US20070248698A1 - Obesity and Metabolic Syndrome Treatment with Tanshinone Derivatives Which Increase Metabolic Activity - Google Patents

Obesity and Metabolic Syndrome Treatment with Tanshinone Derivatives Which Increase Metabolic Activity Download PDF

Info

Publication number
US20070248698A1
US20070248698A1 US10/584,983 US58498304A US2007248698A1 US 20070248698 A1 US20070248698 A1 US 20070248698A1 US 58498304 A US58498304 A US 58498304A US 2007248698 A1 US2007248698 A1 US 2007248698A1
Authority
US
United States
Prior art keywords
composition
set forth
tanshinone
dihydrotanshinone
cryptotanshinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/584,983
Inventor
Taehwan Kwak
Myunggyu Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MD Bioalpha Co Ltd
KT&G Co Ltd
Original Assignee
MD Bioalpha Co Ltd
KT&G Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MD Bioalpha Co Ltd, KT&G Co Ltd filed Critical MD Bioalpha Co Ltd
Assigned to MD BIOALPHA CO., LTD.,, KT&G CO., LTD., reassignment MD BIOALPHA CO., LTD., ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KWAK, TAEHWAN, PARK, MYUNGGYU
Publication of US20070248698A1 publication Critical patent/US20070248698A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/06Preparations for care of the skin for countering cellulitis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/152Milk preparations; Milk powder or milk powder preparations containing additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/02Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation containing fruit or vegetable juices
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • A61K36/537Salvia (sage)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a composition for preventing and treating metabolic syndrome, containing tanshinone derivatives as an effective ingredient. More specifically, the present invention relates to a composition for preventing and treating metabolic syndrome, containing tanshinone derivatives that exhibit superior activity in enhancing metabolic activity, as an effective ingredient.
  • Metabolic syndrome refers to syndrome involving health risk factors such as hypertriglyceridemia, hypertension, glycometabolism disorder, blood coagulation disorder and obesity. Metabolic syndrome itself is not fatal, but indicates a predisposition to severe diseases such as diabetes and ischemic cardiovascular diseases, and has emerged as the most threatening diseases among modern people. Metabolic syndrome was once lmown by various other names including Syndrome X, due to lack of knowledge about causes of such syndrome, but was officially designated as Metabolic Syndrome or Insulin Resistance Syndrome through Adult Treatment Program III (ATP III) enacted by the WHO and the National Heart, Lung, and Blood Institute of the NIH.
  • ATP III Insulin Resistance Syndrome through Adult Treatment Program III
  • NCEP National Cholesterol Education Program
  • Adult Treatment Panel III Treatment Panel III
  • individuals are diagnosed with the metabolic syndrome by the presence of three or more of these components: 1) A waistline of 40 inches (102 cm) or more for men and 35 inches (88 cm) or more for women (central obesity as measured by waist circumference), 2) A triglyceride level above 150 mg/dl, 3) A high density lipoprotein level (HDL) less than 40 mg/dl (men) or under 50 mg/dl (women), 4) A blood pressure of 130/85 mm Hg or higher and 5) A fasting blood glucose (sugar) level greater than 110 mg/dl.
  • the criteria for central obesity was slightly adjusted to a waistline of 90 cm or more for men and 80 cm or more for women.
  • Insulin resistance refers to a phenomenon wherein, even though insulin is normally secreted in vivo, insulin does not induce sufficient supply of glucose to cells. Therefore, glucose in the blood cannot enter cells, thus causing hyperglycemia, and thereby cells cannot perform normal functions due to a shortage of glucose, leading to the manifestation of metabolic syndrome.
  • Known factors that are directly or indirectly associated with causes and treatment of metabolic syndrome include physical exercise, dietary habit and type, body weight, blood glucose, triglyceride levels, cholesterol levels, insulin resistance, adiponectin, leptin, AMPK activity, sex hormones such as estrogen, genetic factors and in vivo malonyl-CoA concentration.
  • Activation factors linked to promotion of metabolism include, for example, AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1 ⁇ (PGC-1 ⁇ ), glucose transporter 1 and 4 (GLUT 1 and 4), carnitine palmitoyltransferase 1 (CPT 1), uncoupling protein 1, 2 and 3 (UCP-1, 2 and 3), and acetyl-CoA carboxylase I and II (ACC I and II), which play an important role in energy metabolism.
  • AMPK AMP-activated protein kinase
  • POC-1 ⁇ peroxisome proliferator-activated receptor gamma coactivator 1 ⁇
  • CPT 1 carnitine palmitoyltransferase 1
  • UCP-1, 2 and 3 uncoupling protein 1, 2 and 3
  • ACC I and II acetyl-CoA carboxylase I and II
  • AMPK promotes muscle contraction and thereby facilitates uptake of glucose, which in turn activates GLUT 1, or induces migration of GLUT 4 to a plasma membrane, regardless of insulin action, resulting in increased transport of glucose into cells (Arch. Biochem. Biophys. 380, 347-352, 2000, J. Appl. Physiol. 91, 1073-1083, 2001).
  • AMPK activates hexokinase, thereby increasing flux of glycometabolism processes and simultaneously inhibiting glycogen synthesis.
  • AMPK activates 6-phosphofructo-2-kinase (PFK-2) via a phosphorylation process, thus resulting in activation of a metabolic cascade leading to increased flux of glycometabolism (Curr. Biol. 10, 1247-1255, 2000).
  • PFK-2 6-phosphofructo-2-kinase
  • AMPK activation of AMPK in the liver inhibits release of glucose from hepatocytes.
  • oxidative phosphorylation converts energy produced from fuel metabolites such as glucose and fatty acids into ATP.
  • Functional mitochondrial alterations may effect pathogenesis of degenerative diseases associated with senescence, such as diabetes mellitus, cardiovascular diseases, Parkinson's disease and senile dementia (Curr. Opin. Cell Biol. 15, 706-716, 2003).
  • Peterson, et al (Science 300, 1140-1142, 2003) has reported that oxidative phosphorylation functions of mitochondria were weakened by about 40% in the elderly, suggesting the possibility that deteriorated mitochondrial function is a probable pathogenic cause of insulin resistance syndrome.
  • Lee et al Diabetes Res. Clin. Pract.
  • peroxisome proliferator-activated receptor gamma coactivator 1 ⁇ (PGC-1 ⁇ ) is known to be a co-activator promoting transcription of nuclear DNA and is known to play important roles in glucose metabolism, mitochondrial biogenesis, muscle fiber specialization and adaptive thermogenesis as main functions. It was confirmed that increased expression of PGC-1 ⁇ facilitates an increase in the copy number of mitochondrial DNA and mitochondrial proliferation (Cell, 98, 115-124, 1999).
  • AMPK is known to induce phosphorylation of acetyl-CoA carboxylase which in turn inhibits fatty acid synthesis, thus resulting in decreased intracellular concentrations of malonyl-CoA that is an intermediate in a fatty acid synthesis process and is an inhibitor of carnitine palmitoyltransferase I (CPT I), leading to promotion of fatty acid oxidation.
  • CPT I is an enzyme essential for a process wherein fatty acids enter mitochondria and are oxidized, and is known to be modulated by intracellular concentration of malonyl-CoA.
  • AMPK is known to inhibit activity of HMG-CoA reductase and glycerol phosphate acyl transferase (GPAT), involved in cholesterol and triacylglycerol synthesis, through phosphorylation (J. Biol. Chem. 277, 32571-32577, 2002, J. Appl. Physiol. 92, 2475-2482, 2002). Meanwhile, it was found that activation of AMPK in the liver inhibits the activity of pyruvate kinase, fatty acid synthase and ACC through phosphorylation of carbohydrate-response-element-binding protein (ChREBP) (J. Biol. Chem. 277, 3829-3835, 2002).
  • ChREBP carbohydrate-response-element-binding protein
  • AMPK and Malonyl-CoA are targets for therapeutic treatment of metabolic syndrome, and patients suffering from metabolic syndrome are characterized by insulin resistance, obesity, hypertension, dyslipidemia, and dysfunction of pancreatic beta cells, type II diabetes mellitus and manifestation of arteriosclerosis. It was hypothesized that a common feature linking these multiple abnormalities is dysregulation of AMPK/Malonyl-CoA fuel-sensing and signaling network.
  • the present inventors carried out an extensive search for metabolism-activating drugs, based on the assumption that materials activating metabolism will be effective for treatment of metabolic syndrome diseases, and as a result, have confirmed that tanshinone derivatives are effective ingredients for therapeutic agents.
  • the present invention has been made to solve the above problems, and technical problems that have been desired to be solved from the past.
  • the present inventors have conducted a variety of extensive and intensive study and experimentation. As a result of such extensive investigation, the inventors have found that tanshinone derivatives, extracted from Danshen ( Salvia miltiorrhiza ), have efficacy activating metabolism in cells and tissues, and further found that when ob/ob mice, a model of obesity caused by decreased secretion of leptin, db/db mice, a model of obesity/diabetes, and DIO (diet-induced obesity) mice, caused by high fat dietary conditions, are treated with tanshinone derivatives, these materials are effective for preventing and treating metabolic syndrome including obesity and diabetes mellitus. The present invention has been completed based on these findings.
  • an object of the present invention is to provide a composition for preventing and treating metabolic syndrome, comprising, as an effective ingredient, tanshinone derivatives exhibiting prophylactic and therapeutic effects on such a metabolic syndrome through activation of metabolic activators, in myoblast C2C12 cells and adipocytes, and animal disease models.
  • compositions for preventing or treating obesity and metabolic syndrome diseases comprising a therapeutically and/or prophylactically effective amount of tanshinone derivatives from danshen ( Salvia miltiorrhiza ) extract as an effective ingredient.
  • tanshinone derivatives known hitherto are as follows. Toshiyuki et al (Planta Med. 2002. 68, 1103-1107) have reported that tanshinone VI attenuates hypertrophy of cardiac myocytes and inhibits synthesis of collagen by cardiac fibroblasts thereby retarding fibrosis of cardiac fibroblasts. Choi et al (Planta Med. 2004, 70, 178-180) have suggested the possibility of using tanshinone derivatives as an anti-allergic agent by inhibition of mast cell degranulation. Ip et al (Planta Med.
  • the tanshinone derivatives which are utilized as the effective ingredient in the composition of the present invention, are primarily present in Danshen, utilized as crude drug substance, such as Salvia miltiorrhiza and Perovskia abrotanoides. Tanshinone derivatives are broadly divided into tetrahydrophenanthrene derivatives and phenanthrene derivatives.
  • the composition in accordance with the present invention comprises one or more compounds selected from the group consisting of the above-mentioned derivatives and mixtures thereof.
  • the tetrahydrophenanthrene derivative is one or more compounds selected from the group consisting of cryptotanshinone (Formula 1) and tanshinone IIA (Formula 2).
  • the phenanthrene derivative is one or more compounds selected from the group consisting of tanshinone I (Formula 3) and 15,16-Dihydrotanshinone I (Formula 4).
  • Tanshinone derivatives contained in Danshen are composed of 0.29% tanshinone IIA, 0.23% cryptotanshinone, 0.11% tanshinone I and 0.054% 15,16-dihydrotanshinone I.
  • the tanshinone derivatives are diterpene o-quinone compounds.
  • a biosynthesis process of these compounds is carried out by biosynthesis of cryptotanshinone from diterpene and biosynthesis of tanshinone derivatives of Danshen such as tanshinone IIA, 15,16-dihydrotanshinone I and tanshinone I, through oxidative processes such as demethylation or dehydrogenation of cryptotanshinone.
  • the present inventors have found that such tanshinone derivatives activate metabolism and thereby promote metabolism of glucose, proteins and lipid in the body and also inhibit fat accumulation in the body, thus being capable of treating metabolic syndrome. These finding and facts can also be demonstrated through the following examples. Specifically, the present inventors have measured the influence of tanshinone derivatives on activity of metabolic activators and expression of proteins and genes in myoblast cells (C2C12), and suppression of cellular differentiation of preadipocytes (3T3-L1 and F442A cells) and as a result, have confirmed that such compounds exhibit excellent metabolic activation. As can be seen through the effects of tanshinone derivatives on protein and gene expression, such tanshinone compounds may exhibit superior activity on metabolic activation, alone or in any combination thereof. Simultaneously, the present inventors have confirmed that inhibition of fatty acid synthesis, facilitation of fat acid oxidation and expression level of mitochondrial biogenesis factors correlate with structures of tanshinone derivatives.
  • composition in accordance with the present invention is comprised of one or more tanshinone derivatives selected from the group consisting of cryptotanshinone, tanshinone IIA, tanshinone I and 15,16-dihydrotanshinone I.
  • Such a composition includes all the cases as follows:
  • composition containing cryptotanshinone as the main ingredient (i) Composition containing cryptotanshinone as the main ingredient;
  • composition containing tanshinone IIA as the main ingredient (ii) Composition containing tanshinone IIA as the main ingredient;
  • composition containing cryptotanshinone as the essential ingredient, and optionally, containing one or more compounds selected from the group consisting of tanshinone IIA, tanshinone I and 15,16-dihydrotanshinone I;
  • composition containing 15,16-dihydrotanshinone I as the essential ingredient, and optionally, containing one or more compounds selected from the group consisting of cryptotanshinone, tanshinone IIA and tanshinone I.
  • compositions may further comprise one or more tanshinone derivatives selected from the group consisting of 1 ⁇ -hydroxycryptotanshinone, 1-oxocryptotanshinone, tanshinol B, tanshinol IIB, captivewaquinone A, dihydroisotanshinone I, tanshinone IIA sulfonate, 1,2-dihydrotanshinone I and tanshinone VI.
  • tanshinone derivatives selected from the group consisting of 1 ⁇ -hydroxycryptotanshinone, 1-oxocryptotanshinone, tanshinol B, tanshinol IIB, gravwaquinone A, dihydroisotanshinone I, tanshinone IIA sulfonate, 1,2-dihydrotanshinone I and tanshinone VI.
  • compositions (v) through (viii) are particularly preferred.
  • compositions (v) through (viii) mention may be made of the following:
  • Composition comprising cryptotanshinone and 15,16-dihydrotanshinone I;
  • Composition comprising cryptotanshinone and tanshinone IIA;
  • composition comprising tanshinone IIA and 15,16-dihydrotanshinone I;
  • composition comprising tanshinone IIA and tanshinone I;
  • composition comprising 15,16-dihydrotanshinone I and tanshinone I;
  • Composition comprising tanshinone I and cryptotanshinone.
  • the ratio between the two ingredients is preferably in the range of 10:1 to 1:10 (w/w), and more preferably in the range of 5:1 to 1:5.
  • composition of tanshinone derivatives contained in naturally occurring Danshen may exhibit different distributions depending upon the harvesting season or cultivation region. Considering the above-mentioned synergistic effects, it is necessary to have the optimal composition ratio between tanshinone derivatives so as to exert efficacy thereof unifonnly.
  • the present inventors have confirmed effects of tanshinone derivatives on expression activity of genes and proteins and characteristics according to structural differences therebetween. By optionally controlling the composition ratio on the basis of these results, the present inventors confirmed effects of adjusting the ratio between tanshinone derivatives on decrease of body weight and then attempted to obtain the optimal composition ratio.
  • the preferred combination ratio therebetween may be in the range of 10:1 to 1:10 (by weight), more preferably in the range of 5:1 to 1:5, and particularly preferably in the range of 2.5:1 to 1:2.5.
  • the tetrahydrophenanthrene derivative component contains both cryptotanshinone and tanshinone IIA, and the ratio therebetween is in the range of 5:1 to 1:5.
  • the phenanthrene derivative component contains both 15,16-dihydrotanshinone I and tanshinone I, and the ratio therebetween is in the range of 5:1 to 1:5.
  • tanshinone derivatives have very superior prophylactic and therapeutic effects of metabolic syndrome, through extensive in vivo metabolic syndrome-prophylactic and therapeutic experiments in the ob/ob mice, a model of obesity, the db/db mice, a model of obesity/diabetes, and the DIO (diet-induced obesity) mice caused by high fat diet.
  • the composition for preventing and treating metabolic syndrome comprising tanshinone derivatives as the effective ingredient can prevent and treat metabolic syndrome through activation of metabolism, and thus it is predicted that they can be developed as various therapeutic agents for a variety of diseases associated with metabolic syndrome.
  • the composition for preventing and treating metabolic syndrome in accordance with the present invention comprises the above tanshinone derivatives or an optional mixture thereof as the effective ingredient, and can be formulated into the metabolic syndrome-prophylactic and therapeutic agent, in conjunction with a pharmaceutically acceptable carrier, if necessary.
  • composition in accordance with the present invention is useful for prophylaxis and/or treatment of clinical conditions associated with metabolic syndrome.
  • clinical conditions include, but are not limited to, common obesity, abdominal obesity, hypertension, arteriosclerosis, hyperinsulinemia, hyperglycemia, type II diabetes mellitus and dyslipidemia characteristically appearing with insulin resistance.
  • Dyslipidemia also known as the atherogenic lipoprotein profile of phenotype B, is characterized by significantly elevated non-esterified fatty acids, elevated very low density lipoproteins (VLDL) triglyceride rich particles, high values of ApoB, the presence of small, dense, low density lipoprotein (LDL) particles, high values of ApoB in the presence of phenotype B, and low value of high density lipoproteins (HDL) associated with low value of ApoAI particles.
  • VLDL very low density lipoproteins
  • composition in accordance with the present invention is expected to be useful for treating patients suffering from combined or mixed dyslipidemia, or hypertriglycerimia having or having not other signs of metabolic syndrome and suffering from various degrees of dyslipidemia after meals.
  • the composition in accordance with the present invention is expected to have anti-inflammatory properties and also to lower the cardiovascular morbidity and mortality associated with arteriosclerosis due to dyslipidemia.
  • cardiovascular disease conditions include macro-angiopathies of various internal organs causing myocardial infarction, cardiac insufficiency, cerebrovascular disease and peripheral arterial insufficiency of the lower extremities.
  • the composition of the present invention is also expected to prevent or retard the progress of type II diabetes mellitus in metabolic syndrome and development of diabetes during pregnancy. Therefore, the composition of the present invention is also expected to retard the progress of chronic complications associated with clinical hyperglycaemia in diabetes, for example, the micro-angiopathies causing renal disease, retinal damage and peripheral vascular diseases of the lower extremities.
  • composition of the present invention may be useful in treatment of various conditions other than the cardiovascular system, regardless of association with insulin resistance, for example polycystic ovarian syndrome, obesity, cancers, inflammatory diseases, and neurodegenerative diseases such as Mild Cognitive Impairment (MCI), Alzheimer's disease, Parkinson's disease and multiple sclerosis.
  • MCI Mild Cognitive Impairment
  • composition of the present invention exhibits inhibitory effects against development of fatty liver (hepatic steatosis) in the liver and also activates ⁇ -oxidation of fatty acids, thereby playing a role in lowering concentration of triglycerol and thus is expected to be useful for preventing or treating fatty liver and hepatitis due to lipid dysmetabolism of alcoholic and non-alcoholic liver.
  • composition of the present invention varies lipid composition in various tissues. In addition, it can vary fat content and distribution and also reduce plasma cholesterol and triacylglycerol levels.
  • composition of the present invention is effective for formation of NO in endothelial cells and thus is expected to be useful for preventing or treating cardiac diseases, vascular diseases, hypertension and erectile dysfunction.
  • cardiac insufficiency myocardial infarction
  • rupture of the cerebrovascular system thrombosis and kidney damage.
  • the composition of the present invention is a material eliciting promotion of fatty acid oxidation and energy consumption in distal tissues and thereby is expected to be useful for treating or preventing common obesity and also in removing localized fat deposits such as subcutaneous and abdominal fat. Accordingly, the composition of the present invention is expected to be useful for delivering drugs in the form of ointments, patches including anti-inflammatory patches, and creams when desired to remove fat from particular regions where fat is locally deposited, such as removing subcutaneous fat from protuberant parts of the eye-lids, arms and hips, abdominal fat and fat of particular regions, for example, cellulite.
  • composition of the present invention may be used as an anti-diabetic agent by lowering the level of blood glucose.
  • the composition of the present invention improves decreased sensitivity to insulin and thereby enhances the effects of insulin.
  • the composition of the present invention promotes mitochondrial biogenesis, thereby increasing active capacity of mitochondria and at the same time, induces conversion of muscle tissues into motor tissues, thereby resulting in improved locomotive capacity of patients, reinforced endurance, improved energy productivity, fatigue-recovery, increased vital power, reduction of oxidative stress through increased ability to remove reactive oxygen species (ROS) and free radicals, and therefore the composition is expected to be effective for treating diseases concerned.
  • ROS reactive oxygen species
  • ROS reactive oxygen species
  • composition of the present invention was shown to provide beneficial effects for all of the above-mentioned conditions and diseases, by modulating glucose and lipid homeostasis. Therefore, it can be seen that the composition of the present invention is a suitable material for control of metabolic syndrome.
  • the present invention relates to use of a compound for preparing a pharmaceutical composition for therapy and/or prophylaxis of multiple metabolic syndrome (metabolic syndrome), that is, metabolic syndrome characteristically appearing with hyperinsulinemia, insulin resistance, obesity, glucose intolerance, type II diabetes mellitus, dyslipidemia, cardiovascular diseases or hypertension, in particular.
  • metabolic syndrome characteristically appearing with hyperinsulinemia, insulin resistance, obesity, glucose intolerance, type II diabetes mellitus, dyslipidemia, cardiovascular diseases or hypertension, in particular.
  • compositions for preventing and treating metabolic syndrome comprising tanshinone derivatives as the effective ingredient can prevent and treat metabolic syndrome through activation of metabolism, and thus it is believed that they can be developed as various drugs for a variety of diseases associated with metabolic syndrome.
  • the composition for preventing and treating metabolic syndrome in accordance with the present invention comprises the above-mentioned tanshinone derivatives as the effective ingredient, and can be formulated into the metabolic syndrome-prophylactic and therapeutic agent, in conjunction with a phannaceutically acceptable carrier, if necessary.
  • a suitable dose of the pharmaceutical composition of the present invention may vary depending upon various factors such as formulation method, administration fashion, age, weight and sex of patients, pathological conditions, diet, administration time, administration route, excretion rate and sensitivity to response.
  • the pharmaceutical composition of metabolic syndrome-prophylactic and therapeutic agent in accordance with the present invention comprises tanshinone derivatives as the effective ingredient.
  • the tanshinone derivatives can be administered via oral or parenteral routes upon clinical administration and can be used in general forms of pharmaceutical formulations. That is, the composition in accordance with the present invention may be administered by various oral and parenteral formulations, upon practical clinical administration.
  • Solid formulations for oral administration include, for example, tablets, pills, powders, granules and capsules, and are prepared by mixing tanshinone derivatives with one or more excipients, such as starch, calcium carbonate, sucrose, lactose and gelatin. Lubricating agents such as magnesium stearate and talc may also be used, except for simple excipients.
  • tanshinone derivatives such as starch, calcium carbonate, sucrose, lactose and gelatin.
  • Lubricating agents such as magnesium stearate and talc may also be used, except for simple excipients.
  • liquid formulations for oral administration mention may be made of suspensions, solutions for internal use, emulsions and syrups.
  • formulations for parenteral administration include sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized formulations and suppositories.
  • non-aqueous solvents and suspensions there may be used propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethylolate, etc.
  • base materials for suppositories Witepsol, macrogol, Tween 61, cacao butter, laurin butter, glycerol and gelatin may be used.
  • Dosage units may contain one-, two-, three- or four-fold amount of individual dose, or 1 ⁇ 2, 1 ⁇ 3 or 1 ⁇ 4 fold amount of individual dose.
  • an individual dose contains an amount of the effective drug that is administered one time, and typically corresponds to the total amount administered for one day, or 1 ⁇ 2, 1 ⁇ 3 or 1 ⁇ 4 fold-amount thereof.
  • effective doses of tanshinone derivatives are concentration-dependent, they are preferably in the range of 0.1 to 1,000 mg/kg, more preferably 0.4 to 500 mg/kg and may be administered 1 to 6 times a day. Therefore, tanshinone derivatives may be administered in the range of 0.1 to 6,000 mg/day/kg bw, for adults.
  • a health and functional food composition for preventing and treating metabolic syndrome containing tanshinone derivatives as an effective ingredient.
  • a health and functional food used throughout the specification of the present invention refers to a food in which tanshinone derivatives are added to general foods to improve functions thereof. Tanshinone derivatives may be added to general foods or may be prepared in the form of capsules, powders, suspensions and the like. Intake of such a health and functional food containing tanshinone derivatives provides beneficial effects for health, and exhibits advantages in that there are no side effects caused by prolonged use of drugs because food material is used as the raw material, unlike conventional drugs.
  • tanshinone derivatives of the present invention can be added alone, or can be used in conjunction with other food or food ingredients, or may be used appropriately according to other conventional methods.
  • Mixed amount of effective ingredients may be suitably determined depending upon the purpose of use (prophylactic, health or therapeutic treatment).
  • these derivatives may be added in an amount of 0.0001 to 10% by weight, and preferably in an amount of 0.1 to 5% by weight, relative to the total weight of raw materials.
  • the above-mentioned amount of tanshinone derivatives may be adjusted below the above-mentioned range.
  • the health food of the present invention preferably contains tanshinone derivatives falling within the determined toxicity range, when it is employed as a pharmaceutical composition.
  • tanshinone derivatives there is no particular limit to kinds of the above-mentioned foods.
  • foods to which the tanshinone derivatives can be added mention may be made of meats, sausages, bread, chocolate, candies, snack, confectionary, pizza, Ramen, other noodles, gum, skimmed milk, dried foods, raw foods, dairy products including lactic acid bacteria-fermented milk and ice cream, various soups, beverages, teas, drinks, alcoholic beverages and multi-vitamin preparations.
  • health foods containing tanshinone derivatives mention may be made of health foods and special favorite products such as squeezed liquid, tea, jelly and juice made of tanshinone derivatives as main ingredients.
  • folk medicines for edema, nephritis and urethritis as targets.
  • tanshinone derivatives of the present invention can be added by themselves or can be used in conjunction with other cosmetic ingredients, or may be used appropriately according to other conventional methods. Mixed amount of effective ingredients may be suitably determined depending upon the purpose of use thereof. Generally, in producing cosmetics using tanshinone derivatives, these derivatives may be added in an amount of 0.0001 to 10% by weight, and preferably in the amount of 0.1 to 5% by weight, relative to the total weight of raw materials. Cosmetics include, but are not limited to, aftershaves, lotions, creams, packs and color cosmetics.
  • Tanshinone derivatives in accordance with the present invention may be extracted using danshen ( Salvia miltiorrhiza ) as dried drug material or raw drug material, or may be synthesized by organochemical methods.
  • a process for extracting tanshinone derivatives from Danshen comprises: a) subjecting Danshen to water or organic solvent extraction to obtain crude extracts, b) filtering the crude extracts, followed by (vacuum) concentration, and c) optionally, removing solvent.
  • Danshen is extracted with methanol, vacuum concentrated and then re-extracted with methylene chloride to obtain a concentrated solution.
  • the solution is purified via silica column chromatography to obtain pure tanshinone derivatives.
  • FIG. 1 is a bar graph comparing activity of AMPK (AMP-activated protein kinase) between the treatment group and control group, after treatment of myoblast cell line C2C12 with danshen ( Salvia miltiorrhiza ) extract and tanshinone derivatives;
  • AMPK AMP-activated protein kinase
  • FIG. 2 shows results of Western blotting to determine effects of tanshinone derivatives on protein expression of total AMPK, p-AMPK, p-ACC and GLUT4, after treatment of myoblast cell line C2C12 with tanshinone derivatives;
  • FIG. 3 shows results of Western blotting to determine effects of tanshinone derivatives on gene expression of ACC 1 and 2, UCP-2, CPT1, PGC-1 ⁇ and GLUT1, after treatment of myoblast cell line C2C 12 with tanshinone derivatives;
  • FIG. 4 is a graph comparing effects of tanshinone derivatives on cellular glucose uptake, between the treatment group and control group, after treatment of myoblast cell line C2C12 with tanshinone derivatives;
  • FIG. 5 is a micrograph showing results of effects of tanshinone derivatives on adipocyte differentiation, after treatment of preadipocyte cell line F442A with tanshinone derivatives;
  • FIG. 6 is a graph comparing results between the treatment group and control group in effects of tanshinone derivative on insulin sensitivity, after treatment of myoblast cell line C2C 12 with tanshinone derivatives;
  • FIG. 7 shows results of effects of cryptotanshinone on changes in body weight over time, after treatment of an animal model of obesity, DIO (diet-induced obesity) mice, with cryptotanshinene;
  • FIGS. 8 and 9 are, respectively, a graph and table showing effects of tanshinone derivatives on changes in body weight over time, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 10 is a graph comparing changes in adipocyte size between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 11 is a graph comparing fat distribution in terms of numerical values for respective organs between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 12 is a graph comparing adipose tissue distribution and fat accumulation in the livers between the treatment group and control group, by way of staining of livers following treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 13 is a table comparing changes in lipid and antioxidation indicator materials in liver tissues between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 14 is a table comparing changes in blood lipid and glucose between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 15 is a micrograph comparing changes in visceral fat distribution of mice between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 16 is a table showing effects of tanshinone derivatives on changes in blood glucose, after treatment of an animal model of obesity, Lepr db/Lepr db mice, with tanshinone derivatives;
  • FIG. 17 is a table comparing activity of compositions by double combination of tanshinone derivatives in accordance with the present invention.
  • FIG. 18 is a table showing changes in activity with respect to changes of ingredient ratio in compositions of the present invention.
  • FIG. 19 is a table comparing AMPK activity of compositions by triple combination of tanshinone derivatives in accordance with the present invention.
  • FIG. 20 is a table showing results of effects of combination ratio between tetrahydrophenanthrene derivative group and phenanthrene derivative group of tanshinone derivatives on changes in body weight, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, at various combination ratios.
  • Danshen Salvia miltiorrhiza
  • Danshen was purchased from a Chinese medicinal herb shop and other necessary materials were collected in fields and mountains or were purchased from the shop.
  • Danshen was eluted with 50 L of methanol for 24 hours and concentrated under reduced pressure. 1500 mL of water was added to the resulting material. Then, an equal amount of n-hexane, dichloromethane (CH 2 Cl 2 ) and ethyl acetate (EtOAc) were added and sequentially extracted two times so as to obtain a gelatinous red extract. When activity was examined on the respective layers thus obtained, the activity was highest in the dichloromethane layer.
  • NMR analysis was performed to determine structures of cryptotanshinone, tanshinone I, tanshinone IIA and 15,16-dihydrotanshinone I separated in Example 1, respectively.
  • Myoblast cells C2C12 were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce differentiation of cells. Enzymatic activity of AMPK was determined as follows. C2C12 cells were lysed to obtain protein extracts and then ammonium sulfate was added to a final concentration of 30%, followed by precipitation of proteins.
  • Protein precipitates were dissolved in a buffer (62.5 mM Hepes, pH 7.2, 62.5 mM NaCl, 62.5 mM NaF, 1.25 mM Na pyrophosphate, 1.25 mM EDTA, 1 mM DTT, 0.1 mM PMSF, and 200 ⁇ M AMP). Thereafter, 200 ⁇ M SAMS peptide (HMRSAM S GLHLVKRR: the underlined serine residue is a phosphorylation site, as an AMPK phosphorylation site of acetyl-CoA carboxylase) and [ ⁇ -32P]ATP were added thereto and reactants were reacted for 10 minutes at 30° C.
  • HMRSAM S GLHLVKRR the underlined serine residue is a phosphorylation site, as an AMPK phosphorylation site of acetyl-CoA carboxylase
  • Myoblast cells C2C12 were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce cellular differentiation. Differentiated cells were treated with 30 ⁇ M tanshinone derivatives, respectively. Enzymatic activity of AMPK was measured by lysing C2C12 cells to obtain protein extracts and subjecting protein extracts to Western Blot analysis so as to determine the amount of total AMPK, p-AMPK (phosphorylated AMPK), p-ACC (phosphorylated acetyl-CoA carboxylase) and GLUT4 (glucose transporter 4) proteins.
  • AMPK phosphorylated AMPK
  • p-ACC phosphorylated acetyl-CoA carboxylase
  • GLUT4 glucose transporter 4
  • tanshinone derivative-treated cells exhibited increased amount of the phosphorylated AMPK protein, increased amount of the phosphorylated ACC protein and increased expression level of GLUT4 protein, even though there was no change in the total amount of AMPK protein.
  • Myoblast cells, C2C12 were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce cellular differentiation. Differentiated cells were treated with 30 ⁇ M tanshinone derivatives, respectively.
  • RNAs were extracted from cells and RT-PCR was performed to observe effects of respective tanshinone derivatives on gene expression of ACC-1 (acetyl-CoA carboxylase-1), ACC-2, CPT1 (carnitine palmitoyltransferase I), PGC 1 ⁇ (peroxisome proliferator-activated receptor gamma co-activator 1 ⁇ ), GLUT1 (glucose transporter 1) and UCP-2 (uncoupling protein-2).
  • ACC-1 acetyl-CoA carboxylase-1
  • ACC-2 CPT1 (carnitine palmitoyltransferase I)
  • PGC 1 ⁇ peroxisome proliferator-activated receptor gamma co-activator 1 ⁇
  • GLUT1 glucose transporter 1
  • UCP-2 uncoupling protein-2
  • tanshinone derivative-treated cells exhibited increased expression level of genes for ACC-1, ACC-2, CPT1, PGC-1 ⁇ , UCP-2 and GLUT1.
  • Myoblast cells C2C12 were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce cellular differentiation. Fully differentiated cells were further cultured in Krebs-Ringer Buffer (KRB) containing 5 mM glucose, for an additional 2 hours. Cells were treated with tanshinone derivatives for a predetermined period of time, 0.2 ⁇ Ci 2-deoxyglucose was added thereto and allowed to stand for 2 min.
  • KRB Krebs-Ringer Buffer
  • Preadipocytes 3T3-L1 and F442A were cell cultured in DMEM containing 10% bovine calf serum.
  • 3T3-L1 cells were treated with Dexamethasone, IBMX, and insulin for about 48 to 55 hours to induce differentiation of adipocytes.
  • the culture medium was replaced with a medium containing fetal calf serum and insulin every 2 days.
  • F442A cells when cell density of preadipocytes reached about 90%, the culture medium was replaced with a medium containing 10% fetal calf serum and insulin and the culture medium was replaced every 2 days, so as to induce differentiation of adipocytes.
  • tanshinone derivatives which was extracted from Danshen, in a concentration of 5 to 30 ⁇ M, and were compared with the control group. Differentiation of more than 90% of cells into adipocytes took about 12 to 15 days. In order to study activity of the respective fractions, cells were treated for the same period of time as the control group and were observed under microscope to examine efficacy of tanshinone derivative treatment.
  • FIG. 5 is a micrograph comparing adipocyte differentiation ability between tanshinone derivative-treated group and control group, with respect to induction timing of adipocyte differentiation.
  • control group differentiation of 80 to 90% of F442A cells into adipocytes took about 11 days.
  • tanshinone derivative-treated group when cells were treated with a concentration of 30 ⁇ M tanshinone derivatives from the early stage of differentiation, only 5 to 10% of cells differentiated into adipocytes in the same period of time.
  • Myoblast cells, C2C12 were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce cellular differentiation.
  • insulin and tanshinone derivatives separately, or in combination thereof, the degree of glucose uptake with respect to various concentrations of the tanshinone derivatives was determined and thereby effects of tanshinone derivatives on insulin sensitivity were examined.
  • mice In order to examine the effects of tanshinone derivatives on fat metabolism, 3-month-old DIO mice (16 animals), weighing 31 to 32 g, were divided into two groups, one experimental group and one control group, consisting of 8 animals each. 8 mice of the experimental group were administered tanshinone derivatives at a concentration of 100 mg/kg, for 30 days, at a predetermined time point. Whereas, the control group was administered an equal amount of distilled water alone. When the body weights of the experimental group and control group were measured after 30 days of administration, the experimental group to which tanshinone derivatives was administered exhibited significantly lower body weight, as compared to the control group, as shown in FIG. 7 .
  • mice were allowed to acclimate to new environment of the breeding room for two weeks and were administered 300 mg/kg of tanshinone derivatives for 26 days. Observation was made on changes in body weight, blood glucose and dietary intake, with respect to time points of administration. After completion of administration, computed Tomography (CT) was performed to confirm changes in fat tissue distribution of animals, changes in fat distribution of tissues in various organs, changes in size of adipocytes, glucose in blood and liver, and changes in lipid and enzymes.
  • CT computed Tomography
  • FIG. 8 is a graph comparing changes in body weight over time, between C57BL/6JL Lep ob/Lep ob mice, to which tanshinone derivatives were administered and a control group. As can be seen from FIG. 8 , administration of tanshinone derivatives lead to a significant reduction in body weight, as compared to the control group.
  • FIG. 10 is a graph comparing adipocyte size in terms of numerical values, between C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered and a control group. As can be seen from FIG. 10 , the experimental group to which tanshinone derivatives were administered exhibited a reduction of more than 60% in adipocyte size, as compared to the control group.
  • FIG. 11 is a graph comparing fat distribution in terms of numerical value for respective organs between C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered and a control group.
  • the experimental group to which tanshinone derivatives were administered exhibited a significant reduction in fat content of tissues for all organs, and increased brown fat content compared with the control group, indicating that fat metabolism was significantly increased.
  • FIG. 12 is a graph comparing adipose tissue distribution in the liver by H&E staining and Oil-Red O staining, for normal mice, obese mice and C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered. As shown in FIG. 12 , it was confirmed through staining of adipose tissues that administration of tanshinone derivatives resulted in a pronounced reduction of fat accumulation in the liver, as compared to the control group of obese mice.
  • FIG. 13 is a table showing results for changes in lipid and antioxidation indicator materials in liver tissues between C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered and a control group. As can be seen from FIG. 13 , the group to which tanshinone derivatives were administered exhibited significant reductions in total fat contents, triglyceride, cholesterol, GOT and GPT in the liver, compared with the control group.
  • FIG. 14 is a table comparing changes in lipid and glucose in the blood between C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered and control group. As can be seen from FIG. 14 , the group to which tanshinone derivatives were administered exhibited significant reductions in triglyceride, cholesterol, GOT and glucose in blood, compared with the control group.
  • FIG. 15 shows analyzed results of computed Tomography (CT) of C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered.
  • CT computed Tomography
  • Lepr db/Lepr db male mice lack leptin receptors and thus continuously and excessively consume feed due to their uncontrolled appetite. As a result, fat is excessively accumulated in the animal body and blood glucose level is elevated, resulting in about 350 to 400 mg/dl of blood glucose level about 10 to 11 weeks after birth.
  • adult Lepr db/Lepr db male mice with blood glucose level of about 350 to 400 mg/dl were divided into two groups, one experimental group and one control group, consisting of 10 animals each. 10 mice of the experimental group were administered tanshinone derivatives at a concentration of 300 mg/kg, for 12 days.
  • FIG. 16 is a table showing changes in blood glucose with respect to administration period of tanshinone derivatives and it can be seen that there were blood glucose-lowering effects by tanshinone derivatives.
  • this example was carried out to confirm synergistic effects of AMPK activity with respect to the combination ratio between derivatives, which contained tanshinone I, tanshinone IIA, cryptotanshinone and 15,16-dihydrotanshinone I, as main ingredients. That is, we have attempted to confirm inter-complementary functions between derivatives according to gene expression as shown in Example 5 and thereby synergistic effects by any combination of tanshinone derivatives through AMPK activity.
  • FIG. 17 is a table comparing activity of compositions by double combination of tanshinone derivatives
  • FIG. 18 is a table showing changes in activity with respect to changes of ingredient ratio in double combinations
  • FIG. 19 is a table comparing AMPK activity of compositions by triple combination of tanshinone derivatives.
  • compositions containing a two- or three-component combination of tanshinone derivatives exhibited significantly larger AMPK activity than those of the respective ingredients, at the same concentration. It could be seen that such synergistic effects due to combinations of derivative ingredients are very unique phenomena having no relationship with kinds of ingredients. Whereas, as can be seen from FIG. 18 , differences in combination ratio between the respective ingredients in the same compositions resulted in specifically different AMPK activity depending upon kinds of ingredients.
  • Tanshinone derivatives contained in Danshen extracts were divided into two groups: a tetrahydrophenanthrene derivative group (1:1 ratio of cryptotanshinone and tanshinone IIA), and a phenanthrene derivative group (2:1 ratio of tanshinone I and 15,16-dihydrotanshinone I), and the ratio between tanshinone derivatives was optionally adjusted. In this manner, we attempted to examine effects of changes in ingredient ratio on body weight and thus to confirm effects of inter-complementary actions. Combination ratio between the tetrahydrophenanthrene derivative group and phenanthrene derivative group was varied from 10:1 to 1:10 and administered to animals at a dose of 300 mg/kg for 26 days.
  • ICR mice weighing 23 ⁇ 2 g and Sprague-Dawley rats, weighing 250 ⁇ 7 g (Jung-Ang Lab Animal Inc., Seoul, Korea) were divided into 4 groups, consisting of 10 animals each, and were orally administered tanshinone derivatives in accordance with the present invention at doses of 100, 500 and 1,000 mg/kg, respectively.
  • After oral administration upon observing for 2 weeks whether toxicity was exhibited or not, none of the animals died in all four groups and no visually observable symptoms were noticed compared to the control group (except loss of weights).
  • ICR mice weighing 25 ⁇ 3 g and Sprague-Dawley rats, weighing 255 ⁇ 6 g (Jung-Ang Lab Animal Inc., Seoul, Korea) were divided into 4 groups, consisting of 10 animals each, and were peritoneally administered tanshinone derivatives in accordance with the present invention at doses of 10, 50 and 100 mg/kg, respectively.
  • tanshinone derivatives in accordance with the present invention at doses of 10, 50 and 100 mg/kg, respectively.
  • peritoneal administration upon observing for 2 weeks whether toxicity was exhibited or not, none of the animals died in all four groups and no visually observable symptoms were noticed compared to the control group (except loss of weights).
  • 1,3-butylene glycol 4.0% Dipropylene glycol 5.0% EDTA-2Na 0.02% Octyldodeceth-16 0.3% PEG60 hydrogenated castor oil 0.2% Tanshinone derivatives 0.1% Purified water 90%
  • a composition in accordance with the present invention effectively reduces body weight through metabolic activation, prevents fat accumulation in the body, lowers blood glucose level, and effectively decreases amounts of cholesterol and triglyceride, and thus is useful for preventing and treating metabolic syndrome.
  • the composition prevents fat accumulation in the body, as well as enhances insulin sensitivity, thus controlling blood glucose level, and therefore may be useful in developing foods, cosmetics and medicinal compositions capable of preventing or treating various diseases associated with metabolic syndrome resulting from dysfunction of fat and glucose metabolism.

Abstract

The present invention relates to a composition for preventing and treating metabolic syndrome, containing tanshinone derivatives as an effective ingredient. More specifically, the present invention relates to a composition for preventing and treating metabolic syndrome, containing tanshinone derivatives that exhibit superior activity in enhancing metabolic activity, as an effective ingredient.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a composition for preventing and treating metabolic syndrome, containing tanshinone derivatives as an effective ingredient. More specifically, the present invention relates to a composition for preventing and treating metabolic syndrome, containing tanshinone derivatives that exhibit superior activity in enhancing metabolic activity, as an effective ingredient.
  • BACKGROUND OF THE INVENTION
  • Metabolic syndrome refers to syndrome involving health risk factors such as hypertriglyceridemia, hypertension, glycometabolism disorder, blood coagulation disorder and obesity. Metabolic syndrome itself is not fatal, but indicates a predisposition to severe diseases such as diabetes and ischemic cardiovascular diseases, and has emerged as the most threatening diseases among modern people. Metabolic syndrome was once lmown by various other names including Syndrome X, due to lack of knowledge about causes of such syndrome, but was officially designated as Metabolic Syndrome or Insulin Resistance Syndrome through Adult Treatment Program III (ATP III) enacted by the WHO and the National Heart, Lung, and Blood Institute of the NIH.
  • The criteria proposed by the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III), published in 2001, are the most current and widely used for diagnosing the metabolic syndrome. According to the ATP III criteria, individuals are diagnosed with the metabolic syndrome by the presence of three or more of these components: 1) A waistline of 40 inches (102 cm) or more for men and 35 inches (88 cm) or more for women (central obesity as measured by waist circumference), 2) A triglyceride level above 150 mg/dl, 3) A high density lipoprotein level (HDL) less than 40 mg/dl (men) or under 50 mg/dl (women), 4) A blood pressure of 130/85 mm Hg or higher and 5) A fasting blood glucose (sugar) level greater than 110 mg/dl. For eastern people, the criteria for central obesity was slightly adjusted to a waistline of 90 cm or more for men and 80 cm or more for women. Recent research has reported that under such criteria, around 25% of Korean people suffer from metabolic syndrome. Insulin resistance refers to a phenomenon wherein, even though insulin is normally secreted in vivo, insulin does not induce sufficient supply of glucose to cells. Therefore, glucose in the blood cannot enter cells, thus causing hyperglycemia, and thereby cells cannot perform normal functions due to a shortage of glucose, leading to the manifestation of metabolic syndrome.
  • At present, there are no drugs available for the treatment of metabolic syndrome. Attempts have been made to treat metabolic syndrome using therapeutic agents for diabetes, hyperlipidemia and hypertension, but these drugs have limited effectiveness in treating metabolic syndrome as the drug. As currently available drugs, metformin, drugs belonging to the TZD (thiazolidinediones) family, glucosidase inhibitors, dual PPARγ/α agonists and DDP (Dipeptidyl peptidase) IV inhibitors, which are used for the treatment of diabetes, have received a great deal of attention as promising drugs for treating metabolic syndrome. In addition, a great deal of interest has been directed to isoforms of apo A-I and related peptides thereof, which are targets of anti-blood pressure drugs and anti-hyperlipidemic drugs, and CETP (Cholesterol ester transport protein) inhibitors.
  • Known factors that are directly or indirectly associated with causes and treatment of metabolic syndrome include physical exercise, dietary habit and type, body weight, blood glucose, triglyceride levels, cholesterol levels, insulin resistance, adiponectin, leptin, AMPK activity, sex hormones such as estrogen, genetic factors and in vivo malonyl-CoA concentration.
  • At present, the most effective way to fight the conditions associated with metabolic syndrome is known to be getting more exercise and losing weight, and dietary control. All of the current ways of fighting metabolic syndrome share in common the fact that they facilitate energy metabolism, thus resulting in maximized consumption of surplus energy in the body leading to prevention of energy accumulation. Due to high calorie intake from processed foods and fast foods, compared to insufficient exercise, surplus energy is accumulated in the form of fat and thereby becomes an underlying cause of various diseases including metabolic disorders. Effectively eliminating such surplus energy is considered a method for treating metabolic disorders. Increasing metabolic activity is essential to effectively eliminate surplus energy. For this purpose, it is believed that there is an essential need for inhibition of fat synthesis, inhibition of gluconeogenesis, facilitation of glucose consumption, facilitation of fat oxidation, facilitation of biogenesis of mitochondria which is a central apparatus of energy metabolism and activation of factors involved in metabolism activation. Activation factors linked to promotion of metabolism include, for example, AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), glucose transporter 1 and 4 (GLUT 1 and 4), carnitine palmitoyltransferase 1 (CPT 1), uncoupling protein 1, 2 and 3 (UCP-1, 2 and 3), and acetyl-CoA carboxylase I and II (ACC I and II), which play an important role in energy metabolism.
  • Such factors perform the following main functions in energy metabolism, in relation to metabolic disorders.
  • 1. Glycometabolism
  • In muscle tissues and myocardial tissues, AMPK promotes muscle contraction and thereby facilitates uptake of glucose, which in turn activates GLUT 1, or induces migration of GLUT 4 to a plasma membrane, regardless of insulin action, resulting in increased transport of glucose into cells (Arch. Biochem. Biophys. 380, 347-352, 2000, J. Appl. Physiol. 91, 1073-1083, 2001). After increase of glucose uptake, AMPK activates hexokinase, thereby increasing flux of glycometabolism processes and simultaneously inhibiting glycogen synthesis. It is known that in myocardial tissues during ischemia, AMPK activates 6-phosphofructo-2-kinase (PFK-2) via a phosphorylation process, thus resulting in activation of a metabolic cascade leading to increased flux of glycometabolism (Curr. Biol. 10, 1247-1255, 2000). In addition, activation of AMPK in the liver inhibits release of glucose from hepatocytes. Meanwhile, it was confirmed that activity of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase, which are enzymes of gluconeogenesis, was arrested by AMPK (Diabetes 49, 896-903, 2000), indicating that AMPK independently inhibits release of glucose from the liver, regardless of insulin, thus being involved in modulation of blood glucose level.
  • 2. Mitochondrial Biogenesis
  • One important function of mitochondria is to carry out oxidative phosphorylation, which converts energy produced from fuel metabolites such as glucose and fatty acids into ATP. Functional mitochondrial alterations may effect pathogenesis of degenerative diseases associated with senescence, such as diabetes mellitus, cardiovascular diseases, Parkinson's disease and senile dementia (Curr. Opin. Cell Biol. 15, 706-716, 2003). Peterson, et al (Science 300, 1140-1142, 2003) has reported that oxidative phosphorylation functions of mitochondria were weakened by about 40% in the elderly, suggesting the possibility that deteriorated mitochondrial function is a probable pathogenic cause of insulin resistance syndrome. Lee et al (Diabetes Res. Clin. Pract. 42, 161-167, 1998) have confirmed that decreased mitochondrial DNA content in peripheral blood precedes the development of diabetes mellitus. Biogenesis of mitochondria in muscles is known to be promoted by an adaptive reaction in which metabolic activity of oxidative phosphorylation of muscle cells is increased by continuous energy depletion and exercise.
  • Meanwhile, peroxisome proliferator-activated receptor gamma coactivator 1α(PGC-1α) is known to be a co-activator promoting transcription of nuclear DNA and is known to play important roles in glucose metabolism, mitochondrial biogenesis, muscle fiber specialization and adaptive thermogenesis as main functions. It was confirmed that increased expression of PGC-1α facilitates an increase in the copy number of mitochondrial DNA and mitochondrial proliferation (Cell, 98, 115-124, 1999).
  • It was suggested that overexpression of UCP-2 and UCP-3 in the mouse model results in a decreased number of adipocytes, increased metabolic rate and increased oxygen consumption, and thus UCP-2 and UCP-3 play an important role in energy metabolism and obesity control (Nutrition, 20, 139-144, 2004).
  • 3. Control of Fat Metabolism
  • Referring to a mechanism in which AMPK participates in fat metabolism, AMPK is known to induce phosphorylation of acetyl-CoA carboxylase which in turn inhibits fatty acid synthesis, thus resulting in decreased intracellular concentrations of malonyl-CoA that is an intermediate in a fatty acid synthesis process and is an inhibitor of carnitine palmitoyltransferase I (CPT I), leading to promotion of fatty acid oxidation. CPT I is an enzyme essential for a process wherein fatty acids enter mitochondria and are oxidized, and is known to be modulated by intracellular concentration of malonyl-CoA. In addition, AMPK is known to inhibit activity of HMG-CoA reductase and glycerol phosphate acyl transferase (GPAT), involved in cholesterol and triacylglycerol synthesis, through phosphorylation (J. Biol. Chem. 277, 32571-32577, 2002, J. Appl. Physiol. 92, 2475-2482, 2002). Meanwhile, it was found that activation of AMPK in the liver inhibits the activity of pyruvate kinase, fatty acid synthase and ACC through phosphorylation of carbohydrate-response-element-binding protein (ChREBP) (J. Biol. Chem. 277, 3829-3835, 2002).
  • As described above, activators related to metabolism are known to play central roles in energy metabolism of glucose, protein and fat in vitro and in vivo. Neil et al (Nature drug discovery, 3(April), 340, 2004) asserted that AMPK and Malonyl-CoA are targets for therapeutic treatment of metabolic syndrome, and patients suffering from metabolic syndrome are characterized by insulin resistance, obesity, hypertension, dyslipidemia, and dysfunction of pancreatic beta cells, type II diabetes mellitus and manifestation of arteriosclerosis. It was hypothesized that a common feature linking these multiple abnormalities is dysregulation of AMPK/Malonyl-CoA fuel-sensing and signaling network. It was proposed that such dysregulation leads to alterations in cellular fatty-acid metabolism that in turn cause abnormal lipid accumulation, cellular dysfunction and ultimately disease. Evidence is also presented that factors that activate AMPK and/or reduce malonyl-CoA levels might reverse these abnormalities and syndromes or prevent them from occurring.
  • Genevieve et al (J. Biol. Chem. 279, 20767-74, 2004) have reported that activation of AMPK inhibits activity of an iNOS enzyme that is a inflammation mediator in chronic inflammatory conditions or endotoxin shock, including obesity-related diabetes and thus will be effective for developing new medicines having a mechanism capable of enhancing insulin sensitivity. In addition, they have reported that inhibition of iNOS activity is effected by activation of AMPK, and thus this finding is clinically applicable to diseases such as septicemia, multiple sclerosis, myocardial infarction, inflammatory bowel diseases and pancreatic beta-cell dysfunction. Zing-ping et al (FEBS Letters 443, 285-289, 1999) have reported that AMPK activates endothelial NO synthase through phosphorylation, in the presence of Ca-calmodulin in muscle cells and myocardial cells of rats. This represents that AMPK is implicated in cardiac diseases including angina pectoris. Alan D et al (Nature genetics, 34(3), 244, 2003) have confirmed that muscle mitochondrial respiratory metabolism was reduced by ageing or diabetes, thus resulting in coordinated changes in expression of genes involved in the oxidative phosphorylation process, and they have reported that PGC-1α is in charge of this change in gene expression. Mary et al (PNAS 100, 8466, 2003) have reported that decreased expression of PGC-1α is a main cause of insulin resistance and dysmetabolism in diabetic patients. Isabella et al (Am. J. Physiol. Cell Physiol. 284, c1669, 2003) have reported that PGC-1α is a key factor stimulating adaptation of mitochondria to changes in environment due to a thyroid hormone, T3, and muscle contraction. Kim et al (The Korean Journal of Biochemistry & Molecular Biology, 11, 16, 2004) have reported that through the causal relation between glucose/fatty acid metabolism, abnormalities in the amount and quality of mitochondria induces insulin resistance and furthermore, is a main cause of metabolic syndrome.
  • The present inventors carried out an extensive search for metabolism-activating drugs, based on the assumption that materials activating metabolism will be effective for treatment of metabolic syndrome diseases, and as a result, have confirmed that tanshinone derivatives are effective ingredients for therapeutic agents.
  • SUMMARY OF THE INVENTION
  • Therefore, the present invention has been made to solve the above problems, and technical problems that have been desired to be solved from the past.
  • The present inventors have conducted a variety of extensive and intensive study and experimentation. As a result of such extensive investigation, the inventors have found that tanshinone derivatives, extracted from Danshen (Salvia miltiorrhiza), have efficacy activating metabolism in cells and tissues, and further found that when ob/ob mice, a model of obesity caused by decreased secretion of leptin, db/db mice, a model of obesity/diabetes, and DIO (diet-induced obesity) mice, caused by high fat dietary conditions, are treated with tanshinone derivatives, these materials are effective for preventing and treating metabolic syndrome including obesity and diabetes mellitus. The present invention has been completed based on these findings.
  • Therefore, an object of the present invention is to provide a composition for preventing and treating metabolic syndrome, comprising, as an effective ingredient, tanshinone derivatives exhibiting prophylactic and therapeutic effects on such a metabolic syndrome through activation of metabolic activators, in myoblast C2C12 cells and adipocytes, and animal disease models.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In accordance with an aspect of the present invention, the above and other objects can be accomplished by the provision of a composition for preventing or treating obesity and metabolic syndrome diseases, comprising a therapeutically and/or prophylactically effective amount of tanshinone derivatives from Danshen (Salvia miltiorrhiza) extract as an effective ingredient.
  • Physiological activities of tanshinone derivatives known hitherto are as follows. Toshiyuki et al (Planta Med. 2002. 68, 1103-1107) have reported that tanshinone VI attenuates hypertrophy of cardiac myocytes and inhibits synthesis of collagen by cardiac fibroblasts thereby retarding fibrosis of cardiac fibroblasts. Choi et al (Planta Med. 2004, 70, 178-180) have suggested the possibility of using tanshinone derivatives as an anti-allergic agent by inhibition of mast cell degranulation. Ip et al (Planta Med. 2002, 68, 1077-1081) demonstrated the hepatoprotective effects of dihydroisotanshinone I against menadione-induced cytotoxicity in hepatocytes. Ren et al (Planta Med. 2004, 70, 201-204) have confirmed that tanshinone derivatives inhibit enzymatic activity of acetylcholinesterase. Kyoko et al (Biochemical Pharmacology, 64, 745-750 (2002)) have reported that tanshinone IIA sulfonate attenuates hypertrophy of cardiac myocytes induced by angiotensin II. Lee et al (Biosci. Biotechnol. Biochem. 63(12), 2236-2239, 1999) have reported that tanshinone derivatives generate superoxides and thus exhibit antibacterial activity. Kang et al (Immunophannacology, 49, 355-361, 2000) have reported that tanshinone derivatives inhibit production of IL-12 and INF-γ in immunocytes. Ko et al (Arch. Pharm. Res. 25, 446-448, 2002) have reported that tanshinone derivatives inhibit enzymatic activity of DGAT. Zhou et al (Biochemical Pharmacology, 65, 51-57, 2003) have reported that tanshinone IIA sulfonate facilitates an electron-transfer reaction in mitochondria. Wang et al (Antimicrobial Agent & Chemotherapy, June, 1836-1841, 2003) have reported that tanshinone derivatives inhibit aminoglycoside-induced free radical formation. Yun et al (Korean Patent Publication Laid-open No. 2000-0027306) have asserted that tanshinone derivatives are effective as a therapeutic agent for treatment of hepatitis B. Sohn et al (Korean Patent Publication Laid-open No. 2004-0084482) disclose a therapeutic composition for hepatic fibrosis or hepatocirrhosis, containing tanshinone I as an effective ingredient. However, none of the above-mentioned publications and patents discloses or suggests prevention and treatment of obesity and metabolic syndrome diseases by enhancing activity of AMPK, as in the present invention.
  • The tanshinone derivatives, which are utilized as the effective ingredient in the composition of the present invention, are primarily present in Danshen, utilized as crude drug substance, such as Salvia miltiorrhiza and Perovskia abrotanoides. Tanshinone derivatives are broadly divided into tetrahydrophenanthrene derivatives and phenanthrene derivatives. Preferably, the composition in accordance with the present invention comprises one or more compounds selected from the group consisting of the above-mentioned derivatives and mixtures thereof.
  • Preferably, the tetrahydrophenanthrene derivative is one or more compounds selected from the group consisting of cryptotanshinone (Formula 1) and tanshinone IIA (Formula 2).
    Figure US20070248698A1-20071025-C00001
  • Preferably, the phenanthrene derivative is one or more compounds selected from the group consisting of tanshinone I (Formula 3) and 15,16-Dihydrotanshinone I (Formula 4).
    Figure US20070248698A1-20071025-C00002
  • Tanshinone derivatives contained in Danshen (roots of Salvia miltiorrhiza) are composed of 0.29% tanshinone IIA, 0.23% cryptotanshinone, 0.11% tanshinone I and 0.054% 15,16-dihydrotanshinone I. As the main ingredient of Danshen, the tanshinone derivatives are diterpene o-quinone compounds. A biosynthesis process of these compounds is carried out by biosynthesis of cryptotanshinone from diterpene and biosynthesis of tanshinone derivatives of Danshen such as tanshinone IIA, 15,16-dihydrotanshinone I and tanshinone I, through oxidative processes such as demethylation or dehydrogenation of cryptotanshinone.
  • The present inventors have found that such tanshinone derivatives activate metabolism and thereby promote metabolism of glucose, proteins and lipid in the body and also inhibit fat accumulation in the body, thus being capable of treating metabolic syndrome. These finding and facts can also be demonstrated through the following examples. Specifically, the present inventors have measured the influence of tanshinone derivatives on activity of metabolic activators and expression of proteins and genes in myoblast cells (C2C12), and suppression of cellular differentiation of preadipocytes (3T3-L1 and F442A cells) and as a result, have confirmed that such compounds exhibit excellent metabolic activation. As can be seen through the effects of tanshinone derivatives on protein and gene expression, such tanshinone compounds may exhibit superior activity on metabolic activation, alone or in any combination thereof. Simultaneously, the present inventors have confirmed that inhibition of fatty acid synthesis, facilitation of fat acid oxidation and expression level of mitochondrial biogenesis factors correlate with structures of tanshinone derivatives.
  • Therefore, the composition in accordance with the present invention is comprised of one or more tanshinone derivatives selected from the group consisting of cryptotanshinone, tanshinone IIA, tanshinone I and 15,16-dihydrotanshinone I.
  • Such a composition includes all the cases as follows:
  • (i) Composition containing cryptotanshinone as the main ingredient;
  • (ii) Composition containing tanshinone IIA as the main ingredient;
  • (iii) Composition containing tanshinone I as the main ingredient;
  • (iv) Composition containing 15,16-dihydrotanshinone I as the main ingredient;
  • (v) Composition containing cryptotanshinone as the essential ingredient, and optionally, containing one or more compounds selected from the group consisting of tanshinone IIA, tanshinone I and 15,16-dihydrotanshinone I;
  • (vi) Composition containing tanshinone IIA as the essential ingredient, and optionally, containing one or more compounds selected from the group consisting of cryptotanshinone, tanshinone I and 15,16-dihydrotanshinone I;
  • (vii) Composition containing tanshinone I as the essential ingredient, and optionally, containing one or more compounds selected from the group consisting of cryptotanshinone, tanshinone IIA and 15,16-dihydrotanshinone I; and
  • (viii) Composition containing 15,16-dihydrotanshinone I as the essential ingredient, and optionally, containing one or more compounds selected from the group consisting of cryptotanshinone, tanshinone IIA and tanshinone I.
  • If desired, the above-mentioned compositions may further comprise one or more tanshinone derivatives selected from the group consisting of 1β-hydroxycryptotanshinone, 1-oxocryptotanshinone, tanshinol B, tanshinol IIB, przewaquinone A, dihydroisotanshinone I, tanshinone IIA sulfonate, 1,2-dihydrotanshinone I and tanshinone VI.
  • More surprisingly, the present inventors have confirmed that enhancement effects of cryptotanshinone, tanshinone IIA, tanshinone I and 15,16-dihydrotanshinone I on AMPK activity is significantly increased by combinational use of two or more of these compounds. Such a significant synergistic effect was not totally predicted and it was also confirmed that such effect was exhibited, regardless of kinds of those four tanshinone derivatives. Therefore, among combinations of the above-mentioned compositions, compositions (v) through (viii) are particularly preferred.
  • As specific examples of compositions (v) through (viii), mention may be made of the following:
  • Composition comprising cryptotanshinone and 15,16-dihydrotanshinone I;
  • Composition comprising cryptotanshinone and tanshinone IIA;
  • Composition comprising tanshinone IIA and 15,16-dihydrotanshinone I;
  • Composition comprising tanshinone IIA and tanshinone I;
  • Composition comprising 15,16-dihydrotanshinone I and tanshinone I; and
  • Composition comprising tanshinone I and cryptotanshinone.
  • In the compositions as mentioned above, the ratio between the two ingredients is preferably in the range of 10:1 to 1:10 (w/w), and more preferably in the range of 5:1 to 1:5.
  • The composition of tanshinone derivatives contained in naturally occurring Danshen may exhibit different distributions depending upon the harvesting season or cultivation region. Considering the above-mentioned synergistic effects, it is necessary to have the optimal composition ratio between tanshinone derivatives so as to exert efficacy thereof unifonnly. The present inventors have confirmed effects of tanshinone derivatives on expression activity of genes and proteins and characteristics according to structural differences therebetween. By optionally controlling the composition ratio on the basis of these results, the present inventors confirmed effects of adjusting the ratio between tanshinone derivatives on decrease of body weight and then attempted to obtain the optimal composition ratio.
  • As described above, when the composition in accordance with the present invention comprise one or more compounds selected from the group consisting of tetrahydrophenanthrene derivatives and phenanthrene derivatives, and preferably comprises both derivatives, the preferred combination ratio therebetween may be in the range of 10:1 to 1:10 (by weight), more preferably in the range of 5:1 to 1:5, and particularly preferably in the range of 2.5:1 to 1:2.5. Preferably, the tetrahydrophenanthrene derivative component contains both cryptotanshinone and tanshinone IIA, and the ratio therebetween is in the range of 5:1 to 1:5. In addition, the phenanthrene derivative component contains both 15,16-dihydrotanshinone I and tanshinone I, and the ratio therebetween is in the range of 5:1 to 1:5.
  • The present inventors have further confirmed that tanshinone derivatives have very superior prophylactic and therapeutic effects of metabolic syndrome, through extensive in vivo metabolic syndrome-prophylactic and therapeutic experiments in the ob/ob mice, a model of obesity, the db/db mice, a model of obesity/diabetes, and the DIO (diet-induced obesity) mice caused by high fat diet.
  • As a result, the composition for preventing and treating metabolic syndrome comprising tanshinone derivatives as the effective ingredient can prevent and treat metabolic syndrome through activation of metabolism, and thus it is predicted that they can be developed as various therapeutic agents for a variety of diseases associated with metabolic syndrome. The composition for preventing and treating metabolic syndrome in accordance with the present invention comprises the above tanshinone derivatives or an optional mixture thereof as the effective ingredient, and can be formulated into the metabolic syndrome-prophylactic and therapeutic agent, in conjunction with a pharmaceutically acceptable carrier, if necessary.
  • 1. Pharmacological Properties
  • The composition in accordance with the present invention is useful for prophylaxis and/or treatment of clinical conditions associated with metabolic syndrome. These clinical conditions include, but are not limited to, common obesity, abdominal obesity, hypertension, arteriosclerosis, hyperinsulinemia, hyperglycemia, type II diabetes mellitus and dyslipidemia characteristically appearing with insulin resistance. Dyslipidemia, also known as the atherogenic lipoprotein profile of phenotype B, is characterized by significantly elevated non-esterified fatty acids, elevated very low density lipoproteins (VLDL) triglyceride rich particles, high values of ApoB, the presence of small, dense, low density lipoprotein (LDL) particles, high values of ApoB in the presence of phenotype B, and low value of high density lipoproteins (HDL) associated with low value of ApoAI particles.
  • The composition in accordance with the present invention is expected to be useful for treating patients suffering from combined or mixed dyslipidemia, or hypertriglycerimia having or having not other signs of metabolic syndrome and suffering from various degrees of dyslipidemia after meals.
  • The composition in accordance with the present invention is expected to have anti-inflammatory properties and also to lower the cardiovascular morbidity and mortality associated with arteriosclerosis due to dyslipidemia. These cardiovascular disease conditions include macro-angiopathies of various internal organs causing myocardial infarction, cardiac insufficiency, cerebrovascular disease and peripheral arterial insufficiency of the lower extremities. Because of their insulin sensitizing effects, the composition of the present invention is also expected to prevent or retard the progress of type II diabetes mellitus in metabolic syndrome and development of diabetes during pregnancy. Therefore, the composition of the present invention is also expected to retard the progress of chronic complications associated with clinical hyperglycaemia in diabetes, for example, the micro-angiopathies causing renal disease, retinal damage and peripheral vascular diseases of the lower extremities. Furthermore, the composition of the present invention may be useful in treatment of various conditions other than the cardiovascular system, regardless of association with insulin resistance, for example polycystic ovarian syndrome, obesity, cancers, inflammatory diseases, and neurodegenerative diseases such as Mild Cognitive Impairment (MCI), Alzheimer's disease, Parkinson's disease and multiple sclerosis.
  • The composition of the present invention exhibits inhibitory effects against development of fatty liver (hepatic steatosis) in the liver and also activates β-oxidation of fatty acids, thereby playing a role in lowering concentration of triglycerol and thus is expected to be useful for preventing or treating fatty liver and hepatitis due to lipid dysmetabolism of alcoholic and non-alcoholic liver.
  • The composition of the present invention varies lipid composition in various tissues. In addition, it can vary fat content and distribution and also reduce plasma cholesterol and triacylglycerol levels.
  • The composition of the present invention is effective for formation of NO in endothelial cells and thus is expected to be useful for preventing or treating cardiac diseases, vascular diseases, hypertension and erectile dysfunction. As hypertension-causing diseases, mention may be made of cardiac insufficiency, myocardial infarction, rupture of the cerebrovascular system, thrombosis and kidney damage.
  • The composition of the present invention is a material eliciting promotion of fatty acid oxidation and energy consumption in distal tissues and thereby is expected to be useful for treating or preventing common obesity and also in removing localized fat deposits such as subcutaneous and abdominal fat. Accordingly, the composition of the present invention is expected to be useful for delivering drugs in the form of ointments, patches including anti-inflammatory patches, and creams when desired to remove fat from particular regions where fat is locally deposited, such as removing subcutaneous fat from protuberant parts of the eye-lids, arms and hips, abdominal fat and fat of particular regions, for example, cellulite.
  • Further, the composition of the present invention may be used as an anti-diabetic agent by lowering the level of blood glucose. In addition, it was confirmed that the composition of the present invention improves decreased sensitivity to insulin and thereby enhances the effects of insulin.
  • The composition of the present invention promotes mitochondrial biogenesis, thereby increasing active capacity of mitochondria and at the same time, induces conversion of muscle tissues into motor tissues, thereby resulting in improved locomotive capacity of patients, reinforced endurance, improved energy productivity, fatigue-recovery, increased vital power, reduction of oxidative stress through increased ability to remove reactive oxygen species (ROS) and free radicals, and therefore the composition is expected to be effective for treating diseases concerned.
  • As diseases that may be caused by reactive oxygen species (ROS), mention may be made of the following: arteriosclerosis, diabetes mellitus, neurological diseases, kidney diseases, hepatocirrhosis, arthritis, Retinopathy of Prematurity, ocular uveitis, senile cataract, side effect disorders by radiotherapy, bronchial damage due to smoking, side effect disorders by carcinostatic agents, cerebral edema, lung edema, foot edema, cerebral infarction, hemolytic anemia, progeria, epilepsy, Alzheimer's disease, Down's syndrome, Crohn's disease and collagen disease.
  • As mentioned above, the composition of the present invention was shown to provide beneficial effects for all of the above-mentioned conditions and diseases, by modulating glucose and lipid homeostasis. Therefore, it can be seen that the composition of the present invention is a suitable material for control of metabolic syndrome.
  • The present invention relates to use of a compound for preparing a pharmaceutical composition for therapy and/or prophylaxis of multiple metabolic syndrome (metabolic syndrome), that is, metabolic syndrome characteristically appearing with hyperinsulinemia, insulin resistance, obesity, glucose intolerance, type II diabetes mellitus, dyslipidemia, cardiovascular diseases or hypertension, in particular.
  • 2. Pharmaceutical Preparations
  • The compositions for preventing and treating metabolic syndrome comprising tanshinone derivatives as the effective ingredient can prevent and treat metabolic syndrome through activation of metabolism, and thus it is believed that they can be developed as various drugs for a variety of diseases associated with metabolic syndrome. The composition for preventing and treating metabolic syndrome in accordance with the present invention comprises the above-mentioned tanshinone derivatives as the effective ingredient, and can be formulated into the metabolic syndrome-prophylactic and therapeutic agent, in conjunction with a phannaceutically acceptable carrier, if necessary.
  • A suitable dose of the pharmaceutical composition of the present invention may vary depending upon various factors such as formulation method, administration fashion, age, weight and sex of patients, pathological conditions, diet, administration time, administration route, excretion rate and sensitivity to response. The pharmaceutical composition of metabolic syndrome-prophylactic and therapeutic agent in accordance with the present invention comprises tanshinone derivatives as the effective ingredient. The tanshinone derivatives can be administered via oral or parenteral routes upon clinical administration and can be used in general forms of pharmaceutical formulations. That is, the composition in accordance with the present invention may be administered by various oral and parenteral formulations, upon practical clinical administration. When formulating, the formulations are prepared using conventional filling agents, extenders, binding agents, wetting agents, disintegrating agents, diluents such as surfactants, or excipients. Solid formulations for oral administration include, for example, tablets, pills, powders, granules and capsules, and are prepared by mixing tanshinone derivatives with one or more excipients, such as starch, calcium carbonate, sucrose, lactose and gelatin. Lubricating agents such as magnesium stearate and talc may also be used, except for simple excipients. As liquid formulations for oral administration, mention may be made of suspensions, solutions for internal use, emulsions and syrups. In addition to generally used simple diluents such as water and liquid paraffin, the above-mentioned formulations can contain various excipients, for example wetting agents, sweetening agents, aromatics and preservatives. Formulations for parenteral administration include sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized formulations and suppositories. As non-aqueous solvents and suspensions, there may be used propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethylolate, etc. As base materials for suppositories, Witepsol, macrogol, Tween 61, cacao butter, laurin butter, glycerol and gelatin may be used.
  • Dosage units may contain one-, two-, three- or four-fold amount of individual dose, or ½, ⅓ or ¼ fold amount of individual dose. Preferably, an individual dose contains an amount of the effective drug that is administered one time, and typically corresponds to the total amount administered for one day, or ½, ⅓ or ¼ fold-amount thereof. Although effective doses of tanshinone derivatives are concentration-dependent, they are preferably in the range of 0.1 to 1,000 mg/kg, more preferably 0.4 to 500 mg/kg and may be administered 1 to 6 times a day. Therefore, tanshinone derivatives may be administered in the range of 0.1 to 6,000 mg/day/kg bw, for adults.
  • In accordance with another aspect of the present invention, there is provided a health and functional food composition for preventing and treating metabolic syndrome, containing tanshinone derivatives as an effective ingredient.
  • The term “a health and functional food” used throughout the specification of the present invention refers to a food in which tanshinone derivatives are added to general foods to improve functions thereof. Tanshinone derivatives may be added to general foods or may be prepared in the form of capsules, powders, suspensions and the like. Intake of such a health and functional food containing tanshinone derivatives provides beneficial effects for health, and exhibits advantages in that there are no side effects caused by prolonged use of drugs because food material is used as the raw material, unlike conventional drugs.
  • If it is desired to use tanshinone derivatives of the present invention as a food additive, these derivatives can be added alone, or can be used in conjunction with other food or food ingredients, or may be used appropriately according to other conventional methods. Mixed amount of effective ingredients may be suitably determined depending upon the purpose of use (prophylactic, health or therapeutic treatment). Generally, in producing foods or beverages with which tanshinone derivatives are mixed, these derivatives may be added in an amount of 0.0001 to 10% by weight, and preferably in an amount of 0.1 to 5% by weight, relative to the total weight of raw materials. However, when prolonged intake is intended for the purpose of health and hygiene or for health control, the above-mentioned amount of tanshinone derivatives may be adjusted below the above-mentioned range. In addition, the health food of the present invention preferably contains tanshinone derivatives falling within the determined toxicity range, when it is employed as a pharmaceutical composition.
  • There is no particular limit to kinds of the above-mentioned foods. As examples of foods to which the tanshinone derivatives can be added, mention may be made of meats, sausages, bread, chocolate, candies, snack, confectionary, pizza, Ramen, other noodles, gum, skimmed milk, dried foods, raw foods, dairy products including lactic acid bacteria-fermented milk and ice cream, various soups, beverages, teas, drinks, alcoholic beverages and multi-vitamin preparations. Specifically, as examples of health foods containing tanshinone derivatives, mention may be made of health foods and special favorite products such as squeezed liquid, tea, jelly and juice made of tanshinone derivatives as main ingredients. In addition, mention may be made of folk medicines for edema, nephritis and urethritis as targets.
  • When it is desired to use tanshinone derivatives of the present invention as cosmetic raw materials, these derivatives can be added by themselves or can be used in conjunction with other cosmetic ingredients, or may be used appropriately according to other conventional methods. Mixed amount of effective ingredients may be suitably determined depending upon the purpose of use thereof. Generally, in producing cosmetics using tanshinone derivatives, these derivatives may be added in an amount of 0.0001 to 10% by weight, and preferably in the amount of 0.1 to 5% by weight, relative to the total weight of raw materials. Cosmetics include, but are not limited to, aftershaves, lotions, creams, packs and color cosmetics.
  • Tanshinone derivatives in accordance with the present invention may be extracted using Danshen (Salvia miltiorrhiza) as dried drug material or raw drug material, or may be synthesized by organochemical methods.
  • A process for extracting tanshinone derivatives from Danshen comprises: a) subjecting Danshen to water or organic solvent extraction to obtain crude extracts, b) filtering the crude extracts, followed by (vacuum) concentration, and c) optionally, removing solvent.
  • For example, Danshen is extracted with methanol, vacuum concentrated and then re-extracted with methylene chloride to obtain a concentrated solution. The solution is purified via silica column chromatography to obtain pure tanshinone derivatives. The present invention will be described in more detail by way of the following examples.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a bar graph comparing activity of AMPK (AMP-activated protein kinase) between the treatment group and control group, after treatment of myoblast cell line C2C12 with Danshen (Salvia miltiorrhiza) extract and tanshinone derivatives;
  • FIG. 2 shows results of Western blotting to determine effects of tanshinone derivatives on protein expression of total AMPK, p-AMPK, p-ACC and GLUT4, after treatment of myoblast cell line C2C12 with tanshinone derivatives;
  • FIG. 3 shows results of Western blotting to determine effects of tanshinone derivatives on gene expression of ACC 1 and 2, UCP-2, CPT1, PGC-1α and GLUT1, after treatment of myoblast cell line C2C 12 with tanshinone derivatives;
  • FIG. 4 is a graph comparing effects of tanshinone derivatives on cellular glucose uptake, between the treatment group and control group, after treatment of myoblast cell line C2C12 with tanshinone derivatives;
  • FIG. 5 is a micrograph showing results of effects of tanshinone derivatives on adipocyte differentiation, after treatment of preadipocyte cell line F442A with tanshinone derivatives;
  • FIG. 6 is a graph comparing results between the treatment group and control group in effects of tanshinone derivative on insulin sensitivity, after treatment of myoblast cell line C2C 12 with tanshinone derivatives;
  • FIG. 7 shows results of effects of cryptotanshinone on changes in body weight over time, after treatment of an animal model of obesity, DIO (diet-induced obesity) mice, with cryptotanshinene;
  • FIGS. 8 and 9 are, respectively, a graph and table showing effects of tanshinone derivatives on changes in body weight over time, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 10 is a graph comparing changes in adipocyte size between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 11 is a graph comparing fat distribution in terms of numerical values for respective organs between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 12 is a graph comparing adipose tissue distribution and fat accumulation in the livers between the treatment group and control group, by way of staining of livers following treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 13 is a table comparing changes in lipid and antioxidation indicator materials in liver tissues between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 14 is a table comparing changes in blood lipid and glucose between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 15 is a micrograph comparing changes in visceral fat distribution of mice between the treatment group and control group, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, with tanshinone derivatives;
  • FIG. 16 is a table showing effects of tanshinone derivatives on changes in blood glucose, after treatment of an animal model of obesity, Lepr db/Lepr db mice, with tanshinone derivatives;
  • FIG. 17 is a table comparing activity of compositions by double combination of tanshinone derivatives in accordance with the present invention;
  • FIG. 18 is a table showing changes in activity with respect to changes of ingredient ratio in compositions of the present invention;
  • FIG. 19 is a table comparing AMPK activity of compositions by triple combination of tanshinone derivatives in accordance with the present invention; and
  • FIG. 20 is a table showing results of effects of combination ratio between tetrahydrophenanthrene derivative group and phenanthrene derivative group of tanshinone derivatives on changes in body weight, after treatment of an animal model of obesity, C57BL/6JL Lep ob/Lep ob mice, at various combination ratios.
  • EXAMPLES
  • Now, the present invention will be described in more detail with reference to the following Examples. These examples are provided only for illustrating the present invention and should not be construed as limiting the scope and sprit of the present invention.
  • Example 1 Isolation of Tanshinone Derivatives
  • 5 kg of Danshen (Salvia miltiorrhiza) material was purchased from a Chinese medicinal herb shop and other necessary materials were collected in fields and mountains or were purchased from the shop. Danshen was eluted with 50 L of methanol for 24 hours and concentrated under reduced pressure. 1500 mL of water was added to the resulting material. Then, an equal amount of n-hexane, dichloromethane (CH2Cl2) and ethyl acetate (EtOAc) were added and sequentially extracted two times so as to obtain a gelatinous red extract. When activity was examined on the respective layers thus obtained, the activity was highest in the dichloromethane layer.
  • Silica gel (Kieselgel 60, 230 to 460 mesh, Merck) was sufficiently swelled with 100% n-hexane and then packed into a column (530 cm high). 50 g of the extract obtained from the CH2Cl2 layer was dissolved in a trace amount of EtOAc and n-hexane and the resulting sample was loaded onto the column. After loading and sufficiently eluting the sample, the resulting eluate was eluted with EtOAc gradient of from 10 to 20%, and was sequentially eluted with MeOH/CHCl3 gradient of 0/100 (v/v)→50/50 (v/v) to obtain tanshinone derivatives. Through measurement of AMPK activity, active fractions were pooled and concentrated under reduced pressure.
  • The material, which exhibited activity in the first column, was again separated using silica gel (Kieselgel 60, 230 to 460 mesh, Merck). This was followed by swelling with 100% n-hexane and packing into a column (425 cm high). EtOAc/n-hexane=0/100 (v/v)→20/80 (v/v) was used as a developing solvent. Fractions exhibiting inhibitory activity were pooled and concentrated under reduced pressure.
  • Next, Prep-TLC was carried out under the developing solvent, EtOAc/n-hexane=30/70 (v/v). TLC was carried out in each step and the degree of separation of the respective fractions was observed. As the developing solvent, EtOAc/n-hexane=80/20 (v/v) was used in a normal phase. Search for the respective materials was performed by heating and developing a TLC plate in a hot plate using an anisaldehyde staining solvent (5% H2SO4, 2.5% acetic acid, 5% anisaldehyde, and 87.5% ethanol). In this manner, tanshinone derivatives were extracted, separated and purified.
  • Example 2 Structural Analysis of Separated Active Material
  • NMR analysis was performed to determine structures of cryptotanshinone, tanshinone I, tanshinone IIA and 15,16-dihydrotanshinone I separated in Example 1, respectively.
  • Cryptotanshinone
  • 1H-NMR (CDCl3): δ 7.42 (2H, ABq, J=8.0 Hz), 4.83 (1H, t, J=9.2 Hz), 4.31 (1H, dd, J=9.2 and 6.0 Hz), 3.55 (1H, m), 3.17 (2H, br t), 1.65 (4H, m), 1.40 (3H, d, J=6.8 Hz), 1.28 (6H, s)
  • 13C-NMR (CDCl3): δ 9.58 (C-1), 19.00 (C-2), 37.73 (C-3), 34.76 (C-4), 143.57 (C-5), 132.48 (C-6), 122.43 (C-7), 128.30 (C-8), 126.19 (C-9), 152.28 (C-10), 184.16 (C-11), 175.59 (C-12), 118.21 (C-13), 170.66 (C-14), 81.38 (C-15), 34.54 (C-16), 18.74 (C-17), 31.85 (C-18), 31.80 (C-19)
  • Tanshinone II-A
  • 1H-NMR (CDCl3, 300.40 MHz) δ 7.63 (1H, d, J=8.2 Hz), 7.54 (1H, d, J=8.2 Hz), 7.22 (1H, s), 3.18 (2H, t, J=6.6 Hz), 2.26 (3H, s), 1.78 (2H, m), 1.65 (2H, m), 1.31 (6H, s).
  • 13C-NMR (CDCl3, 75.45 MHz) δ 184.29, 176.43, 162.38, 150.80, 145.14, 141.96, 134.13, 128.12, 127.16, 121.81, 120.91 120.57, 38.52, 35.33, 32.51, 30.56, 19.79, 9.46.
  • 15,16-Dihydrotanshinone I
  • 1H-NMR (CDCl3, 300.40 MHz) δ 9.24 (1H, d, J=10.6 Hz), 8.24 (1H, d, J=10.3 Hz), 7.69 (1H, d, J=10.3 Hz), 7.54 (1H, dd, J=10.6, 8.4 Hz), 7.41 (1H, d, J=8.4 Hz), 4.95 (1H, t, J=11.3 Hz), 4.41 (1H, dd, J=11.3 Hz, 7.5 Hz), 3.62 (1H, m), 2.66 (3H, s), 1.38 (3H, d, J=8.1 Hz).
  • 13C-NMR (CDCl3, 75.45 MHz) δ 184.26, 175.67, 170.56, 142.00, 134.95, 134.72, 132.06, 131.90, 130.38, 128.81, 128.18, 126.01, 124.99, 120.28, 118.32, 114.06, 81.62, 34.68, 19.85, 18.81.
  • Tanshinone I
  • 1H-NMR (CDCl3, 300.40 MHz) δ 9.19 (1H, d, J=10.6 Hz), 8.23 (1H, d, J=10.3 Hz), 7.73 (1H, d, J=10.3 Hz), 7.50 (1H, dd, J=10.6, 8.5 Hz), 7.30 (1H, d, J=8.5 Hz), 7.26 (1H, q, J=1.3 Hz), 2.64 (3H, s), 2.25 (3H, d, J=1.3 Hz).
  • 13C-NMR (CDCl3, 75.45 MHz) δ 183.38, 175.55, 161.13, 142.00, 135.18, 133.58, 132.90, 132.69, 130.63, 129.57, 128.31, 124.73, 123.03, 121.72, 120.43, 118.69, 19.84, 8.79.
  • Example 3 Determination of AMPK Activity
  • Myoblast cells, C2C12, were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce differentiation of cells. Enzymatic activity of AMPK was determined as follows. C2C12 cells were lysed to obtain protein extracts and then ammonium sulfate was added to a final concentration of 30%, followed by precipitation of proteins. Protein precipitates were dissolved in a buffer (62.5 mM Hepes, pH 7.2, 62.5 mM NaCl, 62.5 mM NaF, 1.25 mM Na pyrophosphate, 1.25 mM EDTA, 1 mM DTT, 0.1 mM PMSF, and 200 μM AMP). Thereafter, 200 μM SAMS peptide (HMRSAMSGLHLVKRR: the underlined serine residue is a phosphorylation site, as an AMPK phosphorylation site of acetyl-CoA carboxylase) and [γ-32P]ATP were added thereto and reactants were reacted for 10 minutes at 30° C. This was followed by spotting of the resulting reaction solution on p81 phosphocellulose paper. The p81 paper was washed with a 3% phosphate solution and radioactivity was measured. For each reaction condition, reactions involving no SAMS peptide were also conducted and basic values were subtracted from the total values.
  • As can be seen from FIG. 1, when myoblast cells, C2C12, were treated with Danshen extracts and tanshinone derivatives, this leads to increased enzymatic activity of AMPK.
  • Example 4 Determination of Expression Levels of t-AMPK, p-AMPK, p-ACC and GLUT 4 Enzymes
  • Myoblast cells, C2C12 were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce cellular differentiation. Differentiated cells were treated with 30 μM tanshinone derivatives, respectively. Enzymatic activity of AMPK was measured by lysing C2C12 cells to obtain protein extracts and subjecting protein extracts to Western Blot analysis so as to determine the amount of total AMPK, p-AMPK (phosphorylated AMPK), p-ACC (phosphorylated acetyl-CoA carboxylase) and GLUT4 (glucose transporter 4) proteins.
  • As can be seen from FIG. 2, when comparing with the control group, tanshinone derivative-treated cells exhibited increased amount of the phosphorylated AMPK protein, increased amount of the phosphorylated ACC protein and increased expression level of GLUT4 protein, even though there was no change in the total amount of AMPK protein.
  • Example 5 Effects of Tanshinone Derivative on Fatty Acid Metabolism and Biosynthesis of Mitochondria
  • Myoblast cells, C2C12 were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce cellular differentiation. Differentiated cells were treated with 30 μM tanshinone derivatives, respectively. RNAs were extracted from cells and RT-PCR was performed to observe effects of respective tanshinone derivatives on gene expression of ACC-1 (acetyl-CoA carboxylase-1), ACC-2, CPT1 (carnitine palmitoyltransferase I), PGC 1α (peroxisome proliferator-activated receptor gamma co-activator 1α), GLUT1 (glucose transporter 1) and UCP-2 (uncoupling protein-2).
  • As can be seen from FIG. 3, when comparing with the control group, tanshinone derivative-treated cells exhibited increased expression level of genes for ACC-1, ACC-2, CPT1, PGC-1α, UCP-2 and GLUT1.
  • Example 6 Analysis of the Degree of Glucose Uptake
  • Myoblast cells, C2C12, were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce cellular differentiation. Fully differentiated cells were further cultured in Krebs-Ringer Buffer (KRB) containing 5 mM glucose, for an additional 2 hours. Cells were treated with tanshinone derivatives for a predetermined period of time, 0.2 μCi 2-deoxyglucose was added thereto and allowed to stand for 2 min. After removing the KRB buffer, cells were washed with ice-cold physiological saline buffer, and cells were lysed using 0.5 N NaOH, followed by determination of counts per minute (cpm) using a radiation counter. In this case, non-specific uptake of glucose was determined with the KRB buffer containing 10 μM Cytochalasin B and was subtracted from the total value.
  • As can be seen from FIG. 4, when C2C12 cells were treated with 30 μM tanshinone derivatives, respectively, the thus-treated cells exhibited increased uptake of glucose, compared to the control group.
  • Example 7 Determination of Adipocyte Differentiation Inhibitory Activity
  • Preadipocytes, 3T3-L1 and F442A, were cell cultured in DMEM containing 10% bovine calf serum. When cell density of respective preadipocytes reached about 90%, 3T3-L1 cells were treated with Dexamethasone, IBMX, and insulin for about 48 to 55 hours to induce differentiation of adipocytes. Then, the culture medium was replaced with a medium containing fetal calf serum and insulin every 2 days. In the case of F442A cells, when cell density of preadipocytes reached about 90%, the culture medium was replaced with a medium containing 10% fetal calf serum and insulin and the culture medium was replaced every 2 days, so as to induce differentiation of adipocytes. In order to determine inhibitory effects of adipocyte differentiation, cells in the early stages of adipocyte differentiation were treated with tanshinone derivatives, which was extracted from Danshen, in a concentration of 5 to 30 μM, and were compared with the control group. Differentiation of more than 90% of cells into adipocytes took about 12 to 15 days. In order to study activity of the respective fractions, cells were treated for the same period of time as the control group and were observed under microscope to examine efficacy of tanshinone derivative treatment.
  • FIG. 5 is a micrograph comparing adipocyte differentiation ability between tanshinone derivative-treated group and control group, with respect to induction timing of adipocyte differentiation. In the case of the control group, differentiation of 80 to 90% of F442A cells into adipocytes took about 11 days. Whereas, in the case of tanshinone derivative-treated group, when cells were treated with a concentration of 30 μM tanshinone derivatives from the early stage of differentiation, only 5 to 10% of cells differentiated into adipocytes in the same period of time.
  • Example 8 Effects of Tanshinone Derivatives on Insulin Sensitivity in Muscle Cells
  • Myoblast cells, C2C12, were cell cultured in DMEM containing 10% bovine calf serum. When cell density reached a range of about 85% to 90%, the culture medium was replaced with 1% bovine calf serum medium to induce cellular differentiation. By treating differentiated myoblast cells with insulin and tanshinone derivatives separately, or in combination thereof, the degree of glucose uptake with respect to various concentrations of the tanshinone derivatives was determined and thereby effects of tanshinone derivatives on insulin sensitivity were examined.
  • As can be seen from FIG. 6, when tanshinone derivatives were administered at various concentrations in the presence of insulin, this exhibited facilitated concentration-dependent uptake of glucose into muscle cells, as compared to the group to which insulin alone was administered and the control group.
  • Example 9 Assay of Obesity Prophylactic and Therapeutic Effects in Animal Model of Obesity, DIO Mouse
  • As the most commonly used mouse model for diet-induced obesity (DIO), 4-week-old C57BL/6 male mice were fed a high-fat diet (D12451, 45% kcal fat, Research Diets, New Brunswick, N.J.).
  • As a result, fat excessively accumulated in the animal body and about 3 months after birth, the mice then maintained a body weight of more than 31 to 32 g, which is 1.4 times that of normal mice. In order to examine the effects of tanshinone derivatives on fat metabolism, 3-month-old DIO mice (16 animals), weighing 31 to 32 g, were divided into two groups, one experimental group and one control group, consisting of 8 animals each. 8 mice of the experimental group were administered tanshinone derivatives at a concentration of 100 mg/kg, for 30 days, at a predetermined time point. Whereas, the control group was administered an equal amount of distilled water alone. When the body weights of the experimental group and control group were measured after 30 days of administration, the experimental group to which tanshinone derivatives was administered exhibited significantly lower body weight, as compared to the control group, as shown in FIG. 7.
  • Example 10 Effects of Tanshinone Derivative Administration on Obese Mice (ob/ob)
  • 10-week-old C57BL/6JL Lep ob/Lep ob male mice having obesity characteristics were purchased from Daehan Biolink Co., Ltd. (Chungchongbuk-do, Korea). Animals were raised in a breeding room maintained at a temperature of 23C, 55% humidity, illumination of 300 to 500 lux, a light-dark cycle of 12:12 hours, and ventilation of 10 to 18 times/hr. Animals were fed pellets of Purina Rodent Laboratory Chow 5001 (purchased from Purina Mills Inc., St. Louis, Mo., USA) and water ad libitum. Mice were allowed to acclimate to new environment of the breeding room for two weeks and were administered 300 mg/kg of tanshinone derivatives for 26 days. Observation was made on changes in body weight, blood glucose and dietary intake, with respect to time points of administration. After completion of administration, computed Tomography (CT) was performed to confirm changes in fat tissue distribution of animals, changes in fat distribution of tissues in various organs, changes in size of adipocytes, glucose in blood and liver, and changes in lipid and enzymes. The table of FIG. 9 shows body weight loss effects according to administration of tanshinone derivatives.
  • FIG. 8 is a graph comparing changes in body weight over time, between C57BL/6JL Lep ob/Lep ob mice, to which tanshinone derivatives were administered and a control group. As can be seen from FIG. 8, administration of tanshinone derivatives lead to a significant reduction in body weight, as compared to the control group.
  • FIG. 10 is a graph comparing adipocyte size in terms of numerical values, between C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered and a control group. As can be seen from FIG. 10, the experimental group to which tanshinone derivatives were administered exhibited a reduction of more than 60% in adipocyte size, as compared to the control group.
  • FIG. 11 is a graph comparing fat distribution in terms of numerical value for respective organs between C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered and a control group. As can be seen from FIG. 11, the experimental group to which tanshinone derivatives were administered exhibited a significant reduction in fat content of tissues for all organs, and increased brown fat content compared with the control group, indicating that fat metabolism was significantly increased.
  • FIG. 12 is a graph comparing adipose tissue distribution in the liver by H&E staining and Oil-Red O staining, for normal mice, obese mice and C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered. As shown in FIG. 12, it was confirmed through staining of adipose tissues that administration of tanshinone derivatives resulted in a pronounced reduction of fat accumulation in the liver, as compared to the control group of obese mice.
  • FIG. 13 is a table showing results for changes in lipid and antioxidation indicator materials in liver tissues between C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered and a control group. As can be seen from FIG. 13, the group to which tanshinone derivatives were administered exhibited significant reductions in total fat contents, triglyceride, cholesterol, GOT and GPT in the liver, compared with the control group.
  • FIG. 14 is a table comparing changes in lipid and glucose in the blood between C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered and control group. As can be seen from FIG. 14, the group to which tanshinone derivatives were administered exhibited significant reductions in triglyceride, cholesterol, GOT and glucose in blood, compared with the control group.
  • FIG. 15 shows analyzed results of computed Tomography (CT) of C57BL/6JL Lep ob/Lep ob mice to which tanshinone derivatives were administered. As can be seen from FIG. 15, the experimental group to which tanshinone derivatives were administered exhibited a significant reduction in visceral fat distribution, compared with the control group.
  • Example 11 Assay of Diabetes Prophylactic and Therapeutic Effects in Animal Model of Diabetes, Lepr db/Lepr db Mouse
  • Lepr db/Lepr db male mice lack leptin receptors and thus continuously and excessively consume feed due to their uncontrolled appetite. As a result, fat is excessively accumulated in the animal body and blood glucose level is elevated, resulting in about 350 to 400 mg/dl of blood glucose level about 10 to 11 weeks after birth. In order to examine prophylactic and therapeutic effects of diabetes by tanshinone derivatives, adult Lepr db/Lepr db male mice with blood glucose level of about 350 to 400 mg/dl were divided into two groups, one experimental group and one control group, consisting of 10 animals each. 10 mice of the experimental group were administered tanshinone derivatives at a concentration of 300 mg/kg, for 12 days. Whereas, 10 mice of the control group was administered an equal amount of distilled water alone, instead of tanshinone derivatives. FIG. 16 is a table showing changes in blood glucose with respect to administration period of tanshinone derivatives and it can be seen that there were blood glucose-lowering effects by tanshinone derivatives.
  • Example 12 Synergistic Effects of AMPK Activity with Respect to Combination Ratio Between Tanshinone Derivatives
  • Using muscle cells, this example was carried out to confirm synergistic effects of AMPK activity with respect to the combination ratio between derivatives, which contained tanshinone I, tanshinone IIA, cryptotanshinone and 15,16-dihydrotanshinone I, as main ingredients. That is, we have attempted to confirm inter-complementary functions between derivatives according to gene expression as shown in Example 5 and thereby synergistic effects by any combination of tanshinone derivatives through AMPK activity.
  • The respective ingredients of tanshinone I, tanshinone IIA, cryptotanshinone and 15,16-dihydrotanshinone I were doubly or triply combined to prepare different compositions. AMPK activity of the prepared compositions and the AMPK activity of respective ingredients included in those compositions were compared to confirm synergistic effects. In addition, we have attempted to confirm AMPK activity with respect to changes in the combination ratio by varying the ratio between ingredients in the compositions, and to obtain synergistic effects of activity by any combination of tanshinone derivatives.
  • FIG. 17 is a table comparing activity of compositions by double combination of tanshinone derivatives, FIG. 18 is a table showing changes in activity with respect to changes of ingredient ratio in double combinations, and FIG. 19 is a table comparing AMPK activity of compositions by triple combination of tanshinone derivatives.
  • First, as can be seen from FIGS. 17 and 18, compositions containing a two- or three-component combination of tanshinone derivatives exhibited significantly larger AMPK activity than those of the respective ingredients, at the same concentration. It could be seen that such synergistic effects due to combinations of derivative ingredients are very unique phenomena having no relationship with kinds of ingredients. Whereas, as can be seen from FIG. 18, differences in combination ratio between the respective ingredients in the same compositions resulted in specifically different AMPK activity depending upon kinds of ingredients.
  • Example 13 Synergistic Effects of Reduction in Body Weight with Respect to Combination Ratio Between Tanshinone Derivatives
  • 10-week-old C57BL/6JL Lep ob/Lep ob male mice having obesity characteristics were purchased from Daehan Biolink Co., Ltd. (Chuigchongbuk-do, Korea). Animals were raised in a breeding room maintained at a temperature of 23, 55% humidity, illumination of 300 to 500 lux, a light-dark cycle of 12:12 hours, and ventilation of 10 to 18 times/hr. Animals were fed pellets of Purina Rodent Laboratory Chow 5001 (purchased from Purina Mills Inc., St. Louis, Mo., USA) and water ad libitum. Mice were allowed to acclimate to new environment of the breeding room for two weeks and were administered tanshinone derivatives. Tanshinone derivatives contained in Danshen extracts were divided into two groups: a tetrahydrophenanthrene derivative group (1:1 ratio of cryptotanshinone and tanshinone IIA), and a phenanthrene derivative group (2:1 ratio of tanshinone I and 15,16-dihydrotanshinone I), and the ratio between tanshinone derivatives was optionally adjusted. In this manner, we attempted to examine effects of changes in ingredient ratio on body weight and thus to confirm effects of inter-complementary actions. Combination ratio between the tetrahydrophenanthrene derivative group and phenanthrene derivative group was varied from 10:1 to 1:10 and administered to animals at a dose of 300 mg/kg for 26 days. Changes in body weight with administration of derivatives were measured and body weight reduction effects with respect to changes in the ingredient ratio were shown in FIG. 20. As can be seen from FIG. 20, changes in the combination ratio between the tetrahydrophenanthrene derivative and phenanthrene derivative lead to changes in reduction (%) of body weight. In particular, excellent synergistic effects were confirmed, when the combination ratio (tetrahydrophenanthrene derivative:phenanthrene derivative) was in the range of 5:1 to 1:5 and more preferably, in the range of 2.5:1 to 1:2.5.
  • Example 14 Acute Toxicity Test
  • 1. Oral Administration
  • ICR mice, weighing 23±2 g and Sprague-Dawley rats, weighing 250±7 g (Jung-Ang Lab Animal Inc., Seoul, Korea) were divided into 4 groups, consisting of 10 animals each, and were orally administered tanshinone derivatives in accordance with the present invention at doses of 100, 500 and 1,000 mg/kg, respectively. After oral administration, upon observing for 2 weeks whether toxicity was exhibited or not, none of the animals died in all four groups and no visually observable symptoms were noticed compared to the control group (except loss of weights).
  • 2. Peritoneal Administration
  • ICR mice, weighing 25±3 g and Sprague-Dawley rats, weighing 255±6 g (Jung-Ang Lab Animal Inc., Seoul, Korea) were divided into 4 groups, consisting of 10 animals each, and were peritoneally administered tanshinone derivatives in accordance with the present invention at doses of 10, 50 and 100 mg/kg, respectively. After peritoneal administration, upon observing for 2 weeks whether toxicity was exhibited or not, none of the animals died in all four groups and no visually observable symptoms were noticed compared to the control group (except loss of weights).
  • It was confirmed from the above-mentioned results that tanshinone derivatives in accordance with the present invention had no acute toxicity.
  • Hereinafter, Preparation Examples of the pharmaceutical composition in accordance with the present invention will be described. These examples are provided only for illustrating the present invention and should not be construed as limiting the scope and sprit of the present invention
  • Example 15 Preparation of Tablet
  • Tanshinone derivatives 200 g
    Milk serum protein 640 g
    Crystalline cellulose 140 g
    Magnesium stearate  10 g
    Hydroxypropylmethylcellulose  10 g
  • Example 16 Preparation of Powdered Formulation
  • Tanshinone derivatives 10 g
    Soybean protein 50 g
    Carboxycellulose 40 g
    Total 100 g 
  • Example 17 Application of Tanshinone Derivatives to Milk
  • Milk 99.9%
    Tanshinone derivatives 0.1%
  • Example 18 Application of Tanshinone Derivatives to Orange Juice
  • Liquid fructose   5%
    Polydextrose
      1%
    Citric acid   5%
    Vitamin C 0.02% 
    Tanshinone derivatives 0.1%
    Concentrates of orange fruit juice  25%
    Sucrose fatty acid ester 0.2%
    Water  63%
  • Example 19 Preparation of Beverage
  • Calcium lactate 50 mg
    Citric acid 5 mg
    Nicotinic amide
    10 mg
    Riboflavin sodium hydrochloride 3 mg
    Pyridoxine hydrochloride
    2 mg
    Arginine
    10 mg
    Sucrose fatty acid ester 10 mg
    Tanshinone derivatives
    10 mg
    Water
    200 ml
  • Example 20 Application of Tanshinone Derivatives to Cosmetic Lotion
  • 1,3-butylene glycol   5%
    Glycerine
      5%
    EDTA-2Na 0.02% 
    Trimethylglycine 2.0%
    Cetanol 1.0%
    Glyceryl monostearate emulsifier 1.0%
    Polysorbate 60 1.2%
    Sorbitan sesquioleate 0.3%
    Cetyl 2-ethyl-hexanoate 4.0%
    Squalane 5.0%
    Dimethicone 0.3%
    Glyceryl stearate 0.5%
    Carbomer 0.15% 
    Triethanolamine 0.5%
    Imidazolidinyl urea 0.2%
    Tanshinone derivatives
      1%
    Purified water 71.8% 
  • Example 21 Application of Tanshinone Derivatives to Cosmetic Skin Care
  • 1,3-butylene glycol 4.0%
    Dipropylene glycol 5.0%
    EDTA-2Na 0.02% 
    Octyldodeceth-16 0.3%
    PEG60 hydrogenated castor oil 0.2%
    Tanshinone derivatives 0.1%
    Purified water  90%
  • INDUSTRIAL APPLICABILITY
  • As described above, a composition in accordance with the present invention effectively reduces body weight through metabolic activation, prevents fat accumulation in the body, lowers blood glucose level, and effectively decreases amounts of cholesterol and triglyceride, and thus is useful for preventing and treating metabolic syndrome. In addition, the composition prevents fat accumulation in the body, as well as enhances insulin sensitivity, thus controlling blood glucose level, and therefore may be useful in developing foods, cosmetics and medicinal compositions capable of preventing or treating various diseases associated with metabolic syndrome resulting from dysfunction of fat and glucose metabolism.
  • Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (41)

1. A composition for preventing or treating obesity and metabolic syndrome diseases, comprising a therapeutically and/or prophylactically effective amount of Danshen (Salvia miltiorrhiza) extract as an effective ingredient.
2. The composition as set forth in claim 1, wherein the Danshen extract comprises one or more compounds selected from tetrahydrophenanthrene derivative and phenanthrene derivative.
3. The composition as set forth in claim 2, wherein the tetrahydrophenanthrene derivative comprises one or more compounds selected from the group consisting of cryptotanshinone and tanshinone IIA.
4. The composition as set forth in claim 2, wherein the phenanthrene derivative comprises one or more compounds selected from the group consisting of tanshinone I and 15,16-dihydrotanshinone I.
5. The composition as set forth in claim 2, wherein the Danshen extract comprises one or more compounds selected from the group consisting of cryptotanshinone, tanshinone IIA, 15,16-dihydrotanshinone I and tanshinone I.
6. The composition as set forth in claim 5, further comprising:
one or more compounds selected from the group consisting of 1β-hydroxycryptotanshinone, 1-oxocryptotanshinone, tanshinol B, tanshinol IIB, przewaquinone A, dihydroisotanshinone I, tanshinone IIA sulfonate, 1,2-dihydrotanshinone I and tanshinone VI.
7. The composition as set forth in claim 2, wherein the ratio of tetrahydrophenanthrene derivative:phenanthrene derivative is in the range of 10:1 to 1:10 (w/w).
8. The composition as set forth in claim 7, wherein the ratio of tetrahydrophenanthrene derivative:phenanthrene derivative is in the range of 5:1 to 1:5.
9. The composition as set forth in claim 8, wherein the ratio of tetrahydrophenanthrene derivative:phenanthrene derivative is in the range of 2.5:1 to 1:2.5.
10. The composition as set forth in claim 2, wherein the tetrahydrophenanthrene derivative includes cryptotanshinone and tanshinone IIA, and the ratio therebetween is in the range of 1:5 to 5:1 (w/w).
11. The composition as set forth in claim 2, wherein the phenanthrene derivative includes 15,16-dihydrotanshinone I and tanshinone I, and the ratio therebetween is in the range of 1:5 to 5:1 (w/w).
12. The composition as set forth in claim 5, wherein the composition comprises cryptotanshinone as the main ingredient.
13. The composition as set forth in claim 5, wherein the composition comprises 15,16-dihydrotanshinone I as the main ingredient.
14. The composition as set forth in claim 5, wherein the composition comprises tanshinone IIA as the main ingredient.
15. The composition as set forth in claim 5, wherein the composition comprises tansbinone I as the main ingredient.
16. The composition as set forth in claim 5, wherein the composition comprises cryptotanshinone as the essential ingredient, and optionally, comprises one or more compounds selected from the group consisting of tanshinone IIA, 15,16-dihydrotanshinone I and tansbinone I.
17. The composition as set forth in claim 5, wherein the composition comprises tanshinone IIA as the essential ingredient, and optionally, comprises one or more compounds selected from the group consisting of cryptotanshinone, 15,16-dihydrotanshinone I and tanshinone I.
18. The composition as set forth in claim 5, wherein the composition comprises 15,16-dihydrotanshinone I as the essential ingredient, and optionally, comprises one or more compounds selected from the group consisting of cryptotanshinone, tanshinone IIA and tanshinone I.
19. The composition as set forth in claim 5, wherein the composition comprises tanshinone I as the essential ingredient, and optionally, comprises one or more compounds selected from the group consisting of cryptotanshinone, tanshinone IIA and 15,16-dihydrotanshinone I.
20. The composition as set forth in claim 16, wherein the composition comprises both cryptotanshinone and 15,16-dihydrotanshinone I.
21. The composition as set forth in claim 16, wherein the composition comprises both cryptotanshinone and tanshinone IIA.
22. The composition as set forth in claim 17, wherein the composition comprises both tanshinone IIA and 15,16-dihydrotanshinone I.
23. The composition as set forth in claim 17, wherein the composition comprises both tanshinone IIA and tanshinone I.
24. The composition as set forth in claim 18, wherein the composition comprises both 15,16-dihydrotanshinone I and tanshinone I.
25. The composition as set forth in claim 16, wherein the composition comprises both tanshinone I and cryptotanshinone.
26. The composition as set forth in claim 20, wherein the mixing ratio between both ingredients is in the range of 10:1 to 1:10 (w/w).
27. The composition as set forth in claim 26, wherein the mixing ratio is in the range of 5:1 to 1:5.
28. The composition as set forth in claim 1, wherein the metabolic syndrome disease is at least one selected from the group consisting of obesity, diabetes, arteriosclerosis, hypertension, hyperlipidemia, hepatic diseases, cerebral apoplexy, myocardial infarction, ischemic diseases and cardiovascular diseases.
29. The composition as set forth in claim 1, wherein the composition increases activity of 5′ AMP-activated protein kinase (AMPK)
30. The composition as set forth in claim 29, wherein the composition increases activity of AMPK to promote cellular blood glucose uptake, thereby lowering blood glucose level.
31. The composition as set forth in claim 29, wherein the composition increases activity of AMPK to exhibit obesity-inhibitory activity.
32. The composition as set forth in claim 29, wherein the composition increases activity of AMPK to exhibit blood lipid-lowering activity.
33. The composition as set forth in claim 29, wherein the composition increases activity of AMPK to exhibit activity of inhibiting hepatocytic damage and formation of fatty liver.
34. The composition as set forth in claim 29, wherein the composition increases activity of AMPK to exhibit therapeutic activity on arteriosclerosis, hypertension, cerebral apoplexy, ischemic diseases and cardiovascular diseases.
35. A pharmaceutical formulation for preventing and/or treating obesity and metabolic syndrome diseases, comprising the composition of claim 1 as the active ingredient and one or more pharmaceutically acceptable carriers or excipients.
36. The formulation as set forth in claim 35, wherein the content of the active ingredient is in the range of 0.0001 to 10% by weight.
37. The formulation as set forth in claim 35, wherein the formulation is a multi-or unit-dosage form for oral or parenteral administration, including tablets, powder, hard or soft capsules, suspensions, injectable preparations and emulsions.
38. The formulation as set forth in claim 35, wherein the active ingredient in the formulation is administered in the range of 0.1 to 6,000 mg/day/kg bw, for adults.
39. The formulation as set forth in claim 35, wherein the formulation comprises a pharmaceutically acceptable excipient such that it can be prepared in the form of beverages, foods or cosmetics.
40. A process for preparing a Danshen extract, comprising:
subjecting Danshen (Salvia miltiorrhiza) to water or organic solvent extraction to obtain crude extracts;
filtering the crude extracts, followed by (vacuum) concentration; and optionally,
removing solvent.
41. The formulation as set forth in claim 40, wherein the Danshen is a dried drug material or raw drug material.
US10/584,983 2003-12-30 2004-12-30 Obesity and Metabolic Syndrome Treatment with Tanshinone Derivatives Which Increase Metabolic Activity Abandoned US20070248698A1 (en)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
KR20030099556 2003-12-30
KR20030099657 2003-12-30
KR10-2003-0099658 2003-12-30
KR10-2003-0099556 2003-12-30
KR10-2003-0099557 2003-12-30
KR10-2003-0099657 2003-12-30
KR20030099658 2003-12-30
KR20030099557 2003-12-30
KR10-2004-0036195 2004-05-21
KR10-2004-0036197 2004-05-21
KR20040036197 2004-05-21
KR20040036195 2004-05-21
KR20040050200 2004-06-30
KR10-2004-0050200 2004-06-30
PCT/KR2004/003546 WO2005063232A1 (en) 2003-12-30 2004-12-30 Obesity and metabolic syndrome treatment with tanshinone derivatives which increase metabolic activity

Publications (1)

Publication Number Publication Date
US20070248698A1 true US20070248698A1 (en) 2007-10-25

Family

ID=36647291

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/584,983 Abandoned US20070248698A1 (en) 2003-12-30 2004-12-30 Obesity and Metabolic Syndrome Treatment with Tanshinone Derivatives Which Increase Metabolic Activity
US12/555,233 Expired - Fee Related US8029832B2 (en) 2003-12-30 2009-09-08 Obesity and metabolic syndrome treatment with tanshinone derivatives which increase metabolic activity

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/555,233 Expired - Fee Related US8029832B2 (en) 2003-12-30 2009-09-08 Obesity and metabolic syndrome treatment with tanshinone derivatives which increase metabolic activity

Country Status (9)

Country Link
US (2) US20070248698A1 (en)
EP (1) EP1706108A4 (en)
JP (1) JP2007517025A (en)
KR (2) KR100818586B1 (en)
CN (1) CN102579460B (en)
AU (1) AU2004308874B2 (en)
CA (1) CA2552311C (en)
MX (1) MXPA06007621A (en)
WO (1) WO2005063232A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187928A1 (en) * 2006-12-29 2008-08-07 The Salk Institute For Biological Studies Methods for enhancing exercise performance
WO2009086526A3 (en) * 2007-12-28 2009-09-03 The Salk Institute For Biological Studies Methods for enhancing muscle performance and tone
US20100137422A1 (en) * 2007-04-26 2010-06-03 Sang-Ku Yoo Novel phenanthrenequinone-based compound and pharmaceutical composition containing the same for the treatment or prevention of disease involving metabolic syndrome
US20100209513A1 (en) * 2007-10-11 2010-08-19 In Geun Jo Pharmaceutical composition containing micronized particles of naphthoquinone-based compound
US20100310657A1 (en) * 2007-12-28 2010-12-09 Mazence Inc. Pharmaceutical composition for treatment and prevention of kidney diseases
US20110020448A1 (en) * 2007-12-24 2011-01-27 Mazence, Inc. Pharmaceutical composition for the treatment and prevention of glaucoma
US20110033525A1 (en) * 2008-04-11 2011-02-10 Zhijun Liu Diterpene Glycosides as Natural Solubilizers
CN102603861A (en) * 2012-02-25 2012-07-25 中国科学院昆明植物研究所 Tanshinone derivatives, medicine compositions thereof, and purposes thereof in medicine
US9283243B2 (en) 2010-06-01 2016-03-15 Cornell University Cornell Center For Technology, Enterprise & Commercialization (“Cctec”) CD36 inhibition to control obesity and insulin sensitivity
CN116509878A (en) * 2023-06-16 2023-08-01 黑龙江中医药大学 Pharmaceutical composition for preventing ovarian reserve function from being reduced and application thereof

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088315A1 (en) * 2005-02-16 2006-08-24 Md Bioalpha Co., Ltd. Pharmaceutical composition for the treatment or prevention of diseases involving obesity, diabetes, metabolic syndrome, neuro-degenerative diseases and mitochondria dysfunction diseases
JP2006298896A (en) * 2005-03-22 2006-11-02 Iskra Ind Co Ltd Hyperlipemia remedy, arteriosclerosis remedy and liver function remedy
WO2006115321A1 (en) * 2005-04-25 2006-11-02 Industry Academic Cooperation Foundation, Yeungnam University Composition comprising the extract of salvia miltiorrhiza bge showing enhancing activity for the prevention or treatment of blood circulatory disease.
JP4065018B2 (en) * 2005-05-17 2008-03-19 森永乳業株式会社 Medicine or food and drink for improving pancreatic function
KR100687247B1 (en) * 2005-06-15 2007-02-26 원광대학교산학협력단 Composition comprising Cryptotanshinone for treating or preventing liver disease
KR100687246B1 (en) * 2005-06-15 2007-02-26 원광대학교산학협력단 Composition comprising Tanshinone? for treating and preventing liver disease
KR100725839B1 (en) * 2005-10-06 2007-12-11 일성신약주식회사 Composition comprising tanshinone compounds isolated from the extract of salviae miltiorrhizae radix for treating or preventing cognitive dysfunction
US8513227B2 (en) 2006-01-13 2013-08-20 The Feinstein Institute For Medical Research Inhibition of inflammatory cytokine production with tanshinones
CN100390161C (en) * 2006-03-28 2008-05-28 秦引林 Hydroxy tanshinone IIA sodium sulfonate and its application
US20080017207A1 (en) * 2006-07-18 2008-01-24 Savipu Pharmaceuticals Reduction of the Deleterious Effects of Tobacco Smoking by the Induction of Phase 2 Enzymes by Nerf2
KR100734512B1 (en) * 2006-11-02 2007-07-03 원광대학교산학협력단 Composition comprising TanshinoneⅠ for treating and preventing liver disease
KR100734513B1 (en) * 2006-11-02 2007-07-03 원광대학교산학협력단 Composition comprising Cryptotanshinone for treating or preventing liver disease
WO2008066296A1 (en) * 2006-11-27 2008-06-05 Mazence Inc. Pharmaceutical composition containing phenanthrenequinone-based compound for intestine delivery system
WO2008066301A1 (en) * 2006-11-27 2008-06-05 Mazence Inc. Anticancer composition containing naphthoquinone-based compound for intestine delivery system
WO2008066298A1 (en) * 2006-11-27 2008-06-05 Mazence Inc. Compound for treatment or prevention of prostate-related diseases and pharmaceutical composition of colon delivery system containing the same
WO2008066300A1 (en) * 2006-11-27 2008-06-05 Mazence Inc. Naphthoquinone-based pharmaceutical composition for treatment or prevention of diseases involving obesity, diabetes, metabolic syndrome, neuro-degenerative diseases and mitochondria dysfunction diseases
WO2008066295A1 (en) * 2006-11-27 2008-06-05 Mazence Inc. Pharmaceutical composition containing naphthoquinone-based compound for intestine delivery system
KR20080047957A (en) * 2006-11-27 2008-05-30 주식회사 엠디바이오알파 Pharmaceutical composition for treatment and prevention of hypertension
WO2008066299A1 (en) * 2006-11-27 2008-06-05 Mazence Inc. Pharmaceutical composition for the treatment and prevention of diseases involving impotence
WO2008066297A1 (en) * 2006-11-27 2008-06-05 Mazence Inc. Pharmaceutical composition for treatment and prevention of restenosis
KR20090073381A (en) * 2007-12-31 2009-07-03 주식회사 머젠스 Pharmaceutical composition for the treatment and prevention of cardiac disease
KR100955726B1 (en) * 2008-02-18 2010-05-03 주식회사럭키약품 Extracts, which is effective in reducing body-fat, improving blood-lipid or improving blood circulation, obtained from Bulnesia sarmienti
DE102008044479A1 (en) * 2008-08-27 2010-03-18 Bom-Products Ltd. Sage extract foods
KR101372037B1 (en) * 2010-04-06 2014-03-10 (주)아모레퍼시픽 Composition for Promotion of transformation of muscle type
KR101147657B1 (en) * 2010-06-15 2012-05-23 (주)에이씨티 Slimming cosmetic compositions containing natural complex extract and preparing method thereof
KR101481208B1 (en) * 2011-06-17 2015-01-12 (주)아모레퍼시픽 Composition for skin external application comprising cryptotanshinone as the active ingredient
CN104254777B (en) * 2011-12-05 2016-08-24 伯乐实验室公司 Restructuring desamidization gliadin antigen
KR101400900B1 (en) * 2012-01-26 2014-05-29 한국생명공학연구원 A composition for differentiating natural killer cell or enhancing natural killer cell activation containing tanshinone as active ingredient
JPWO2013153821A1 (en) * 2012-04-12 2015-12-17 学校法人北里研究所 PDK4 inhibitor and use thereof
JP5677687B2 (en) * 2013-02-26 2015-02-25 サッポロビール株式会社 Non-alcoholic beverage odor control and flavor improvement method
KR101531157B1 (en) * 2013-04-17 2015-06-26 재단법인 진안홍삼연구소 A composition containing cryptotanshinone as a active ingredient for the treatment of dental caries and peridontal disease
GB201421479D0 (en) * 2014-12-03 2015-01-14 Phynova Ltd A plant extract and compounds for use in wound healing
KR101958235B1 (en) * 2017-01-25 2019-03-14 순천향대학교 산학협력단 A pharmaceutical composition for prevention or treatment of obesity comprising cryptotanshinone or pharmaceutically accepted salts thereof as an effective component
TWI761471B (en) * 2017-03-22 2022-04-21 臺北醫學大學 Atf3 induction compounds
KR102005423B1 (en) 2017-10-31 2019-07-30 주식회사 휴엔 Composition comprising extract of Salvia miltiorrhiza Radix for preventing or treating of visceral fat
WO2019088541A2 (en) 2017-10-31 2019-05-09 주식회사 휴엔 Composition comprising salvia miltiorrhiza extract for prevention, alleviation, or treatment of visceral fat obesity
CN110403981A (en) * 2019-09-06 2019-11-05 中国医学科学院药用植物研究所 A kind of application of herb extract in the drug of preparation treatment fatty liver
KR102462458B1 (en) * 2019-10-31 2022-11-02 주식회사 큐롬바이오사이언스 Composition for preventing or treating of benign prostatic hyperplasia or alopecia comprising extracts of Salvia miltiorrhiza Bunge as an effective ingredient
WO2021086120A1 (en) * 2019-10-31 2021-05-06 주식회사 큐롬바이오사이언스 Composition, comprising salvia miltiorrhiza bunge extract as active ingredient, for prevention or treatment of benign prostatic hyperplasia or alopecia
CN113402372A (en) * 2021-06-10 2021-09-17 广州中大南沙科技创新产业园有限公司 Cryptotanshinone derivative, preparation method thereof and application of cryptotanshinone derivative in reducing blood fat and resisting obesity
KR20230007682A (en) 2021-07-06 2023-01-13 고려대학교 산학협력단 Pharmaceutical Composition for preventing and treating of obesity or metabolic disease comprising cholecystokinin and nonanoic acid
WO2023243210A1 (en) * 2022-06-13 2023-12-21 丸善製薬株式会社 Myoblast proliferation promoting agent, composition for promoting myoblast proliferation, muscular atrophy inhibiting agent, and composition for inhibiting muscular atrophy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906470A (en) * 1986-09-22 1990-03-06 Yaguang Liu Pharmaceutical composition for treating and preventing cardiovascular disease
US5589182A (en) * 1993-12-06 1996-12-31 Tashiro; Renki Compositions and method of treating cardio-, cerebro-vascular and alzheimer's diseases and depression
US20020077352A1 (en) * 2000-08-03 2002-06-20 Sucher Nikolaus J. N-methyl-D-aspartate receptor antagonists
US6541046B2 (en) * 2001-02-12 2003-04-01 Kaiyuan Wei Herbal composition and method for controlling body weight and composition

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271210A (en) * 1985-05-28 1986-12-01 Pola Chem Ind Inc Cosmetic
JPH02290805A (en) * 1989-04-28 1990-11-30 Pias Arise Kk Cosmetic for prevention of dermal senescence and its production
JPH03123720A (en) * 1989-10-06 1991-05-27 Kanebo Ltd Hair tonic cosmetic
JPH07238027A (en) * 1994-02-25 1995-09-12 Pola Chem Ind Inc Arterioscelerosis inhibitor and food or medicine containing the same
CN1058901C (en) * 1998-04-20 2000-11-29 孔政 Slimming tea and its preparation
KR20000027306A (en) 1998-10-28 2000-05-15 황규언 Medicinal composition for treating hepatitis b
KR100327894B1 (en) * 1999-08-25 2002-03-09 한영복 Hypertension-treatment and colestearol-depressant composition comprising extract from mixture of panax notoginseng and salvia miltiorrhiza and method of preparing the same
CN1075735C (en) * 1999-09-07 2001-12-05 阎纯义 Compound diabetes-treating Chinese medicine preparation
US6149915A (en) * 1999-09-29 2000-11-21 Shiva Biomedical, Llc Treatment of diabetic nephropathy and microalbuminuria
CN1295859A (en) * 1999-11-15 2001-05-23 吴春文 Process for preparation of medicine to treat diabetes
AU2000229021A1 (en) * 2000-02-29 2001-09-12 Jun Ho Co., Ltd. A medicine for treating obesity and the method of producing thereof
NL1015539C2 (en) * 2000-06-27 2001-12-28 Prolion Bv Milking device and method for automatic milking of animals.
US6821961B2 (en) * 2001-08-24 2004-11-23 Michael P. Girouard Monounsaturated fatty acids of at least 20 carbon atoms and perhydrocyclopentanophenanthrene nucleus combination molecules and their use as weight-loss agents
CN1436553A (en) * 2002-02-08 2003-08-20 余琛 Method of extracting effective component in red sage
CN1202103C (en) * 2002-05-23 2005-05-18 天津天士力制药股份有限公司 Preparation method of red sageroot total phenolic acid and its use
EP1371368A1 (en) * 2002-06-11 2003-12-17 N.V. Nutricia Salvianolic acid components as lipase inhibitors
KR20040084482A (en) 2003-03-28 2004-10-06 학교법인 원광학원 A composition for treating hepatic fibrosis or cirrhosis containing tanshinone Ⅰ
JP4373280B2 (en) * 2003-07-29 2009-11-25 花王株式会社 Lipolysis accelerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906470A (en) * 1986-09-22 1990-03-06 Yaguang Liu Pharmaceutical composition for treating and preventing cardiovascular disease
US5589182A (en) * 1993-12-06 1996-12-31 Tashiro; Renki Compositions and method of treating cardio-, cerebro-vascular and alzheimer's diseases and depression
US20020077352A1 (en) * 2000-08-03 2002-06-20 Sucher Nikolaus J. N-methyl-D-aspartate receptor antagonists
US6541046B2 (en) * 2001-02-12 2003-04-01 Kaiyuan Wei Herbal composition and method for controlling body weight and composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110112047A1 (en) * 2006-12-29 2011-05-12 Evans Ronald M Methods for enhancing muscle performance and tone
US9192601B2 (en) 2006-12-29 2015-11-24 Salk Institute For Biological Studies Methods for enhancing muscle performance and tone
US20080187928A1 (en) * 2006-12-29 2008-08-07 The Salk Institute For Biological Studies Methods for enhancing exercise performance
US20100137422A1 (en) * 2007-04-26 2010-06-03 Sang-Ku Yoo Novel phenanthrenequinone-based compound and pharmaceutical composition containing the same for the treatment or prevention of disease involving metabolic syndrome
US8404869B2 (en) 2007-04-26 2013-03-26 Mazence Inc. Phenanthrenequinone-based compound and pharmaceutical composition containing the same for the treatment or prevention of disease involving metabolic syndrome
US20100209513A1 (en) * 2007-10-11 2010-08-19 In Geun Jo Pharmaceutical composition containing micronized particles of naphthoquinone-based compound
US20110020448A1 (en) * 2007-12-24 2011-01-27 Mazence, Inc. Pharmaceutical composition for the treatment and prevention of glaucoma
US20100310657A1 (en) * 2007-12-28 2010-12-09 Mazence Inc. Pharmaceutical composition for treatment and prevention of kidney diseases
WO2009086526A3 (en) * 2007-12-28 2009-09-03 The Salk Institute For Biological Studies Methods for enhancing muscle performance and tone
US20110033525A1 (en) * 2008-04-11 2011-02-10 Zhijun Liu Diterpene Glycosides as Natural Solubilizers
US9283243B2 (en) 2010-06-01 2016-03-15 Cornell University Cornell Center For Technology, Enterprise & Commercialization (“Cctec”) CD36 inhibition to control obesity and insulin sensitivity
CN102603861A (en) * 2012-02-25 2012-07-25 中国科学院昆明植物研究所 Tanshinone derivatives, medicine compositions thereof, and purposes thereof in medicine
CN116509878A (en) * 2023-06-16 2023-08-01 黑龙江中医药大学 Pharmaceutical composition for preventing ovarian reserve function from being reduced and application thereof

Also Published As

Publication number Publication date
KR20080015495A (en) 2008-02-19
EP1706108A4 (en) 2009-08-12
JP2007517025A (en) 2007-06-28
CA2552311C (en) 2013-04-23
AU2004308874B2 (en) 2011-01-27
CA2552311A1 (en) 2005-07-14
CN102579460A (en) 2012-07-18
WO2005063232A1 (en) 2005-07-14
KR100818586B1 (en) 2008-04-01
US20100029760A1 (en) 2010-02-04
AU2004308874A1 (en) 2005-07-14
WO2005063232A8 (en) 2005-09-22
MXPA06007621A (en) 2007-01-30
EP1706108A1 (en) 2006-10-04
US8029832B2 (en) 2011-10-04
CN102579460B (en) 2015-04-29
KR20050071355A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
US8029832B2 (en) Obesity and metabolic syndrome treatment with tanshinone derivatives which increase metabolic activity
WO2007058480A1 (en) Composition having effect on treatment and prevention of diseases syndrome treatment with glabridin
WO2010134756A2 (en) Composition comprising green tea extract
KR102005423B1 (en) Composition comprising extract of Salvia miltiorrhiza Radix for preventing or treating of visceral fat
KR20120002131A (en) Composition for treating or preventing obesity containing curcuma longa extract
WO2015072674A1 (en) Composition containing a borage officinalis extract for alleviating, preventing, or treating metabolic diseases
KR20190090362A (en) A composition for imobesity containing dicaffeoylquinic acid
KR101618116B1 (en) Composition of extracts of Arctium lappa or compounds isolated therefrom for preventing, improving or treating obesity or obesity-related disease
KR101567573B1 (en) Composition comprising extracts of Codonopsis lanceolata or compounds isolated therefrom for preventing, improving or treating obesity or obesity-related disease
KR20120112137A (en) Composition containing ethylacetate fraction of schisandra chinensis baillon or wuweizisu c isolated from the same for treating or preventing obesity
KR20170023910A (en) Pharmaceutical Compositions for Prevention or Treatment of nonalcoholic fatty liver disease Comprising Quercetin-3-O-glucoside
KR101557934B1 (en) Composition comprising extracts of Codonopsis lanceolata or compounds isolated therefrom for preventing, improving or treating obesity or obesity-related disease
KR101888871B1 (en) Composition for preventing and treating of obesity or metabolic disease comprising extract from leaf of Plantago asiatica
KR20070044198A (en) Anti-metabolic syndrome treatment with fumaric acid and fumaric acid derivatives
JP2005503381A (en) Sesquiterpenoid derivatives with adipocyte differentiation inhibitory action
KR101754498B1 (en) Pharmaceutical composition for preventing or treating obesity comprising extract of Inula helenium
KR20120107025A (en) Anti-obesity and anti-diabetes composition comprising oriental herbal extracts and fractions
KR20230101740A (en) A composition for improving, preventing and treating of obesity metabolic disease comprising Rosa multiflora root extract
KR20230039352A (en) Composition for preventing or treating cardiovascular disease comprising rosmarinic acid as an active ingredient
KR101207527B1 (en) Antiobesity composition comprising 1β-hydroxy-2-oxopomolic acid
KR20150061115A (en) Pharmaceutical composition comprising maysin for the prevention and treatment of obesity
KR20130133563A (en) Pharmaceutical composition or functional food for promoting oxidation of fatty acid containing styela clava extract
KR20050072275A (en) Diabete treatment with forsythiae fructus
KR20160049078A (en) Pharmaceutical Compositions for Prevention or Treatment of nonalcoholic fatty liver disease Comprising Quercetin-3-O-glucoside
WO2015020489A1 (en) Pharmaceutical composition for preventing and treating obesity, containing green-tea seed husk extract as active ingredient

Legal Events

Date Code Title Description
AS Assignment

Owner name: KT&G CO., LTD.,, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KWAK, TAEHWAN;PARK, MYUNGGYU;REEL/FRAME:019151/0021

Effective date: 20060926

Owner name: MD BIOALPHA CO., LTD.,, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KWAK, TAEHWAN;PARK, MYUNGGYU;REEL/FRAME:019151/0021

Effective date: 20060926

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION