeOH-d4) 2.28-2.31 (2H, m), 3.14-3.17 (2H, m), 3.30-3.35 (2H, m), 3.51-3.53 (2H, m), 3.80-3.84 (2H, m), 3.97-4.00( 2H, m), 4.04-4.06 (2H, m), 6.77-6.82 (4H, dd), 7.49-7.54 (4H, dd), 8.84 (1H, s).
  • Acetic acid 4-[7-(4-acetoxy-phenyl)-4-amino-pteridin-6-yl]-phenyl ester
  • Figure US20070208019A1-20070906-C00087
  • 662.6 mg (2.0 mmol) of 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine was dissolved in 20 ml of trifluoroacetic acid. 1.0 mL (14.06 mmol, 7.0 eq) of acetyl chloride was added via syringe to this mixture. Upon heating to 80° C. bubbling of the reaction mixture and evolution of HCl gas was observed. The reaction mixture was heated at 80° C. for 40 min, at which point LC/MS indicated a complete conversion of the starting material to the di-acetate. Solvent was removed in vacuo to give bright-yellow oil, which upon standing solidified. 40 mL of diethyl ether was added, the solid was crushed with spatula, centrifuged down, washed with 45 mL of diethyl ether twice and dried in vacuo to give 1.034 g (97.7%) of the product as a light-yellow solid. 97.5% purity by LC/MS (230 DAD). Mass-spec [ES+]=416.5. 1H NMR (DMSO-d6) 2.280 (3H, s), 2.284 (3H, s), 7.16-7.21 (4H, dd), 7.56-7.62 (4H, dd), 8.80 (1H, s), 9.46 (1H, br.s), 9.52 (1H, br.s).
  • Acetic acid 4-12-(4-acetoxy-phenyl)-6-amino-pyrido[2,3-b]pyrazin-3-yl]-phenyl ester
  • Figure US20070208019A1-20070906-C00088
  • 201.0 mg (0.5 mmol) of 2,3-bis(4-hydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine was dissolved in 10 ml of trifluoroacetic acid. 0.355 mL (5.0 mmol, 10.0 eq) of acetyl chloride was added via syringe to this mixture. Upon heating to 80° C. bubbling of the reaction mixture and evolution of HCl gas was observed. The reaction mixture was heated at 80° C. for 1 hr, at which point LC/MS indicated a complete conversion of the starting material to the di-acetate. Solvent was removed in vacuo to give brown solid. The solid was dissolved in 3.0 mL of methanol and this solution was added to 40 mL of diethyl ether. Upon standing for about an hour a brown precipitate was formed. It was centrifuged down, washed with 45 mL of diethyl ether twice and dried in vacuo to give 191.9 mg (79.0%) of the product as a light-brown solid. 98% purity by LC/MS (230 DAD). Mass-spec [ES+]=415.5. 1H NMR (MeOH-d4) 2.28 (6H, s), 7.10-7.12 (4H, d), 7.24-7.26 (1H, d), 7.48-7.50 (2H, d), 7.54-7.56 (2H, d), 8.24-8.26 (1H, d).
  • Synthesis of 4-substituted 6-phenyl-pteridin-4-yl-amines
  • Figure US20070208019A1-20070906-C00089
  • General Procedure
  • 0.55 mmol of amine was suspended in 4 mL of acetic acid. The mixture was brought to reflux and 0.5 mmol of N′-(3-cyano-5-phenyl-pyrazin-2-yl)-N,N′-dimethyl-formamidine was added to the solution. The reaction was refluxed for 2-5 hours. The progress of the reaction was monitored by LC/MS. After the reaction had completed, the reaction mixture was cooled down to ambient temperature and acetic acid was removed in vacuo. 5 mL of methanol was added to the resulting residue and it was crushed with a spatula into a fine suspension. The suspension was added to 45 mL of diethyl ether. The solid was centrifuged down, washed with 45 mL of diethyl ether twice and dried in vacuo to give the product as a solid.
  • (3,4-Dimethoxy-phenyl)-(6-phenyl-pteridine-4-yl)-amine
  • Figure US20070208019A1-20070906-C00090
  • 95.7% yield. 100% purity by LC/MS (230 DAD). Mass-spec [ES+]=360.9. 1H NMR (DMSO-d6) 3.79 (3H, s), 3.81 (3H, s), 7.02-7.03 (1H, d), 7.56-7.63 (5H, m), 8.58-8.60 (2H, m), 8.71 (1H, s), 9.80 (1H, s), 10.27 (1H, s).
  • (3-Chloro-4,6-dimethoxy-phenyl)-(6-phenyl-pteridin-4-yl)-amine
  • Figure US20070208019A1-20070906-C00091
  • 96% purity by LC/MS (230 DAD). Mass-spec [ES+]=394.9. 1H NMR (DMSO-d6) 3.92 (3H, s), 3.97 (3H, s), 6.96 (1H, s), 7.59-7.65 (3H, m), 8.29 (1H, s), 8.42-8.43 (2H, d), 8.74 (1H, s), 9.80 (1H, s), 9.89 (1H, s).
  • (3-Hydroxy-4-methoxy-phenyl)-(6-phenyl-pteridin-4-yl)-amine
  • Figure US20070208019A1-20070906-C00092
  • 79.5% yield. 100% purity by LC/MS (230 DAD). Mass-spec [ES+]=346.9. 1H NMR (DMSO-d6) 3.79 (3H, s), 6.97-6.98 (1H, d), 7.29-7.31 (1H, dd), 7.46-7.47 (1H, d), 7.58-7.62 (3H, m), 8.58-8.60 (2H, m), 8.69 (1H, s), 9.15 (1H, s), 9.78 (1H, s), 10.2 (1H, s).
  • (4-Hydroxy-phenyl)-(6-phenyl-pteridin-4-yl)-amine
  • Figure US20070208019A1-20070906-C00093
  • 86.0% yield. 98% purity by LC/MS (230 DAD). Mass-spec [ES+]=316.8. 1H NMR (DMSO-d6) 6.82-6.84 (2H, d), 7.57-7.62 (3H, m), 7.65-7.67 (2H, d), 8.58 (2H, m), 8.63 (1H, s), 9.45 (1H, s), 9.78 (1H, s), 10.26 (1H, s).
  • (2,5-Dimethyl-4-hydroxy-phenyl)-(6-phenyl-pteridin-4-yl)-amine
  • Figure US20070208019A1-20070906-C00094
  • 76.8% yield. 100% purity by LC/MS (230 DAD). Mass-spec [ES+]=344.9. 1H NMR (DMSO-d6) 2.12 (6H, s), 6.73 (1H, s), 7.12 (1H, s), 7.55-7.60 (3H, m), 8.54 (1H, s), 8.57-8.58 (2H, m), 9.29 (1H, s), 9.78 (1H, s), 10.16 (1H, s).
  • 2-Hydroxy-5-(6-phenyl-pteridin-4-ylamino)-benzenesulfonic acid
  • Figure US20070208019A1-20070906-C00095
  • 70.1% yield. 83% purity by LC/MS (230 DAD). Mass-spec [ES+]=396.8. 1H NMR (DMSO-d6) 7.17-7.19 (1H, dd), 7.58-7.63 (3H, m), 7.80-7.82 (1H, dd), 7.993-7.999 (1H, d), 8.61-8.63 (2H, m), 8.73 (1H, s), 9.80 (1H, s), 10.51-10.53 (3H, m).
  • 2-Diethylaminomethyl-4-(6-phenyl-pteridin-4-ylamino)-phenol
  • Figure US20070208019A1-20070906-C00096
  • 94.3% yield. 98.8% purity by ELSD. Mass-spec [ES+]=402.0. 1H NMR (DMSO-d6) 1.28-1.31 (6H, t), 3.11-3.16 (4H, m), 4.25-4.26 (2H, d), 7.07-7.09 (1H, d), 7.58-7.63 (3H, m), 7.75-7.77 (1H, dd), 7.89-7.90 (1H, d), 8.57-8.59 (2H, m), 8.67 (1H, s), 9.81 (1H, s), 10.39 (1H, s), 10.5 (1H, s).
  • 5-(6-Phenyl-pteridin-4-ylamino)-quinolin-8-ol hydrochloride Salt
  • Figure US20070208019A1-20070906-C00097
  • 79.9% yield. 85% purity by LC/MS (230 DAD). Mass-spec [ES+]=367.7. 1H NMR (DMSO-d6) 7.39-7.40 (1H, m), 7.61-7.72 (3H, m), 7.73-7.77 (2H, m), 8.60-8.67 (4H, m), 9.01-9.02 (1H, m), 9.92 (1H, s), 11.58 (1H, br.s.).
  • Benzyl-(6-phenyl-pteridin-4-yl)-amine
  • Figure US20070208019A1-20070906-C00098
  • 50.5% yield. 95.2% purity by LC/MS (230 DAD). Mass-spec [ES+]=314.2. 1H NMR (MeOH-d4) 4.87 (2H, s), 7.24-7.26 (1H, m), 7.30-7.33 (2H, m), 7.43-7.44 (2H, m), 7.51-7.54 (3H, m), 8.30-8.32 (2H, m), 8.58 (1H, s), 9.56 (1H, s).
  • 4-[(6-phenyl-pteridin-4-ylamino)-methyl]-benzene-1,2-diol
  • Figure US20070208019A1-20070906-C00099
  • 39.8% yield. 100% purity by LC/MS (230). Mass-spec [ES+]=346.2. 1H NMR (DMSO-d6) 5.56 (2H, s), 6.68-6.70 (1H, d), 6.75-6.77 (1H, dd), 6.875-6.879 (1H, d), 7.62-7.64 (3H, m), 8.53-8.55 (2H, m), 8.97 (1H, s), 9.12 (1H, s), 9.24 (1H, s), 9.89 (1H, s), 10.48 (1H, s), 10.54 (1H, s).
  • Indan-2-yl-(6-phenyl-pteridin-4-yl)-amine
  • Figure US20070208019A1-20070906-C00100
  • 53.9% yield. 96.6% purity by LC/MS. Mass-spec [ES+]=340.2. 1H NMR (DMSO-d6) 3.21-3.26 (2H, dd), 3.35-3.40 (2H, dd), 5.13-5.18 (1H, m), 7.17-7.19 (2H, m), 7.25-7.27 (2H, m), 7.55-7.59 (3H, m), 8.47-8.49 (2H, m), 8.65 (1H, s), 8.94-8.96 (1, d), 9.72 (1H, s).
  • 2-(3,4-Dimethoxy-phenyl)-ethyl] -(6-phenyl-pteridin-4-yl)-amine
  • Figure US20070208019A1-20070906-C00101
  • 66.5% yield. 95.5% purity by LC/MS (230 DAD). Mass-spec [ES+]=388.2. 1H NMR (MeOH-d4) 2.98-3.01 (2H, t), 3.76 (3H, s), 3.78 (3H, s), 3.90-3.93 (2H, t), 6.85-6.88 (2H, m), 6.93-6.93 (1H, m), 7.55-7.57 (3H, m), 8.27-8.29 (2H, m), 8.58 (1H, s), 9.56 (1H, s).
  • Synthesis of 4-substituted 7-phenyl-pteridin-4-yl-amines
  • Figure US20070208019A1-20070906-C00102
  • 4-(4-Amino-pteridin-7-yl)-phenol
  • Figure US20070208019A1-20070906-C00103
  • 1N aqueous NaOH was added to a suspension of 1.33 g (5.95 mmol) of 4,5,6-triaminopyrimidine sulfate in 20 mL of water until pH reached 8. To this solution was added a solution of 1.0 g (5.95 mmol) of 4-hydroxyphenylglyoxal in 20 mL of methanol. The reaction mixture was left to stir at ambient temperature for 18 hrs. Formation of a yellow precipitate was observed. It was collected, washed with 20 mL of water, 20 mL of methanol, 45 mL of diethyl ether 3 times and dried in vacuo to give 1.513 g of the product as a light-yellow solid. 100% yield. 97.5% purity by LC/MS (230 DAD). Mass-spec [ES+]=. 1H NMR (DMSO-d6) 6.95-6.98 (2H, d), 8.31 (1H, br.s.), 8.19 (1H, br.s.), 8.21-8.24 (2H, d), 8.51 (1H, s), 9.34 (1H, s).
  • General Procedure
  • 239.2 mg (1.0 mmol) of 4-(4-amino-pteridin-7-yl)-phenol was suspended in 3 mL of amine and 194.2 mg (2.0 mmol) of sulfamic acid was added to this mixture. The reaction mixture was heated at 160-180° C. for 18 hrs. Then it was cooled down to ambient temperature and dissolved in 5-10 mL of methanol. Methanol solution was added dropwise to 45 mL of diethyl ether, the mixture was vortexed and centrifuged down. Solvent was decanted and the residue was purified by prep-HPLC.
  • 4-(4-Benzylamino-pteridin-7-yl)-phenol
  • Figure US20070208019A1-20070906-C00104
  • 79% yield. 98.5% purity by LC/MS (230 DAD). Mass-spec [ES+]=330.2. 1H NMR (DMSO-d6) 4.77-4.78 (2H, d), 6.97-6.98 (2H, d), 7.24-7.26 (1H, m), 7.30-7.33 (2H, m), 7.43-7.44 (2H, m), 8.23-8.24 (2H, d), 8.58 (1H, s), 9.37 (1H, s).
  • Substituted (6-phenyl-5,6,7,8-tetrahydro-pteridin-4-yl)-amines and (7-phenyl-5,6,7,8-tetrahydro-pteridin-4-yl)-amines
  • Figure US20070208019A1-20070906-C00105
  • General Procedure
  • To a stirred solution of the pteridine (5.0 mmol) in 15 mL of dry methanol was added sodium borohydride (5 mmol) at room temperature. The reaction mixture was stirred for 30 min and then neutralized with acetic acid. Solvent was removed in vacuo and the residue was washed with water, cold methanol, diethyl ether and dried in vacuo. The resulting solid was purified by reverse phase prep-HPLC.
  • 6,7-disubstituted Pteridines; Method A
  • Figure US20070208019A1-20070906-C00106

    Method B
  • The pyridine or pyrimidine is made into the free base with sodium carbonate, sodium bicarbonate or sodium hydroxide using solid or solution by using the correct amount in equivalents to neutralize the acid or by adjusting the pH to neutral to slightly basic (ca. 7-9). The benzil or glyoxal is added and the solution is heated for 1 h-5 h. The free base formed precipitates out of solution and is washed successively with water, methanol and then ether. The solid is vacuum dessicator dried.
  • This reaction was carried out by method A by using 23.5 mg of the pyrimidine and 22.5 mg of pyridyl. The reaction mixture was heated for 1 h. The product was precipitated into 5 mL of 1:1 EtOAc-ether, filtered and washed with 50 mL of ether. M+H calcd and found 400.
  • 6,7-bis(3-hydroxyphenyl)-pteridine-2,4,-diamine
  • A 5-mL reaction vial with a stirring vane and a teflon cap was charged with 3,3′-dihydroxybenzil (Midori Kagaku Co Ltd; 121 mg; 0.500 mmol) and 0.700 mL of m-cresol (Acros) which gives a dull-yellow solution on warming to ca. 50° C. The clear solution is treated with 2,4,5,6-tetraaminopyrimidine sulfate (Aldrich; 119 mg; 0.500 mmol; 1.00 equiv) which is insoluble in the reaction solution at room temperature and goes into solution on heating to ca. 200° C. to give an almost completely homogeneous dark greenish solution in about 30 min -45 min. Heating between 200° C. and 220° C. for an additional 1.5 h, followed by cooling to room temperature, and precipitation by pouring into 40 mL of anhydrous diethyl ether resulted in a greenish-yellow precipitate. The solid was centrifuged, the supernatant decanted, the solid precipitate was washed with 5×40 mL of diethyl ether and dried in a vacuum dessicator to yield 0.275 g (124%)1 of a yellow-green solid. The only obvious major impurity is the reaction solvent, m-cresol. MS (M+H+: calcd 347; found 347).
  • In case purified 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine is required, the crude 3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl] phenol may be dissolved in methanol, and an aqueous solution of 2.0 equiv.-2.2 equiv. of sodium bicarbonate (or excess sodium bicarbonate) may be added to neutralize the acid making sure the pH is between 6 and 8 to ensure free-base. The free-base precipitates out of the methanol-water mixture within a few seconds. In case, precipitation does not occur, excess methanol ensures precipitation. The yellowish solid may be isolated and washed with acetonitrile-water or isopropanol-water mixtures and then with methanol-ether, and then ether (×3). The product is dried and stored as the free base, 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine.
  • In case the purified sulfate is required, the free base is protonated in MeOH by adding a conc. aqueous sulfuric acid (1.0 equiv) to a slurry of the compound in MeOH. The homogeneous protonated product is precipitated out by adding ether to the methanol.
  • 6-pyridin-2-yl-7-pyridin-3-ylpteridin-4-amine sulfate Salt
  • Figure US20070208019A1-20070906-C00107
  • A 5-mL reaction vial with a stirring vane and a teflon cap was charged with pyridyl (22.5 mgl) and 0.500 mL of m-cresol (Acros) which gives a dull-yellow solution on warming to ca. 50° C. The clear solution is treated with 2,4,5-triaminopyrimidine sulfate (Aldrich; 23.5 mg) which is insoluble in the reaction solution at room temperature and goes into solution on heating to ca. 200° C. to give an almost completely homogeneous dark solution in about 30 min-45 min. Heating between 200° C. and 220° C. for an additional 0.5 h, followed by cooling to room temperature, and precipitation by pouring into 40 mL of anhydrous diethyl ether resulted in a dull yellow precipitate. The solid was centrifuged, the supernatant decanted, the solid precipitate was washed with 4×40 mL of diethyl ether and dried in a vacuum dessicator to yield a yellow solid. MS (M+H+: calcd 302; found 302).
  • 6,7-bis(3,4-dihydroxyphenyl)pteridine-2,4-diol
  • Figure US20070208019A1-20070906-C00108
  • A 5-mL reaction vial with a stirring vane and a teflon cap was charged with 3,3′,4,4′-tetrahydroxybenzil (137 mg; 0.500 mmol) and 1.00 mL of m-cresol (Acros) which gives a yellow-brown slurry warming to ca. 50° C. The suspension is treated with sulfate 5,6-diamino-2,4-dihydroxypyrimidine sulfate (120 mg; 0.500 mmol; 1.00 equiv) which is insoluble in the reaction solution at room temperature and goes into solution on heating to ca. 200° C. to give homogeneous dark solution. Heating between 200° C. and 220° C. for an additional 2 h, followed by cooling to room temperature, and precipitation by pouring into 40 mL of anhydrous diethyl ether resulted in a light yellow precipitate. The solid was centrifuged, the supernatant decanted, the solid precipitate was washed with 4×40 mL of diethyl ether and dried in a vacuum dessicator to yield a yellow solid. MS (M+H+: calcd 381; found 381).
  • 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine dihydrochloride Salt
  • Figure US20070208019A1-20070906-C00109
  • A 125-mL amber-bottle with a stirring bar and a septum was charged with crude 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine (135 mg; 0.304 mmol) and 5 mL of methanol. To the resulting dark brownish-green solution was added Amberlite (Cl) resin (GFS Chemical; 5.20 g). The heterogeneous mixture was stirred gently for ca. 16 h. with an apparent visual lightening of the solution. The solution was filtered to remove the resin beads, which were rinsed with 5×8 mL of MeOH. The light brown solution was concentrated on a rotary evaporator to yield 133 mg of dark brown oil. The oil was redissolved in ca. 2 mL of MeOH, and added to 40 mL of diethyl ether to yield a flocculent yellow precipitate that was isolated by centrifuging and decanting the supernatant. The solid was washed with 4×40 mL of diethyl ether, and dried in a vacuum dessicator to yield a greenish-yellow product (94.0 mg; 0.246 mmol; 81% for two steps). 98% purity by LC/MS (230 DAD). Mass-spec [ES+]=347.7. 1H NMR (DMSO-d6) 6.78-6.87 (4H, m), 6.92-6.95 (2H, m), 7.12-7.16 (2H, m), 7.82 (1H, br.s), 8.68 (1H, br.s), 9.15 (1H, s), 9.25 (1H, s), 9.58 (1H, s), 9.72 (1H, s). C, N analysis: C18H16Cl2N6O2 Calcd.: C, 51.56; N, 20.04; Found: C, 51.64; N, 19.93).
    Method B
    Figure US20070208019A1-20070906-C00110
  • 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine
  • Figure US20070208019A1-20070906-C00111
  • 4.76 g (20.0 mmol) of 2,4,5,6-tetraaminopyrimidine sulfate was added in small portions to a solution of 3.36 g (40.0 mmol) sodium bicarbonate in 100 mL of water with vigorous stirring. A brisk evolution of CO2 gas was observed. The resulting suspension was heated to 80° C. and 4.84 g (20.0 mmol) of 3,3′-dihydroxybenzil was added to the mixture. The reaction mixture was refluxed for 3 hours, at which point a bright-yellow precipitate was formed in abundance.
  • The precipitate was filtered, washed with water, then with methanol, followed by diethyl ether and dried in vacuo to give 6.46 g (93.3% yield) of a bright-yellow solid. 98.10% purity by LC/MS (230 DAD). Mass-spec [ES+]=347.7. 1H NMR (DMSO-d6) 6.64 (2H, br.s.), 6.69-6.82 (4H, m), 6.86-6.89 (2H, m), 7.06-7.11 (2H, m), 7.57 (1H, br.s), 7.65 (1H, br.s), 9.38 (1H, s), 9.49 (1H, s).
  • 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine methanesulfonate Salt
  • Figure US20070208019A1-20070906-C00112
  • 2.66 g (7.68 mmol) of 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine was added to a solution of 1.55 g (16.13 mmol) of methanesulfonic acid in 20 mL of MeOH with stirring. Pteridine immediately dissolved to give a dark-greenish solution. The reaction mixture was stirred for 30 min and then added dropwise to 400 mL of diethyl ether with vigorous stirring. The formed yellow precipitate was collected, washed repeatedly with ether and dried in vacuo to give 3.36 g (99.1% yield) of the product as a light-yellow powder. 95.5% purity by LC/MS (230 DAD). Mass-spec [ES+]=347. 1H NMR (MeOH-d4) 2.71 (3H, s), 6.80-6.85 (2H, m), 6.90-6.92 (2H, m), 6.95 (1H, m), 7.00 (1H, m), 7.12-7.16 (2H, m).
  • 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine dihydrobromide Salt
  • The salt is made by making a HBr containing solution of methanol using methanol and acetyl bromide (10 equiv-12 equiv) at −78° C., and adding the free base to this solution so that the resulting solution concentration is below 0.4 M. The light yellow solution is stirred for ca. 30 min-60 min, concentrated by rotary evaporation to a yellow solid and then washed with ether, or with ether-hexanes, and dried in a vacuum dessicator
    Figure US20070208019A1-20070906-C00113
  • 98.8% Purity by LC/MS (230 DAD). Mass-spec [ES+]=347. 1H NMR (MeOH-d4) 6.81-6.86 (2H, m), 6.92-6.95 (2H, m), 6.96-7.01 (2H, m), 7.13-7.18 (2H, m). Elemental analysis; calcd: C, 42.54;H, 3.17; N, 16.54; found: C, 43.11;H, 3.47; N, 16.47.
  • 6,7-bis(3-hydroxyphenyl)-pteridin-4-ylamine
  • Figure US20070208019A1-20070906-C00114
  • 2.23 g (10.0 mmol) of 4,5,6-triaminopyrimidine sulfate was added in small portions to a solution of 1.68 g (20.0 mmol) sodium bicarbonate in 50 mL of water with vigorous stirring. A brisk evolution of C02 gas was observed. The resulting suspension was heated to 80° C. and 2.42 g (10 mmol) of 3,3′-dihydroxybenzil was added to the mixture. The reaction mixture was refluxed for 1 hour, during which time the starting materials completely dissolved and the product precipitated out as a light-yellow solid.
  • The precipitate was collected, washed with water, then with methanol, followed by diethyl ether and dried in vacuo to give 3.14 g (94.8% yield) of the product as a light-yellow solid. 100% purity by LC/MS (230 DAD). Mass-spec [ES+]=332.8. 1H NMR (DMSO-d6) 6.77-6.83 (3H, m), 6.91-6.92 (1H, d), 6.90-6.99 (2H, m), 7.11-7.15 (2H, m), 8.17 (1H, br.s), 8.25 (1H, br.s.), 8.56 (1H, s), 9.55 (2H, br.s).
  • 6,7-bis(3-hydroxyphenyl)-pteridin-4-ylamine hydrochloride Salt
  • Figure US20070208019A1-20070906-C00115
  • 4.4 g (13.27 mmol) of 6,7-bis(3-hydroxyphenyl)-pteridin-4-ylamine was suspended in 35 ml of MeOH. A solution of 2.61 g of aq. HCl (26.55 mmol, 12.1 N) in 5 mL of MeOH was added to the suspension. The reaction mixture became homogeneous within 5 min of stirring. It was left to stir for 30 min and then added dropwise to 400 mL of diethyl ether with vigorous stirring. The resulting precipitate was collected, washed repeatedly with ether and dried in vacuo to give 4.62 g (94.7% yield) of the product as a bright-yellow solid. 98.3% purity by LC/MS (230 DAD). Mass-spec [ES+]=332.8. 1H NMR (MeOH) 6.88-6.90 (2H, m), 6.99-7.02 (2H, m), 7.04-7.08 (2H, m), 7.17-7.20 (2H, m), 8.79 (1H, s).
  • 6,7-bis(3-hydroxyphenyl)-pteridin-4-ylamine methanesulfonate Salt
  • Figure US20070208019A1-20070906-C00116
  • 1.308 g (13.63 mmol) of methanesulfonic acid in 10 mL of MeOH was added to the suspension of 2.15 g (6.48 mmol) of 6,7-bis(3-hydroxyphenyl)-pteridin-4-ylamine in 10 mL of MeOH. The mixture became homogeneous and orange-red in color. It was stirred for 30 min and then added dropwise to 400 mL of diethyl ether with vigorous stirring. The formed yellow precipitate was collected, washed with diethyl ether and dried in vacuo to give 2.69 g (97.11% yield) of the product as a light-yellow powder. Mass-spec [ES+]=332.8. 1H NMR (MeOH-d4) 2.70 (3H, s), 6.86-6.90 (2H, m), 6.99-7.01 (2H, m), 7.04-7.08 (2H, m), 7.16-7.21 (2H, m), 8.80 (1H, s).
  • 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine
  • Figure US20070208019A1-20070906-C00117
  • 1.5 mmol of the sulfate salt (6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt as 1:1 complex with m-cresol) was dissolved in 10 mL of 1:1 solution of MeOH/H2O. 2.0 eq. of solid NaHCO3 were added to this solution. A brisk evolution of CO2 was observed and a light-yellow precipitate started to form in ˜10-15 min of stirring. The mixture was left to stir overnight and a yellow precipitate was formed in abundance. 20 mL of water was added, the formed precipitate was filtered, washed twice with water to remove Na2SO4, washed with cold MeOH, washed repeatedly with Et2O and dried in vacuo to give the product in 81.3% yield over two steps ( reaction in m-cresol and free base synthesis). 95.5% purity by LC/MS (230 DAD). Mass-spec [ES+]=332.8. 1H NMR (DMSO-d6) 6.72-6.76 (4H, dd), 7.35-7.42 (4H, dd), 8.06 (1H, br.s), 8.14 (1H, br.s), 8.50 (1H, s), 9.77 (1H, br.s), 9.87 (1H, br.s).
  • 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate Salt
  • Figure US20070208019A1-20070906-C00118
  • 1.97 g of 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine was added to a solution of 0.585 g of concentrated sulfuric acid in 50 mL of MeOH. The homogeneous mixture was left to stir at ambient temperature for 2 hours, then it was added dropwise to 400 mL of diethyl ether. The formed orange precipitate was collected, washed repeatedly with ether and dried in vacuo to give 2.36 g (92.5% yield) of the product as a light-orange fluffy powder. 100% purity by LC/MS (230 DAD). Mass-spec [ES+]=332.8. 1H NMR (MeOH-d4) 6.77-6.80 (4H, m), 7.48-7.53 (4H, m), 8.73 (1H, s). 1H NMR (DMSO-d6) 6.76-6.81 (4H, dd), 7.41-7.47 (4H, dd), 8.84 (1H, s), 9.85 (1H, s), 10.01 (1H, s), 9.94 (1H, br.s), 10.15 (1H, br.s).
  • 6,7-bis(3,4-dihydroxyphenyl)-pteridine-2,4-diamine
  • Figure US20070208019A1-20070906-C00119
  • 105.0 mg (0.253 mmol) of 6,7-bis(3,4-dihydroxyphenyl)-pteridine-2,4-diamine dihydrochloride salt was dissolved in 3 mL of water and 42.53 mg of solid NaHCO3 was added to this solution. The reaction mixture was stirred for 30 min. A slurry of yellow precipitate was formed, it was centrifuged down and solvent was decanted. The dark-yellow residue was dissolved in 3 mL of MeOH and added dropwise to 40 mL of diethyl ether. The formed yellow precipitate was collected, washed with ether and dried in vacuo to give 92.5 mg (96.5% yield) of the product as a yellow, fluffy powder. 97% purity by LC/MS (230 DAD). Mass-spec [M+H+]=379.3. 1H NMR (MeOH-d4) 6.68-6.73 (2H, dd), 6.79-6.81 (1H, dd), 6.84-6.86 (1H, dd), 6.93 (1H, d), 7.03 (1H, d).
  • 6,7-bis(3,4-dihydroxyphenyl)-pteridine-2,4-diamine dihydrochloride Salt
  • Figure US20070208019A1-20070906-C00120
  • Mass-spec [ES+]=379.8. 1H NMR (MeOH-d4) 6.70 (1H, d), 6.75 (1H, d), 6.88 (1H, dd), 6.93 (1H, dd), 6.95 (1H, d), 7.08 (1H, d).
  • 6,7-bis(3,4-dihydroxyphenyl)-pteridin-4-ylamine hydrochloride Salt or 4-[4-amino-6-(3,4-dihydroxyphenyl)pteridin-7-yl]benzene-1,2-diol hydrochloride Salt
  • Figure US20070208019A1-20070906-C00121
  • A 5-mL reaction vial with a stirring vane and a teflon cap was charged with 3,3′,4,4′-tetrahydroxybenzil (Midori Kagaku Co Ltd; 548 mg; 2.00 mmol), 4,5,6-triaminopyrimidine sulfate and 3.00 mL of m-cresol. The heterogeneous mixture was heated, it first goes orange while dissolving at ca. 150° C. and then on heating at 200° C.-220° C. for ca. 2 h goes to a dark blood-red solution. The clear solution is heated for an additional 30 min, followed by cooling to room temperature, and precipitation by pouring into 40 mL of anhydrous diethyl ether resulted in a dark red-orange precipitate. The solid was centrifuged, washed with 5×40 mL of diethyl ether and dried in a vacuum dessicator to yield 1.20 g (128%)1 of an orange-red solid. The only obvious major impurity is the reaction solvent, m-cresol.
  • Mass-spec [ES+]=364.8. 1H NMR (MeOH-d4) 6.73 (1H, d), 6.78 (1H, d), 7.00-7.02 (2H, dd), 7.07 (1H, d), 7.16 (1H, d). 8.71 (1H, s).
  • 6,7-bis(3,4-dihydroxyphenyl)-pteridin-4-ylamine or 4-[4-amino-6-(3,4-dihydroxyphenyl)pteridin-7-yl]benzene-1,2-diol
  • Figure US20070208019A1-20070906-C00122
  • Mass-spec [ES+]=364.8. 1H NMR (MeOH-d4) 6.70-6.75 (2H, dd), 6.91-6.95 (2H, dd), 7.03 (1H, d), 7.12 (1H, d), 8.49 (1H, s). 1H NMR (DMSO-d6) 6.63-6.68 (2H, dd), 6.74-6.76 (1H, dd), 6.85-6.87 (1H, dd), 7.00 (1H, d), 7.06 (1H, d), 7.93 (2H, br.s), 8.47 (1H, s).
  • 6,7-bis(3,4-dihydroxyphenyl)-pteridin-4-ylamine methanesulfonate Salt or 4-[4-amino-6-(3,4-dihydroxyphenyl)pteridin-7-yl]benzene-1,2-diol methanesulfonate Salt
  • Figure US20070208019A1-20070906-C00123
  • 98.07% purity by LC/MS (230 DAD). Mass-spec [ES+]=364.8. 1H NMR (MeOH-d4) 2.69 (3H, s), 6.73-6.79 (2H, dd), 7.00-7.04 (2H, dd), 7.08 (1H, d), 7.17 (1H, d), 8.81 (1H, s).
  • 4-(2,4-diaminopteridin-6-yl)phenol
  • Figure US20070208019A1-20070906-C00124
  • A 50-mL recovery flask fitted with a stirring bar, a reflux condensor and a heating mantle was charged with 1 mmol of each of hydroxylamine hydrochloride and 4-hydroxyphenylglyoxal. The substances were dissolved in methanol (5 mL). To this yellow solution was added the 2,4,5,6-tetraminopyrimidine sulfate and 20 mL of water. The heterogeneous solution was heated to reflux for 2 h. A yellow precipitate that was formed. The solution was cooled, the reaction mixture was made slightly basic NaOH (4 M, aqueous) to a pH of ca. 8. The precipitated free base was isolated and washed sequentially with water (2×40 mL), methanol (1×40 mL) and ether (1×40 mL) and drying in a vacuum dessicator.
    Figure US20070208019A1-20070906-C00125
  • A 5-mL reaction vial with a stirring vane and a teflon cap was charged with benzil (420 mg; 2.00 mmol) and 2.00 mL of m-cresol (Acros) which gives a dull-yellow solution on warming to ca. 50° C. The clear solution is treated with 5,6-diamino-2,4-dihydroxypyrimidine sulfate (Aldrich; 482 mg; 2.00 mmol; 1.00 equiv) which is insoluble in the reaction solution at room temperature and goes into solution on heating to ca. 200° C. to give an almost completely homogeneous dark solution in about 30 min-45 min. Heating between 200° C. and 220° C. for an additional 1.5 h, followed by cooling to room temperature, and precipitation by pouring into 40 mL of anhydrous diethyl ether resulted in a dull yellow precipitate. The solid was centrifuged, the supernatant decanted, the solid precipitate was washed with 4×40 mL of diethyl ether and dried in a vacuum dessicator to yield 960 mg (99%) of a yellow solid. MS (M+H+: calcd 317; found 317).
  • 4-(2,4-Diamino-pteridin-6-yl)-phenol
  • (M+H)+ calcd and found 255; LC (UV-PDA 230 nm) 98% purity.; 1H NMR (500 MHz; DMSO-d6): δ 9.89 (br s, 1H), 9.24 (s, 1H), 8.15 (d, J =8.5 Hz, 2H), 7.70 (br. s, 1H), 7.65 (br. s, 1H) 6.88 (d, J =8.5 Hz, 2H), 6.57 (br s, 2H).
  • 2,3-Diphenyl-pyrido[3,4-b]pyrazin-8-ylamine hydrochloride Salt
  • Figure US20070208019A1-20070906-C00126
  • 60.0 mg (0.37 mmol) of 3,4,5-triaminopyrimidine hydrochloride and 86.3 mg (0.41 mmol) of benzil were heated at 190° C. in 1.0 mL of m-cresol for 1 hr. Then the mixture was cooled down to r.t., mixed with 35 mL of diethyl ether. The formed brown precipitate was collected, washed repeatedly with ether and dried in vacuo to give 51.1 mg (45.8% yield) of the product as a brown powder. Mass-spec [M+H+]=299.2. 1H NMR (MeOH-d4) 7.38-7.41 (3H, m), 7.45-7.49 (3H, m), 7.58-7.60 (2H, m), 7.66-7.68 (2H, m), 8.05 (1H, s), 8.85 (1H, s).
  • 2,3-Bis(4-hydroxyphenyl)-pyrido[3,4-b]pyrazin-8-ylamine hydrochloride Salt
  • Figure US20070208019A1-20070906-C00127
  • 60.0 mg (0.37 mmol) of 3,4,5-triaminopyrimidine hydrochloride and 99.6 mg (0.41 mmol) of 4,4′-dihydroxybenzil were heated at 190° C. in 1.0 mL of m-cresol for 1 hr. Then the mixture was cooled down to r.t., mixed with 35 mL of diethyl ether. The formed brown precipitate was collected, washed repeatedly with ether and dried in vacuo to give 91.3 mg (66.6% yield) of the product as a dark-green powder. Mass-spec [M+H+]=331.4. 1H NMR (MeOH-d4) 6.78-6.81 (4H, d), 7.49-7.51 (2H, d), 7.60-7.62 (2H, d), 7.95 (1H, s), 8.71 (1H, s).
  • 2,3-Bis(3,4-dihydroxyphenyl)-pyrido[3,4-b]pyrazin-8-ylamine hydrochloride Salt
  • Figure US20070208019A1-20070906-C00128
  • 60 mg (0.37 mmol) of 3,4,5-triamnopyridine hydrochloride and 112.6 mg (0.41 mmol) of 3,3′,4,4′-tetrahydroxybenzil were dissolved in 1 mL of m-cresol. The reaction mixture was heated at 190° C. for 1 hr, at which point the mixture became homogeneous and dark-brown in color. The reaction was cooled to r.t. and mixed with 35 mL of diethyl ether. The formed brown precipitate was vortexed, collected, washed repeatedly with diethyl ether and dried in vacuo to give 111.0 mg (82% yield) of the product. Mass-spec [M+H+]=363.2. 1H NMR (MeOH-d4) 6.76-6.78 (2H, d), 6.98-7.00 (1H, dd), 7.11 (1H, dd), 7.13 (1H, d), 7.21 (1H, dd), 7.94 (1H, s), 8.68 (1H, s).
  • 2,3-Bis(3-hydroxyphenyl)-pyrido[3,4-b]pyrazin-8-ylamine hydrochloride Salt
  • Figure US20070208019A1-20070906-C00129
  • 60.0 mg (0.37 mmol) of 3,4,5-triaminopyrimidine hydrochloride and 99.6 mg (0.41 mmol) of 3,3′-hydroxybenzil were heated at 190° C. in 1.0 ml of m-cresol for 1 hr. Then the mixture was cooled down to r.t., mixed with 35 ml of diethyl ether. The formed brown precipitate was collected, washed repeatedly with ether and dried in vacuo to give 93.9 mg (68.5% yield) of the product as a greenish-brown powder. Mass-spec [M+H+]=331.4. 1H NMR (MeOH-d4) 6.88-6.91 (2H, m), 6.99-7.01 (1H, m), 7.07-7.10 (2H, m), 7.13-7.14 (1H, m), 7.18-7.22 (2H, m), 8.03 (1H, s), 8.82 (1H, s).
  • 2,3-bis(3-hydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride Salt
  • Figure US20070208019A1-20070906-C00130
  • 197.0 mg (1.0 mmol) of 2,3,6-triaminopyrimidine dihydrochloride and 242.4 mg (1.0 mmol) of 3,3′-dihydroxybenzil were dissolved in 3.0 mL of 1:1 mixture of dioxane-water. The reaction mixture was refluxed for 3 hours and then solvent was removed in vacuo. The resulting greenish solid was dissolved in 3 mL of MeOH and this solution was added to 40 mL of diethyl ether with vigorous stirring. The formed precipitate was collected, washed with diethyl ether and dried in vacuo to give 342.9 mg (85.0% yield) of the product as a light-green powder. 99.0% purity by LC/MS (230 DAD). Mass-spec [ES+]=331.8. 1H NMR (MeOH-d4) 6.83-6.85 (2H, m), 6.88-6.90 (1H, m), 6.95-6.97 (2H, m), 7.02-7.03 (1H, m), 7.14-7.18 (2H, m), 7.36-7.38 (1H, d), 8.43-8.46 (1H, d).
  • 2,3-bis(4-hydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride Salt
  • Figure US20070208019A1-20070906-C00131
  • 1.97 g (10.0 mmol) of 2,3,6-triaminopyrimidine dihydrochloride and 2.42 g (10.0 mmol) of 4,4′-dihydroxybenzil were dissolved in 30 mL of 1:1 mixture of dioxane-water. The reaction mixture was refluxed for 6 hours and then solvent was distilled off. The resulting dark-brown solid was suspended in 20 mL of MeOH and this suspension was added to 400 mL of diethyl ether with vigorous stirring. The formed dark-brown precipitate was collected, washed with diethyl ether and dried in vacuo to give 3.35 g (83.1% yield) of the product as a brown fluffy powder. 92.6% purity by LC/MS (230 DAD). Mass-spec [ES+]=331.8. 1H NMR (MeOH-d4) 6.72-5.77 (4H, m), 7.29-7.33 (3H, m), 7.40-7.42 (1H, m), 7.41 (1H, d), 8.35 (1H, d).
  • Phosphate Ester of 4,4′-dihydroxybenzil
  • Figure US20070208019A1-20070906-C00132
  • A 50-mL one-necked round-bottomed flask with a stirring bar and a septum was charged with 4,4′-dihydroxybenzil (512 mg; 2.11 mmol; 1.00 equiv) and acetonitrile (8 mL). To this partially dissolved mixture was added triethylamine (1.06 g; 14.9 mmol; 7.06 equiv), dimethylaminopyridine (DMAP) (478 mg; 3.91 mmol; 1.85 equiv) and dichloromethane (DCM) as co-solvent. The reaction mixture was stirred for 3 d at room temperature after which it was concentrated by rotary evaporation to yield a yellow-white slurry. This oily slurry was partitioned between sodium bicarbonate (satd. aq) and dichloromethane (DCM). The aqueous layer was rewashed with 2×5 mL DCM, followed by extraction of the combined organics with 10 mL of 1 M HCl. The DCM layer was dried (anhyd. MgSO4), filtered and concentrated by rotary evaporation to yield the desired material as a light yellow slightly viscous oil. The compound does not require any purification but is easily purified by column chromatography using DCM-EtOAc (1:1). The chromatographically purified material is a yellow oil (911 mg; 89%).
  • 1H NMR (500 MHz; DMSO-d6): δ 8.01 (d, J=8.6 Hz, 4 H), 7.45 (d, J=8.5 Hz, 4 H), 4.21-4.18 (m, 8 H), 1.28 (app t, J=5.0 Hz, 12 H).
  • The compound was made by the method B in the pteridine synthesis by using the pyrimidine and the phosphate ester of the 4,4′-dihydroxybenzil.
    Figure US20070208019A1-20070906-C00133
  • The compound was purified by passing through a plug of silica using ethyl acetate. (M+H)+: calcd. 604; found 604. LC purity 96% (DAD at 230 nm).
  • 1H NMR (500 MHz; DMSO-d6); δ 8.58 (s, 1 H), 8.30 (br s, 2 H), 7.58 (d, J=6.8 Hz), 7.54 (d, J=6.8 Hz, 2 H), 7.23 (d, J=8.8 Hz, 2 H), 7.20 (d, J=8.9 Hz, 2 H), 4.17-4.14 (m, 8 H), 1.26 (appt, J=6.9 Hz, 12 H).
  • Phosphate Ester Deprotected
  • The above diethylester compound was deprotected in acetonitrile using TMSBr. The reaction was completed by adding water and then concentration by rotary evaporation and drying of the solid.
    Figure US20070208019A1-20070906-C00134
  • 1H NMR (500 MHz; methanol-d4); δ 8.39 (s, 1 H), 7.31 (d, J=6.8 Hz, 2 H), 7.26 (d, J=6.7 Hz, 2 H), 6.31 (app t, J=6.8 Hz, 4 H).
  • Phosphate Ester of Pyridopyrazine
  • Figure US20070208019A1-20070906-C00135
  • 1H NMR (500 MHz; DMSO-d6): δ 8.05 (d, J=9.0 Hz, 1 H), 7.46 (d, J=8.7 Hz, 2 H), 7.43 (d, J=8.6 Hz, 2 H), 7.24 (br s, 2 H), 7.17 (app t, J=7.7 Hz, 4 H), 7.10 (d, J=9.0 Hz, 1 H), 4.17-4.13 (m, 8 H), 1.26 (app t, J=5.0 Hz, 12 H).
  • Phosphate Ester Deprotected
  • Figure US20070208019A1-20070906-C00136
  • This compound was made in a similar fashion to the one described above.
  • 1H NMR (500 MHz; methanol-d4); δ 8.05 (d, J=9.0 Hz, 1 H), 7.46 (d, J=8.7 Hz, 2 H), 7.43 (d, J=8.6 Hz, 2 H), 7.24 (br s, 2 H), 7.17 (app t, J=7.7 Hz, 4 H), 7.10 (d, J=9.0, 2 H).
  • Long Chain Ester of Pteridine
  • The benzil was modified using an acid chloride with DMAP as base in DCM. The modified Benzil was then condensed with the pyrimidine to yield the product below.
    Figure US20070208019A1-20070906-C00137
  • 4-(4-amino-pteridin-7-yl)-benzene-1,2-diol
  • This compound is made by stirring a 1:1 ratio of the appropriate glyoxal with the free base of the pyrimidine in water at a pH of 7 for ca. 3 h. The product is isolated by filtering the precipitated free base, washing sequentially with water (2×40 mL), methanol (1×40 mL) and ether (2×40 mL) and drying in a vacuum dessicator.
    Figure US20070208019A1-20070906-C00138
  • 1H NMR (500 MHz; DMSO-d6): δ 9.72 (s, 1 H), 9.40 (br s, 1 H), 9.28 (s, 1 H), 8.51 (s, 1 H), 8.17 (br s, 1 H), 8.12 (br s, 1 H), 7.80 (d, J=2.3 Hz, 1 H), 7.71 Hz, (dd, J=8.4 Hz, J=2.3 Hz, 1 H), 6.92 (d, J=8.3 Hz, 1 H).
  • 4-(2,4-diamino-pteridin-7-yl)-benzene-1,2-diol
  • This compound is made by stirring a 1:1 ratio of the appropriate glyoxal with the free base of the pyrimidine in water at a pH of 7 for ca. 3 h. The product is isolated by filtering the precipitated free base, washing sequentially with water (2×40 mL), methanol (1×40 mL) and ether (2×40 mL) and drying in a vacuum dessicator.
    Figure US20070208019A1-20070906-C00139
  • 1H NMR (500 MHz; DMSO-d6): δ 8.71 (s, 1 H), 7.64 (d, J=2.3 Hz, 1 H), 7.56-7.53 (br s, 2 H), 7.53 (dd, J=8.3 Hz, 2.1Hz, 1 H), 6.84 (d, J=8.3 Hz, 1 H), 6.52 (br s, 2 H).
  • 4-(4-amino-pteridin-7-yl)-phenol
  • This compound is made by stirring a 1:1 ratio of the appropriate glyoxal with the free base of the pyrimidine in water at a pH of 7 for ca. 3 h. The product is isolated by filtering the precipitated free base, washing sequentially with water (2×40 mL), methanol (1×40 mL) and ether (2×40 mL) and drying in a vacuum dessicator.
    Figure US20070208019A1-20070906-C00140
  • 1H NMR (500 MHz; DMSO-d6): δ 10.2 (br s, 1 H), 9.34 (s, 1 H), 8.52 (s, 1 H), 8.23 (d, J=6.8 Hz, 2 H), 8.19 (br s, 1 H), 8.13 (br s, 1 H), 6.97 (d, J =8.8 Hz, 2 H).
  • 4-(2,4-diamino-pteridin-7-yl)-phenol
  • This compound is made by stirring a 1:1 ratio of the appropriate glyoxal with the free base of the pyrimidine in water at a pH of 7 for ca. 3 h. The product is isolated by filtering the precipitated free base, washing sequentially with water (2×40 mL), methanol (1×40 mL) and ether (2×40 mL) and drying in a vacuum dessicator.
    Figure US20070208019A1-20070906-C00141
  • 1H NMR (500 MHz; DMSO-d6): δ 10.0 (br s, 1 H), 8.81 (s, 1 H), 8.09 (d, J=8.5 Hz, 2 H), 7.62 (br s, 1 H), 7.55 (br s, 1 H), 6.91 (d, J =8.5 Hz, 2 H), 6.57 (br s, 2 H)
  • 4-phenyl-pteridin-4-yl-amine
  • This compound was prepared by heating ammonium acetate with the appropriate pyrazine in acetic acid for an hour. The product is isolated by concentrating the solution by rotary evaporation and washing with ether.
    Figure US20070208019A1-20070906-C00142
  • 1H NMR (500 MHz; DMSO-d6): δ 9.73 (s, 1 H), 8.54 (s, 1 H), 8.49 (dd, J =8.2 Hz, J=1.9 Hz, 2 H), 8.46 (br s, 1 H), 8.31 (br s, 1 H), 7.60-7.55 (m, 3 H).
  • Experimental Procedure 4-[2-(6-Phenyl-pteridin-4-ylamino)-ethyl]benzene-1,2-diol
  • Figure US20070208019A1-20070906-C00143
  • To a suspension of 3-hydroxytyramine hydrochloride (189.6 mg, 1.0 mmol) in 4 mL of glacial acetic acid was added N′-(3-cyano-5-phenyl-pyrazin-2-yl)-N,N′-dimethyl-formamidine (251.3 mg, 1.0 mmol). The reaction was refluxed for 1.5 hours. The progress of the reaction was monitored by LC/MS. After the reaction had completed, the reaction mixture was cooled down to ambient temperature and acetic acid was removed in vacuo. 5 mL of methanol was added to the resulting residue and it was crushed with a spatula into a fine suspension. 10 mL of 1:1 mixture of acetonitrile/water was added to the suspension. The solid was centrifuged down, washed with 20 mL of 1:1 mixture of acetonitrile/water twice, 10 mL of methanol, 40 mL of diethyl ether and dried in vacuo to give the product as a greenish-yellow solid. 58.5% yield. 96.9% purity by LC/MS (230 DAD). Mass-spec [ES+]=360.5. 1H NMR (DMSO-d6) 2.80-2.83 (m, 2H), 3.72-3.76 (m, 2H), 6.52-6.54 (dd, 1H), 6.65-6.67 (d, 1H), 6.68-6.69 (d, 1H), 7.56-7.61 (m, 3H), 8.45-8.47 (m, 2H), 8.63 (s, 1H), 8.68 (br.s, 1H), 8.80 (br.s, 1H), 8.91-8.94 (t, 1H), 9.72 (s, 1H). UV λmax=239, 209, 279.
  • 4-[(Phenyl-pteridin-4-ylamino)-methyl]-benzene-1,2-diol
  • Figure US20070208019A1-20070906-C00144
  • To a suspension of 3,4-dihydroxybenzylamine hydrobromide (220.1 mg, 1.0 mmol) in 4 mL of glacial acetic acid was added N′-(3-cyano-5-phenyl-pyrazin-2-yl)-N,N′-dimethyl-formamidine (251.3 mg, 1.0 mmol). The reaction was refluxed for 4 hours. The progress of the reaction was monitored by LC/MS. After the reaction had completed, the reaction mixture was cooled down to ambient temperature and acetic acid was removed in vacuo. 5 mL of methanol was added to the resulting residue and it was crushed with a spatula into a fine suspension. The suspension was added to 45 mL of diethyl ether. The solid was centrifuged down, washed with 45 mL of diethyl ether twice and dried in vacuo to give the product as a yellow solid. The product was purified by prep-HPLC, the major product was collected and solvent was removed in vacuo. 99.6% purity by LC/MS (230 DAD). Mass-spec [ES+]=346.5. 1H NMR (DMSO-d6) 5.56 (s, 2H), 6.68-6.70 (d, 1H), 6.75-6.77 (dd, 1H), 6.87-6.87 (d, 1H), 7.62-7.64 (m, 3H), 8.53-8.55 (m, 2H), 8.97 (s, 1H), 9.12 (s, 1H), 9.24 (s, 1H), 9.89 (s, 1H), 10.48 (br.s, 1H), 10.54 (br.s, 1H). UV λmax=245, 278, 210.
  • 2,3-Bis(3,4-dihydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride Salt
  • Figure US20070208019A1-20070906-C00145
  • 107.07 mg (1.0 mmol) of 2,3,6-triaminopyrimidine dihydrochloride and 274.23 mg (1.0 mmol) of 3,3′,4,4′-tetrahydroxybenzil were dissolved in 4 mL of 1:1 mixture of dioxane-water. The reaction was refluxed for 8 hours. Then solvent was removed in vacuo. The dark-yellow residue was dissolved in 2 mL of methanol and this solution was added dropwise to 40 mL of diethyl ether. The formed dark-yellow precipitate was collected, washed with ether and dried in vacuo to give 370.0 mg (85% yield) of the product. 100% purity by LC/MS (230 DAD). Mass-spec [ES+]=363.8. 1H NMR (MeOH-d4) 6.70-6.75 (2H, dd), 6.81-6.92 (2H, dd), 6.96-7.07 (2H, dd), 7.27 (1H, d), 8.34 (1H, d).
  • 2,3-Bis(3-hydroxyphenyl)quinoxalin-6-ylamine dihydrochloride Salt
  • Figure US20070208019A1-20070906-C00146
  • 40.4 mg (0.206 mmol) of 1,2,4-benzenetriamine dihydrochloride and 50 mg (0.20 mmol) of 3,3′-dihydroxybenzil were dissolved in 2 mL of 1:1 mixture of dioxane-water. The reaction was refluxed for 3 hours. Then solvent was removed in vacuo. The residue was dissolved in 2 mL of methanol and this solution was added dropwise to 40 mL of diethyl ether. The formed dark-red precipitate was collected, washed with ether and dried in vacuo to give 69.8 mg (92.6% yield) of the product. 97.6% purity by LC/MS (230 DAD). Mass-spec [ES+]=330.8. 1H NMR (500 MHz, MeOH-d4) 6.81-6.87 (2H, m), 6.96-6.98 (4H, m), 7.10 (1H, m), 7.13-7.16 (1H, t), 7.28-7.31 (1H, t), 7.56-7.58 (1H, m), 8.04-8.06 (1H, d).
  • 2,3-Bis(4-hydroxyphenyl)quinoxalin-6-ylamine dihydrochloride Salt
  • Figure US20070208019A1-20070906-C00147
  • 98.04 mg (0.5 mmol) of 1,2,4-benzenetriamine dihydrochloride and 121.2 mg (0.5 mmol) of 4,4′-dihydroxybenzil were dissolved in 2 ml of 1:1 mixture of dioxane-water. The reaction was refluxed for 3 hours. Then solvent was removed in vacuo. The residue was dissolved in 2 ml of methanol and this solution was added dropwise to 40 ml of diethyl ether. The formed dark-red precipitate was collected, washed with ether and dried in vacuo to give 168.3 mg (83.7% yield) of the product. 98.7% purity by LC/MS (230 DAD). Mass-spec [ES+]=330.8. 1H NMR (500 MHz, MeOH-d4) 6.76-6.77 (2H, d), 6.87-6.89 (2H, d), 7.05-7.06 (1H, d), 7.29-7.31 (2H, d), 7.38-7.40 (2H, d), 7.50-7.52 (1H, m), 7.99-8.01 (1H, d).
  • 2,3-Bis(3,4-dihydroxyphenyl)quinoxalin-6-ylamine dihydrochloride Salt
  • Figure US20070208019A1-20070906-C00148
  • 98.0 mg (0.5 mmol) of 1,2,4-benzenetriamine dihydrochloride and 137.1 mg (0.5 mmol) of 3,3′,4,4′-tetrahydroxybenzil were dissolved in 3 ml of MeOH. The reaction was refluxed for 6 hours. Then the reaction mixture was cooled to r.t. and added dropwise to 40 ml of diethyl ether. The formed dark-red precipitate was collected, washed with ether and dried in vacuo to give 184.0 mg (84.7% yield) of the product. 97.7% purity by LC/MS (230 DAD). Mass-spec [ES+]=362.8. 1H NMR (MeOH-d4) 6.73-6.75 (1H, d), 6.78-6.80 (1H, m), 6.88-6.89 (1H, m), 6.94-6.97 (3H, m), 7.03 (1H, d), 7.49-7.51 (1H, dd), 7.97-7.99 (1H, d).
  • 2-Hydroxy-5-(6-phenyl-pteridin-4-ylamino)-benzenesulfonic Acid
  • Figure US20070208019A1-20070906-C00149
  • 70.1% yield. 83% purity by LC/MS (230 DAD). Mass-spec [ES+]=396.8. 1H NMR (DMSO-d6) 7.17-7.19 (1H, dd), 7.58-7.63 (3H, m), 7.80-7.82 (1H, dd), 7.993-7.999 (1H, d), 8.61-8.63 (2H, m), 8.73 (1H, s), 9.80 (1H, s), 10.51-10.53 (3H, m).
  • 5-(6-Phenyl-pteridin-4-ylamino)-quinolin-8-ol hydrochloride Salt
  • Figure US20070208019A1-20070906-C00150
  • 79.9% yield. 85% purity by LC/MS (230 DAD). Mass-spec [ES+]=367.7. 1H NMR (DMSO-d6) 7.39-7.40 (1H, m), 7.61-7.72 (3H, m), 7.73-7.77 (2H, m), 8.60-8.67 (4H, m), 9.01-9.02 (1H, m), 9.92 (1H, s), 11.58 (1H, br.s.)
  • General Procedure
    Figure US20070208019A1-20070906-C00151
    Figure US20070208019A1-20070906-C00152
  • 7-Bromo-benzo [1,2,4]triazin-3-ylamine-1-oxide
  • Figure US20070208019A1-20070906-C00153
  • 4-Bromo-2-nitro-phenylamine (2.48g, 11.4 mmol) was mixed with cynamide (1.51 g, 36 mmol) in a 20 mL vial. The mixture was heated to 100° C. till the mixture was totally melted. The mixture was cooled down to room temperature and 6.5 ml concentrated HCl was added. The mixture was heated at 100° C. for 40 minutes and cool down in ice water. 6.5 ml 14M NaOH was carefully added to the above reaction mixture. The resulted mixture was heated at 100° C. for 2 hours then cool down to room temperature. After filtration, the precipitate was washed several times with water, methanol and ditheylether to remove the starting material. 0.739g product was obtained. Yield: 27%. ESI-MS: [M+H]+, 241, 243; 1H NMR (DMSO-d6): δ 7.48 (d, J=9.02Hz, 1 H), 7.89 (dd, J1=9.02 Hz, J2=2.14Hz, 1 H), 8.26 (d, J=2.14 Hz, 1 H).
  • 7-Bromo-5-methyl-benzo[1,2,4]triazin-3-ylamine-1-oxide
  • Figure US20070208019A1-20070906-C00154
  • 4-Bromo-2-methyl-6-nitro-phenylamine (1 g, 4.33 mmol) was mixed with cynamide (0.5 g, 12 mmol) and 5g pyridine HCl in a 20 ml vial. The mixture was heated to reflux overnight. The mixture was cooled down to room temperature and 10% NaOH was carefully added. The resulted mixture was heated at 100° C. for 2 hours then cool down to room temperature. After filtration, the precipitate was washed several times with water, acetone and ditheylether to remove the starting material. 0.4 g product was obtained. Yield: 36%. ESI-MS: [M+H]+, 255, 257; 1H NMR (DMSO-d6): δ 2.45 (s, 3 H), 7.81 (d, J=1.97 Hz, 1 H), 8.26 (d, J=1.97 Hz, 1 H).
  • 7-Benzo[1,3]dioxol-5-yl-benzo[1,2,4]triazin-3-ylamine-1-oxide
  • Figure US20070208019A1-20070906-C00155
  • To a solution of 7-Bromo-benzo[1,2,4]triazin-3-ylamine-1-oxide (50 mg, 0.21 mmol) dissolved in 6 ml N, N-Dimethylacetamide in a 20 ml vial, 3,4-(Methylenedioxy)phenylboronic acid (68.6 mg, 0.41 mmol) dissolved in 1 ml ethanol and potassium carbonate (32.4 mg, 0.3 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 20 mg 7-Benzo[1,3]dioxol-5-yl-benzo[1,2,4]triazin-3-ylamine-1-oxide was isolated. Yield: 34.5%; ESI-MS: [M+H]+, 283; 1H NMR (DMSO-d6): δ 6.09 (s, 2 H), 7.04 (d, J=8.12 Hz, 1H), 7.27 (dd, J1=7.88 Hz, J2=1.58 Hz, 1H), 7.37 (s, 1 H), 7.58 (d, J=8.12 Hz, 1 H), 8.10 (dd, J1=8.86 Hz, J2=1.86 Hz, 1 H), 8.25 (d, J=1.86 Hz, 1 H).
  • 7-Benzo[1,3]dioxol-5-yl-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00156
  • 10 mg 7-Benzo[1,3]dioxol-5-yl-benzo[1,2,4]triazin-3-ylamine-1-oxide was dissolved in in a mixture of 2 ml N, N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 5 mg 7-(2,6-Dimethylphenyl)-benzo[1,2,4]triazin-3-ylamine was obtained. Yield: 53%; ESI-MS: [M+H]+, 267; 1H NMR (DMSO-d6): δ 6.09 (s, 2 H), 7.04 (d, J=8.00 Hz, 1H), 7.33 (dd, J1=7.91 Hz, J2=1.76 Hz, 1H), 7.46 (d, J=1.51 Hz, 1 H), 7.58 (d, J=8.84 Hz, 1 H), 8.12 (dd, J1=8.84 Hz, J2=1.96 Hz, 1 H), 8.39 (d, J=1.96 Hz, 1 H).
  • 7-(2,6-Dimethyl-phenyl)-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00157
  • To a solution of 7-Bromo-benzo[1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N, N-Dimethylacetamide in a 20 ml vial, 2,6-dimethylphenylboronic acid (240 mg, 1.6 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 60 mg 7-(2,6-Dimethyl-phenyl)-benzo[1,2,4]triazin-3-ylamine was obtained. Yield: 60%; ESI-MS: [M+H]+, 251; 1H NMR (DMSO-d6): δ 2.03 (s, 6 H), 7.23-7.16 (m, 3 H), 7.62-7.58 (m, 2 H), 7.95 (m, 1 H).
  • 7-(4-Phenoxy-phenyl)-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00158
  • To a solution of 7-Bromo-benzo [1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 4-Phenoxyphenylboronic acid (177 mg, 0.83 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 20 mg 3-(3-Amino-benzo[1,2,4]triazin-7-yl)-benzonitrile was obtained. Yield: 15.4%; ESI-MS: [M+H]+, 315; 1H NMR (DMSO-d6): δ 7.09-7.13 (m, 5 H), 7.44 (m, 2 H), 7.62 (d, J=8.89 Hz, 2 H), 7.87(m, 2 H), 8.15 (dd, J1=8.89 Hz, J2=2.34 Hz, 1 H), 8.43 (d, J=2.34 Hz, 1 H).
  • 7-(2,6-Dimethoxy-phenyl)-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00159
  • To a solution of 7-Bromo-benzo [1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 2,6-dimethoxyphenylboronic acid (302 mg, 1.66 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 40 mg 7-(2,6-Dimethoxy-phenyl)-benzo[1,2,4]triazin-3-ylamine was obtained. Yield: 34.2%, ESI-MS: [M+H]+, 283; 1H NMR (DMSO-d6): δ 3.71 (s, 6 H), 6.80 (d, J=8.47 Hz, 2 H), 7.36 (t, J=8.39 Hz, 1 H), 7.52 (d, J=8.85 Hz, 1 H), 7.66(dd, J1=8.85 Hz, J2=1.91 Hz, 1 H), 8.00 (d, J=1.91 Hz, 1 H).
  • 7-(4-t-Butyl-phenyl)-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00160
  • To a solution of 7-Bromo-benzo[1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 4-t-butyl-phenylboronic acid (148 mg, 0.83 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 20 mg 7-(4-t-Butyl-phenyl)-benzo[1,2,4]triazin-3-ylamine was obtained. Yield: 18%, ESI-MS: [M+H]+, 279; 1H NMR (DMSO-d6): δ 1.34 (s, 9 H), 7.53 (d, J=8.66 Hz, 2 H), 7.61 (d, J=8.85 Hz, 1 H), 7.77 (d, J=8.66 Hz, 2 H), 8.16 (dd, J1=8.84 Hz, J2=1.89 Hz, 1H), 8.43 (d, J=1.89 Hz, 1 H).
  • 7-(2-Trifluoromethyl-phenyl)-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00161
  • To a solution of 7-Bromo-benzo[1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 2-trifluoromethyl phenylboronic acid (157 mg, 0.83 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 20 mg 7-(2-Trifluoromethyl-phenyl)-benzo[1,2,4]triazin-3-ylamine was obtained. Yield: 16.5%, ESI-MS: [M+H]+, 291; 1H NMR (DMSO-d6): δ 7.56 (d, J=7.56 Hz, 1 H), 7.60 (d, J=8.66 Hz, 1 H), 7.68-7.80 (m, 3 H), 7.89 (J=7.56 Hz, 1 H), 8.11 (d, J=1.46 Hz, 1 H).
  • 7-Biphenyl-4-yl-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00162
  • To a solution of 7-Bromo-benzo[1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 4-biphenylboronic acid (164 mg, 0.83 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 15 mg 7-Biphenyl-4-yl-benzo[1,2,4]triazin-3-ylamine was obtained. Yield: 12.1%, ESI-MS: [M+H]+, 299; 1H NMR (DMSO-d6): δ 7.41 (m, 1H), 7.50 (m, 2 H), 7.55 (m, 2 H), 7.64 (d, J=8.84 Hz, 1 H), 7.83 (m, 2 H), 7.96 (m, 2 H), 8.24 (dd, J1=8.84 Hz, J2=1.93 Hz, 1 H), 8.53 (d, J=1.93 Hz, 1H).
  • 7-Benzofuran-2-yl-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00163
  • To a solution of 7-Bromo-benzo [1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 2-Benzofuranboronic acid (134 mg, 0.83 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 10 mg 7-Benzofuran-2-yl-benzo[1,2,4]triazin-3-ylamine was obtained. Yield: 9.3%, ESI-MS: [M+H]+, 263; 1H NMR (DMSO-d6): δ 6.54 (s, 1 H), 7.29 (t, J=7.22 Hz, 1 H), 7.36 (t, J=7.23 Hz, 1 H), 7.64-7.71 (m, 3 H), 7.34 (dd, J1=8.86 Hz, J2=1.86 Hz, 1 H), 8.63 (d, J=1.86 Hz, 1 H).
  • 7-Dibenzofuran-4-yl-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00164
  • To a solution of 7-Bromo-benzo[1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 4-Dibenzofuranboronic acid (176 mg, 0.83 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 5 mg 7-Dibenzofuran-4-yl-benzo[1,2,4]triazin-3-ylamine was obtained. Yield: 3.9%, ESI-MS: [M+H]+, 263; 1H NMR (DMSO-d6): δ 7.46 (t, J=7.62 Hz, 1 H), 7.57 (t, J=7.92 Hz, 2 H), 7.72 (t, J=8.85 Hz, 1 H), 7.80 (d, J=8.20 Hz, 1 H), 7.90 (d, J=8.07 Hz, 1 H), 8.23 (m, 2 H), 8.38 (dd, J1=8.84 Hz, J2=2.06 Hz, 1 H), 8.63 (d, J=2.06Hz, 1H).
  • 7-Naphthalen-1-yl-benzo[1,2,4]triazin-3-ylamine
  • Figure US20070208019A1-20070906-C00165
  • To a solution of 7-Bromo-benzo [1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 1-Naphthylboronic acid (143 mg, 0.83 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 10 mg 7-Naphthalen-1-yl-benzo[1,2,4]triazin-3-ylamine was obtained. Yield: 8.8%, ESI-MS: [M+H]+, 273; 1H NMR (DMSO-d6): δ 7.54-7.69 (m, 5 H), 7.84 (d, J=8.31 Hz, 1 H), 7.94 (dd, J1=8.60 Hz, J2=1.68 Hz, 1 H), 8.05 (m, 2 H), 8.26 (d, J=1.68 Hz, 1 H).
  • 3-(3-Amino-benzo[1,2,4]triazin-7-yl)-phenol
  • Figure US20070208019A1-20070906-C00166
  • To a solution of 7-Bromo-benzo[1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 3-hydroxyphenylboronic acid (114.5 mg, 0.83 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. The residue was dissolved in a mixture of 2 ml N,N-Dimethylacetamide and 1 ml ethyl alcohol in a 20 ml vial with a septum. Catalytic amount of 10% Palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for 2 hours. Celite was used to remove the palladium and carbon. Preparative HPLC was used to isolate the final product. 15 mg 3-(3-Amino-benzo[1,2,4]triazin-7-yl)-phenol was obtained. Yield: 15%, ESI-MS: [M+H]+, 239; 1H NMR (DMSO-d6): δ 6.82 (dd, J1=7.94 Hz, J2=1.98 Hz, 1 H), 7.17 (m, 1 H), 7.23 (d, J=7.80 Hz, 1 H), 7.31 (t, J=7.73 Hz, 1 H), 7.60 (d, J=8.83 Hz, 1 H), 8.08 (dd, J1=8.83 Hz, J2=1.94 Hz, 1 H), 8.36 (d, J=1.94 Hz, 1 H).
  • [7-(2,6-Dimethyl-phenyl)-benzo[1,2,4]triazin-3-yl]-phenyl-amine
  • Figure US20070208019A1-20070906-C00167
  • 7-(2,6-Dimethyl-phenyl)-benzo[1,2,4]triazin-3-ylamine(24 mg, 0.096 mmol) was dissolved in aniline, sulfamic acid (18 mg, 0.19 mmol) was added. The mixture was reflux overnight. The final product was isolated by preparative HPLC. Yield: 32%. ESI-MS: [M+H]+, 327; 1H NMR (DMSO-d6): δ 2.05(s, 6 H), 7.09(t, J=7.35 Hz, 1 H), 7.18-7.25 (m, 3 H), 7.40(m, 2 H), 7.71(dd, J1=8.5 Hz, J2=1.9 Hz, 1 H), 7.84(d, J=8.5 Hz, 1 H), 8.00(d, J=7.6 Hz, 2 H), 8.11(d, J=1.9 Hz, 1 H).
  • (7-Bromo-5-methyl-benzo[1,2,4]triazin-3-yl)-phenyl-amine
  • Figure US20070208019A1-20070906-C00168
  • 7-Bromo-5-methyl-benzo[1,2,4]triazin-3-ylamine-1-oxide (266 mg, 1.04 mmol) was dissolved in 5 ml acetic acid in a 20 ml vial, a few drops of water was added followed by adding of 100 mg Fe powder. The mixture was kept at 100° C. for 30 minutes. The solvent was removed under vacuum. The residue was dissolved in 5 ml aniline, sulfamic acid (202 mg, 2.08 mmol) was added to the mixture. The mixture was heat at 140° C. for overnight. The final product was isolated by preparative HPLC. Yield: 18.3%, ESI-MS: [M+H]+, 315, 317.
  • (7-Bromo-5-methyl-benzo[1,2,4]triazin-3-yl)-[3-(4-methyl-piperazin-1-yl)-propyl]-amine
  • Figure US20070208019A1-20070906-C00169
  • 7-Bromo-5-methyl-benzo[1,2,4]triazin-3-ylamine-1-oxide (200 mg, 0.78 mmol) was dissolved in 5 ml acetic acid in a 20 ml vial, a few drops of water was added followed by adding of 100 mg Fe powder. The mixture was kept at 100° C. for 30 minutes. The solvent was removed under vacuum. The residue was dissolved in 5 ml 3-(4-Methyl-piperazin-1-yl)-propylamine, sulfamic acid (152 mg, 1.57 mmol) was added to the mixture. The mixture was heat at 140° C. for overnight. The final product was isolated by preparative HPLC. Yield: 67.3%, ESI-MS: [M+H]+, 379, 381. 1H NMR (DMSO-d6): δ 1.05(m, 2H), 1.97 (s, 2 H), 2.77-3.20 (b, 8 H), 3.5 (b, 8 H), 7.84 (d, J=1.96 Hz, 1 H), 8.29 (d, J=1.96 Hz, 1H).
  • [5-Methyl-7-(2,4,6-trimethyl-phenyl)-benzo[1,2,4]triazin-3-yl]-phenyl-amine
  • Figure US20070208019A1-20070906-C00170
  • To a solution of (7-Bromo-5-methyl-benzo[1,2,4]triazin-3-yl)-phenyl-amine (10 mg, 0.032 mmol) dissolved in 2 ml N,N-Dimethylacetamide in a 20 ml vial, 2,4,6-trimethylphenylboronic acid (21 mg, 0.128 mmol) dissolved in 1 ml ethanol and potassium carbonate (6.4 mg, 0.06 mmol) dissolved in 1 ml water were added. Triphenylphosphine (1 mg, 0.0038 mmol) and tris(dibenzylideneacetone) dipalladium (0) (1 mg, 1.09 umol) were added to the mixture. The mixture was reflux overnight. The crude product was filtered and purified by preparative HPLC. 3 mg [5-Methyl-7-(2,4,6-trimethyl-phenyl)-benzo[1,2,4]triazin-3-yl]-phenyl-amine was isolated. Yield: 26.8%; ESI-MS: [M+H]+, 355; 1H NMR (CDCl3): δ 2.06 (s, 6 H), 2.36 (s, 3 H), 2.72 (s, 3 H), 6.99 (s, 2 H), 7.17 (m, 1 H), 7.45 (m, 2 H), 7.57 (m, 1 H), 7.89 (d, J=1.36 Hz, 1 H), 7.94(d, J=8.76 Hz, 2 H).
  • [7-(2-Fluoro-6-methoxy-phenyl)-5-methyl-benzo [1,2,4]triazin-3-yl]-phenyl-amine
  • Figure US20070208019A1-20070906-C00171
  • To a solution of (7-Bromo-5-methyl-benzo[1,2,4]triazin-3-yl)-phenyl-amine (10 mg, 0.032 mmol) dissolved in 2 ml N,N-Dimethylacetamide in a 20 ml vial, 2-Fluoro-6-methoxy-phenylboronic acid (22 mg, 0.128 mmol) dissolved in 1 ml ethanol and potassium carbonate (6.4 mg, 0.06 mmol) dissolved in 1 ml water were added. Triphenylphosphine (1 mg, 0.0038 mmol) and tris(dibenzylideneacetone) dipalladium (0) (1 mg, 1.09 umol) were added to the mixture. The mixture was reflux overnight. The crude product was filtered and purified by preparative HPLC. 2 mg [7-(2-Fluoro-6-methoxy-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-phenyl-amine was isolated. Yield: 17.5%; ESI-MS: [M+H]+, 361; 1H NMR (CDCl3): δ 2.73 (s, 3 H), 3.83 (s, 3 H), 6.83-6.86 (m, 2H), 7.14 (m, 1 H), 7.34 (m, 1 H), 7.45 (m, 2 H), 7.75(s, 1 H), 7.92(m, 2 H), 8.24(s, 1 H).
  • [7-(2,6-Dimethoxy-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-phenyl-amine
  • Figure US20070208019A1-20070906-C00172
  • To a solution of (7-Bromo-5-methyl-benzo[1,2,4]triazin-3-yl)-phenyl-amine (10 mg, 0.032 mmol) dissolved in 2 ml N,N-Dimethylacetamide in a 20 ml vial, 2,6-dimethoxy-phenylboronic acid (23 mg, 0.126 mmol) dissolved in 1 ml ethanol and potassium carbonate (6.4 mg, 0.06 mmol) dissolved in 1 ml water were added. Triphenylphosphine (1 mg, 0.0038 mmol) and tris(dibenzylideneacetone) dipalladium (0) (1 mg, 1.09 umol) were added to the mixture. The mixture was reflux overnight. The crude product was filtered and purified by preparative HPLC. 5 mg [7-(2,6-Dimethoxy-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-phenyl-amine was isolated. Yield: 42.4%; ESI-MS: [M+H]+, 373; 1H NMR (CDCl3): δ 2.72 (s, 3 H), 3.78 (s, 6 H), 6.70 (d, J=8.4 Hz, 2 H), 7.13 (m, 1 H), 7.35 (t, J=8.38 Hz, 1 H), 7.44 (m, 2 H), 7.89 (m, 1 H), 7.92 (dd, J1=8.78 Hz, J2=2.02 Hz, 2 H), 8.18 (d, J=2.02 Hz, 1 H).
  • [7-(2,6-Dimethyl-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-phenyl-amine
  • Figure US20070208019A1-20070906-C00173
  • To a solution of (7-Bromo-5-methyl-benzo[1,2,4]triazin-3-yl)-phenyl-amine (60 mg, 0.19 mmol) dissolved in 3 ml N,N-Dimethylacetamide in a 20 ml vial, 2,6-dimethyl-phenylboronic acid (114 mg, 0.76 mmol) dissolved in 2 ml ethanol and potassium carbonate (31 mg, 0.3 mmol) dissolved in 1 ml water were added. Triphenylphosphine (4.5 mg, 0.0171 mmol) and tris(dibenzylideneacetone) dipalladium (0) (4.5 mg, 4.9 umol) were added to the mixture. The mixture was reflux overnight. The crude product was filtered and purified by preparative HPLC. 30 mg [7-(2,6-Dimethyl-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-phenyl-amine was isolated. Yield: 46%; ESI-MS: [M+H]+, 341; 1H NMR (DMSO-d6): δ 2.05 (s, 6 H), 2.67(s, 3H), 7.07(t, J=7.33 Hz, 1 H), 7.17-7.24 (m, 3 H), 7.41 (t, J=7.56 Hz, 2 H), 7.62 (d, J=1.49 Hz, 1 H), 7.93 (d, J=1.49 Hz, 1 H), 8.05 (d, J=7.72 Hz, 1H).
  • 7-Naphthalen-2-yl-benzo[1,2,4]triazin-3-ylamine-1-oxide
  • Figure US20070208019A1-20070906-C00174
  • To a solution of 7-Bromo-benzo[1,2,4]triazin-3-ylamine-1-oxide (100 mg, 0.42 mmol) dissolved in 6 ml N,N-Dimethylacetamide in a 20 ml vial, 2-Naphthylboronic acid (143 mg, 0.83 mmol) dissolved in 1 ml ethanol and potassium carbonate (64 mg, 0.6 mmol) dissolved in 1 ml water were added. Triphenylphosphine (9 mg, 0.034 mmol) and tris(dibenzylideneacetone) dipalladium (0) (9 mg, 9.83 umol) were added to the mixture. The mixture was reflux overnight. The crude product was poured into 50 ml saturated NaHCO3 solution, and CH2Cl2 was used to extract the product. Solvent in the organic phase was removed under vacuum. Preparative HPLC was used to isolate the final product. 20 mg 7-Naphthalen-2-yl-benzo[1,2,4]triazin-3-ylamine-1-oxide was obtained. Yield: 16.7%, ESI-MS: [M+H]+, 289; 1H NMR (DMSO-d6): δ 7.56 (m, 2 H), 7.68 (d, J=8.84 Hz, 1 H), 7.95 (m, 2 H), 8.05 (d, J=8.64 Hz, 2 H), 8.33 (dd, J1=8.84 Hz, J2=1.87 Hz, 1 H), 8.38 (s, 1 H), 8.51 (d, J=1.87 Hz, 1 H).
  • General Procedure for the 6-alkyl Substituted Pteridine Synthesis
  • Figure US20070208019A1-20070906-C00175
  • 6-Bromomethyl-2,4-pteridinediamine
  • Figure US20070208019A1-20070906-C00176
  • To the solution of dibromotriphenylphosphine (2.4337 g, 5.76 mmol) of 2 ml anhydrous N,N-dimethylacetamide was added (2,4-Diamino-Pteridin-6-yl)-methanol hydrobromide (335.8 mg, 1.747 mmol). The mixture is the stirred at RT for overnight. The solution was treated with benzene. The filtered solid was then successively treated with benzene and ether and evaporate the remaining solid. The residue was dissolved in minimum 48% HBr at RT which then was added MeCN to give a tan solid precipitate. Collect the solid in ice water bath and wash it with MeCN and ether. 352 mg product was obtained. Yield 60%; 1H NMR (500 MHz, DMSO-d6): δ 4.86021(s, 2H), 9.01 (s, 1H), 9.15 (s, 2H), 9.22 (s, 2H); ESI-MS: 255, 257(M++1).
  • 2-[(2,4-Diamino-pteridin-6-ylmethyl)-amino]-3-(4-hydroxy-phenyl)-propionic acid tert-butyl ester
  • Figure US20070208019A1-20070906-C00177
  • To a solution of 6-bromomethyl-2, 4-pteridinediamine hydrobromide (31.2 mg, 0.116 mmol) in anhydrous N,N dimethylacetamide was added 2- amino-3-(4-hydroxy-phenyl)-propionic acid tert-butyl ester (30.22 mg, 0.127 mmol). The reaction mixture was stirred at 50° C. overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 17.2 mg product was obtained. Yield: 71%; 1H NMR (500 MHz, DMSO-d6): δ 1.33577 (s, 9H), 2.94185-3.02295 (m, 2H), 3.6550(b, 1H), 4.0878 (s, 2H), 6.70174-6.72384 (dd, J1=8.545 Hz, J2=2.59 Hz, 2H), 7.02394-7.04103 (d, J=8.545 Hz, 2H); 9.38501 (s, 1H); ESI-MS: 412 (M++1).
  • 6-[{(Pyridin-2-ylmethyl)-amino]-methyl}-2,4-pteridinediamine
  • Figure US20070208019A1-20070906-C00178
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (51 mg, 0.2 mmol) in anhydrous N,N dimethylacetamide was added 2-(aminomethyl) pyridine (22.48 ul, 0.22 mmol). The reaction mixture was stirred at 50° C. overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 32.3 mg product was obtained. Yield: 57%; 1H NMR (500 MHz, DMSO-d6): δ 3.93801 (s, 2H), 4.05772(s, 2H), 7.5758-7.6003 (m, 1H), 7.97993-8.00181 (m, 1H), 8.49332-8.50942 (d, J=8.05 Hz, 1H), 8.62592-8.64301 (d, J=8.545 Hz, 1H), 8.9938(s, 1H); ESI-MS: 283 (M++1).
  • 6-{[(Naphthalen-1-yl-methyl)-amino]-methyl}-2,4-pteridinediamine
  • Figure US20070208019A1-20070906-C00179
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (51 mg, 0.2 mmol) in anhydrous N,N dimethylacetamide was added 1-aminomethyl-naphthalene (31.67 ul, 0.22 mmol). The reaction mixture was stirred at 50° C. overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 9 mg product was obtained. Yield: 15%; 1H NMR(500 MHz, DMSO-d6): δ 4.6479(s, 2H), 4.7893(s, 2H), 7.575-7.6244(m, 3H), 7.74232-7.7570(d, J=6.91 Hz, 1H), 7.9935-8.0276(dd, J1=8.06 Hz, J2=8.995 Hz, 2H), 8.1670-8.1831(d, J=8.04 Hz, 1H), 8.8430(s, 1H); ESI-MS: m/z 332 (M++1).
  • 6-(Benzylamino-methyl)-2,4-pteridinediamine
  • Figure US20070208019A1-20070906-C00180
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (35.7 mg, 0.106 mmol) in anhydrous N,N dimethylacetamide was added benzylamine (28.6 ul, 0.212 mmol). The reaction mixture was stirred at 50° C. overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 17.7 mg product was obtained. Yield: 62%; 1H NMR (500 MHz, DMSO-d6): δ 4.30499(s, 2H), 4.51599(s, 2H), 7.42787-7.47298(m, 3H), 7.50007-7.51927 (m, 2H), 8.87751(s, 1H); ESI-MS: m/z 282 (M++1).
  • 6-{[(Adamantan-1-yl-methyl)-amino]-methyl}-2,4-pteridinediamine
  • Figure US20070208019A1-20070906-C00181
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (41.6 mg, 0.124 mmol) in anhydrous N,N dimethylacetamide was added 1-aminomethyl adamantane (35.43 ul, 0.2 mmol). The reaction mixture was stirred at 50° C. overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 12.7 mg product was obtained. Yield: 40%; 1H NMR (500 MHz, DMSO-d6): δ 1.56754-1.67101(m, 13H), 1.96741(s, 2H), 2.71139(s, 2H), 4.49166(s, 2H), 8.89918(s, 1H); ESI-MS: m/z 340 (M++1).
  • 6-(3,4-Dimethoxy-benzylamino)-2,4-pteridinediamine
  • Figure US20070208019A1-20070906-C00182
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (59 mg, 0.176 mmol) in anhydrous N,N dimethylacetamide was added 3,4-dimethoxy-benzylamine (51.15 ul, 0.3512 mmol). The reaction mixture was stirred at 50° C. overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 20.3 mg product was obtained. Yield: 34%; 1H NMR (500 MHz, DMSO-d6): δ 3.67534(s, 3H), 3.70494(s, 3H), 4.05412 (b, 4H), 6.78852-6.80460 (d, J=8.04 Hz, 1H), 6.83624 (s, 1H), 6.83624-6.85393 (d, J=8.195 Hz, 1H); 8.96623(s, 1H), 9.00584(s, 2H), 9.5577(s, 2H); ESI-MS: 342 (M++1).
  • 6-[2,2-Dimethyl-propylamino)-methyl]-2,4-pteridinediamine
  • Figure US20070208019A1-20070906-C00183
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (75.2 mg, 0.2237 mmol) in anhydrous N,N dimethylacetamide was added 2,2-dimethyl-propylamine (136.48 ul, 1.16 mmol). The reaction mixture was stirred at room temperature overnight. The resulted precipitate was collected and purified by preparative HPLC. 8.3 mg product was obtained. Yield: 14.2%; 1H NMR (500 MHz, DMSO-d6): δ 0.98591 (s, 9H), 2.82895(s, 2H), 4.38765(s, 2H), 8.77458(s, 1H); ESI-MS: m/z 262 (M++1).
  • 6-{[2-(3,4-Dimethoxy-phenyl)ethylamino]-methyl}-2,4-pteridinediamine
  • Figure US20070208019A1-20070906-C00184
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (55 mg, 0.1638 mmol) in anhydrous N,N dimethylacetamide was added 2-(3,4-dimethoxyphenyl) ethylamine hydrochloride (55 ul, 0.32 mmol). The reaction mixture was stirred at 50° C. overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 3.8 mg product was obtained. Yield: 19.6%; 1H NMR (500 MHz, DMSO-d6): δ 2.75943-2.79062 (t, J=7.37 Hz, 2H), 2.92110-2.95356 (t, J=7.365 Hz, 2H), 3.72197(s, 3H), 3.75135(s, 3H), 4.54559(s, 2H), 6.74441-6.77765 (dd, J1=8.26 Hz, J2=1.955 Hz, 1H), 6.84994 (s, 1H), 6.88406-6.90401 (dd, J1=8.195 Hz, J2=1.735 Hz, 1H); 8.87126(s, 1H); ESI-MS: m/z 356 (M++1).
  • 6-{[2-(3,4-Dihydroxy-phenyl)ethylamino]-methyl}-2,4-pteridinediamine
  • Figure US20070208019A1-20070906-C00185
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (67.3 mg, 0.2003 mmol) in anhydrous N,N dimethylacetamide was added 2-(3, 4-dihydroxyphenyl)ethylamine (43.6 mg, 0.23 mmol). Under positive pressure of Argon, iPr2EtN (32.63 ul) was added. The reaction mixture was stirred at 50° C. for 4 hrs and then at Room temperature overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 14.8 mg product was obtained. Yield: 22.6%; 1H NMR (500 MHz, DMSO-d6): δ 2.69242 (b, 4H), 4.03353 (s, 2H), 6.37542-6.39065 (d, J=7.615 Hz, 1H), 6.4851(s, 1H), 6.56632-6.58226 (d, J=7.97 Hz, 1H), 8.80972 (s, 1H); ESI-MS: m/z 328 (M++1).
  • 4-{2-[Di(2,4-diaminopteridin-6-yl-methyl)-amino]-ethyl}-benzene-1,2-diol
  • Figure US20070208019A1-20070906-C00186
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (67.3 mg, 0.2003 mmol) in anhydrous N,N dimethylacetamide was added 2-(3, 4-dihydroxyphenyl)ethylamine hydrochloride (43.6 mg, 0.23 mmol). Under positive pressure of Argon, iPr2EtN (32.63 ul) was added. The reaction mixture was stirred at 50° C. for 4 hrs and then at Room temperature overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 3.2 mg product was obtained. Yield: 6.4%; 1H NMR (500 MHz, DMSO-d6): δ 2.63154-2.63891 (m, 2H), 2.72839(m, 2H), 4.03844 (s, 4H ), 6.32227-6.33832 (d, J=8.025 Hz, 1H), 6.38857 (s, 1H), 6.51654-6.53241 (d, J=8.835 Hz, 1H), 8.67743 (s, 2H); ESI-MS: m/z 502 (M++1).
  • 6-{[2-(3,4-Dihydroxy)-benzylamino]-methyl}-2, 4-pteridinediamine
  • Figure US20070208019A1-20070906-C00187
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (64 mg, 0.1905 mmol) in anhydrous N,N dimethylacetamide was added 2-(3,4-dihydroxybenzyl)amine hydrochloride (36.795 mg, 0.23 mmol). Under positive pressure of Argon, iPr2EtN(40.15 ul) was added. The reaction mixture was stirred at 50° C. for 4 hrs and then at Room temperature overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 7.8 mg product was obtained. Yield: 13.1%; 1H NMR (500 MHz, DMSO-d6): δ 3.91255 (s, 2H), 4.61898(s, 2H), 6.6094-6.62572(d, J=8.16 Hz, 1H), 6.64921-6.66517(d, J=7.98 Hz, 1H), 6.79669-6.79963 (d, J=1.47 Hz, 1H), 8.88104 (s, 1H); ESI-MS: 314 (M++1).
  • 3-(4-tert-Butoxy-phenyl)-2-[(2,4-diamino-pteridin-6-ylmethyl)-amino]-propionic acid tert-butyl ester
  • Figure US20070208019A1-20070906-C00188
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (53.7 mg, 0.1598 mmol) in anhydrous N,N dimethylacetamide was added 2-amino-3-(4-tert-butoxy-phenyl)-propionic acid tert-butyl ester hydrochloride (51.58 mg, 0.1758 m mol). Under positive pressure of Argon, iPr2EtN (33.69 ul) was added. The reaction mixture was stirred at 50° C. for 4 hrs and then at room temperature overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 27.6 mg product was obtained. Yield: 41%; 1H NMR (500 MHz, DMSO-d6): δ 1.22491(s, 9H), 1.26835 (s, 9H), 2.921-2.971 (m, 2H), 4.130 (b, 1H), 4.427(s, 2H), 6.91485-6.93165(d, J=8.4 Hz, 2H), 7.16037-7.17723(d, J=8.43 Hz, 2H), 8.89353 (s, 1H); 9.13119 (s, 2H), 9.30829 (s, 2H); ESI-MS: m/z 468 (M++1).
  • 1-{[di-(2,4-Diaminopteridin-6-yl-methyl)]-amino-methyl}-naphthalene
  • Figure US20070208019A1-20070906-C00189
  • To a solution of 6-bromomethyl-2,4-pteridinediamine hydrobromide (51 mg, 0.2 mmol) in anhydrous N,N dimethylacetamide was added 1-aminomethyl-naphthalene (31.67 ul, 0.22 mmol). The reaction mixture was stirred at 50° C. overnight. The crude product was poured into saturated bicarbonate solution. The resulted precipitate was collected and purified by preparative HPLC. 9 mg product was obtained. Yield: 15%; 1H NMR(500 MHz, DMSO-d6): δ 4.0970 (s, 4H), 4.2526 (s, 2H), 7.3530-7.3692 (dd, J1=7.25 Hz, J2=7.25 Hz, 2H), 7.439-7.5202 (m, 2H), 7.5414-7.5553 (d, J=6.94 Hz, 1H), 7.67408-7.69065 (d, J=8.285 Hz, 1H), 7.78789-7.7713 (d, J=8.285 Hz, 1H), 8.14819-8.1313 (d, J=8.44 Hz, 1H), 8.7144 (s, 2H), 8.93305 (s, 2H), 9.23424(s, 2H); ESI-MS: m/z 506 (M++1).
  • Quinazolines
  • General Procedure for the 3H-quinazolin-4-one Synthesis
  • Method 1:
    Figure US20070208019A1-20070906-C00190
  • Method 2:
    Figure US20070208019A1-20070906-C00191
  • 6-bromo-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00192
  • 2-Amino-5-Bromo-benzoic acid (10.817g, 50 mmol) was suspended in 70 ml formamide. The mixture was heated at 180° C. for 7 hrs. The cooled solution was diluted with 100 ml cold water and filtered. The tan solid was washed with di water and used for the next step reaction without further purification. 1 0.2g product was obtained. Yield: 90%. 1H NMR (500 MHz, DMSO-d6): δ 7.61430-7.63179(d, J=8.745 Hz, 1H), 7.94922-7.97149 (dd, J1=8.75 Hz, J2=2.385 Hz, 1H), 8.142421(s, 1H), 8.19136-8.19609(d, J=2.365 Hz, 1H); ESI-MS: m/z 225, 227(M++1).
  • 6-(2,6-Dimethylphenyl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00193
  • To a solution of 6-bromo-3H-quinazolin-4-one (43.1 mg, 0.1915 mmol) dissolved in 2 ml N,N-dimethylacetamide in a 20 ml vial, 2,6-dimethylphenylboronic acid (114.9 mg, 0.76 mmol) dissolved in 1 ml ethanol and potassium carbonate (26.7 mg, 0.193 mmol) dissolved in 1 ml water were added. Triphenylphosphine (5 mg, 0.019 mmol) and tris(dibenzylideneacetone)dipalladium(0) (3.5 mg, 3.8 umol) were added to the mixture which refluxed overnight. The crude product was poured into 50 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 19.2 mg product was obtained. Yield: 40%; 1H NMR (500 MHz, DMSO-d6): δ 1.96741(s, 6H), 7.114769-7.16307(d, J=7.69 Hz, 2H), 7.19260-7.22248(dd, J1=8.62 Hz, J2=6.31 Hz 1H), 7.60434-7.62503(dd, J1=8.335 Hz, J2=1.97 Hz, 1H), 7.75179-7.76829(d, J=8.25 Hz, 1H), 7.81882-7.82258(d, J=1.88 Hz, 1H), 8.17882 (s, 1H); ESI-MS: m/z 251 (M++1).
  • 6-(2,6-Dimethoxlphenyl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00194
  • To a solution of 6-bromo-3H-quinazolin-4-one (43.1 mg, 0.1915 mmol) dissolved in 2 ml N,N-dimethylacetamide in a 20 ml vial, 2,6-dimethylphenylboronic acid (139.4 mg, 0.76 mmol) dissolved in 1 ml ethanol and potassium carbonate (26.7 mg, 0.193 mmol) dissolved in 1 ml water were added. Triphenylphosphine (5 mg, 0.019 mmol) and tris(dibenzylideneacetone)dipalladium (0) (3.5 mg, 3.8 umol) were added to the mixture which refuxed overnight. The crude product was poured into 50 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 38.2 mg product was obtained. Yield: 71%; 1H NMR (500 MHz, DMSO-d6): δ 3.67800(s, 6H), 6.77555-6.79250(d, J=8.475 Hz, 1H), 7.33529-7.36895(dd, J1=8.415 Hz, J2=8.415 Hz 1H), 7.65311(s, 2H), 7.93672 (s, 1H), 8.13028 (s, 1H); ESI-MS: m/z 283 (M++1).
  • 6-(2-chloro-6-methoxyphenyl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00195
  • To a solution of 6-bromo-3H-quinazolin-4-one (38.9 mg, 0.1728 mmol) dissolved in 2 ml N,N-dimethylacetamide in a 20 ml vial, 2-chloro-6-methoxy-phenylboronic acid (128.88 mg, 0.6914 mmol) dissolved in 1 ml ethanol and potassium carbonate (26.28 mg, 0.19 mmol) dissolved in 1 ml water were added. Triphenylphosphine (4.5 mg, 0.017 mmol) and tris(dibenzylideneacetone)dipalladium(0) (3.2 mg, 3.5 umol) were added to the mixture which refluxed overnight. The crude product was poured into 5 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 3.4 mg product was obtained. Yield: 24.3%; 1H NMR (500 MHz, DMSO-d6): δ 3.70812(s, 3H), 7.13816-7.15637 (dd, J1=7.945 Hz, J2=0.32 Hz, 1H), 7.18430-7.20184 (dd, J1=7.85 Hz, J2=0.92 Hz 1H), 7.40806-7.44074 (dd, J1=8.205 Hz, J2=8.135 Hz, 1H), 7.66531-7.68611 (dd, J1=8.305 Hz, J2=2.04 Hz, 1H), 7.71531-7.73209 (d, J=8.39 Hz, 1H), 7.92946-7.93334 (d, J=1.94Hz, 1H), 8.16800 (s, 1H); ESI-MS: m/z 287 (M++1).
  • 6-(2,4,6-trimethylphenyl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00196
  • To a solution of 6-bromo-3H-quinazolin-4-one (43.1 mg, 0.1915 mmol) dissolved in 2 ml N,N-dimethylacetamide in a 20 ml vial, 2,4,6-trimethylphenylboronic acid (114.9 mg, 0.76 mmol) dissolved in 1 ml ethanol and potassium carbonate (26.7 mg, 0.193 mmol) dissolved in 1 ml water were added. Triphenylphosphine (5 mg, 0.019 mmol) and tris(dibenzylideneacetone)dipalladium (0) (3.5 mg, 3.8 umol) were added to the mixture which refluxed overnight. The crude product was poured into 50 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 19.2 mg product was obtained. Yield: 40%; 1H NMR (500 MHz, DMSO-d6): δ 1.96741(s, 6H), 7.114769-7.16307(d, J=7.69 Hz, 2H), 7.19260-7.22248(dd, J1=8.62 Hz, J2=6.31 Hz 1H), 7.60434-7.62503(dd, J1=8.335 Hz, J2=1.97 Hz, 1H), 7.75179-7.76829(d, J=8.25 Hz, 1H), 7.81882-7.82258(d, J=1.88 Hz, 1H), 8.17882 (s, 1H); ESI-MS: m/z 265 (M++1).
  • 6-(Naphthalene-1-yl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00197
  • To a solution of 6-bromo-3H-quinazolin-4-one (45.2 mg, 0.2 mmol) dissolved in 2 ml N,N -dimethylacetamide in a 20 ml vial, naphthalene-1-boronic acid (69.4 mg, 0.4 mmol) dissolved in 1 ml ethanol and potassium carbonate (30.5 mg, 0.22 mmol) dissolved in 1 ml water were added. Tripenylphosphine (5.27 mg, 0.02 mmol) and tris(dibenzylideneacetone)dipalladium (0) (3.6 mg, 4 umol) was added to the mixture which refluxed overnight. The crude product was poured into 50 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 32.9 mg product was obtained. Yield: 62%; 1H NMR (500 MHz, DMSO-d6): δ 7.52083-7.54615(m, 2H), 7.56877-7.58461(dd, J=6.88 Hz, 1H), 7.61224-7.64281(dd, J1=8.255 Hz, J2=8.285 Hz, 1H), 7.78775-7.804 (d, J=8.125 Hz, 1H), 7.82384-7.84054(d, J=8.35 Hz, 1H), 7.93472-7.95545(dd, J1=8.365 Hz, J2=2 Hz, 1H), 8.00847-8.02533(d, J=8.43 Hz, 1H), 8.03829-8.05347(d, J=7.59 Hz, 1H), 8.15915-8.16300(d, J=1.925 Hz, 1H), 8.19218 (s, 1H); ESI-MS: m/z 273 (M++1).
  • 6-(Naphthalene-2-yl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00198
  • To a solution of 6-bromo-3H-quinazolin-4-one (47.1 mg, 0.2093 mmol) dissolved in 2 ml N,N-dimethylacetamide in a 20 ml vial, naphthalene-1-boronic acid (73 mg, 0.4244 mmol) dissolved in 1 ml ethanol and potassium carbonate (32.7 mg, 0.2366 mmol) dissolved in 1 ml water were added. Triphenylphosphine (5.5 mg, 0.021 mmol) and tris(dibenzylideneacetone)dipalladium (0) (3.8 mg, 4.1 umol) were added to the mixture which refluxed overnight. The crude product was poured into 50 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 26.3 mg product was obtained. Yield: 46%; 1H NMR (500 MHz, DMSO-d6): δ 7.54020-7.58965 (m, 2H), 7.80614-7.82312 (d, J=8.49 Hz, 1H), 7.94743-7.96828 (dd, J1=8.505 Hz, J2=1.91 Hz, 1H), 7.96828-7.98243 (d, J=8.035 Hz, 1H), 8.05455-8.07187 (d, J=8.63 Hz, 1H), 8.16005(s, 1H), 8.30107-8.3226(dd, J1=8.58 Hz, J2=2.25 Hz, 1H), 8.37163-8.37447(d, J=1.42 Hz, 1H), 8.50638-8.51090(d, J=2.26 Hz, 1H); ESI-MS: m/z 273 (M++1).
  • 6-(4-phenoxy-phenyl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00199
  • To a solution of 6-bromo-3H-quinazolin-4-one (44.8 mg, 0.199 mmol) dissolved in 2 ml N,N-dimethylacetamide in a 20 ml vial, naphthalene-1-boronic acid (85.22 mg, 0.3981 mmol) dissolved in 1 ml ethanol and potassium carbonate (30.26 mg, 0.2198 mmol) dissolved in 1 ml water were added. Triphenylphosphine (5.2 mg, 0.020 mmol) and tris(dibenzylideneacetone)dipalladium (0) (3.64 mg, 4.0 umol) were added to the mixture which refluxed overnight. The crude product was poured into 50 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 25.3 mg product was obtained. Yield: 41%; 1H NMR(500 MHz, DMSO-d6): δ 7.09215-7.12687(dd, J1=8.58 Hz, J2=8.78 Hz, 4H), 7.17733-7.20876 (dd, J1=6.48 Hz, J2=7.375 Hz, 1H), 7.42050-7.45247(J1=7.56 Hz, J2=6.45 Hz, 2H), 7.74247-7.75949(d, J=8.51 Hz, 1H), 7.79084-7.80838(dd, J1=6.73 Hz, J2=2.08 Hz, 2H), 8.1191-8.1408(dd, J1=8.395 Hz, J2=2.355 Hz, 1H), 8.14531(s, 1H), 8.31298-8.31761(d, J=2.315 Hz, 1H); ESI-MS: m/z 315 (M++1).
  • 6-Bromo-3-(3-hydroxy-propionyl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00200
  • To a suspension of NaH (60% in mineral oil, 199 mg) in 20 ml of N,N-dimethylacetamide was added 6-bromo-3H-quinazolin-4-one(0.9335 mg, 4.148 mmol). The mixture was stirred at room temperature for 40 mins resulting clear red solution. Acroyl chloride (471.8 ul, 5.8072 mmol) was added. The solution was heated at 70° C. for 8 hrs, cooled to room temperature, and poured into 30 ml of ice water. Methylene chloride added and product was in the water phase. The water solvent was evaporated under vacuum. The resulted residue was purified by preparative HPLC. 1.1 g product was obtained. Yield: 74.7%; 1H NMR (500 MHz, DMSO-d6): δ 2.73412-2.76135(t, J=6.805 Hz, 2H), 4.14197-4.16922(t, J=6.815 Hz, 2H), 7.62305-7.64046(d, J=8.705 Hz, 1H), 7.96596-7.98797(dd, J1=8.635 Hz, J2=2.38 Hz, 1H), 8.2287-8.2335(d, J=2.4Hz, 1H), 8.41991(s, 1H); ESI-MS: m/z 297, 299 (M++1).
  • 6-(2,6-Dimethylphenyl)-3-(3-hydroxy-propionyl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00201
  • To a solution of 6-Bromo-3-(3-hydroxy-propionyl)-3H-quinazolin-4-one (9.8 mg, 0.033 mmol) dissolved in 1 ml N,N-dimethylacetamide in a 20 ml vial, 2,6-dimethylphenyl boronic acid (9.89 mg, 0.066 mmol) dissolved in 0.5 ml ethanol and potassium carbonate (5 mg, 0.036 mmol) dissolved in 0.5 ml water were added. Triphenylphosphine (0.87 mg, 3.3 umol) and tris(dibenzylideneacetone)dipalladium(0) (0.6 mg, 0.6 umol) were added to the mixture which refluxed overnight. The crude product was poured into 5 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 5.2 mg product was obtained. Yield: 49%; 1H NMR (500 MHz, DMSO-d6): δ 1.96247(s, 6H), 2.76290-2.79002(t, J=6.805 Hz, 2H),), 4.15954-4.18664 (t, J=6.785 Hz, 2H), 7.14682-7.7.1621(d, J=7.64 Hz, 1H), 7.19338-7.21062(dd, J1=8.62 Hz, J2=6.41 Hz, 1H), 7.60532-7.62604(dd, J=8.365 Hz, J2=2.03 Hz, 1H), 7.75204-7.76861 (d, J=8.285 Hz, 1H), 7.84928-7.85312(d, J=1.92 Hz, 1H), 8.41195(s, 1H); ESI-MS: m/z 323 (M++1).
  • 6-(2-chloro-6-methoxyphenyl)-3-(3-hydroxy-propionyl)-3H-quinazolin-4-one
  • Figure US20070208019A1-20070906-C00202
  • To a solution of 6-Bromo-3-(3-hydroxy-propionyl)-3H-quinazolin-4-one (11.6 mg, 0.039 mmol) dissolved in 1 ml N,N-dimethylacetamide in a 20 ml vial, 2-chloro-6-methoxy-phenylboronic acid (14.55 mg, 0.078 mmol) dissolved in 0.5 ml ethanol and potassium carbonate (5.92 mg, 0.043 mmol) dissolved in 0.5 ml water were added. Triphenylphosphine (1 mg, 3.8 umol) and tris(dibenzylideneacetone)dipalladium (0) (0.7 mg, 0.78 umol) were added to the mixture which refluxed overnight. The crude product was poured into 5 ml saturated bicarbonate solution and methylene chloride was used to extract the product. Solvent in the organic phase was removed under vacuum. The resulted residue was purified by preparative HPLC. 3.4 mg product was obtained. Yield: 24.3%; 1H NMR (500 MHz, DMSO-d6): δ 2.75538-2.78226(t, J=6.835 Hz, 2H), 3.70334(s, 3H), 4.15877-4.18594 (t, J=6.785 Hz, 2H), 7.13724-7.15535 (dd, J1=8.68 Hz, J2=0.75 Hz, 1H), 7.18337-7.20169 (dd, J1=8.375 Hz, J2=0.885 Hz, 1H), 7.41001-7.44275 (dd, J1=8.215 Hz, J2=8.185 Hz, 1H), 7.66453-7.68523 (dd, J1=8.38 Hz, J2=2.0 Hz, 1H), 7.72 (d, J=8.4 Hz, 1H), 7.96 (d, J=1.9 Hz, 1H), 8.41 (s, 1H); ESI-MS: m/z 359 (M++1).
  • 2-hydroxy-4-aminoquinazolines
  • Figure US20070208019A1-20070906-C00203
  • 4-Amino-8-bromo-6-nitro-quinazolin-2-ol
  • Figure US20070208019A1-20070906-C00204
  • 2-Amino-3-bromo-5-nitro-benzonitrile (1.9003 g, 7.85 mmol) was heated with urea (1.8862 g, 31.4 mmol) at 180-185° C. for 3 hrs. The cooled mixture was powered and treated with bicarbonate solution, filtered and washed with water. The solid was the collected and washed with ethanol, ether, and used for the next step reaction without further purification. 2.0 g product was obtained. Yield 89%; 1H NMR (500 MHz, DMSO-d6): δ 8.44455-8.45011(d, J=2.78 Hz, 1H), 8.87071-8.87544(d, J=2.365 Hz, 1H), 9.39866-9.40333(d, J=2.335 Hz, 1H), 9.50740-9.51282(d, J=2.71 Hz, 1H); ESI-MS: 285, 287 (M++1).
  • 8-Bromo-4-[3-(4-methyl-piperazin-1yl)-propylamino]-6-nitro-quinazolin-2-ol
  • Figure US20070208019A1-20070906-C00205
  • A mixture of 4-amino-8-bromo-6-nitro-quinazolin-2-ol (24.1 mg, 0.0845 mmol), sulfamic acid (16.4 mg, 0.169 mmol) and 1-(3-aminopropyl)-4-methylpiperazine (1 ml) was heated at reflux for 7 h. The cooled reaction mixture was poured into 10 ml ice water. The resulting precipitate was collected and purified by preparative HPLC. 19.2 mg product was obtained. Yield: 40%; 1H NMR (500 MHz, DMSO-d6): δ 1.91521-1.95482 (m, 2H), 2.78103(s, 8H), 3.16555(b, 4H), 8.68221-8.68666(d, J=2.225 Hz, 1H), 9.10824-9.11291(d, J=2.335 Hz, 1H); ESI-MS: 425, 427 (M++1).
  • Preparation of (6,7-Diphenyl-pteridin-4-yl)-(3-(4-methyl-piperazin-1-yl)-propyl)-amine
  • Figure US20070208019A1-20070906-C00206
  • 6,7-Diphenyl-pteridin-4-ylamine (200 mg, 0.669 mmol) and sulfamic acid (300 mg, 1.91 mmol) were dissolved in 4 ml 1-(3-aminopropyl)-4-methylpiperazine. The mixture was reflux for overnight. Preparative HPLC was used to isolated the product. 50 mg (6,7-Diphenyl-pteridin-4-yl)-(3-(4-methyl-piperazin-1-yl)-propyl)-amine was obtained. Yield: 17%, ESI-MS: [M+H]+, 441.
    Representative Synthesis of Compounds of Structure IV
    Figure US20070208019A1-20070906-C00207
  • A 3-mL reaction flask equipped with a stirring vane and a teflon cap was charged with the bis(benzil) species (122 mg; 0.324 mmol) and 5,6-diamino-2,4-dihydroxy pyrimidine sulfate (156 mg; 0.649 mmol; 2.00 equiv). The vial was heated to ca. 210° C. for 2 h and then the contents were poured into 30 mL of ether, the resulting solid was sonicated vortexed and centrifuged. The resulting solid was washed 2×20 mL of ethyl acetate-ether (1:1), and dried in a vacuum dessicator resulting in 120 mg (96%) of an orange solid bis(pteridine). MS (M+H+: calcd 647; found 647).
    Representative Synthesis of Compounds of Structure V
    Figure US20070208019A1-20070906-C00208
  • A 5-mL, single-necked, round-bottomed flask with a stirring bar and a septum was charged with 2-aminomethylbenzimidazole (119 mg; 0.500 mmol; 1.00 equiv). It does not dissolve in 3 mL of DMF even with heating. To this slurry was added isatin (73.8 mg; 0.502 mmol; 1.00 equiv). The solution is a bright orange-yellow. A few drops of glacial HOAc were added, the reaction was stirred for 15 min, and then sodium cyanoborohydride (62.0 mg; 0.980 mmol; 1.97 equiv). The solution turned a light straw-yellow in 30 min. After stirring for 2 d at room temperature, the reaction was worked up by pouring the mixture into 50:50 saturated aqueous sodium bicarbonate-ice. The white precipitate formed was extracted with ethylacetate (2×20 mL). The combined organic layer was extracted again with 10 mL satd sodium bicarbonate, dried (anhydrous Na2SO4), filtered, and concentrated by rotary evaporation to yield an orange-yellow oil that solidified on standing. The crude was recrystallized from ethylacetate-hexanes to yield 98.9 mg of an orange foam. MS (M+H+: calcd 279; found 279).
  • EXAMPLE 2 Anti-Cancer Therapy with Vasculostatic Agents
  • The following experiments show the use of vasculostatic agents of the invention alone and in combination with chemotherapeutic agents for treatment of cancer. FIG. 2 shows the synergistic results of co-drug therapy utilitizing 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt, (compound A—in this example formulated in 50% PEG400:50% water) illustrated in FIG. 1, with doxorubicin (in this example formulated in 50% PEG400:50% water). In the experiment shown in FIG. 2, syngeneic Lewis lung carcinoma cells were injected I.V. in order to establish lung metastases in Balb/C mice. Beginning 10 days after cells were injected, doxorubicin (3 mg/kg) and/or 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt, (compound A—various doses as shown) was given I.P. every 3 days for 3 cycles. Animals were sacrificed at day 20, lungs were collected, and weighed. Net tumor burden is the weight of tumor-bearing lungs minus the average weight of normal control lungs. N=5/group, p<0.02. As shown in FIG. 2 6,7-Bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt (compound A) had a profound effect on tumor burden in animals, typically reducing tumor burden by 25% as a stand alone agent or by greater than 90% in combination with doxorubicin.
  • FIG. 3 shows the results of using 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt (compound A—in this example formulated in 50% PEG400:50% water), and 6,7-diphenyl-pteridine-2,4-diamine (compound B—in this example formulated in 50% PEG400:50% water) with doxorubicin to treat colon carcinoma. Syngeneic CT-26 Colon carcinoma cells were injected I.V. in order to establish lung metastases in Balb/C mice. Beginning 10 days after cells were injected, indicated test agents were given I.P. every 3 days for 3 cycles. Animals were sacrificed at day 20, lungs were collected, and weighed. Net tumor burden is the weight of tumor-bearing lungs minus the average weight of normal control lungs. N=5/group, p<0.02. In this model, as shown in FIG. 3 6,7-Bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt (compound A) typically reduced tumor burden by 35% as a stand alone agent or by greater than 60% in combination with doxorubicin. Similarly, in this model, 6,7-diphenyl-pteridine-2,4-diamine (compound B) typically reduced tumor burden by 35% as a stand alone agent or by greater than 65% in combination with doxorubicin.
  • FIG. 4 illustrates the effects of the compounds of the present invention for co-drug therapy with docetaxel (Taxotere®—in this example formulated in 12.5% Cremaphore: 12.5% Ethanol:75% normal saline) as described herein. Syngeneic CT-26 Colon carcinoma cells were injected I.V. in order to establish lung metastases in Balb/C mice. Beginning 10 days after cells were injected, indicated test agents were given I.P. every 3 days for 3 cycles. Animals were sacrificed at day 20, lungs were collected, and weighed. Net tumor burden is the weight of tumor-bearing lungs minus the average weight of normal control lungs. N=5/group, p<0.02. 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt (compound A - in this example formulated in 50% PEG400:50% water) and 6,7-diphenyl-pteridine-2,4-diamine (compound B—in this example formulated in 50% PEG400:50% water) from FIG. 1 are shown in FIG. 4. In this model, as shown in FIG. 4, 6,7-Bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt (compound A) typically reduced tumor burden by 25% as a stand alone agent or by greater than 80% in combination with docetaxel. Similarly, in this model 6,7-diphenyl-pteridine-2,4-diamine (compound B) typically reduced tumor burden by 20% as a stand alone agent or by greater than 70% in combination with doxorubicin.
  • FIG. 5 shows a photo of representative lung samples from the experiment shown in FIG. 3 with 6,7-diphenyl-pteridine-2,4-diamine (compound B—in this example formulated in 50% PEG400:50% water) and doxorubicin (in this example formulated in 50% PEG400:50% water). The tumors in the lungs are apparent in the vehicle (control) lungs, and the vasculostatic agent plus doxorubicin treated lungs show a dramatic reduction in tumor burden.
  • FIG. 6 illustrates the effect of compounds administered in conjunction with docetaxel (Taxotere®—in this example formulated in 12.5% Cremaphore: 12.5% Ethanol:75% normal saline ) in the in vivo model of metastatic colon cancer (CT-26 adenocarcinoma) described for FIG. 4. 2,3-Bis(3,4-dihydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride salt (compound C—in this example formulated in 50% PEG400:50% water) from FIG. 1 is shown in FIG. 6 as compound C. N=5/group, p<0.02. In this model, as shown in FIG. 6, 2,3-Bis(3,4-dihydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride salt (compound C) typically reduced tumor burden by 65% as a stand alone agent or by greater than 85% in combination with docetaxel.
  • Similarly, 2,3-bis(4-hydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride salt inhibited tumor burden alone or with co-drug therapy using docetaxel (Taxotere®—in this example formulated in 12.5% Cremaphore: 12.5% Ethanol:75% normal saline) as described herein. Syngeneic CT-26 Colon carcinoma cells were injected I.V. in order to establish lung metastases in Balb/C mice. Beginning 10 days after cells were injected, indicated test agents were given I.P. every 3 days for 3 cycles. Animals were sacrificed at day 20, lungs were collected, and weighed. Net tumor burden is the weight of tumor-bearing lungs minus the average weight of normal control lungs. N=5/group, p<0.02. 2,3-Bis(4-hydroxyphenyl)-pyrido[2,3-b]pyrazin-6-ylamine dihydrochloride salt in 50% PEG400:50% water) typically reduced tumor burden by 63% as a stand alone agent or by greater than 78% in combination with docetaxel.
  • EXAMPLE 3 Inhibition of Vascular Permeability
  • IL-2 is used clinically to treat metastatic melanoma and renal cell carcinoma and the dose-limiting toxicity for IL-2 is Vascular Leak Syndrome (VLS). Two representative examples from distinct chemotype series were selected for initial study in the reduction of IL-2-induced VLS (see FIG. 1 compounds). The compounds were pre-screened for in vivo reduction of vascular permeability and there was no observable gross toxicity as single agents at 20-fold higher doses.
  • The results of the studies shown in FIGS. 7-8 indicate that representative compounds of the invention show inhibition of vascular leak in vivo. There were no effects on T cell proliferation in prescribed dose range (see FIGS. 10-11) and no effects on anti-tumor activity of IL-2 (melanoma model; see FIG. 9). The following experiments exemplify the results for co-drug therapy.
  • BalbC mice were given 9 injections of the indicated dose of murine IL-2 (in this example formulated in saline with 5% bovine serum albumin) and/or invention compounds over a period of 4 days. Animals were then sacrificed followed by collection, blotting and weighing (wet weight) of heart, lungs, and spleen. Organs were then dried at 80° C. for 24 hours and weighed (dry weight). N=5/group, p<0.02. N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid (compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water) and 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced VLS in the heart by >100%. The results are shown in FIG. 7.
  • BalbC mice were given 9 injections of the indicated dose of murine IL-2 and/or invention compounds over a period of 4 days. Animals were then sacrificed followed by collection, blotting and weighing (wet weight) of heart, lungs, and spleen. Organs were then dried at 80° C. for 24 hours and weighed (dry weight). N=5/group, p<0.02. N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid (compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water) and 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced VLS in the spleen by >100%. The results are shown in FIG. 8.
  • Syngeneic B16 melanoma cells were injected I.V. in order to establish lung metastases in C57 mice. Beginning 10 days after cells were injected, 100,000 U of IL-2 and/or indicated invention compounds were given I.P. every 8 hours for 5 days. Animals were sacrificed at day 18, lungs were collected and scored using image analysis software. N=5/group, p<0.02. N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid (compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water) and 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water) typically had no significant impact on the anti-tumor activity of IL-2. Invention compound concentrations are listed in parenthesis in mg/kg while IL-2 concentration is given in parenthesis kilounits. The results are shown in FIG. 9.
  • An IL-2 dependent human T cell line, CTLL2, was used to evaluate IL-2 dependent proliferation over 96 hours in the presence of 50 pg of human recombinant IL-2 (R&D Systems) and the indicated compounds using the XTT assay. N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid (compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water) typically had no significant impact on IL-2 induced T-cell proliferation. The results are shown in FIG. 10.
  • An IL-2 dependent human T cell line, CTLL2, was used to evaluate IL-2 dependent proliferation over 96 hours in the presence of 50 pg of human recombinant IL-2 (R&D Systems) and the indicated compounds using the XTT assay. 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water) typically had no significant impact on IL-2 induced T-cell proliferation in the therapeutic range (<1 μM). The results are shown in FIG. 11.
  • Thus, representative examples from two distinct chemotype series in the present application (shown in FIG. 1) indicate that, for example, N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid (compound D—in the 1 mg/kg range, in this example formulated in 50% PEG400:50% water) and 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.1 mg/kg range, in this example formulated in 50% PEG400:50% water), are effective in reducing VLS by 80-100% in vivo.
  • Both of the exemplary compounds performed well in important initial tests, including 1) inhibition of VLS at normal and elevated doses of IL-2; 2) no interference with IL-2 mediated anti-tumor activity; 3) no inhibition of IL-2 induced T cell proliferation in the likely therapeutic dose range; and 4) neither compound elicited gross observable toxicity. These results indicate that invention compounds could be used in conjunction with IL-2 to prevent dose-limiting VLS and thereby increase the clinical application and therapeutic dose range of IL-2.
  • Acute Respiratory Distress Syndrome (ARDS) is an acute, severe injury to most or all of both lungs causing fluid leak into the lungs. Patients with ARDS experience severe shortness of breath and often require mechanical ventilation (life support) because of respiratory failure. ARDS has also been called some of the following terms: Non-cardiogenic pulmonary edema; Increased-permeability pulmonary edema; Stiff lung; Shock lung; Adult respiratory distress syndrome; Acute respiratory distress syndrome. Two representative compounds of the invention were selected for initial study in the reduction of ARDS.
  • NIH Swiss mice were given an intraperitoneal injection of 1.5 mg/kg Oleic Acid of (in this example formulated in saline) and/or invention compounds. Four hours subsequent to injection animals were sacrificed followed by collection, blotting and weighing (wet weight) of the lungs. Lungs were then dried at 80° C. for 24 hours and weighed (dry weight). N=4/group, 6,7-bis(3-hydroxyphenyl)-pteridine-2,4-diamine, sulfate salt (compound E—in the 0.5 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced ARDS-induced edema by >50% while 4-[4-amino-6-(3,4-dihydroxyphenyl)pteridin-7-yl]benzene-1,2-diol (compound F—in the 0.5 mg/kg range, in this example formulated in 50% PEG400:50% water) typically reduced ARDS-induced edema by >100%. The results are shown in FIG. 12.
  • EXAMPLE 4 Inhibition of VEGF-Induced Edema
  • Miles Assay Data
  • A rodent model of vascular edema, the Miles assay, was used to screen compounds for their ability to inhibit VEGF-induced edema. The table below presents several examples drawn from these studies, in which compounds cited in this application successfully inhibited edema formation.
    Dose Score
    Treatment (mg/kg BW) (scale of 0-12)
    Vehicle 12
    4-{[(2,4-Diamino-pteridin-6-ylmethyl)-amino]- 5 mg/kg 4
    methyl}-benzene-1,2-diol
    4-(2,4-Diamino-pteridin-6-yl)-phenol (sulfate 5 mg/kg 2
    salt)
    2-[2-(1H-Indol-2-yl)-phenyl]-isoindole-1,3- 1.5 mg/kg 3
    dione
    Figure US20070208019A1-20070906-C00209
    1.5 mg/kg
    6,7-Bis-(3-hydroxy-phenyl)-pteridine-2,4-diol 1.5 mg/kg 3
    3-(4-Hydroxy-phenyl)-N-[2-(1H-indol-2-yl)- 1.5 mg/kg 2
    phenyl]-propionamide
    2-(4-Hydroxy-phenyl)-N-[2-(1H-indol- 1.5 mg/kg 2
    2-yl)-phenyl]-acetamide
    2-(3,4-Dihydroxy-phenyl)-N-[2-(1H- 0.5 mg/kg 7
    indol-2-yl)-phenyl]-acetamide
    N-[2-(2,3-Dihydro-1H-indol-2-yl)- 0.5 mg/kg
    phenyl]-2-hydroxy-benzamide
    3-[2-(1H-Indol-2-yl)-phenylcarbamoyl]- 0.5 mg/kg 5
    pyridine-2-carboxylic acid
    2-Hydroxy-5-(6-phenyl-pteridin-4-ylamino)- 0.5 mg/kg 6
    benzenesulfonic acid
    5-(6-Phenyl-pteridin-4-ylamino)-quinolin-8-ol 0.5 mg/kg 5
    hydrochloride salt
    3,4-Dihydroxy-N-[2-(1H-indol-2-yl)-phenyl]- 0.1 mg/kg 6
    benzamide
    6-{[(Pyridin-2-ylmethyl)-amino]-methyl}- 0.1 mg/kg 4
    pteridine-2,4-diamine
    6-{[(Naphthalen-2-ylmethyl)-amino]-methyl}- 0.1 mg/kg 4
    pteridine-2,4-diamine
    2,3-(3,4-Dihydroxyphenyl)-pyrido[3,4- 0.01 mg/kg 6
    b]pyrazin-8-ylamine
    3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7- 1 mg/kg 4
    yl]phenol dihydrochioride salt
    3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7- 0.1 mg/kg 4
    yl]phenol dihydrochloride salt
    3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7- 0.01 mg/kg 3
    yl]phenol dihydrochloride salt
    4-[4-amino-6-(3,4-diliydroxyphenyl)pteridin-7- 1 mg/kg 5
    yl]benzene-1,2-diol chloride salt
    4-[4-amino-6-(3,4-dihydroxyphenyl)pteridin-7- 0.1 mg/kg 3
    yl]benzene-1,2-diol chloride salt
    4-[4-amino-6-(3,4-dihydroxyphenyl)pteridin-7- 0.01 mg/kg 6
    yl]benzene-1,2-diol chloride salt

    Sprague-Dawley rats were first injected IV with vehicle alone or test agent, followed by IV injection of Evans blue dye, followed by intradermal injections of saline and VEGF (200 ng/injection site) along both shaved flanks. After 45 min, intradermal injection sites were photographed and then scored by a blinded observer for extravasation of Evans blue dye into the dermis (dermal bluing) according to a 4 point scoring system (3=maximal bluing, ≧75% of response in vehicle-treated animals; 2=medium bluing, >25% but <75% of vehicle-treated animals; 1=minimal bluing, <25% of vehicle-treated animals; 0=bluing equivalent to saline injection sites on same animal). Individual scores for 4 injection sites (from 2 separate animals) were summed and are shown as a scale of 0-12, with a lower score indicating the greater anti-edema activity; note that all vehicle-treated groups score a value of 12, based on the scoring system outlined above.
  • The ability of test agents to influence edema induced by agonists other than VEGF was also tested. Compounds cited in this application inhibited edema formation induced using histamine as an agonist, for example, as shown below.
    Score with Score with
    VEGF as histamine as
    Dose agonist agonist
    Treatment (mg/kg BW) (scale of 0-12) (scale of 0-12)
    Vehicle 12 12
    6,7-bis(4- 1.5 mg/kg 4 3
    hydroxyphenyl)-
    pteridin-4-ylamine
    sulfate salt
    6,7-Diphenyl- 1.5 mg/kg 3 4
    pteridin-4-ol
    3,4,5-Trihydroxy- 1.5 mg/kg 4 7
    N-[2-(1H-indol-2-
    yl)-phenyl]-
    benzamide
    3,4,5-Trihydroxy- 1.5 mg/kg 5 7
    N-(1H-indol-2-yl)-
    benzamide

    The ability of test agent to influence vascular edema was tested as above, except that the ability to block edema was tested using either VEGF or histamine as the agonist (200 ng and 10 μg/injection site, respectively).
  • EXAMPLE 5 Reduction of Myocardial Infarction
  • Myocardial Infarct Data
  • A rodent model of acute myocardial infarct, in which the proximal left anterior descending coronary artery (LAD) is occluded for 60 min followed by reperfusion, was used to determine whether test agents reduced infarct size at 24 hours. Several examples of the compounds cited in this application significantly reduced infarct size as compared to controls.
    Dose Infarct (% % Infarct
    Study # Treatment (mg/kg BW) AAR, mean ± SEM) reduction
    1 Vehicle 75.9 ± 1.8
    6,7-bis(4- 1.5 60.6 ± 1.8 20%
    hydroxyphenyl)-pteridin-
    4-ylamine sulfate salt
    2 Vehicle 54.0 ± 2.9
    6,7-bis(3,4- 1.5 36.3 ± 6.3 33%
    dihydroxyphenyl)-
    pteridine-2,4,-diamine,
    hydrochloride salt
    3 Vehicle 54.0 ± 2.9
    3-[2,4-diamino-6-(3- 1.0 46.4 ± 2.6 Not significant
    hydroxyphenyl)pteridin-
    7-yl] phenol
    dihydrochloride salt
    3-[2,4-diamino-6-(3- 0.1 37.7 ± 5.8 30%
    hydroxyphenyl)pteridin-
    7-yl] phenol
    dihydrochloride salt
    4 Vehicle 61.9 ± 3.1
    4-[4-amino-6-(3,4- 1.0 mg/kg 40.1 ± 2.0 35%
    dihydroxyphenyl)pteridin-
    7-yl]benzene-1,2-diol
    chloride salt
    4-[4-amino-6-(3,4- 0.1 mg/kg 37.1 ± 2.6 40%
    dihydroxyphenyl)pteridin-
    7-yl]benzene-1,2-diol
    chloride salt
    6,7-Bis(3- 1.0 mg/kg 39.1 ± 7.5 37%
    hydroxyphenyl)-pteridine-
    4-ylamine hydrochloride
    salt
    6,7-Bis(3- 0.1 mg/kg 39.1 ± 4.2 37%
    hydroxyphenyl)-pteridine-
    4-ylamine hydrochloride
    salt
    5 Vehicle 54.9 ± 3.1
    3-[2,4-Diamino-6-(3- 0.5 mg/kg 31.6 ± 6.2 42%
    hydroxyphenyl)pteridin-
    7-yl]phenol dibromide
    salt
    6,7-bis(3- 0.5 mg/kg 37.8 ± 4.5 31%
    hydroxyphenyl)-pteridine-
    2,4-diamine (PF1)
    6,7-bis(3- 0.5 mg/kg 35.4 ± 1.8 35%
    hydroxyphenyl)-pteridine-
    2,4-diamine (PF2)
    6,7-bis(3- 0.5 mg/kg 38.7 ± 5.3 29%
    hydroxyphenyl)-pteridine-
    2,4-diamine (PF5)

    Myocardial infarcts were created in Sprague-Dawley rats (200-300 g body weight) by a 60 min occlusion of the LAD followed by LAD reperfusion. At 90 min post-reperfusion, either vehicle alone or test agents were injected IV. At 24 hr post-treatment, the ischemic zone (area at-risk, AAR) was delineated by re-ligation of the LAD followed by IV injection of alkali blue dye, after which hearts were sectioned along the short axis and stained using triphenyltetrazolium chloride to delineate viable from infarcted myocardium. Photographic images were then analyzed using morphometric software to calculate infarct area as a percent of the at-risk area.
    • Study 1: Group sizes N=5-6; 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt differs from vehicle control (P<0.0005).
    • Study 2: Group sizes N=5; 6,7-bis(3,4-dihydroxyphenyl)-pteridine-2,4-diamine hydrochloride salt differs from vehicle control (P<0.035).
    • Study 3: Group sizes N=3-5; 3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol dihydrochloride salt at 0.1 mg/kg differs from vehicle control (P<0.03).
    • Study 4: Group sizes N=4-5; all 4-[4-amino-6-(3,4-dihydroxyphenyl)pteridin-7-yl]benzene-1,2-diol chloride salt and 6,7-Bis(3-hydroxyphenyl)-pteridine-4-ylamine hydrochloride salt treatment groups differ from vehicle control (P<0.02).
    • Study 5: 3-[2,4-Diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol dibromide salt was delivered in 8% PEG400 (Vehicle), while 6,7-Bis(3-hydroxyphenyl)-pteridine-2,4-diamine was delivered as one of three product formulations (PF1=2.8% hydroxypropyl-
      Figure US20070208019A1-20070906-P00900
      -cyclodextrin, 1.84% PEG400, and 0.009% EDTA in 20 mM pH 3 citrate buffer; PF2=1.8% hydroxypropyl-
      Figure US20070208019A1-20070906-P00900
      -cyclodextrin and 0.06% polyvinylpyrrolidone in 20 mM pH 3 citrate buffer; PF3=0.8% sulfonbutyl ether-
      Figure US20070208019A1-20070906-P00900
      -cyclodextrin and 0.03% polyvinylpyrrolidone in 20 mM pH 3 citrate buffer). Group sizes N=5-6; all treatment groups differ from vehicle control (P<0.05).
  • The following studies were performed as described above, except that the timing of 3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl] phenol dihydrochloride salt administration (at 0.1 mg/kg) was varied. In one group, 3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol dihydrochloride salt was administered at both 60 and 240 min post-occlusion.
    Administration
    time (min post- Infarct (% AAR, % Infarct
    Treatment occlusion) mean ± SEM) reduction
    Vehicle
    60 54.0 ± 2.9
    3-[2,4-diamino-6-(3- 60 21.6 ± 5.7 60%
    hydroxyphenyl)pteridin-
    7-yl] phenol
    dihydrochloride salt
    3-[2,4-diamino-6-(3- 120 18.8 ± 5.6 65%
    hydroxyphenyl)pteridin-
    7-yl] phenol
    dihydrochloride salt
    3-[2,4-diamino-6-(3- 240 19.1 ± 4.0 65%
    hydroxyphenyl)pteridin-
    7-yl] phenol
    dihydrochloride salt
    3-[2,4-diamino-6-(3- 60 and 240 24.2 ± 4.9 55%
    hydroxyphenyl)pteridin-
    7-yl] phenol
    dihydrochloride salt

    Group sizes N=4-5; all 3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol dihydrochloride salt treatment groups differ from vehicle control (P<0.001).
  • Stroke Data
  • A rodent model of cerebral stroke, in which the middle cerebral artery is permanently occluded, was used to determine whether test agents reduced infarct size at 24 hours. Several examples of the compounds cited in this application significantly reduced infarct size as compared to controls, and to a greater degree than two commercially available compounds (PP1 and SU6656) described in the literature as Src kinase inhibitors.
    Infarct area in
    mm3 % Infarct
    Study # Treatment (mean ± SEM) reduction
    1 Vehicle 42.4 ± 6.25
    PP1 35.4 ± 6.4  Not significant
    SU6656 24.3 ± 5.3  Not significant
    6,7-Di-pyridin-2-yl- 27.2 ± 2.63 Not significant
    pteridin-4-ylamine
    6,7-Diphenyl-pteridine-2,4- 20.2 ± 4.19 52%
    diol
    N-(2-(1H-Indol-2-yl)- 15.6 ± 5.16 63%
    phenyl)-phthalamic acid
    2 Vehicle 39.0 ± 5.0 
    6,7-bis(4- 18.3 ± 2.6  53%
    hydroxyphenyl)-pteridin-
    4-ylamine, sulfate salt
  • Cerebral strokes were created in mice by permanent ligation of the middle cerebral artery using a cauterizing tool, followed 60 min later by IV injection of either vehicle alone (50% PEG400 in water) or test agents (at 1 mg/kg BW). Twenty four hours later, brains were sectioned and stained using triphenyltetrazolium chloride to delineate viable from infarcted tissue. Photographic images were then analyzed using morphometric software to calculate infarct area.
      • Study 1: Group sizes N=5-6; the 6,7-diphenyl-pteridine-2,4-diol and N-(2-(1H-indol-2-yl)-phenyl)-phthalamic acid groups differ from vehicle control (P<0.05 and P<0.01, respectively).
      • Study 2: Group sizes N=6-7; the 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine, sulfate salt group differs from vehicle control (P<0.006).
    EXAMPLE 6 Inhibition of Src-Family Kinases, c-Src and Yes
  • The ability of compounds to inhibit the activity of two Src-family kinases (c-Src and Yes) was directly tested. The table below presents data for several compounds, which in most cases inhibited one or both kinases at concentrations of ≦10 μM.
    Src kinase Yes kinase
    Compound (IC50 value) (IC50 value)
    6,7-bis(3- 27.6 μM 3.8 μM
    hydroxyphenyl)-pteridine-
    2-amine
    6,7-bis(3,4- 2.6 μM 1.1 μM
    dihydroxyphenyl)-
    pteridine-2,4-diamine,
    hydrochloride salt
    2,3-(3,4- 1.6 μM 1.0 μM
    Dihydroxyphenyl)-
    pyrido[3,4-b]pyrazin-8-
    ylamine
    4-[4-amino-6-(3,4- 1.3 μM ND
    dihydroxyphenyl)pteridin-
    7-yl]benzene-1,2-diol
    chloride salt
    6,7-Bis-(3,4-dihydroxy- 1.8 μM 0.9 μM
    phenyl)-pteridine-2,4-diol
    3,4-Dihydroxy-N-[2-(1H- 337 nM 303 nM
    indol-2-yl)-phenyl]-
    benzamide
    2,3-Bis(3,4- 1.3 μM 756 nM
    dihydroxyphenyl)-
    pyrido[2,3-b]pyrazin-6-
    ylamine dihydrochloride
    salt
    6,7-Bis(3- 10.0 μM 6.3 μM
    hydroxyphenyl)-pteridine-
    4-ylamine hydrochloride
    salt
    4-[4-amino-6-(3,4- 0.8 μM ND
    dihydroxyphenyl)pteridin-
    7-yl]benzene-1,2-diol
    methanesulfonate
    3-(3-Amino- 12.0 μM 6.8 μM
    benzo[1,2,4]triazin-7-yl)-
    phenol
    7-Naphthalen-1-yl- 0.9 μM 9.3 μM
    benzo[1,2,4]triazin-3-
    ylamine
    6,7-Bis(3- 8.8 μM ND
    hydroxyphenyl)-pteridine-
    4-ylamine hydrobromide
    salt
    7-(2-Trifluoromethyl- 9.2 μM 7.0 μM
    phenyl)-
    benzo[1,2,4]triazin-3-
    ylamine
    [7-(2,6-Dimethyl-phenyl)- 925 nM 822 nM
    benzo[1,2,4]triazin-3-yl]-
    phenyl-amine
    [7-(2,6-Dimethyl-phenyl)- 294 nM ND
    5-methyl-
    benzo[1,2,4]triazin-3-yl]-
    phenyl-amine
    4-[(Phenyl-pteridin-4- 420 nM ND
    ylamino)-methyl]-
    benzene-1,2-diol
    4-[2-(6-Phenyl-pteridin-4- 317 nM ND
    ylamino)-ethyl]benzene-
    1,2-diol

    Kinase reactions were conducted in 96-well plates by combining recombinant human c-Src or Yes (280 ng/well, Panvera, Madison Wis.), ATP (3 EM), a tyrosine kinase substrate (PTK2, 250 μM, Promega Corp., Madison Wis.), and test agents (at concentrations ranging from 1 nM to 100 μM); the buffer used was Src kinase reaction buffer (Upstate USA, Lake Placid N.Y.). After reacting at 90 minutes at room temperature, residual ATP was determined using a luciferase-based assay (KinaseGlo, Promega Corp.) as a measure of kinase activity. Data from four wells were then averaged and used to determine IC50 values for the test compounds (Prism software package, GraphPad Software, San Diego Calif.). ND: not determined.
  • EXAMPLE 7 Effects of Invention Compounds on Angiogenesis
  • Referring to FIGS. 13 and 14, a murine model of angiogenesis was used to screen compounds for their capacity to inhibit angiogenesis. The graph presents representative examples of compounds cited in this application which successfully inhibited angiogenesis in vivo. In the graph, compound A is 6,7-bis(4-hydroxyphenyl)-pteridin-4-ylamine sulfate salt. Athymic WeHi (nu/nu) mice were first injected with 400 μls of an ice-cold tumor-derived extracellular matrix substrate, matrigel (Becton-Dickinson) infused with 400 ng/ml of bFGF or VEGF (R&D Systems) which rapidly solidifies into a subdermal plug at body temperature. Mice were subsequently injected intaperitoneally with 10 mg/kg of the indicated compounds bid for four days. On the fourth day mice were injected intravenously with 0.5 mgs of a FITC-conjugated endothelial specific lectin (Banderiea Simplifica, Vector Laboratories). Twenty minutes after injection of the lectin, mice were euthanized, matrigel plugs were then extracted, solublized in PBS with mechanical grinding and the fluorescent content of individual plugs was quantified. Values shown are normalized to control values from groups of 5.
  • Although the invention has been described with reference to the presently preferred embodiment, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims.

Claims (40)

1. A method for treating a subject having, or at risk of developing, a disorder or a disease, comprising administering to a subject in need thereof an effective amount of at least one compound having the general structure III, or any combination thereof, or tautomers, pharmaceutically acceptable salts, hydrates, solvates, crystal forms and individual diastereomers thereof:
Figure US20070208019A1-20070906-C00210
wherein:
each of Z1—Z6 is independently selected from a group consisting of C, —C═O, N, and NRa, wherein Ra is selected from a group consisting of —H, an alkyl, or a substituted alkyl, wherein said substituent is selected from a group consisting of a halogen, hydroxy, oxo, and amino, each X is independently selected from a group consisting of a halogen, —ORb, —NRb 2, and —SRb, wherein Rb is selected from a group consisting of —H, a lower alkyl, —(CH2)2NH(CH2CH3), —(CH2)3 morpholyn-1-yl, —(CH2)3(N-methylpiperazinyn-1-yl), an aryl, a heteroaryl, —(NH—NH—Rc), and —(N═N—NH—Rc), wherein Rc is H or a lower alkyl,
each Y is independently selected from a group consisting of —ORd, —NRd 2, —SRd, and —OPO3H2, wherein Rd is selected from a group consisting of H, a lower alkyl, an aryl, a heteroaryl, —(CH2)2NH(CH2CH3), —(CH2)3 morpholyn-1-yl, and —(CH2)3(N-methylpiperazinyl-1-yl); or
each Y is independently selected from a group consisting of an alkyl, a substituted alkyl, an aryl, a substituted aryl, a heteroaryl, a substituted heteroaryl, and a halogen, wherein said substituent is selected from a group consisting of a halogen, —ORe, —NRe 2, —SRe, and —P(O)(OH)2, wherein Re is selected from a group consisting of —H, a lower alkyl, an aryl, and a heteroaryl; or
each Y is independently selected from a group consisting of CH2glycinyl, CH2NHethoxy, CH2NHCH2alkyl, CH2NHCH2t-Bu, CH2NHCH2aryl, CH2NHCH2substituted aryl, CH2NHCH2heteroaryl, and CH2NHCH2-substituted heteroaryl; or
when n is 2, each Y is taken together to form a fused aromatic or heteroaromatic ring system; and
each of m and n is independently an integer having the value between 1 and 4,
wherein when each of Z1, Z3, Z5, and Z6 is N, X is NH2, and m=n=2, Y is not phenyl or 4-hydroxyphenyl,
thereby treating the disorder.
2. The method of claim 1, wherein the compound III has the structure:
Figure US20070208019A1-20070906-C00211
wherein:
each of m and n is independently an integer having the value between 1 and 4,
each Y is independently selected from a group consisting of —ORd, —NRd 2, —SRd, and —OPO3H2, wherein Rd is selected from a group consisting of H, a lower alkyl, an aryl, and —(CH2)2NH(CH2CH3), or
each Y is independently selected from a group consisting of an alkyl, a substituted alkyl, an aryl, a substituted aryl, and a halogen, wherein said substituent is selected from a group consisting of a halogen, —ORe, —NRe 2, —SRe, and —P(O)(OH)2, wherein Re is selected from a group consisting of —H, a lower alkyl, and an aryl; or
each Y is independently selected from a group consisting of CH2glycinyl, CH2NHethoxy, CH2NHCH2alkyl, CH2NHCH2t-Bu, CH2NHCH2aryl, and CH2NHCH2-substituted aryl,; or
when n is 2, each Y is taken together to form a fused aromatic ring system; and
wherein when m=n=2, Y is not phenyl or 4-hydrokyphenyl.
3. The method of claim 2, wherein the compound III has the structure selected from a group consisting of:
Figure US20070208019A1-20070906-C00212
4. The method of claim 2, wherein the compound III has the structure:
Figure US20070208019A1-20070906-C00213
5. The method of claim 2, wherein the compound III has the structure:
Figure US20070208019A1-20070906-C00214
6. The method of claim 2, wherein the compound III has the structure:
Figure US20070208019A1-20070906-C00215
7. The method of claim 2, wherein the compound III has the structure:
Figure US20070208019A1-20070906-C00216
8. The method of claim 2, wherein the compound III has the structure:
Figure US20070208019A1-20070906-C00217
9. The method of claim 2, wherein the compound III has the structure:
Figure US20070208019A1-20070906-C00218
10. The method of claim 2, wherein the compound III has the structure:
Figure US20070208019A1-20070906-C00219
11. The method of claim 1, wherein the disorder or disease is selected from a group consisting of any disorder or disease associated with compromised vasculostasis, myocardial infarction, stroke, congestive heart failure, an ischemia or reperfusion injury, cancer, arthritis or other arthropathy, retinopathy or vitreoretinal disease, macular degeneration, autoimmune disease, vascular leakage syndrome, an inflammatory disease, edema, transplant rejection, burn, or acute or adult respiratory distress syndrome (ARDS).
12. The method of claim 11, wherein the disorder or disease is vascular leakage syndrome (VLS).
13. The method of claim 11, wherein the disorder or disease is cancer or tumor.
14. The method of claim 13, wherein the compound III is administered in combination with an effective amount of a compound selected from a group consisting of a therapeutic antibody, a chemotherapeutic agent, and an immunotoxic agents, or any combination thereof.
15. The method of claim 13, wherein the cancer is selected from a group consisting of an alimentary/gastrointestinal tract cancer, colon cancer, liver cancer, skin cancer, breast cancer, ovarian cancer, prostate cancer, lymphoma, leukemia, kidney cancer, lung cancer, muscle cancer, bone cancer, bladder cancer, and brain cancer.
16. The method of claim 15, wherein the cancer is colon cancer or lung cancer.
17. The method of claim 14, wherein the therapeutic agent is selected from a group consisting of an antimetabolite; a DNA cross-linking agent; an alkylating agent; a topoisomerase I inhibitor; a microtubule inhibitor, a vinca alkaloid, a mitomycin-type antibiotic, and a bleomycin-type antibiotic.
18. The method of claim 14, wherein the chemotherapeutic agent is selected from a group consisting of methotrexate, cisplatin/carboplatin; canbusil; dactinomicin; taxol (paclitaxol), antifolate, colchicine, demecoline, etoposide, taxane/taxol, docetaxel, doxorubicin, anthracycline antibiotic, doxorubicin, daunorubicin, carminomycin, epirubicin, idarubicin, mithoxanthrone, 4-demethoxy-daunomycin, 11-deoxydaunorubicin, 13-deoxydaunorubicin, adriamycin-14-benzoate, adriamycin-14-octanoate, and adriamycin-14-naphthaleneacetate.
19. The method of claim 18, wherein the therapeutic agent is selected from a group consisting of doxorubicin, docetaxol, and taxol.
20. The method of claim 14, wherein the therapeutic agent is selected from a group consisting of an antibody that binds to HER2 protein, a growth factor, a growth factor receptor, and an integrin receptor.
21. The method of claim 14, wherein the therapeutic agent is selected from a group consisting of trastuzumab; bevacizumab, OSI-774, and Vitaxin.
22. The method of claim 11, wherein the disorder or disease is retinopathy or a vitreoretinal disease.
23. The method of claim 11, wherein the disorder or disease is ARDS.
24. The method of claim 11, wherein the disorder or disease is autoimmune disease.
25. The method of claim 11, wherein the disorder or disease is burn.
26. The method of claim 11, wherein the disorder or disease is stroke.
27. The method of claim 11, wherein the disorder or disease is myocardial infarction.
28. The method of claim 11, wherein the disorder or disease is ischemia or reperfusion injury.
29. The method of claim 11, wherein the disorder or disease is arthritis.
30. The method of claim 11, wherein the disorder or disease is edema.
31. The method of claim 11, wherein the disorder or disease is transplant rejection.
32. The method of claim 11, wherein the disorder or disease is the inflammatory disease.
33. The method of claim 11, wherein the disorder or disease is congestive heart failure.
34. The method of claim 11, wherein the disorder or disease is associated with a kinase.
35. The method of claim 34, wherein the kinase is a tyrosine kinase.
36. The method of claim 34, wherein the kinase is a serine kinase or a threonine kinase.
37. The method of claim 34, wherein the kinase is a Src family kinase.
38. The method of claim 11, wherein the disorder or disease is asthma.
39. The method of claim 11, wherein the disorder or disease is rhinitis.
40. The method of claim 1, wherein the compound III is administered in combination with an effective amount of an agent selected from a group consisting of an anti-inflammatory agent, a chemotherapeutic agent, an immunomodulatory agent, a therapeutic antibody and a protein kinase inhibitor.
US11/653,190 2002-10-03 2007-01-11 Vasculostatic agents and methods of use thereof Abandoned US20070208019A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/653,190 US20070208019A1 (en) 2002-10-03 2007-01-11 Vasculostatic agents and methods of use thereof
US12/628,306 US20100278811A1 (en) 2002-10-03 2009-12-01 Vasculostatic agents and methods of use thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US41598102P 2002-10-03 2002-10-03
US44023403P 2003-01-14 2003-01-14
US44375203P 2003-01-29 2003-01-29
US46381803P 2003-04-17 2003-04-17
US46698303P 2003-04-30 2003-04-30
US47929503P 2003-06-17 2003-06-17
US10/679,209 US7208493B2 (en) 2002-10-03 2003-10-02 Vasculostatic agents and methods of use thereof
US11/653,190 US20070208019A1 (en) 2002-10-03 2007-01-11 Vasculostatic agents and methods of use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/679,209 Continuation US7208493B2 (en) 2002-10-03 2003-10-02 Vasculostatic agents and methods of use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/628,306 Continuation US20100278811A1 (en) 2002-10-03 2009-12-01 Vasculostatic agents and methods of use thereof

Publications (1)

Publication Number Publication Date
US20070208019A1 true US20070208019A1 (en) 2007-09-06

Family

ID=44361236

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/679,209 Active 2024-10-03 US7208493B2 (en) 2002-10-03 2003-10-02 Vasculostatic agents and methods of use thereof
US11/653,190 Abandoned US20070208019A1 (en) 2002-10-03 2007-01-11 Vasculostatic agents and methods of use thereof
US12/628,306 Abandoned US20100278811A1 (en) 2002-10-03 2009-12-01 Vasculostatic agents and methods of use thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/679,209 Active 2024-10-03 US7208493B2 (en) 2002-10-03 2003-10-02 Vasculostatic agents and methods of use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/628,306 Abandoned US20100278811A1 (en) 2002-10-03 2009-12-01 Vasculostatic agents and methods of use thereof

Country Status (10)

Country Link
US (3) US7208493B2 (en)
EP (1) EP1549614A4 (en)
JP (1) JP4560483B2 (en)
KR (3) KR20120032574A (en)
AU (2) AU2003282726B2 (en)
BR (1) BR0315053A (en)
CA (1) CA2500727A1 (en)
HK (1) HK1079789A1 (en)
MX (1) MXPA05003477A (en)
WO (1) WO2004030635A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245524A1 (en) * 2004-04-08 2005-11-03 Targegen, Inc. Benzotriazine inhibitors of kinases
US20050282814A1 (en) * 2002-10-03 2005-12-22 Targegen, Inc. Vasculostatic agents and methods of use thereof
US20060292203A1 (en) * 2005-06-08 2006-12-28 Targegen, Inc. Methods and compositions for the treatment of ocular disorders
US20070149508A1 (en) * 2005-11-02 2007-06-28 Targegen, Inc. Six membered heteroaromatic inhibitors targeting resistant kinase mutations
US20070259904A1 (en) * 2005-11-01 2007-11-08 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US20070259876A1 (en) * 2006-04-25 2007-11-08 Targegen, Inc. Kinase inhibitors and methods of use thereof
US20090275529A1 (en) * 2008-05-05 2009-11-05 Reiss Allison B Method for improving cardiovascular risk profile of cox inhibitors
US20090286789A1 (en) * 2005-11-01 2009-11-19 Targegen, Inc. Bi-Aryl Meta-Pyrimidine Inhibitors of Kinases
US20100278811A1 (en) * 2002-10-03 2010-11-04 Targegen Inc. Vasculostatic agents and methods of use thereof
US20110212077A1 (en) * 2005-11-01 2011-09-01 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US8372971B2 (en) 2004-08-25 2013-02-12 Targegen, Inc. Heterocyclic compounds and methods of use
US10391094B2 (en) 2010-11-07 2019-08-27 Impact Biomedicines, Inc. Compositions and methods for treating myelofibrosis

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113566A1 (en) * 2003-04-25 2005-05-26 Player Mark R. Inhibitors of C-FMS kinase
DE102004022383A1 (en) * 2004-05-06 2005-12-01 Zentaris Gmbh New pyridopyrazine derivatives are modulators of kinase activity, useful for the treatment of diseases associated with abnormal cellular signaling, e.g. tumors
DE10323345A1 (en) 2003-05-23 2004-12-16 Zentaris Gmbh New pyridopyrazines and their use as kinase inhibitors
ATE411992T1 (en) 2003-05-23 2008-11-15 Fterna Zentaris Gmbh NEW PYRIDOPYRAZINE AND THEIR USE AS MODULATORS OF KINASES
US20070059336A1 (en) * 2004-04-30 2007-03-15 Allergan, Inc. Anti-angiogenic sustained release intraocular implants and related methods
DK1807077T3 (en) * 2004-10-22 2017-01-23 Janssen Pharmaceutica Nv INHIBITORS OF C-FMS KINASE
EP1683523A1 (en) * 2005-01-25 2006-07-26 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. 2-Phenylquinoxalines as inhibitors for MPP1
AU2006223498A1 (en) * 2005-03-10 2006-09-21 Genentech, Inc. Methods and compositions for modulating vascular integrity
US20060281788A1 (en) * 2005-06-10 2006-12-14 Baumann Christian A Synergistic modulation of flt3 kinase using a flt3 inhibitor and a farnesyl transferase inhibitor
ES2270715B1 (en) 2005-07-29 2008-04-01 Laboratorios Almirall S.A. NEW DERIVATIVES OF PIRAZINA.
ES2274712B1 (en) 2005-10-06 2008-03-01 Laboratorios Almirall S.A. NEW IMIDAZOPIRIDINE DERIVATIVES.
EP1790342A1 (en) 2005-11-11 2007-05-30 Zentaris GmbH Pyridopyrazine derivatives and their use as signal transduction modulators
US8217042B2 (en) 2005-11-11 2012-07-10 Zentaris Gmbh Pyridopyrazines and their use as modulators of kinases
ATE542823T1 (en) 2006-04-12 2012-02-15 Vertex Pharma 4,5-DIHYDRO-Ä1,2,4ÜTRIAZOLOÄ4,3-FÜPTERIDINE AS A PLK1 PROTEIN KINASE INHIBITOR FOR THE TREATMENT OF PROLIFERATIVE DISEASES
ES2564781T3 (en) 2006-04-20 2016-03-29 Janssen Pharmaceutica, N.V. C-fms kinase inhibitors
SI2021335T1 (en) 2006-04-20 2011-09-30 Janssen Pharmaceutica Nv Heterocyclic compounds as inhibitors of c-fms kinase
US8697716B2 (en) 2006-04-20 2014-04-15 Janssen Pharmaceutica Nv Method of inhibiting C-KIT kinase
WO2007136790A2 (en) 2006-05-18 2007-11-29 Mannkind Corporation Intracellular kinase inhibitors
AU2007262670B2 (en) 2006-06-22 2012-12-20 Prana Biotechnology Limited Method of treatment of glioma brain tumour
WO2008008234A1 (en) * 2006-07-07 2008-01-17 Targegen, Inc. 2-amino-5-substituted pyrimidine inhibitors
GB0614471D0 (en) 2006-07-20 2006-08-30 Syngenta Ltd Herbicidal Compounds
WO2008009078A2 (en) 2006-07-20 2008-01-24 Gilead Sciences, Inc. 4,6-dl- and 2,4,6-trisubstituted quinazoline derivatives useful for treating viral infections
US8673929B2 (en) * 2006-07-20 2014-03-18 Gilead Sciences, Inc. 4,6-di- and 2,4,6-trisubstituted quinazoline derivatives and pharmaceutical compositions useful for treating viral infections
CN101547922B (en) 2006-10-04 2012-06-20 辉瑞产品公司 Pyrido[4,3-d]pyrimidin-4(3h)-one derivatives as calcium receptor antagonists
US8236823B2 (en) 2006-10-27 2012-08-07 Amgen Inc. Multi-cyclic compounds and methods of use
CN100460397C (en) * 2006-11-07 2009-02-11 浙江大学 Sulfur-containing quinoxaline dioxide, method for producing same and their application
GB0622892D0 (en) * 2006-11-16 2006-12-27 Sentinel Oncology Ltd Pharmaceutical compounds
US8642067B2 (en) 2007-04-02 2014-02-04 Allergen, Inc. Methods and compositions for intraocular administration to treat ocular conditions
JO3240B1 (en) * 2007-10-17 2018-03-08 Janssen Pharmaceutica Nv Inhibitors of c-fms Kinase
US8193182B2 (en) 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
NZ702041A (en) 2008-01-04 2016-03-31 Intellikine Llc Heterocyclic containing entities, compositions and methods
SG173639A1 (en) * 2009-02-11 2011-09-29 Sunovion Pharmaceuticals Inc Histamine h3 inverse agonists and antagonists and methods of use thereof
WO2011031816A2 (en) * 2009-09-11 2011-03-17 Sepracor Inc. Histamine h3 inverse agonists and antagonists and methods of use thereof
CA2773827A1 (en) 2009-09-25 2011-03-31 Vertex Pharmaceuticals Incorporated Methods for preparing pyrimidine derivatives useful as protein kinase inhibitors
CA2773742C (en) 2009-09-25 2017-12-05 Vertex Pharmaceuticals Incorporated Methods for preparing pyrimidine derivatives useful as protein kinase inhibitors
GB201007286D0 (en) 2010-04-30 2010-06-16 Astex Therapeutics Ltd New compounds
GB201020179D0 (en) 2010-11-29 2011-01-12 Astex Therapeutics Ltd New compounds
MX347708B (en) 2011-01-10 2017-05-09 Infinity Pharmaceuticals Inc Processes for preparing isoquinolinones and solid forms of isoquinolinones.
FR2973373A1 (en) 2011-03-30 2012-10-05 Centre Nat Rech Scient AMINO-QUINOXALINE DERIVATIVES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES
CN109912602A (en) 2011-06-01 2019-06-21 贾纳斯生物治疗有限公司 Novel immune system modifier
GB201118656D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201118652D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201118675D0 (en) 2011-10-28 2011-12-14 Astex Therapeutics Ltd New compounds
GB201118654D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201209609D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
GB201209613D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
US8828998B2 (en) 2012-06-25 2014-09-09 Infinity Pharmaceuticals, Inc. Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors
EP2882757B1 (en) 2012-08-07 2016-10-05 Janssen Pharmaceutica, N.V. Process for the preparation of heterocyclic ester derivatives
JOP20180012A1 (en) 2012-08-07 2019-01-30 Janssen Pharmaceutica Nv Sulfonylation process using nonafluorobutanesulfonyl fluoride
JP6348904B2 (en) 2012-09-20 2018-06-27 テンプル・ユニバーシティ−オブ・ザ・コモンウェルス・システム・オブ・ハイアー・エデュケイションTemple University−Of The Commonwealth System Of Higher Education Substituted alkyldiaryl derivatives, their production and use
GB201307577D0 (en) 2013-04-26 2013-06-12 Astex Therapeutics Ltd New compounds
JO3512B1 (en) 2014-03-26 2020-07-05 Astex Therapeutics Ltd Quinoxaline derivatives useful as fgfr kinase modulators
US10736900B2 (en) 2014-03-26 2020-08-11 Astex Therapeutics Ltd Combinations of an FGFR inhibitor and an IGF1R inhibitor
LT3122358T (en) 2014-03-26 2021-04-12 Astex Therapeutics Ltd. Combinations of fgfr- and cmet-inhibitors for the treatment of cancer
US20150320755A1 (en) 2014-04-16 2015-11-12 Infinity Pharmaceuticals, Inc. Combination therapies
JOP20200201A1 (en) 2015-02-10 2017-06-16 Astex Therapeutics Ltd Pharmaceutical compositions comprising n-(3,5-dimethoxyphenyl)-n'-(1-methylethyl)-n-[3-(1-methyl-1h-pyrazol-4-yl)quinoxalin-6-yl]ethane-1,2-diamine
SI3321265T1 (en) 2015-03-04 2020-07-31 Gilead Sciences, Inc. 4,6-diamino-pyrido(3,2-d)pyrimidine compounds and their utilisation as modulators of toll-like receptors
US10478494B2 (en) 2015-04-03 2019-11-19 Astex Therapeutics Ltd FGFR/PD-1 combination therapy for the treatment of cancer
CA2996989C (en) 2015-09-23 2023-10-03 Janssen Pharmaceutica Nv Bi-heteroaryl substituted 1,4-benzodiazepines and uses thereof for the treatment of cancer
LT3353177T (en) 2015-09-23 2020-08-25 Janssen Pharmaceutica Nv Tricyclic heterocycles for the treatment of cancer
MX2018016227A (en) 2016-06-24 2019-07-08 Infinity Pharmaceuticals Inc Combination therapies.
PT3507276T (en) 2016-09-02 2022-01-11 Gilead Sciences Inc Toll like receptor modulator compounds
WO2018045150A1 (en) 2016-09-02 2018-03-08 Gilead Sciences, Inc. 4,6-diamino-pyrido[3,2-d]pyrimidine derivaties as toll like receptor modulators
KR20180036426A (en) 2016-09-30 2018-04-09 (주)스파크바이오파마 Novel pyrimidine derivative, pharmaceutically acceptable salt thereof, manufacturing method thereof and pharmaceutical compositions using the same
EP3906026A4 (en) 2018-12-31 2022-10-19 Biomea Fusion, LLC Irreversible inhibitors of menin-mll interaction
US11174263B2 (en) 2018-12-31 2021-11-16 Biomea Fusion, Inc. Inhibitors of menin-MLL interaction
TW202212339A (en) 2019-04-17 2022-04-01 美商基利科學股份有限公司 Solid forms of a toll-like receptor modulator
TW202210480A (en) 2019-04-17 2022-03-16 美商基利科學股份有限公司 Solid forms of a toll-like receptor modulator
TW202115056A (en) 2019-06-28 2021-04-16 美商基利科學股份有限公司 Processes for preparing toll-like receptor modulator compounds
US11753413B2 (en) 2020-06-19 2023-09-12 Incyte Corporation Substituted pyrrolo[2,1-f][1,2,4]triazine compounds as JAK2 V617F inhibitors
US11691971B2 (en) 2020-06-19 2023-07-04 Incyte Corporation Naphthyridinone compounds as JAK2 V617F inhibitors
BR112023000047A2 (en) 2020-07-02 2023-03-14 Incyte Corp TRICYCLIC UREA COMPOUNDS AS JAK2 V617F INHIBITORS
WO2022006456A1 (en) 2020-07-02 2022-01-06 Incyte Corporation Tricyclic pyridone compounds as jak2 v617f inhibitors
US11661422B2 (en) 2020-08-27 2023-05-30 Incyte Corporation Tricyclic urea compounds as JAK2 V617F inhibitors
US11919908B2 (en) 2020-12-21 2024-03-05 Incyte Corporation Substituted pyrrolo[2,3-d]pyrimidine compounds as JAK2 V617F inhibitors
CN113831347B (en) * 2021-10-22 2022-10-04 广东海洋大学 6, 7-disubstituted 2- (ethylthio) -pteridine-4-amine derivative and preparation method and application thereof
TW202334089A (en) 2021-11-02 2023-09-01 美商夫雷爾醫療公司 Pparg inverse agonists and uses thereof

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2667486A (en) * 1951-05-24 1954-01-26 Research Corp 2,4-diamino pteridine and derivatives
US4057530A (en) * 1974-06-18 1977-11-08 Labaz 2-Phenyl-indole derivatives and process for preparing the same
US5214059A (en) * 1989-07-03 1993-05-25 Hoechst-Roussel Pharmaceuticals Incorporated 2-(aminoaryl) indoles and indolines as topical antiinflammatory agents for the treatment of skin disorders
US5597901A (en) * 1982-09-16 1997-01-28 Hoffmann-La Roche Inc. Homogeneous human interleukin 2
US5776502A (en) * 1989-07-18 1998-07-07 Oncogene Science, Inc. Methods of transcriptionally modulating gene expression
US5830880A (en) * 1994-08-26 1998-11-03 Hoechst Aktiengesellschaft Gene therapy of tumors with an endothelial cell-specific, cell cycle-dependent active compound
US6070126A (en) * 1997-06-13 2000-05-30 William J. Kokolus Immunobiologically-active linear peptides and method of identification
US6121434A (en) * 1995-01-31 2000-09-19 Aventis Pharma Deutschland Gmbh G cap-stabilized oligonucleotides
US6136779A (en) * 1989-07-18 2000-10-24 Osi Pharmaceuticals, Inc. Methods of specifically transcriptionally modulating the expression of gene of interest
US6194191B1 (en) * 1996-11-20 2001-02-27 Introgen Therapeutics, Inc. Method for the production and purification of adenoviral vectors
US6204260B1 (en) * 1996-02-23 2001-03-20 Eli Lilly And Company Non-peptidyl vasopressin V1a antagonists
US6326487B1 (en) * 1995-06-05 2001-12-04 Aventis Pharma Deutschland Gmbh 3 modified oligonucleotide derivatives
US6348312B1 (en) * 1993-11-12 2002-02-19 Hoescht Aktiengesellschaft Stabilized oligonucleotides and their use
US6471968B1 (en) * 2000-05-12 2002-10-29 Regents Of The University Of Michigan Multifunctional nanodevice platform
US6489328B2 (en) * 2000-08-11 2002-12-03 Boehringer Ingelheim Pharmaceuticals, Inc. Heterocyclic compounds useful as inhibitors of tyrosine kinases
US6506769B2 (en) * 1999-10-06 2003-01-14 Boehringer Ingelheim Pharmaceuticals, Inc. Heterocyclic compounds useful as inhibitors of tyrosine kinases
US6635626B1 (en) * 1997-08-25 2003-10-21 Bristol-Myers Squibb Co. Imidazoquinoxaline protein tyrosine kinase inhibitors
US6685938B1 (en) * 1998-05-29 2004-02-03 The Scripps Research Institute Methods and compositions useful for modulation of angiogenesis and vascular permeability using SRC or Yes tyrosine kinases
US6689778B2 (en) * 2001-07-03 2004-02-10 Vertex Pharmaceuticals Incorporated Inhibitors of Src and Lck protein kinases

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177401B1 (en) * 1992-11-13 2001-01-23 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis
US5763441A (en) * 1992-11-13 1998-06-09 Sugen, Inc. Compounds for the treatment of disorders related to vasculogenesis and/or angiogenesis
JP3720931B2 (en) * 1996-11-26 2005-11-30 富士写真フイルム株式会社 Processing method of silver halide photographic light-sensitive material
WO1998058901A1 (en) * 1997-06-24 1998-12-30 Nikken Chemicals Co., Ltd. 3-anilino-2-cycloalkenone derivates
MXPA03000874A (en) * 2000-08-09 2003-06-06 Astrazeneca Ab Chemical compounds.
CN100384480C (en) 2001-05-30 2008-04-30 斯克里普斯研究学院 Delivery system for nucleic acids
AU2003247959B2 (en) 2002-07-09 2010-07-29 Vertex Pharmaceuticals Incorporated Imidazoles, oxazoles and thiazoles with protein kinase inhibiting activities
US7230101B1 (en) * 2002-08-28 2007-06-12 Gpc Biotech, Inc. Synthesis of methotrexate-containing heterodimeric molecules
US20050282814A1 (en) * 2002-10-03 2005-12-22 Targegen, Inc. Vasculostatic agents and methods of use thereof
KR20120032574A (en) * 2002-10-03 2012-04-05 탈자진 인코포레이티드 Vasculostatic agents and methods of use thereof
US20060167021A1 (en) 2002-10-04 2006-07-27 Caritas St. Elizabeth's Medical Center Of Boston, Inc. Inhibition of src for treatment of reperfusion injury related to revascularization
AU2003286711A1 (en) 2002-10-25 2004-05-13 Vertex Pharmaceuticals Incorporated Indazolinone compositions useful as kinase inhibitors
CA2506297A1 (en) * 2002-11-19 2004-06-03 Memory Pharmaceuticals Corporation Pyridine n-oxide compounds as phosphodiesterase 4 inhibitors
WO2005096784A2 (en) * 2004-04-08 2005-10-20 Targegen, Inc. Benzotriazine inhibitors of kinases
EP1799656A4 (en) * 2004-08-25 2009-09-02 Targegen Inc Heterocyclic compounds and methods of use
EP1863794A2 (en) * 2005-03-16 2007-12-12 Targegen, Inc. Pyrimidine compounds and methods of use
NZ563984A (en) * 2005-06-08 2011-11-25 Targegen Inc Methods and compositions for the treatment of ocular disorders
US8133900B2 (en) * 2005-11-01 2012-03-13 Targegen, Inc. Use of bi-aryl meta-pyrimidine inhibitors of kinases
EP1951684B1 (en) * 2005-11-01 2016-07-13 TargeGen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
WO2007056075A2 (en) * 2005-11-02 2007-05-18 Targegen, Inc. Six membered heteroaromatic inhibitors targeting resistant kinase mutations
WO2007127366A2 (en) * 2006-04-25 2007-11-08 Targegen, Inc. Kinase inhibitors and methods of use thereof
WO2008008234A1 (en) * 2006-07-07 2008-01-17 Targegen, Inc. 2-amino-5-substituted pyrimidine inhibitors
AU2009212270A1 (en) * 2008-02-08 2009-08-13 Targegen, Inc. Pteridine derivatives for treating respiratory disease

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2667486A (en) * 1951-05-24 1954-01-26 Research Corp 2,4-diamino pteridine and derivatives
US4057530A (en) * 1974-06-18 1977-11-08 Labaz 2-Phenyl-indole derivatives and process for preparing the same
US5597901A (en) * 1982-09-16 1997-01-28 Hoffmann-La Roche Inc. Homogeneous human interleukin 2
US5214059A (en) * 1989-07-03 1993-05-25 Hoechst-Roussel Pharmaceuticals Incorporated 2-(aminoaryl) indoles and indolines as topical antiinflammatory agents for the treatment of skin disorders
US6136779A (en) * 1989-07-18 2000-10-24 Osi Pharmaceuticals, Inc. Methods of specifically transcriptionally modulating the expression of gene of interest
US5776502A (en) * 1989-07-18 1998-07-07 Oncogene Science, Inc. Methods of transcriptionally modulating gene expression
US6348312B1 (en) * 1993-11-12 2002-02-19 Hoescht Aktiengesellschaft Stabilized oligonucleotides and their use
US5830880A (en) * 1994-08-26 1998-11-03 Hoechst Aktiengesellschaft Gene therapy of tumors with an endothelial cell-specific, cell cycle-dependent active compound
US6121434A (en) * 1995-01-31 2000-09-19 Aventis Pharma Deutschland Gmbh G cap-stabilized oligonucleotides
US6326487B1 (en) * 1995-06-05 2001-12-04 Aventis Pharma Deutschland Gmbh 3 modified oligonucleotide derivatives
US6204260B1 (en) * 1996-02-23 2001-03-20 Eli Lilly And Company Non-peptidyl vasopressin V1a antagonists
US6194191B1 (en) * 1996-11-20 2001-02-27 Introgen Therapeutics, Inc. Method for the production and purification of adenoviral vectors
US6070126A (en) * 1997-06-13 2000-05-30 William J. Kokolus Immunobiologically-active linear peptides and method of identification
US6635626B1 (en) * 1997-08-25 2003-10-21 Bristol-Myers Squibb Co. Imidazoquinoxaline protein tyrosine kinase inhibitors
US6685938B1 (en) * 1998-05-29 2004-02-03 The Scripps Research Institute Methods and compositions useful for modulation of angiogenesis and vascular permeability using SRC or Yes tyrosine kinases
US6506769B2 (en) * 1999-10-06 2003-01-14 Boehringer Ingelheim Pharmaceuticals, Inc. Heterocyclic compounds useful as inhibitors of tyrosine kinases
US6471968B1 (en) * 2000-05-12 2002-10-29 Regents Of The University Of Michigan Multifunctional nanodevice platform
US6489328B2 (en) * 2000-08-11 2002-12-03 Boehringer Ingelheim Pharmaceuticals, Inc. Heterocyclic compounds useful as inhibitors of tyrosine kinases
US6689778B2 (en) * 2001-07-03 2004-02-10 Vertex Pharmaceuticals Incorporated Inhibitors of Src and Lck protein kinases

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282814A1 (en) * 2002-10-03 2005-12-22 Targegen, Inc. Vasculostatic agents and methods of use thereof
US20100330030A1 (en) * 2002-10-03 2010-12-30 Targegen, Inc. Vasculostatic Agents and Methods of Use Thereof
US20100278811A1 (en) * 2002-10-03 2010-11-04 Targegen Inc. Vasculostatic agents and methods of use thereof
US20090275569A1 (en) * 2004-04-08 2009-11-05 Xianchang Gong Benzotriazine Inhibitors of Kinases
US8481536B2 (en) 2004-04-08 2013-07-09 Targegen, Inc. Benzotriazine inhibitors of kinases
US20050245524A1 (en) * 2004-04-08 2005-11-03 Targegen, Inc. Benzotriazine inhibitors of kinases
US7456176B2 (en) 2004-04-08 2008-11-25 Targegen, Inc. Benzotriazine inhibitors of kinases
US8372971B2 (en) 2004-08-25 2013-02-12 Targegen, Inc. Heterocyclic compounds and methods of use
US20060292203A1 (en) * 2005-06-08 2006-12-28 Targegen, Inc. Methods and compositions for the treatment of ocular disorders
US8133900B2 (en) 2005-11-01 2012-03-13 Targegen, Inc. Use of bi-aryl meta-pyrimidine inhibitors of kinases
US20090275582A1 (en) * 2005-11-01 2009-11-05 Glenn Noronha Bi-Aryl Meta-Pyrimidine Inhibitors of Kinases
US20090286789A1 (en) * 2005-11-01 2009-11-19 Targegen, Inc. Bi-Aryl Meta-Pyrimidine Inhibitors of Kinases
US8604042B2 (en) 2005-11-01 2013-12-10 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US7825246B2 (en) 2005-11-01 2010-11-02 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US7528143B2 (en) 2005-11-01 2009-05-05 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US20110212077A1 (en) * 2005-11-01 2011-09-01 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US20070259904A1 (en) * 2005-11-01 2007-11-08 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US8138199B2 (en) 2005-11-01 2012-03-20 Targegen, Inc. Use of bi-aryl meta-pyrimidine inhibitors of kinases
US20070161645A1 (en) * 2005-11-02 2007-07-12 Targegen, Inc. Thiazole inhibitors targeting resistant kinase mutations
US20070149508A1 (en) * 2005-11-02 2007-06-28 Targegen, Inc. Six membered heteroaromatic inhibitors targeting resistant kinase mutations
US7691858B2 (en) 2006-04-25 2010-04-06 Targegen, Inc. Kinase inhibitors and methods of use thereof
US20070259876A1 (en) * 2006-04-25 2007-11-08 Targegen, Inc. Kinase inhibitors and methods of use thereof
US20090275529A1 (en) * 2008-05-05 2009-11-05 Reiss Allison B Method for improving cardiovascular risk profile of cox inhibitors
US10391094B2 (en) 2010-11-07 2019-08-27 Impact Biomedicines, Inc. Compositions and methods for treating myelofibrosis

Also Published As

Publication number Publication date
CA2500727A1 (en) 2004-04-15
BR0315053A (en) 2005-08-09
KR20050056227A (en) 2005-06-14
AU2010221802A1 (en) 2010-10-07
KR20110050745A (en) 2011-05-16
JP4560483B2 (en) 2010-10-13
AU2003282726A1 (en) 2004-04-23
AU2003282726B2 (en) 2010-10-07
EP1549614A4 (en) 2008-04-16
WO2004030635A3 (en) 2004-08-12
KR20120032574A (en) 2012-04-05
JP2006515317A (en) 2006-05-25
WO2004030635A2 (en) 2004-04-15
US20100278811A1 (en) 2010-11-04
MXPA05003477A (en) 2005-07-22
EP1549614A2 (en) 2005-07-06
HK1079789A1 (en) 2006-04-13
US7208493B2 (en) 2007-04-24
US20040167198A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US7208493B2 (en) Vasculostatic agents and methods of use thereof
US20100330030A1 (en) Vasculostatic Agents and Methods of Use Thereof
US7183413B2 (en) Aminoquinoline compounds
US8030487B2 (en) 2-amino—5-substituted pyrimidine inhibitors
US20070259876A1 (en) Kinase inhibitors and methods of use thereof
US8481536B2 (en) Benzotriazine inhibitors of kinases
US6960580B2 (en) Nitrogenous heterocyclic substituted quinoline compounds
JP2021519786A (en) Thienopyrimidinone compound
KR101632326B1 (en) Nitrile derivatives
US9487488B2 (en) Sulfonamide compound
US20120315217A1 (en) Inverse agonists and neutral antagonists for the tsh receptor
EP2039683B1 (en) Vasculostatic agents and methods of use thereof
US11174233B1 (en) Anti-cancer compounds having oxazolone derivation
WO2014190872A1 (en) Selenium-containing compounds and pharmaceutical use thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION