US20080000084A1 - Method of spin forming a catalytic converter - Google Patents

Method of spin forming a catalytic converter Download PDF

Info

Publication number
US20080000084A1
US20080000084A1 US11/474,189 US47418906A US2008000084A1 US 20080000084 A1 US20080000084 A1 US 20080000084A1 US 47418906 A US47418906 A US 47418906A US 2008000084 A1 US2008000084 A1 US 2008000084A1
Authority
US
United States
Prior art keywords
tubular member
conical
forming
spin forming
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/474,189
Inventor
Haimian Cai
William Koivula
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automotive Components Holdings LLC
Original Assignee
Automotive Components Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Components Holdings LLC filed Critical Automotive Components Holdings LLC
Priority to US11/474,189 priority Critical patent/US20080000084A1/en
Assigned to VISTEON GLOBAL TECHNOLOGIES, INC. reassignment VISTEON GLOBAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAI, HAIMIAN, KOIVULA, WILLIAM
Assigned to AUTOMOTIVE COMPONENTS HOLDINGS, LLC reassignment AUTOMOTIVE COMPONENTS HOLDINGS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VISTEON GLOBAL TECHNOLOGIES, INC
Publication of US20080000084A1 publication Critical patent/US20080000084A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/14Spinning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49345Catalytic device making

Definitions

  • This invention relates in general to catalytic converters, and in particular to a method of forming a catalytic converter.
  • Catalytic converters typically include a catalytic element housed in a metallic housing.
  • the housing includes a conical-shaped first end and a conical-shaped second end.
  • the catalytic converters are typically manufactured by cutting a metallic tubular member to a desired length.
  • the catalytic element is inserted within the housing and secured therein.
  • the tubular member is loaded in a first spin forming machine to form the conical-shaped first end. After the first spin forming operation is completed, the partially formed tubular member is unloaded from the first spin forming machine and loaded onto a second spin forming machine to form the second conical-shaped end.
  • a disadvantage to spin forming is that it is a time consuming process since the part is unloaded, re-orientated and loaded into a same machine for forming both ends.
  • a second spin forming machine may be used to alleviate the bottle neck of having to unload and re-load the component at a same machine; however, this requires added cost of a second machine, tooling, and maintenance.
  • other processes such as swaging is used to secure the catalytic elements within the catalytic converter, then added cycle time, tooling, and component handling are required for these added operations.
  • the present invention has the advantage of forming a catalytic converter assembly utilizing only one spin forming operation per assembly which provides cost savings, tooling wear, and scrap reduction.
  • time of manufacture is reduced by the elimination of a second spin forming operation.
  • cost of tooling is reduced by the elimination of a spin forming machine.
  • a method is provided of manufacturing a catalytic converter using a spin forming operation.
  • a metallic tubular member includes a substantially cylindrical outer surface and an inner surface. At least one catalytic element is inserted in the tubular member. An end of the metallic tubular member is loaded into a spin forming machine. At least one spin forming wheel is provided for forming the tubular member. A force is applied to a first end section of the tubular member by the at least one spin forming wheel for forming a first conical-shaped end. A force is applied to a second end section of the tubular member by the at least one spin forming wheel for forming a second conical-shaped end. A force is applied by the at least one spin forming wheel to the outer surface of the tubular member between the first conical shaped end and the second conical shaped end for forming an indentation therebetween and preventing axial movement of the at least one catalytic element.
  • a method for manufacturing a catalytic converter using a spin forming operation.
  • a metallic tubular member is provided having a substantially cylindrical outer surface and an inner surface. At least one catalytic element is inserted in the tubular member. An end of the metallic tubular member is inserted into a spin forming machine. At least two spin forming wheels are spaced equally around the tubular member. A force is applied to the outer surface of the tubular member by the at least two spin forming wheels for securing the at least one catalytic element within the tubular member. A force is applied by the at least two spin forming wheels to the outer surface of the tubular member at a first end section and at a second end section for forming a first conical-shaped end and a second conical-shaped end.
  • a method is provided of manufacturing a plurality of catalytic converters using a spin forming operation.
  • a metallic tubular member is provided having a substantially cylindrical outer surface and an inner surface. The tubular member is separated into individual tubular sections. At least one catalytic element is inserted in a respective tubular section. An end of the respective tubular section is mounted to a spin forming machine. At least two spin forming wheels are equally spaced around the respective tubular section. A force is applied to the outer surface of the respective tubular section axially aligned with the at least one catalytic element by the at least two spin forming wheels for securing the at least one catalytic element within the respective tubular section.
  • a force is applied to the outer surface of a first end and the outer surface of the second end of the respective tubular section by the at least two spin forming wheels for forming a first conical-shaped end and a second conical-shaped end.
  • a force is applied to the outer surface of the respective tubular section between the first conical-shaped end and the second conical-shaped end for forming an indentation therebetween.
  • a method for manufacturing a plurality of catalytic converters using a spin forming operation.
  • a plurality of catalytic elements are inserted in a metallic tubular member.
  • a plurality of axially spaced neck portions are formed by at least two forming wheels.
  • the plurality of neck portions each have a diameter less than an initial diameter of the metallic tubular member.
  • a substantial midpoint of each neck portions is cut.
  • FIG. 1 is a cross section view of catalytic converter assembly according to a first preferred embodiment.
  • FIG. 2 is a perspective view of a tubular member having catalytic elements formed therein according to a first preferred embodiment.
  • FIG. 3 is a cross section view of a plurality of neck portions formed by a spin forming operation according to a first preferred embodiment.
  • FIG. 4 is a cross section view of a sectioned tubular member for forming catalytic converters according to a first preferred embodiment of the present invention.
  • FIG. 5 is a side view of the forming tool and the catalytic converter according to a first preferred embodiment of the present invention.
  • FIG. 6 is a section view of a catalytic element and the indentation formed therein according to a first preferred embodiment of the present invention.
  • FIG. 7 is a cross section view illustrating discrete forming locations spin forming process according to a first preferred embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for forming the catalytic converter according to a first preferred embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for forming a plurality of catalytic converters according to a first preferred embodiment of the present invention.
  • FIG. 10 is a cross section view illustrating the contour path of the forming tool for continuous spin forming process according to a second preferred embodiment of the present invention.
  • FIG. 11 is a side view of the forming tool and the catalytic converter according to a third preferred embodiment of the present invention.
  • FIG. 1 a cross section view of the inventive catalytic converter assembly 10 .
  • the catalytic converter assembly 10 includes a housing 12 formed from a corrosion resistant alloy such as a stainless steel alloy.
  • the catalytic converter assembly 10 further includes a first catalytic element 14 and a second catalytic element 15 each comprising a substrate and a support material secured within an interior of the housing 12 .
  • the catalytic converter assembly 10 may include only one catalytic element or more than two catalytic elements.
  • An inner surface 16 of the housing 12 is pressed against the first catalytic element 14 and the second catalytic element 15 for securing the first catalytic element 14 and second catalytic element from radial movement therein.
  • An indentation 17 is formed between the first catalytic element 14 and the second catalytic element 15 for preventing axial movement of the first catalytic element 14 and the second catalytic element 15 within the housing 12 .
  • the catalytic converter assembly 10 includes a first conical-shaped end 18 having a first port 20 .
  • the first port 20 is coupled to an exhaust pipe of a vehicle (not shown) extending from an internal combustion engine of the vehicle(not shown).
  • the catalytic converter assembly 10 further includes a second conical-shaped end 22 having a second port 24 .
  • the second port 24 is coupled to a next portion of the exhaust system (not shown).
  • the first port 20 functions as an inlet port for receiving exhaust gases from the internal combustion engine such has hydrocarbons, carbon monoxide, and nitrogen oxides and converts the exhaust gases into carbon dioxide, water, nitrogen, and oxygen.
  • the second port 24 functions as an exhaust port for discharging the converted gases to the discharging portion of the exhaust system (not shown).
  • FIG. 2 illustrates a tubular member 26 used to form the housing 12 of the catalytic converter assembly 10 .
  • the tubular member 26 is a non-corrosive metallic housing and includes an outer surface 30 of an initial uniform diameter.
  • the tubular member 26 is typically formed from a single strip of sheet metal. The sheet metal strip is wrapped length-wise and is welded along a seam for forming the tubular member 26 .
  • the tubular member 26 may be formed as a seamless tubular member by another process such as an extrusion process.
  • the length of the tubular member 26 is preferably such that two or more housings may be produced from the tubular member 26 .
  • a plurality of catalytic elements 31 are assembled into the interior of the tubular member 26 .
  • the plurality of catalytic elements 31 are assembled in pairs such that each of the catalytic elements comprising a respective pair (e.g., first catalytic element 14 and second catalytic element 15 ) are spaced in close relation to one another.
  • Each respective pair of catalytic elements are spaced at a predetermined distance from an adjacent pair of catalytic elements to allow respective conical-shaped ends to be formed on each side of a respective pair of catalytic elements.
  • the catalytic elements may be equally spaced from one another so that a respective catalytic converter only includes a single catalytic element.
  • FIG. 3 illustrates a plurality of neck portions formed in the tubular member 26 which are used to create respective conical-shaped ends for each respective housing section of the catalytic converter 10 .
  • a spin forming machine shown generally at 32 , having at least one forming wheel, is brought into contact with the outer surface 30 of the tubular member 26 .
  • the tubular member is rotated as the at least one forming wheel is brought into contact with the outer surface 30 for shaping the tubular member 26 .
  • the at least one forming wheel is moved both axially and radially along the rotating tubular member 26 for forming a plurality of neck portions 34 .
  • An alternative process may include only the at least one forming wheel being rotated about the tubular member 26 for forming the plurality of neck portions 34 while the tubular member 26 remains unrotated.
  • both the at least one forming wheel and the tubular member 26 are simultaneously rotated for forming the plurality of neck portions 34 .
  • Each of he neck portions 34 include a pair of opposing conical-shaped sections 36 and 38 integrally connected by a substantially uniform cylindrical bridge section 40 such that a respective diameter at any given location of the neck portion 34 is smaller than the initial diameter of the tubular member 26 .
  • Multiple neck portions may be formed by the forming tool 32 at predetermined axial locations for creating a plurality of catalytic converters from a respective single tubular member.
  • each neck portion is aligned about a same axis as the tubular member 26 from which it was formed.
  • each neck portion may be formed so that the axis of each neck portion is different than the axis of the tubular member 26 .
  • FIG. 4 illustrates the tubular member 26 sectioned into a plurality of catalytic converters.
  • the tubular member 26 is separated by a transverse cut at substantially an axial midpoint 40 of each neck portion 34 for forming the plurality of catalytic converters. Separation of the tubular member at the respective axial midpoints of each respective neck portion may be performed by a cutting operation such as a laser cut, a saw-cut, or a plasma cut. Other-cutting operations may include a milling operation (e.g., high speed milling operation) for separating the respective pre-forms. Material from one or both of the ends of the catalytic converter 10 may be removed to accommodate a desired length.
  • a cutting operation such as a laser cut, a saw-cut, or a plasma cut.
  • Other-cutting operations may include a milling operation (e.g., high speed milling operation) for separating the respective pre-forms. Material from one or both of the ends of the catalytic converter 10 may be removed to accommodate
  • FIG. 5 illustrates the tubular member being formed by the spin forming machine 32 .
  • the tubular member 26 is de-formed by the spin forming machine 32 utilizing a first forming wheel 42 and a second forming wheel 44 .
  • the first forming wheel 42 and the second forming wheel 44 are spaced equidistant (i.e., equal radial spacings) about the tubular member 26 for applying a counterbalanced force to the outer surface 30 when shaping the tubular member 26 .
  • Applying an equal force from opposite directions equalizes the force exerted on the tubular member 26 which improves the conical-shaped end forming process by reducing bending stress and distortion on the tubular member 26 .
  • each of the respective regions of the tubular member 26 is shaped without having to unload and remount the tubular member 26 in the same or different spin forming machine which allows for the elimination of multiple spin forming machines.
  • the neck portions are formed prior to cutting the tubular member, less material is required to be cut in the narrowed neck portion, and as a result, the tubular members may be cut faster and less (cutting) tooling wear is achieved.
  • FIG. 6 illustrates the catalytic converter 10 having a midsection indentation for preventing axial movement of the catalytic elements 14 and 15 within the catalytic converter 10 .
  • An indentation 17 is formed in a midsection wall of the catalytic converter 10 between the first catalytic element 14 and the second catalytic element 15 by applying a force to the outer surface 30 by the first spin forming wheel 42 and the second spin forming wheel 44 .
  • the force from the spin forming wheels 42 and 44 is counterbalanced (i.e., there is zero net force in each direction).
  • the first and second spin forming wheels 42 and 44 apply a force to the outer surface 30 that is axially aligned (i.e., radially overlapping) with the first catalytic element 14 and the second catalytic element 15 for securing the inner wall 16 against the respective catalytic elements.
  • This may include an indentation (similar to the indentation 17 used to prevent axial movement) to secure the first catalytic element 14 and the second catalytic element to prevent radial movement. This may be performed prior to or after the formation of the indentation 17 .
  • forming the indentation 17 and securing the catalytic elements to the inner surface 16 may be performed either before the tubular member 26 is separated into various catalytic converter assemblies or after the tubular member is separated into the respective catalytic converter assemblies; however, forming afterwards requires each respective catalytic converter assembly be reloaded into a spin forming machine.
  • FIG. 7 illustrates the tubular member 26 of the catalytic converter 10 being shaped by a discrete spin forming process which shapes discrete regions of the tubular member 26 in a non-continuous operation. That is, the forming tools 42 and 44 discretely move (e.g., slide longitudinally) to various regions of outer surface 30 of the tubular member 26 for forming the respective regions as opposed to continuously moving over the entire surface from a first end to a second end. For example, the region of the tubular member 26 overlapping the first catalytic element 14 may be shaped first. The forming tools will pass over this section one or more times for shaping this respective region. The forming tools 42 and 44 will then advance to a region of the tubular member 26 overlapping the second catalytic element 15 and shape this respective region.
  • the forming tools 42 and 44 discretely move (e.g., slide longitudinally) to various regions of outer surface 30 of the tubular member 26 for forming the respective regions as opposed to continuously moving over the entire surface from a first end to a second end.
  • the forming tools 42 and 44 advances to the first end of the tubular member for shaping the first conical-shaped end 18 , and subsequently, to the second end of tubular member where the second conical-shaped end 22 may be formed. Finally the forming tools 42 and 44 advance to the respective midsection where the indentation 17 is formed. In the discrete forming-operation, the various respective regions of the outer surface may be shaped in any order that the manufacturer desires.
  • FIG. 8 is a flowchart of a method for forming a catalytic converter assembly.
  • a tubular member is provided for forming a housing of a catalytic converter assembly.
  • the tubular member may be a seamless single piece tube or may be a sheet metal strip that is wrapped and welded along a seam.
  • At least one catalytic element is inserted in the tubular member.
  • an end of the tubular member is mounted in the spin forming machine having at least two spin forming wheels for forming the tubular member.
  • a force is applied to a first end section of the tubular member by the at least two spin forming wheels for forming the first conical-shaped end.
  • the at least two spin forming wheels are spaced equally around the tubular member for evenly supporting the tubular member and to apply an equal distribution of force when shaping the tubular member.
  • a force is applied to a second end section of the tubular member by the at least two spin forming wheels for forming the second conical-shaped end. Since the at least two spin forming wheels are spaced equidistant around the tubular member for applying the equal distribution of force, the tubular member does not require additional support for the second end of the tubular member despite its overall length since support is provided by the at least two spin forming wheels.
  • a force is applied by the at least two spin forming wheels to the outer surface of the tubular member between the conical-shaped ends to prevent axial movement of the at least one catalytic element within the catalytic converter.
  • a force is applied to the outer surface of the tubular member of a region overlapping the at least one catalytic element for securing the at least one catalytic element within the catalytic converter and preventing radial movement of the catalytic elements.
  • This force applied to the outer surface may produce an indentation to a portion of the overlapping region or the entire region overlapping the at least one catalytic element may be deformed for securing preventing radial movement.
  • FIG. 9 illustrates a flowchart for a method for forming a plurality of catalytic converter assemblies.
  • a tubular member is provided for forming a plurality of catalytic converter assemblies.
  • the tubular member has predetermined overall length which allows for the manufacture of multiple housings to be used to manufacture and assemble the plurality of catalytic converter assemblies.
  • a plurality of catalytic elements are inserted in the tubular member.
  • the plurality of catalytic elements are grouped in pairs so that the axial spacing between a designated pair of catalytic elements is less that the axial spacing between adjacent pairs of catalytic elements. This allows for a sufficient amount of material to be provided between the adjacent pairs of catalytic elements for forming the neck portions.
  • an end of the tubular member is mounted in the spin forming machine having at least two spin forming wheels for forming the tubular member.
  • the at least two spin forming wheels are spaced equally around the tubular member for applying an equal distribution of force at each contacting location and for evenly supporting the tubular member.
  • a force is applied by the at least two spin forming wheels to respective sections on the outer surface of the tubular member that overlap the catalytic elements for securing the catalytic elements within the catalytic converter and preventing radial movement of the catalytic elements.
  • a force is applied by the at least two spin forming wheels to respective sections of the outer surface located between adjacent pairs of catalytic elements for forming a plurality of neck portions.
  • a force is applied by the at least two spin forming wheels to respective regions of the outer surface located between a respective pair of catalytic elements for forming an indentation therebetween for preventing axial movement of the catalytic elements within the catalytic converter.
  • FIG. 10 illustrates an alternative method of shaping the outer surface of the tubular member.
  • the housing 12 of the catalytic converter 10 is formed in a single continuous forming operation.
  • a contour-shape of the outer surface 30 of the catalytic converter 10 is shown generally by the dotted off-set contoured line 46 .
  • the contour-shape is produced by the first forming wheel 42 and second forming wheel 44 advancing longitudinally in a continuous forming operation. That is, the entire housing 12 between the ends the catalytic converter 10 are formed in a continuous forming operation without lifting the forming wheels 42 and 44 from the outer surface of the tubular member 26 .
  • the forming wheels 42 and 44 will contact the tubular member 26 at a respective end to form the first conical-shaped end 18 .
  • the forming wheels 42 and 44 will maintain continuous contact with the outer surface 30 thereafter to depress the region of the outer surface 30 over first catalytic element 14 , the indentation 17 , the region of the outer surface 30 over the second catalytic element 15 , and the second conical-shaped end 22 .
  • FIG. 11 illustrates an alternative embodiment for a spin forming machine having multiple forming wheels.
  • a forming tool 48 includes a first forming wheel 50 , a second forming wheel 52 , and a third forming wheel 54 .
  • the forming wheels are positioned at equal radial spacings about the tubular member 26 .
  • each of the forming wheels applies a balanced force to the tubular member 26 when shaping the tubular member 26 .
  • the three respective forming wheels equally support the tubular member 26 during the spin forming operation so that tighter manufacturing tolerances of the finished catalytic converter may be produced.
  • the multiple forming wheels reduce the number of times the forming wheels must pass over a respective section for shaping a respective region. This reduces manufacturing time as well as tool wear.

Abstract

A method is provided of manufacturing a catalytic converter using a spin forming operation. At least one catalytic element is inserted in a tubular member. At least one spin forming wheel is provided for forming the tubular member. A force is applied to a first end section of the tubular member by the at least one spin forming wheel for forming a first conical-shaped end. A force is applied to a second end section of the tubular member by the at least one spin forming wheel for forming a second conical-shaped end. A force is applied by the at least one spin forming wheel to the outer surface of the tubular member between the first conical-shaped end and the second conical-shaped end for forming an indentation therebetween and preventing axial movement of the at least one catalytic element.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not Applicable
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable
  • REFERENCE TO A SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING COMPACT DISC APPENDIX
  • Not Applicable
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates in general to catalytic converters, and in particular to a method of forming a catalytic converter.
  • 2. Description of the Related Art
  • Catalytic converters typically include a catalytic element housed in a metallic housing. The housing includes a conical-shaped first end and a conical-shaped second end. The catalytic converters are typically manufactured by cutting a metallic tubular member to a desired length. In a known spin-form manufacturing method, the catalytic element is inserted within the housing and secured therein. The tubular member is loaded in a first spin forming machine to form the conical-shaped first end. After the first spin forming operation is completed, the partially formed tubular member is unloaded from the first spin forming machine and loaded onto a second spin forming machine to form the second conical-shaped end. A disadvantage to spin forming is that it is a time consuming process since the part is unloaded, re-orientated and loaded into a same machine for forming both ends. A second spin forming machine may be used to alleviate the bottle neck of having to unload and re-load the component at a same machine; however, this requires added cost of a second machine, tooling, and maintenance. In addition, if other processes such as swaging is used to secure the catalytic elements within the catalytic converter, then added cycle time, tooling, and component handling are required for these added operations.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention has the advantage of forming a catalytic converter assembly utilizing only one spin forming operation per assembly which provides cost savings, tooling wear, and scrap reduction. By utilizing only a single spin forming operation, time of manufacture is reduced by the elimination of a second spin forming operation. In addition, cost of tooling is reduced by the elimination of a spin forming machine.
  • In one aspect of the present invention, a method is provided of manufacturing a catalytic converter using a spin forming operation. A metallic tubular member includes a substantially cylindrical outer surface and an inner surface. At least one catalytic element is inserted in the tubular member. An end of the metallic tubular member is loaded into a spin forming machine. At least one spin forming wheel is provided for forming the tubular member. A force is applied to a first end section of the tubular member by the at least one spin forming wheel for forming a first conical-shaped end. A force is applied to a second end section of the tubular member by the at least one spin forming wheel for forming a second conical-shaped end. A force is applied by the at least one spin forming wheel to the outer surface of the tubular member between the first conical shaped end and the second conical shaped end for forming an indentation therebetween and preventing axial movement of the at least one catalytic element.
  • In yet another aspect of the present invention, a method is provided for manufacturing a catalytic converter using a spin forming operation. A metallic tubular member is provided having a substantially cylindrical outer surface and an inner surface. At least one catalytic element is inserted in the tubular member. An end of the metallic tubular member is inserted into a spin forming machine. At least two spin forming wheels are spaced equally around the tubular member. A force is applied to the outer surface of the tubular member by the at least two spin forming wheels for securing the at least one catalytic element within the tubular member. A force is applied by the at least two spin forming wheels to the outer surface of the tubular member at a first end section and at a second end section for forming a first conical-shaped end and a second conical-shaped end.
  • In yet another aspect of the present invention, a method is provided of manufacturing a plurality of catalytic converters using a spin forming operation. A metallic tubular member is provided having a substantially cylindrical outer surface and an inner surface. The tubular member is separated into individual tubular sections. At least one catalytic element is inserted in a respective tubular section. An end of the respective tubular section is mounted to a spin forming machine. At least two spin forming wheels are equally spaced around the respective tubular section. A force is applied to the outer surface of the respective tubular section axially aligned with the at least one catalytic element by the at least two spin forming wheels for securing the at least one catalytic element within the respective tubular section. A force is applied to the outer surface of a first end and the outer surface of the second end of the respective tubular section by the at least two spin forming wheels for forming a first conical-shaped end and a second conical-shaped end. A force is applied to the outer surface of the respective tubular section between the first conical-shaped end and the second conical-shaped end for forming an indentation therebetween. Repeating the above assembly process of inserting catalytic elements in the respective tubular sections and spin forming each respective tubular section.
  • In yet another aspect of the present invention, a method is provided for manufacturing a plurality of catalytic converters using a spin forming operation. A plurality of catalytic elements are inserted in a metallic tubular member. A plurality of axially spaced neck portions are formed by at least two forming wheels. The plurality of neck portions each have a diameter less than an initial diameter of the metallic tubular member. A substantial midpoint of each neck portions is cut.
  • Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross section view of catalytic converter assembly according to a first preferred embodiment.
  • FIG. 2 is a perspective view of a tubular member having catalytic elements formed therein according to a first preferred embodiment.
  • FIG. 3 is a cross section view of a plurality of neck portions formed by a spin forming operation according to a first preferred embodiment.
  • FIG. 4 is a cross section view of a sectioned tubular member for forming catalytic converters according to a first preferred embodiment of the present invention.
  • FIG. 5 is a side view of the forming tool and the catalytic converter according to a first preferred embodiment of the present invention.
  • FIG. 6 is a section view of a catalytic element and the indentation formed therein according to a first preferred embodiment of the present invention.
  • FIG. 7 is a cross section view illustrating discrete forming locations spin forming process according to a first preferred embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for forming the catalytic converter according to a first preferred embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for forming a plurality of catalytic converters according to a first preferred embodiment of the present invention.
  • FIG. 10 is a cross section view illustrating the contour path of the forming tool for continuous spin forming process according to a second preferred embodiment of the present invention.
  • FIG. 11 is a side view of the forming tool and the catalytic converter according to a third preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring now to the drawings, there is illustrated in FIG. 1, a cross section view of the inventive catalytic converter assembly 10. The catalytic converter assembly 10 includes a housing 12 formed from a corrosion resistant alloy such as a stainless steel alloy.
  • The catalytic converter assembly 10 further includes a first catalytic element 14 and a second catalytic element 15 each comprising a substrate and a support material secured within an interior of the housing 12. Alternatively, the catalytic converter assembly 10 may include only one catalytic element or more than two catalytic elements. An inner surface 16 of the housing 12 is pressed against the first catalytic element 14 and the second catalytic element 15 for securing the first catalytic element 14 and second catalytic element from radial movement therein. An indentation 17 is formed between the first catalytic element 14 and the second catalytic element 15 for preventing axial movement of the first catalytic element 14 and the second catalytic element 15 within the housing 12.
  • The catalytic converter assembly 10 includes a first conical-shaped end 18 having a first port 20. The first port 20 is coupled to an exhaust pipe of a vehicle (not shown) extending from an internal combustion engine of the vehicle(not shown). The catalytic converter assembly 10 further includes a second conical-shaped end 22 having a second port 24. The second port 24 is coupled to a next portion of the exhaust system (not shown).
  • The first port 20 functions as an inlet port for receiving exhaust gases from the internal combustion engine such has hydrocarbons, carbon monoxide, and nitrogen oxides and converts the exhaust gases into carbon dioxide, water, nitrogen, and oxygen. The second port 24 functions as an exhaust port for discharging the converted gases to the discharging portion of the exhaust system (not shown).
  • FIG. 2 illustrates a tubular member 26 used to form the housing 12 of the catalytic converter assembly 10. The tubular member 26, as stated earlier, is a non-corrosive metallic housing and includes an outer surface 30 of an initial uniform diameter. The tubular member 26 is typically formed from a single strip of sheet metal. The sheet metal strip is wrapped length-wise and is welded along a seam for forming the tubular member 26. Alternatively, the tubular member 26 may be formed as a seamless tubular member by another process such as an extrusion process. The length of the tubular member 26 is preferably such that two or more housings may be produced from the tubular member 26.
  • A plurality of catalytic elements 31 are assembled into the interior of the tubular member 26. Preferably, the plurality of catalytic elements 31 are assembled in pairs such that each of the catalytic elements comprising a respective pair (e.g., first catalytic element 14 and second catalytic element 15) are spaced in close relation to one another. Each respective pair of catalytic elements are spaced at a predetermined distance from an adjacent pair of catalytic elements to allow respective conical-shaped ends to be formed on each side of a respective pair of catalytic elements. Alternatively, the catalytic elements may be equally spaced from one another so that a respective catalytic converter only includes a single catalytic element.
  • FIG. 3 illustrates a plurality of neck portions formed in the tubular member 26 which are used to create respective conical-shaped ends for each respective housing section of the catalytic converter 10. A spin forming machine, shown generally at 32, having at least one forming wheel, is brought into contact with the outer surface 30 of the tubular member 26. In the preferred embodiment, the tubular member is rotated as the at least one forming wheel is brought into contact with the outer surface 30 for shaping the tubular member 26. The at least one forming wheel is moved both axially and radially along the rotating tubular member 26 for forming a plurality of neck portions 34. An alternative process may include only the at least one forming wheel being rotated about the tubular member 26 for forming the plurality of neck portions 34 while the tubular member 26 remains unrotated. In yet another alternative process, both the at least one forming wheel and the tubular member 26 are simultaneously rotated for forming the plurality of neck portions 34. Each of he neck portions 34 include a pair of opposing conical-shaped sections 36 and 38 integrally connected by a substantially uniform cylindrical bridge section 40 such that a respective diameter at any given location of the neck portion 34 is smaller than the initial diameter of the tubular member 26. Multiple neck portions may be formed by the forming tool 32 at predetermined axial locations for creating a plurality of catalytic converters from a respective single tubular member. Preferably, each neck portion is aligned about a same axis as the tubular member 26 from which it was formed. Alternatively, each neck portion may be formed so that the axis of each neck portion is different than the axis of the tubular member 26.
  • FIG. 4 illustrates the tubular member 26 sectioned into a plurality of catalytic converters. The tubular member 26 is separated by a transverse cut at substantially an axial midpoint 40 of each neck portion 34 for forming the plurality of catalytic converters. Separation of the tubular member at the respective axial midpoints of each respective neck portion may be performed by a cutting operation such as a laser cut, a saw-cut, or a plasma cut. Other-cutting operations may include a milling operation (e.g., high speed milling operation) for separating the respective pre-forms. Material from one or both of the ends of the catalytic converter 10 may be removed to accommodate a desired length.
  • FIG. 5 illustrates the tubular member being formed by the spin forming machine 32. The tubular member 26 is de-formed by the spin forming machine 32 utilizing a first forming wheel 42 and a second forming wheel 44. The first forming wheel 42 and the second forming wheel 44 are spaced equidistant (i.e., equal radial spacings) about the tubular member 26 for applying a counterbalanced force to the outer surface 30 when shaping the tubular member 26. Applying an equal force from opposite directions equalizes the force exerted on the tubular member 26 which improves the conical-shaped end forming process by reducing bending stress and distortion on the tubular member 26. As a result, the tubular member 26 is better supported during the forming process and a lower clamping force is required for retaining the tubular member 26 within the spin forming machine 32 while exerting a force from the multiple forming wheels. Cycle time for shaping each of the respective regions of the tubular member 26 is reduced since less passes are required to form the respective regions. With the reduction of cycle time, production output is increased. In addition, as a result of the multiple forming wheels, each of the respective regions of the tubular member 26 can be shaped without having to unload and remount the tubular member 26 in the same or different spin forming machine which allows for the elimination of multiple spin forming machines. Lastly, since the neck portions are formed prior to cutting the tubular member, less material is required to be cut in the narrowed neck portion, and as a result, the tubular members may be cut faster and less (cutting) tooling wear is achieved.
  • FIG. 6 illustrates the catalytic converter 10 having a midsection indentation for preventing axial movement of the catalytic elements 14 and 15 within the catalytic converter 10. An indentation 17 is formed in a midsection wall of the catalytic converter 10 between the first catalytic element 14 and the second catalytic element 15 by applying a force to the outer surface 30 by the first spin forming wheel 42 and the second spin forming wheel 44. When applying the force to the midsection wall of the catalytic converter 10 for forming the indentation 17, the force from the spin forming wheels 42 and 44 is counterbalanced (i.e., there is zero net force in each direction).
  • To prevent radial movement of the first catalytic element 14 and the second catalytic element 15 within the catalytic converter 10, the first and second spin forming wheels 42 and 44 apply a force to the outer surface 30 that is axially aligned (i.e., radially overlapping) with the first catalytic element 14 and the second catalytic element 15 for securing the inner wall 16 against the respective catalytic elements. This may include an indentation (similar to the indentation 17 used to prevent axial movement) to secure the first catalytic element 14 and the second catalytic element to prevent radial movement. This may be performed prior to or after the formation of the indentation 17. Alternatively, forming the indentation 17 and securing the catalytic elements to the inner surface 16 may be performed either before the tubular member 26 is separated into various catalytic converter assemblies or after the tubular member is separated into the respective catalytic converter assemblies; however, forming afterwards requires each respective catalytic converter assembly be reloaded into a spin forming machine.
  • FIG. 7 illustrates the tubular member 26 of the catalytic converter 10 being shaped by a discrete spin forming process which shapes discrete regions of the tubular member 26 in a non-continuous operation. That is, the forming tools 42 and 44 discretely move (e.g., slide longitudinally) to various regions of outer surface 30 of the tubular member 26 for forming the respective regions as opposed to continuously moving over the entire surface from a first end to a second end. For example, the region of the tubular member 26 overlapping the first catalytic element 14 may be shaped first. The forming tools will pass over this section one or more times for shaping this respective region. The forming tools 42 and 44 will then advance to a region of the tubular member 26 overlapping the second catalytic element 15 and shape this respective region. Thereafter, the forming tools 42 and 44 advances to the first end of the tubular member for shaping the first conical-shaped end 18, and subsequently, to the second end of tubular member where the second conical-shaped end 22 may be formed. Finally the forming tools 42 and 44 advance to the respective midsection where the indentation 17 is formed. In the discrete forming-operation, the various respective regions of the outer surface may be shaped in any order that the manufacturer desires.
  • FIG. 8 is a flowchart of a method for forming a catalytic converter assembly. In functional block 60, a tubular member is provided for forming a housing of a catalytic converter assembly. The tubular member may be a seamless single piece tube or may be a sheet metal strip that is wrapped and welded along a seam.
  • In functional block 61, at least one catalytic element is inserted in the tubular member.
  • In functional block 62, an end of the tubular member is mounted in the spin forming machine having at least two spin forming wheels for forming the tubular member.
  • In functional block 63, a force is applied to a first end section of the tubular member by the at least two spin forming wheels for forming the first conical-shaped end. The at least two spin forming wheels are spaced equally around the tubular member for evenly supporting the tubular member and to apply an equal distribution of force when shaping the tubular member.
  • In functional block 64, a force is applied to a second end section of the tubular member by the at least two spin forming wheels for forming the second conical-shaped end. Since the at least two spin forming wheels are spaced equidistant around the tubular member for applying the equal distribution of force, the tubular member does not require additional support for the second end of the tubular member despite its overall length since support is provided by the at least two spin forming wheels.
  • In functional block 65, a force is applied by the at least two spin forming wheels to the outer surface of the tubular member between the conical-shaped ends to prevent axial movement of the at least one catalytic element within the catalytic converter.
  • In functional block 66, a force is applied to the outer surface of the tubular member of a region overlapping the at least one catalytic element for securing the at least one catalytic element within the catalytic converter and preventing radial movement of the catalytic elements. This force applied to the outer surface may produce an indentation to a portion of the overlapping region or the entire region overlapping the at least one catalytic element may be deformed for securing preventing radial movement.
  • FIG. 9 illustrates a flowchart for a method for forming a plurality of catalytic converter assemblies. In functional block 70, a tubular member is provided for forming a plurality of catalytic converter assemblies. The tubular member has predetermined overall length which allows for the manufacture of multiple housings to be used to manufacture and assemble the plurality of catalytic converter assemblies.
  • In functional block 71, a plurality of catalytic elements are inserted in the tubular member. The plurality of catalytic elements are grouped in pairs so that the axial spacing between a designated pair of catalytic elements is less that the axial spacing between adjacent pairs of catalytic elements. This allows for a sufficient amount of material to be provided between the adjacent pairs of catalytic elements for forming the neck portions.
  • In functional block 72, an end of the tubular member is mounted in the spin forming machine having at least two spin forming wheels for forming the tubular member. The at least two spin forming wheels are spaced equally around the tubular member for applying an equal distribution of force at each contacting location and for evenly supporting the tubular member.
  • In functional block 73, a force is applied by the at least two spin forming wheels to respective sections on the outer surface of the tubular member that overlap the catalytic elements for securing the catalytic elements within the catalytic converter and preventing radial movement of the catalytic elements.
  • In functional block 74, a force is applied by the at least two spin forming wheels to respective sections of the outer surface located between adjacent pairs of catalytic elements for forming a plurality of neck portions.
  • In functional block 75, a force is applied by the at least two spin forming wheels to respective regions of the outer surface located between a respective pair of catalytic elements for forming an indentation therebetween for preventing axial movement of the catalytic elements within the catalytic converter.
  • In functional block 76, separating the tubular member at substantially the axial midpoint of each neck portion for forming a plurality of catalytic converters.
  • FIG. 10 illustrates an alternative method of shaping the outer surface of the tubular member. In contrast to the discrete spin forming operation shown in FIG. 7, the housing 12 of the catalytic converter 10 is formed in a single continuous forming operation. A contour-shape of the outer surface 30 of the catalytic converter 10 is shown generally by the dotted off-set contoured line 46. The contour-shape is produced by the first forming wheel 42 and second forming wheel 44 advancing longitudinally in a continuous forming operation. That is, the entire housing 12 between the ends the catalytic converter 10 are formed in a continuous forming operation without lifting the forming wheels 42 and 44 from the outer surface of the tubular member 26. The forming wheels 42 and 44 will contact the tubular member 26 at a respective end to form the first conical-shaped end 18. The forming wheels 42 and 44 will maintain continuous contact with the outer surface 30 thereafter to depress the region of the outer surface 30 over first catalytic element 14, the indentation 17, the region of the outer surface 30 over the second catalytic element 15, and the second conical-shaped end 22.
  • FIG. 11 illustrates an alternative embodiment for a spin forming machine having multiple forming wheels. A forming tool 48 includes a first forming wheel 50, a second forming wheel 52, and a third forming wheel 54. The forming wheels are positioned at equal radial spacings about the tubular member 26. In addition, each of the forming wheels applies a balanced force to the tubular member 26 when shaping the tubular member 26. The three respective forming wheels equally support the tubular member 26 during the spin forming operation so that tighter manufacturing tolerances of the finished catalytic converter may be produced. In addition, the multiple forming wheels reduce the number of times the forming wheels must pass over a respective section for shaping a respective region. This reduces manufacturing time as well as tool wear.
  • In accordance with the provisions of the patent statutes, the principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope. For example, the steps of shaping each of the respective regions of the catalytic converter may interchanged such that one region may be formed before other regions. In addition, the tubular member may be separated prior to inserting the catalytic elements and spin forming each respective tubular section for shaping each catalytic converter.

Claims (24)

1. A method of manufacturing a catalytic converter using a spin forming operation, said method comprising the steps of:
providing a metallic tubular member having a substantially cylindrical outer surface and an inner surface;
inserting at least one catalytic element in said tubular member;
loading an end of said metallic tubular member into a spin forming machine;
providing at least one spin forming wheel for forming said tubular member;
applying a force to a first end region of said tubular member by said at least one spin forming wheel for forming a first conical-shaped end;
applying a force to a second end region of said tubular member by said at least one spin forming wheel for forming a second conical-shaped end; and
applying a force by said at least one spin forming wheel to said outer surface of said tubular member between said first conical-shaped end and said second conical-shaped end for forming an indentation therebetween and preventing axial movement of said at least one catalytic element.
2. The method of claim 1 further comprising the steps of:
applying a force by said at least one spin forming wheel to said outer surface of said tubular member that is axially aligned with said first catalytic element for securing said at least one catalytic element.
3. A method of manufacturing a catalytic converter using a spin forming operation, said method comprising the steps of:
providing a metallic tubular member having a substantially cylindrical outer surface and an inner surface;
inserting at least one catalytic element in said tubular member;
loading an end of said metallic tubular member into a spin forming machine;
positioning at least two spin forming wheels equally spaced around the tubular member;
applying a force to said outer surface of said tubular member by said at least two spin forming wheels for securing said at least one catalytic element within said tubular member; and
applying a force by said at least two spin forming wheels to said outer surface of said tubular member at a first end region and at a second end region for forming a first conical-shaped end and a second conical-shaped end.
4. The method of claim 3 wherein said step of applying a force to said outer surface includes applying an equally distributed force by said at least two spin forming wheels to said outer surface that is axially aligned with said at least one catalytic element for securing said at least one catalytic element within said tubular member.
5. The method of claim 4 wherein said step of applying a force to said outer surface further includes applying an equally distributed force by said at least two spin forming wheels to said outer surface of said tubular member between said first conical-shaped end and said second conical-shaped end for forming an indentation therebetween and preventing axial movement of said at least one catalytic element.
6. The method of claim 5 wherein said first conical shaped-end, said second conical-shaped end, said midsection, and said outer surface co-axially aligned with said catalytic elements are formed by a continuous spin-forming operation.
7. The method of claim 6 wherein said first conical shaped-end, said second conical-shaped end, said midsection, and said outer surface co-axially aligned with said catalytic elements are formed by discrete spin forming operations.
8. The method of claim 3 wherein said force applied to said first end region and said second end region to form said first conical-shaped end and said second conical-shaped end is substantially equally distributed by said at least two spin forming wheels.
9. The method of claim 3 wherein only said tubular member is rotated during said spin forming operation.
10. The method of claim 3 wherein only said at least two forming wheels are rotated during said spin forming operation.
11. The method of claim 3 wherein said tubular member is rotated during said spin forming operation and said at least two forming wheels are rotated about said tubular member during said spin forming operation.
12. A method of manufacturing a plurality of catalytic converters using a spin forming operation, said method comprising the steps of:
(a) providing a metallic tubular member having a substantially cylindrical outer surface and an inner surface;
(b) separating said tubular member into individual tubular sections;
(c) inserting at least one catalytic element in a respective tubular section;
(d) mounting an end of said respective tubular section to a spin forming machine;
(e) positioning at least two spin forming wheels equally spaced around the respective tubular section;
(f) applying a force to said outer surface axially aligned with said at least one catalytic element by said at least two spin forming wheels for securing said first catalytic element and said second catalytic element within said respective tubular section;
(g) applying a force to said outer surface of a first end and said outer surface of said second end of said respective tubular section by said at least two spin forming wheels for forming a first conical-shaped end and a second conical-shaped end;
(h) applying a force to said outer surface region of said respective tubular section between said first conical-shaped end and said second conical-shaped end for forming an indentation therebetween; and
(i) repeating steps (c)-(h) for each respective tubular section.
13. The method of claim 12 wherein a respective internal cone is inserted in each end of said tubular section prior to step (d).
14. The method of claim 12 wherein during step (g) after said first conical-shaped end is formed, said respective tubular section is un-mounted from said spin forming machine and mounted at an opposite end of said respective tubular section for forming said second conical-shaped end.
15. The method of claim 12 wherein said first conical shaped-end, said second conical-shaped end, said indentation, and said respective tubular section axially aligned with said catalytic elements are formed by a continuous spin-forming operation.
16. The method of claim 12 wherein said first conical shaped-end, said second conical-shaped end, said indentation, and said respective tubular section axially aligned with said catalytic elements are formed by discrete spin forming operations.
17. The method of claim 12 further comprising the step of removing a desired length of material from at least one of said conical-shaped ends.
18. The method of claims 12 wherein said forces applied to said tubular section to form said first conical-shaped end, said second conical-shaped end, said indentation, and said respective tubular section axially aligned with said catalytic elements are equally distributed by said at least two spin forming wheels.
19. The method of claim 12 wherein said metallic tubular member is formed from wrapped sheet metal strip having a welded seam.
20. The method of claim 12 wherein said metallic tubular member is formed from an extrusion process.
21. A method of manufacturing a plurality of catalytic converters using a spin forming operation, said method comprising the steps of:
(a) inserting a plurality of catalytic elements in a metallic tubular member;
(b) forming a plurality of axially spaced neck portions by at least two spin forming wheels, said plurality of neck portions each having a diameter less than an initial diameter of said metallic tubular member; and
(c) cutting substantially a midpoint of said neck portions.
22. The method of claim 21 wherein during step (b) a force is applied by said at least two spin forming wheels to an outer surface region of said tubular member that is axially aligned with said plurality of catalytic elements for securing said plurality of catalytic elements within said tubular member.
23. The method of claim 22 wherein during step (b) a force is applied said at least two forming wheels to said outer surface of said respective tubular region between said plurality of axially spaced neck portions for forming respective indentations therebetween for preventing axial movement of said catalytic elements.
24-28. (canceled)
US11/474,189 2006-06-23 2006-06-23 Method of spin forming a catalytic converter Abandoned US20080000084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/474,189 US20080000084A1 (en) 2006-06-23 2006-06-23 Method of spin forming a catalytic converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/474,189 US20080000084A1 (en) 2006-06-23 2006-06-23 Method of spin forming a catalytic converter

Publications (1)

Publication Number Publication Date
US20080000084A1 true US20080000084A1 (en) 2008-01-03

Family

ID=38875122

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/474,189 Abandoned US20080000084A1 (en) 2006-06-23 2006-06-23 Method of spin forming a catalytic converter

Country Status (1)

Country Link
US (1) US20080000084A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090113709A1 (en) * 2007-11-07 2009-05-07 Eberspaecher North America, Inc. Method of manufacturing exhaust aftertreatment devices
DE102008045299A1 (en) * 2008-09-02 2010-03-04 Albonair Gmbh Exhaust after-treatment device, particularly for vehicle, comprises housing casing, in which exhaust gas catalytic converter is arranged, and cleaning exhaust gas enters in front area, where rear area lies behind front area
US20170273507A1 (en) * 2016-03-22 2017-09-28 Gloria Osorio Cookware cover

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998344A (en) * 1990-03-27 1991-03-12 Kin Ho Hsieh Method of manufacturing a hub
US5724735A (en) * 1994-06-06 1998-03-10 Ford Global Technologies, Inc. Method for constructing a catalytic exhaust treatment device for automotive vehicle
US6216512B1 (en) * 1993-11-16 2001-04-17 Sango Co., Ltd. Method and apparatus for forming a processed portion of a workpiece
US6293010B1 (en) * 1997-12-03 2001-09-25 Ford Global Technologies, Inc. Exhaust treatment device for automotive vehicle having one-piece housing with integral inlet and outlet gas shield diffusers
US6381843B1 (en) * 1999-08-03 2002-05-07 Sango Co., Ltd. Method of producing a catalytic converter
US20020071791A1 (en) * 2000-12-13 2002-06-13 Foster Michael Ralph Catalytic converter
US20030194357A1 (en) * 2002-03-26 2003-10-16 Lancaster Paul B. Automotive exhaust component and method of manufacture
US6671956B2 (en) * 2000-06-13 2004-01-06 Korea Institute Of Machinery And Materials Method of producing metal substrates used in purification of exhaust gas
US6701617B2 (en) * 2002-08-06 2004-03-09 Visteon Global Technologies, Inc. Spin-forming method for making catalytic converter
US20040234427A1 (en) * 2002-03-26 2004-11-25 Tursky John M. Automotive exhaust component and method of manufacture
US20040265191A1 (en) * 2002-03-26 2004-12-30 Tursky John M. Automotive exhaust component and method of manufacture

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998344A (en) * 1990-03-27 1991-03-12 Kin Ho Hsieh Method of manufacturing a hub
US6216512B1 (en) * 1993-11-16 2001-04-17 Sango Co., Ltd. Method and apparatus for forming a processed portion of a workpiece
US5724735A (en) * 1994-06-06 1998-03-10 Ford Global Technologies, Inc. Method for constructing a catalytic exhaust treatment device for automotive vehicle
US6293010B1 (en) * 1997-12-03 2001-09-25 Ford Global Technologies, Inc. Exhaust treatment device for automotive vehicle having one-piece housing with integral inlet and outlet gas shield diffusers
US6381843B1 (en) * 1999-08-03 2002-05-07 Sango Co., Ltd. Method of producing a catalytic converter
US6671956B2 (en) * 2000-06-13 2004-01-06 Korea Institute Of Machinery And Materials Method of producing metal substrates used in purification of exhaust gas
US20020071791A1 (en) * 2000-12-13 2002-06-13 Foster Michael Ralph Catalytic converter
US20030194357A1 (en) * 2002-03-26 2003-10-16 Lancaster Paul B. Automotive exhaust component and method of manufacture
US20040234427A1 (en) * 2002-03-26 2004-11-25 Tursky John M. Automotive exhaust component and method of manufacture
US20040265191A1 (en) * 2002-03-26 2004-12-30 Tursky John M. Automotive exhaust component and method of manufacture
US20050271561A1 (en) * 2002-03-26 2005-12-08 Evolution Industries Inc. Automotive exhaust component and method of manufacture
US6701617B2 (en) * 2002-08-06 2004-03-09 Visteon Global Technologies, Inc. Spin-forming method for making catalytic converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090113709A1 (en) * 2007-11-07 2009-05-07 Eberspaecher North America, Inc. Method of manufacturing exhaust aftertreatment devices
DE102008045299A1 (en) * 2008-09-02 2010-03-04 Albonair Gmbh Exhaust after-treatment device, particularly for vehicle, comprises housing casing, in which exhaust gas catalytic converter is arranged, and cleaning exhaust gas enters in front area, where rear area lies behind front area
US20170273507A1 (en) * 2016-03-22 2017-09-28 Gloria Osorio Cookware cover

Similar Documents

Publication Publication Date Title
US5042125A (en) Apparatus for manufacturing stamp formed mufflers
EP0954396B1 (en) Method for spin forming articles
EP0921892B1 (en) Linear friction welding process for making wheel rims
US9714596B2 (en) Method of manufacturing an exhaust gas carrying device and tool therefor
US20080000084A1 (en) Method of spin forming a catalytic converter
US20100275443A1 (en) Method of producing exhaust-gas carrying devices, in particular exhaust-gas cleaning devices
WO2005115683A1 (en) Method of producing metal tubular member
WO2010090051A1 (en) Metallic catalyst support and process for producing same
JPH0570644U (en) Catalytic converter
US20020062562A1 (en) Method of spin forming oblique end cones of a catalytic converter
US20160332211A1 (en) Method and Apparatus for Sizing a Component Shell Having at Least Two Different Diameters
US20080095976A1 (en) Honeycomb Body, in Particular Large Honeycomb Body, For Mobile Exhaust-Gas Aftertreatment, Process for Producing a Honeycomb Body, Process for Treating Exhaust Gas and Exhaust Gas Assembly
US20140197631A1 (en) Method for Manufacturing an Exhaust System and Exhaust System
JPH07223030A (en) Joining method of pipe and plate stock
US6671956B2 (en) Method of producing metal substrates used in purification of exhaust gas
JP3679376B2 (en) Method for manufacturing exhaust treatment apparatus for holding columnar body through buffer member in cylindrical member
KR100871762B1 (en) Exhaust line catalyst or muffler shell for motor vehicle and method of producing one such shell
US20080196248A1 (en) Method for Producing an Exhaust-Carrying Device
JP2000263161A (en) Method and device for spinning
US20070294891A1 (en) Method of forming a catalytic converter from a radially deformed pre-form member
JPH09273421A (en) Joint and manufacture thereof
US20060265872A1 (en) Method for manufacturing an exhaust gas treatment device
JP2002239657A (en) Spinning method for tube
JP2003013734A (en) Component for exhaust system and method of manufacturing the same
JP2004001023A (en) Method for shaping metal vessel

Legal Events

Date Code Title Description
AS Assignment

Owner name: VISTEON GLOBAL TECHNOLOGIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAI, HAIMIAN;KOIVULA, WILLIAM;REEL/FRAME:018014/0719

Effective date: 20060621

AS Assignment

Owner name: AUTOMOTIVE COMPONENTS HOLDINGS, LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VISTEON GLOBAL TECHNOLOGIES, INC;REEL/FRAME:018258/0152

Effective date: 20060912

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION