US20070295345A1 - Selective Filtration of Cigarette Smoke using Chitosan Derivatives - Google Patents

Selective Filtration of Cigarette Smoke using Chitosan Derivatives Download PDF

Info

Publication number
US20070295345A1
US20070295345A1 US11/854,142 US85414207A US2007295345A1 US 20070295345 A1 US20070295345 A1 US 20070295345A1 US 85414207 A US85414207 A US 85414207A US 2007295345 A1 US2007295345 A1 US 2007295345A1
Authority
US
United States
Prior art keywords
cross
chitosan
filter
resin
linked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/854,142
Inventor
John Caraway
Thaddeus Jackson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RJ Reynolds Tobacco Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/854,142 priority Critical patent/US20070295345A1/en
Publication of US20070295345A1 publication Critical patent/US20070295345A1/en
Assigned to BROWN & WILLIAMSON TOBACCO CORPORATION reassignment BROWN & WILLIAMSON TOBACCO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARAWAY, JOHN W., JR.
Assigned to R.J. REYNOLDS TOBACCO COMPANY reassignment R.J. REYNOLDS TOBACCO COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JACKSON, THADDEUS J.
Assigned to BROWN & WILLIAMSON U.S.A., INC. reassignment BROWN & WILLIAMSON U.S.A., INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROWN & WILLIAMSON TOBACCO CORPORATION
Assigned to R.J. REYNOLDS TOBACCO COMPANY reassignment R.J. REYNOLDS TOBACCO COMPANY MERGER (SEE DOCUMENT FOR DETAILS). Assignors: BROWN & WILLIAMSON U.S.A., INC.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. ASSIGNMENT OF SECURITY INTEREST Assignors: R. J. REYNOLDS TOBACCO COMPANY
Assigned to R.J. REYNOLDS TOBACCO COMPANY reassignment R.J. REYNOLDS TOBACCO COMPANY RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/08Use of materials for tobacco smoke filters of organic materials as carrier or major constituent

Definitions

  • This invention concerns improvements relating to tobacco smoke filters. More particularly, the invention relates to a cigarette filter that can selectively remove undesirable constituents from tobacco smoke.
  • filters for tobacco smoke A wide variety of materials have been suggested in the prior art as filters for tobacco smoke. Examples of such filter materials include cotton, paper, cellulose acetate, and certain synthetics. Many of these filter materials, however, are only effective in the removal of particulates, tars and condensable components from tobacco smoke. The art is replete with a myriad of filtration techniques and materials for removing undesirable components in smoke and for causing other reactions as the smoke passes through filtration beds or other reactive media. Among the problems encountered with prior filters has been the plugging or clogging with use and the consumption or rendering ineffective of reactive filtering surfaces and materials.
  • Filters made from filamentary or fibrous material such as cellulose acetate tow or paper are somewhat effective in the removal of particulate phase constituents of tobacco smoke. However, they have little or no effect in removing certain gaseous components in the vapor phase of the tobacco smoke such as hydrogen cyanide, aldehydes, carbonyls, metals and sulphides. These volatile constituents can be removed by adsorption and absorption on a suitable surface or by chemical reaction.
  • Some known substances which act as absorbents and adsorbents include activated carbon, porous minerals, and ion exchange resins. Ion-exchange resins of porous structure have been found to be somewhat effective, but their efficiency diminishes during smoking, as does that of carbon and porous minerals. This may be due to the material becoming saturated and, therefore, increasingly inactive or it may be due to the release of adsorbed material by thermal desorption of retained substances.
  • Resins which contain major proportions of tertiary amino or quaternary ammonium groups have been found not to be suitable for removing aldehydes from tobacco smoke.
  • Chitosan and chitosan with a maximum number of amino groups have been found not to be effective.
  • Among the problems encountered with these materials is that they do not provide a filtration media allowing for the continuous flow of smoke at a low pressure differential or gradient.
  • Other problems with selective filtration medias have been found.
  • certain amino acids such as glycine
  • glycine have been found effective in removing aldehydes in tobacco smoke.
  • glycine can reduce the level of formaldehyde in tobacco smoke, it is not stable in the cigarette filter manufacturing process.
  • the use of amino acids causes the release of ammonia odor during storage.
  • chitosan can be chemically modified to have the physical attributes of a filter medium and have a chemical composition capable of effectively adsorbing and absorbing undesirable smoke ingredients, yielding superior performance as a cigarette filter.
  • cigarette filter arrangements and, more particularly, cigarette filters that can selectively remove undesirable constituents in the vapor phase of tobacco smoke such as hydrogen cyanide, aldehydes, metals and sulphides without the drawbacks or disadvantages associated with the prior art as previously described.
  • a further object is to provide a novel cigarette and smoke filter embodying a porous resin of cross-linked chitosan.
  • An additional object is to provide cross-linked chitosan reactive materials having a high ratio of surface-to-volume and having a reduced number of reactive amino groups for selective smoke filtration in a smoking article.
  • a tobacco-smoke filter includes an adsorbent/absorbent for removal of undesirable volatile tobacco-smoke constituents such as hydrogen cyanide, aldehydes, carbonyls, metals and sulphides.
  • the instant invention is directed to particularly efficient tobacco smoke filtration compounds of chitosan cross-linked with glutaraldehyde and chitosan cross-linked with glyoxal.
  • Chitosan is cross-linked with glutaraldehyde and glyoxal to form porous resins having a high surface area to mass ratio for the selective filtration of cigarette smoke, particularly for the removal of undesirable smoke constituents such as aldehydes, hydrogen cyanide, carbonyls, sulphides and metals.
  • Chitosan is a linear polyglucosamine polymer obtained from the deacetylation of chitin, a polysaccharide found in the exoskeleton of crustaceans. Chitin also occurs in insects and in lesser quantities in many other animal and vegetable organisms. Chitin is a linear polymer of 2-deoxy, 2-acetyl-amino glucose analogous to cellulose in chemical structure. It is insoluble in almost all media except strong mineral acids and due to the acetylated amino group is relatively unreactive.
  • chitosan which contains one free amino group for each glucose building unit in the polymer. It is still a long chain linear polymer but is now a highly reactive cationic poly-electrolyte material. It will form salts with simple organic acids, such as formic, acetic, tartaric, citric, etc. and is soluble in dilute aqueous solutions of such substances. Chitosan is nontoxic and biodegradable, and it has found utility in numerous applications, including chromatography, drug delivery, and cosmetics.
  • a porous chitosan resin may be formed by a phase inversion technique. This is accomplished by dissolving flaked or powdered chitosan in a suitable solvent, such as aqueous acid, and then coacervating in a solution of aqueous base to form water swollen chitosan gel beads.
  • the beads may be cross-linked using glutaraldehyde, and separately with glyoxal, to improve the mechanical strength and reduce the solubility of the beads.
  • the wet beads are then freeze dried to yield a porous cross-linked resin. Drying may also be accomplished by vacuum or air drying.
  • a porous resin may also be prepared using a thermally induced phase separation technique. This is accomplished by dissolving flaked or powdered chitosan in a suitable solvent, such as aqueous acetic acid, and then adding the solution to a non-solvent, such as methanol, and cooling the resulting solution below the freezing point of the chitosan solution which yields frozen beads. These beads may then be neutralized with a base and cross-linked with glutaraldehyde and separately with glyoxal to modify the final properties of the chitosan resin. The resulting beads may then be freeze dried to yield a porous cross-linked chitosan resin. Drying may also be accomplished by vacuum and by air drying.
  • a suitable solvent such as aqueous acetic acid
  • the cross-linked resins produced by both methods have a reduced number of reactive amino groups.
  • the reduced number of reactive amino groups is a result of the cross-linking reaction with glutaraldehyde or glyoxal. It has been surprisingly discovered that the described invention, having a reduced number of reactive amino groups, is selective in removing hydrogen cyanide and formaldehyde from tobacco smoke. It has also been surprisingly found that the cross-linked chitosan resin having a reduced number of reactive amino groups exhibits greater selective removal activity than that associated with the prior art where a maximum number of reactive amino groups have been employed.
  • the porous resin of the present invention may be incorporated into a cigarette in a variety of ways.
  • the resin may be disposed between filter sections wherein these sections may be comprised of fibrous, filamentary and paper materials.
  • the resin may also be dispersed throughout a filter tow.
  • the resin may be placed within a filter bed in a filter section and the resin may be packed along the filter bed.
  • the resin may also be incorporated into a part of the cigarette filter such as the tipping paper, a shaped paper insert, a plug, a space, or even a free-flow sleeve.
  • the resin may be incorporated into cigarette filter paper, attached to the tobacco rod with tipping paper or even incorporated within a cavity in the filter.
  • Examples of the present invention are given below by way of illustration and not by way of limitation. These examples include two distinct methods of preparing chitosan beads as well as several distinct methods of cross-linking the chitosan beads. All of the following examples yield porous cross-linked chitosan resin beads having a reduced number of reactive amino groups.
  • Porous chitosan resin was synthesized according to a phase inversion technique. This was accomplished by preparing a 7% chitosan solution by dissolving approximately 20 grams of chitosan flakes (practical grade) in 3.5% acetic acid. The mixture increased in viscosity and gelled upon the completion of the chitosan addition. Further dilution with acetic acid resulted in a solution having approximately 3% chitosan flake. This provided for a chitosan solution having a more manageable viscosity. The total amount of acetic acid used to dissolve the chitosan flake was approximately 665 milliliters. The solution was then filtered to separate any undissolved materials.
  • This chitosan solution was then added dropwise to a precipitation bath of 2 molar sodium hydroxide to yield water swollen gel beads.
  • the gel beads were then filtered and washed with deionized water until neutral, pH of the wash water being approximately 7.
  • Heterogeneous cross-linking of the chitosan beads was then accomplished by suspending the beads for several hours in approximately 1 liter of 2.5% aqueous solution of glutaraldehyde. After cross-linking, the beads were then filtered and washed with warm deionized water to remove any excess glutaraldehyde. Subsequently, the beads were freeze dried which resulted in porous glutaraldehyde cross-linked chitosan resin beads. The BET surface area of the resin was measured to be approximately 120 m 2 /g. The beads were then milled and sieved to retain particles having approximately 16 to 70 mesh. A surface area analysis of the milled resin showed no appreciable change in surface area. The BET surface area of the sieved sample was measured to be approximately 117 m 2 /g.
  • Porous chitosan resin was synthesized according to the phase inversion technique in Example 1.
  • the heterogeneous cross-linking of the chitosan beads was accomplished by suspending the beads for several hours in a 2.5% aqueous solution of glyoxal. After cross-linking, the beads were filtered and washed with warm deionized water to remove any excess glyoxal. The beads were then freeze dried which resulted in porous glyoxal cross-linked chitosan resin beads.
  • Porous chitosan resin was prepared according to a thermally induced phase separation procedure.
  • a 4% chitosan solution was prepared by dissolution of chitosan powder (Vansen Chemical; 92% deacetylation) in 3.5% acetic acid.
  • a precipitation bath of sodium hydroxide (2 molar) in 20:80 methanol/water solution was prepared and cooled to 0° C.
  • the chitosan solution was then added dropwise to the precipitation bath with moderate stirring. Precipitation of chitosan occurred shortly after addition of the solution to the precipitation bath.
  • the precipitation bath having the chitosan precipitate was then allowed to return to room temperature.
  • the resulting beads were filtered and washed with deionized water until the wash water became neutral, having a pH of approximately 7.
  • Heterogeneous cross-linking of the chitosan beads was then accomplished by suspending approximately 396 grams of wet beads in approximately 1980 milliliters of 2.5% aqueous glutaraldehyde solution for several hours. After cross-linking, the beads were filtered and washed with both warm and cold deionized water to remove any excess glutaraldehyde. Subsequent freeze drying of the beads resulted in porous glutaraldehyde cross-linked chitosan resin beads. The beads were then milled and sieved to approximately 16 to 70 mesh. The BET surface area of the resin was measured to be approximately 210 m 2 /g.
  • Porous chitosan resin was prepared according to the thermally induced phase separation procedure in Example III.
  • the heterogeneous cross-linking of the chitosan beads was accomplished by suspending approximately 261 grams of wet beads in approximately 1300 milliliters of 2.5% aqueous glyoxal solution for several hours. After cross-linking, the beads were filtered and washed with both warm and cold deionized water to remove any excess glyoxal. Subsequent freeze drying resulted in porous glyoxal cross-linked chitosan resin beads. The beads were then milled and sieved to approximately 16 to 70 mesh. The BET surface area of the cross-linked resin was measured to be approximately 145 m 2 /g.
  • Porous chitosan resin was prepared according to the thermally induced phase separation procedure in Example III.
  • the heterogeneous cross-linking of the chitosan beads was accomplished by suspending the beads in a solution of glutaraldehyde and ethanol for several hours. After cross-linking, the beads were filtered and washed with ethanol to remove any excess glutaraldehyde. Subsequent vacuum drying resulted in porous glutaraldehyde cross-linked chitosan resin beads.
  • Porous chitosan resin was prepared according to the thermally induced phase separation procedure in Example III.
  • the heterogeneous cross-linking of the chitosan beads was accomplished by suspending the beads in a solution of glutaraldehyde and water for several hours. After cross-linking, the beads were filtered and washed with ethanol to remove any excess glutaraldehyde. Subsequent vacuum drying resulted in porous glutaraldehyde cross-linked chitosan resin beads.
  • the crosslinker solution may be in a range of concentration of about 0.1% to about 50%
  • the chitosan solution may be in a range of concentration of about 0.1% to about 20%
  • the acetic acid solution may be in a range of about 0.1% to about 10%
  • the base solution may be in a range of about 1 to about 5 molar sodium hydroxide.
  • the range of hours for cross-linking reaction may be from about 1 hour to up to about 24 hours.
  • a cigarette typically contains two sections, a tobacco-containing portion sometimes referred to as the tobacco or cigarette rod, and a filter portion which may be referred to as the filter tipping.
  • a cigarette sample with a cavity filter was prepared by removing the existing filter on a cigarette made by standard production techniques, and replacing with a filter tipping having a cellulose acetate section at the tobacco end of the filter and a cellulose acetate section at the mouth end of the filter leaving a middle cavity.
  • Sample sets of semolina (an inert filler material), chitosan resin synthesized by phase inversion technique and cross-linked with glutaraldehyde Example
  • the cross-linked chitosan resin described in this invention is selective in removing aldehydes and hydrogen cyanide in cigarette smoke compared to the inert semolina control.
  • the glutaraldehyde cross-linked chitosan resin reduced the vapor phase delivery of hydrogen cyanide by 60% versus a control sample (Ex. III).
  • non-crosslinked ground chitosan particles showed no effect on the vapor phase hydrogen cyanide delivery.
  • the glutaraldehyde cross-linked chitosan resin also decreased whole smoke hydrogen cyanide delivery by 54%, and mainstream whole smoke formaldehyde delivery was decreased by 50% compared to the control sample (Ex. III).

Abstract

A smoking article filter having a porous resin with a high surface area to mass ratio comprised of a chitosan derivative. Preferred embodiments include chitosan cross-linked with glutaraldehyde and chitosan cross-linked with glyoxal. The chitosan derivative provides for the selective filtration of cigarette smoke, particularly for the removal of aldehydes, hydrogen cyanide, heavy metals and carbonyls.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This patent application is a divisional patent application of and claims priority to and benefit from, currently pending, U.S. patent application Ser. No. 10/842,165, filed on May 10, 2004.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable. FIELD OF INVENTION
  • This invention concerns improvements relating to tobacco smoke filters. More particularly, the invention relates to a cigarette filter that can selectively remove undesirable constituents from tobacco smoke.
  • BACKGROUND OF THE INVENTION
  • A wide variety of materials have been suggested in the prior art as filters for tobacco smoke. Examples of such filter materials include cotton, paper, cellulose acetate, and certain synthetics. Many of these filter materials, however, are only effective in the removal of particulates, tars and condensable components from tobacco smoke. The art is replete with a myriad of filtration techniques and materials for removing undesirable components in smoke and for causing other reactions as the smoke passes through filtration beds or other reactive media. Among the problems encountered with prior filters has been the plugging or clogging with use and the consumption or rendering ineffective of reactive filtering surfaces and materials.
  • Filters made from filamentary or fibrous material such as cellulose acetate tow or paper are somewhat effective in the removal of particulate phase constituents of tobacco smoke. However, they have little or no effect in removing certain gaseous components in the vapor phase of the tobacco smoke such as hydrogen cyanide, aldehydes, carbonyls, metals and sulphides. These volatile constituents can be removed by adsorption and absorption on a suitable surface or by chemical reaction.
  • Some known substances which act as absorbents and adsorbents include activated carbon, porous minerals, and ion exchange resins. Ion-exchange resins of porous structure have been found to be somewhat effective, but their efficiency diminishes during smoking, as does that of carbon and porous minerals. This may be due to the material becoming saturated and, therefore, increasingly inactive or it may be due to the release of adsorbed material by thermal desorption of retained substances.
  • Resins which contain major proportions of tertiary amino or quaternary ammonium groups have been found not to be suitable for removing aldehydes from tobacco smoke. Chitosan and chitosan with a maximum number of amino groups have been found not to be effective. Among the problems encountered with these materials is that they do not provide a filtration media allowing for the continuous flow of smoke at a low pressure differential or gradient. Other problems with selective filtration medias have been found. For example, the use of certain amino acids, such as glycine, have been found effective in removing aldehydes in tobacco smoke. However, it has been discovered that while glycine can reduce the level of formaldehyde in tobacco smoke, it is not stable in the cigarette filter manufacturing process. Moreover, the use of amino acids causes the release of ammonia odor during storage.
  • SUMMARY OF THE INVENTION
  • It has been discovered that chitosan can be chemically modified to have the physical attributes of a filter medium and have a chemical composition capable of effectively adsorbing and absorbing undesirable smoke ingredients, yielding superior performance as a cigarette filter.
  • Thus, it is an object of the present invention to provide cigarette filter arrangements and, more particularly, cigarette filters that can selectively remove undesirable constituents in the vapor phase of tobacco smoke such as hydrogen cyanide, aldehydes, metals and sulphides without the drawbacks or disadvantages associated with the prior art as previously described.
  • A further object is to provide a novel cigarette and smoke filter embodying a porous resin of cross-linked chitosan.
  • An additional object is to provide cross-linked chitosan reactive materials having a high ratio of surface-to-volume and having a reduced number of reactive amino groups for selective smoke filtration in a smoking article.
  • According to the present invention, a tobacco-smoke filter includes an adsorbent/absorbent for removal of undesirable volatile tobacco-smoke constituents such as hydrogen cyanide, aldehydes, carbonyls, metals and sulphides. Specifically, the instant invention is directed to particularly efficient tobacco smoke filtration compounds of chitosan cross-linked with glutaraldehyde and chitosan cross-linked with glyoxal.
  • Chitosan is cross-linked with glutaraldehyde and glyoxal to form porous resins having a high surface area to mass ratio for the selective filtration of cigarette smoke, particularly for the removal of undesirable smoke constituents such as aldehydes, hydrogen cyanide, carbonyls, sulphides and metals.
  • Chitosan is a linear polyglucosamine polymer obtained from the deacetylation of chitin, a polysaccharide found in the exoskeleton of crustaceans. Chitin also occurs in insects and in lesser quantities in many other animal and vegetable organisms. Chitin is a linear polymer of 2-deoxy, 2-acetyl-amino glucose analogous to cellulose in chemical structure. It is insoluble in almost all media except strong mineral acids and due to the acetylated amino group is relatively unreactive.
  • When chitin is deacetylated by treatment with strong alkalis, the product is chitosan which contains one free amino group for each glucose building unit in the polymer. It is still a long chain linear polymer but is now a highly reactive cationic poly-electrolyte material. It will form salts with simple organic acids, such as formic, acetic, tartaric, citric, etc. and is soluble in dilute aqueous solutions of such substances. Chitosan is nontoxic and biodegradable, and it has found utility in numerous applications, including chromatography, drug delivery, and cosmetics.
  • A porous chitosan resin may be formed by a phase inversion technique. This is accomplished by dissolving flaked or powdered chitosan in a suitable solvent, such as aqueous acid, and then coacervating in a solution of aqueous base to form water swollen chitosan gel beads. The beads may be cross-linked using glutaraldehyde, and separately with glyoxal, to improve the mechanical strength and reduce the solubility of the beads. The wet beads are then freeze dried to yield a porous cross-linked resin. Drying may also be accomplished by vacuum or air drying.
  • A porous resin may also be prepared using a thermally induced phase separation technique. This is accomplished by dissolving flaked or powdered chitosan in a suitable solvent, such as aqueous acetic acid, and then adding the solution to a non-solvent, such as methanol, and cooling the resulting solution below the freezing point of the chitosan solution which yields frozen beads. These beads may then be neutralized with a base and cross-linked with glutaraldehyde and separately with glyoxal to modify the final properties of the chitosan resin. The resulting beads may then be freeze dried to yield a porous cross-linked chitosan resin. Drying may also be accomplished by vacuum and by air drying.
  • The cross-linked resins produced by both methods have a reduced number of reactive amino groups. The reduced number of reactive amino groups is a result of the cross-linking reaction with glutaraldehyde or glyoxal. It has been surprisingly discovered that the described invention, having a reduced number of reactive amino groups, is selective in removing hydrogen cyanide and formaldehyde from tobacco smoke. It has also been surprisingly found that the cross-linked chitosan resin having a reduced number of reactive amino groups exhibits greater selective removal activity than that associated with the prior art where a maximum number of reactive amino groups have been employed.
  • The porous resin of the present invention may be incorporated into a cigarette in a variety of ways. The resin may be disposed between filter sections wherein these sections may be comprised of fibrous, filamentary and paper materials. The resin may also be dispersed throughout a filter tow. Alternatively, the resin may be placed within a filter bed in a filter section and the resin may be packed along the filter bed. The resin may also be incorporated into a part of the cigarette filter such as the tipping paper, a shaped paper insert, a plug, a space, or even a free-flow sleeve. Additionally, the resin may be incorporated into cigarette filter paper, attached to the tobacco rod with tipping paper or even incorporated within a cavity in the filter.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Examples of the present invention are given below by way of illustration and not by way of limitation. These examples include two distinct methods of preparing chitosan beads as well as several distinct methods of cross-linking the chitosan beads. All of the following examples yield porous cross-linked chitosan resin beads having a reduced number of reactive amino groups.
  • EXAMPLES Example I
  • Porous chitosan resin was synthesized according to a phase inversion technique. This was accomplished by preparing a 7% chitosan solution by dissolving approximately 20 grams of chitosan flakes (practical grade) in 3.5% acetic acid. The mixture increased in viscosity and gelled upon the completion of the chitosan addition. Further dilution with acetic acid resulted in a solution having approximately 3% chitosan flake. This provided for a chitosan solution having a more manageable viscosity. The total amount of acetic acid used to dissolve the chitosan flake was approximately 665 milliliters. The solution was then filtered to separate any undissolved materials. This chitosan solution was then added dropwise to a precipitation bath of 2 molar sodium hydroxide to yield water swollen gel beads. The gel beads were then filtered and washed with deionized water until neutral, pH of the wash water being approximately 7.
  • Heterogeneous cross-linking of the chitosan beads was then accomplished by suspending the beads for several hours in approximately 1 liter of 2.5% aqueous solution of glutaraldehyde. After cross-linking, the beads were then filtered and washed with warm deionized water to remove any excess glutaraldehyde. Subsequently, the beads were freeze dried which resulted in porous glutaraldehyde cross-linked chitosan resin beads. The BET surface area of the resin was measured to be approximately 120 m2/g. The beads were then milled and sieved to retain particles having approximately 16 to 70 mesh. A surface area analysis of the milled resin showed no appreciable change in surface area. The BET surface area of the sieved sample was measured to be approximately 117 m2/g.
  • Example II
  • Porous chitosan resin was synthesized according to the phase inversion technique in Example 1. In this example the heterogeneous cross-linking of the chitosan beads was accomplished by suspending the beads for several hours in a 2.5% aqueous solution of glyoxal. After cross-linking, the beads were filtered and washed with warm deionized water to remove any excess glyoxal. The beads were then freeze dried which resulted in porous glyoxal cross-linked chitosan resin beads.
  • Example III
  • Porous chitosan resin was prepared according to a thermally induced phase separation procedure. A 4% chitosan solution was prepared by dissolution of chitosan powder (Vansen Chemical; 92% deacetylation) in 3.5% acetic acid. A precipitation bath of sodium hydroxide (2 molar) in 20:80 methanol/water solution was prepared and cooled to 0° C. The chitosan solution was then added dropwise to the precipitation bath with moderate stirring. Precipitation of chitosan occurred shortly after addition of the solution to the precipitation bath. The precipitation bath having the chitosan precipitate was then allowed to return to room temperature. The resulting beads were filtered and washed with deionized water until the wash water became neutral, having a pH of approximately 7.
  • Heterogeneous cross-linking of the chitosan beads was then accomplished by suspending approximately 396 grams of wet beads in approximately 1980 milliliters of 2.5% aqueous glutaraldehyde solution for several hours. After cross-linking, the beads were filtered and washed with both warm and cold deionized water to remove any excess glutaraldehyde. Subsequent freeze drying of the beads resulted in porous glutaraldehyde cross-linked chitosan resin beads. The beads were then milled and sieved to approximately 16 to 70 mesh. The BET surface area of the resin was measured to be approximately 210 m2/g.
  • Example IV
  • Porous chitosan resin was prepared according to the thermally induced phase separation procedure in Example III. In this example, the heterogeneous cross-linking of the chitosan beads was accomplished by suspending approximately 261 grams of wet beads in approximately 1300 milliliters of 2.5% aqueous glyoxal solution for several hours. After cross-linking, the beads were filtered and washed with both warm and cold deionized water to remove any excess glyoxal. Subsequent freeze drying resulted in porous glyoxal cross-linked chitosan resin beads. The beads were then milled and sieved to approximately 16 to 70 mesh. The BET surface area of the cross-linked resin was measured to be approximately 145 m 2/g.
  • Example V
  • Porous chitosan resin was prepared according to the thermally induced phase separation procedure in Example III. In this example, the heterogeneous cross-linking of the chitosan beads was accomplished by suspending the beads in a solution of glutaraldehyde and ethanol for several hours. After cross-linking, the beads were filtered and washed with ethanol to remove any excess glutaraldehyde. Subsequent vacuum drying resulted in porous glutaraldehyde cross-linked chitosan resin beads.
  • Example VI
  • Porous chitosan resin was prepared according to the thermally induced phase separation procedure in Example III. In this example, the heterogeneous cross-linking of the chitosan beads was accomplished by suspending the beads in a solution of glutaraldehyde and water for several hours. After cross-linking, the beads were filtered and washed with ethanol to remove any excess glutaraldehyde. Subsequent vacuum drying resulted in porous glutaraldehyde cross-linked chitosan resin beads.
  • Even though these examples specify amounts or concentrations of materials used in making several embodiments of the present invention, a wide range of concentrations and amounts of materials may be used to practice the present invention. For example, the crosslinker solution may be in a range of concentration of about 0.1% to about 50%, the chitosan solution may be in a range of concentration of about 0.1% to about 20%, the acetic acid solution may be in a range of about 0.1% to about 10%, and the base solution may be in a range of about 1 to about 5 molar sodium hydroxide. Additionally, the range of hours for cross-linking reaction may be from about 1 hour to up to about 24 hours.
  • Examples of Use
  • A cigarette typically contains two sections, a tobacco-containing portion sometimes referred to as the tobacco or cigarette rod, and a filter portion which may be referred to as the filter tipping. A cigarette sample with a cavity filter was prepared by removing the existing filter on a cigarette made by standard production techniques, and replacing with a filter tipping having a cellulose acetate section at the tobacco end of the filter and a cellulose acetate section at the mouth end of the filter leaving a middle cavity. Sample sets of semolina (an inert filler material), chitosan resin synthesized by phase inversion technique and cross-linked with glutaraldehyde (Ex. I), chitosan resin synthesized by the thermally induced phase separation procedure and cross-linked with glutaraldehyde (Ex. III), chitosan resin synthesized by the thermally induced phase separation procedure and cross-linked with glyoxal (Ex. IV), chitosan resin synthesized by the thermally induced phase separation procedure and cross-linked with glutaraldehyde in ethanol, washed with ethanol, and vacuum dried (Ex. V), and chitosan resin synthesized by the thermally induced phase separation procedure and cross-linked with glutaraldehyde in water, washed with ethanol, and vacuum dried (Ex. VI), were prepared using a 50 mg sample load in the middle cavity of the filter tipping. This loading was consistent for each sample to provide comparable results. Resin loading in a filter of the present invention may be in a range of about 10 mg to about 200 mg. Each sample was pressure drop selected to minimize smoke delivery variances.
  • Several tests were conducted to determine the ability of the cigarette filter of the present invention to remove undesirable constituents from tobacco smoke as compared to conventional devices. The tests measured the amount of undesirable constituents removed from the mainstream smoke after the cigarette was fully smoked. The following data sets illustrate the performance achieved in the filtration of volatile constituents of tobacco smoke for each of the preferred embodiments as compared to the control material, semolina. Analytical results are reported on the vapor phase and whole smoke analyses as indicated in the following tables. Percent reduction refers to the difference, in %, between the amount of the analyte measured in the vapor phase or whole mainstream smoke of cigarettes having filter tipping containing semolina and chitosan resin.
  • Vapor Phase Smoke Analysis for Chitosan Resin Prepared by Phase Inversion Technique [Ex. I]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Analyte Ex. I
    Hydrogen Cyanide 49
    Acetaldehyde 10
    Acetonitrile 11
    Acrolein 15
    Propionaldehyde 11
    Acetone 7
    Methyl Ethyl Ketone + 16
    Butyraldehyde
    Crotonaldehyde 13
  • Whole Smoke Hydrogen Cyanide Analysis for Chitosan Resin Prepared by Phase Inversion Technique [Ex. I]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Analyte Ex. I
    Hydrogen Cyanide 41
  • Whole Smoke Carbonyl Analysis for Chitosan Resin Prepared by Phase Inversion Technique [Ex. I]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Ex. I
    Formaldehyde 36
    Acetaldehyde 13
    Acetone 5
    Acrolein 11
    Propionaldehyde 16
    Crotonaldehyde 9
    Butyraldehyde 17
  • Vapor Phase Smoke Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Exs. III-IV]
    Percent Reduction (%)
    Chitosan cross-linked Chitosan cross-linked
    with glutaraldehyde with glyoxal
    Ex. III Ex IV
    Acetaldehyde 13 31
    Acetone 21 30
    Acetonitrile 18 26
    Acrolein 29 36
    Acrylonitrile 21 29
    Crotonaldehyde 7 42
    Hydrogen cyanide 60 45
    Methyl ethyl 21 29
    ketone
    Propionaldehyde 23 36
    i-Butyraldehyde 27 35
    n-Butyraldehyde 27 40
  • Whole Smoke Hydrogen Cyanide Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Exs. III-IV]
    Percent Reduction (%)
    Chitosan cross-linked Chitosan cross-linked
    with glutaraldehyde with glyoxal
    Ex. III Ex IV
    Hydrogen cyanide 54 29
  • Whole Smoke Carbonyl Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Exs. III-IV]
    Percent Reduction (%)
    Chitosan cross-linked Chitosan cross-linked
    with glutaraldehyde with glyoxal
    Ex. III Ex IV
    Acetaldehyde 1 2
    Acetone 5 0
    Acrolein 10 3
    Butyraldehyde 14 8
    Crotonaldehyde 20 9
    Formaldehyde 50 46
    Propionaldehyde 17 19
  • Whole Smoke Trace Metals Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Exs. III-IV]
    Percent Reduction (%)
    Chitosan cross-linked Chitosan cross-linked
    with glutaraldehyde with glyoxal
    Ex. III Ex IV
    Cadmium 32 38
  • Vapor Phase Smoke Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Ex. V]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Ex. V
    Acetaldehyde 9
    Acetone 6
    Acetonitrile 3
    Acrolein 13
    Crotonaldehyde 7
    Hydrogen Cyanide 36
    Methyl Ethyl Ketone 6
    Propionaldehyde 11
    i-Butyraldehyde 9
    n-Butyraldehyde 10
  • Whole Smoke Hydrogen Cyanide Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Ex. V]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Ex. V
    Hydrogen Cyanide 27
  • Whole Smoke Carbonyl Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Ex. V]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Ex. V
    Acetonitrile 3
    Acetaldehyde 27
    Acetone 24
    Acrolein 32
    Butyraldehyde 41
    Crotonaldehyde 30
    Formaldehyde 58
    Propionaldehyde 33
  • Whole Smoke Trace Metals Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Ex. V]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Ex. V
    Cadmium 38
  • Vapor Phase Smoke Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Ex. VI]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Ex. VI
    Acetaldehyde 3
    Acetone 4
    Acrolein 9
    Crotonaldehyde 11
    Hydrogen Cyanide 30
    Methyl Ethyl Ketone 11
    Propionaldehyde 6
    i-Butyraldehyde 7
    n-Butyraldehyde 11
  • Whole Smoke Hydrogen Cyanide Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Ex. VI]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Ex. VI
    Hydrogen Cyanide 30
  • Whole Smoke Carbonyl Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Ex. VI]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Ex. VI
    Acetaldehyde 0
    Acetone 0
    Acrolein 0
    Butanone 1
    Butyraldehyde 14
    Crotonaldehyde 36
    Formaldehyde 37
    Propionaldehyde 0
  • Whole Smoke Trace Metals Analysis for Chitosan Resin Prepared by Thermally Induced Phase Separation [Ex. VI]
    Percent Reduction (%)
    Chitosan cross-linked with glutaraldehyde
    Ex. VI
    Cadmium 26
  • The data surprisingly showed the cross-linked chitosan resin described in this invention is selective in removing aldehydes and hydrogen cyanide in cigarette smoke compared to the inert semolina control. The glutaraldehyde cross-linked chitosan resin reduced the vapor phase delivery of hydrogen cyanide by 60% versus a control sample (Ex. III). In a separate test, non-crosslinked ground chitosan particles showed no effect on the vapor phase hydrogen cyanide delivery. The glutaraldehyde cross-linked chitosan resin also decreased whole smoke hydrogen cyanide delivery by 54%, and mainstream whole smoke formaldehyde delivery was decreased by 50% compared to the control sample (Ex. III).
  • While the invention has been described with reference to preferred embodiments, it is to be understood that variations and modifications may be resorted to as will be apparent to those skilled in the art. Such variations and modifications are to be considered within the purview and scope of the invention as defined by the claims appended hereto.

Claims (34)

1. A tobacco-smoke filter comprising a chitosan resin having chitosan cross-linked with glyoxal.
2. (canceled)
3. (canceled)
4. A filter according to claim 1, wherein said resin is in particulate form within a size range of approximately 17 mesh to approximately 70 mesh.
5. A cigarette filter according to claim 1, wherein said resin comprises milled particles.
6. A filter according to claim 1, wherein said tobacco smoke filter has said resin present in a range from about 10 mg to about 200 mg.
7. A filter according to claim 1, wherein said resin is in particulate form and is disposed between filter sections, said filter sections having materials selected from the group consisting of fibrous, filamentary, paper, and combinations thereof
8. A filter according to claim 1, wherein said resin is in particulate form and is dispersed in a filter tow.
9. A method of smoke filtration comprising providing a smoking article filter having chitosan resin cross-linked with glyoxal, and passing smoke through said filter.
10. A method of fluid-flow filtration that comprises providing a filtration bed having chitosan resin cross-linked with glyoxal in said bed and passing fluid containing constituents reactive with said resin through said filtration bed.
11. A method as claimed in claim 10 and in which the providing step comprises packing said chitosan resin within said bed.
12. A method as claimed in claim 10 in which said resin is in a particulate form having a size of about 16 mesh.
13. A method as claimed in claim 10 and in which said providing step further comprises packing said cross-linked chitosan resin along said bed.
14. A method as claimed in claim 10 wherein said fluid is cigarette smoke and said constituents comprises pyrolysis products of cigarette materials.
15. A method of removing from cigarette smoke pyrolysis products of cigarette materials comprising providing a filtration region having chitosan resin cross-linked with glyoxal disposed throughout the region and passing said pyrolysis products through said filtration region.
16. The method of making a tobacco smoke filtration media comprising the steps of:
dissolving chitosan in a first solution having acetic acid in a range of about 0.1% to about 10% forming a second solution having chitosan in a range of about 0.1% to about 20%;
filtering said second solution;
adding said second solution drop-wise to a precipitation bath, wherein said precipitation bath has sodium hydroxide in a range of about 1 molar to about 5 molar, forming gel beads;
rinsing said gel beads;
suspending said gel beads in a cross-linking solution for about 1 hour to about 24 hours forming cross-linked beads, wherein said cross-linking solution has approximately 0.1% to approximately 50% of a cross-linking compound selected from the group consisting of glutaraldhyde and glyoxal;
rinsing said cross-linked beads; and
drying said cross-linked beads forming a porous chitosan crossed-linked resin bead.
17. The method of claim 16 wherein said cross-linking compound is glutaraldehyde.
18. The smoke filtration media of claim 16 wherein said cross-linking compound is glyoxal.
19. The method of making a tobacco smoke filtration media comprising the steps of:
dissolving chitosan in an acetic acid solution having acetic acid in a range of about 0.1% to about 10% forming a chitosan solution having approximately 0.1% to approximately 20% chitosan;
cooling a precipitation bath below ambient room temperature, wherein said precipitation bath has sodium hydroxide, water, and methanol;
adding said chitosan solution drop-wise to said precipitation bath forming gel beads;
warming said precipitation bath having said gel beads to about ambient room temperature;
rinsing said gel beads;
suspending said gel beads for about 1 hour to about 24 hours in a cross-linking solution having approximately 0.1% to approximately 50% of a cross-linking compound selected from the group consisting of glutaraldhyde and glyoxal forming cross-linked beads;
rinsing said cross-linked beads; and
drying said cross-linked beads forming a porous chitosan crossed-linked resin bead.
20. The method of claim 19 wherein said cross-linking compound is glutaraldehyde.
21. The method of claim 19 wherein said cross-linking compound is glyoxal.
22. A tobacco-smoke filter comprising in the range of about 109 mg to about 200 mg of a chitosan resin cross-linked with glyoxal, said resin having a size within the range of about 16 mesh to about 70 mesh.
23. The cigarette filter according to claim 22, wherein said filter is attached to a tobacco rod by tipping paper.
24. The cigarette filter according to claim 22, wherein said resin is incorporated in one or more cigarette filter parts selected from the group consisting of tipping paper, shaped paper insert, a plug, a space, and a free-flow sleeve.
25. The cigarette filter according to claim 22, wherein said resin is incorporated in cigarette filter paper.
26. A method of manufacturing a filter which is useful for removing a gaseous component of a gas mixture, comprising steps of:
preparing a filter media having a cross-linking compound consisting of glyoxal, wherein said cross-linking compound is cross-linked to chitosan; and
incorporating said filter media in a filter wherein said filter media removes said gaseous component of said gas mixture.
27. The method according to claim 26, further comprising attaching said filter to a tobacco rod with tipping paper.
28. The method according to claim 26, wherein said filter media is incorporated in one or more cigarette filter parts selected from the group consisting of tipping paper, shaped paper insert, a plug, a space, and a free-flow sleeve.
29. (canceled)
30. (canceled)
31. The method according to claim 26, wherein said cross-linking compound is incorporated in a cavity of said filter.
32. A method of removing a gaseous component of a gas mixture comprising passing said gas mixture in contact with a filter, wherein said filter has a reagent consisting essentially of at least one reactive functional group cross-linked to chitosan such that said reagent chemically reacts with said gaseous component of said gas mixture and removes said gaseous component from said gas mixture, wherein said functional group consists of glyoxal.
33. The method according to claim 32, further comprising steps of generating said gas mixture and directing a gas stream containing said gas mixture through said filter such that said component of said gas mixture to be removed is chemically reacted with said reagent and prevented from reentering said gas stream.
34. A tobacco-smoke filter comprising a chitosan resin cross-linked with glyoxal and having a reduced number of reactive amino groups.
US11/854,142 2004-05-10 2007-09-12 Selective Filtration of Cigarette Smoke using Chitosan Derivatives Abandoned US20070295345A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/854,142 US20070295345A1 (en) 2004-05-10 2007-09-12 Selective Filtration of Cigarette Smoke using Chitosan Derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/842,165 US20050247323A1 (en) 2004-05-10 2004-05-10 Selective filtration of cigarette smoke using chitosan derivatives
US11/854,142 US20070295345A1 (en) 2004-05-10 2007-09-12 Selective Filtration of Cigarette Smoke using Chitosan Derivatives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/842,165 Division US20050247323A1 (en) 2004-05-10 2004-05-10 Selective filtration of cigarette smoke using chitosan derivatives

Publications (1)

Publication Number Publication Date
US20070295345A1 true US20070295345A1 (en) 2007-12-27

Family

ID=34967401

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/842,165 Abandoned US20050247323A1 (en) 2004-05-10 2004-05-10 Selective filtration of cigarette smoke using chitosan derivatives
US11/854,142 Abandoned US20070295345A1 (en) 2004-05-10 2007-09-12 Selective Filtration of Cigarette Smoke using Chitosan Derivatives

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/842,165 Abandoned US20050247323A1 (en) 2004-05-10 2004-05-10 Selective filtration of cigarette smoke using chitosan derivatives

Country Status (12)

Country Link
US (2) US20050247323A1 (en)
EP (2) EP1746906A1 (en)
JP (1) JP4547422B2 (en)
CN (1) CN101043826A (en)
AR (1) AR049048A1 (en)
AU (1) AU2005244774B2 (en)
BR (1) BRPI0510809A (en)
CA (1) CA2565112C (en)
MY (1) MY139894A (en)
RU (1) RU2336790C2 (en)
WO (1) WO2005112671A1 (en)
ZA (1) ZA200609182B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012158915A3 (en) * 2011-05-19 2013-03-21 R. J. Reynolds Tobacco Company Molecularly imprinted polymers for treating tobacco material and filtering smoke from smoking articles
WO2013164705A1 (en) * 2012-04-30 2013-11-07 Philip Morris Products S.A. Smoking article mouthpiece including aerogel

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740946A (en) * 2009-03-16 2012-10-17 原生生物国际股份公司 Cold-sensitive hydrogels and their use as filters
US9226524B2 (en) 2010-03-26 2016-01-05 Philip Morris Usa Inc. Biopolymer foams as filters for smoking articles
CN102336921B (en) * 2011-06-30 2012-09-05 哈尔滨工业大学 Preparation method of vapor-phase crosslinked chitosan/polyoxyethylene composite film
GB201112539D0 (en) 2011-07-21 2011-08-31 British American Tobacco Co Porous carbon and methods of production thereof
WO2013036164A2 (en) * 2011-09-05 2013-03-14 Общество С Ограниченной Ответственностью "Эфтэк" Cigarette filter segment
CN102793271B (en) * 2012-08-31 2015-04-22 福建中烟工业有限责任公司 Application of cross-linked chitosan porous microspheres in cigarette filter tips
CN103190704B (en) * 2013-04-17 2014-06-25 江苏中烟工业有限责任公司 Method for selectively reducing specific nitrosamines in cigarette smoke
CN103300477B (en) * 2013-06-18 2015-12-09 云南烟草科学研究院 A kind of novel filter tip material and preparation method thereof and application
GB201412752D0 (en) 2014-07-17 2014-09-03 Nicoventures Holdings Ltd Electronic vapour provision system
CN108433176B (en) * 2018-03-08 2020-12-08 武汉力诚生物科技有限公司 Production device and production method of plant polysaccharide cigarette filter tip or filter tip rod
CN108576924B (en) * 2018-05-17 2020-08-11 江苏工程职业技术学院 Cigarette filter tip loaded with molecular sieve and preparation method thereof
CN110179155A (en) * 2019-05-30 2019-08-30 华侨大学 A kind of application of polyamino chitosan material in cigarette filter
CN113786815A (en) * 2021-09-26 2021-12-14 桂林清研皓隆复合材料研究院有限公司 Adsorbing material for water pollution treatment and preparation method thereof
CN117510855B (en) * 2023-11-09 2024-04-23 广州雷斯曼新材料科技有限公司 High-purity dimethyl silicone oil and preparation method and application thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176004A (en) * 1961-03-22 1965-03-30 Meiji Seika Kaisha 6-deoxy-6-mercapto-d-glucosamine and a process for the preparation of this compound
US4018678A (en) * 1974-08-09 1977-04-19 Peniston Quintin P Method of and apparatus for fluid filtration and the like with the aid of chitosan
US4033361A (en) * 1974-06-17 1977-07-05 Brown & Williamson Tobacco Corporation Tobacco-smoke filters
US4038992A (en) * 1975-09-29 1977-08-02 The Japan Tobacco & Salt Public Corporation Granular composition for tobacco filter
US4125708A (en) * 1977-02-15 1978-11-14 The United States Of America As Represented By The Secretary Of Agriculture Chitosan modified with anionic agent and glutaraldehyde
US4996307A (en) * 1985-06-28 1991-02-26 Lion Corporation Preparation of water-soluble acylated chitosan
US5021207A (en) * 1986-12-16 1991-06-04 E. I. Du Pont De Nemours And Company High strength fibers from chitin derivatives
US5758669A (en) * 1995-10-05 1998-06-02 Daicel Chemical Industries, Limited Tobacco filters and production process thereof
US5993661A (en) * 1997-04-14 1999-11-30 The Research Foundation Of State University Of New York Macroporous or microporous filtration membrane, method of preparation and use
US6209547B1 (en) * 1998-10-29 2001-04-03 Philip Morris Incorporated Cigarette filter
US20020179106A1 (en) * 2001-03-28 2002-12-05 Zawadzki Michael A. Reduced ignition propensity smoking article with a polysaccharide treated wrapper
US20030159703A1 (en) * 2002-02-22 2003-08-28 Zuyin Yang Flavored carbon useful as filtering material of smoking article
US6814786B1 (en) * 2003-04-02 2004-11-09 Philip Morris Usa Inc. Filters including segmented monolithic sorbent for gas-phase filtration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104305A (en) * 1987-10-15 1989-04-21 Tadashi Uragami Membrane for separating liquid

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176004A (en) * 1961-03-22 1965-03-30 Meiji Seika Kaisha 6-deoxy-6-mercapto-d-glucosamine and a process for the preparation of this compound
US4033361A (en) * 1974-06-17 1977-07-05 Brown & Williamson Tobacco Corporation Tobacco-smoke filters
US4018678A (en) * 1974-08-09 1977-04-19 Peniston Quintin P Method of and apparatus for fluid filtration and the like with the aid of chitosan
US4038992A (en) * 1975-09-29 1977-08-02 The Japan Tobacco & Salt Public Corporation Granular composition for tobacco filter
US4125708A (en) * 1977-02-15 1978-11-14 The United States Of America As Represented By The Secretary Of Agriculture Chitosan modified with anionic agent and glutaraldehyde
US4996307A (en) * 1985-06-28 1991-02-26 Lion Corporation Preparation of water-soluble acylated chitosan
US5021207A (en) * 1986-12-16 1991-06-04 E. I. Du Pont De Nemours And Company High strength fibers from chitin derivatives
US5758669A (en) * 1995-10-05 1998-06-02 Daicel Chemical Industries, Limited Tobacco filters and production process thereof
US5993661A (en) * 1997-04-14 1999-11-30 The Research Foundation Of State University Of New York Macroporous or microporous filtration membrane, method of preparation and use
US6209547B1 (en) * 1998-10-29 2001-04-03 Philip Morris Incorporated Cigarette filter
US20020179106A1 (en) * 2001-03-28 2002-12-05 Zawadzki Michael A. Reduced ignition propensity smoking article with a polysaccharide treated wrapper
US20030159703A1 (en) * 2002-02-22 2003-08-28 Zuyin Yang Flavored carbon useful as filtering material of smoking article
US6814786B1 (en) * 2003-04-02 2004-11-09 Philip Morris Usa Inc. Filters including segmented monolithic sorbent for gas-phase filtration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012158915A3 (en) * 2011-05-19 2013-03-21 R. J. Reynolds Tobacco Company Molecularly imprinted polymers for treating tobacco material and filtering smoke from smoking articles
US9192193B2 (en) 2011-05-19 2015-11-24 R.J. Reynolds Tobacco Company Molecularly imprinted polymers for treating tobacco material and filtering smoke from smoking articles
US10617144B2 (en) 2011-05-19 2020-04-14 R.J. Reynolds Tobacco Company Molecularly imprinted polymers for treating tobacco material and filtering smoke from smoking articles
WO2013164705A1 (en) * 2012-04-30 2013-11-07 Philip Morris Products S.A. Smoking article mouthpiece including aerogel
CN104470384A (en) * 2012-04-30 2015-03-25 菲利普莫里斯生产公司 Smoking article mouthpiece including aerogel
JP2015516158A (en) * 2012-04-30 2015-06-11 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Smoking article mouthpiece containing airgel
RU2617975C2 (en) * 2012-04-30 2017-04-28 Филип Моррис Продактс С.А. Smoking product mouthpiece containing airgel
US9820506B2 (en) 2012-04-30 2017-11-21 Philip Morris Products S.A. Smoking article mouthpiece including aerogel

Also Published As

Publication number Publication date
EP2510815A2 (en) 2012-10-17
CA2565112A1 (en) 2005-12-01
AR049048A1 (en) 2006-06-21
BRPI0510809A (en) 2007-11-06
CN101043826A (en) 2007-09-26
EP1746906A1 (en) 2007-01-31
ZA200609182B (en) 2008-06-25
AU2005244774B2 (en) 2009-01-29
RU2006143635A (en) 2008-06-20
US20050247323A1 (en) 2005-11-10
RU2336790C2 (en) 2008-10-27
EP2510815A3 (en) 2013-10-30
CA2565112C (en) 2011-11-01
WO2005112671A1 (en) 2005-12-01
JP4547422B2 (en) 2010-09-22
JP2007535929A (en) 2007-12-13
AU2005244774A1 (en) 2005-12-01
MY139894A (en) 2009-11-30

Similar Documents

Publication Publication Date Title
CA2565112C (en) Selective filtration of cigarette smoke using chitosan derivatives
EP1839507B1 (en) Material for cigarette filer and cigarette filter
AU2006211047B2 (en) Cigarette and filter with cellulosic flavor addition
CN101094597B (en) Cigarette with carbon on tow filter
EP1856991B1 (en) Cigarette filter material and cigarette filter
EP2454955B1 (en) Composite particle, cigarette filter and process for producing the same, and cigarette
US4018678A (en) Method of and apparatus for fluid filtration and the like with the aid of chitosan
CN104720104B (en) Additives of filter tip of crotonaldehyde and its preparation method and application in a kind of selectivity reducing cigarette fume
US20210092995A1 (en) Cellulose acetate particle aggregate, preparation method therefor and application thereof
JPH11501525A (en) Filter cigarette
US4350173A (en) Filter material
US3032445A (en) Tobacco smoke filters
CN1897833B (en) Tobacco smoke filter
CN103015175A (en) Pullulan polysaccharide modified polypropylene (PP) fiber for cigarette and preparation method thereof
CN102697182A (en) Preparation method of filter nozzle additive for lowering ammonia in smoke of cigarette and application thereof
CN102920022A (en) Preparation method of additive for reducing content of ammonia in mainstream smoke of cigarette and application of preparation method
KR100851091B1 (en) Selective filtration of cigarette smoke using chitosan derivatives
EP1541043B1 (en) Filter for cigarette
JP2006034127A (en) Cigarette filter with high selectively removing ability of formaldehydes
WO2009031248A1 (en) Composition containing amino compound and silica gel, and tobacco filter
CN112841717A (en) Aromatized attapulgite based cigarette filter tip additive material as well as preparation method and application thereof
JPS596637B2 (en) tobacco filter

Legal Events

Date Code Title Description
AS Assignment

Owner name: R.J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JACKSON, THADDEUS J.;REEL/FRAME:021080/0182

Effective date: 20051214

Owner name: BROWN & WILLIAMSON TOBACCO CORPORATION, KENTUCKY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARAWAY, JOHN W., JR.;REEL/FRAME:021080/0115

Effective date: 20040504

Owner name: BROWN & WILLIAMSON U.S.A., INC., KENTUCKY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROWN & WILLIAMSON TOBACCO CORPORATION;REEL/FRAME:021080/0124

Effective date: 20040730

Owner name: R.J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA

Free format text: MERGER;ASSIGNOR:BROWN & WILLIAMSON U.S.A., INC.;REEL/FRAME:021080/0142

Effective date: 20040730

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: ASSIGNMENT OF SECURITY INTEREST;ASSIGNOR:R. J. REYNOLDS TOBACCO COMPANY;REEL/FRAME:021165/0048

Effective date: 20071029

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: R.J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:027160/0184

Effective date: 20111003