Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20070267194 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 11/833,649
Fecha de publicación22 Nov 2007
Fecha de presentación3 Ago 2007
Fecha de prioridad10 Feb 2004
También publicado comoUS7963330, US20050173116, US20100132943, WO2005080749A2, WO2005080749A3
Número de publicación11833649, 833649, US 2007/0267194 A1, US 2007/267194 A1, US 20070267194 A1, US 20070267194A1, US 2007267194 A1, US 2007267194A1, US-A1-20070267194, US-A1-2007267194, US2007/0267194A1, US2007/267194A1, US20070267194 A1, US20070267194A1, US2007267194 A1, US2007267194A1
InventoresPhilip Nguyen, Johnny Barton, O. Marlene Isenberg
Cesionario originalNguyen Philip D, Barton Johnny A, Isenberg O Marlene
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Resin Compositions and Methods of Using Resin Compositions to Control Proppant Flow-Back
US 20070267194 A1
Resumen
The present invention includes methods and compositions that include a resin composition comprising from about 5% to about 30% phenol, from about 40% to about 70% phenol formaldehyde, from about 10 to about 40% furfuryl alcohol, from about 0.1% to about 3% of a silane coupling agent, and from about 1% to about 15% of a surfactant and methods of using of that resin in controlling particulate flowback from a subterranean formation.
Imágenes(6)
Previous page
Next page
Reclamaciones(20)
1. A method comprising:
providing a resin composition comprising:
about 5% to about 30% phenol by weight of the resin composition;
about 40% to about 70% phenol formaldehyde by weight of the resin composition;
about 10% to about 40% furfuryl alcohol by weight of the resin composition;
about 0.1% to about 3% of a silane coupling agent by weight of the resin composition; and
about 1% to about 15% of a surfactant by weight of the resin composition;
providing proppant particles;
coating the resin composition onto at least a portion of the proppant particles to create resin-coated proppant particles;
introducing the resin-coated proppant particles into a subterranean zone; and
allowing at least a portion of the resin composition on the resin-coated proppant particles to substantially cure.
2. The method of claim 1 wherein the silane coupling agent comprises at least one silane coupling agent selected from the group consisting of: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane.
3. The method of claim 1 wherein the surfactant comprises at least one surfactant selected from the group consisting of: ethoxylated nonyl phenol phosphate ester, a cationic surfactant, a non-ionic surfactant, and an alkyl phosphonate surfactant.
4. The method of claim 1 wherein the amount of the resin composition coated onto the portion of the proppant particles is about 0.1% to about 5% by weight of the portion of the proppant particles.
5. The method of claim 1 wherein the resin composition further comprises a solvent.
6. The method of claim 5 wherein the solvent comprises at least one solvent selected from the group consisting of: 2-butoxy ethanol, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl sulfoxide, dimethyl formamide, diethyleneglycol methyl ether, diethylene glycol dimethyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, gamma-butyrolactone, butylene carbonate, propylene carbonate, ethylene carbonate, methanol, butyl alcohol, d-limonene, and a fatty acid methyl ester.
7. A method comprising:
providing a resin composition comprising:
about 5% to about 30% phenol by weight of the resin composition;
about 40% to about 70% phenol formaldehyde by weight of the resin composition;
about 10% to about 40% furfuryl alcohol by weight of the resin composition;
about 0.1% to about 3% of a silane coupling agent by weight of the resin composition; and
about 1% to about 15% of a surfactant by weight of the resin composition;
providing proppant particles;
coating the resin composition onto at least a portion of the proppant particles to create resin-coated proppant particles;
introducing the resin-coated proppant particles into a fracture in a subterranean zone; and
allowing at least a portion of the resin composition on the resin-coated proppant particles to substantially cure.
8. The method of claim 7 wherein the silane coupling agent comprises at least one silane coupling agent selected from the group consisting of: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane.
9. The method of claim 7 wherein the surfactant comprises at least one surfactant selected from the group consisting of: ethoxylated nonyl phenol phosphate ester, a cationic surfactant, a non-ionic surfactant, and an alkyl phosphonate surfactant.
10. The method of claim 7 wherein the amount of the resin composition coated onto the portion of the proppant particles is about 0.1% to about 5% by weight of the portion of the proppant particles.
11. The method of claim 7 wherein the resin composition further comprises a solvent.
12. The method of claim 11 wherein the solvent comprises at least one solvent selected from the group consisting of: 2-butoxy ethanol, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl sulfoxide, dimethyl formamide, diethyleneglycol methyl ether, diethylene glycol dimethyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, gamma-butyrolactone, butylene carbonate, propylene carbonate, ethylene carbonate, methanol, butyl alcohol, d-limonene, and a fatty acid methyl ester.
13. The method of claim 7 further comprising:
providing a fracturing fluid;
mixing the resin-coated proppant particles into the fracturing fluid; and
introducing the fracturing fluid comprising the resin-coated proppant particles into the subterranean zone at a pressure sufficient to extend the fracture in the subterranean zone or create at least one other fracture in the subterranean zone.
14. The method of claim 13 wherein the fracturing fluid comprises at least one fluid selected from the group consisting of: an aqueous gel and an emulsion.
15. The method of claim 13 wherein the fracturing fluid comprises at least one additive selected from the group consisting of: a breaker, a stabilizer, a fluid loss control additive, a clay stabilizer, and a bactericide.
16. The method of claim 13 wherein the fracturing fluid comprises at least one fluid selected from the group consisting of: fresh water, salt water, brine, and seawater.
17. The method of claim 13 wherein the fracturing fluid comprises an aqueous gel comprised of:
water;
a gelling agent; and
a cross-linking agent.
18. A method comprising:
providing a resin composition comprising:
about 5% to about 30% phenol by weight of the resin composition;
about 40% to about 70% phenol formaldehyde by weight of the resin composition;
about 10% to about 40% furfuryl alcohol by weight of the resin composition;
about 0.1% to about 3% of a silane coupling agent by weight of the resin composition; and
about 1% to about 15% of a surfactant by weight of the resin composition;
providing an initial portion of proppant particles, a middle portion of proppant particles, and a last portion of proppant particles;
coating the resin composition onto at least the initial portion of proppant particles and the last portion of proppant particles to create an initial portion of resin-coated proppant particles and a last portion of resin-coated proppant particles;
introducing the initial portion of resin-coated proppant particles into a fracture in a subterranean zone;
introducing the middle portion of proppant particles into the fracture in the subterranean zone;
introducing the last portion of resin-coated proppant particles into the fracture in the subterranean zone; and
allowing at least a portion of the resin composition on the initial portion of resin-coated proppant particles and on the last portion of resin-coated proppant particles to substantially cure.
19. The method of claim 18 wherein the resin composition is not applied to the middle portion of proppant particles.
20. The method of claim 18 further comprising applying the resin composition intermittently to the middle portion of proppant particles.
Descripción
    CROSS-REFERENCE TO A RELATED INVENTION
  • [0001]
    This application is a divisional patent application of commonly-owned U.S. patent application Ser. No. 10/775,347, filed Feb. 10, 2004, entitled “Resin Compositions and Methods of Using Resin Compositions to Control Proppant Flow-Back,” which is incorporated by reference herein for all purposes.
  • BACKGROUND
  • [0002]
    The present invention relates to enhancing the conductivity of subterranean formations while controlling proppant flowback. More particularly, the present invention relates to improved resin compositions and resin-coated proppants and their use in controlling proppant flowback
  • [0003]
    Hydrocarbon-producing wells are often stimulated by hydraulic fracturing treatments. In hydraulic fracturing treatments, a viscous fracturing fluid, which also functions as a carrier fluid, is pumped into a producing zone to be fractured at a rate and pressure such that one or more fractures are formed in the zone. Particulate solids for propping the fractures, commonly referred to in the art as “proppant,” are generally suspended in at least a portion of the fracturing fluid so that the particulate solids are deposited in the fractures when the fracturing fluid reverts to a thin fluid to be returned to the surface. The proppant deposited in the fractures functions to prevents the fractures from fully closing and maintains conductive channels through which produced hydrocarbons can flow.
  • [0004]
    In order to prevent the subsequent flowback of proppant and other unconsolidated particulates with the produced fluids a portion of the proppant introduced into the fractures may be coated with a hardenable resin composition. When the fracturing fluid, which is the carrier fluid for the proppant, reverts to a thin fluid the resin-coated proppant is deposited in the fracture, and the fracture closes on the proppant. Such partially closed fractures apply pressure on the resin-coated proppant particles, causing the particles to be forced into contact with each other while the resin composition hardens. The hardening of the resin composition under pressure brings about the consolidation of the resin-coated proppant particles into a hard permeable mass having compressive and tensile strength that hopefully prevents unconsolidated proppant and formation sand from flowing out of the fractures with produced fluids. Flowback of the proppant or formation fines with formation fluids is undesirable as it may erode metal equipment, plug piping and vessels, and cause damage to valves, instruments, and other production equipment.
  • [0005]
    Using heretofore known hardenable resin compositions has been disadvantageous because they have short shelf lives. That is, the shelf lives of the hardenable resin components, once mixed, have heretofore been as short as about four hours or less. It has been a common practice to utilize proppant that is pre-coated with a resin composition. However, such pre-coated resins generally begin to cure immediately after they are mixed and coated onto the proppant so that by the time the proppant is used, the resin may be more than 90% cured. When such pre-cured resin completes curing once placed in the subterranean formation, the resulting consolidated proppant pack often does not have enough strength to prevent deterioration of the proppant pack and proppant flowback.
  • SUMMARY
  • [0006]
    The present invention relates to enhancing the conductivity of subterranean formations while controlling proppant flowback. More particularly, the present invention relates to improved resin compositions and resin-coated proppants and their use in controlling proppant flowback.
  • [0007]
    One embodiment of the present invention provides a resin composition comprising from about 5% to about 30% phenol, from about 40% to about 70% phenol formaldehyde, from about 10 to about 40% furfuryl alcohol, from about 0.1% to about 3% of a silane coupling agent, and from about 1% to about 15% of a surfactant.
  • [0008]
    Another embodiment of the present invention describes a method of controlling proppant flowback from a fracture in a subterranean zone comprising the steps of coating the resin as described above onto at least a portion of provided proppant particles, introducing those resin-coated proppant particles into a subterranean fracture, and allowing the resin on the resin-coated proppant to substantially cure.
  • [0009]
    The objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments that follows.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • [0010]
    The present invention provides improved resin compositions and proppants coated with such improved resin compositions suitable for use in enhancing the conductivity of subterranean formations while controlling proppant flowback.
  • [0011]
    When the resin composition of the present invention is used to coat proppant particles in a subterranean fracturing operation, any fracturing fluid known in the art may be used, including aqueous gels, emulsions, and other suitable fracturing fluids. The aqueous gels are generally comprised of water and one or more gelling agents. The emulsions may be comprised of two or more immiscible liquids such as an aqueous gelled liquid and a liquefied, normally gaseous fluid, such as nitrogen. The preferred fracturing fluids for use in accordance with this invention are aqueous gels comprised of water, a gelling agent for gelling the water and increasing its viscosity, and optionally, a cross-linking agent for cross-linking the gel and further increasing the viscosity of the fluid. The increased viscosity of the gelled or gelled and cross-linked fracturing fluid, inter alia, reduces fluid loss and allows the fracturing fluid to transport significant quantities of suspended proppant particles. The fracturing fluids may also include one or more of a variety of well-known additives such as breakers, stabilizers, fluid loss control additives, clay stabilizers, bactericides, and the like.
  • [0012]
    The water utilized in the fracturing fluid may be fresh water, salt water (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated salt water), or seawater. Generally, the water can be from any source provided that it does not contain an excess of compounds that adversely affect other components in the resin composition or the performance of the resin composition relative to the subterranean conditions to which it may be subjected.
  • [0013]
    Proppant particles utilized in accordance with the present invention are generally of a size such that formation particulates that may migrate with produced fluids are prevented from being produced from the subterranean zone. Any suitable proppant may be utilized, including graded sand, bauxite, ceramic materials, glass materials, walnut hulls, polymer beads and the like. Generally, the proppant particles have a size in the range of from about 2 to about 400 mesh, U.S. sieve series. In some embodiments of the present invention, the proppant is graded sand having a particle size in the range of from about 10 to about 70 mesh, U.S. Sieve Series. Particle size distribution ranges are generally one or more of 10-20 mesh, 20-40 mesh, 40-60 mesh or 50-70 mesh, depending on the particular size and distribution of formation particulates to be screened out by the consolidated proppant particles.
  • [0014]
    The improved resin compositions of the present invention comprise phenol, phenol formaldehyde, furfuryl alcohol, a silane coupling agent, and a surfactant. The resin compositions of the present invention may be useful in a variety of subterranean conditions but are particularly well suited for use in subterranean formations exhibiting temperatures above about 200° F. The resins of the present invention do not begin to cure until they are exposed to temperatures above about 175° F. Thus, the resins of the present invention can be prepared and then stored for long periods of time at temperatures below about 175° F. without concern that the resin compositions will become unusable over time.
  • [0015]
    Phenol is a commercially available, hydroxy benzene derivative, aromatic alcohol that exhibits weak acidic properties and contains a hydroxyl group attached to a benzene ring. The resins of the present invention comprise from about 5% to about 30% phenol by weight of the overall resin composition.
  • [0016]
    Phenol formaldehyde is a commercially available synthetic polymer made from phenol and formaldehyde monomers. The resins of the present invention comprise from about 40% to about 70% phenol formaldehyde by weight of the overall resin composition.
  • [0017]
    Furfuryl alcohol is a primary alcohol and an oligomer of furan resin that is colorless or pale yellow in appearance. In the resins of the present invention, the furfuryl alcohol polymerizes from an oligomer form into a stable furan resin polymer. The resins of the present invention comprise from about 10% to about 40% furfuryl alcohol by weight of the overall resin composition.
  • [0018]
    Silane coupling agents are chemicals that contain silicone at the center of the silane molecule that is chemically attached to a first functional group such as vinyl, amino, chloro, epoxy, mercapto, and a second functional group such as methoxy or ethoxy. Silane coupling agents act such that the first functional group may attach to an organic compound while the second functional group may attach to an inorganic material or substrate to achieve a “coupling” effect. Any silane coupling agent that is compatible with the hardening agent and facilitates the coupling of the resin to the surface of the formation sand particles is suitable for use in the present invention. Examples of preferred silane coupling agents suitable for use in the present invention include, but are not limited to, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane, and combinations thereof. The silane coupling agent used is included in the resin in an amount capable of sufficiently bonding the resin to the particulate. In some embodiments of the present invention, the silane coupling agent used is included in the liquid hardenable resin component in the range of from about 0.1% to about 3% by weight of the liquid hardening agent component.
  • [0019]
    Any surfactant compatible with the other components of the resin composition may be used in the present invention. Such surfactants include, but are not limited to, an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants, and one or more non-ionic surfactants and an alkyl phosphonate surfactant. The mixtures of one or more cationic and nonionic surfactants are described in U.S. Pat. No. 6,311,733, issued to Todd et al. on Nov. 6, 2001, which is incorporated herein by reference. A C12-C22 alkyl phosphonate surfactant is preferred. The surfactant or surfactants utilized are included in the liquid hardening agent component in an amount in the range of from about 1% to about 15% by weight of the liquid hardening agent component.
  • [0020]
    Any solvent that is compatible with the hardenable resin and achieves the desired viscosity effect is suitable for use in the present invention. Preferred solvents are those having high flash points (most preferably about 125° F.). As described above, use of a solvent in the hardenable resin composition is optional but may be desirable to reduce the viscosity of the hardenable resin component for a variety of reasons including ease of handling, mixing, and transferring. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine if and how much solvent is needed to achieve a suitable viscosity. Solvents suitable for use in the present invention include, but are not limited to, 2-butoxy ethanol, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl sulfoxide, dimethyl formamide, diethyleneglycol methyl ether, diethylene glycol dimethyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, gamma-butyrolactone, butylene carbonate, propylene carbonate, ethylene carbonate, methanol, butyl alcohol, d'limonene, fatty acid methyl esters, and combinations thereof.
  • [0021]
    The amount of resin of the present invention coated onto the proppant particles generally ranges from about 0.1% to about 10% by weight of the proppant. When it is desirable or necessary to conserve a major portion of the resin composition, the resin composition may be applied to an initial portion of the proppant particles, not applied or intermittently applied to the middle portion of the proppant particles, and applied to the last portion of the proppant particles deposited in the fractures. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate combination to achieve the desired conservation goals, consolidation, and permeability goals.
  • [0022]
    In one embodiment of the methods of the present invention, a resin composition is created as described above that is then is then coated onto proppant particles to form resin-coated proppant particles that are subsequently mixed with a viscous fracturing fluid. The viscous fracturing fluid containing resin-coated proppant particles is then introduced into a subterranean zone having one or more fractures therein and the resin-coated proppant particles are placed in at least one fracture. The resin-coated proppant particles are then allowed to harden and consolidate into one or more high-strength permeable packs that prevent proppant flowback.
  • [0023]
    To facilitate a better understanding of the present invention, the following examples of some of the preferred embodiments are given. In no way should such examples be read to limit the scope of the invention.
  • EXAMPLES Example 1
  • [0024]
    A resin of the present invention was prepared by mixing 0.75 mL of phenol, 6.1 mL of phenol formaldehyde, 2.55 mL of furfuryl alcohol, 0.1 mL of silane coupling agent n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane, and 0.5 mL of an alkyl phosphonate surfactant. A volume of 7.5 mL of the resin mixture was then coated onto 250 grams of 20/40-mesh bauxite proppant. The coated proppant was then mixed with 300 mL of a fracturing fluid using carboxymethylhydroxypropyl guar as the gelling base. That gelled fluid was cross-linked with a zirconium cross-linker. The resulting viscous fracturing fluid comprising resin-coated proppant was stirred in a heated bath for 1 hour at 175° F. before being packed in brass flow cells. No closure stress was exerted on the cells and they were allowed to cure in an oven at various temperatures and for various lengths of time. Consolidated cores were obtained from the proppant packs to determine the unconsolidated compressive strength (UCS). The results if this tests are illustrated in Table 1, below:
    TABLE 1
    Effect of Cure Temperature and Cure Time on Unconfined
    Compressive Strength (psi) of Resin-Treated Proppant
    Cure Temperature
    Cure Time 225° F. 250° F. 275° F. 300° F. 325° F.
    2 hrs  12 16 113 540 489
    3 hrs 101 96 392 654 580
    6 hrs 195 314  590 593 779
    24 hrs  765
    96 hrs  860
  • [0025]
    The results in Table 1 illustrate that the resin compositions of the present invention, when allowed to cure at temperatures greater than or equal to 175, quickly yield compressive strengths suitable for use in subterranean applications.
  • Example 2
  • [0026]
    A modified API conductivity flow cell was used to perform proppant flowback testing to determine the effectiveness of the resin of the present invention in controlling proppant flowback. The conductivity flow cell was modified in that a 0.5-inch hole was installed a one end of the flow cell to simulate a perforation and a wire-mesh screen was initially inserted in the perforation to prevent production of the proppant. Ceramic proppant of 20/40-mesh was coated with 3% resin by weight of the proppant. The resin composition used was identical to that described in Example 1. The resin-coated proppant was then slurried into a viscous fracturing fluid as described in Example 1. The proppant slurry was packed into the modified conductivity cell to a loading of 2 lb/ft2 and set at an initial closure stress of 2,000 psi and a temperature of 150° F. After 2 hours, the temperature of the cell was increased to 300° F. and after 6 hours the closure stress was increased to 6,000 psi. The cell was allowed to set at 300° F. and 6,000 psi for 12 additional hours after which a flowing dry gas was fed through the cell at 50 standard liters per minute and an internal pressure of 400 psi. Following the treatment with the dry gas, the internal pressure on the cell was released, the wire-mesh screen was removed from the perforation, and dry gas was again fed to the cell. The gas was allowed to exit through the perforation and proppant production was monitored. Even once the dry gas feed rate increased to 760 standard liters per minute (which is equivalent to a field, gas production flow rate of 155 MMSCFT per day), only a few grains of proppant exited the cell, illustrating that the resin compositions of the present invention are capable of consolidating particulates and controlling proppant flowback.
  • [0027]
    Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US2703316 *5 Jun 19511 Mar 1955Du PontPolymers of high melting lactide
US2869642 *14 Sep 195420 Ene 1959Texas CoMethod of treating subsurface formations
US3492147 *22 Oct 196427 Ene 1970Halliburton CoMethod of coating particulate solids with an infusible resin
US3784585 *21 Oct 19718 Ene 1974American Cyanamid CoWater-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same
US3863709 *20 Dic 19734 Feb 1975Mobil Oil CorpMethod of recovering geothermal energy
US3868998 *15 May 19744 Mar 1975Shell Oil CoSelf-acidifying treating fluid positioning process
US4008763 *20 May 197622 Feb 1977Atlantic Richfield CompanyWell treatment method
US4070865 *10 Mar 197631 Ene 1978Halliburton CompanyMethod of consolidating porous formations using vinyl polymer sealer with divinylbenzene crosslinker
US4074760 *1 Nov 197621 Feb 1978The Dow Chemical CompanyMethod for forming a consolidated gravel pack
US4245702 *7 May 197920 Ene 1981Shell Internationale Research Maatschappij B.V.Method for forming channels of high fluid conductivity in hard acid-soluble formations
US4439489 *16 Feb 198227 Mar 1984Acme Resin CorporationParticles covered with a cured infusible thermoset film and process for their production
US4493875 *9 Dic 198315 Ene 1985Minnesota Mining And Manufacturing CompanyProppant for well fractures and method of making same
US4494605 *11 Dic 198122 Ene 1985Texaco Inc.Sand control employing halogenated, oil soluble hydrocarbons
US4498995 *1 Jul 198312 Feb 1985Judith GockelLost circulation drilling fluid
US4501328 *14 Mar 198326 Feb 1985Mobil Oil CorporationMethod of consolidation of oil bearing sands
US4564459 *13 Abr 198414 Ene 1986Baker Oil Tools, Inc.Proppant charge and method
US4572803 *30 Jun 198225 Feb 1986Asahi Dow LimitedOrganic rare-earth salt phosphor
US4649998 *2 Jul 198617 Mar 1987Texaco Inc.Sand consolidation method employing latex
US4716964 *10 Dic 19865 Ene 1988Exxon Production Research CompanyUse of degradable ball sealers to seal casing perforations in well treatment fluid diversion
US4722991 *23 May 19862 Feb 1988Acme Resin CorporationPhenol-formaldehyde-furfuryl alcohol resins
US4733729 *4 Feb 198729 Mar 1988Dowell Schlumberger IncorporatedMatched particle/liquid density well packing technique
US4796701 *30 Jul 198710 Ene 1989Dowell Schlumberger IncorporatedPyrolytic carbon coating of media improves gravel packing and fracturing capabilities
US4797262 *3 Jun 198710 Ene 1989Shell Oil CompanyDownflow fluidized catalytic cracking system
US4800960 *18 Dic 198731 Ene 1989Texaco Inc.Consolidatable gravel pack method
US4809783 *14 Ene 19887 Mar 1989Halliburton ServicesMethod of dissolving organic filter cake
US4895207 *19 Dic 198823 Ene 1990Texaco, Inc.Method and fluid for placing resin coated gravel or sand in a producing oil well
US4903770 *30 May 198927 Feb 1990Texaco Inc.Sand consolidation methods
US4986353 *14 Sep 198822 Ene 1991Conoco Inc.Placement process for oil field chemicals
US4986354 *14 Sep 198822 Ene 1991Conoco Inc.Composition and placement process for oil field chemicals
US4986355 *18 May 198922 Ene 1991Conoco Inc.Process for the preparation of fluid loss additive and gel breaker
US5082056 *16 Oct 199021 Ene 1992Marathon Oil CompanyIn situ reversible crosslinked polymer gel used in hydrocarbon recovery applications
US5178218 *19 Jun 199112 Ene 1993Oryx Energy CompanyMethod of sand consolidation with resin
US5182051 *7 Mar 199126 Ene 1993Protechnics International, Inc.Raioactive tracing with particles
US5293939 *31 Jul 199215 Mar 1994Texaco Chemical CompanyFormation treating methods
US5295542 *5 Oct 199222 Mar 1994Halliburton CompanyWell gravel packing methods
US5381864 *12 Nov 199317 Ene 1995Halliburton CompanyWell treating methods using particulate blends
US5386874 *8 Nov 19937 Feb 1995Halliburton CompanyPerphosphate viscosity breakers in well fracture fluids
US5388648 *8 Oct 199314 Feb 1995Baker Hughes IncorporatedMethod and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
US5393810 *30 Dic 199328 Feb 1995Halliburton CompanyMethod and composition for breaking crosslinked gels
US5396957 *4 Mar 199414 Mar 1995Halliburton CompanyWell completions with expandable casing portions
US5484881 *23 Ago 199316 Ene 1996Cargill, Inc.Melt-stable amorphous lactide polymer film and process for manufacturing thereof
US5494103 *16 Jun 199427 Feb 1996Halliburton CompanyWell jetting apparatus
US5494178 *25 Jul 199427 Feb 1996Alu Inc.Display and decorative fixture apparatus
US5497830 *6 Abr 199512 Mar 1996Bj Services CompanyCoated breaker for crosslinked acid
US5498280 *14 Nov 199412 Mar 1996Binney & Smith Inc.Phosphorescent and fluorescent marking composition
US5499678 *2 Ago 199419 Mar 1996Halliburton CompanyCoplanar angular jetting head for well perforating
US5501275 *2 Mar 199526 Mar 1996Dowell, A Division Of Schlumberger Technology CorporationControl of particulate flowback in subterranean wells
US5591700 *22 Dic 19947 Ene 1997Halliburton CompanyFracturing fluid with encapsulated breaker
US5594095 *27 Jul 199414 Ene 1997Cargill, IncorporatedViscosity-modified lactide polymer composition and process for manufacture thereof
US5595245 *4 Ago 199521 Ene 1997Scott, Iii; George L.Systems of injecting phenolic resin activator during subsurface fracture stimulation for enhanced oil recovery
US5597784 *6 Jun 199528 Ene 1997Santrol, Inc.Composite and reinforced coatings on proppants and particles
US5604184 *10 Abr 199518 Feb 1997Texaco, Inc.Chemically inert resin coated proppant system for control of proppant flowback in hydraulically fractured wells
US5604186 *15 Feb 199518 Feb 1997Halliburton CompanyEncapsulated enzyme breaker and method for use in treating subterranean formations
US5609207 *22 Dic 199511 Mar 1997Halliburton CompanyEpoxy resin composition and well treatment method
US5712314 *9 Ago 199627 Ene 1998Texaco Inc.Formulation for creating a pliable resin plug
US5732364 *9 Ene 199724 Mar 1998Associated Universities, Inc.Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes
US5864003 *23 Jul 199626 Ene 1999Georgia-Pacific Resins, Inc.Thermosetting phenolic resin composition
US5865936 *28 Mar 19972 Feb 1999National Starch And Chemical Investment Holding CorporationRapid curing structural acrylic adhesive
US5871049 *21 May 199816 Feb 1999Halliburton Energy Services, Inc.Control of fine particulate flowback in subterranean wells
US5873413 *18 Ago 199723 Feb 1999Halliburton Energy Services, Inc.Methods of modifying subterranean strata properties
US5875844 *26 Feb 19982 Mar 1999Halliburton Energy Services, Inc.Methods of sealing pipe strings in well bores
US5875845 *13 Abr 19982 Mar 1999Halliburton Energy Services, Inc.Methods and compositions for sealing pipe strings in well bores
US5875846 *29 May 19982 Mar 1999Halliburton Energy Services, Inc.Methods of modifying subterranean strata properties
US6012524 *14 Abr 199811 Ene 2000Halliburton Energy Services, Inc.Remedial well bore sealing methods and compositions
US6016870 *11 Jun 199825 Ene 2000Halliburton Energy Services, Inc.Compositions and methods for consolidating unconsolidated subterranean zones
US6024170 *3 Jun 199815 Feb 2000Halliburton Energy Services, Inc.Methods of treating subterranean formation using borate cross-linking compositions
US6028113 *27 Sep 199522 Feb 2000Sunburst Chemicals, Inc.Solid sanitizers and cleaner disinfectants
US6028534 *5 Feb 199822 Feb 2000Schlumberger Technology CorporationFormation data sensing with deployed remote sensors during well drilling
US6040398 *2 Sep 199821 Mar 2000Sanyo Chemical Industries Ltd.Epoxy curing agent and one-component (type) epoxy resin composition
US6169058 *5 Jun 19972 Ene 2001Bj Services CompanyCompositions and methods for hydraulic fracturing
US6172011 *8 Mar 19969 Ene 2001Schlumberger Technolgy CorporationControl of particulate flowback in subterranean wells
US6172077 *22 Abr 19989 Ene 2001Merck Sharp & Dohme Ltd.Spiro-azacyclic derivatives and their use as therapeutic agents
US6176315 *4 Dic 199823 Ene 2001Halliburton Energy Services, Inc.Preventing flow through subterranean zones
US6177484 *3 Nov 199823 Ene 2001Texaco Inc.Combination catalyst/coupling agent for furan resin
US6184311 *19 May 19956 Feb 2001Courtaulds Coatings (Holdings) LimitedPowder coating composition of semi-crystalline polyester and curing agent
US6187834 *8 Sep 199913 Feb 2001Dow Corning CorporationRadiation curable silicone compositions
US6187839 *3 Mar 199913 Feb 2001Halliburton Energy Services, Inc.Methods of sealing compositions and methods
US6189615 *15 Dic 199820 Feb 2001Marathon Oil CompanyApplication of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery
US6192985 *19 Dic 199827 Feb 2001Schlumberger Technology CorporationFluids and techniques for maximizing fracture fluid clean-up
US6192986 *17 Sep 199727 Feb 2001Halliburton Energy Services, Inc.Blocking composition for use in subterranean formation
US6196317 *15 Dic 19986 Mar 2001Halliburton Energy Services, Inc.Method and compositions for reducing the permeabilities of subterranean zones
US6202751 *28 Jul 200020 Mar 2001Halliburton Energy Sevices, Inc.Methods and compositions for forming permeable cement sand screens in well bores
US6350309 *13 Feb 200126 Feb 2002Halliburton Energy Services, Inc.Methods and compositions for cementing pipe strings in well bores
US6357527 *5 May 200019 Mar 2002Halliburton Energy Services, Inc.Encapsulated breakers and method for use in treating subterranean formations
US6503870 *30 Ago 20017 Ene 2003Halliburton Energy Services, Inc.Sealing subterranean zones
US6508305 *14 Sep 200021 Ene 2003Bj Services CompanyCompositions and methods for cementing using elastic particles
US6681856 *16 May 200327 Ene 2004Halliburton Energy Services, Inc.Methods of cementing in subterranean zones penetrated by well bores using biodegradable dispersants
US6686328 *9 Jul 19993 Feb 2004The Procter & Gamble CompanyDetergent tablet
US6851474 *6 Feb 20038 Feb 2005Halliburton Energy Services, Inc.Methods of preventing gravel loss in through-tubing vent-screen well completions
US6997259 *5 Sep 200314 Feb 2006Halliburton Energy Services, Inc.Methods for forming a permeable and stable mass in a subterranean formation
US7156194 *26 Ago 20032 Ene 2007Halliburton Energy Services, Inc.Methods of drilling and consolidating subterranean formation particulate
US20030006036 *23 May 20029 Ene 2003Core Laboratories Global N.V.Method for determining the extent of recovery of materials injected into oil wells during oil and gas exploration and production
US20040000402 *30 Sep 20021 Ene 2004Nguyen Philip D.Methods of consolidating proppant and controlling fines in wells
US20040014607 *16 Jul 200222 Ene 2004Sinclair A. RichardDownhole chemical delivery system for oil and gas wells
US20040014608 *19 Jul 200222 Ene 2004Nguyen Philip D.Methods of preventing the flow-back of particulates deposited in subterranean formations
US20050000731 *3 Jul 20036 Ene 2005Nguyen Philip D.Method and apparatus for treating a productive zone while drilling
US20050006093 *7 Jul 200313 Ene 2005Nguyen Philip D.Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
US20050006095 *8 Jul 200313 Ene 2005Donald JustusReduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US20050006096 *9 Jul 200313 Ene 2005Nguyen Philip D.Methods of consolidating subterranean zones and compositions therefor
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US776232927 Ene 200927 Jul 2010Halliburton Energy Services, Inc.Methods for servicing well bores with hardenable resin compositions
US776609923 Oct 20083 Ago 2010Halliburton Energy Services, Inc.Methods of drilling and consolidating subterranean formation particulates
US781919210 Feb 200626 Oct 2010Halliburton Energy Services, Inc.Consolidating agent emulsions and associated methods
US792659112 Ene 200919 Abr 2011Halliburton Energy Services, Inc.Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US793455715 Feb 20073 May 2011Halliburton Energy Services, Inc.Methods of completing wells for controlling water and particulate production
US796333021 Dic 200921 Jun 2011Halliburton Energy Services, Inc.Resin compositions and methods of using resin compositions to control proppant flow-back
US816704516 Abr 20091 May 2012Halliburton Energy Services, Inc.Methods and compositions for stabilizing formation fines and sand
US844388530 Ago 200721 May 2013Halliburton Energy Services, Inc.Consolidating agent emulsions and associated methods
US861332015 Feb 200824 Dic 2013Halliburton Energy Services, Inc.Compositions and applications of resins in treating subterranean formations
Clasificaciones
Clasificación de EE.UU.166/280.2
Clasificación internacionalC09K8/68, C09K8/80
Clasificación cooperativaC09K8/68, C09K8/805
Clasificación europeaC09K8/80B, C09K8/68