US20070209315A1 - Apparatus and method for use in building construction - Google Patents

Apparatus and method for use in building construction Download PDF

Info

Publication number
US20070209315A1
US20070209315A1 US11/373,921 US37392106A US2007209315A1 US 20070209315 A1 US20070209315 A1 US 20070209315A1 US 37392106 A US37392106 A US 37392106A US 2007209315 A1 US2007209315 A1 US 2007209315A1
Authority
US
United States
Prior art keywords
envelope
skin
skin surface
filler material
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/373,921
Inventor
Javed Sultan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/373,921 priority Critical patent/US20070209315A1/en
Publication of US20070209315A1 publication Critical patent/US20070209315A1/en
Priority to US12/707,782 priority patent/US20100192492A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/36Columns; Pillars; Struts of materials not covered by groups E04C3/32 or E04C3/34; of a combination of two or more materials

Definitions

  • aspects of the invention relate to apparatuses and methods employed in building structures.
  • Structures such as walls, columns, supports, foundations, etc. are made using one or more of a variety of materials, such as wood, steel, cement, brick, and mud. Such structures are typically built to not only support the required loads, but oftentimes, such structures must withstand wind loads and loads from earthquakes or other natural disasters, common to many parts of the world. Aspects of this invention are directed to improved construction apparatuses and methods employed for such structures.
  • a structure adapted to support a load includes a first skin surface formed of a flexible material and second skin surface formed of a flexible material.
  • the first and second skin surfaces cooperate to define an envelope therebetween.
  • the first skin surface and the second skin surface define an envelope height.
  • the first skin surface is spaced from the second skin surface and thereby defining an envelope width.
  • Filler material is disposed within the envelope.
  • An applied compressive force on the filler material results in a tensile force applied to the first and second skin.
  • a slenderness ratio defined as a ratio of the height to the width is greater than 1:1.
  • an apparatus for use in a support structure includes an envelope including a first skin surface and a second skin surface.
  • Each of the first and second skin surfaces are flexible and have high tensile strength.
  • At least one cross-member is disposed inward of an outer periphery of the skin surfaces coupling the first skin surface and the second skin surface together.
  • a method of construction includes providing a first envelope defined by first and second flexible skins.
  • the first and second skins have high tensile strength.
  • the method also includes providing a cross-member to couple the first and second skin together at at least one location inward of an outer periphery of the skin surfaces, and surrounding the envelope with a filler material.
  • a structure adapted to support a load includes a first skin surface formed of a flexible material and second skin surface formed of a flexible material.
  • the first and second skin surfaces cooperate to define an envelope therebetween.
  • the first skin surface and the second skin surface defining a height.
  • the first skin surface is spaced from the second skin surface and thereby defining an envelope width.
  • a filler material is disposed within the envelope.
  • An applied compressive force on the filler material results in a tensile force applied to the first and second skin.
  • At least one cross-member is disposed inward of an outer periphery of the skin surfaces coupling the first skin surface and the second skin surface together.
  • a structure adapted to support a load includes a skin defining an envelope and a core disposed within the envelope. Upon application of a compressive force on the core, the skin is placed in tension.
  • the core behaves as one of a rigid component or a fluid component, depending upon an amount of stress imparted on the core.
  • FIG. 1 is a side cutaway view of one embodiment of the invention
  • FIG. 2 is a side cutaway view of one embodiment of a wall construction
  • FIG. 3 is a perspective view of the wall construction of FIG. 2 ;
  • FIG. 4 is a side cutaway view of another embodiment of the invention.
  • FIG. 5 is a front cutaway view of one embodiment of a wall construction
  • FIG. 6 is a perspective view of another embodiment of the invention.
  • FIG. 7 is a perspective view of another embodiment of the invention, showing a schematic representation of a building
  • FIG. 8 is a side view of a sloped wall according to another embodiment of the invention.
  • FIG. 9 is a perspective view of another embodiment of the invention, showing a schematic representation of house
  • FIG. 10 is a side cutaway view of an embodiment of the invention used to retrofit an existing wall
  • FIG. 11 is a schematic side cutaway view of another embodiment of the invention, showing a schematic representation of a building
  • FIG. 12 is a schematic perspective view of the embodiment of FIG. 11 .
  • the apparatus and methods discussed herein may be used to form and/or adapt any load bearing structure in a manner such that normal live and dead loads, as well as seismic and wind loads, may be accommodated.
  • Such structures may include, but are not limited to, walls, columns, posts, footings, supports, foundations retaining wall, and slurry walls.
  • One aspect of the invention is directed to transmitting the compression loads acting on the structure to tensile loads at the skin of the structure.
  • the structure includes a skin that at least partially encloses filler material. Without being limited to the principles of operation, as the filler material compresses under compressive loads (whether typically encountered loads or seismic loads), there is a tendency for the filler material to bulge outward.
  • This outward force results in a tensile load formed on the skin of the structure, counteracting the outward pressure and keeping the filler material from moving from a load bearing condition to a non-load bearing condition.
  • the behavior of filler materials within the structure is akin to fluids and hence at least a portion of the load is carried over the skin surface. Without being limited in this regard, the behavior is similar in principle to the pneumatic tires where the load is carried by air and the walls of the tire are placed in tension to retain the air.
  • the structure may be formed with less filler material than would otherwise be required with conventionally built structures to carry the same load.
  • an envelope is formed with at least two flexible skins.
  • “flexible” means having a property that allows the skin to bend, stretch to a certain degree (e.g., within the elastic range of the material), or otherwise be pliable.
  • the envelope is filled with a filler material, which may be any suitable material, such as cement, concrete, stone, mud, sand, dirt, or any combination thereof, as the present invention is not limited in this regard. Also, the material may be solid throughout, tightly or loosely packed throughout, or any combination thereof, as the present invention is not limited in this regard.
  • the skins cooperate with each other to become structurally integrated to support at least a portion of the loads applied (continuously or intermittently) to the structure.
  • the skins cooperate such that they may become “activated,” that is, they may be placed in tension under certain conditions. In this regard, the skins will be placed in tension when the stress on the filler material exceeds a certain limit.
  • a homogeneous structure is formed. That is, the core material and the skin experience the same loading—the load is applied homogeneously across the cross-section.
  • the core and skin material result in a non-homogeneous structure, whereby the skin is placed in tension and the core is placed in compression.
  • the core material may be rigid or fluid-like depending upon the level and type of stress exerted on the core. Also, as the load on the core increases, more of the load is taken up by the skin. This may be beneficial during seismic loading conditions where the stress on the core exceeds a threshold causing more tensile loading to be placed on the skin so that the structure may maintain its structural integrity.
  • the envelope may be substantially two dimensional when it is unfilled.
  • the filled envelope has a slenderness ratio of the height to the width that is greater than 1:1.
  • secondary structures providing additional structural stability to the envelope may be employed.
  • the skins are coupled together with at least one cross-member disposed inward of an outer periphery of the skin.
  • the cross-members may be any suitable material, as the present invention is not limited in this respect.
  • the cross-members tack the skins of the envelope together at certain locations on the envelope.
  • the cross-members may also be formed of a flexible material, and may be formed with the same material used to form the skins.
  • rigid or semi-rigid rods or beam-like structures may extend between the sides of the envelope.
  • These secondary structures may be located throughout the wall construction or be strategically located at areas of high stress on the wall, such as at a corner or doorway.
  • a second envelope may be disposed within the outer envelope.
  • This second structure may also be located throughout the wall construction or be strategically located at areas of high stress on the in the structure.
  • Additional inner and/or outer envelopes may be employed, as the present invention is not limited in this respect.
  • the inner and outer envelopes may be formed of the same or different materials and constructs (e.g., porous or non-porous), as the present invention is not limited in this respect.
  • the resulting structure may be shaped in a number of configurations, depending on the purpose of the structure.
  • the structure may be sloped, wider at its base than at its top, or used only in the foundation of a building.
  • existing structures may be adapted to include aspects of the invention.
  • aspects of the invention may be used for retrofitting existing walls.
  • a flexible skin with high tensile strength may be placed on both sides of an existing wall and tacked to each other through the existing wall.
  • the skins thus form an envelope around the existing wall.
  • the present invention is not limited in this regard, should the existing wall experience a seismic load that would otherwise cause a relatively solid wall to crumble, the resulting rubble in effect acts as filler material in the envelope and, as explained, the outward movement of the rubble is contained within the envelope by the skins and the wall may still be used to support loads. Accordingly, the building to which the wall is part of can retain its function.
  • retrofitting existing structures is not limited to retrofitting walls, as other structures may also be retrofitted.
  • an envelope 2 having a plurality of skins 2 a , 2 b , each of which may comprise a single piece of material or a plurality of pieces of material attached together is disclosed.
  • the material may be flexible and have little or no ability to resist a force applied normal to its surface. In other words, a relatively small force F N may deform or deflect the skin 2 a .
  • the skin 2 a may have high tensile strength. Thus, the material may have the ability to withstand significant force in the direction F T without failing.
  • the envelope 2 may have a relatively narrow width compared to its height.
  • the width w may be relatively small compared to the height h.
  • the slenderness ratio which is the ratio of the height to the width, may be at least 1:1. In one embodiment of the invention, the slenderness ratio is greater than 2:1, and may be greater than 5:1. In one embodiment, the slenderness ratio may be about 10:1.
  • an envelope 2 may be 10 feet high and 1 foot wide.
  • the envelope 2 comprises a mesh-like material.
  • “mesh” shall mean any arrangement of wires, fibers or strands of the skin arranged in a manner to form openings between fibers or strands.
  • a mesh may be formed in any suitable manner, including, but not limited to weaving, knitting, molding, forming a solid structure and thereafter forming holes therethrough, and forming a component with preformed openings.
  • a “tight mesh” or “small mesh” has fewer and/or smaller holes, and a “loose mesh” or “large mesh” has larger and/or more numerous holes.
  • the materials chosen for the envelope may be determined by the desired strength and filler material as described below. For example, a stronger envelope can be constructed out of a material with a tight mesh.
  • the envelope 2 may comprise a plurality of layers, placed on top of each other to create a thicker skin 2 a , 2 b .
  • the layers may have the same size mesh, or a different size mesh.
  • a solid material may be used for at least one layer as well. If a plurality of layers is formed as a mesh, the mesh of the layers may be aligned with each other or they may be placed askew with respect to each other.
  • the layers are strategically arranged to provide the desired strength characteristics for the envelope 2 .
  • the envelope 2 may have multiple layers at areas of high stress, such as at the edges of the wall.
  • the wall may additionally or alternatively utilize an envelope with a smaller mesh in areas of high load such as the foundation of a building. It should be appreciated that the mesh results in the skin being permeable, although non-permeable skins may be employed. Further, the skins may be formed or a relatively thin and flexible material.
  • the envelope 2 may comprise any number of materials that provide the desired tensile strength and/or weather resistance. Although one embodiment comprises a mesh material, other materials may also be used.
  • the skins 2 a , 2 b may comprise a non-mesh material, and can be made of synthetic and/or natural materials. Some exemplary materials, which may be used alone or in combination in the skins 2 a , 2 b , include metals (such as steel or aluminum), polymers, rubber, nylon, polyvinylchloride, and carbon-epoxy and combinations thereof. Other, non-limiting examples of a suitable material include, Kevlar®, Tyvek®, and Teflon® (each available from DuPont of Wilmington, Del.). Fabrics and/or textiles may also be employed.
  • At least one material in the envelope 2 is impregnated with an agent that is activated by heat or light of a certain wavelength.
  • the envelope 2 may thus be stiffened by applying heat and/or light to the skin(s) 2 a , 2 b .
  • at least one material in the envelope 2 comprises a phase change material.
  • the two skins 2 a , 2 b may not be simply two continuous pieces of material.
  • each face of the wall front, back, sides, and bottom
  • a single material sheet may be folded in half to form the envelope 2 .
  • many materials may be pieced together to create a larger skin or layered to create a thicker material.
  • any number of materials may be used to form the envelope 2 , as the invention is not limited in this respect.
  • the structure which in this example is a wall 1 , comprises a filler material in the envelope 2 .
  • the filler material 3 may be loose, granular and/or coarse.
  • the filler material 3 may comprise any material that can fill the envelope 2 .
  • suitable filler material 3 include soil, sand, pebbles, concrete, plastic, fabrics, composites, StyrofoamTM (Available from DOW, Midland, Mich.) and natural or synthetic materials.
  • the wall construction 1 may comprise a plurality of filler materials 3 in different areas of the envelope 2 .
  • the base end of the envelope 2 (shown in FIG. 2 as the portion of the wall construction 1 below ground level G) may comprise one filler material 30
  • the portion of the envelope 2 above ground level G may comprise a second filler material 31 .
  • the filler material below ground level 30 comprises concrete
  • the filler material above ground level 31 comprises sand.
  • the envelope material may likewise be different above and below ground.
  • the filler materials may differ according to location (for example as described above, different filler materials may form horizontal layers), or the filler materials may be mixed together (such as pebbles and sand) to form a composite filler material.
  • the filler materials may differ in other ways as well (such as along the length of the wall), as the invention is not limited in this respect.
  • the filler material may influence the material chosen for the envelope. For example, if a very fine material such as sand is used as a filler material, it may be desirable to use a material with a tight mesh for the envelope. If stones are used, it may be desirable to use a thicker material for greater puncture resistance.
  • the wall construction 1 comprises at least one cross-member 4 .
  • the cross-member 4 may be a tie 5 which spans the width of the envelope 2 .
  • the ties 5 may keep the skins 2 a , 2 b from spreading too far apart when filler material 3 is in the envelope 2 .
  • the ties 5 may be fabricated from any material, as long as the material is strong enough to withstand the applied forces from the envelope 2 and filler material 3 . Some examples of suitable material for the ties 5 include polymers and/or fabric.
  • the cross-members may be attached to the skins in any suitable manner, as the present invention is not limited in this regard.
  • the tie 5 may comprise a body 50 and two heads 51 , 52 .
  • the heads 51 , 52 are larger than the mesh size of the envelope 2 , thus preventing the heads 51 , 52 from slipping through the mesh openings of the envelope 2 .
  • the cross-members may be stitched to the skins.
  • the cross-members may be heat-staked to the skins, if both are formed of suitable materials.
  • the ties 5 may be spaced throughout the envelope 2 to provide support to the wall construction 1 .
  • the horizontal, vertical, and diagonal spacing between ties (S h , S v , and S d , respectively) may be determined by the size of the wall, desired strength characteristics, envelope material, filler material, tie material, and other considerations.
  • the ties 5 shown in FIG. 3 have a regular spacing, the invention is not limited in this respect.
  • the ties 5 may have an irregular spacing, may be preferentially located at areas of high stress, may be randomly placed, or any other configuration as the invention is not limited in this respect.
  • the wall construction 1 may alternatively or additionally comprise a different type of cross-member 4 .
  • the wall construction 1 may comprise a beam 6 that spans at least a substantial part of the width w of the envelope 2 .
  • the beam 6 spans the entire width w.
  • the beam 6 may provide additional structural stability to the wall construction 1 , and may be substantially rigid or semi-rigid.
  • the beam 6 may span a substantial portion of the length l of the wall construction 1 (see FIG. 3 ) or may have a relatively small horizontal dimension.
  • the beam height h b may provide rigidity, and may depend on the material used in the beam 6 .
  • the beam 6 may comprise concrete and be approximately six inches high.
  • the wall construction 1 comprises an internal element, which may act as an additional strengthening element.
  • a wall construction 1 may comprise an internal envelope 7 .
  • the internal envelope 7 is smaller than the external envelope 2 forming the outer surface of the structure 1 .
  • the internal envelope 7 may be constructed of any material, whether mesh or non-mesh, synthetic or natural or combinations thereof.
  • the internal envelope 7 may also be layered or constructed of a single layer as described above in conjunction with the construction of the external envelope 2 .
  • the internal envelope 7 comprises a mesh material which has a larger mesh size than the external envelope 2 .
  • the internal envelope 7 may comprise a material with the same size mesh as the external envelope 2 , or even a smaller mesh size than the external envelope 2 .
  • the internal envelope 7 may be placed where additional strength is desired.
  • internal envelopes 7 may be placed near the doorways 8 (such as 7 c ) or corners (such as 7 a , 7 b ) of a structure, where the wall construction 1 may experience higher stress.
  • the internal envelopes 7 may be oriented horizontally, vertically, or any other direction, as the invention is not limited in that respect.
  • the internal envelopes may cover a significant portion of the structure 1 (such as the internal envelopes 7 a , 7 b extend through a significant portion of the height of the structure 1 ), or may be smaller (such as the internal envelope 7 c , which is smaller than both the length and height of the structure 1 ).
  • an internal envelope 7 it has a filler material 70 .
  • the filler material 70 may be the same as the filler material 3 in the external envelope 2 , or it may be different. If the filler material 70 in the internal envelope 7 is different than the filler material 3 in the external envelope 2 , the internal and external envelopes 7 , 2 will have to be filled separately as described below. However, if the same filler material is used for both the external and internal envelopes, the envelopes 7 , 2 may be filled simultaneously. Also, in some embodiments, the filler material in the envelopes may be able to move between them.
  • a structure 10 may have a base that is wider than the top. In other words, the width of the base b w is greater than the width of the top t w .
  • the structure 10 shown in FIG. 6 has substantially straight sides s, the sides s may be curved such that the structure 10 has concave or convex sides s as the invention is not limited in this respect.
  • a building 11 may be formed from substantially concentric fabric sleeves 110 , 111 .
  • the fabric sleeves 110 , 111 act as the skins and may be a mesh or any other material as described above.
  • each sleeve 110 , 111 forms an extruded polygon, and the sleeves are connected together at the base of the building 112 to form an envelope.
  • the sleeves 110 , 111 may be shaped such that the resulting building 11 has a larger base than top.
  • the filler material 113 is located between the two sleeves 110 , 111 .
  • Additional members 114 may be provided to ensure structural stability of the building 11 .
  • the reinforcement members 114 may comprise internal envelopes as described above, or may be another material such as rebar. Tall multi-story buildings may be constructed in this way.
  • a sloped support such as a sloped wall.
  • the wall 12 comprises an envelope 120 and filler material 121 as described above.
  • One end of the wall 12 may be propped up with a support 122 .
  • the support 122 may be a pole, a plurality of poles, a wall, or any other structure which can stably support one end of the filled envelope.
  • the support 122 may be formed as the structure described with reference to the other Figures shown herein.
  • the structure may be used only for the foundation 91 of a house 90 .
  • the construction method described above using an envelope and filler material can form at least a substantial portion of the foundation 91 .
  • Suitable construction methods can be used to build the remainder of the house 90 out of conventional building materials such as wood.
  • Other areas of a house may also be built using this method, such as the roof.
  • a similar construction can be used to retrofit existing structures.
  • skins 141 , 142 may be added to an existing wall 140 to create a stronger wall construction 14 .
  • the skins 141 , 142 may be tacked to the top of the wall 140 in any manner and stretched to cover the length of the wall 140 .
  • the bottom of the skins 141 , 142 may be tacked to the base of the wall 140 and/or the ground.
  • the skins 141 , 142 may be anchored below ground level G by anchor blocks 144 .
  • the skins 141 , 142 may be tacked together through the wall 140 by ties 143 similar to those described above.
  • the skins may be finished in any suitable manner.
  • a layer of stucco 145 or other material may be spread over the surface of the wall construction 14 on one or both sides if desired.
  • the envelope 2 is fabricated from a plurality of skins.
  • the material type, mesh size, thickness, size, and number of layers used in the skins may be determined at least in part by the requirements of the desired structure.
  • the skins 2 a , 2 b of the envelope 2 are sewn, bonded, sealed, or otherwise attached to create the envelope form, leaving at least a portion at the top open.
  • the envelope 2 may be fitted with ties 5 , although the ties 5 may also be placed through the envelope 2 after it is filled with filler material 3 .
  • the envelope 2 is placed in a form, such as a wood form, at a factory or a building site. Filler material 3 is then poured or otherwise placed into the envelope 2 within the form.
  • internal envelopes 7 may be filled first or simultaneously with the external envelope 2 .
  • the filler material may be poured through the internal envelope to the external envelope and both can thereby be filled simultaneously.
  • the mesh size of the internal envelope is too small for the filler material to pass through, or if it is to be filled with a different material, the internal envelope 7 may be filled first.
  • cross beams 6 are used (such as a concrete beam)
  • the wall construction 1 can be filled with filler material 3 to the desired level of the cross beam 6 . Then the cross beam 6 is put or poured into place.
  • the top of the wall construction 1 may be closed off.
  • the envelope may be tied, sewn, glued, sealed, or closed by any other means.
  • the wood form is then removed, leaving the wall.
  • Multiple walls may be affixed together by bands, mesh, braces, or any other means in order to form a complete building.
  • a complete building may also be formed from concentric sleeves. If concentric sleeves are used, it may not be necessary to wrap the building walls with a brace.
  • structures so constructed transform a compressive load F C (see FIG. 2 ) into a tensile load F T along the face of the wall.
  • F C compressive load
  • F T tensile load
  • the wall tends to bulge outward, stretching the envelope 2 .
  • the envelope 2 experiences the bulging force as a tensile force F T .
  • the envelope material has high tensile strength, the envelope 2 is likely not to not fail. Because the skins of the envelope cooperate to retain the filler material within the envelope, the structure likely does not collapse.
  • the structure may be formed as a multi-story building. As shown in FIGS. 11 and 12 , one example of a multi-story building is shown.
  • the internal envelope 7 may be used to form an internal structure and external envelope 2 may be used to form the exterior of the wall. The entire structure may sit on a foundation 91 .
  • the internal envelope 7 is smaller than the external envelope 2 forming the outer surface of the structure 1 .
  • the internal envelope 7 may be constructed of any material, whether mesh or non-mesh, synthetic or natural or combinations thereof.
  • the internal envelope 7 may also be layered or constructed of a single layer as described above in conjunction with the construction of the external envelope 2 .
  • the internal envelope 7 comprises a mesh material which has a larger mesh size than the external envelope 2 .
  • the internal envelope 7 may comprise a material with the same size mesh as the external envelope 2 , or even a smaller mesh size than the external envelope 2 .
  • high rise towers such as 50 stories, 100, stories, 120 stories or more may be constructed.

Abstract

A structure for supporting loads includes a flexible envelope filled with a filler material. The envelope may comprise a mesh or non-mesh material and may have a high tensile strength. The filler material may comprise a loose or coarse material. The resulting structure may permit an applied compressive force to result in a tensile force applied in the envelope material.

Description

    BACKGROUND
  • 1. Field
  • Aspects of the invention relate to apparatuses and methods employed in building structures.
  • 2. Discussion of Related Art
  • Structures, such as walls, columns, supports, foundations, etc. are made using one or more of a variety of materials, such as wood, steel, cement, brick, and mud. Such structures are typically built to not only support the required loads, but oftentimes, such structures must withstand wind loads and loads from earthquakes or other natural disasters, common to many parts of the world. Aspects of this invention are directed to improved construction apparatuses and methods employed for such structures.
  • SUMMARY
  • In one illustrative embodiment, a structure adapted to support a load is disclosed. The structure includes a first skin surface formed of a flexible material and second skin surface formed of a flexible material. The first and second skin surfaces cooperate to define an envelope therebetween. The first skin surface and the second skin surface define an envelope height. The first skin surface is spaced from the second skin surface and thereby defining an envelope width. Filler material is disposed within the envelope. An applied compressive force on the filler material results in a tensile force applied to the first and second skin. A slenderness ratio defined as a ratio of the height to the width is greater than 1:1.
  • In another illustrative embodiment, an apparatus for use in a support structure is disclosed. The apparatus includes an envelope including a first skin surface and a second skin surface. Each of the first and second skin surfaces are flexible and have high tensile strength. At least one cross-member is disposed inward of an outer periphery of the skin surfaces coupling the first skin surface and the second skin surface together.
  • In still another illustrative embodiment, a method of construction is disclosed. The method includes providing a first envelope defined by first and second flexible skins. The first and second skins have high tensile strength. The method also includes providing a cross-member to couple the first and second skin together at at least one location inward of an outer periphery of the skin surfaces, and surrounding the envelope with a filler material.
  • In yet another illustrative embodiment, a structure adapted to support a load is disclosed. The structure includes a first skin surface formed of a flexible material and second skin surface formed of a flexible material. The first and second skin surfaces cooperate to define an envelope therebetween. The first skin surface and the second skin surface defining a height. The first skin surface is spaced from the second skin surface and thereby defining an envelope width. A filler material is disposed within the envelope. An applied compressive force on the filler material results in a tensile force applied to the first and second skin. At least one cross-member is disposed inward of an outer periphery of the skin surfaces coupling the first skin surface and the second skin surface together.
  • In still another illustrative embodiment, a structure adapted to support a load is disclosed. The structure includes a skin defining an envelope and a core disposed within the envelope. Upon application of a compressive force on the core, the skin is placed in tension. In one embodiment, the core behaves as one of a rigid component or a fluid component, depending upon an amount of stress imparted on the core.
  • Various embodiments of the present invention provide certain advantages. Not all embodiments of the invention share the same advantages and those that do may not share them under all circumstances.
  • Further features and advantages of the present invention, as well as the structure of various embodiments of the present invention are described in detail below with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
  • FIG. 1 is a side cutaway view of one embodiment of the invention;
  • FIG. 2 is a side cutaway view of one embodiment of a wall construction;
  • FIG. 3 is a perspective view of the wall construction of FIG. 2;
  • FIG. 4 is a side cutaway view of another embodiment of the invention;
  • FIG. 5 is a front cutaway view of one embodiment of a wall construction;
  • FIG. 6 is a perspective view of another embodiment of the invention;
  • FIG. 7 is a perspective view of another embodiment of the invention, showing a schematic representation of a building;
  • FIG. 8 is a side view of a sloped wall according to another embodiment of the invention;
  • FIG. 9 is a perspective view of another embodiment of the invention, showing a schematic representation of house;
  • FIG. 10 is a side cutaway view of an embodiment of the invention used to retrofit an existing wall;
  • FIG. 11 is a schematic side cutaway view of another embodiment of the invention, showing a schematic representation of a building;
  • FIG. 12 is a schematic perspective view of the embodiment of FIG. 11.
  • DETAILED DESCRIPTION
  • This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and/or variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
  • The apparatus and methods discussed herein may be used to form and/or adapt any load bearing structure in a manner such that normal live and dead loads, as well as seismic and wind loads, may be accommodated. Such structures may include, but are not limited to, walls, columns, posts, footings, supports, foundations retaining wall, and slurry walls. One aspect of the invention is directed to transmitting the compression loads acting on the structure to tensile loads at the skin of the structure. Broadly, the structure includes a skin that at least partially encloses filler material. Without being limited to the principles of operation, as the filler material compresses under compressive loads (whether typically encountered loads or seismic loads), there is a tendency for the filler material to bulge outward. This outward force results in a tensile load formed on the skin of the structure, counteracting the outward pressure and keeping the filler material from moving from a load bearing condition to a non-load bearing condition. The behavior of filler materials within the structure is akin to fluids and hence at least a portion of the load is carried over the skin surface. Without being limited in this regard, the behavior is similar in principle to the pneumatic tires where the load is carried by air and the walls of the tire are placed in tension to retain the air. As a result of this, in one embodiment, the structure may be formed with less filler material than would otherwise be required with conventionally built structures to carry the same load.
  • According to one aspect of the invention, an envelope is formed with at least two flexible skins. As used herein, “flexible” means having a property that allows the skin to bend, stretch to a certain degree (e.g., within the elastic range of the material), or otherwise be pliable. The envelope is filled with a filler material, which may be any suitable material, such as cement, concrete, stone, mud, sand, dirt, or any combination thereof, as the present invention is not limited in this regard. Also, the material may be solid throughout, tightly or loosely packed throughout, or any combination thereof, as the present invention is not limited in this regard. The skins cooperate with each other to become structurally integrated to support at least a portion of the loads applied (continuously or intermittently) to the structure. The skins cooperate such that they may become “activated,” that is, they may be placed in tension under certain conditions. In this regard, the skins will be placed in tension when the stress on the filler material exceeds a certain limit.
  • As is typical with conventionally constructed structures, a homogeneous structure is formed. That is, the core material and the skin experience the same loading—the load is applied homogeneously across the cross-section. According to an aspect of the invention, the core and skin material result in a non-homogeneous structure, whereby the skin is placed in tension and the core is placed in compression. The core material may be rigid or fluid-like depending upon the level and type of stress exerted on the core. Also, as the load on the core increases, more of the load is taken up by the skin. This may be beneficial during seismic loading conditions where the stress on the core exceeds a threshold causing more tensile loading to be placed on the skin so that the structure may maintain its structural integrity.
  • The envelope may be substantially two dimensional when it is unfilled. In one embodiment, the filled envelope has a slenderness ratio of the height to the width that is greater than 1:1.
  • In one embodiment, secondary structures providing additional structural stability to the envelope may be employed. For example, in one embodiment, the skins are coupled together with at least one cross-member disposed inward of an outer periphery of the skin. The cross-members may be any suitable material, as the present invention is not limited in this respect. The cross-members tack the skins of the envelope together at certain locations on the envelope. The cross-members may also be formed of a flexible material, and may be formed with the same material used to form the skins. Alternatively or additionally, rigid or semi-rigid rods or beam-like structures may extend between the sides of the envelope. These secondary structures may be located throughout the wall construction or be strategically located at areas of high stress on the wall, such as at a corner or doorway.
  • To impart additional structural integrity to the structure, a second envelope may be disposed within the outer envelope. This second structure may also be located throughout the wall construction or be strategically located at areas of high stress on the in the structure. Additional inner and/or outer envelopes may be employed, as the present invention is not limited in this respect. Further, the inner and outer envelopes may be formed of the same or different materials and constructs (e.g., porous or non-porous), as the present invention is not limited in this respect.
  • It should be appreciated that the resulting structure may be shaped in a number of configurations, depending on the purpose of the structure. For example, the structure may be sloped, wider at its base than at its top, or used only in the foundation of a building.
  • As briefly mentioned above, existing structures may be adapted to include aspects of the invention. For example, aspects of the invention may be used for retrofitting existing walls. In this regard, a flexible skin with high tensile strength may be placed on both sides of an existing wall and tacked to each other through the existing wall. The skins thus form an envelope around the existing wall. In this manner, although the present invention is not limited in this regard, should the existing wall experience a seismic load that would otherwise cause a relatively solid wall to crumble, the resulting rubble in effect acts as filler material in the envelope and, as explained, the outward movement of the rubble is contained within the envelope by the skins and the wall may still be used to support loads. Accordingly, the building to which the wall is part of can retain its function. It should be appreciated that retrofitting existing structures is not limited to retrofitting walls, as other structures may also be retrofitted.
  • Illustrative embodiments of the invention will now be described, with reference to the figures. In one embodiment, as shown in FIG. 1, an envelope 2 having a plurality of skins 2 a, 2 b, each of which may comprise a single piece of material or a plurality of pieces of material attached together is disclosed. The material may be flexible and have little or no ability to resist a force applied normal to its surface. In other words, a relatively small force FN may deform or deflect the skin 2 a. However, the skin 2 a may have high tensile strength. Thus, the material may have the ability to withstand significant force in the direction FT without failing.
  • The envelope 2 may have a relatively narrow width compared to its height. In other words, the width w may be relatively small compared to the height h. The slenderness ratio, which is the ratio of the height to the width, may be at least 1:1. In one embodiment of the invention, the slenderness ratio is greater than 2:1, and may be greater than 5:1. In one embodiment, the slenderness ratio may be about 10:1. For example, an envelope 2 may be 10 feet high and 1 foot wide.
  • In one embodiment, the envelope 2 comprises a mesh-like material. As used herein, “mesh” shall mean any arrangement of wires, fibers or strands of the skin arranged in a manner to form openings between fibers or strands. As such, a mesh may be formed in any suitable manner, including, but not limited to weaving, knitting, molding, forming a solid structure and thereafter forming holes therethrough, and forming a component with preformed openings. A “tight mesh” or “small mesh” has fewer and/or smaller holes, and a “loose mesh” or “large mesh” has larger and/or more numerous holes. The materials chosen for the envelope may be determined by the desired strength and filler material as described below. For example, a stronger envelope can be constructed out of a material with a tight mesh.
  • Alternatively or additionally, the envelope 2 may comprise a plurality of layers, placed on top of each other to create a thicker skin 2 a, 2 b. The layers may have the same size mesh, or a different size mesh. A solid material may be used for at least one layer as well. If a plurality of layers is formed as a mesh, the mesh of the layers may be aligned with each other or they may be placed askew with respect to each other.
  • In one embodiment, the layers are strategically arranged to provide the desired strength characteristics for the envelope 2. For example, the envelope 2 may have multiple layers at areas of high stress, such as at the edges of the wall. The wall may additionally or alternatively utilize an envelope with a smaller mesh in areas of high load such as the foundation of a building. It should be appreciated that the mesh results in the skin being permeable, although non-permeable skins may be employed. Further, the skins may be formed or a relatively thin and flexible material.
  • In one embodiment, the envelope 2 may comprise any number of materials that provide the desired tensile strength and/or weather resistance. Although one embodiment comprises a mesh material, other materials may also be used. The skins 2 a, 2 b may comprise a non-mesh material, and can be made of synthetic and/or natural materials. Some exemplary materials, which may be used alone or in combination in the skins 2 a, 2 b, include metals (such as steel or aluminum), polymers, rubber, nylon, polyvinylchloride, and carbon-epoxy and combinations thereof. Other, non-limiting examples of a suitable material include, Kevlar®, Tyvek®, and Teflon® (each available from DuPont of Wilmington, Del.). Fabrics and/or textiles may also be employed.
  • In one embodiment, at least one material in the envelope 2 is impregnated with an agent that is activated by heat or light of a certain wavelength. The envelope 2 may thus be stiffened by applying heat and/or light to the skin(s) 2 a, 2 b. In another embodiment, at least one material in the envelope 2 comprises a phase change material.
  • The two skins 2 a, 2 b may not be simply two continuous pieces of material. For example, each face of the wall (front, back, sides, and bottom) may be formed from its own piece of material. Alternatively, a single material sheet may be folded in half to form the envelope 2. Alternatively or additionally, many materials may be pieced together to create a larger skin or layered to create a thicker material. Thus any number of materials may be used to form the envelope 2, as the invention is not limited in this respect.
  • As shown in FIG. 2, the structure, which in this example is a wall 1, comprises a filler material in the envelope 2. The filler material 3 may be loose, granular and/or coarse. The filler material 3 may comprise any material that can fill the envelope 2. As mentioned, examples of suitable filler material 3 include soil, sand, pebbles, concrete, plastic, fabrics, composites, Styrofoam™ (Available from DOW, Midland, Mich.) and natural or synthetic materials.
  • In one embodiment, as in FIG. 2, the wall construction 1 may comprise a plurality of filler materials 3 in different areas of the envelope 2. For example, the base end of the envelope 2 (shown in FIG. 2 as the portion of the wall construction 1 below ground level G) may comprise one filler material 30, whereas the portion of the envelope 2 above ground level G may comprise a second filler material 31. In one embodiment, the filler material below ground level 30 comprises concrete, whereas the filler material above ground level 31 comprises sand. As stated above, the envelope material may likewise be different above and below ground. Although the embodiment shown in FIG. 2 utilizes two different filler materials 3, any number of filler materials may be used. The filler materials may differ according to location (for example as described above, different filler materials may form horizontal layers), or the filler materials may be mixed together (such as pebbles and sand) to form a composite filler material. The filler materials may differ in other ways as well (such as along the length of the wall), as the invention is not limited in this respect. As mentioned above, the filler material may influence the material chosen for the envelope. For example, if a very fine material such as sand is used as a filler material, it may be desirable to use a material with a tight mesh for the envelope. If stones are used, it may be desirable to use a thicker material for greater puncture resistance.
  • In one embodiment and as shown in FIG. 2, the wall construction 1 comprises at least one cross-member 4. The cross-member 4 may be a tie 5 which spans the width of the envelope 2. The ties 5 may keep the skins 2 a, 2 b from spreading too far apart when filler material 3 is in the envelope 2. The ties 5 may be fabricated from any material, as long as the material is strong enough to withstand the applied forces from the envelope 2 and filler material 3. Some examples of suitable material for the ties 5 include polymers and/or fabric. The cross-members may be attached to the skins in any suitable manner, as the present invention is not limited in this regard. In one embodiment, the tie 5 may comprise a body 50 and two heads 51, 52. The heads 51, 52 are larger than the mesh size of the envelope 2, thus preventing the heads 51, 52 from slipping through the mesh openings of the envelope 2. In another embodiment, the cross-members may be stitched to the skins. In additional or alternatively, the cross-members may be heat-staked to the skins, if both are formed of suitable materials.
  • As shown in FIG. 3, the ties 5 may be spaced throughout the envelope 2 to provide support to the wall construction 1. The horizontal, vertical, and diagonal spacing between ties (Sh, Sv, and Sd, respectively) may be determined by the size of the wall, desired strength characteristics, envelope material, filler material, tie material, and other considerations. Although the ties 5 shown in FIG. 3 have a regular spacing, the invention is not limited in this respect. The ties 5 may have an irregular spacing, may be preferentially located at areas of high stress, may be randomly placed, or any other configuration as the invention is not limited in this respect.
  • As shown in FIG. 2, the wall construction 1 may alternatively or additionally comprise a different type of cross-member 4. For example, the wall construction 1 may comprise a beam 6 that spans at least a substantial part of the width w of the envelope 2. In one embodiment, the beam 6 spans the entire width w. The beam 6 may provide additional structural stability to the wall construction 1, and may be substantially rigid or semi-rigid. The beam 6 may span a substantial portion of the length l of the wall construction 1 (see FIG. 3) or may have a relatively small horizontal dimension. The beam height hb may provide rigidity, and may depend on the material used in the beam 6. For example, the beam 6 may comprise concrete and be approximately six inches high.
  • In one embodiment, the wall construction 1 comprises an internal element, which may act as an additional strengthening element. As shown in FIG. 4, a wall construction 1 may comprise an internal envelope 7. The internal envelope 7 is smaller than the external envelope 2 forming the outer surface of the structure 1. The internal envelope 7 may be constructed of any material, whether mesh or non-mesh, synthetic or natural or combinations thereof. The internal envelope 7 may also be layered or constructed of a single layer as described above in conjunction with the construction of the external envelope 2. In one embodiment, the internal envelope 7 comprises a mesh material which has a larger mesh size than the external envelope 2. Alternatively, the internal envelope 7 may comprise a material with the same size mesh as the external envelope 2, or even a smaller mesh size than the external envelope 2.
  • If an internal envelope 7 is used, the internal envelope 7 may be placed where additional strength is desired. For example, as shown in FIG. 5, internal envelopes 7 may be placed near the doorways 8 (such as 7 c) or corners (such as 7 a, 7 b) of a structure, where the wall construction 1 may experience higher stress. As shown in FIG. 5, the internal envelopes 7 may be oriented horizontally, vertically, or any other direction, as the invention is not limited in that respect. Additionally, the internal envelopes may cover a significant portion of the structure 1 (such as the internal envelopes 7 a, 7 b extend through a significant portion of the height of the structure 1), or may be smaller (such as the internal envelope 7 c, which is smaller than both the length and height of the structure 1).
  • As shown in FIG. 4, if an internal envelope 7 is used, it has a filler material 70. The filler material 70 may be the same as the filler material 3 in the external envelope 2, or it may be different. If the filler material 70 in the internal envelope 7 is different than the filler material 3 in the external envelope 2, the internal and external envelopes 7, 2 will have to be filled separately as described below. However, if the same filler material is used for both the external and internal envelopes, the envelopes 7, 2 may be filled simultaneously. Also, in some embodiments, the filler material in the envelopes may be able to move between them.
  • Although the structures 1 depicted in FIGS. 1 to 5 have a substantially rectangular shape, other configurations are also possible and contemplated by the invention. For example, as shown in FIG. 6, a structure 10 may have a base that is wider than the top. In other words, the width of the base bw is greater than the width of the top tw. Although the structure 10 shown in FIG. 6 has substantially straight sides s, the sides s may be curved such that the structure 10 has concave or convex sides s as the invention is not limited in this respect.
  • In another embodiment of the present invention, a building 11 may be formed from substantially concentric fabric sleeves 110, 111. The fabric sleeves 110, 111 act as the skins and may be a mesh or any other material as described above. In this embodiment, each sleeve 110, 111 forms an extruded polygon, and the sleeves are connected together at the base of the building 112 to form an envelope. As shown in FIG. 7, the sleeves 110, 111 may be shaped such that the resulting building 11 has a larger base than top. In this embodiment, the filler material 113 is located between the two sleeves 110, 111. Additional members 114 may be provided to ensure structural stability of the building 11. The reinforcement members 114 may comprise internal envelopes as described above, or may be another material such as rebar. Tall multi-story buildings may be constructed in this way.
  • As shown in FIG. 8, another possible configuration is a sloped support, such as a sloped wall. The wall 12 comprises an envelope 120 and filler material 121 as described above. One end of the wall 12 may be propped up with a support 122. The support 122 may be a pole, a plurality of poles, a wall, or any other structure which can stably support one end of the filled envelope. Also, the support 122 may be formed as the structure described with reference to the other Figures shown herein.
  • As shown in FIG. 9, in another embodiment, the structure may be used only for the foundation 91 of a house 90. In this embodiment, the construction method described above using an envelope and filler material can form at least a substantial portion of the foundation 91. Suitable construction methods can be used to build the remainder of the house 90 out of conventional building materials such as wood. Other areas of a house may also be built using this method, such as the roof.
  • As shown in FIG. 10, as described above, a similar construction can be used to retrofit existing structures. For example, skins 141, 142 may be added to an existing wall 140 to create a stronger wall construction 14. The skins 141, 142 may be tacked to the top of the wall 140 in any manner and stretched to cover the length of the wall 140. When the skins 141, 142 are in place, the bottom of the skins 141, 142 may be tacked to the base of the wall 140 and/or the ground. As shown, the skins 141, 142 may be anchored below ground level G by anchor blocks 144. The skins 141, 142 may be tacked together through the wall 140 by ties 143 similar to those described above.
  • In any of the above described and other embodiments, the skins may be finished in any suitable manner. In one embodiment, a layer of stucco 145 or other material may be spread over the surface of the wall construction 14 on one or both sides if desired.
  • In use, the envelope 2 is fabricated from a plurality of skins. The material type, mesh size, thickness, size, and number of layers used in the skins may be determined at least in part by the requirements of the desired structure. The skins 2 a, 2 b of the envelope 2 are sewn, bonded, sealed, or otherwise attached to create the envelope form, leaving at least a portion at the top open. The envelope 2 may be fitted with ties 5, although the ties 5 may also be placed through the envelope 2 after it is filled with filler material 3. The envelope 2 is placed in a form, such as a wood form, at a factory or a building site. Filler material 3 is then poured or otherwise placed into the envelope 2 within the form.
  • If internal envelopes 7 are used, they may be filled first or simultaneously with the external envelope 2. For example, if the internal envelope 7 has a mesh size large enough for the filler material to go through (thus larger than that of the external envelope 2), and the internal and external envelopes are to be filled with the same filler material, the filler material may be poured through the internal envelope to the external envelope and both can thereby be filled simultaneously. However, if the mesh size of the internal envelope is too small for the filler material to pass through, or if it is to be filled with a different material, the internal envelope 7 may be filled first.
  • If cross beams 6 are used (such as a concrete beam), the wall construction 1 can be filled with filler material 3 to the desired level of the cross beam 6. Then the cross beam 6 is put or poured into place.
  • Once the envelope(s) are filled, the top of the wall construction 1 may be closed off. The envelope may be tied, sewn, glued, sealed, or closed by any other means. The wood form is then removed, leaving the wall. Multiple walls may be affixed together by bands, mesh, braces, or any other means in order to form a complete building. As mentioned above in conjunction with FIG. 7, a complete building may also be formed from concentric sleeves. If concentric sleeves are used, it may not be necessary to wrap the building walls with a brace.
  • As mentioned, structures so constructed transform a compressive load FC (see FIG. 2) into a tensile load FT along the face of the wall. As the compressive load FC pushes against the filler material 3, the wall tends to bulge outward, stretching the envelope 2. Thus, the envelope 2 experiences the bulging force as a tensile force FT. Because the envelope material has high tensile strength, the envelope 2 is likely not to not fail. Because the skins of the envelope cooperate to retain the filler material within the envelope, the structure likely does not collapse.
  • As described above, in one embodiment, the structure may be formed as a multi-story building. As shown in FIGS. 11 and 12, one example of a multi-story building is shown. In this embodiment, the internal envelope 7 may be used to form an internal structure and external envelope 2 may be used to form the exterior of the wall. The entire structure may sit on a foundation 91. As described above, the internal envelope 7 is smaller than the external envelope 2 forming the outer surface of the structure 1. The internal envelope 7 may be constructed of any material, whether mesh or non-mesh, synthetic or natural or combinations thereof. The internal envelope 7 may also be layered or constructed of a single layer as described above in conjunction with the construction of the external envelope 2. In one embodiment, the internal envelope 7 comprises a mesh material which has a larger mesh size than the external envelope 2. Alternatively, the internal envelope 7 may comprise a material with the same size mesh as the external envelope 2, or even a smaller mesh size than the external envelope 2. Using this arrangement, high rise towers (such as 50 stories, 100, stories, 120 stories or more) may be constructed.
  • It should be appreciated that various combinations of the above-described embodiments can be employed together, but several aspects of the invention are not limited in this respect. Therefore, although the specific embodiments disclosed in the figures and described in detail employ particular combinations of features, it should be appreciated that the present invention is not limited in this respect, as the various aspects of the present invention can be employed separately, or in different combinations. Thus, the particular embodiments described in detail are provided for illustrative purposes only.
  • It should also be appreciated that a variety of features employed in the art of construction may be used in combination with or to modify the above-described features and embodiments.
  • The foregoing written specification is to be considered to be sufficient to enable one skilled in the art to practice the invention. While the best mode for carrying out the invention has been described in detail, those skilled in the art to which this invention relates will recognize various alternative embodiments including those mentioned above as defined by the following claims. The examples disclosed herein are not to be construed as limiting of the invention as they are intended merely as illustrative of particular embodiments of the invention as enabled herein. Therefore, systems and methods that are functionally equivalent to those described herein are within the spirit and scope of the claims appended hereto. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.
  • What is claimed is:

Claims (23)

1. A structure adapted to support a load, the structure comprising:
a first skin surface formed of a flexible material and second skin surface formed of a flexible material, the first and second skin surfaces cooperating to define an envelope therebetween, the first skin surface and the second skin surface defining an envelope height, the first skin surface being spaced from the second skin surface and thereby defining an envelope width;
filler material disposed within the envelope, wherein an applied compressive force on the filler material results in a tensile force applied to the first and second skin; and
a slenderness ratio being defined as a ratio of the height to the width, wherein the slenderness ratio is greater than 1:1.
2. The structure as claimed in claim 1, wherein the slenderness ratio is greater than 2:1.
3. The structure as claimed in claim 2, wherein the slenderness ratio is greater than 5:1.
4. The structure as claimed in claim 3, wherein the slenderness ratio is approximately 10:1.
5. The structure as claimed in claim 1, wherein the first and second skin surfaces cooperate to retain the filler material within the envelope and wherein the first and second skin surfaces are adapted to facilitate structural integrity to the structure.
6. The structure as claimed in claim 1, further comprising at least one cross-member coupling the first skin surface and the second skin surface together.
7. The structure as claimed in claim 6, wherein the cross-member is placed in tension by the filler material disposed within the envelope.
8. The structure as claimed in claim 1, wherein at least one of the first and second skin surfaces comprises a mesh material.
9. The structure as claimed in claim 1, wherein at least one of the first and second skin surfaces comprises one of metal, Teflon®, nylon, polyvinylchloride, carbon-epoxy, Kevlar®, Tyvek®, and combinations thereof.
10. The structure as claimed in claim 1, wherein the envelope defines an external envelope, and wherein the structure further comprises an internal envelope disposed within the external envelope, the internal envelope having a first and second skin surface.
11. The structure as claimed in claim 10, wherein the first and second skin surfaces of the internal envelope are formed of a material having a relatively loose mesh and wherein the first and second skin surfaces of the external envelope are formed of a material having a relatively tight mesh.
12. An apparatus for use in a support structure, the apparatus comprising an envelope comprising a first skin surface and a second skin surface, wherein each of the first and second skin surfaces are flexible and have high tensile strength; and, at least one cross-member disposed inward of an outer periphery of the skin surfaces coupling the first skin surface and the second skin surface together.
13. The apparatus as claimed in claim 12, wherein at least one of the first and second skin surfaces comprises a mesh material.
14. The apparatus as claimed in claim 12, wherein at least one of the first and second skin surfaces comprises one of metal, Teflon®, nylon, polyvinylchloride, carbon-epoxy, Kevlar®, Tyvek®, and combinations thereof.
15. The apparatus as claimed in claim 12, wherein the envelope defines an external envelope, and wherein the apparatus further comprises an internal envelope disposed within the external envelope, the internal envelope having a first and second skin surface.
16. The apparatus as claimed in claim 15, wherein the first and second skin surfaces of the internal envelope are formed of a material having a relatively loose mesh and wherein the first and second skin surfaces of the external envelope are formed of a material having a relatively tight mesh.
17. A method of construction, comprising:
providing a first envelope defined by first and second flexible skins, wherein the first and second skins have high tensile strength;
providing a cross-member to couple the first and second skin together at at least one location inward of an outer periphery of the skin surfaces; and
surrounding the envelope with a filler material.
18. The method as claimed in claim 17, wherein surrounding the envelope with a filler material comprises filling the envelope with the filler material.
19. The method as claimed in claim 17, wherein surrounding the envelope with a filler material comprises mounting the envelope to a pre-existing structure.
20. The method as claimed in claim 18, further comprising providing a second envelope smaller than the first envelope, wherein the second envelope is formed by third and fourth flexible skins.
21. The method as claimed in claim 20, wherein the second envelope is formed of a material having a relatively loose mesh and the first envelope is formed of a material having a relatively tight mesh, and the second envelope is substantially encased within the first envelope; and wherein
filling the envelope with the filler material comprises filling the second envelope with the first filler material.
22. The method as claimed in claim 20, further comprising:
filling the second envelope with a second filler material; and
placing the filled second envelope within the first envelope before the step of filling the first envelope with the first filler material.
23. A structure adapted to support a load, the structure comprising:
a first skin surface formed of a flexible material and second skin surface formed of a flexible material, the first and second skin surfaces cooperating to define an envelope therebetween, the first skin surface and the second skin surface defining a height, the first skin surface being spaced from the second skin surface and thereby defining an envelope width;
filler material disposed within the envelope, wherein an applied compressive force on the filler material results in a tensile force applied to the first and second skin; and
at least one cross-member disposed inward of an outer periphery of the skin surfaces coupling the first skin surface and the second skin surface together.
US11/373,921 2006-03-13 2006-03-13 Apparatus and method for use in building construction Abandoned US20070209315A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/373,921 US20070209315A1 (en) 2006-03-13 2006-03-13 Apparatus and method for use in building construction
US12/707,782 US20100192492A1 (en) 2006-03-13 2010-02-18 Apparatus and method for use in building construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/373,921 US20070209315A1 (en) 2006-03-13 2006-03-13 Apparatus and method for use in building construction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/707,782 Continuation-In-Part US20100192492A1 (en) 2006-03-13 2010-02-18 Apparatus and method for use in building construction

Publications (1)

Publication Number Publication Date
US20070209315A1 true US20070209315A1 (en) 2007-09-13

Family

ID=38477536

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/373,921 Abandoned US20070209315A1 (en) 2006-03-13 2006-03-13 Apparatus and method for use in building construction

Country Status (1)

Country Link
US (1) US20070209315A1 (en)

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1530662A (en) * 1924-06-30 1925-03-24 Gibbons Sherwin Wall construction and method of forming the same
US1673955A (en) * 1926-06-24 1928-06-19 Edwin F Samuels Form and reenforce for concrete beams
US1709893A (en) * 1926-05-07 1929-04-23 Bemis Ind Inc Building unit
US3108406A (en) * 1959-08-03 1963-10-29 Jerome J Ellis Construction members and methods of forming same
US3382627A (en) * 1964-08-12 1968-05-14 Karl O. Vartia Sand column support
US3397260A (en) * 1967-06-26 1968-08-13 Tech Inc Const Method for encasing rigid members with concrete
US3883026A (en) * 1973-04-23 1975-05-13 John C Selz Collapsible wall container
US4011728A (en) * 1975-01-17 1977-03-15 Turzillo Lee A Means for producing subaqueous and other cast-in-place concrete structures in situ
US4394924A (en) * 1980-06-10 1983-07-26 S.P.A. Officine Maccaferri Gia Raffaele Maccaferri & Figli Process for making gabions provided with inner partitions
US4483640A (en) * 1981-09-09 1984-11-20 Berger Robert C Erosion control device
US4770564A (en) * 1984-12-03 1988-09-13 Leon Dison Mining support pillars
US5076735A (en) * 1990-08-31 1991-12-31 Hilfiker William K Welded wire component gabions and method of making the same and construction soil reinforced retaining walls therefrom
US5333970A (en) * 1989-04-07 1994-08-02 Hesco Bastion Limited Building and shoring blocks
US5528876A (en) * 1994-05-09 1996-06-25 Lu; Sin-Yuan Wall structure for buildings
US5582492A (en) * 1995-10-18 1996-12-10 Doyle, Jr.; Henry G. Method and apparatus for an anchored earth restraining wall
US5647695A (en) * 1995-04-11 1997-07-15 Hilfiker Pipe Company Soil filled wall
US5802793A (en) * 1996-11-14 1998-09-08 Devore, Jr.; Walter Don Precast modular keyed building system
US5813177A (en) * 1997-10-07 1998-09-29 Wu; Chiang-Su Built-up partition wall framework system
US5857293A (en) * 1993-11-02 1999-01-12 Flexible Formwork Pty. Ltd. Flexible formwork assembly
US6050048A (en) * 1995-09-07 2000-04-18 Balcus Ab Beam
US6219988B1 (en) * 1999-03-18 2001-04-24 The George Washington University Wrapping system for strengthening structural columns or walls
US6296422B1 (en) * 1997-02-25 2001-10-02 Officine Maccaferri S.P.A. Element for forming ground covering, restraining and reinforcing structures, particularly for forming retaining walls
US6305140B1 (en) * 1999-09-07 2001-10-23 Lenard Knight Pole
US6330777B1 (en) * 1999-07-20 2001-12-18 Tcw Technologies Inc. Three dimensional metal structural assembly and production method
USD461638S1 (en) * 2000-11-30 2002-08-20 Bajer Design & Marketing, Inc. Collapsible container
US20030159381A1 (en) * 2002-02-28 2003-08-28 Meyer Robert L. Precast concrete column for use in post-frame construction
US20040093824A1 (en) * 2002-09-19 2004-05-20 Huber Donald G. Concrete forming apparatus for foundation pier blocks and a method for constructing pier blocks
USD551452S1 (en) * 1999-04-05 2007-09-25 Bajer Design & Marketing, Inc. Two compartment container

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1530662A (en) * 1924-06-30 1925-03-24 Gibbons Sherwin Wall construction and method of forming the same
US1709893A (en) * 1926-05-07 1929-04-23 Bemis Ind Inc Building unit
US1673955A (en) * 1926-06-24 1928-06-19 Edwin F Samuels Form and reenforce for concrete beams
US3108406A (en) * 1959-08-03 1963-10-29 Jerome J Ellis Construction members and methods of forming same
US3382627A (en) * 1964-08-12 1968-05-14 Karl O. Vartia Sand column support
US3397260A (en) * 1967-06-26 1968-08-13 Tech Inc Const Method for encasing rigid members with concrete
US3883026A (en) * 1973-04-23 1975-05-13 John C Selz Collapsible wall container
US4011728A (en) * 1975-01-17 1977-03-15 Turzillo Lee A Means for producing subaqueous and other cast-in-place concrete structures in situ
US4394924A (en) * 1980-06-10 1983-07-26 S.P.A. Officine Maccaferri Gia Raffaele Maccaferri & Figli Process for making gabions provided with inner partitions
US4483640A (en) * 1981-09-09 1984-11-20 Berger Robert C Erosion control device
US4770564A (en) * 1984-12-03 1988-09-13 Leon Dison Mining support pillars
US5333970A (en) * 1989-04-07 1994-08-02 Hesco Bastion Limited Building and shoring blocks
US5472297A (en) * 1989-04-07 1995-12-05 Hesco Bastion Limited Building and shoring blocks
US5076735A (en) * 1990-08-31 1991-12-31 Hilfiker William K Welded wire component gabions and method of making the same and construction soil reinforced retaining walls therefrom
US5857293A (en) * 1993-11-02 1999-01-12 Flexible Formwork Pty. Ltd. Flexible formwork assembly
US5528876A (en) * 1994-05-09 1996-06-25 Lu; Sin-Yuan Wall structure for buildings
US5647695A (en) * 1995-04-11 1997-07-15 Hilfiker Pipe Company Soil filled wall
US6050048A (en) * 1995-09-07 2000-04-18 Balcus Ab Beam
US5582492A (en) * 1995-10-18 1996-12-10 Doyle, Jr.; Henry G. Method and apparatus for an anchored earth restraining wall
US5802793A (en) * 1996-11-14 1998-09-08 Devore, Jr.; Walter Don Precast modular keyed building system
US6296422B1 (en) * 1997-02-25 2001-10-02 Officine Maccaferri S.P.A. Element for forming ground covering, restraining and reinforcing structures, particularly for forming retaining walls
US5813177A (en) * 1997-10-07 1998-09-29 Wu; Chiang-Su Built-up partition wall framework system
US6219988B1 (en) * 1999-03-18 2001-04-24 The George Washington University Wrapping system for strengthening structural columns or walls
USD551452S1 (en) * 1999-04-05 2007-09-25 Bajer Design & Marketing, Inc. Two compartment container
US6330777B1 (en) * 1999-07-20 2001-12-18 Tcw Technologies Inc. Three dimensional metal structural assembly and production method
US6305140B1 (en) * 1999-09-07 2001-10-23 Lenard Knight Pole
USD461638S1 (en) * 2000-11-30 2002-08-20 Bajer Design & Marketing, Inc. Collapsible container
US20030159381A1 (en) * 2002-02-28 2003-08-28 Meyer Robert L. Precast concrete column for use in post-frame construction
US20040093824A1 (en) * 2002-09-19 2004-05-20 Huber Donald G. Concrete forming apparatus for foundation pier blocks and a method for constructing pier blocks

Similar Documents

Publication Publication Date Title
US6840013B2 (en) Building with foam cored ribs and method
US8246276B2 (en) Pumpable crib bag assembly and method of installation
US7543594B2 (en) Shelter vacuum hold down device
RU2386767C2 (en) Pre-manufactured covered structure
US4746471A (en) Method of constructing a reinforced concrete structure
US20120291362A1 (en) Method and apparatus for building a structure
AU2007206065A1 (en) Hybrid composite beam system
JPH05503329A (en) cage structure
WO2010144666A1 (en) Hybrid composite beam and beam system
US6354768B1 (en) Soil reinforcement method and apparatus
US20100310315A1 (en) Inflatable flood barrier
US3734670A (en) Portable mold for erecting concrete or plastic shelters
JP2006037527A (en) Lightweight landfill and construction method therefor
US20210054628A1 (en) Multi-Axially Braided Reinforcement Sleeve for Concrete Columns and Method for Constructing Concrete Columns
US20080295445A1 (en) Blast Protection Structures
US20070209315A1 (en) Apparatus and method for use in building construction
JP2010106514A (en) Rockfall preventive guard structure
US20100192492A1 (en) Apparatus and method for use in building construction
US11619047B2 (en) Braided multi-axial sleeve system used as a structural reinforcement for concrete columns and method for constructing concrete columns
US3256694A (en) Structural piles and methods of preparing pipe foundations
US9611662B2 (en) Anchoring mechanisms for a Binishell
CN205777095U (en) A kind of steel pipe column and steel pipe column group
JP2836489B2 (en) Cut slope stabilization method
CA2577847A1 (en) Methods for providing piled foundations for constructions, piled foundations and a balloon for providing an enlarged footing
CN110863613A (en) Huge column of unbonded prestressed steel pipe concrete of built-in plastics drain pipe

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION