US20070214512A1 - Vector for genetically modifying non-human animals - Google Patents

Vector for genetically modifying non-human animals Download PDF

Info

Publication number
US20070214512A1
US20070214512A1 US11/407,851 US40785106A US2007214512A1 US 20070214512 A1 US20070214512 A1 US 20070214512A1 US 40785106 A US40785106 A US 40785106A US 2007214512 A1 US2007214512 A1 US 2007214512A1
Authority
US
United States
Prior art keywords
sperm
cell
linker
vector
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/407,851
Inventor
Kangsheng Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BioAgri Corp
Original Assignee
BioAgri Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BioAgri Corp filed Critical BioAgri Corp
Priority to US11/407,851 priority Critical patent/US20070214512A1/en
Publication of US20070214512A1 publication Critical patent/US20070214512A1/en
Priority to US12/036,198 priority patent/US8148143B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0006Modification of the membrane of cells, e.g. cell decoration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/061Sperm cells, spermatogonia
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to the field of genetic modification in non-human animals.
  • Lavitrano, M., et. al. reported that simply incubating foreign DNA with mice's sperm cells and effecting fertilization in vitro could lead to genetically modified mice.
  • Lavitrano, M., et. al. (1989) sperm Cells as Vectors for Introducing Foreign DNA into Eggs—Genetic Transformation of Mice, Cell, Vol. 57, pp. 717-723. Characterized as the “cold fusion” equivalent in biotechnology, this report generated much excitement in the field. Birnstiel, M., et. al. (1989) Dangerous Liaisons: Spermatozoa as Natural Vectors for Foreign DNA?, Cell, Vol. 57, pp. 701-702.
  • sperm cells have the inherent ability to internalize foreign DNA.
  • certain inhibitory factors present in seminal fluid may inhibit this ability to take up DNA.
  • foreign DNA introduced into sperm cells may also suffer from extensive DNA rearrangement because in mature sperm cells, internalization of foreign DNA may activate certain endogenous nucleases in these cells.
  • Maione, B. et. al. (1997) Activation of Endogenous Nucleases in Maturesperm Cells upon Interaction with Exogenous DNA, DNA and Cell Biology, Vol. 16, pp. 1087-1097. Such rearrangement could threaten the usefulness of genetically modified animals using this technique.
  • lipid-based agents which are often toxic, and electroporation may require extensive experimentation to prevent the death or the loss of sperm cell motility.
  • Other techniques have also focused on using recombinant virus infection, as disclosed in PCT Publications WO 99/38991, or on using a “gene gun” with micro-carriers, as disclosed in PCT Publication WO 93/24626, to introduce foreign DNA into sperm cells.
  • Such techniques may be technically challenging and may also affect the viability and motility of the sperm cells. They may also suffer from the same problem of DNA internalization and exposure to nucleases that could cause rearrangement of the foreign DNA being introduced.
  • the present invention is directed to a vector and its use to generate genetically modified animals and cells.
  • One aspect of this invention involves a vector that comprises a sperm cell and one or more polynucleotide molecules bound to a sperm cell through one or more non-liposome based linkers.
  • the sperm cell can be any animal sperm cell, preferably non-human animal.
  • the one or more polynucleotide molecules encode for a gene product that confers desired characteristics in the cells or the animals.
  • the linker is a protein or polypeptide, preferably a sperm specific linker that binds with the external surface of the sperm cell.
  • the linker interacts with one or more polynucleotide molecules preferably by ionic interaction. This interaction can also be carried out by different molecular interactions, including the use of another or secondary linker.
  • the association of the sperm, linker, and the one or more polynucleotide can also occur in vitro or in vivo.
  • genetically modified cells or animals are derived from the fertilization of an animal egg cell with the vector described above. Fertilization can occur in vitro or in vivo. In one preferred embodiment, genetic modification occurs with the polynucleotide molecule integrating, wholly or partially, into the cell or animal's genome.
  • Another aspect of the present invention includes cells, such as sperm cells or egg cells, and cell lines that are derived from these genetically modified animals or their descendants.
  • the genetically modified animals derived from the use of the sperm vector described above possess certain desired characteristics. Examples of these characteristics include faster growth rates, disease or pathogen resistance, high production of certain proteins in milk, and organs suitable for animal to human xenotransplantation.
  • FIG. 1 is a pictorial representation of the basic steps involved in using one embodiment of the present invention.
  • FIG. 2 shows a flow-cytometry result of binding a sperm-specific antibody to mice's sperm cells as embodied in one aspect of the present invention.
  • FIG. 3 shows a flow-cytometry result of binding a sperm-specific antibody to pig's sperm cells as embodied in one aspect of the present invention.
  • FIG. 4 shows a flow-cytometry result of binding a sperm-specific antibody to cow's sperm cells as embodied in one aspect of the present invention.
  • FIG. 5 shows a flow-cytometry result of binding a sperm-specific antibody to chicken's sperm cells as embodied in one aspect of the present invention.
  • FIG. 6 shows a flow-cytometry result of binding a sperm-specific antibody to goat's sperm cells as embodied in one aspect of the present invention.
  • FIG. 7 shows a flow-cytometry result of binding a sperm-specific antibody to sheep's sperm cells as embodied in one aspect of the present invention.
  • FIG. 8 shows a plasmid map of pCMV- ⁇ .
  • FIG. 9 shows an agarose-gel analysis of a sperm-specific antibody binding to pCMV- ⁇ plasmid.
  • FIG. 10 show results of PCR analysis for the detection of pCMV- ⁇ sequences in genomic DNA isolated from mice's embryos genetically modified according to one embodiment of the present invention.
  • FIG. 11 shows results of southern-blot analysis for the detection of Hepatitis B surface-antigen gene-sequence in mice-tail-genomic DNA with this gene-sequence being integrated into the mice's chromosome according to one embodiment of the present invention.
  • FIG. 12 shows the plasmid map of pSEAP-2-control.
  • FIG. 13 shows the result of southern-blot analysis for the detection of pSEAP2-control plasmid sequence in the genomic DNA isolated from tail tissues of genetically modified pigs according to one embodiment of the present invention.
  • FIG. 14 shows the copy number of integrated pSEAP2-control plasmid in four genetically modified pigs based on densitometric intensities of bands in FIG. 13 .
  • FIGS. 15 and 16 show the results of enzyme assays for secreted alkaline phosphatase found in serum of pigs genetically modified according to one embodiment of the present invention.
  • FIG. 1 shows the basic steps involved in using one embodiment of the present invention to genetically modify cells or animals using a sperm vector.
  • animal sperm cells 10 are collected by methods known in the art or purchased commercially from sources such as Birchwood Genetics in West Manchester, Ohio, and are bound together with linkers 20 .
  • linkers are preferably antibodies or immunoglobulins of the types, IgG, IgA or IgM, but they can also be other compounds such as peptides, glycoproteins, carbohydrates, or other chemical-compound linkers.
  • linkers bind or associate to the sperm cells' external surface through different molecular interactions such as ionic interaction, covalent bonds, Vander Waals forces, or ligand-receptor interaction.
  • Circular or linear DNA molecules 30 then bind or attach to the linkers on the sperm-linker complex also through different molecular interactions such as ionic, covalent bonds, Vander Waals forces, or ligand-receptor interaction. These DNA molecules may encode for certain gene products, but they may also be disrupted genes, homologous with endogenous genes, that recombine into the chromosome to knockout a gene.
  • the sperm-linker-DNA complex 40 formed can then be used to effectuate fertilization in vitro or in vivo. Upon fertilization, the DNA is introduced into the fertilized egg 50 and embryo 60 and can integrate into the chromosome, becoming a part of an animal or cell's genetic material.
  • the binding, coupling, linking, attaching, or association of the sperm-linker-DNA complex can also be accomplished in vivo.
  • the linker and the DNA can first be coupled or bound together in vitro. Afterwards, this linker-DNA complex can be injected directly or indirectly into a male animal's testicles.
  • PCT Publications WO 99/40213 and WO 97/11597 disclose procedures for injecting DNA into the testicles, and these publications are incorporated herein by reference.
  • linker-DNA complex is an antibody attached with DNA molecules where the antibody specifically recognizes certain surface epitopes on sperm cells. Because of the acidic characteristic of naked DNA, it can ionically associate, bind or, couple with an antibody that has basic or positively charged properties. However, the DNA-linker interaction is not limited to ionic interaction.
  • the complex can also be crosslinked by UV light to form covalent bonds by well known methods in the art. Both the DNA and the linker can also be modified by methods known in the art.
  • the DNA can be biotinylated by adding biotinylated deoxynucleotides in a PCR reaction;
  • the antibody can be modified or purchased with attached streptavidin, which binds tightly to the biotin on the DNA; or a secondary antibody, which is modified with streptavidin and recognizes the first antibody can also act as a secondary linker between the modified DNA and the first linker.
  • the DNA-linker complex is injected into the testis of the animal, this complex can seek out the sperm cells and bind to them. Fertilization can then occur in vivo via either natural copulation of the male and female animals or by artificial insemination of the female with collected sperm cells.
  • the collected sperm cells can also be used with in vitro fertilization techniques, which are well known in the art.
  • fertilization can be achieved by in vitro fertilization techniques.
  • the fertilized eggs and resulting embryos can then be transplanted to surrogate-animal mothers for development.
  • well known artificial insemination methods or injections of the sperm-linker-DNA complex directly into the oviduct of female animals can also achieve fertilization in vivo.
  • Livestock, poultry, or fish can be inserted with genes that encode for growth hormones to make them grow faster than normal or they can also be inserted with the somatotropin gene to increase muscle growth and decrease adipose tissue.
  • Inserting genes such as interferon that boost the immune system or other genes, such as genes encoding for viral, prion, or bacterial proteins can also make these livestock, poultry, or fish disease or pathogen resistant.
  • infectious pathogens include Salmonella, influenza virus, prion proteins for the Mad Cow Disease, etc.
  • introducing DNA encoding for anti-sense RNA molecules, which are complementary to these viral, prion, or bacterial RNAs may also inhibit translation and production of proteins from these RNA, which limits growth and spread of these infectious pathogens.
  • these genetically modified animals can also produce therapeutic proteins, such as insulin, growth hormone, interferon, erythropoietin, colony stimulating factor (GM-CSF), t-PA, or factor VIII, in their milk by joining the genes for these proteins with promoters from mammary specific genes such as sheep's ⁇ -lactoglobulin, mouse whey acid protein, or bovine ⁇ S1-casein. Id.
  • the animal's milk can also be fortified with addition of humanized proteins, such as human lactoferrin that enhance the intestinal iron absorption in infants. Lonnerdal, B. (1996) Recombinant Human Milk Proteins—An Opportunity and a Challenge, American Journal of Clinical Nutrition, Vol. 63, pp.
  • Genetically modified pigs can even be a source for more “humanized” organs in animal to human xenotransplantation using genes such as human decay accelerating factor. Cozzi, E., et. al. (1994) Expression of Human Decay Accelerating Factor in Transgenics Pigs, Transplantation Proceedings, Vol. 26, pp. 1402-1403.
  • This example illustrates the preparation of an antibody specific to sperm cells.
  • sperm cells collected from male mice were injected back into mice as antigens to immunize and produce antibodies reactive to sperm-surface antigens.
  • Monoclonal antibodies developed using common hybridoma techniques, were screened using flow cytometry to identify candidate antibodies that will bind to a series of different animals (mouse, pig, cow, sheep, goat, and chicken). Briefly, sperm cells were incubated with the different primary monoclonal antibodies, washed, and further incubated with a secondary antibody that specifically recognized mouse immunoglobulin.
  • This secondary antibody which was commercially available and well known in the art, had fluorescent molecules such as fluorescein or rhodamine conjugated to it. Once the secondary antibody molecules were bound and washed, the flow-cytometry instrument or the FACS sorter counted the number of fluorescent sperm cells with bound primary and secondary antibodies from naked sperm cells.
  • FIGS. 2-7 show these flow-cytometry analyses for mAbC that bind to sperm cells of mouse, pig, cow, chicken, goat, and sheep, respectively.
  • the Y-axis corresponds to the number of sperm cells detected while the X-axis is the relative intensity of fluorescence bound to the cell.
  • Cross-lined peaks denote control reactions where the sperm cells were incubated only with the fluorescent anti-mouse immunoglobulin antibody.
  • the shaded peaks denote the reactions where mAbC antibody and the secondary antibody were incubated with corresponding sperm cells in a mouse, pig, cow, chicken, goat, and sheep, respectively.
  • Right shifts in the peaks denote positive binding of the mAbC antibody.
  • FIG. 2 greater fluorescence signals can be detected from mouse sperm cells incubated with mAbC and the fluorescent secondary antibody compared with sperm cells incubated with fluorescent secondary antibody alone.
  • FIGS. 3 and 4 greater fluorescence can be detected from pig and cow sperm cells, respectively, incubated with mAbC and the fluorescent secondary antibody as evidenced by the right shaded peaks.
  • FIG. 5 shows that some population of chicken sperm cells may not express the antigen recognized by mAbC as evidence by the left shaded peak.
  • fluorescence can be detected from goat sperm cells incubated with mAbC and the fluorescent secondary antibody as evidenced by the two right shaded peaks.
  • the left shaded peak may suggest a population of the goat sperm cells that express the antigen recognized by mAbC at a lower level than the population in the right peak.
  • the anti-mouse immunoglobulin fluorescent antibody seems to also bind to the goat sperm cells, but at a much reduced level than with mAbC acting as a linker.
  • fluorescence can be detected from sheep sperm cells incubated with mAbC and the fluorescent secondary antibody as evidenced by the right shaded peaks.
  • the distribution of the peaks again suggests the possibility that different sperm cells have different levels of the antigen recognized by mAbC.
  • mammalian sperm cells bind, at some lower level, to the fluorescent secondary antibody. Since the secondary antibody is directed to a mouse immunoglobulin, it may have cross reactivity to other mammalian proteins on the sperm cell surfaces, which are not present in the chicken sperm cells ( FIG. 5 ). Nevertheless, the shifts in fluorescence peaks upon addition of mAbC clearly demonstrate the higher affinity of the mAbC antibody to different animal sperm cells.
  • This example illustrates the ability of the monoclonal antibody mAbC to bind to DNA molecules through ionic interaction.
  • lanes 1 , 2 , and 8 were controls with lane 1 being pure Sal I cut pCMV- ⁇ plasmid and lanes 2 and 8 being Sal I cut pCMV- ⁇ plasmid in Modified Tyrode's medium.
  • Lanes 3 , 4 , 5 , 6 , and 7 corresponded to experimental reactions with the Sal I cut pCMV- ⁇ plasmid incubated with 0.2 ⁇ l, 1 ⁇ l, 2.5 ⁇ l, 6 ⁇ l, and 10 ⁇ l of mAbC at 0.5 mg/ml.
  • This example illustrates the binding or coupling of the DNA to the sperm via the linker or antibody.
  • DNA molecules labeled with P 32 using standard end labeling techniques with T4 DNA polymerase, were incubated with mouse, pig, chicken, sheep, goat, and cow sperm cells together with either mAbC, mAbD, or a control antibody specific to a Drosophila protein. The amount of DNA binding was measured by scintillation counting. The ratio of sperm cells to antibody were as follows:
  • Table 1 shows that with the presence of mAbC and mAbD, sperm cells significantly bound more labeled DNA compared with reactions with no antibody or with the Drosophila protein-specific antibody.
  • Reactions 1 and 2 contained only sperm cells and labeled DNA, while reactions 3 and 4 contained the Drosophila-protein-specific antibody together with sperm cells and labeled DNA.
  • Reactions 5 contained mAbD while reactions 6 and 7 contained mAbC together with sperm cells and labeled DNA.
  • This example illustrates the procedures carried out to generate genetically modified mice.
  • Sperm cells were collected from dissected epididymis of nine to twenty weeks old FVB male mice. Cut into small pieces, these epididymis tissues were incubated in 300 ⁇ l of Modified Tyrode's medium at pH 7 ⁇ 8 for one hour to allow the sperm cells to escape into the medium. Once the sperm cells were collected in 300 ⁇ l of medium, five micrograms of the linker antibody were added to one million sperm cells at 37° C. for one hour. The sperm-linker complex was washed three times with 300 ⁇ l of Modified Tyrode's medium using a standard microcentrifuge set at 3000 rpm for one and a half minutes.
  • the sperm-linker complex was finally resuspended in 300 ⁇ l of medium, and one microgram of linearized pCMV- ⁇ plasmid or a plasmid encoding for Hepatitis B surface antigen (HBsAg) was added and incubated for one hour.
  • HBsAg Hepatitis B surface antigen
  • FVB female mice To collect ovulated eggs, nine to twelve weeks FVB female mice each received an injection of 5 I.U. Pregnant Mares Serum (PMS) four days before the collection date and another 5 I.U. of human chorionic gonadotropin (hCG) two days before the collection date.
  • PMS Pregnant Mares Serum
  • hCG human chorionic gonadotropin
  • Dissected ovulated eggs surrounded by cumulus cells were placed in a 35-mm petri dish containing a drop of Modified Tyrode's medium at room temperature. Afterwards, 300 ⁇ l of sperm-linker-DNA complex prepared as described above were added directly to the ovulated eggs. The whole mix was equilibrated with CO 2 at 37° C. with mineral oil added on top to prevent evaporation.
  • FIG. 10 lanes 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 17 , 18 , 19 , 24 , 33 , and 40 clearly show this 480 bp PCR fragment.
  • Lanes 1 and 21 corresponded to the molecular size markers.
  • FIG. 11 shows the southern blot hybridization results with complementary probe sequences to HBsAg.
  • Lanes 1 - 13 contained genomic DNA from mice born from pseudo-pregnant mice that received embryos fertilized with the sperm-linker-DNA complex described above; lanes C 1 -C 7 contained genomic DNA from mice that were untreated or non-transgenic mice.
  • Lanes 4 , 5 , and 8 show bands positive for HBsAg sequences integrated in the mice's genome, thus, demonstrating that three out the thirteen mice were genetically modified.
  • This example illustrates the procedures carried out to generate genetically modified pigs.
  • Ejaculated sperm cells from pigs were collected using methods generally known in the art of animal husbandry. Suspended in one milliliter of pig extender medium (purchased from Merck, Germany, Ref.N.R.13515/0001—dilute mixture M 3 for boar sperm), fifteen million sperm cells were incubated with five micrograms of the linker antibody for forty minutes at room temperature with intermittent shaking in between. After washing the sperm-linker mixture once with pig extender medium and finally resuspending the mixture in 1.5 ml of the same medium, five micrograms of the plasmid pSEAP2-control ( FIG. 12 , Clontech Laboratories, Inc., Cat.
  • FIG. 13 shows the southern blot analysis of genomic DNA isolated from the tail tissues of these pigs. Briefly, genomic DNA isolated from these pigs were digested, run on a gel, and transferred to a nylon membrane according to methods well known in the art. The blot was then probed with labeled sequences from the Not I to BamHI region of the pSEAP2-control plasmid shown in FIG. 12 .
  • M denotes the marker lanes
  • 1-43 denotes the number of pigs analyzed.
  • Hybridization signals in lanes 5 , 17 , 19 , 25 , 26 , 27 , 28 , 30 , 36 , 38 , 39 , and 40 indicated that the pSEAP2-control plasmid had integrated into the corresponding pig's genome.
  • eight lanes with increasing copies of pSEAP2-control plasmid molecules ( 1 , 2 , 2 , 4 , 4 , 8 , 16 , and 32 ) were also loaded on the gel together with the DNA from the experimental pigs. These eight lanes were used to estimate the copy number of pSEAP2-control plasmid integrated into the pigs based on the densitometric intensities of the bands ( FIG. 14 ). As can be seen in FIG. 14 , S 5 had the highest intensity, which corresponds to lane 5 of FIG. 13 .
  • SEAP secreted alkaline phosphatase expressed from the pSEAP2-control plasmid were also detected in 70-day old genetically modified pigs. Serum from these pigs were collected and assayed for SEAP activity using Clontech's Great EscAPETM SEAP Chemiluminescence Detection Kit (Cat. # K2041-1) and its protocol, which is incorporated herein by reference.
  • the SEAP enzyme expressed from Clontech's pSEAP-2 vector is thermostable.
  • the assay required the deactivation of the endogenous alkaline phosphatase enzyme by heating the samples at 65° C. for thirty minutes before adding the chemiluminescence substrate.
  • FIG. 15 shows the result of the assay without performing this heat deactivation step.
  • the level of total alkaline phosphatase activity was not significantly different between the genetically modified pigs and non-transgenic control pigs.
  • FIG. 16 shows the result including this heat deactivation step.
  • SEAP activity was significantly higher in the genetically modified pigs than in the non-transgenic control pigs.
  • the pSEAP2-control plasmid had integrated well in the pigs' genome and was actively expressing the SEAP enzyme.

Abstract

The present invention is directed to a vector and its use to generate genetically modified animals and cells. One aspect of this invention involves a vector that comprises a sperm cell and one or more polynucleotide molecules bound to a sperm cell through one or more non-liposome based linkers. The sperm cell can be any animal sperm cell, preferably non-human animal. In one preferred embodiment of this invention, the one or more polynucleotide molecules encode for a gene product that confers desired characteristics in the cells or the animals. In another preferred embodiment of this invention, the linker is a protein or polypeptide, preferably sperm specific such as an antibody that binds with the external surface of the sperm cell. The linker interacts with one or more polynucleotide molecules preferably by ionic interaction. This interaction can also be carried out by different molecular interactions, including the use of another or secondary linker. The association of the sperm, linker, and the one or more polynucleotide can also occur in vitro or in vivo. In another aspect of the present invention, genetically modified cells or animals are derived from the fertilization of an animal egg cell with the vector described above. Fertilization can occur in vitro or in vivo. In one preferred embodiment, genetic modification occurs with the polynucleotide molecule integrating, wholly or partially, into the cell or animal's genome. Another aspect of the present invention includes cells, such as sperm cells or egg cells, and cell lines that are derived from these genetically modified animals or their descendants. In another aspect of the present invention, the genetically modified animals derived from the use of the sperm vector described above possess certain desired characteristics. Examples of these characteristics include faster growth rates, disease or pathogen resistance, high production of certain proteins in milk, and organs suitable for animal to human xenotransplantation.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a continuation of U.S. patent application Ser. No. 09/537,861 filed Mar. 28, 2000, the disclosure of which is incorporated herein by reference as if fully set forth herein, including drawings.
  • FIELD OF INVENTION
  • The present invention relates to the field of genetic modification in non-human animals.
  • BACKGROUND OF THE INVENTION
  • Efficient genetic modification of animals, especially in higher mammals, has been a major goal of researchers in the biotechnology field for the last two decades. Not only can genetic modification of animals advance our understanding of genes and gene-functions in multi-cell organisms, it can also serve useful applications in the bio-agricultural industry. Examples of these applications include raising livestock with desired characteristics such as faster growth rate, production of therapeutic proteins in milk, or even the generation of more “humanized” organs from animals for use in animal to human xenotransplantation.
  • Current techniques to modify the genome include microinjection of foreign DNA into the pronuclei of fertilized eggs, delivery of foreign DNA into embryonic stem cells in vitro or blastomere cells in vivo through lipid-based agents, electroporation, or viral infection. Aside from mice, however, current techniques have been reported to have had limited success in higher or larger animals. The microinjection technique, for example, has been reported to be technically very demanding and requires the use of highly sensitive and expensive equipment. The viability of embryos after microinjection has also been reported to be very poor. Wall, R. J., et. al. (1992) Making Transgenic Livestock, Genetic Engineering on a Large Scale, Journal of Cellular Biochemistry, Vol. 49, pp. 113-120. This has led researchers in the field to investigate alternative and easier ways of delivering genes into an animal.
  • In 1989, Lavitrano, M., et. al. reported that simply incubating foreign DNA with mice's sperm cells and effecting fertilization in vitro could lead to genetically modified mice. Lavitrano, M., et. al. (1989) Sperm Cells as Vectors for Introducing Foreign DNA into Eggs—Genetic Transformation of Mice, Cell, Vol. 57, pp. 717-723. Characterized as the “cold fusion” equivalent in biotechnology, this report generated much excitement in the field. Birnstiel, M., et. al. (1989) Dangerous Liaisons: Spermatozoa as Natural Vectors for Foreign DNA?, Cell, Vol. 57, pp. 701-702. Those skilled in the art, however, are reported to remain skeptical even to this day about the Lavitrano's report since a number of researchers in the field have reportedly failed to repeat the experiment. Brinster, R., et. al. (1989) No Simple Solution for Making Transgenic Mice, Cell, Vol. 59, pp. 239-241; Smith, K. (1999) Sperm Cell Mediated Transgenesis: A Review, Animal Biotechnology, Vol. 10(1&2), pp. 1-13.
  • Over the last decade, efforts have continued to explore the use of sperm cells as a vector for mediating gene transfer in animals. Researchers have elucidated that sperm cells have the inherent ability to internalize foreign DNA. Francolini, M., et. al (1993) Evidence for Nuclear Internalization of Exogenous DNA into Mammalian Sperm Cells, Mol. Reprod. Devel., Vol. 34, pp. 133-139. Yet, certain inhibitory factors present in seminal fluid may inhibit this ability to take up DNA. Lavitrano, M., et. al. (1992) The Interaction Between Exogenous DNA and Sperm Cells, Mol. Reprod. Devel., Vol. 31, pp. 161-169. In addition, foreign DNA introduced into sperm cells may also suffer from extensive DNA rearrangement because in mature sperm cells, internalization of foreign DNA may activate certain endogenous nucleases in these cells. Maione, B. et. al. (1997) Activation of Endogenous Nucleases in Mature Sperm Cells upon Interaction with Exogenous DNA, DNA and Cell Biology, Vol. 16, pp. 1087-1097. Such rearrangement could threaten the usefulness of genetically modified animals using this technique.
  • Other work with sperm cells as vector have focused on the use of either lipid-based agents or electroporation to deliver foreign DNA into the sperm cells. Smith, supra; Rottman R., et. al. (1996) Liposome-mediated Gene Transfer via Sperm Cells. High Transfer Efficiency and Persistence of Transgenes by Use of Liposomes and Sperm Cells and a Murine Amplification Element, Journal of Animal Breeding and Genetics, Vol. 113, pp. 401-411; PCT Publications WO 99/42569, WO 99/40213, and WO 97/11597. Such methods may also suffer from the same problem of DNA internalization and exposure to nucleases that could cause rearrangement of the foreign DNA being introduced. In addition, lipid-based agents, which are often toxic, and electroporation may require extensive experimentation to prevent the death or the loss of sperm cell motility. Other techniques have also focused on using recombinant virus infection, as disclosed in PCT Publications WO 99/38991, or on using a “gene gun” with micro-carriers, as disclosed in PCT Publication WO 93/24626, to introduce foreign DNA into sperm cells. Such techniques may be technically challenging and may also affect the viability and motility of the sperm cells. They may also suffer from the same problem of DNA internalization and exposure to nucleases that could cause rearrangement of the foreign DNA being introduced.
  • Since 1989, researchers have reported the use of sperm cells as vectors in different animals ranging from insects, marine animals, amphibians, birds, and mammals. Smith, supra. However, few reported that the genetic modification was observed in viable mature offspring. Smith, supra. More problematic is the fact that some reports used only PCR analysis to verify the existence of the foreign DNA in the cells. These reports are summarized in table one of Gandolfi, F. (1998) Spermatozoa, DNA Binding and Transgenic Animals, Transgenic Research, Vol. 7, pp. 147-155. Since PCR cannot distinguish between foreign DNA transmitted through episomes or through the chromosomal DNA, Gandolfi has questioned the value of these reports stating that it “opens up an important argument relating to appropriate evaluation of the results described in some reports.” Gandolfi, supra. Episomal transmission is not as desirable as chromosomal transmission since the episome may be lost during subsequent cell division, and the desired effect of genetic modification may never be expressed in adult animals.
  • Because an easy, non-toxic, and efficient way of genetically modifying animals, especially in higher mammals, can greatly advance this field, a new way of using sperm cells for delivering genes into animals is needed.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a vector and its use to generate genetically modified animals and cells. One aspect of this invention involves a vector that comprises a sperm cell and one or more polynucleotide molecules bound to a sperm cell through one or more non-liposome based linkers. The sperm cell can be any animal sperm cell, preferably non-human animal. In one preferred embodiment of this invention, the one or more polynucleotide molecules encode for a gene product that confers desired characteristics in the cells or the animals. In another preferred embodiment of this invention, the linker is a protein or polypeptide, preferably a sperm specific linker that binds with the external surface of the sperm cell. The linker interacts with one or more polynucleotide molecules preferably by ionic interaction. This interaction can also be carried out by different molecular interactions, including the use of another or secondary linker. The association of the sperm, linker, and the one or more polynucleotide can also occur in vitro or in vivo.
  • In another aspect of the present invention, genetically modified cells or animals are derived from the fertilization of an animal egg cell with the vector described above. Fertilization can occur in vitro or in vivo. In one preferred embodiment, genetic modification occurs with the polynucleotide molecule integrating, wholly or partially, into the cell or animal's genome. Another aspect of the present invention includes cells, such as sperm cells or egg cells, and cell lines that are derived from these genetically modified animals or their descendants.
  • In another aspect of the present invention, the genetically modified animals derived from the use of the sperm vector described above possess certain desired characteristics. Examples of these characteristics include faster growth rates, disease or pathogen resistance, high production of certain proteins in milk, and organs suitable for animal to human xenotransplantation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a pictorial representation of the basic steps involved in using one embodiment of the present invention.
  • FIG. 2 shows a flow-cytometry result of binding a sperm-specific antibody to mice's sperm cells as embodied in one aspect of the present invention.
  • FIG. 3 shows a flow-cytometry result of binding a sperm-specific antibody to pig's sperm cells as embodied in one aspect of the present invention.
  • FIG. 4 shows a flow-cytometry result of binding a sperm-specific antibody to cow's sperm cells as embodied in one aspect of the present invention.
  • FIG. 5 shows a flow-cytometry result of binding a sperm-specific antibody to chicken's sperm cells as embodied in one aspect of the present invention.
  • FIG. 6 shows a flow-cytometry result of binding a sperm-specific antibody to goat's sperm cells as embodied in one aspect of the present invention.
  • FIG. 7 shows a flow-cytometry result of binding a sperm-specific antibody to sheep's sperm cells as embodied in one aspect of the present invention.
  • FIG. 8 shows a plasmid map of pCMV-β.
  • FIG. 9 shows an agarose-gel analysis of a sperm-specific antibody binding to pCMV-β plasmid.
  • FIG. 10 show results of PCR analysis for the detection of pCMV-β sequences in genomic DNA isolated from mice's embryos genetically modified according to one embodiment of the present invention.
  • FIG. 11 shows results of southern-blot analysis for the detection of Hepatitis B surface-antigen gene-sequence in mice-tail-genomic DNA with this gene-sequence being integrated into the mice's chromosome according to one embodiment of the present invention.
  • FIG. 12 shows the plasmid map of pSEAP-2-control.
  • FIG. 13 shows the result of southern-blot analysis for the detection of pSEAP2-control plasmid sequence in the genomic DNA isolated from tail tissues of genetically modified pigs according to one embodiment of the present invention.
  • FIG. 14 shows the copy number of integrated pSEAP2-control plasmid in four genetically modified pigs based on densitometric intensities of bands in FIG. 13.
  • FIGS. 15 and 16 show the results of enzyme assays for secreted alkaline phosphatase found in serum of pigs genetically modified according to one embodiment of the present invention.
  • GENERAL DESCRIPTION OF THE INVENTION
  • Generally, FIG. 1 shows the basic steps involved in using one embodiment of the present invention to genetically modify cells or animals using a sperm vector. Briefly, animal sperm cells 10, are collected by methods known in the art or purchased commercially from sources such as Birchwood Genetics in West Manchester, Ohio, and are bound together with linkers 20. These linkers are preferably antibodies or immunoglobulins of the types, IgG, IgA or IgM, but they can also be other compounds such as peptides, glycoproteins, carbohydrates, or other chemical-compound linkers. These linkers bind or associate to the sperm cells' external surface through different molecular interactions such as ionic interaction, covalent bonds, Vander Waals forces, or ligand-receptor interaction. Circular or linear DNA molecules 30 then bind or attach to the linkers on the sperm-linker complex also through different molecular interactions such as ionic, covalent bonds, Vander Waals forces, or ligand-receptor interaction. These DNA molecules may encode for certain gene products, but they may also be disrupted genes, homologous with endogenous genes, that recombine into the chromosome to knockout a gene. The sperm-linker-DNA complex 40 formed can then be used to effectuate fertilization in vitro or in vivo. Upon fertilization, the DNA is introduced into the fertilized egg 50 and embryo 60 and can integrate into the chromosome, becoming a part of an animal or cell's genetic material.
  • Alternatively, the binding, coupling, linking, attaching, or association of the sperm-linker-DNA complex can also be accomplished in vivo. The linker and the DNA can first be coupled or bound together in vitro. Afterwards, this linker-DNA complex can be injected directly or indirectly into a male animal's testicles. PCT Publications WO 99/40213 and WO 97/11597 disclose procedures for injecting DNA into the testicles, and these publications are incorporated herein by reference.
  • An example of a linker-DNA complex is an antibody attached with DNA molecules where the antibody specifically recognizes certain surface epitopes on sperm cells. Because of the acidic characteristic of naked DNA, it can ionically associate, bind or, couple with an antibody that has basic or positively charged properties. However, the DNA-linker interaction is not limited to ionic interaction. The complex can also be crosslinked by UV light to form covalent bonds by well known methods in the art. Both the DNA and the linker can also be modified by methods known in the art. For example, the DNA can be biotinylated by adding biotinylated deoxynucleotides in a PCR reaction; the antibody can be modified or purchased with attached streptavidin, which binds tightly to the biotin on the DNA; or a secondary antibody, which is modified with streptavidin and recognizes the first antibody can also act as a secondary linker between the modified DNA and the first linker.
  • If the DNA-linker complex is injected into the testis of the animal, this complex can seek out the sperm cells and bind to them. Fertilization can then occur in vivo via either natural copulation of the male and female animals or by artificial insemination of the female with collected sperm cells. The collected sperm cells can also be used with in vitro fertilization techniques, which are well known in the art. On the other hand, if binding of the sperm-linker-DNA complex, as a whole, occurred in vitro, fertilization can be achieved by in vitro fertilization techniques. The fertilized eggs and resulting embryos can then be transplanted to surrogate-animal mothers for development. Alternatively, well known artificial insemination methods or injections of the sperm-linker-DNA complex directly into the oviduct of female animals can also achieve fertilization in vivo.
  • Genetically modified animals can serve a number of useful applications. Livestock, poultry, or fish can be inserted with genes that encode for growth hormones to make them grow faster than normal or they can also be inserted with the somatotropin gene to increase muscle growth and decrease adipose tissue. Pursel, V. G., et.al. (1989) Genetic Engineering of Livestock, Science, Vol. 244, pp. 1281-1288; Etherton, T. D., et. al. (1993) Mechanism by which Somatotropin Decreases Adipose Tissue Growth, American Journal of Clinical Nutrition, Vol. 58 (Supp.), pp. 287S-295S. Inserting genes such as interferon that boost the immune system or other genes, such as genes encoding for viral, prion, or bacterial proteins, can also make these livestock, poultry, or fish disease or pathogen resistant. Examples of these infectious pathogens include Salmonella, influenza virus, prion proteins for the Mad Cow Disease, etc. Alternatively, introducing DNA encoding for anti-sense RNA molecules, which are complementary to these viral, prion, or bacterial RNAs, may also inhibit translation and production of proteins from these RNA, which limits growth and spread of these infectious pathogens.
  • Moreover, in animals, including insects such as silkworms, that produce raw materials for clothing such as wool and silk, inserting genes for biochemical enzymes that produce the rate-limiting amino acid may increase production of these raw materials. In sheep, for example, the availability of the amino-acid cysteine limits the production of wool. Inserting bacterial genes that encode for serine transacetylase and O-acetylserine sulfhydrylase may increase the conversion of serine and acetyl-CoA into cysteine, which in turn may increase production of wool. Ward, K., (1991) The Application of Transgenic Techniques for the Improvement of Domestic Animal Productivity, Current Opinion in Biotechnology, Vol. 2 pp. 834-839.
  • Furthermore, these genetically modified animals can also produce therapeutic proteins, such as insulin, growth hormone, interferon, erythropoietin, colony stimulating factor (GM-CSF), t-PA, or factor VIII, in their milk by joining the genes for these proteins with promoters from mammary specific genes such as sheep's β-lactoglobulin, mouse whey acid protein, or bovine αS1-casein. Id. On the other hand, the animal's milk can also be fortified with addition of humanized proteins, such as human lactoferrin that enhance the intestinal iron absorption in infants. Lonnerdal, B. (1996) Recombinant Human Milk Proteins—An Opportunity and a Challenge, American Journal of Clinical Nutrition, Vol. 63, pp. 622-626. Genetically modified pigs can even be a source for more “humanized” organs in animal to human xenotransplantation using genes such as human decay accelerating factor. Cozzi, E., et. al. (1994) Expression of Human Decay Accelerating Factor in Transgenics Pigs, Transplantation Proceedings, Vol. 26, pp. 1402-1403.
  • The articles cited above are all incorporated herein by reference.
  • The following examples demonstrate that the inventor has produced a number of genetically modified animals using the sperm vector as described above. Methods in molecular genetics, flow cytometry, antibody production, hybridoma technology, in vitro fertilization, embryo manipulation, and artificial insemination used but not explicitly described in this disclosure had already been amply reported in the scientific literature. These methods are well within the ability of one skilled in the art.
  • EXAMPLE I
  • This example illustrates the preparation of an antibody specific to sperm cells.
  • Sperm cells collected from male mice were injected back into mice as antigens to immunize and produce antibodies reactive to sperm-surface antigens. Monoclonal antibodies, developed using common hybridoma techniques, were screened using flow cytometry to identify candidate antibodies that will bind to a series of different animals (mouse, pig, cow, sheep, goat, and chicken). Briefly, sperm cells were incubated with the different primary monoclonal antibodies, washed, and further incubated with a secondary antibody that specifically recognized mouse immunoglobulin. This secondary antibody, which was commercially available and well known in the art, had fluorescent molecules such as fluorescein or rhodamine conjugated to it. Once the secondary antibody molecules were bound and washed, the flow-cytometry instrument or the FACS sorter counted the number of fluorescent sperm cells with bound primary and secondary antibodies from naked sperm cells.
  • FIGS. 2-7 show these flow-cytometry analyses for mAbC that bind to sperm cells of mouse, pig, cow, chicken, goat, and sheep, respectively. The Y-axis corresponds to the number of sperm cells detected while the X-axis is the relative intensity of fluorescence bound to the cell. Cross-lined peaks denote control reactions where the sperm cells were incubated only with the fluorescent anti-mouse immunoglobulin antibody. On the other hand, the shaded peaks denote the reactions where mAbC antibody and the secondary antibody were incubated with corresponding sperm cells in a mouse, pig, cow, chicken, goat, and sheep, respectively. Right shifts in the peaks denote positive binding of the mAbC antibody.
  • As can be seen in FIG. 2, greater fluorescence signals can be detected from mouse sperm cells incubated with mAbC and the fluorescent secondary antibody compared with sperm cells incubated with fluorescent secondary antibody alone. Similarly, in FIGS. 3 and 4, greater fluorescence can be detected from pig and cow sperm cells, respectively, incubated with mAbC and the fluorescent secondary antibody as evidenced by the right shaded peaks.
  • In FIG. 5, the incubation of the fluorescence antibody alone with the chicken sperm cells did not result in any fluorescence being detected in these sperm cells. In contrast, the right peak signified fluorescence in the chicken sperm cells that have attached mAbC antibodies. FIG. 5 also shows that some population of chicken sperm cells may not express the antigen recognized by mAbC as evidence by the left shaded peak.
  • In FIG. 6, fluorescence can be detected from goat sperm cells incubated with mAbC and the fluorescent secondary antibody as evidenced by the two right shaded peaks. The left shaded peak may suggest a population of the goat sperm cells that express the antigen recognized by mAbC at a lower level than the population in the right peak. In contrast with the chicken sperm cells incubated with only the fluorescent secondary antibody in FIG. 5, the anti-mouse immunoglobulin fluorescent antibody seems to also bind to the goat sperm cells, but at a much reduced level than with mAbC acting as a linker.
  • Similarly, in FIG. 7, fluorescence can be detected from sheep sperm cells incubated with mAbC and the fluorescent secondary antibody as evidenced by the right shaded peaks. The distribution of the peaks again suggests the possibility that different sperm cells have different levels of the antigen recognized by mAbC.
  • As seen in FIGS. 2, 3, 4, 6, and 7, mammalian sperm cells bind, at some lower level, to the fluorescent secondary antibody. Since the secondary antibody is directed to a mouse immunoglobulin, it may have cross reactivity to other mammalian proteins on the sperm cell surfaces, which are not present in the chicken sperm cells (FIG. 5). Nevertheless, the shifts in fluorescence peaks upon addition of mAbC clearly demonstrate the higher affinity of the mAbC antibody to different animal sperm cells.
  • EXAMPLE II
  • This example illustrates the ability of the monoclonal antibody mAbC to bind to DNA molecules through ionic interaction.
  • Different volumes of purified solutions of mAbC at a concentration of 0.5 mg/ml were added to DNA solutions containing 300 ng of Sal I cut pCMV-β plasmid (FIG. 8, Clontech Laboratories, Inc., Cat. # 6177-1). After incubating the mixtures at room temperature for forty minutes, the mixtures were loaded on a regular one percent agarose gel and run at 20 milli-amps for one hour. Afterwards, the DNA was stained with Ethidium Bromide and visualized under UV light.
  • In FIG. 9, lanes 1, 2, and 8 were controls with lane 1 being pure Sal I cut pCMV-β plasmid and lanes 2 and 8 being Sal I cut pCMV-β plasmid in Modified Tyrode's medium. Lanes 3, 4, 5, 6, and 7 corresponded to experimental reactions with the Sal I cut pCMV-β plasmid incubated with 0.2 μl, 1 μl, 2.5 μl, 6 μl, and 10 ρl of mAbC at 0.5 mg/ml. In lanes 5, 6, and 7, increasing amounts of DNA were retained in the wells of the gel, showing that association of the antibody, which has a positive charge, with the plasmid DNA, which has a negative charge, yielded a net electric charge of zero, resulting in a complex that no longer responds to the electric field in the gel.
  • EXAMPLE III
  • This example illustrates the binding or coupling of the DNA to the sperm via the linker or antibody.
  • DNA molecules, labeled with P32 using standard end labeling techniques with T4 DNA polymerase, were incubated with mouse, pig, chicken, sheep, goat, and cow sperm cells together with either mAbC, mAbD, or a control antibody specific to a Drosophila protein. The amount of DNA binding was measured by scintillation counting. The ratio of sperm cells to antibody were as follows:
      • Mouse—400 thousand sperm cells to 600 ng of labeled DNA;
      • Pig—600 thousand sperm cells to 800 ng labeled DNA;
      • Chicken—300 thousand sperm cells to 500 ng of labeled DNA;
      • Sheep—1 million sperm cells to 500 ng of labeled DNA;
      • Goat—1 million sperm cells to 500 ng of labeled DNA; and
      • Cow—1 million sperm cells to 500 ng of labeled DNA.
  • Table 1 shows that with the presence of mAbC and mAbD, sperm cells significantly bound more labeled DNA compared with reactions with no antibody or with the Drosophila protein-specific antibody. Reactions 1 and 2 contained only sperm cells and labeled DNA, while reactions 3 and 4 contained the Drosophila-protein-specific antibody together with sperm cells and labeled DNA. Reactions 5 contained mAbD while reactions 6 and 7 contained mAbC together with sperm cells and labeled DNA.
    TABLE 1
    Mouse Pig Sheep Goat Cow
    Reactions (cpm) (cpm) Chicken (cpm) (cpm) (cpm) (cpm)
    1 no 12471 12971 5830 15367 17749 12766
    antibody
    2 no 15814 13713 6383 13259 16574 14398
    antibody
    3 Control 11541 10531 N/D 14018 155347 15351
    Antibody
    4 Control 13653 14038 N/D 12834 15997 13918
    Antibody
    5 mAbD 18900 16220 10314  N/D N/D N/D
    6 mAbC 18139 16269 7294 19368 20385 20417
    7 mAbC 19314 17343 9865 18437 19543 18643

    N/D = Not determined
  • EXAMPLE IV
  • This example illustrates the procedures carried out to generate genetically modified mice.
  • Sperm cells were collected from dissected epididymis of nine to twenty weeks old FVB male mice. Cut into small pieces, these epididymis tissues were incubated in 300 μl of Modified Tyrode's medium at pH 7˜8 for one hour to allow the sperm cells to escape into the medium. Once the sperm cells were collected in 300 μl of medium, five micrograms of the linker antibody were added to one million sperm cells at 37° C. for one hour. The sperm-linker complex was washed three times with 300 μl of Modified Tyrode's medium using a standard microcentrifuge set at 3000 rpm for one and a half minutes. The sperm-linker complex was finally resuspended in 300 μl of medium, and one microgram of linearized pCMV-β plasmid or a plasmid encoding for Hepatitis B surface antigen (HBsAg) was added and incubated for one hour.
  • To collect ovulated eggs, nine to twelve weeks FVB female mice each received an injection of 5 I.U. Pregnant Mares Serum (PMS) four days before the collection date and another 5 I.U. of human chorionic gonadotropin (hCG) two days before the collection date. Dissected ovulated eggs surrounded by cumulus cells were placed in a 35-mm petri dish containing a drop of Modified Tyrode's medium at room temperature. Afterwards, 300 μl of sperm-linker-DNA complex prepared as described above were added directly to the ovulated eggs. The whole mix was equilibrated with CO2 at 37° C. with mineral oil added on top to prevent evaporation. After four hours of in vitro fertilization at 37° C., fertilized eggs were collected with capillary tubes and washed thrice with CZB medium. The embryos were further incubated in 300 μl of CZB medium for 20-22 hrs before being transferred to oviducts of pseudo-pregnant female mice.
  • To confirm the presence of the pCMV-β plasmid, genomic DNA isolated from embryos, ten days after transplantation into the pseudo-pregnant female mice, were analyzed by PCR using primers that detect a 480 bp fragment corresponding to the CMV promoter region ofthe pCMV-β plasmid (FIG. 8). In FIG. 10, lanes 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 24, 33, and 40 clearly show this 480 bp PCR fragment. Lanes 1 and 21 corresponded to the molecular size markers.
  • To confirm integration of the HBsAg plasmid into the mice genome, southern blot analysis were also performed. Genomic DNA isolated from mice's tails were digested, ran on a gel, transferred to a nylon membrane according to methods known in the art. FIG. 11 shows the southern blot hybridization results with complementary probe sequences to HBsAg. Lanes 1-13 contained genomic DNA from mice born from pseudo-pregnant mice that received embryos fertilized with the sperm-linker-DNA complex described above; lanes C1-C7 contained genomic DNA from mice that were untreated or non-transgenic mice. Lanes 4, 5, and 8 show bands positive for HBsAg sequences integrated in the mice's genome, thus, demonstrating that three out the thirteen mice were genetically modified.
  • EXAMPLE V
  • This example illustrates the procedures carried out to generate genetically modified pigs.
  • Ejaculated sperm cells from pigs were collected using methods generally known in the art of animal husbandry. Suspended in one milliliter of pig extender medium (purchased from Merck, Germany, Ref.N.R.13515/0001—dilute mixture M3 for boar sperm), fifteen million sperm cells were incubated with five micrograms of the linker antibody for forty minutes at room temperature with intermittent shaking in between. After washing the sperm-linker mixture once with pig extender medium and finally resuspending the mixture in 1.5 ml of the same medium, five micrograms of the plasmid pSEAP2-control (FIG. 12, Clontech Laboratories, Inc., Cat. # 6052-1) were added and incubated with the mixture for forty minutes at room temperature. Direct injections of 200 μl of the resulting sperm-linker-DNA complex into the oviducts of anesthetized female pigs resulted in fertilization in vivo.
  • After the pigs were born and grown to 70-day-old pigs, they were analyzed for the presence of the pSEAP2-control plasmid. FIG. 13 shows the southern blot analysis of genomic DNA isolated from the tail tissues of these pigs. Briefly, genomic DNA isolated from these pigs were digested, run on a gel, and transferred to a nylon membrane according to methods well known in the art. The blot was then probed with labeled sequences from the Not I to BamHI region of the pSEAP2-control plasmid shown in FIG. 12. In FIG. 13, M denotes the marker lanes, and 1-43 denotes the number of pigs analyzed. Hybridization signals in lanes 5, 17, 19, 25, 26, 27, 28, 30, 36, 38, 39, and 40 indicated that the pSEAP2-control plasmid had integrated into the corresponding pig's genome. In the lower right half of the figure, eight lanes with increasing copies of pSEAP2-control plasmid molecules (1, 2, 2, 4, 4, 8, 16, and 32) were also loaded on the gel together with the DNA from the experimental pigs. These eight lanes were used to estimate the copy number of pSEAP2-control plasmid integrated into the pigs based on the densitometric intensities of the bands (FIG. 14). As can be seen in FIG. 14, S5 had the highest intensity, which corresponds to lane 5 of FIG. 13.
  • In another study, secreted alkaline phosphatase (SEAP) expressed from the pSEAP2-control plasmid were also detected in 70-day old genetically modified pigs. Serum from these pigs were collected and assayed for SEAP activity using Clontech's Great EscAPE™ SEAP Chemiluminescence Detection Kit (Cat. # K2041-1) and its protocol, which is incorporated herein by reference. The SEAP enzyme expressed from Clontech's pSEAP-2 vector is thermostable. Thus, to determine the level of SEAP activity as opposed to the pigs' endogenous alkaline phosphatase enzyme activity, the assay required the deactivation of the endogenous alkaline phosphatase enzyme by heating the samples at 65° C. for thirty minutes before adding the chemiluminescence substrate. As a control, FIG. 15 shows the result of the assay without performing this heat deactivation step. The level of total alkaline phosphatase activity was not significantly different between the genetically modified pigs and non-transgenic control pigs. In contrast, FIG. 16 shows the result including this heat deactivation step. Without the endogenous alkaline phosphatase activity, SEAP activity was significantly higher in the genetically modified pigs than in the non-transgenic control pigs. Thus, the pSEAP2-control plasmid had integrated well in the pigs' genome and was actively expressing the SEAP enzyme.
  • The preceding examples demonstrate that the inventor has produced a number of genetically modified animals using the sperm vector as described above. These data are intended only as examples and are not intended to limit the invention to these examples. It is understood that modifying the examples below does not depart from the spirit of the invention.

Claims (21)

1. A vector for genetically modifying non-human animals or cells comprising:
a non-human sperm cell; and
at least one polynucleotide molecule bound to an external surface of the non-human sperm cell through at least one linker, wherein said linker is a sperm-specific antibody.
2-8. (canceled)
9. A vector of claim 1 wherein the at least one polynucleotide molecule is a DNA molecule.
10. A vector of claim 9 wherein the DNA molecule encodes for a gene product.
11. A vector of claim 10 wherein the gene product is an RNA molecule.
12. A vector of claim 10 wherein the gene product is a protein.
13-14. (canceled)
15. A vector of claim 1 wherein the at least one polynucleotide molecule binds to the external surface of the non-human sperm cell through the non-liposome based linker in vivo.
16-20. (canceled)
21. A cell derived from effecting fertilization of a non-human egg cell with a vector wherein the vector comprises:
a non-human sperm cell; and
at least one polynucleotide molecule linked to an external surface of the non-human sperm cell through at least one linker, wherein said linker is a sperm-specific antibody.
22. The cell of claim 21 wherein fertilization occurred in vitro or in vivo.
23. A cell of claim 21 wherein the at least one polynucleotide molecule is wholly or partially integrated into the genome of said cell.
24-34. (canceled)
35. A method of genetically modifying a non-human animal comprising the steps:
associating at least one polynucleotide molecule to an external surface of a non-human sperm cell through at least one linker, wherein said linker is a sperm-specific antibody;
effecting in vitro or in vivo fertilization of a non-human egg cell with the non-human sperm cell associated through the linker with the at least one polynucleotide molecule.
36. The method of claim 35 wherein the associating occurred in vitro or in vivo.
37-42. (canceled)
43. The method of claim 35 wherein the at least one polynucleotide molecule is a DNA molecule.
44. The method of claim 43 wherein the DNA molecule encodes for a gene product.
45. The method of claim 44 wherein the gene product is an RNA molecule.
46. The method of claim 44 wherein the gene product is a protein.
47-51. (canceled)
US11/407,851 2000-03-28 2006-04-20 Vector for genetically modifying non-human animals Abandoned US20070214512A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/407,851 US20070214512A1 (en) 2000-03-28 2006-04-20 Vector for genetically modifying non-human animals
US12/036,198 US8148143B2 (en) 2000-03-28 2008-02-22 Method and composition for genetically modifying non-human cells and animals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/537,861 US7067308B1 (en) 2000-03-28 2000-03-28 Vector for genetically modifying non-human animals
US11/407,851 US20070214512A1 (en) 2000-03-28 2006-04-20 Vector for genetically modifying non-human animals

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/537,861 Continuation US7067308B1 (en) 2000-03-28 2000-03-28 Vector for genetically modifying non-human animals
US11/372,241 Continuation US20060211113A1 (en) 2000-03-28 2006-03-09 Method and system for introducing a gene into a human stem cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/036,198 Continuation-In-Part US8148143B2 (en) 2000-03-28 2008-02-22 Method and composition for genetically modifying non-human cells and animals

Publications (1)

Publication Number Publication Date
US20070214512A1 true US20070214512A1 (en) 2007-09-13

Family

ID=24144410

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/537,861 Expired - Fee Related US7067308B1 (en) 2000-03-28 2000-03-28 Vector for genetically modifying non-human animals
US11/407,851 Abandoned US20070214512A1 (en) 2000-03-28 2006-04-20 Vector for genetically modifying non-human animals

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/537,861 Expired - Fee Related US7067308B1 (en) 2000-03-28 2000-03-28 Vector for genetically modifying non-human animals

Country Status (10)

Country Link
US (2) US7067308B1 (en)
EP (2) EP1760155A3 (en)
JP (1) JP2003528617A (en)
CN (1) CN1432067A (en)
AR (1) AR028298A1 (en)
AT (1) ATE348184T1 (en)
AU (1) AU2001245438A1 (en)
DE (1) DE60125156T2 (en)
PE (1) PE20011214A1 (en)
WO (1) WO2001073094A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015009802A1 (en) * 2013-07-19 2015-01-22 Elwha Llc Methods and systems for utilizing sperm for molecular delivery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053187B2 (en) * 2000-03-28 2006-05-30 Gioagri Corporation Sperm-specific monoclonal antibody, mAbC
US7067308B1 (en) * 2000-03-28 2006-06-27 Bioagri Corporation Vector for genetically modifying non-human animals
NZ597601A (en) * 2007-05-16 2013-04-26 Mat Malta Advanced Technologies Ltd Treatment and prevention of influenza
US9150880B2 (en) 2008-09-25 2015-10-06 Proteovec Holding, L.L.C. Vectors for production of antibodies
WO2010036978A2 (en) 2008-09-25 2010-04-01 Transgenrx, Inc. Novel vectors for production of growth hormone
CN107326002A (en) * 2009-04-08 2017-11-07 加利福尼亚大学董事会 DNA cell conjugates
WO2010118360A1 (en) 2009-04-09 2010-10-14 The Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Production of proteins using transposon-based vectors
CN102453720B (en) * 2010-10-28 2013-01-30 华中农业大学 Fusion promoter capable of realizing high-efficiency expression in pig muscular tissue
HUE048511T2 (en) * 2011-10-28 2020-07-28 Regeneron Pharma Genetically modified mice expressing chimeric major histocompatibility complex (mhc) ii molecules

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428132A (en) * 1987-10-11 1995-06-27 United States Of America Conjugate and method for integration of foreign DNA into cells
US5521291A (en) * 1991-09-30 1996-05-28 Boehringer Ingelheim International, Gmbh Conjugates for introducing nucleic acid into higher eucaryotic cells
US5744335A (en) * 1995-09-19 1998-04-28 Mirus Corporation Process of transfecting a cell with a polynucleotide mixed with an amphipathic compound and a DNA-binding protein
US6063630A (en) * 1991-11-05 2000-05-16 Transkaryotic Therapies, Inc. Targeted introduction of DNA into primary or secondary cells and their use for gene therapy
US7053187B2 (en) * 2000-03-28 2006-05-30 Gioagri Corporation Sperm-specific monoclonal antibody, mAbC
US7067308B1 (en) * 2000-03-28 2006-06-27 Bioagri Corporation Vector for genetically modifying non-human animals

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1228210B (en) 1989-01-10 1991-06-05 Consiglio Nazionale Ricerche PROCEDURE FOR THE INTRODUCTION OF EXOGENOUS DNA INTO SOMATIC AND GERMINAL CELLS OF ANIMALS.
IL92529A0 (en) 1989-12-03 1990-08-31 Yissum Res Dev Co Generation of transgenic vertebrates by employing transformed sperm cells via artificial insemination
WO1993024626A1 (en) 1992-05-28 1993-12-09 Scientific Dimensions Usa, Inc. Transgenic animal production with biolistically transformed spermatozoa
RU2081914C1 (en) 1994-07-21 1997-06-20 Андрей Вадимович Кузнецов Method of foreign dna incorporation in spermatozoons
JPH10304790A (en) 1995-09-29 1998-11-17 Hoechst Japan Ltd Formation of transgenic animal
CN1112165C (en) 1997-08-15 2003-06-25 中国农业大学 Method for producing transfer-gene animals by using sperm dielectric transfer DNA
WO1999038991A1 (en) 1998-01-28 1999-08-05 Takara Shuzo Co., Ltd. Method for transferring gene into germ cell
WO1999040213A1 (en) 1998-02-09 1999-08-12 Tranxenogen, Incorporated Genetic manipulation of spermatogonia
IL123411A0 (en) 1998-02-22 1998-09-24 Kimron Veterinary Inst High efficiency methods and compositions for integrating exogenous dna into genomic dna of sperm
IL141362A0 (en) 1998-08-11 2002-03-10 Method of performing transgenesis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428132A (en) * 1987-10-11 1995-06-27 United States Of America Conjugate and method for integration of foreign DNA into cells
US5521291A (en) * 1991-09-30 1996-05-28 Boehringer Ingelheim International, Gmbh Conjugates for introducing nucleic acid into higher eucaryotic cells
US6063630A (en) * 1991-11-05 2000-05-16 Transkaryotic Therapies, Inc. Targeted introduction of DNA into primary or secondary cells and their use for gene therapy
US5744335A (en) * 1995-09-19 1998-04-28 Mirus Corporation Process of transfecting a cell with a polynucleotide mixed with an amphipathic compound and a DNA-binding protein
US7053187B2 (en) * 2000-03-28 2006-05-30 Gioagri Corporation Sperm-specific monoclonal antibody, mAbC
US7067308B1 (en) * 2000-03-28 2006-06-27 Bioagri Corporation Vector for genetically modifying non-human animals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015009802A1 (en) * 2013-07-19 2015-01-22 Elwha Llc Methods and systems for utilizing sperm for molecular delivery

Also Published As

Publication number Publication date
CN1432067A (en) 2003-07-23
US7067308B1 (en) 2006-06-27
EP1268836A2 (en) 2003-01-02
WO2001073094A3 (en) 2002-05-30
PE20011214A1 (en) 2001-11-29
EP1760155A3 (en) 2007-03-14
EP1268836B1 (en) 2006-12-13
ATE348184T1 (en) 2007-01-15
AU2001245438A1 (en) 2001-10-08
EP1760155A2 (en) 2007-03-07
AR028298A1 (en) 2003-04-30
DE60125156D1 (en) 2007-01-25
JP2003528617A (en) 2003-09-30
DE60125156T2 (en) 2007-09-20
WO2001073094A2 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
US20070214512A1 (en) Vector for genetically modifying non-human animals
US5523222A (en) Polyelectrolyte DNA conjugation and genetic transformation of an animal
US11230697B2 (en) Enhanced expression of human or humanized immunoglobulin in non-human transgenic animals
Chang et al. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.
US20020028488A1 (en) Transgenic avian species for making human and chimeric antibodies
US20080040821A1 (en) Transgenic ungulates capable of human antibody production
Seamark Progress and emerging problems in livestock transgenesis: a summary perspective
EP0665883A1 (en) Tetracycline repressor-mediated binary regulation system for control of gene expression in transgenic animals
US10370641B2 (en) Enhanced expression of human or humanized immunoglobulin in non-human transgenic animals
RU2005117629A (en) TRANSGENIC ANTIC ANIMALS HAVING A REDUCED PRIONAL PROTEIN ACTIVITY, AND THEIR APPLICATIONS
WO2001035735A1 (en) Production of ungulates, preferably bovines that produce human immunoglobulins
US20050177883A1 (en) Systems of transferring embryos and managing recipients
EP0350052A2 (en) Transgenic animals transformed with autonomously replicating sequence-containing plasmid
US20020194638A1 (en) Vector for genetically modifying non-human animals
RU2402211C2 (en) Method for production of transgenic rabbits producing proteins into mammary gland
Bondioli et al. Transgenic livestock
JP2966016B2 (en) Transgenic rat and method for producing the same
CN100526460C (en) Transgenic ungulates having reduced prion protein activity and uses thereof
John Clark Generation of transgenic livestock by pronuclear injection
Velander Polyelectrolyte DNA conjugation and genetic transformation of an animal
Saeed et al. Transgenesis in Transgenic Animals and Its Applications
Gordon Modification of the germ line in animals
Wall et al. Alteration of the genome as a method to increase diversity in animal germplasm resources
Mahamulkar et al. Custom Made Animals The Magic of Transgenesis
First et al. Transgenic dairy animals for production of novel proteins in milk

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION