US20070289156A1 - Device and method for producing and/or finishing a fibrous material - Google Patents

Device and method for producing and/or finishing a fibrous material Download PDF

Info

Publication number
US20070289156A1
US20070289156A1 US11/773,749 US77374907A US2007289156A1 US 20070289156 A1 US20070289156 A1 US 20070289156A1 US 77374907 A US77374907 A US 77374907A US 2007289156 A1 US2007289156 A1 US 2007289156A1
Authority
US
United States
Prior art keywords
cylinder
drying
cylinder shell
drying cylinder
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/773,749
Inventor
Rainer Kloibhofer
Christoph Haase
Thomas Gruber-Nadlinger
Herbert Boden
Erich Rollenitz
Manfred Gloser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent GmbH filed Critical Voith Patent GmbH
Assigned to VOITH PATENT GMBH reassignment VOITH PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BODEN, HERBERT, GLOSER, MANFRED, GRUBER-NADLINGER, THOMAS, HAASE, CHRISTOPH, KLOIBHOFER, RAINER, ROLLENITZ, ERICH
Publication of US20070289156A1 publication Critical patent/US20070289156A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/02Drying on cylinders
    • D21F5/021Construction of the cylinders
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G1/00Calenders; Smoothing apparatus
    • D21G1/02Rolls; Their bearings
    • D21G1/0253Heating or cooling the rolls; Regulating the temperature
    • D21G1/0266Heating or cooling the rolls; Regulating the temperature using a heat-transfer fluid

Definitions

  • the present invention relates to a device for producing and/or finishing a web of fibrous material, in particular a paper or paperboard web, having a heatable and rotatable cylinder, in particular a drying cylinder of a drying section, having a cylinder shell which can be loaded from the inside with a heating fluid.
  • a heated cylinder of this type is known from DE 102 60 509.2.
  • the cylinder shell includes at least two shell layers and the material of the outer shell layer has a greater coefficient of thermal expansion at an assembly temperature which lies below the mean operating temperature and a smaller coefficient of thermal expansion at an assembly temperature which lies above the mean operating temperature than the material of the inner shell layer.
  • a further measure consists in that the layer thickness of the outer shell layer is smaller than that of the inner shell layer.
  • EP 0 559 628 B1 has disclosed a dryer for drying a web of fibrous material, in which dryer a throughflow cylinder is used in conjunction with a blowing hood.
  • the latter is provided with a nozzle arrangement, with the aid of which drying gas jets are applied to the outer surface of the web which is to be dried, while said web is guided around the heated cylinder over a sector of approximately 270° or more.
  • the circumference of the cylinder is provided with a system of channel lines, into which a coolant can be guided from a coolant source. Water in the web is evaporated outward as a result of the drying gas jets and removed via spaces in the blowing hood.
  • water from the web condenses on the cooled circumferential surface of the cylinder and is extracted by suction via the perforation in the outer shell of the cylinder and a vacuum which prevails in the interior of the cylinder.
  • the entire inner space of the cylinder is available for receiving the condensate.
  • the inner wall of the cylinder has to have a certain minimum wall thickness, in order for it to be possible to withstand the pressure loadings in the case of the cylinder diameters which are used.
  • the present invention provides at least one channel for guiding through the heating fluid which is formed below the outer surface of the cylinder shell, as well as a drying cylinder which is of at least partially modular construction.
  • the heating fluid can be brought very close to the outer surface of the heatable cylinder.
  • the temperature gradient is lower than in the case of the known devices of the abovementioned type, and the drying performance is increased accordingly.
  • the manufacture is simplified as a result of the modular construction.
  • a further cylinder shell which is spaced apart from the outer cylinder shell is arranged within the cylinder shell. This can be achieved satisfactorily in structural terms and has the advantage that the entire inner side of the outer cylinder shell can be loaded with heating fluid.
  • the outer cylinder shell is supported on the inner cylinder shell.
  • the wall thickness of the outer cylinder shell can be kept low, as the inner cylinder shell acts as carrying cylinder.
  • the drying performance can be increased still further.
  • Open and/or closed profiles can form a module.
  • segments firstly of the inner cylinder shell and/or of the outer cylinder shell and secondly of one or more connecting elements can form a module. This is advantageous in terms of manufacture and makes simple assembly possible. Moreover, it is readily possible to realize different overall sizes with identical modules as a result.
  • the drying cylinder can be of modular construction, both in the axial direction and in the circumferential direction, but also in both directions.
  • the individual modules are then positioned next to one another in the circumferential direction and/or axially.
  • Axial modules can have a length, for example, of up to 7 m, and circumferential modules can have a length, for example, of 1 m.
  • cylinder rings having the cross section of the drying cylinder form a module. They can then be arranged simply behind one another and connected to one another, for example welded.
  • Annular segments having the partial cross section of a drying cylinder can also form modules which are then assembled to form rings and are arranged behind one another in the axial direction. This is also advantageous in terms of manufacture and assembly.
  • module rings or module part rings which form or have the channels are pushed onto a carrying tube.
  • the prefabricated annular modules or part annular modules can therefore be mounted simply and connected to one another.
  • a module at the same time forms a functional element of the drying cylinder.
  • a module can form one or more guide channels for the heating fluid.
  • the desired channel system is produced by said modules being positioned next to one another, without it being necessary for the individual modules to be sealed with respect to one another.
  • a further advantage of this construction is that the pressure forces are absorbed within the modules and do not load the connections between the modules.
  • the modules can also be connected by soldering, screwing, by a form-fitting connection or by a force-transmitting connection. Combinations of these are also possible.
  • connecting ways can be provided for supporting the outer cylinder shell on the inner cylinder shell. It is important that the connecting ways are distributed over the surface of both cylinder shells, in order to ensure uniform support.
  • the webs or other connecting elements can extend axially, in the circumferential direction and/or in a direction which lies between them. Satisfactory support can be achieved in all cases.
  • the heating fluid can then flow not only in the circumferential direction but also in the longitudinal direction of the drying cylinder.
  • the inner side of the outer cylinder shell is provided with elevations.
  • the condensate which is collected on the inner side of the outer cylinder shell is subjected to turbulence, as a result of which the thermal transfer is improved.
  • the condensate which collects namely has a thermally insulating effect and increases the temperature gradient to the cylinder surface.
  • the inner side of the outer cylinder shell face is configured with ribs and/or lugs and/or a grid or honeycomb structure. Satisfactory swirling of the condensate can therefore be achieved.
  • the elevations can extend in the cylinder longitudinal direction and/or along a helical line.
  • a particular conveying action for condensate removal can be achieved by a helical line.
  • the outer surface of the drying cylinder can be provided with a coating or covering.
  • the latter serves, in particular, for protection against corrosion and/or abrasion, or for improving the surface, for example in order to avoid the adhesion of paper.
  • web metal sheets which are connected to the inner cylinder shell are provided as connecting elements between the inner and outer cylinder shells.
  • the outer cylinder shell can be formed by cover plates which are likewise connected to the web metal sheets.
  • the web metal sheets and cover plates are combined to form profiles, such as with a U-shape or T-shape.
  • only one cylinder shell is provided which is configured as a thick-walled tube and in which channels for the heating fluid are made, for example by deep-hole drilling or milling.
  • the heating fluid can also be brought close to the outer surface of the drying cylinder and the drying performance can therefore be increased.
  • the elevations on the inner side of the outer cylinder shell can be milled, drawn, pressed, rolled or cast. Other manufacturing types are also possible.
  • the webs, metal sheets or other connecting elements between the inner and outer cylinder shells can be manufactured by removing material, by primary forming technology or by forming technology. A combination of these processes is also possible.
  • a device of the abovementioned type can be used for manufacturing a web of fibrous material, in particular a paper or paperboard web.
  • a drying cylinder of the above-mentioned type or a plurality of drying cylinders of this type can be used.
  • a drying cylinder according to the present invention can also be combined with conventional drying cylinders.
  • Suitable conventional drying processes are, in particular, cylinder drying, the boost dryer process, the Condebelt process, a yankee cylinder and a HiDryer.
  • the drying performance can be increased by the method according to the invention and the device according to the invention.
  • a finished dried paper can be achieved with a relatively low dwell time.
  • This can be utilized firstly by the fact that less space is required in comparison with a drying section according to the prior art, which results in savings in the basic price, the building costs for the hall, the machine frames and the fume extraction hood, and also the operating costs for drives and hood ventilation.
  • this can be utilized by the fact that a speed increase is achieved with existing space conditions, for example papermaking machine conversions, with an identical length of the drying section. As a result, the papermaking machine can be operated more economically.
  • the steam pressure can be reduced with the same drying performance.
  • the differential steam pressure could be utilized for electricity generation, or the energy for steam generation can be minimized.
  • FIG. 1 shows a longitudinal section through a drying cylinder of a device according to the invention
  • FIG. 2 shows a partial plan view of the end side of the drying cylinder of FIG. 1 ;
  • FIG. 3 shows a partial cross section through a drying cylinder of a device according to the invention
  • FIG. 4 shows a variant of FIG. 3 ;
  • FIG. 5 shows a further variant of FIG. 3 ;
  • FIG. 6 shows a side view of a drying cylinder of a device according to the invention.
  • FIG. 7 shows a cross section through the drying cylinder of FIG. 6 .
  • the drying cylinder includes an outer cylinder shell 1 and an inner cylinder shell 2 which is arranged concentrically in the former.
  • the inner cylinder shell 2 is fastened via screws 3 to two end-side covers 4 which are of disk-shaped configuration and in each case have one bearing axle 5 , 6 .
  • the drive side is situated on the left-hand side in FIG. 1
  • the operator side of the drying cylinder is situated on the right-hand side.
  • the outer cylinder shell 1 has an outer surface 7 , over which a paper web which is to be dried is guided.
  • the outer surface 7 of the outer cylinder shell 1 is of flush configuration with the circumferential faces 8 of the two covers 4 . As a result, a continuous contact face for the paper web is provided.
  • the outer cylinder shell 1 has a thickness d 1 which is smaller than the thickness d 2 of the inner cylinder shell 2 .
  • the inner circumferential face 9 of the outer cylinder shell 1 is at a spacing from the outer circumferential face 10 of the inner cylinder shell 2 , with the result that an annular hollow space 11 is formed between the outer cylinder shell 1 and the inner cylinder shell 2 .
  • This annular space 11 is connected to radial channels 12 , 13 in the two axles 5 , 6 of the covers 4 on both end sides of the two cylinder shells 1 , 2 via channels (not shown here) in the covers 4 .
  • the radial channels 12 of the axle 5 of the operator-side cover 4 are connected to an axial channel 14 which is provided centrally in the axle 5 of the operator-side cover 4 and opens in a connection end 15 .
  • the radial channels 13 of the axle 6 of the drive-side cover 4 are likewise connected to an axial channel 16 .
  • said channel 16 is guided concentrically with respect to the rotational axis I of the drying cylinder centrally through the two cylinder shells 1 , 2 and the axle 5 of the operator-side cover 4 , and likewise opens in a connection end 17 .
  • the channel 16 penetrates the channel 14 concentrically, with the result that the channel 14 has an annular cross section.
  • heating fluid is fed into the annular channel 14 via the connection end 15 . From there, the heating fluid passes via the radial channels 12 into the channels (not shown) in the operator-side cover 4 and, from the latter, into the hollow space 11 between the outer cylinder shell 1 and the inner cylinder shell 2 . The heating medium then flows from the operator side through the hollow space 11 to the drive-side and passes there via the channels (not shown) in the drive-side cover 4 into the radial channels 13 of the drive-side axle 6 . From there, the heating fluid in turn flows via the central channel 16 back to its connection end 17 .
  • the outer cylinder shell 1 On both end sides, the outer cylinder shell 1 has in each case tapered sections 18 , with which the outer cylinder shell 11 rests in each case on a corresponding seat 19 on the circumferential sides of the covers 4 . As a result, the outer cylinder shell 1 is supported on the two covers 4 . However, the main support of the outer cylinder shell 1 takes place over its length by way of connecting elements 20 , as are shown by way of example in FIG. 2 and which are distributed over the circumferential faces of the outer cylinder shell 1 and the inner cylinder shell 2 . Moreover, FIG. 2 also shows a siphon 21 which is provided for removing condensate at the end-side end of the hollow space 11 . Siphons 21 of this type can be provided both on the drive side and on the operator side and are of either corotating or stationary configuration. A plurality of siphons of this type can also be provided in the circumferential direction.
  • FIGS. 3 to 7 Different variants of the modular construction of the drying cylinder according to the invention are shown in FIGS. 3 to 7 and will be described in the following text.
  • FIGS. 3 to 5 show a circumferential section of a drying cylinder according to the invention having an outer cylinder shell 1 of small thickness d 1 and an inner cylinder shell 2 of greater thickness d 2 in comparison. There is a hollow space 11 for guiding through a heating fluid between the outer cylinder shell 1 and the inner cylinder shell 2 .
  • Modules 22 which are attached to the inner cylinder shell 2 as carrying tube are provided in the variants which are shown in FIGS. 3 to 5 .
  • the modules 22 are arranged so as to adjoin one another in the circumferential direction and together form the outer cylinder shell 1 and the hollow space 11 between the outer cylinder shell 1 and the inner cylinder shell 2 .
  • the outer cylinder shell 1 is supported on the inner cylinder shell 2 via the modules 22 themselves.
  • the modules 22 are configured as tubes 23 which are substantially rectangular at their outer circumference and extend in the longitudinal direction of the drying cylinder.
  • the hollow spaces 24 of the rectangular tubes 23 form channels for the heating fluid and, in a joint manner overall, the hollow space 11 between the outer cylinder shell 1 and the inner cylinder shell 2 .
  • elevations 27 which load a heating fluid condensate which collects there during operation with turbulence are arranged on the inner side 25 of the outer section 26 of the tube 23 .
  • the tubes 23 are connected to the inner cylinder shell 2 by screws 28 .
  • the inner cylinder shell 2 has holes 29 at a corresponding location.
  • the tubes 23 which are arranged next to one another can be welded to one another. In order to achieve a smooth surface, the outer side 7 of the outer cylinder shell 1 can then be turned.
  • the variant which is shown at D 2 in FIG. 3 coincides largely with the variant of D 1 .
  • the tubes 23 which have a substantially rectangular cross section have a shoulder 32 in each case on the left-hand side in FIG. 3 and a projection 33 on the right-hand side, which projection 33 is formed with an accurate fit with respect to the shoulder 32 .
  • the result of the projections 33 and the shoulders 32 engaging in one another is additionally a form-fitting connection between the adjacent modules 22 .
  • a welded connection can optionally be dispensed with here.
  • a form-fitting connection is also provided between the adjacent tubes 23 .
  • the tubes 23 have an upwardly bent, rounded projection 34 on their left-hand side and a correspondingly shaped recess 35 on their right-hand side, into which recess 35 the projection 34 engages.
  • a welded connection between the tubes 23 can also be dispensed with here.
  • the variant which is shown at D 4 in FIG. 4 coincides practically completely with the variant at D 3 in FIG. 3 .
  • the only difference is that the cross section of the projections at D 4 is smaller than in the variant of D 3 in FIG. 3 , and correspondingly the cross section of the recesses 35 is also smaller.
  • FIG. 4 shows a variant which coincides completely with the variant at D 4 in terms of the outer circumference.
  • the tubes 23 do not have one but two chambers 24 which are arranged next to one another in the circumferential direction of the drying cylinder.
  • the threaded holes 30 for screwing in the fastening screws 28 are not provided here in the lateral sections 31 of the tubes 23 , but in the dividing wall 36 between the two chambers 24 . In this variant, therefore, only one row of screws 28 is provided in the longitudinal direction of the drying cylinder per tube 23 , in a deviation from the variants which have been described previously.
  • a variant which coincides largely with the variant at D 5 is shown at D 6 in FIG. 4 .
  • the only difference is that the tubes 23 have a greater width here in the circumferential direction of the drying cylinder.
  • FIG. 5 there is likewise an inner cylinder shell 2 which serves as carrying tube.
  • Profiles 37 of U-shaped cross section which extend in the longitudinal direction of the drying cylinder are welded onto this inner cylinder shell 2 .
  • the opening of the U-shape points toward the inner cylinder shell 2 , with the result that channels 38 for the heating fluid are formed between the U-profiles and the inner cylinder shell 2 .
  • the U-profiles 37 are arranged on the inner cylinder shell 2 in a manner which is spaced apart from one another in the circumferential direction of the drying cylinder. Adjacent U-profiles 37 are connected to one another in each case via flat profiles 39 which are welded to the U-profiles 37 at the level of the base 40 of the latter. As a result, in each case further channels 42 for the heating fluid are formed between the limbs 41 of two adjacent U-profiles 37 , the flat profile 39 which is arranged there and the inner cylinder shell 2 .
  • the bases 40 of the U-profiles 37 and the flat profiles 39 together form the outer cylinder shell 1 and are configured with a flush outer side 7 .
  • the channels 38 and the channels 42 together form the hollow space 11 between the outer cylinder shell 1 and the inner cylinder shell 2 .
  • FIG. 6 shows a drying cylinder, in which annular modules 43 are arranged behind one another in the longitudinal direction of the drying cylinder.
  • annular modules 43 are arranged behind one another in the longitudinal direction of the drying cylinder.
  • the drying cylinder is closed at the end by covers 4 which in each case have an axle 5 , 6 .
  • the modules 43 are connected to one another and to the covers by welding.
  • FIG. 7 the cross section of the modules 43 of FIG. 6 can be seen. These are in each case a solid ring or tube section 44 , in which channels 45 are made which extend in the longitudinal direction of the drying cylinder. Here, the channels are arranged just below the outer side 7 of the drying cylinder and serve for passing through the heating fluid. This ensures satisfactory thermal transfer onto the web of fibrous material.

Abstract

The invention relates to a device for producing and/or transforming a web of fibrous material, in particular a paper cardboard web. Said device includes a heatable and rotatable cylinder, in particular a dry cylinder of a dry part, including a cylinder sleeve which can be impinged upon from the inside by a heating fluid. At least one channel is provided in order to guide the heating fluid such that the heating capacity can be improved and the production below the external surface of the cylinder cover can be simplified. The dry cylinder is at least partially modular.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is a continuation of PCT application No. PCT/EP2005/056166, entitled “DEVICE AND METHOD FOR PRODUCING AND/OR TRANSFORMING A WEB OF FIBROUS MATERIAL”, filed Nov. 23, 2005, which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a device for producing and/or finishing a web of fibrous material, in particular a paper or paperboard web, having a heatable and rotatable cylinder, in particular a drying cylinder of a drying section, having a cylinder shell which can be loaded from the inside with a heating fluid.
  • 2. Description of the Related Art
  • A heated cylinder of this type is known from DE 102 60 509.2. In the known cylinder, tensile stresses which are produced because the inner region of the cylinder expands in a more pronounced manner than the outer region are minimized by the fact that the cylinder shell includes at least two shell layers and the material of the outer shell layer has a greater coefficient of thermal expansion at an assembly temperature which lies below the mean operating temperature and a smaller coefficient of thermal expansion at an assembly temperature which lies above the mean operating temperature than the material of the inner shell layer. A further measure consists in that the layer thickness of the outer shell layer is smaller than that of the inner shell layer.
  • In drying cylinders of this type, a temperature gradient toward the surface is produced during paper drying. The surface temperature of the cylinder is lower than the temperature of the steam, with which the cylinder is heated; the drying capacity is therefore restricted. Increasing the saturated steam temperature is usually not appropriate for economic reasons.
  • EP 0 559 628 B1 has disclosed a dryer for drying a web of fibrous material, in which dryer a throughflow cylinder is used in conjunction with a blowing hood. The latter is provided with a nozzle arrangement, with the aid of which drying gas jets are applied to the outer surface of the web which is to be dried, while said web is guided around the heated cylinder over a sector of approximately 270° or more. The circumference of the cylinder is provided with a system of channel lines, into which a coolant can be guided from a coolant source. Water in the web is evaporated outward as a result of the drying gas jets and removed via spaces in the blowing hood. Secondly, water from the web condenses on the cooled circumferential surface of the cylinder and is extracted by suction via the perforation in the outer shell of the cylinder and a vacuum which prevails in the interior of the cylinder. The entire inner space of the cylinder is available for receiving the condensate. As a result, the inner wall of the cylinder has to have a certain minimum wall thickness, in order for it to be possible to withstand the pressure loadings in the case of the cylinder diameters which are used.
  • What is needed in the art is to increase the drying performance of a heatable cylinder and to simplify manufacture.
  • SUMMARY OF THE INVENTION
  • The present invention provides at least one channel for guiding through the heating fluid which is formed below the outer surface of the cylinder shell, as well as a drying cylinder which is of at least partially modular construction.
  • As a result of the invention, the heating fluid can be brought very close to the outer surface of the heatable cylinder. As a result, the temperature gradient is lower than in the case of the known devices of the abovementioned type, and the drying performance is increased accordingly. The manufacture is simplified as a result of the modular construction.
  • According to one refinement of the present invention, in order to form the at least one channel, a further cylinder shell which is spaced apart from the outer cylinder shell is arranged within the cylinder shell. This can be achieved satisfactorily in structural terms and has the advantage that the entire inner side of the outer cylinder shell can be loaded with heating fluid.
  • According to a further refinement of the invention, the outer cylinder shell is supported on the inner cylinder shell. As a result, the wall thickness of the outer cylinder shell can be kept low, as the inner cylinder shell acts as carrying cylinder. As a result, the drying performance can be increased still further.
  • Open and/or closed profiles can form a module. In particular, segments firstly of the inner cylinder shell and/or of the outer cylinder shell and secondly of one or more connecting elements can form a module. This is advantageous in terms of manufacture and makes simple assembly possible. Moreover, it is readily possible to realize different overall sizes with identical modules as a result.
  • The drying cylinder can be of modular construction, both in the axial direction and in the circumferential direction, but also in both directions. The individual modules are then positioned next to one another in the circumferential direction and/or axially. Axial modules can have a length, for example, of up to 7 m, and circumferential modules can have a length, for example, of 1 m.
  • According to one particular refinement of the invention, cylinder rings having the cross section of the drying cylinder form a module. They can then be arranged simply behind one another and connected to one another, for example welded.
  • Annular segments having the partial cross section of a drying cylinder can also form modules which are then assembled to form rings and are arranged behind one another in the axial direction. This is also advantageous in terms of manufacture and assembly.
  • It is particularly advantageous if module rings or module part rings which form or have the channels are pushed onto a carrying tube. The prefabricated annular modules or part annular modules can therefore be mounted simply and connected to one another.
  • Particular advantages result when a module at the same time forms a functional element of the drying cylinder. For example, a module can form one or more guide channels for the heating fluid. The desired channel system is produced by said modules being positioned next to one another, without it being necessary for the individual modules to be sealed with respect to one another. A further advantage of this construction is that the pressure forces are absorbed within the modules and do not load the connections between the modules.
  • In addition to welding, the modules can also be connected by soldering, screwing, by a form-fitting connection or by a force-transmitting connection. Combinations of these are also possible.
  • In particular, webs, rods, pins, rivets, bolts, screws and/or other connecting ways can be provided for supporting the outer cylinder shell on the inner cylinder shell. It is important that the connecting ways are distributed over the surface of both cylinder shells, in order to ensure uniform support.
  • The webs or other connecting elements can extend axially, in the circumferential direction and/or in a direction which lies between them. Satisfactory support can be achieved in all cases.
  • In particular in the case of webs which extend in the circumferential direction, it is advantageous if they are provided at least partially with passage openings for the heating fluid. The heating fluid can then flow not only in the circumferential direction but also in the longitudinal direction of the drying cylinder.
  • According to a further refinement of the invention, the inner side of the outer cylinder shell is provided with elevations. As a result, the condensate which is collected on the inner side of the outer cylinder shell is subjected to turbulence, as a result of which the thermal transfer is improved. The condensate which collects namely has a thermally insulating effect and increases the temperature gradient to the cylinder surface.
  • According to a further refinement of the invention, the inner side of the outer cylinder shell face is configured with ribs and/or lugs and/or a grid or honeycomb structure. Satisfactory swirling of the condensate can therefore be achieved.
  • The elevations can extend in the cylinder longitudinal direction and/or along a helical line. A particular conveying action for condensate removal can be achieved by a helical line.
  • The outer surface of the drying cylinder can be provided with a coating or covering. The latter serves, in particular, for protection against corrosion and/or abrasion, or for improving the surface, for example in order to avoid the adhesion of paper.
  • According to a further refinement of the invention, web metal sheets which are connected to the inner cylinder shell are provided as connecting elements between the inner and outer cylinder shells. The outer cylinder shell can be formed by cover plates which are likewise connected to the web metal sheets.
  • In another refinement of the invention, the web metal sheets and cover plates are combined to form profiles, such as with a U-shape or T-shape.
  • According to another refinement of the invention, only one cylinder shell is provided which is configured as a thick-walled tube and in which channels for the heating fluid are made, for example by deep-hole drilling or milling. In this way, the heating fluid can also be brought close to the outer surface of the drying cylinder and the drying performance can therefore be increased.
  • Moreover, it can be advantageous to turn the outer circumferential face. As a result, a smooth surface can be achieved.
  • The elevations on the inner side of the outer cylinder shell can be milled, drawn, pressed, rolled or cast. Other manufacturing types are also possible.
  • The webs, metal sheets or other connecting elements between the inner and outer cylinder shells can be manufactured by removing material, by primary forming technology or by forming technology. A combination of these processes is also possible.
  • A device of the abovementioned type can be used for manufacturing a web of fibrous material, in particular a paper or paperboard web. Here, a drying cylinder of the above-mentioned type or a plurality of drying cylinders of this type can be used. A drying cylinder according to the present invention can also be combined with conventional drying cylinders.
  • Suitable conventional drying processes are, in particular, cylinder drying, the boost dryer process, the Condebelt process, a yankee cylinder and a HiDryer.
  • The drying performance can be increased by the method according to the invention and the device according to the invention. As a result, a finished dried paper can be achieved with a relatively low dwell time. This can be utilized firstly by the fact that less space is required in comparison with a drying section according to the prior art, which results in savings in the basic price, the building costs for the hall, the machine frames and the fume extraction hood, and also the operating costs for drives and hood ventilation. Secondly, this can be utilized by the fact that a speed increase is achieved with existing space conditions, for example papermaking machine conversions, with an identical length of the drying section. As a result, the papermaking machine can be operated more economically. Moreover, the steam pressure can be reduced with the same drying performance. For example, the differential steam pressure could be utilized for electricity generation, or the energy for steam generation can be minimized.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 shows a longitudinal section through a drying cylinder of a device according to the invention;
  • FIG. 2 shows a partial plan view of the end side of the drying cylinder of FIG. 1;
  • FIG. 3 shows a partial cross section through a drying cylinder of a device according to the invention;
  • FIG. 4 shows a variant of FIG. 3;
  • FIG. 5 shows a further variant of FIG. 3;
  • FIG. 6 shows a side view of a drying cylinder of a device according to the invention; and
  • FIG. 7 shows a cross section through the drying cylinder of FIG. 6.
  • Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings, and more particularly to FIG. 1, there is shown a drying cylinder in the drying section of a papermaking machine. The drying cylinder includes an outer cylinder shell 1 and an inner cylinder shell 2 which is arranged concentrically in the former. The inner cylinder shell 2 is fastened via screws 3 to two end-side covers 4 which are of disk-shaped configuration and in each case have one bearing axle 5, 6. The drive side is situated on the left-hand side in FIG. 1, and the operator side of the drying cylinder is situated on the right-hand side.
  • The outer cylinder shell 1 has an outer surface 7, over which a paper web which is to be dried is guided. The outer surface 7 of the outer cylinder shell 1 is of flush configuration with the circumferential faces 8 of the two covers 4. As a result, a continuous contact face for the paper web is provided.
  • The outer cylinder shell 1 has a thickness d1 which is smaller than the thickness d2 of the inner cylinder shell 2. The inner circumferential face 9 of the outer cylinder shell 1 is at a spacing from the outer circumferential face 10 of the inner cylinder shell 2, with the result that an annular hollow space 11 is formed between the outer cylinder shell 1 and the inner cylinder shell 2. This annular space 11 is connected to radial channels 12, 13 in the two axles 5, 6 of the covers 4 on both end sides of the two cylinder shells 1, 2 via channels (not shown here) in the covers 4. For their part, the radial channels 12 of the axle 5 of the operator-side cover 4 are connected to an axial channel 14 which is provided centrally in the axle 5 of the operator-side cover 4 and opens in a connection end 15. The radial channels 13 of the axle 6 of the drive-side cover 4 are likewise connected to an axial channel 16. Starting from the drive-side cover 4, said channel 16 is guided concentrically with respect to the rotational axis I of the drying cylinder centrally through the two cylinder shells 1, 2 and the axle 5 of the operator-side cover 4, and likewise opens in a connection end 17. Here, the channel 16 penetrates the channel 14 concentrically, with the result that the channel 14 has an annular cross section.
  • The above-described construction results in a channel system which makes the circulation of heating fluid possible through the hollow space 11 between the outer cylinder shell 1 and the inner cylinder shell 2. For this purpose, for example, heating fluid is fed into the annular channel 14 via the connection end 15. From there, the heating fluid passes via the radial channels 12 into the channels (not shown) in the operator-side cover 4 and, from the latter, into the hollow space 11 between the outer cylinder shell 1 and the inner cylinder shell 2. The heating medium then flows from the operator side through the hollow space 11 to the drive-side and passes there via the channels (not shown) in the drive-side cover 4 into the radial channels 13 of the drive-side axle 6. From there, the heating fluid in turn flows via the central channel 16 back to its connection end 17.
  • On both end sides, the outer cylinder shell 1 has in each case tapered sections 18, with which the outer cylinder shell 11 rests in each case on a corresponding seat 19 on the circumferential sides of the covers 4. As a result, the outer cylinder shell 1 is supported on the two covers 4. However, the main support of the outer cylinder shell 1 takes place over its length by way of connecting elements 20, as are shown by way of example in FIG. 2 and which are distributed over the circumferential faces of the outer cylinder shell 1 and the inner cylinder shell 2. Moreover, FIG. 2 also shows a siphon 21 which is provided for removing condensate at the end-side end of the hollow space 11. Siphons 21 of this type can be provided both on the drive side and on the operator side and are of either corotating or stationary configuration. A plurality of siphons of this type can also be provided in the circumferential direction.
  • Different variants of the modular construction of the drying cylinder according to the invention are shown in FIGS. 3 to 7 and will be described in the following text.
  • FIGS. 3 to 5 show a circumferential section of a drying cylinder according to the invention having an outer cylinder shell 1 of small thickness d1 and an inner cylinder shell 2 of greater thickness d2 in comparison. There is a hollow space 11 for guiding through a heating fluid between the outer cylinder shell 1 and the inner cylinder shell 2.
  • Modules 22 which are attached to the inner cylinder shell 2 as carrying tube are provided in the variants which are shown in FIGS. 3 to 5. Here, the modules 22 are arranged so as to adjoin one another in the circumferential direction and together form the outer cylinder shell 1 and the hollow space 11 between the outer cylinder shell 1 and the inner cylinder shell 2.
  • The outer cylinder shell 1 is supported on the inner cylinder shell 2 via the modules 22 themselves.
  • In the variant which is shown in FIG. 3 at D1, the modules 22 are configured as tubes 23 which are substantially rectangular at their outer circumference and extend in the longitudinal direction of the drying cylinder. The hollow spaces 24 of the rectangular tubes 23 form channels for the heating fluid and, in a joint manner overall, the hollow space 11 between the outer cylinder shell 1 and the inner cylinder shell 2. As shown in the right-hand tube 23 at D1, elevations 27 which load a heating fluid condensate which collects there during operation with turbulence are arranged on the inner side 25 of the outer section 26 of the tube 23.
  • The tubes 23 are connected to the inner cylinder shell 2 by screws 28. For this purpose, the inner cylinder shell 2 has holes 29 at a corresponding location. There are associated threaded holes 30 in the two lateral sections 31 of the tubes 23. Moreover, the tubes 23 which are arranged next to one another can be welded to one another. In order to achieve a smooth surface, the outer side 7 of the outer cylinder shell 1 can then be turned.
  • The variant which is shown at D2 in FIG. 3 coincides largely with the variant of D1. The single difference is that here the tubes 23 which have a substantially rectangular cross section have a shoulder 32 in each case on the left-hand side in FIG. 3 and a projection 33 on the right-hand side, which projection 33 is formed with an accurate fit with respect to the shoulder 32. The result of the projections 33 and the shoulders 32 engaging in one another is additionally a form-fitting connection between the adjacent modules 22. A welded connection can optionally be dispensed with here.
  • In the variant of FIG. 3 which is shown at D3, a form-fitting connection is also provided between the adjacent tubes 23. Here, in a difference from the variant of D2, the tubes 23 have an upwardly bent, rounded projection 34 on their left-hand side and a correspondingly shaped recess 35 on their right-hand side, into which recess 35 the projection 34 engages. A welded connection between the tubes 23 can also be dispensed with here. The variant which is shown at D4 in FIG. 4 coincides practically completely with the variant at D3 in FIG. 3. The only difference is that the cross section of the projections at D4 is smaller than in the variant of D3 in FIG. 3, and correspondingly the cross section of the recesses 35 is also smaller.
  • At D5, FIG. 4 shows a variant which coincides completely with the variant at D4 in terms of the outer circumference. However, the tubes 23 do not have one but two chambers 24 which are arranged next to one another in the circumferential direction of the drying cylinder. Moreover, the threaded holes 30 for screwing in the fastening screws 28 are not provided here in the lateral sections 31 of the tubes 23, but in the dividing wall 36 between the two chambers 24. In this variant, therefore, only one row of screws 28 is provided in the longitudinal direction of the drying cylinder per tube 23, in a deviation from the variants which have been described previously.
  • A variant which coincides largely with the variant at D5 is shown at D6 in FIG. 4. The only difference is that the tubes 23 have a greater width here in the circumferential direction of the drying cylinder.
  • In the variant of FIG. 5, there is likewise an inner cylinder shell 2 which serves as carrying tube. Profiles 37 of U-shaped cross section which extend in the longitudinal direction of the drying cylinder are welded onto this inner cylinder shell 2. Here, the opening of the U-shape points toward the inner cylinder shell 2, with the result that channels 38 for the heating fluid are formed between the U-profiles and the inner cylinder shell 2.
  • The U-profiles 37 are arranged on the inner cylinder shell 2 in a manner which is spaced apart from one another in the circumferential direction of the drying cylinder. Adjacent U-profiles 37 are connected to one another in each case via flat profiles 39 which are welded to the U-profiles 37 at the level of the base 40 of the latter. As a result, in each case further channels 42 for the heating fluid are formed between the limbs 41 of two adjacent U-profiles 37, the flat profile 39 which is arranged there and the inner cylinder shell 2. The bases 40 of the U-profiles 37 and the flat profiles 39 together form the outer cylinder shell 1 and are configured with a flush outer side 7. The channels 38 and the channels 42 together form the hollow space 11 between the outer cylinder shell 1 and the inner cylinder shell 2.
  • FIG. 6 shows a drying cylinder, in which annular modules 43 are arranged behind one another in the longitudinal direction of the drying cylinder. Here, not only two but also more modules 43 can be arranged behind one another. The drying cylinder is closed at the end by covers 4 which in each case have an axle 5, 6. The modules 43 are connected to one another and to the covers by welding.
  • In FIG. 7, the cross section of the modules 43 of FIG. 6 can be seen. These are in each case a solid ring or tube section 44, in which channels 45 are made which extend in the longitudinal direction of the drying cylinder. Here, the channels are arranged just below the outer side 7 of the drying cylinder and serve for passing through the heating fluid. This ensures satisfactory thermal transfer onto the web of fibrous material.
  • While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
  • LIST OF DESIGNATIONS
    • 1 Outer cylinder shell
    • 2 Inner cylinder shell
    • 3 Fastening screw
    • 4 Cover
    • 5 Operator-side axle
    • 6 Drive-side axle
    • 7 Outer side of 1
    • 8 Circumferential face of 4
    • 9 Inner side of 1
    • 10 Outer side of 2
    • 11 Hollow space
    • 12 Radial channel
    • 13 Radial channel
    • 14 Axial channel
    • 15 Connection end of 14
    • 16 Axial channel
    • 17 Connection end of 16
    • 18 Tapered section of 1
    • 19 Seat
    • 20 Connecting element
    • 21 Siphon
    • 22 Module
    • 23 Tube
    • 24 Hollow space
    • 25 Inner side of 26
    • 26 Outer section of 23
    • 27 Elevations
    • 28 Screw
    • 29 Hole
    • 30 Threaded hole
    • 31 Lateral section of 23
    • 32 Shoulder
    • 33 Projection
    • 34 Projection
    • 35 Recess
    • 36 Dividing wall
    • 37 U-profile
    • 38 Channel
    • 39 Flat profile
    • 40 Base of 37
    • 41 Limb of 37
    • 42 Channel
    • 43 Module ring
    • 44 Tube
    • 45 Channel
    • I Rotational axis
    • II Flow direction
    • d1 Thickness of 1
    • d2 Thickness of 2

Claims (34)

1. A device for at least one of producing and finishing a web of fibrous material comprising:
a heatable and rotatable drying cylinder of a drying section, said drying cylinder including a first cylinder shell configured for being loaded from an inside with a heating fluid, said first cylinder shell including an outer surface below which is formed at least one channel for guiding through said heating fluid, said drying cylinder having an at least partially modular construction.
2. The device as claimed in claim 1, wherein said drying cylinder includes an inner cylinder shell, said first cylinder shell being an outer cylinder shell, said inner cylinder shell being spaced apart from said outer cylinder shell and being arranged within said outer cylinder shell so as to form said at least one channel.
3. The device as claimed in claim 2, wherein said outer cylinder shell is supported on said inner cylinder shell.
4. The device as claimed in claim 2, wherein said drying cylinder includes at least one module which includes at least one of an open profile and a closed profile.
5. The device as claimed in claim 2, wherein said drying cylinder includes at least one module which includes a plurality of segments firstly of at least one of said inner cylinder shell and said outer cylinder shell and secondly of at least one connecting element.
6. The device as claimed in claim 2, wherein said drying cylinder includes a plurality of modules in at least one of an axial direction and a circumferential direction.
7. The device as claimed in claim 2, wherein said drying cylinder includes at least one module which includes a plurality of cylinder rings having a cross section of said drying cylinder.
8. The device as claimed in claim 2, wherein said drying cylinder includes at least one module which includes a plurality of annular segments having a partial cross section of said drying cylinder.
9. The device as claimed in claim 2, wherein said drying cylinder includes one of a plurality of module rings and a plurality of module part rings, said at least one channel including a plurality of channels, said inner cylinder shell including a carrying tube onto which are coupled, using at least one screw, one of said plurality of module rings and said plurality of module part rings which one of form and have said plurality of channels.
10. The device as claimed in claim 2, wherein said drying cylinder includes at least one module which at the same time forms a functional element of the drying cylinder.
11. The device as claimed in claim 10, wherein said at least one module forms at least one guide channel for said heating fluid.
12. The device as claimed in claim 2, wherein said drying cylinder includes a plurality of modules which are connected to one another by one of at least one weld, at least one solder, at least one screw, at least one form-fitting connection, and at least one force-transmitting connection.
13. The device as claimed in claim 2, wherein said outer cylinder shell is connected to said inner cylinder shell using a plurality of connecting elements.
14. The device as claimed in claim 13, wherein said plurality of connecting elements includes at least one of a plurality of radial webs, a plurality of rods, a plurality of pins, a plurality of rivets, a plurality of bolts, and a plurality of screws.
15. The device as claimed in claim 14, wherein said plurality of radial webs at least partially has a plurality of passage openings for said heating fluid.
16. The device as claimed in claim 13, wherein said plurality of connecting elements one of extends and is arranged axially in at least one of a circumferential direction and a direction which lies between said plurality of connecting elements.
17. The device as claimed in claim 13, wherein said plurality of connecting elements between said outer cylinder shell and said inner cylinder shell includes a plurality of web metal sheets.
18. The device as claimed in claim 17, wherein said outer cylinder shell includes a plurality of cover plates.
19. The device as claimed in claim 18, wherein said plurality of cover plates are combined with said plurality of web metal sheets to form a plurality of profiles.
20. The device as claimed in claim 19, wherein said plurality of profiles includes one of a plurality of U-shaped profiles and a plurality of T-shaped profiles.
21. The device as claimed in claim 13, wherein said plurality of connecting elements are manufactured one of by removing material, by primary forming technology, and by forming technology.
22. The device as claimed in claim 2, wherein said outer cylinder shell includes an inner side including a plurality of elevations.
23. The device as claimed in claim 22, wherein said inner side of said outer cylinder shell includes at least one of a plurality of ribs, a plurality of lugs, and one of a grid and a honeycomb structure.
24. The device as claimed in claim 22, wherein said plurality of elevations at least one of extends in a cylinder longitudinal direction and is in a shape of a plurality of helical lines.
25. The device as claimed in claim 22, wherein said plurality of elevations are one of milled, drawn, pressed, rolled, and cast.
26. The device as claimed in claim 1, wherein said outer surface of said drying cylinder includes one of a coating and a covering.
27. The device as claimed in claim 26, wherein one of said coating and said covering is configured at least one of for protecting against at least one of corrosion and abrasion and for improving a plurality of surface properties.
28. The device as claimed in claim 1, wherein said drying cylinder includes a thick-walled tube including a plurality of fluid channels.
29. The device as claimed in claim 28, wherein said plurality of fluid channels are made by one of deep-hole drilling and milling.
30. The device as claimed in claim 1, wherein said outer surface of said drying cylinder is turned.
31. A method for producing a web of fibrous material comprising the steps of:
providing a device for at least one of producing and finishing the web of fibrous material, said device including a heatable and rotatable drying cylinder of a drying section, said drying cylinder including a cylinder shell which includes an outer surface below which is formed at least one channel, said drying cylinder having an at least partially modular construction;
loading said cylinder shell from an inside with a heating fluid; and
guiding through said heating fluid using said at least one channel.
32. The method as claimed in claim 31, wherein said drying cylinder includes one of a single drying cylinder and a plurality of drying cylinders.
33. The method as claimed in claim 32, wherein one of said single drying cylinder and said plurality of drying cylinders is combined with at least one conventional drying process.
34. The method as claimed in claim 33, wherein said at least one conventional drying process includes at least one of cylinder drying, a boost dryer process, a Condebelt process, a yankee cylinder, and a HiDryer.
US11/773,749 2005-01-05 2007-07-05 Device and method for producing and/or finishing a fibrous material Abandoned US20070289156A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005000794A DE102005000794A1 (en) 2005-01-05 2005-01-05 Apparatus and method for producing and / or refining a fibrous web
DE102005000794.5 2005-01-05
PCT/EP2005/056166 WO2006072508A1 (en) 2005-01-05 2005-11-23 Device and method for producing and/or transforming a web of fibrous material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/056166 Continuation WO2006072508A1 (en) 2005-01-05 2005-11-23 Device and method for producing and/or transforming a web of fibrous material

Publications (1)

Publication Number Publication Date
US20070289156A1 true US20070289156A1 (en) 2007-12-20

Family

ID=36072193

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/773,749 Abandoned US20070289156A1 (en) 2005-01-05 2007-07-05 Device and method for producing and/or finishing a fibrous material

Country Status (8)

Country Link
US (1) US20070289156A1 (en)
EP (1) EP1836349A1 (en)
JP (1) JP2008527180A (en)
CN (1) CN101098997A (en)
BR (1) BRPI0518089B1 (en)
DE (1) DE102005000794A1 (en)
RU (1) RU2364672C2 (en)
WO (1) WO2006072508A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070245588A1 (en) * 2006-04-21 2007-10-25 Haurie Osvaldo R Cylindrical dryer having conduits for heating medium
US20100132903A1 (en) * 2007-03-01 2010-06-03 Giovan Battista Mennucci Yankee cylinder for paper producing machine
US7802377B2 (en) 2005-01-05 2010-09-28 Voith Patent Gmbh Drying cylinder
US8127462B2 (en) 2006-04-21 2012-03-06 Osvaldo Ricardo Haurie Cylindrical dryer having conduits provided within a plurality of holding plates
US9403243B2 (en) 2011-03-21 2016-08-02 Andritz Ag Process for manufacturing a yankee cylinder
CN108691233A (en) * 2018-05-14 2018-10-23 昆明纳太科技有限公司 Assembled hot vapour drying cylinder and its be applied to afterheat utilizing system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20075869L (en) * 2007-12-03 2009-06-04 Metso Paper Inc Fiber web machine roller
JP5633818B2 (en) * 2011-05-12 2014-12-03 信栄製紙株式会社 Prefabricated paper dryer
CN103103855A (en) * 2013-01-17 2013-05-15 江村 Non-siphon steam dryer
WO2016086250A2 (en) 2014-12-01 2016-06-09 Georg Michael Ickinger Drying cylinder consisting of a coaxial double cylinder and an annular gap
CN109403122A (en) * 2018-12-28 2019-03-01 安德里茨(中国)有限公司 Continuous drying drying cylinder

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1675274A (en) * 1921-08-15 1928-06-26 Barrett Co Drum cooler or drier
US2193141A (en) * 1937-08-23 1940-03-12 Pacific Nat Bank Of Seattle Heating system for supercharged cabins
US2357251A (en) * 1942-02-05 1944-08-29 Babcock & Wilcox Co Multiflue heat exchanger
US2563692A (en) * 1944-09-21 1951-08-07 Scott Paper Co Yankee drier
US2568891A (en) * 1945-10-26 1951-09-25 Niagara Blower Co Heat exchange apparatus
US2576036A (en) * 1944-09-21 1951-11-20 Scott Paper Co Yankee drier
US2577243A (en) * 1948-01-13 1951-12-04 Fritz Lundbergs Skinnberederi Heating device
US2661546A (en) * 1951-06-14 1953-12-08 Black Clawson Co Paper machinery
US2725640A (en) * 1951-09-19 1955-12-06 Paper Patents Co Method of dry creping
US2833526A (en) * 1955-06-22 1958-05-06 Griscom Russell Co Steam generator head construction
US2844887A (en) * 1957-02-08 1958-07-29 Beloit Iron Works Dryer
US2893136A (en) * 1957-07-05 1959-07-07 Beloit Iron Works Paper machine dryer condensate control
US2909849A (en) * 1955-11-25 1959-10-27 Beloit Iron Works Drum drier mechanism
US2920874A (en) * 1955-06-22 1960-01-12 Griscom Russell Co Steam generator construction
US3022047A (en) * 1957-11-04 1962-02-20 Swaney Robert Casper Stabil-heat drier
US3052039A (en) * 1957-11-29 1962-09-04 Kimberly Clark Co Paper making machine
US3060592A (en) * 1958-03-14 1962-10-30 Jr Harry M Ostertag Yankee dryer
US3061944A (en) * 1959-04-15 1962-11-06 Kimberly Clark Co Papermaking machine
US3097933A (en) * 1958-07-07 1963-07-16 Kimberly Clark Co Papermaking drying machine
US3099543A (en) * 1955-12-09 1963-07-30 Kimberly Clark Co Rotary pressure vessel
US3116985A (en) * 1960-07-26 1964-01-07 Kimberly Clark Co Papermaking drying drum
US3118743A (en) * 1959-04-15 1964-01-21 Kimberly Clark Co Papermaking drier drum
US3169050A (en) * 1961-01-25 1965-02-09 Scott Paper Co Rotary cylinder drying drum with stress relieving expansion means
US3177932A (en) * 1963-06-24 1965-04-13 Hupp Corp Drum type heat transfer apparatus
US3181605A (en) * 1961-06-20 1965-05-04 Hupp Corp Uniformly heated rotary drum
US3228462A (en) * 1965-04-09 1966-01-11 Hupp Corp Heat exchange apparatus
US3241251A (en) * 1963-09-09 1966-03-22 Beloit Corp Cylindrical dryer
US3258851A (en) * 1962-09-17 1966-07-05 Beloit Corp Dryer construction
US3264754A (en) * 1963-08-12 1966-08-09 Kimberly Clark Co Papermaking machine
US3299530A (en) * 1965-03-11 1967-01-24 Kimberly Clark Co Papermaking machine
US3367042A (en) * 1966-08-01 1968-02-06 Newport News S & D Co Rotary heat exchanger with ribbed inner liner of higher thermal conductivity than outer shell
US3447247A (en) * 1967-12-18 1969-06-03 Beloit Corp Method and equipment for drying web material
US3465727A (en) * 1968-03-04 1969-09-09 Baldwin Lima Hamilton Corp Steam generator and method of making the same
US3473238A (en) * 1966-04-05 1969-10-21 Scott Paper Co Rotary cylinder dryer
US3513565A (en) * 1968-11-08 1970-05-26 Georgia Pacific Corp Rotary drum dryer
US3576078A (en) * 1970-02-02 1971-04-27 Cons Paper Inc Paper drying process and apparatus
US3633662A (en) * 1970-01-16 1972-01-11 Beloit Corp Dryer drum assembly
US3640000A (en) * 1969-08-04 1972-02-08 Int Paper Co System for removing condensate from a rotary dryer
US3680627A (en) * 1969-03-26 1972-08-01 Atomic Energy Authority Uk Flexible support wall for tube-in-shell heat exchanger
US3721016A (en) * 1969-08-04 1973-03-20 Int Paper Co Method of removing condensate from a rotary dryer
US3724094A (en) * 1971-02-16 1973-04-03 Kimberly Clark Co Rotary drying drum
US3808700A (en) * 1972-12-26 1974-05-07 Kimberly Clark Co Rotary drying drum
US3812907A (en) * 1972-05-05 1974-05-28 Atomic Energy Authority Uk Heat exchangers
US3850373A (en) * 1972-07-12 1974-11-26 Grolitsch Erhard Atomizing device
US3911595A (en) * 1974-04-23 1975-10-14 Newport News S & D Co Yankee dryer head and brace
US3981084A (en) * 1972-06-19 1976-09-21 Fort Howard Paper Company Closed draw transfer system with gaseous pressure direction of web
US4146361A (en) * 1972-09-07 1979-03-27 Cirrito Anthony J Apparatus for hot gas heat transfer particularly for paper drying
US4163688A (en) * 1972-11-30 1979-08-07 Valmet Oy Apparatus for dewatering in a paper machine
US4185399A (en) * 1978-10-02 1980-01-29 E.B. Eddy Forest Products, Ltd. Doctor blade, drying or sealing assembly
US4235284A (en) * 1976-12-16 1980-11-25 The United States Of America As Represented By The United States Department Of Energy Heat exchanger with auxiliary cooling system
US4350663A (en) * 1979-04-23 1982-09-21 Mcalister Roy E Extrusion apparatus for making stabilized polyester
US4384412A (en) * 1981-04-20 1983-05-24 Beloit Corporation Dryer drum siphon
US4447964A (en) * 1981-11-23 1984-05-15 Gardner Thomas A Dryer drainage by recirculation with primary and secondary dryers
US4450631A (en) * 1978-09-18 1984-05-29 Bunnell Plastics, Inc. Heated can rolls of high thermal efficiency
US4453593A (en) * 1977-06-06 1984-06-12 Thune-Eureka S/S Oil-heated roller
US4688335A (en) * 1986-02-18 1987-08-25 James River Corporation Of Nevada Apparatus and method for drying fibrous web material
US4717338A (en) * 1985-04-12 1988-01-05 Cellier S.A. Heater drum for manufacturing process
US4878299A (en) * 1987-07-10 1989-11-07 Beloit Corporation Insulating apparatus for thermally insulating a dryer head
US4964202A (en) * 1988-05-02 1990-10-23 Kleinewefers Gmbh Heatable roll for use in calenders and the like
US5090135A (en) * 1990-07-27 1992-02-25 J. M. Voith Gmbh Device for removal of condensate from a steam-heated drying cylinder
US5335427A (en) * 1990-06-19 1994-08-09 Partio Martti E O Device for removing liquid from inside a rotating cylinder or roll
US5437107A (en) * 1992-06-30 1995-08-01 The Proctor & Gamble Company Limiting orifice drying of cellulosic fibrous structures, apparatus therefor, and cellulosic fibrous structures produced thereby
US5445216A (en) * 1994-03-10 1995-08-29 Cannata; Antonio Heat exchanger
US5499464A (en) * 1991-09-27 1996-03-19 Bowe-Passat Reinigungs Und Compensation for friction force in a laundry mangle
US5553391A (en) * 1995-06-05 1996-09-10 Bakalar; Sharon F. Method and apparatus for heat treating webs
US5575084A (en) * 1994-06-23 1996-11-19 Valmet Corporation Method and device for drying or cooling a paper web
US5590704A (en) * 1994-02-21 1997-01-07 Kvaerner Eureka A.S. Method of heating a jacketed working surface of rotating roller and a rotary roller
US5651235A (en) * 1991-06-15 1997-07-29 Odin Developments Limited Packaging method and apparatus
US5685909A (en) * 1994-04-28 1997-11-11 Voith Sulzer Papiermaschinen Gmbh Device for producing paper webs coated on both sides
US5983993A (en) * 1996-08-30 1999-11-16 International Paper Company High production chill roll
US6018870A (en) * 1998-09-25 2000-02-01 Marquip, Inc. Sectional construction for axially long roll
US6079116A (en) * 1998-11-06 2000-06-27 Valmet-Karlstad Ab Duct configuration for a through-air drying apparatus in a papermaking machine
US6250376B1 (en) * 1998-04-01 2001-06-26 Voith Sulzer Papiertechnik Patent Gmbh Heat exchanging roll
US6398909B1 (en) * 1999-06-17 2002-06-04 Valmet-Karlstad Aktiebolag Method and apparatus for imprinting, drying, and reeling a fibrous web
US6405790B1 (en) * 1996-06-21 2002-06-18 Voith Sulzer Finishing Gmbh Roll
US20030019125A1 (en) * 2001-07-27 2003-01-30 Tokushu Paper Mfg. Co., Ltd Sheet material and method and apparatus for drying therefor
US20040149405A1 (en) * 2003-01-31 2004-08-05 David Beck Paper machine and method of dewatering a fiber web using displacement pressing and through air drying
US6790315B2 (en) * 1999-06-17 2004-09-14 Metso Paper Karlstad Ab Drying section and method for drying a paper web
US6821237B1 (en) * 1999-03-29 2004-11-23 Metso Paper, Inc. Thermoroll for a paper/board machine or finishing machine and a method for manufacturing the thermoroll
US6877246B1 (en) * 2003-12-30 2005-04-12 Kimberly-Clark Worldwide, Inc. Through-air dryer assembly
US20060179677A1 (en) * 2003-11-17 2006-08-17 Timm Gerald L Dryer bar apparatus of a dryer
US7104788B2 (en) * 2000-12-15 2006-09-12 Cleanaway Deutschland Ag & Co. Kg Device for purifying and/or decontaminating polyester
US20070039496A1 (en) * 2003-07-11 2007-02-22 Jochen Sieber Cylinder of an inking or dampening system
US20070107884A1 (en) * 2005-10-27 2007-05-17 Sirkar Kamalesh K Polymeric hollow fiber heat exchange systems
US20070125251A1 (en) * 2003-07-11 2007-06-07 Bernard Andreas Ewald H Devices and methods for raising and/or lowering a printing form
US20070199574A1 (en) * 2006-02-24 2007-08-30 Ragosta Michael A Hair styling tool with rotatable cylinder
US20070245588A1 (en) * 2006-04-21 2007-10-25 Haurie Osvaldo R Cylindrical dryer having conduits for heating medium
US20080004202A1 (en) * 2004-04-28 2008-01-03 Henkel Kgaa Method for the Production of Detergent or Cleaning Agents
US20080005921A1 (en) * 2005-01-05 2008-01-10 Thomas Gruber-Nadlinger Device and method for producing and/or finishing a web of fibrous material
US20090126757A1 (en) * 2006-02-24 2009-05-21 Mm&R Products, Inc. Hair styling tool with rotatable cylinder
US7540944B2 (en) * 2000-07-18 2009-06-02 Jack Bitterly Saline/sewage water reclamation system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1513732A (en) * 1974-05-04 1978-06-07 Wildeman A Heat treatment by rotary cylinder
JP2000008289A (en) * 1998-06-16 2000-01-11 Mitsubishi Heavy Ind Ltd Heating roller
US6683284B2 (en) * 2002-03-22 2004-01-27 Metso Paper Karlstad Ab Thermal roll for papermaking with a fluid circulation system and method therefor
US7028756B2 (en) * 2002-05-17 2006-04-18 The Johnson Corporation Apparatus for increasing a transfer of thermal energy through an inner surface of a hollow cylindrical dryer of a papermaking machine
DE10260509A1 (en) * 2002-12-21 2004-07-01 Voith Paper Patent Gmbh Heated cylinder
DE20304532U1 (en) 2003-03-18 2003-07-10 Pm Tec Walzen Gmbh Fiber-plastic compound roller is for heating or cooling purposes with its tube made of these materials and an elastomer layer firmly attached to the tube

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1675274A (en) * 1921-08-15 1928-06-26 Barrett Co Drum cooler or drier
US2193141A (en) * 1937-08-23 1940-03-12 Pacific Nat Bank Of Seattle Heating system for supercharged cabins
US2357251A (en) * 1942-02-05 1944-08-29 Babcock & Wilcox Co Multiflue heat exchanger
US2563692A (en) * 1944-09-21 1951-08-07 Scott Paper Co Yankee drier
US2576036A (en) * 1944-09-21 1951-11-20 Scott Paper Co Yankee drier
US2568891A (en) * 1945-10-26 1951-09-25 Niagara Blower Co Heat exchange apparatus
US2577243A (en) * 1948-01-13 1951-12-04 Fritz Lundbergs Skinnberederi Heating device
US2661546A (en) * 1951-06-14 1953-12-08 Black Clawson Co Paper machinery
US2725640A (en) * 1951-09-19 1955-12-06 Paper Patents Co Method of dry creping
US2833526A (en) * 1955-06-22 1958-05-06 Griscom Russell Co Steam generator head construction
US2920874A (en) * 1955-06-22 1960-01-12 Griscom Russell Co Steam generator construction
US2909849A (en) * 1955-11-25 1959-10-27 Beloit Iron Works Drum drier mechanism
US3099543A (en) * 1955-12-09 1963-07-30 Kimberly Clark Co Rotary pressure vessel
US2844887A (en) * 1957-02-08 1958-07-29 Beloit Iron Works Dryer
US2893136A (en) * 1957-07-05 1959-07-07 Beloit Iron Works Paper machine dryer condensate control
US3022047A (en) * 1957-11-04 1962-02-20 Swaney Robert Casper Stabil-heat drier
US3052039A (en) * 1957-11-29 1962-09-04 Kimberly Clark Co Paper making machine
US3060592A (en) * 1958-03-14 1962-10-30 Jr Harry M Ostertag Yankee dryer
US3097933A (en) * 1958-07-07 1963-07-16 Kimberly Clark Co Papermaking drying machine
US3061944A (en) * 1959-04-15 1962-11-06 Kimberly Clark Co Papermaking machine
US3118743A (en) * 1959-04-15 1964-01-21 Kimberly Clark Co Papermaking drier drum
US3116985A (en) * 1960-07-26 1964-01-07 Kimberly Clark Co Papermaking drying drum
US3169050A (en) * 1961-01-25 1965-02-09 Scott Paper Co Rotary cylinder drying drum with stress relieving expansion means
US3181605A (en) * 1961-06-20 1965-05-04 Hupp Corp Uniformly heated rotary drum
US3258851A (en) * 1962-09-17 1966-07-05 Beloit Corp Dryer construction
US3177932A (en) * 1963-06-24 1965-04-13 Hupp Corp Drum type heat transfer apparatus
US3264754A (en) * 1963-08-12 1966-08-09 Kimberly Clark Co Papermaking machine
US3241251A (en) * 1963-09-09 1966-03-22 Beloit Corp Cylindrical dryer
US3299530A (en) * 1965-03-11 1967-01-24 Kimberly Clark Co Papermaking machine
US3228462A (en) * 1965-04-09 1966-01-11 Hupp Corp Heat exchange apparatus
US3473238A (en) * 1966-04-05 1969-10-21 Scott Paper Co Rotary cylinder dryer
US3367042A (en) * 1966-08-01 1968-02-06 Newport News S & D Co Rotary heat exchanger with ribbed inner liner of higher thermal conductivity than outer shell
US3447247A (en) * 1967-12-18 1969-06-03 Beloit Corp Method and equipment for drying web material
US3465727A (en) * 1968-03-04 1969-09-09 Baldwin Lima Hamilton Corp Steam generator and method of making the same
US3513565A (en) * 1968-11-08 1970-05-26 Georgia Pacific Corp Rotary drum dryer
US3680627A (en) * 1969-03-26 1972-08-01 Atomic Energy Authority Uk Flexible support wall for tube-in-shell heat exchanger
US3721016A (en) * 1969-08-04 1973-03-20 Int Paper Co Method of removing condensate from a rotary dryer
US3640000A (en) * 1969-08-04 1972-02-08 Int Paper Co System for removing condensate from a rotary dryer
US3633662A (en) * 1970-01-16 1972-01-11 Beloit Corp Dryer drum assembly
US3576078A (en) * 1970-02-02 1971-04-27 Cons Paper Inc Paper drying process and apparatus
US3724094A (en) * 1971-02-16 1973-04-03 Kimberly Clark Co Rotary drying drum
US3812907A (en) * 1972-05-05 1974-05-28 Atomic Energy Authority Uk Heat exchangers
US3981084A (en) * 1972-06-19 1976-09-21 Fort Howard Paper Company Closed draw transfer system with gaseous pressure direction of web
US3850373A (en) * 1972-07-12 1974-11-26 Grolitsch Erhard Atomizing device
US4146361A (en) * 1972-09-07 1979-03-27 Cirrito Anthony J Apparatus for hot gas heat transfer particularly for paper drying
US4163688A (en) * 1972-11-30 1979-08-07 Valmet Oy Apparatus for dewatering in a paper machine
US3808700A (en) * 1972-12-26 1974-05-07 Kimberly Clark Co Rotary drying drum
US3911595A (en) * 1974-04-23 1975-10-14 Newport News S & D Co Yankee dryer head and brace
US4235284A (en) * 1976-12-16 1980-11-25 The United States Of America As Represented By The United States Department Of Energy Heat exchanger with auxiliary cooling system
US4453593A (en) * 1977-06-06 1984-06-12 Thune-Eureka S/S Oil-heated roller
US4450631A (en) * 1978-09-18 1984-05-29 Bunnell Plastics, Inc. Heated can rolls of high thermal efficiency
US4185399A (en) * 1978-10-02 1980-01-29 E.B. Eddy Forest Products, Ltd. Doctor blade, drying or sealing assembly
US4350663A (en) * 1979-04-23 1982-09-21 Mcalister Roy E Extrusion apparatus for making stabilized polyester
US4384412A (en) * 1981-04-20 1983-05-24 Beloit Corporation Dryer drum siphon
US4447964A (en) * 1981-11-23 1984-05-15 Gardner Thomas A Dryer drainage by recirculation with primary and secondary dryers
US4717338A (en) * 1985-04-12 1988-01-05 Cellier S.A. Heater drum for manufacturing process
US4688335A (en) * 1986-02-18 1987-08-25 James River Corporation Of Nevada Apparatus and method for drying fibrous web material
US4878299A (en) * 1987-07-10 1989-11-07 Beloit Corporation Insulating apparatus for thermally insulating a dryer head
US4964202A (en) * 1988-05-02 1990-10-23 Kleinewefers Gmbh Heatable roll for use in calenders and the like
US5335427A (en) * 1990-06-19 1994-08-09 Partio Martti E O Device for removing liquid from inside a rotating cylinder or roll
US5090135A (en) * 1990-07-27 1992-02-25 J. M. Voith Gmbh Device for removal of condensate from a steam-heated drying cylinder
US5651235A (en) * 1991-06-15 1997-07-29 Odin Developments Limited Packaging method and apparatus
US5598649A (en) * 1991-09-27 1997-02-04 Bowe-Passat Reinigungs und Waschereitechnik GmbH Frictional force compensation for laundry mangles
US5499464A (en) * 1991-09-27 1996-03-19 Bowe-Passat Reinigungs Und Compensation for friction force in a laundry mangle
US5437107A (en) * 1992-06-30 1995-08-01 The Proctor & Gamble Company Limiting orifice drying of cellulosic fibrous structures, apparatus therefor, and cellulosic fibrous structures produced thereby
US5590704A (en) * 1994-02-21 1997-01-07 Kvaerner Eureka A.S. Method of heating a jacketed working surface of rotating roller and a rotary roller
US5445216A (en) * 1994-03-10 1995-08-29 Cannata; Antonio Heat exchanger
US5685909A (en) * 1994-04-28 1997-11-11 Voith Sulzer Papiermaschinen Gmbh Device for producing paper webs coated on both sides
US5575084A (en) * 1994-06-23 1996-11-19 Valmet Corporation Method and device for drying or cooling a paper web
US5553391A (en) * 1995-06-05 1996-09-10 Bakalar; Sharon F. Method and apparatus for heat treating webs
US5966835A (en) * 1995-06-05 1999-10-19 Bakalar; Sharon F. Method and apparatus for heat treating webs
US6560893B1 (en) * 1995-06-05 2003-05-13 Sharon F. Bakalar Method and apparatus for heat treating webs
US6405790B1 (en) * 1996-06-21 2002-06-18 Voith Sulzer Finishing Gmbh Roll
US5983993A (en) * 1996-08-30 1999-11-16 International Paper Company High production chill roll
US6250376B1 (en) * 1998-04-01 2001-06-26 Voith Sulzer Papiertechnik Patent Gmbh Heat exchanging roll
US6018870A (en) * 1998-09-25 2000-02-01 Marquip, Inc. Sectional construction for axially long roll
US6079116A (en) * 1998-11-06 2000-06-27 Valmet-Karlstad Ab Duct configuration for a through-air drying apparatus in a papermaking machine
US6821237B1 (en) * 1999-03-29 2004-11-23 Metso Paper, Inc. Thermoroll for a paper/board machine or finishing machine and a method for manufacturing the thermoroll
US6790315B2 (en) * 1999-06-17 2004-09-14 Metso Paper Karlstad Ab Drying section and method for drying a paper web
US6398909B1 (en) * 1999-06-17 2002-06-04 Valmet-Karlstad Aktiebolag Method and apparatus for imprinting, drying, and reeling a fibrous web
US7540944B2 (en) * 2000-07-18 2009-06-02 Jack Bitterly Saline/sewage water reclamation system
US7104788B2 (en) * 2000-12-15 2006-09-12 Cleanaway Deutschland Ag & Co. Kg Device for purifying and/or decontaminating polyester
US6694639B2 (en) * 2001-07-27 2004-02-24 Tokushu Paper Mfg. Co., Ltd. Sheet material and method and apparatus for drying therefor
US20030019125A1 (en) * 2001-07-27 2003-01-30 Tokushu Paper Mfg. Co., Ltd Sheet material and method and apparatus for drying therefor
US20040149405A1 (en) * 2003-01-31 2004-08-05 David Beck Paper machine and method of dewatering a fiber web using displacement pressing and through air drying
US20070125251A1 (en) * 2003-07-11 2007-06-07 Bernard Andreas Ewald H Devices and methods for raising and/or lowering a printing form
US20070039496A1 (en) * 2003-07-11 2007-02-22 Jochen Sieber Cylinder of an inking or dampening system
US20090038494A1 (en) * 2003-07-11 2009-02-12 Andreas Ewald Heinrich Bernard Device and methods for raising and/or lowering a printing form
US20060179677A1 (en) * 2003-11-17 2006-08-17 Timm Gerald L Dryer bar apparatus of a dryer
US20070051009A1 (en) * 2003-12-30 2007-03-08 Hada Frank S Through-air dryer assembly
US20050138832A1 (en) * 2003-12-30 2005-06-30 Hada Frank S. Through-air dryer assembly
US6877246B1 (en) * 2003-12-30 2005-04-12 Kimberly-Clark Worldwide, Inc. Through-air dryer assembly
US20080004202A1 (en) * 2004-04-28 2008-01-03 Henkel Kgaa Method for the Production of Detergent or Cleaning Agents
US20080005921A1 (en) * 2005-01-05 2008-01-10 Thomas Gruber-Nadlinger Device and method for producing and/or finishing a web of fibrous material
US20070107884A1 (en) * 2005-10-27 2007-05-17 Sirkar Kamalesh K Polymeric hollow fiber heat exchange systems
US7481228B2 (en) * 2006-02-24 2009-01-27 M.M. & R Products, Inc. Hair styling tool with rotatable cylinder
US20090126757A1 (en) * 2006-02-24 2009-05-21 Mm&R Products, Inc. Hair styling tool with rotatable cylinder
US20070199574A1 (en) * 2006-02-24 2007-08-30 Ragosta Michael A Hair styling tool with rotatable cylinder
US20070245588A1 (en) * 2006-04-21 2007-10-25 Haurie Osvaldo R Cylindrical dryer having conduits for heating medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802377B2 (en) 2005-01-05 2010-09-28 Voith Patent Gmbh Drying cylinder
US20070245588A1 (en) * 2006-04-21 2007-10-25 Haurie Osvaldo R Cylindrical dryer having conduits for heating medium
US7614161B2 (en) * 2006-04-21 2009-11-10 Osvaldo Ricardo Haurie Cylindrical dryer having conduits for heating medium
US8127462B2 (en) 2006-04-21 2012-03-06 Osvaldo Ricardo Haurie Cylindrical dryer having conduits provided within a plurality of holding plates
US20100132903A1 (en) * 2007-03-01 2010-06-03 Giovan Battista Mennucci Yankee cylinder for paper producing machine
US8438752B2 (en) * 2007-03-01 2013-05-14 Toscotec S.P.A. Yankee cylinder for paper producing machine
US9403243B2 (en) 2011-03-21 2016-08-02 Andritz Ag Process for manufacturing a yankee cylinder
US9452498B2 (en) 2011-03-21 2016-09-27 Andritz Ag Process for manufacturing a Yankee cylinder
CN108691233A (en) * 2018-05-14 2018-10-23 昆明纳太科技有限公司 Assembled hot vapour drying cylinder and its be applied to afterheat utilizing system

Also Published As

Publication number Publication date
DE102005000794A1 (en) 2006-07-13
RU2007129849A (en) 2009-02-20
WO2006072508A1 (en) 2006-07-13
BRPI0518089B1 (en) 2016-12-20
EP1836349A1 (en) 2007-09-26
CN101098997A (en) 2008-01-02
BRPI0518089A (en) 2008-10-28
RU2364672C2 (en) 2009-08-20
JP2008527180A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
US20070289156A1 (en) Device and method for producing and/or finishing a fibrous material
US20080005921A1 (en) Device and method for producing and/or finishing a web of fibrous material
EP2920360B1 (en) A steel-made yankee cylinder
EP1838922B1 (en) Yankee cylinder for the papermaking industry, with peripheral circulation of the heat transfer fluid
FI81155C (en) MEDELST ETT VAERMEOEVERFOERANDE MEDIUM UPPVAERMBAR KALANDERVALS.
KR19990029877A (en) Steam supply and condensate removal units for heated rolls
US5533569A (en) Stationary syphon system for rotating heat exchanger rolls
CA2015800A1 (en) Glazing or calendering roll
AU2005233311A1 (en) Heated cylinder
US4542593A (en) Apparatus for improving heat transfer in drying cylinders of a paper machine and method for assembling the same
EP0699291B1 (en) Paper dryer with nozzle box
WO1997030214A1 (en) Dryer apparatus for fiber webs
US3299531A (en) Papermaking machine
US7673395B2 (en) Dryer bar apparatus of a dryer
US20010054239A1 (en) Thermal equalizer
US20120279080A1 (en) Turbulence Bar Assembly
EP3271510B1 (en) Yankee dryer cylinder with improved internal geometry
CA2290291C (en) Heatable calender roll
US7640749B2 (en) Moisture separator and reheater
SE543082C2 (en) Steam heated yankee drying cylinder for paper or tissue machines with condensate draining system
FI87668C (en) Method and apparatus for treating a web-shaped product
ITFI20070100A1 (en) MONOLUCID CYLINDER IN STEEL AND CAST IRON FOR CONTINUOUS MACHINES FOR THE PRODUCTION OF PAPER.
Abdelmessih et al. Infrared Electric Emitters for Drying Paper

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOITH PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLOIBHOFER, RAINER;HAASE, CHRISTOPH;GRUBER-NADLINGER, THOMAS;AND OTHERS;REEL/FRAME:019736/0839

Effective date: 20070808

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION