Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20070263359 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 11/308,839
Fecha de publicación15 Nov 2007
Fecha de presentación12 May 2006
Fecha de prioridad12 May 2006
También publicado comoUS7391613
Número de publicación11308839, 308839, US 2007/0263359 A1, US 2007/263359 A1, US 20070263359 A1, US 20070263359A1, US 2007263359 A1, US 2007263359A1, US-A1-20070263359, US-A1-2007263359, US2007/0263359A1, US2007/263359A1, US20070263359 A1, US20070263359A1, US2007263359 A1, US2007263359A1
InventoresCheng-Tien Lai, Zhi-Yong Zhou, Qiao-Li Ding
Cesionario originalFoxconn Technology Co., Ltd.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Memory module assembly including a clamp for mounting heat sinks thereon
US 20070263359 A1
Resumen
A memory module assembly includes a printed circuit board (10) having a main heat-generating electronic component (52) thereon, first and second heat sinks (20), (30) attached on opposite sides of the printed circuit board and a clamp (40) clamping the first, second heat sinks and the printed circuit board together. The first heat sink comprises a pair of positioning poles (24). The second heat sink comprises a heat pipe (36) disposed therein and thermally connecting therewith. The clamp comprises a connecting portion (42) and a pair of elastic pressing portions (44). The clamp resiliently presses the second heat sink toward the main heat-generating electronic component and the first heat sink engages with the second heat sink via the positioning poles of the first heat sink extending in and engaging with the second heat sink.
Imágenes(5)
Previous page
Next page
Reclamaciones(16)
1. A memory module assembly comprising:
a printed circuit board having a heat-generating electronic component mounted thereon;
a first heat sink comprising a first body attached on a side of the printed circuit board and a pair of positioning poles extending from opposite sides of the first body;
a second heat sink comprising a second body attached on an opposite side of the printed circuit board and a heat pipe disposed in the second body; and
a clamp comprising a connecting portion and a pair of elastic pressing portions extending from two free ends of the connecting portion;
wherein the pressing portions clamp the first and second heat sinks attached on the opposite sides of the printed circuit board and resiliently press the second heat sink attached toward the heat-generating electronic component, the first heat sink engaging with the second heat sink via the positioning poles of the first body extending in the second body.
2. The memory module assembly as claimed in claim 1, wherein the heat pipe is sandwiched between the second heat sink and the printed circuit board.
3. The memory module assembly as claimed in claim 1, wherein the second body defines a channel in a lower end portion thereof for accommodating the heat pipe therein and a pair of cutouts in edges of lateral sides thereof corresponding to the positioning poles of the first body, the positioning poles extending in the cutouts.
4. The memory module assembly as claimed in claim 3, wherein the first and second bodies each comprise a U-shaped rib on a surface thereof and the pressing portions of the clamp are surrounded by the U-shaped ribs.
5. The memory module assembly as claimed in claim 4, wherein the first and second bodies each define a depression in a middle of a space inside the U-shaped rib and the pressing portions form a pair of opposing tabs engaging in the depressions.
6. The memory module assembly as claimed in claim 5, wherein the clamp has an n-shaped configuration and the tabs are formed extending inwardly from inner surfaces of the pressing portions and a pair of recesses are defined in outer surfaces of the pressing portions corresponding to the tabs.
7. The memory module assembly as claimed in claim 1, wherein the printed circuit board defines a pair of openings in edges of opposite lateral sides thereof for the positioning poles of the first body extending in.
8. A memory module assembly comprising:
a printed circuit board having first and second faces and two long sides and two short sides between the long sides, the short sides defining a pair of openings therein, a heat-generating electronic component mounted thereon;
a first heat sink comprising a rectangular-shaped first body and a pair of positioning poles extending from opposite sides of the first body;
a second heat sink comprising a rectangular-shaped second body and a heat pipe disposed in the second body, the second body defining a pair of cutouts in opposite edges of opposite sides thereof for the positioning poles to extend in; and
a pair of substantially n-shaped clamps each having a pair of elastic pressing portions clamping the first and second heat sinks on the first and second faces of the printed circuit board;
wherein the pressing portions of the clamps resiliently press the second heat sink attached toward the heat-generating electronic component.
9. The memory module assembly as claimed in claim 8, wherein each clamp comprises a connecting portion and the pressing portions extend from two free ends of the connecting portion.
10. The memory module assembly as claimed in claim 8, wherein each pair of the pressing portions forms a pair of opposing tabs extending from inner surfaces of the pressing portions and blocked in the first and second bodies.
11. The memory module assembly as claimed in claim 10, wherein the first and second bodies each define a pair of depressions therein for the tabs to be received in.
12. The memory module assembly as claimed in claim 8, wherein the first and second bodies each form a pair of U-shaped ribs thereon and the pressing portions of the clamps are surrounded by the U-shaped ribs.
13. The memory module assembly as claimed in claim 8, wherein the first and second bodies each define a depressed portion in an upper end thereof and a through hole defined in the depressed portion, a fastener being used to extend through the through holes to connect the first and second bodies together.
14. A memory module assembly comprising:
a printed circuit board having a plurality of heat-generating electronic components mounted on opposite surfaces thereof;
a heat sink covering the opposite surfaces of the printed circuit board and thermally connecting with the heat-generating electronic components; and
a heat pipe received in the heat sink and thermal connecting therewith; wherein heat generated by one of the heat-generating electronic components is first transferred to the heat sink and then the heat pipe to be distributed over the heat sink.
15. The memory module assembly as claimed in claim 14, wherein the one of the heat-generating electronic components is located at a middle of the printed circuit board.
16. The memory module assembly as claimed in claim 15, wherein the one of the heat-generating electronic components generates more heat than any of the other heat-generating electronic components.
Descripción
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates generally to memory module assemblies, and more particularly to a memory module assembly including a clamp for mounting a heat sink to an electronic component attached on a surface of a printed circuit board of the memory module assembly.
  • DESCRIPTION OF RELATED ART
  • [0002]
    Memory module assemblies that are currently in use generally do not require cooling devices to dissipate heat. The electronic components and memory module assemblies currently available, which are operated on or below 66 MHz do not generate heat that requires a cooling device for dissipating the heat. However, as the industry progresses, memory module assemblies, such SDRAM DIMM memory module assemblies are required to be operated at 100 MHz or more. For these modern memory module assemblies, heat sinks will be required to remove heat generated thereby. However, since the memory module assemblies each have a limited board area and are mounted on a motherboard of a computer, mounting the heat sink to the memory module assembly becomes an issue.
  • SUMMARY OF INVENTION
  • [0003]
    A memory module assembly in accordance with a preferred embodiment comprises a printed circuit board having heat-generating electronic components thereon, first and second heat sinks attached on opposite sides of the printed circuit board and a clamp clamping the first, second heat sink and the printed circuit board therebetween. The first heat sink comprises a first body and a pair of positioning poles extending from opposite sides of the first body. The second heat sink comprises a second body and a heat pipe disposed in the second body. The clamp comprises a connecting portion and a pair of elastic pressing portions extending from two free ends of the connecting portion. The pressing portions of the clamp resiliently press the second heat sink toward the heat-generating electronic components and the first heat sink engages with the second heat sink via the positioning poles of the first body extending in the second body.
  • [0004]
    Other advantages and novel features will become more apparent from the following detailed description of preferred embodiments when taken in conjunction with the accompanying drawings, in which:
  • BRIEF DESCRIPTION OF DRAWINGS
  • [0005]
    Many aspects of the present apparatus and method can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present apparatus and method. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
  • [0006]
    FIG. 1 is an assembled view of a memory module assembly in accordance with a preferred embodiment of the present invention;
  • [0007]
    FIG. 2 is an exploded and isometric view of FIG. 1;
  • [0008]
    FIG. 3 is a bottom view of FIG. 1; and
  • [0009]
    FIG. 4 is a diagrammatic view of the memory module assembly, with arrows showing heat dissipation paths from a main heat-generating electronic component through a heat pipe to a second heat sink of the memory module assembly.
  • DETAILED DESCRIPTION
  • [0010]
    FIGS. 1-2 show a memory module assembly in accordance with a preferred embodiment of the present invention. The memory module assembly comprises a printed circuit board 10 having a plurality of heat-generating electronic components 50 thereon, a first heat sink 20, a second heat sink 30 and four clamps 40 for securing the first and second heat sinks 20, 30 onto opposite sides of the printed circuit board 10. The printed circuit board 10 has a rectangular shape having first and second faces and two long sides and two short sides between the long sides. A pair of openings 12 is defined in edges of the opposite short sides of the printed circuit board 10. The printed circuit board 10 further comprises a main heat-generating electronic component 52 (referring to FIG. 4) producing more heat than any one of the heat-generating electronic components 50. The main heat-generating electronic component 52 is arranged facing the second heat sink 30 and located at a middle of a rear surface of the printed circuit board 10, opposite the heat-generating electronic components 50.
  • [0011]
    Referring to FIG. 2, the first heat sink 20 comprises a rectangular-shaped first body 22. A pair of positioning poles 24 perpendicularly extends from edges of a pair of opposite short sides of the first body 22. Four U-shaped ribs 26 are positioned with spaces between them on a front surface of the first body 22 to form four receiving regions (not labeled) surrounded by the ribs 26. A depression 260 is defined in a middle of each receiving region for facilitating an engagement with the corresponding clamp 40. A depressed portion 28 is located in an upper end of the front surface of the first body 22 and a through hole 280 is defined in the depressed portion 28 for a fastener, for example, a rivet to extend through to connect the first and second heat sinks 20, 30 together.
  • [0012]
    The second heat sink 30 comprises a rectangular-shaped second body 32 and a heat pipe 36 arranged in the second body 32 by soldering. A pair of pieces 34 outwardly extends from edges of a pair of short sides of the second body 32. Each piece 34 defines a cutout 340 therein corresponding to the positioning pole 24 of the first body 22. The cutouts 340 are used for the positioning poles 24 to extend through. Four U-shaped ribs (not shown) are positioned with spaces between them on a rear surface of the second body 32 thereby to define four receiving regions (not shown) like those of the first heat sink 20. A depression (not shown) is defined in a middle of each receiving region for facilitating an engagement with its corresponding clamp 40. A depressed portion 38 is defined in an upper end of the rear surface of the body 32 corresponding to the depressed portion 28 in the first body 22 and a through hole 380 is defined in the depressed portion 38. The rivet extends through the through holes 280, 380 to join the first and second heat sinks 20,30 together. A channel 320 is defined in a lower end of the front surface of the second body 32 for accommodating the heat pipe 36 therein. A depressed region 322 is defined in the second heat sink 30 above the channel 320 to accommodate the heat-generating electronic component 52 mounted on the printed circuit board 10. Each clamp 40 has an n-shaped configuration and comprises a connecting portion 42 and a pair of elastic pressing portions 44 extending from two free ends of the connecting portion 42. Each pair of pressing portions 44 forms a pair of opposing tabs 440 extending inwardly from inner surfaces thereof and defines a pair of recesses (not labeled) in outer surfaces thereof corresponding to the tabs 440. The tabs 440 are locked in the depressions 260 and the pressing portions 44 are received in the receiving regions of the first and second heat sinks 20, 30 to avoid movements of the clamps 40 along the long sides of the printed circuit board 10.
  • [0013]
    In assembly, the heat pipe 36 is accommodated in the channel 320 of the second heat sink 30. The first and second heat sinks 20, 30 respectively contact with the first and second faces of the printed circuit board 10. The second heat sink 30 is attached on the main heat-generating electronic component 52 so that the main heat-generating electronic component 52 is received in the depressed region 322 (referring to FIG. 4). The positioning poles 24 of the first heat sink 20 extend into the openings 12 in the printed circuit board 10 and the cutouts 340 in the second heat sink 30. Then, free ends of the positioning poles 24 extending beyond the rear surface of the second body 32 of the second heat sink 30 are bent to tightly abut against the rear surface of the second body 32. The printed circuit board 10 is sandwiched between the first and second heat sinks 20, 30 by the clamps 40. The pressing portions 44 are received in the receiving regions formed by the U-shaped ribs 26. The tabs 440 of the pressing portions 44 are stopped in the depressions 260. Therefore, the clamps 40 clamp the first, second heat sink 20,30 and the printed circuit board 10 therebetween.
  • [0014]
    In operation, when the second heat sink 30 is attached to the main heat-generating electronic component 52, heat generated by the heat-generating electronic component 52 is transferred to a middle portion of the second body 32 of the second heat sink 30 and then downwardly to a middle portion of the heat pipe 36. The heat absorbed in the middle portion of the heat pipe 36 is quickly transferred to opposite end portions of the heat pipe 36 and then transferred to a bottom of the second body 32 attached with the heat pipe 36. Thus the heat is transferred to an upper portion of the second heat sink 30 along the bottom of the second body 32 of the second heat sink 30 and evenly distributed in the whole second body 32 of the second heat sink 30. Accordingly, the heat generated by the main heat-generating electronic components 52 is dissipated quickly. The memory module assembly with the second heat sink 30 accommodating the heat pipe 36 therein distributes the heat from the main heat-generating electronic components 52 evenly over the whole of the second heat sink 30 via the heat pipe 36. Heat-dissipation efficiency of the memory module assembly is correspondingly improved.
  • [0015]
    It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US5109318 *7 May 199028 Abr 1992International Business Machines CorporationPluggable electronic circuit package assembly with snap together heat sink housing
US5966287 *17 Dic 199712 Oct 1999Intel CorporationClip on heat exchanger for a memory module and assembly method
US6049975 *12 May 199818 Abr 2000Clayton; James E.Method of forming a thin multichip module
US6119765 *3 Jun 199919 Sep 2000Lee; Ming-LongStructure of heat dissipating pieces of memories
US6188576 *13 May 199913 Feb 2001Intel CorporationProtective cover and packaging for multi-chip memory modules
US6233150 *25 Oct 199915 May 2001Foxconn Precision Components Co., Ltd.Memory module assembly
US6535387 *28 Jun 200118 Mar 2003Intel CorporationHeat transfer apparatus
US6765797 *19 Dic 200220 Jul 2004Intel CorporationHeat transfer apparatus
US7151668 *8 Dic 200419 Dic 2006Muskin, Inc.Memory heat sink
US20030026076 *21 Dic 20016 Feb 2003Wen-Chen WeiMemory heat sink device
US20060056154 *15 Sep 200416 Mar 2006International Business Machines CorporationApparatus including a thermal bus on a circuit board for cooling components on a daughter card releasably attached to the circuit board
US20060067054 *29 Sep 200430 Mar 2006Super Talent Electronics, Inc.Memory module assembly including heat sink attached to integrated circuits by adhesive
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US7375964 *13 Jul 200620 May 2008Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Memory module assembly including a clamp for mounting heat sinks thereon
US7679913 *23 Jun 200716 Mar 2010Ming-Yang HsiehMemory module assembly and heat sink thereof
US7957134 *10 Abr 20077 Jun 2011Hewlett-Packard Development Company, L.P.System and method having evaporative cooling for memory
US8004841 *6 May 200823 Ago 2011International Business Machines CorporationMethod and apparatus of water cooling several parallel circuit cards each containing several chip packages
US8081473 *4 Ago 200820 Dic 2011International Business Machines CorporationApparatus and method of direct water cooling several parallel circuit cards each containing several chip packages
US8493738 *6 May 201123 Jul 2013International Business Machines CorporationCooled electronic system with thermal spreaders coupling electronics cards to cold rails
US8649177 *20 Abr 201211 Feb 2014International Business Machines CorporationMethod of fabricating a cooled electronic system
US8854806 *26 Jul 20107 Oct 2014Lin FengMemory protection device and computer
US8913384 *20 Jun 201216 Dic 2014International Business Machines CorporationThermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)
US90273606 May 201112 May 2015International Business Machines CorporationThermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
US90527225 Dic 20129 Jun 2015International Business Machines CorporationDynamically limiting energy consumed by cooling apparatus
US907675318 May 20127 Jul 2015International Business Machines CorporationApparatus for the compact cooling of modules
US913251912 Dic 201215 Sep 2015Interntional Business Machines CorporationDirectly connected heat exchanger tube section and coolant-cooled structure
US91858309 Dic 201410 Nov 2015International Business Machines CorporationThermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
US92133781 Mar 201315 Dic 2015International Business Machines CorporationCooling system for electronic components
US93076746 May 20115 Abr 2016International Business Machines CorporationCooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component
US9342121 *3 Abr 200917 May 2016International Business Machines CorporatoinCooling system for electronic components
US9405338 *28 Sep 20112 Ago 2016Bull SasHeat sink for an interchangeable expansion module capable of being connected to a computer board
US941452321 Nov 20139 Ago 2016International Business Machines CorporationCooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component
US9645619 *29 May 20159 May 2017Corsair Memory, Inc.Micro heat pipe cooling system
US20070223198 *13 Jul 200627 Sep 2007Foxconn Technology Co., Ltd.Memory module assembly including a clamp for mounting heat sinks thereon
US20080062652 *7 Sep 200613 Mar 2008Wayne LiebermanVapor heat spreader
US20080101036 *26 Oct 20061 May 2008Chiung Yi ChenHeat-dissipating assembly structure
US20080251911 *10 Abr 200716 Oct 2008Farnsworth Arthur KSystem and method having evaporative cooling for memory
US20080278916 *23 Jun 200713 Nov 2008Ming-Yang HsiehMemory Module Assembly and Heat Sink thereof
US20090046431 *24 Oct 200819 Feb 2009Staktek Group L.P.High Capacity Thin Module System
US20090277616 *6 May 200812 Nov 2009International Business Machines CorporationMethod and apparatus of water cooling several parallel circuit cards each containing several chip packages
US20100025010 *4 Ago 20084 Feb 2010International Business Machines CorporationApparatus and method of direct water cooling several parallel circuit cards each containing several chip packages
US20100134982 *1 Dic 20083 Jun 2010Meyer Iv George AnthonyMemory heat dissipating structure and memory device having the same
US20100188811 *5 Jul 200729 Jul 2010Aeon Lighting Technology Inc.Memory cooling device
US20100254089 *3 Abr 20097 Oct 2010International Business Machines CorporationCooling System for Electronic Components
US20110310565 *4 Nov 201022 Dic 2011Fih (Hong Kong) LimitedHeat sink for memory module
US20120268885 *26 Jul 201025 Oct 2012Lin FengMemory Protection Device and Computer
US20120279047 *20 Abr 20128 Nov 2012International Business Machines CorporationMethod of fabricating a cooled electronic system
US20120281358 *6 May 20118 Nov 2012International Business Machines CorporationCooled electronic system with thermal spreaders coupling electronics cards to cold rails
US20130182389 *28 Sep 201118 Jul 2013Bull SasHeat sink for an interchangeable expansion module capable of being connected to a computer board
US20130343005 *20 Jun 201226 Dic 2013International Business Machines CorporationThermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)
US20160349809 *29 May 20151 Dic 2016Corsair Memory, Inc.Micro heat pipe cooling system
CN103984393A *7 Feb 201313 Ago 2014威刚科技股份有限公司Disassembling assembly and memory module thereof
Clasificaciones
Clasificación de EE.UU.361/715, 257/E23.086, 361/719, 257/E23.103
Clasificación internacionalH05K7/20
Clasificación cooperativaH01L23/4093, H01L23/3672, H01L2924/0002
Clasificación europeaH01L23/40S, H01L23/367F
Eventos legales
FechaCódigoEventoDescripción
12 May 2006ASAssignment
Owner name: FOXCONN TECHNOLOGY CO., LTD., TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAI, CHENG-TIEN;ZHOU, ZHI-YONG;DING, QIAO-LI;REEL/FRAME:017612/0609
Effective date: 20060420
8 Abr 2008ASAssignment
Owner name: FU ZHUN PRECISION INDUSTRY (SHEN ZHEN) CO., LTD.,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOXCONN TECHNOLOGY CO., LTD.;REEL/FRAME:020774/0588
Effective date: 20080403
Owner name: FOXCONN TECHNOLOGY CO., LTD., TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOXCONN TECHNOLOGY CO., LTD.;REEL/FRAME:020774/0588
Effective date: 20080403
6 Feb 2012REMIMaintenance fee reminder mailed
24 Jun 2012LAPSLapse for failure to pay maintenance fees
14 Ago 2012FPExpired due to failure to pay maintenance fee
Effective date: 20120624