US20080010857A1 - Instant Custom Moldable Insole - Google Patents

Instant Custom Moldable Insole Download PDF

Info

Publication number
US20080010857A1
US20080010857A1 US11/773,403 US77340307A US2008010857A1 US 20080010857 A1 US20080010857 A1 US 20080010857A1 US 77340307 A US77340307 A US 77340307A US 2008010857 A1 US2008010857 A1 US 2008010857A1
Authority
US
United States
Prior art keywords
bag
silicone
insole
mixer
heel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/773,403
Inventor
David Green
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/773,403 priority Critical patent/US20080010857A1/en
Publication of US20080010857A1 publication Critical patent/US20080010857A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B17/02Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined wedge-like or resilient
    • A43B17/026Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined wedge-like or resilient filled with a non-compressible fluid, e.g. gel, water
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B17/14Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined made of sponge, rubber, or plastic materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/22Footwear with health or hygienic arrangements with foot-supporting parts with fixed flat-foot insertions, metatarsal supports, ankle flaps or the like
    • A43B7/226Footwear with health or hygienic arrangements with foot-supporting parts with fixed flat-foot insertions, metatarsal supports, ankle flaps or the like characterised by the material
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/28Adapting the inner sole or the side of the upper of the shoe to the sole of the foot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/14Special medical insertions for shoes for flat-feet, club-feet or the like

Definitions

  • the present invention relates generally to shoe inserts. More specifically the present invention relates to instant moldable orthotic insoles.
  • shoe inserts are used to provide comfort, support, cushioning, and/or stability to the foot.
  • custom orthotics prescribed by a physician are necessary.
  • One drawback of custom orthotics is that they are generally expensive and time-consuming to fabricate.
  • shoe inserts provide sufficient support and comfort.
  • Lynden teach several sole insert devices containing conformable material substantially comprising fluid matter which forms a resilient material substantially comprising solid matter after a working time.
  • Lynden teaches a personalized insert containing a resilient material, which comprises at least two compartments separated by a restraining pin or one or more membranes, which compartments separate two reagents that, when mixed, catalyze to form an insert resilient material. Removal of restraining pin(s), and/or the rupture of the membranes isolating the reagents, permits fluid communication and proper mixing of the reagents to form the resilient material. The resilient material then sets in conformance with the wearer's foot when the insert is secured within an article of footwear.
  • the present invention uses a static mixer with the strong force of the weight of the wearer pushing it though the mixer. This allows the use of a higher viscosity silicone, which helps to fit the wearers fit without requiring the user to sit still for more than a few minutes.
  • a common problem in the prior art is the use of lower viscosity fluids are likely to escape into areas at the edge of the bag that make it much harder to receive a complete mixing and therefore do not provide even support throughout the insole.
  • the present invention overcomes this shortcoming by using a static mixing device built into the arch of the shoe and limiting the areas to which the silicone can flow.
  • the advantage is that the silicone will completely mix before even entering the area under the arch and therefore cure very quickly while the user can still stand still. This can only be achieved with high viscosity silicone because low viscosity silicones will otherwise return to a neutral position until the silicone is more advanced in it's curing.
  • Lynden's system lies flat under the insole providing very little support other than that shaped by the silicone.
  • Lynden's system Yet another shortcoming in Lynden's system is its complicated use. A user needs to access the insole outside of the shoe, remove the pin while the fluid is already beginning to cure, then put it in the shoe and stand in the right position on both feet. This process is confusing and difficult for the average user. It is therefore an objective of the present invention to teach a device that is less complex in its use.
  • the present invention is designed without the need for a pin, tab or key of any sort to initiate activation.
  • a user simply stands in the shoe and the fluid is injected and mixed. This insures that the exact timing of the curing and shaping of the silicone is always the same and therefore, since no delay is possible between activating the curing and standing on the insole.
  • U.S. Pat. No. 5,958,546 to Mardix, et al. teaches a method for producing a custom insole including the steps of providing a preformed insole precursor, the precursor being constructed of a solid material which is storable in an unreformed state and which is compressible to a deformed configuration under pressure substantially at room temperature and which retains the deformed configuration after removal of the pressure, and pressing the foot on the insole precursor, thereby compressing the insole precursor and forming an insole with a configuration in accordance with the configuration of the foot.
  • U.S. Pat. Nos. 5,042,100 and 5,095,570 to Bar et al. teaches techniques for producing an insole for a foot, including defining a flexible insole housing in which is disposed a deformable material impregnated with an uncured resin, activating the resin for initiating curing thereof, locating the foot on the insole housing and allowing the resin to harden and to therefore preserve the configuration defined by the bottom of the foot.
  • Bar's device is impractical as off the shelf product. It still has the same problems as the Lynden Devices, problems of even mixing and control of timing from the point of being put on a user's foot.
  • U.S. Pat. Nos. 4,385,024, 4,128,95 to Tansill teach a moldable article, such as an insole, which comprises a formable material that is a moldable polymeric or prepolymeric substance that can be cured to a form stable state and a curing agent, in close proximity to the curable substance but isolated there from, in a frangible container.
  • the container containing the curing agent is initially flexible and is rendered frangible by treatment.
  • the frangible container is ruptured to release the curing agent, and the moldable article, in a first configuration, can be shaped to a second configuration in which it is maintained until the formable material is cured sufficiently for it to be form-stable in the second configuration.
  • Tansill suffers from the same disadvantages as Lynden since no static mixer. In Tansill's device, a user first needs to rupture the bag containing the catalyst which then needs to be shaken up resulting in a delay. Although with better mixing then Lynden, Tansill's device can't be compare to an internal static mixer and the pressure of someone standing on the heel to push the fluid through at equal ratio.
  • U.S. Pat. No. 6,098,315 to Hoffmann, III teaches an insert for a shoe comprising a pouch having a moldable, thixotropic material and a shell having a catalyst.
  • the shell is capable of being ruptured by massaging the pouch to allow the catalyst to be released from the shell and mixed with the material.
  • the pouch is massaged to mix the catalyst and moldable material and is then placed in a shoe.
  • the user places a foot in the shoe and applies a lightweight to the foot so that the pouch assumes the shape of the foot bottom and fills that space between the foot and the shoe.
  • the foot is then removed to allow the material to cure.
  • the device of Hoffmann requires puncturing, massaging, and manual injection of catalyst, massaging again to mix properly, insertion into a user's shoe and then removal from shoe in order to cure.
  • the process is much too slow and risky due to its complexity, timing of wearing the insole from the point of mixing the catalysts, and risk of shape changing at the beginning of curing process. It is therefore an objective of the present invention to provide an apparatus that is quick and simple to use.
  • U.S. Pat. No. 5,083,910 to Abshire, et al. teaches a custom fitted insole assembly for use in a shoe directly under a wearer's foot.
  • the assembly includes a heel-cupping and arch-supporting base component custom contoured to fit the heel and arch of the wearer's foot, a heel stabilizing component attached to an underside heel region of the base component, and a shock-absorbing top sheet component sized to underlie the bottom of the wearer's foot and at its rear half to overlie and conform to the contour of the base component.
  • a custom moldable insole comprising an outer Thermoplastic Urethane bag that contains a first inner bag filled with a first silicone fluid. Together with the first silicone fluid, the first inner bag also contains second inner bag. Inside the second inner bag is a second silicon fluid. This configuration ensures that, upon activation, both silicone fluids will be push through a mixer at the same time and ratio and provide an equal mixing of the silicon fluids through a mixer.
  • This second inside inner bag is tied very tight with some air added to it in order for it to stand as tall as possible like a round ball.
  • the most inner, second inner bag breaks first since it is tied tighter and protrudes higher.
  • the second inner bag breaks, it's silicone pre-mixes into the first inner bag.
  • the continued downward pressure on the heel causes the first inner bag also to burst allowing the first silicone fluid and the second silicon fluid to be pushed through the mixer.
  • a small mount of air is also put into the first inner bag in order to help increase it's height in order to ensure that it too is broken when stepped on by the user.
  • the two inner bags, the first inner bag A and the second inner bag B, are tied in a knot and secured to the back of the outer TPU bag in order to ensure that the silicone only flows forward upon activation. Due to the fact that the knot creates a bump, it is fastened to an indentation that is made in the bottom insole. This prevents discomfort the knot from poking into the heel of the users foot.
  • a translucent flexible plug may fit into a hole in the heel of the bottom insole. This provides both a means for consumers to see if the inner bags have broken before buying the insoles and it provides a higher level of flexibility to the bottom layer of the insole making more room for the inner bags allowing them to stand taller which as explained above, helps ensure that the activation works properly.
  • the insoles may also include a top-level heel pad that fits into a hole in the top layer of foam.
  • the primary function of the top-level heel pad is to help push all of the silicone out of the heel of the insole.
  • the upper heel plug may be made from a soft rubber or gel material or similar housed within a thin yet strong plastic casing.
  • the bottom plastic is thicker and stiffer and extends further out beyond the width of the soft part of the heel pad. This bottom plastic flattens to bottom of the insole causing a more thorough emptying of the silicone from the heel pad to push out silicone.
  • the improved present configuration of the insole uses a high frequency mold that integrates the outer bag, mixer, and the area under the arch where the silicone flows. Once the inner bags break in the heel, they are pushed through a series of elements in the outer bag that cause the silicone to repeatedly split into two streams and then reunite as one. By the time the silicone has gone through all the elements it is mixed enough to start curing. At the beginning of the mixer a flap of TPU is glued with it's loose flap in the direction of the mixer. This serves as a one-way valve allowing the silicone to flow out of the heel area but not back into the heel area.
  • a number of small cuts or holes are made in the outer bag to enable air to escape from the outer bag while the silicone is being pushed through the mixer. These cuts or holes also let out the gas generated from the chemical reaction of the silicone mixing. This serves to accelerate the flow of silicone towards the front of the outer bag as well as to remove the air so to be left with only supporting effect of the silicone.
  • the high frequency mold sealed the mixer into both top and bottom layers of a TPU bag.
  • This design did not allow the silicone to flow over the area of the mixer.
  • the improved present configuration of the instant custom moldable insole molds the TPU bag in three steps to allow three layers of TPU over the mixer enabling the silicone to flow over the mixer covering the full width of the insole.
  • FIG. 1 is a schematic illustration of a custom moldable insole, in accordance with the shell embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the insole of FIG. 1 in accordance with an embodiment of the present invention showing each of the three layers before sealing them together into one insole;
  • FIG. 3 is a schematic view of the bag and mixer inside an insole
  • FIG. 4 is a top view of the plastic shell used as the bottom layer of an insole
  • FIG. 5 is a schematic illustration the bag and mixer locked in its proper position within the shell of an insole
  • FIG. 6 is an illustration of how an insole is placed into a typical shoe before the wearer stands on it for use
  • FIG. 7 is a schematic cross-sectional view of the mixing bag in its position in relation to the wearer's foot as the wearer stands on the insole to inject the silicone through the mixer;
  • FIG. 8 is a schematic cross-sectional view of the mixing bag in it's position in relation to the wearer's foot after the wearer has stepped on the insole causing the silicone to be injected through the mixer;
  • FIG. 9 is a schematic view of the bottom of an insole
  • FIG. 10 is a schematic cross-sectional view of the mixing bag positioned over the hole in the heel of the shell of an insole;
  • FIG. 11 is a schematic cross-sectional view of the mixing bag of an alternative embodiment of the present configuration.
  • FIG. 12 is a schematic cross-sectional view of the mixing bag of an alternative embodiment of the present configuration wherein the insoles may also include a top-level heel pad that fits into a hole in the top layer of foam;
  • FIG. 13 illustrates the present configuration wherein the insole uses a high frequency mold that integrates an outer bag, mixer, and the area under the arch where the silicone flows;
  • FIGS. 14, 15 , and 16 illustrate the steps that are taken to create the inner device of the present configuration.
  • FIG. 1 a “shell” embodiment of the insole required is housed within a stable three-layer insole using a shell 2 , top insole 1 and middle bag and mixer. It looks much like most insoles except for its bulge in the heel 3 which houses the unmixed silicone before used by the wearer.
  • the middle layer is a one-piece bag and mixer 4 that locks into position within the bottom shell 5 and then seals together with the top insole 6 .
  • the bag and mixer as illustrated in FIG. 3 , embodies a two chamber bag containing a 1:1 silicone solution with a first chamber 9 and a second chamber 10 separated by a divider 11 which is part of the same piece of soft plastic.
  • a thin plastic membrane 12 holds the unmixed silicone in both the first chamber 9 and second chamber 10 until it is time to inject it though the attached mixing tube 14 where the silicone is thoroughly mixed by being forced through a number of small holes and passageways.
  • the divider 11 between the first chamber 9 and second chamber 10 is extended 13 beyond the thin membrane 12 in order keep any escaped silicone from mixing should they leak into the mixing tube. Once the silicone has been mixed it continues to travel to a flat chamber 15 at end of the mixing tube towards the toe of the insole.
  • the plastic shell at the bottom of the insole consists of a hole 16 in the heel to help house the two-chamber bag containing the unmixed silicone.
  • FIG. 4 being a top view of the shell, shows just the thin slot 17 over the top of the channel. By bending the shell, the channel opens in order to place the mixing bag and tube into position within the shell during manufacturing. The end of the channel bends towards the middle of the insole where the mixed silicone enters the third chamber 18 .
  • the plastic bag/mixer sits in the hole 16 in the heel of the shell resting the two-chamber bag containing silicone A 19 and silicone B 20 in the heel.
  • the mixing tube is firmly locked in the channel 21 in the shell.
  • the channel and the tube bend 23 towards the center of the insole where the silicone is released into the third chamber bag 22 .
  • FIG. 6 shows how the complete insole 24 is placed into the wearers shoe ready to be used without any need to remove any tabs or locks.
  • FIG. 7 illustrates how the wearer steps into the insole.
  • the weight of the wearer is placed primarily on the heel of the insole and onto the two-chamber bag 25 containing the two-part silicone.
  • the membrane 27 keeping the silicone in the two-chamber bag 25 breaks from the pressure and the silicone from both sides of the bag divider 26 is quickly injected through the mixing tube 29 .
  • On the other end of the tube is a flat plastic bag 32 shaped to cover all the areas of the insole that might need additional support.
  • the top insole 31 is made of a very flexible material so to allow as much of the shape of the wearers foot to shape the silicone as it cures.
  • the silicone in the third chamber bag 33 will flow to the areas in need of support such as the arch and metatarsal.
  • FIG. 9 illustrates the bottom of the plastic shell that has a hole 35 in it to allow the unmixed silicone in the bag in the heel to fit easily by using a little space from both above and bellow the level of the plastic shell 36 .
  • the plastic shell is shaped with a channel 34 to hold the mixing tube/bag.
  • the plastic shell is sealed to the bottom of the top insole 37 .
  • FIG. 10 is a side view illustration of the bag 39 and mixer 40 sitting within the hole and channel in the shell.
  • the method of use for the instant moldable orthotic insole of the present invention is as follows. First a plastic bag 2 parts containing silicone 1:1 ratio of A and B housed within the outer bag that forms into the mixing tube and then the mixed silicone receiving bag. A thin membrane breakable from pressure of 100 lbs or more only when stood on by a user, prevents premature activation. This also avoids having to use tabs, strings, external injectors or application of heat to prepare the insole for use.
  • the silicone flows into the chamber containing the static mixer that is built into the tube leading to the front of the insole.
  • the static mixer can be spiral, or any other configuration allowing the providing the 2 part silicone solution meet and mix several times before exiting the mixing tube.
  • the mixing tube opens up into bag the mixed silicone-receiving bag where the mixed silicone spreads under the top layer of the insole to create exact mold of the user's foot.
  • the bag is fairly flat with its circumference shaped to allow silicone flow to the arch, metatarsal and other areas of the foot that may need extra support.
  • the silicone hardens within a few minutes by using a medium viscosity 1:1 silicone solution.
  • the silicone flows easily under pressure through the mixer while being thick enough to help speed up the curing process.
  • Hardened silicone is not stiff like insoles on the market since they are shaped to the user's feet while in their shoes. This overcomes the need for the insoles to be sitting above the shape of the shoe. This creates a much more comfortable orthotic without sacrificing on the support provided.
  • the insole of the present invention is designed to house a full silicone injection system within the shape of a typical insole by using a plastic shell on the bottom with a cavity to hold the unmixed silicone bags, mixing tube and mixed silicone receiving bag.
  • the mixing tube containing the static mixer is the thickest part of the injection system and is therefore housed in the arch of the shell.
  • the injection system clamps securely into the shell of the insole so it will not move at all before or after use.
  • the injection system fits into channel and cavities in the shell in a position leaving a smooth surface on top. This enables the silicone to easily flow to all its needed areas once it has been injected into the receiving bag.
  • the heel of the shell has a hole in it to leave room for the bags containing unmixed silicone without pushing too much only to the top of the insole which would create an unwanted stretching on the top layer of the insole.
  • the hole is the right size to allow the unmixed silicone bags to protrude equally out the bottom and the top of the insole without having to stretch either one too much.
  • the improved present configuration of the instant custom moldable insole is an alternative embodiment designed to facilitate a sure breaking of both cavities containing a first silicone fluid A 43 and a second silicon fluid B 46 and provide an equal mixing of the first silicone fluid A 43 and the second silicon fluid B 46 through a mixer 56 .
  • an outer Thermoplastic Urethane (TPU) bag 41 contains a first inner bag A 42 filled with a first silicone fluid A 43 . Together with first silicone fluid A 43 , the first inner bag A 42 also contains second inner bag B 45 . Inside inner bag B 45 is the second silicon fluid B 46 .
  • TPU Thermoplastic Urethane
  • This configuration of the inner bags is designed to ensure that, upon activation, both bags will be push through the mixer 56 at the same time and ratio. This is accomplished since the second inside inner bag 45 is tied very tight with some air 47 added to it in order for it to stand as tall as possible like a round ball.
  • the most inner, second inner bag B 45 breaks first since it is tied tighter and protrudes higher.
  • the second inner bag B 45 breaks, it's silicone pre-mixes into the first inner bag A 42 .
  • the continued downward pressure on the heel causes the first inner bag A 42 also to burst allowing the first silicone fluid A 43 and the second silicon fluid B 46 to be pushed through the mixer 56 .
  • a small mount of air 44 is also put into the first inner bag A 42 in order to help increase it's height in order to ensure that it too is broken when stepped on by the user.
  • the two inner bags, the first inner bag A 42 and the second inner bag B 45 , are tied in a knot 48 and secured to the back of the outer TPU bag 41 in order to ensure that the silicone only flows forward upon activation. Due to the fact that the knot creates a bump, it is fastened to an indentation that is made in the bottom insole 50 . This prevents discomfort the knot from poking into the heel of the users foot.
  • a translucent flexible plug 49 may fit into a hole in the heel of the bottom insole 50 . This provides both a means for consumers to see if the inner bags have broken before buying the insoles and it provides a higher level of flexibility to the bottom layer of the insole making more room for the inner bags allowing them to stand taller which as explained above, helps ensure that the activation works properly.
  • the insoles may also include a top-level heel pad that fits into a hole in the top layer of foam 52 as seen in FIG. 12 .
  • the primary function of the top-level heel pad is to help push all of the silicone out of the heel of the insole.
  • the upper heel plug 54 may be made from a soft rubber or gel material or similar housed within a thin yet strong plastic casing.
  • the bottom plastic 53 is thicker and stiffer and extends further out beyond the width of the soft part of the heel pad. This bottom plastic 53 flattens to bottom of the insole 50 causing a more thorough emptying of the silicone from the heel pad to push out silicone.
  • the present configuration of the insole uses a high frequency mold that integrates the outer bag 55 , mixer 56 , and the area under the arch 57 where the silicone flows.
  • the inner bags break in the heel, they are pushed through a series of elements 61 in the outer bag 55 that cause the silicone to repeatedly split into two streams and then reunite as one.
  • the silicone has gone through all the elements 61 it is mixed enough to start curing.
  • a flap 58 of TPU is glued with it's loose flap in the direction of the mixer 56 . This serves as a one-way valve allowing the silicone to flow out of the heel area but not back into the heel area.
  • a number of small cuts or holes 57 are made in the outer bag 55 to enable air to escape from the outer bag while the silicone is being pushed through the mixer. These cuts or holes also let out the gas generated from the chemical reaction of the silicone mixing. This serves to accelerate the flow of silicone towards the front of the outer bag 55 as well as to remove the air so to be left with only supporting effect of the silicone.
  • the high frequency mold sealed the mixer into both top and bottom layers of a TPU bag.
  • This design did not allow the silicone to flow over the area of the mixer.
  • the improved present configuration of the instant custom moldable insole molds the TPU bag in three steps to allow three layers of TPU over the mixer 56 enabling the silicone to flow over the mixer 56 covering the full width of the insole.
  • the following steps are taken to create the inner device.
  • the first step is to cut the TPU material 59 as illustrated in FIGS. 14, 15 , and 16 .
  • Once sealed 63 the silicone will be allowed to flow over the full width of the TPU bag including over the area of the mixer 64 .
  • This type of configuration could also be created with a three dimensional mold but it would be a more costly process.

Abstract

A custom moldable insole comprising an outer Thermoplastic Urethane bag that contains a first inner bag filled with a first silicone fluid. Together with the first silicone fluid, the first inner bag also contains second inner bag. Inside the second inner bag is a second silicon fluid. This configuration ensures that, upon activation, both silicone fluids will be push through a mixer at the same time and ratio and provide an equal mixing of the silicon fluids through a mixer. This second inside inner bag is tied very tight with some air added to it in order for it to stand as tall as possible like a round ball. When the user stands on the heel of the insole the most inner, second inner bag, breaks first since it is tied tighter and protrudes higher. When the second inner bag breaks, it's silicone pre-mixes into the first inner bag.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation in part of U.S. patent application Ser. No. 11/186,355, entitled “Instant Custom Moldable Insole”, filed on Jul. 20, 2005.
  • This application claims priority from PCT Patent Application PCT/IB2006/051266, entitled “Instant Custom Moldable Insole”, filed on Mar. 24, 2006 which claims priority to U.S. patent application Ser. No. 11/186,355, entitled “Instant Custom Moldable Insole”, filed on Jul. 20, 2005.
  • This application is related to U.S. Provisional Patent Application Ser. No. 60/521,917, entitled “Instant Custom Moldable Insole”, filed on Jul. 21, 2004.
  • SEQUENCE LISTING OR PROGRAM
  • Not Applicable
  • FEDERALLY SPONSORED RESEARCH
  • Not Applicable
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates generally to shoe inserts. More specifically the present invention relates to instant moldable orthotic insoles.
  • BACKGROUND OF THE INVENTION
  • Various shoe inserts are used to provide comfort, support, cushioning, and/or stability to the foot. For individuals suffering from serious pediatric conditions, such as abnormal walking patterns, custom orthotics prescribed by a physician are necessary. One drawback of custom orthotics is that they are generally expensive and time-consuming to fabricate. For other individuals, off-the-shelf, pre-formed, shoe inserts provide sufficient support and comfort.
  • An intermediary option where an off-the-shelf insert that is conformed to an individual's foot either at the time of purchase of the insert or thereafter, without the participation of a physician has been taught in various manners and is generally known in the prior art. Such instant moldable orthotic insoles need no mold, lab, weeks of waiting and are available at a greatly reduced cost.
  • U.S. Pat. Nos. 5,203,793, 5,101,580, and 4,674,206 to Lynden, teach several sole insert devices containing conformable material substantially comprising fluid matter which forms a resilient material substantially comprising solid matter after a working time. In more specific examples, Lynden teaches a personalized insert containing a resilient material, which comprises at least two compartments separated by a restraining pin or one or more membranes, which compartments separate two reagents that, when mixed, catalyze to form an insert resilient material. Removal of restraining pin(s), and/or the rupture of the membranes isolating the reagents, permits fluid communication and proper mixing of the reagents to form the resilient material. The resilient material then sets in conformance with the wearer's foot when the insert is secured within an article of footwear.
  • The sole insert devices taught by Lynden have the two reagents separated from each other using a pin dividing a bag. This is a very ineffective means to mix the silicone thoroughly and quickly.
  • To overcome the shortcomings in the Lynden devices, the present invention uses a static mixer with the strong force of the weight of the wearer pushing it though the mixer. This allows the use of a higher viscosity silicone, which helps to fit the wearers fit without requiring the user to sit still for more than a few minutes.
  • A common problem in the prior art is the use of lower viscosity fluids are likely to escape into areas at the edge of the bag that make it much harder to receive a complete mixing and therefore do not provide even support throughout the insole. The present invention overcomes this shortcoming by using a static mixing device built into the arch of the shoe and limiting the areas to which the silicone can flow. The advantage is that the silicone will completely mix before even entering the area under the arch and therefore cure very quickly while the user can still stand still. This can only be achieved with high viscosity silicone because low viscosity silicones will otherwise return to a neutral position until the silicone is more advanced in it's curing.
  • Still another disadvantage of Lynden's system is that the bag lies flat under the insole providing very little support other than that shaped by the silicone.
  • It is therefore an objective of the present invention to build the silicone injection system into an already supportive insole so that the silicone will provide only the amount needed for customization above the minimum that most wearer's will likely need. This is achieved by housing the static mixer in the arch of the sole that is already providing some support while hiding the mixer.
  • Yet another shortcoming in Lynden's system is its complicated use. A user needs to access the insole outside of the shoe, remove the pin while the fluid is already beginning to cure, then put it in the shoe and stand in the right position on both feet. This process is confusing and difficult for the average user. It is therefore an objective of the present invention to teach a device that is less complex in its use.
  • The present invention is designed without the need for a pin, tab or key of any sort to initiate activation. To use, a user simply stands in the shoe and the fluid is injected and mixed. This insures that the exact timing of the curing and shaping of the silicone is always the same and therefore, since no delay is possible between activating the curing and standing on the insole.
  • U.S. Pat. No. 5,958,546 to Mardix, et al., teaches a method for producing a custom insole including the steps of providing a preformed insole precursor, the precursor being constructed of a solid material which is storable in an unreformed state and which is compressible to a deformed configuration under pressure substantially at room temperature and which retains the deformed configuration after removal of the pressure, and pressing the foot on the insole precursor, thereby compressing the insole precursor and forming an insole with a configuration in accordance with the configuration of the foot.
  • U.S. Pat. Nos. 5,042,100 and 5,095,570 to Bar et al. teaches techniques for producing an insole for a foot, including defining a flexible insole housing in which is disposed a deformable material impregnated with an uncured resin, activating the resin for initiating curing thereof, locating the foot on the insole housing and allowing the resin to harden and to therefore preserve the configuration defined by the bottom of the foot. Bar's device is impractical as off the shelf product. It still has the same problems as the Lynden Devices, problems of even mixing and control of timing from the point of being put on a user's foot.
  • U.S. Pat. Nos. 4,385,024, 4,128,95 to Tansill, teach a moldable article, such as an insole, which comprises a formable material that is a moldable polymeric or prepolymeric substance that can be cured to a form stable state and a curing agent, in close proximity to the curable substance but isolated there from, in a frangible container. The container containing the curing agent is initially flexible and is rendered frangible by treatment. In use, the frangible container is ruptured to release the curing agent, and the moldable article, in a first configuration, can be shaped to a second configuration in which it is maintained until the formable material is cured sufficiently for it to be form-stable in the second configuration.
  • Tansill suffers from the same disadvantages as Lynden since no static mixer. In Tansill's device, a user first needs to rupture the bag containing the catalyst which then needs to be shaken up resulting in a delay. Although with better mixing then Lynden, Tansill's device can't be compare to an internal static mixer and the pressure of someone standing on the heel to push the fluid through at equal ratio.
  • U.S. Pat. No. 6,098,315 to Hoffmann, III, teaches an insert for a shoe comprising a pouch having a moldable, thixotropic material and a shell having a catalyst. The shell is capable of being ruptured by massaging the pouch to allow the catalyst to be released from the shell and mixed with the material. In use, the pouch is massaged to mix the catalyst and moldable material and is then placed in a shoe. The user places a foot in the shoe and applies a lightweight to the foot so that the pouch assumes the shape of the foot bottom and fills that space between the foot and the shoe. The foot is then removed to allow the material to cure.
  • The device of Hoffmann requires puncturing, massaging, and manual injection of catalyst, massaging again to mix properly, insertion into a user's shoe and then removal from shoe in order to cure. The process is much too slow and risky due to its complexity, timing of wearing the insole from the point of mixing the catalysts, and risk of shape changing at the beginning of curing process. It is therefore an objective of the present invention to provide an apparatus that is quick and simple to use.
  • U.S. Pat. No. 5,083,910 to Abshire, et al., teaches a custom fitted insole assembly for use in a shoe directly under a wearer's foot. The assembly includes a heel-cupping and arch-supporting base component custom contoured to fit the heel and arch of the wearer's foot, a heel stabilizing component attached to an underside heel region of the base component, and a shock-absorbing top sheet component sized to underlie the bottom of the wearer's foot and at its rear half to overlie and conform to the contour of the base component.
  • SUMMARY OF THE INVENTION
  • A custom moldable insole comprising an outer Thermoplastic Urethane bag that contains a first inner bag filled with a first silicone fluid. Together with the first silicone fluid, the first inner bag also contains second inner bag. Inside the second inner bag is a second silicon fluid. This configuration ensures that, upon activation, both silicone fluids will be push through a mixer at the same time and ratio and provide an equal mixing of the silicon fluids through a mixer. This second inside inner bag is tied very tight with some air added to it in order for it to stand as tall as possible like a round ball. When the user stands on the heel of the insole the most inner, second inner bag, breaks first since it is tied tighter and protrudes higher. When the second inner bag breaks, it's silicone pre-mixes into the first inner bag. Then the continued downward pressure on the heel causes the first inner bag also to burst allowing the first silicone fluid and the second silicon fluid to be pushed through the mixer. A small mount of air is also put into the first inner bag in order to help increase it's height in order to ensure that it too is broken when stepped on by the user.
  • The two inner bags, the first inner bag A and the second inner bag B, are tied in a knot and secured to the back of the outer TPU bag in order to ensure that the silicone only flows forward upon activation. Due to the fact that the knot creates a bump, it is fastened to an indentation that is made in the bottom insole. This prevents discomfort the knot from poking into the heel of the users foot.
  • A translucent flexible plug may fit into a hole in the heel of the bottom insole. This provides both a means for consumers to see if the inner bags have broken before buying the insoles and it provides a higher level of flexibility to the bottom layer of the insole making more room for the inner bags allowing them to stand taller which as explained above, helps ensure that the activation works properly.
  • The insoles may also include a top-level heel pad that fits into a hole in the top layer of foam. The primary function of the top-level heel pad is to help push all of the silicone out of the heel of the insole. The upper heel plug may be made from a soft rubber or gel material or similar housed within a thin yet strong plastic casing. The bottom plastic is thicker and stiffer and extends further out beyond the width of the soft part of the heel pad. This bottom plastic flattens to bottom of the insole causing a more thorough emptying of the silicone from the heel pad to push out silicone.
  • The improved present configuration of the insole uses a high frequency mold that integrates the outer bag, mixer, and the area under the arch where the silicone flows. Once the inner bags break in the heel, they are pushed through a series of elements in the outer bag that cause the silicone to repeatedly split into two streams and then reunite as one. By the time the silicone has gone through all the elements it is mixed enough to start curing. At the beginning of the mixer a flap of TPU is glued with it's loose flap in the direction of the mixer. This serves as a one-way valve allowing the silicone to flow out of the heel area but not back into the heel area.
  • A number of small cuts or holes are made in the outer bag to enable air to escape from the outer bag while the silicone is being pushed through the mixer. These cuts or holes also let out the gas generated from the chemical reaction of the silicone mixing. This serves to accelerate the flow of silicone towards the front of the outer bag as well as to remove the air so to be left with only supporting effect of the silicone.
  • In the original or first configuration described above, the high frequency mold sealed the mixer into both top and bottom layers of a TPU bag. This design did not allow the silicone to flow over the area of the mixer. The improved present configuration of the instant custom moldable insole molds the TPU bag in three steps to allow three layers of TPU over the mixer enabling the silicone to flow over the mixer covering the full width of the insole.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic illustration of a custom moldable insole, in accordance with the shell embodiment of the present invention;
  • FIG. 2 is a schematic cross-sectional view of the insole of FIG. 1 in accordance with an embodiment of the present invention showing each of the three layers before sealing them together into one insole;
  • FIG. 3 is a schematic view of the bag and mixer inside an insole;
  • FIG. 4 is a top view of the plastic shell used as the bottom layer of an insole;
  • FIG. 5 is a schematic illustration the bag and mixer locked in its proper position within the shell of an insole;
  • FIG. 6 is an illustration of how an insole is placed into a typical shoe before the wearer stands on it for use;
  • FIG. 7 is a schematic cross-sectional view of the mixing bag in its position in relation to the wearer's foot as the wearer stands on the insole to inject the silicone through the mixer;
  • FIG. 8 is a schematic cross-sectional view of the mixing bag in it's position in relation to the wearer's foot after the wearer has stepped on the insole causing the silicone to be injected through the mixer;
  • FIG. 9 is a schematic view of the bottom of an insole;
  • FIG. 10 is a schematic cross-sectional view of the mixing bag positioned over the hole in the heel of the shell of an insole;
  • FIG. 11 is a schematic cross-sectional view of the mixing bag of an alternative embodiment of the present configuration;
  • FIG. 12 is a schematic cross-sectional view of the mixing bag of an alternative embodiment of the present configuration wherein the insoles may also include a top-level heel pad that fits into a hole in the top layer of foam;
  • FIG. 13 illustrates the present configuration wherein the insole uses a high frequency mold that integrates an outer bag, mixer, and the area under the arch where the silicone flows; and
  • FIGS. 14, 15, and 16 illustrate the steps that are taken to create the inner device of the present configuration.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the following detailed description of the invention of exemplary embodiments of the invention, reference is made to the accompanying drawings (where like numbers represent like elements), which form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, but other embodiments may be utilized and logical, mechanical, electrical, and other changes may be made without departing from the scope of the present invention. The following detailed description is therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
  • In the following description, numerous specific details are set forth to provide a thorough understanding of the invention. However, it is understood that the invention may be practiced without these specific details. In other instances, well-known structures and techniques known to one of ordinary skill in the art have not been shown in detail in order not to obscure the invention.
  • Now referring to FIG. 1 a “shell” embodiment of the insole required is housed within a stable three-layer insole using a shell 2, top insole 1 and middle bag and mixer. It looks much like most insoles except for its bulge in the heel 3 which houses the unmixed silicone before used by the wearer.
  • The middle layer, as illustrated in FIG. 2, is a one-piece bag and mixer 4 that locks into position within the bottom shell 5 and then seals together with the top insole 6.
  • The bag and mixer, as illustrated in FIG. 3, embodies a two chamber bag containing a 1:1 silicone solution with a first chamber 9 and a second chamber 10 separated by a divider 11 which is part of the same piece of soft plastic. A thin plastic membrane 12 holds the unmixed silicone in both the first chamber 9 and second chamber 10 until it is time to inject it though the attached mixing tube 14 where the silicone is thoroughly mixed by being forced through a number of small holes and passageways. To minimize any risk of premature leaking of the silicone into the mixing tube, the divider 11 between the first chamber 9 and second chamber 10 is extended 13 beyond the thin membrane 12 in order keep any escaped silicone from mixing should they leak into the mixing tube. Once the silicone has been mixed it continues to travel to a flat chamber 15 at end of the mixing tube towards the toe of the insole.
  • Now referring to FIG. 4, the plastic shell at the bottom of the insole consists of a hole 16 in the heel to help house the two-chamber bag containing the unmixed silicone. There is channel in the shell designed to lock the mixing tube into position under the arch of shell. FIG. 4, being a top view of the shell, shows just the thin slot 17 over the top of the channel. By bending the shell, the channel opens in order to place the mixing bag and tube into position within the shell during manufacturing. The end of the channel bends towards the middle of the insole where the mixed silicone enters the third chamber 18.
  • Now referring to FIG. 5, the plastic bag/mixer sits in the hole 16 in the heel of the shell resting the two-chamber bag containing silicone A 19 and silicone B 20 in the heel. The mixing tube is firmly locked in the channel 21 in the shell. The channel and the tube bend 23 towards the center of the insole where the silicone is released into the third chamber bag 22.
  • FIG. 6 shows how the complete insole 24 is placed into the wearers shoe ready to be used without any need to remove any tabs or locks.
  • FIG. 7 illustrates how the wearer steps into the insole. When their heel is lowered the weight of the wearer is placed primarily on the heel of the insole and onto the two-chamber bag 25 containing the two-part silicone. The membrane 27 keeping the silicone in the two-chamber bag 25 breaks from the pressure and the silicone from both sides of the bag divider 26 is quickly injected through the mixing tube 29. On the other end of the tube is a flat plastic bag 32 shaped to cover all the areas of the insole that might need additional support. The top insole 31 is made of a very flexible material so to allow as much of the shape of the wearers foot to shape the silicone as it cures.
  • Now referring to FIG. 8, within a few minutes of standing on the insole, the silicone in the third chamber bag 33 will flow to the areas in need of support such as the arch and metatarsal.
  • FIG. 9 illustrates the bottom of the plastic shell that has a hole 35 in it to allow the unmixed silicone in the bag in the heel to fit easily by using a little space from both above and bellow the level of the plastic shell 36. The plastic shell is shaped with a channel 34 to hold the mixing tube/bag. The plastic shell is sealed to the bottom of the top insole 37.
  • FIG. 10 is a side view illustration of the bag 39 and mixer 40 sitting within the hole and channel in the shell.
  • The method of use for the instant moldable orthotic insole of the present invention is as follows. First a plastic bag 2 parts containing silicone 1:1 ratio of A and B housed within the outer bag that forms into the mixing tube and then the mixed silicone receiving bag. A thin membrane breakable from pressure of 100 lbs or more only when stood on by a user, prevents premature activation. This also avoids having to use tabs, strings, external injectors or application of heat to prepare the insole for use.
  • Once the inner bags break, the silicone flows into the chamber containing the static mixer that is built into the tube leading to the front of the insole. The static mixer can be spiral, or any other configuration allowing the providing the 2 part silicone solution meet and mix several times before exiting the mixing tube. The mixing tube opens up into bag the mixed silicone-receiving bag where the mixed silicone spreads under the top layer of the insole to create exact mold of the user's foot. The bag is fairly flat with its circumference shaped to allow silicone flow to the arch, metatarsal and other areas of the foot that may need extra support.
  • The silicone hardens within a few minutes by using a medium viscosity 1:1 silicone solution. The silicone flows easily under pressure through the mixer while being thick enough to help speed up the curing process. Hardened silicone is not stiff like insoles on the market since they are shaped to the user's feet while in their shoes. This overcomes the need for the insoles to be sitting above the shape of the shoe. This creates a much more comfortable orthotic without sacrificing on the support provided.
  • The insole of the present invention is designed to house a full silicone injection system within the shape of a typical insole by using a plastic shell on the bottom with a cavity to hold the unmixed silicone bags, mixing tube and mixed silicone receiving bag. The mixing tube containing the static mixer is the thickest part of the injection system and is therefore housed in the arch of the shell. The injection system clamps securely into the shell of the insole so it will not move at all before or after use. The injection system fits into channel and cavities in the shell in a position leaving a smooth surface on top. This enables the silicone to easily flow to all its needed areas once it has been injected into the receiving bag.
  • The heel of the shell has a hole in it to leave room for the bags containing unmixed silicone without pushing too much only to the top of the insole which would create an unwanted stretching on the top layer of the insole. The hole is the right size to allow the unmixed silicone bags to protrude equally out the bottom and the top of the insole without having to stretch either one too much.
  • Improved Present Configuration of the Instant Custom Moldable Insole
  • The improved present configuration of the instant custom moldable insole is an alternative embodiment designed to facilitate a sure breaking of both cavities containing a first silicone fluid A 43 and a second silicon fluid B 46 and provide an equal mixing of the first silicone fluid A 43 and the second silicon fluid B 46 through a mixer 56.
  • Instead of positioning the first silicone fluid A 43 and the second silicon fluid B 46 side by side as in the first embodiment previously described, in the improved present configuration they are positioned one inside the other. Now referring to FIG. 11, an outer Thermoplastic Urethane (TPU) bag 41 contains a first inner bag A 42 filled with a first silicone fluid A 43. Together with first silicone fluid A 43, the first inner bag A 42 also contains second inner bag B 45. Inside inner bag B 45 is the second silicon fluid B 46.
  • This configuration of the inner bags is designed to ensure that, upon activation, both bags will be push through the mixer 56 at the same time and ratio. This is accomplished since the second inside inner bag 45 is tied very tight with some air 47 added to it in order for it to stand as tall as possible like a round ball. When the user stands on the heel of the insole the most inner, second inner bag B 45, breaks first since it is tied tighter and protrudes higher. When the second inner bag B 45 breaks, it's silicone pre-mixes into the first inner bag A 42. Then the continued downward pressure on the heel causes the first inner bag A 42 also to burst allowing the first silicone fluid A 43 and the second silicon fluid B 46 to be pushed through the mixer 56. A small mount of air 44 is also put into the first inner bag A 42 in order to help increase it's height in order to ensure that it too is broken when stepped on by the user.
  • The two inner bags, the first inner bag A 42 and the second inner bag B 45, are tied in a knot 48 and secured to the back of the outer TPU bag 41 in order to ensure that the silicone only flows forward upon activation. Due to the fact that the knot creates a bump, it is fastened to an indentation that is made in the bottom insole 50. This prevents discomfort the knot from poking into the heel of the users foot.
  • A translucent flexible plug 49 may fit into a hole in the heel of the bottom insole 50. This provides both a means for consumers to see if the inner bags have broken before buying the insoles and it provides a higher level of flexibility to the bottom layer of the insole making more room for the inner bags allowing them to stand taller which as explained above, helps ensure that the activation works properly.
  • The insoles may also include a top-level heel pad that fits into a hole in the top layer of foam 52 as seen in FIG. 12. The primary function of the top-level heel pad is to help push all of the silicone out of the heel of the insole. The upper heel plug 54 may be made from a soft rubber or gel material or similar housed within a thin yet strong plastic casing. The bottom plastic 53 is thicker and stiffer and extends further out beyond the width of the soft part of the heel pad. This bottom plastic 53 flattens to bottom of the insole 50 causing a more thorough emptying of the silicone from the heel pad to push out silicone.
  • Now referring to FIG. 13, the present configuration of the insole uses a high frequency mold that integrates the outer bag 55, mixer 56, and the area under the arch 57 where the silicone flows. Once the inner bags break in the heel, they are pushed through a series of elements 61 in the outer bag 55 that cause the silicone to repeatedly split into two streams and then reunite as one. By the time the silicone has gone through all the elements 61 it is mixed enough to start curing. At the beginning of the mixer 56 a flap 58 of TPU is glued with it's loose flap in the direction of the mixer 56. This serves as a one-way valve allowing the silicone to flow out of the heel area but not back into the heel area.
  • A number of small cuts or holes 57 are made in the outer bag 55 to enable air to escape from the outer bag while the silicone is being pushed through the mixer. These cuts or holes also let out the gas generated from the chemical reaction of the silicone mixing. This serves to accelerate the flow of silicone towards the front of the outer bag 55 as well as to remove the air so to be left with only supporting effect of the silicone.
  • In the original or first configuration described above, the high frequency mold sealed the mixer into both top and bottom layers of a TPU bag. This design did not allow the silicone to flow over the area of the mixer. The improved present configuration of the instant custom moldable insole molds the TPU bag in three steps to allow three layers of TPU over the mixer 56 enabling the silicone to flow over the mixer 56 covering the full width of the insole. The following steps are taken to create the inner device. The first step is to cut the TPU material 59 as illustrated in FIGS. 14, 15, and 16. Then fold the top of the mixer TPU over the bottom of the mixer TPU 60 and mold the mixer into place 61. Then fold the TPU 62 and seal the edges to create the enclosed TPU bag. Once sealed 63 the silicone will be allowed to flow over the full width of the TPU bag including over the area of the mixer 64. This type of configuration could also be created with a three dimensional mold but it would be a more costly process.
  • As to a further discussion of the manner of usage and operation of the present invention, the same should be apparent from the above description. Accordingly, no further discussion relating to the manner of usage and operation will be provided.
  • It is appreciated that the relationships for the parts of the invention, to include variations, are deemed readily apparent and obvious to one of ordinary skill in the art, and all equivalent relationships in the above description are intended to be encompassed by the present invention. In addition, other areas of art may benefit from this method and adjustments to the design are anticipated. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given.

Claims (20)

1. An insole apparatus comprising:
a top layer of an insole;
an outer plastic bag with a first inner interior compartment and second inner interior compartment,
the first inner interior compartment of the outer plastic bag containing a first liquid compound within a first inner bag compartment
within the first inner bag compartment of the outer plastic bag a second inner bag compartment containing a second liquid compound contained within second inner bag compartment; and
said second inner interior compartment of the outer plastic bag compartment containing a mixing channel on one end connected to the first inner interior compartment of the outer plastic bag containing there between a thin breakable membrane.
2. The apparatus of claim 1 wherein said outer bag is made from a thermoplastic urethane material.
3. The apparatus of claim 1 wherein, upon activation, the first liquid compound within the first inner bag compartment and the second liquid compound contained within second inner bag compartment pushes through the mixer at the same time and ratio.
4. The apparatus of claim 1 wherein the second inner bag further consists of air added to it in order for it to stand as tall as possible the first inner interior compartment.
5. The apparatus of claim 4 wherein when a user stands on a heel portion of the insole, the most inner, second inner bag breaks first, since it is tied tighter and protrudes higher in comparison to the first inner bag.
6. The apparatus of claim 5 wherein when the second inner bag breaks, the second liquid compound contained within said second inner bag compartment pre-mixes in the first inner bag with the first liquid compound contained within the first inner bag.
7. The apparatus of claim 6 wherein
a small amount of air is also put into the first inner bag in order to help increase it's height in order to ensure that it too is broken when stepped on by the user; and
continued downward pressure on a heel portion of the insole causes the first inner bag to burst allowing the first silicone fluid and the second silicon fluid to be pushed through the mixer.
8. The apparatus of claim 6 wherein the mixer provides an equal mixing of the first silicone fluid and the second silicon fluid through the mixer.
9. The apparatus of claim 1 wherein
the two inner bags, the first inner bag and the second inner bag, are tied in a knot and secured to the back of the outer bag in order to ensure that the silicone only flows forward from the heal portion toward the toe portion of the insole upon activation.
10. The apparatus of claim 10 wherein the knot creates a bump that is fastened to an indentation that is made in the bottom insole preventing protrusion of the knot into the heel of the users foot.
11. The apparatus of claim 1 wherein a translucent flexible plug fits into a hole in the heel of the bottom insole providing
a means for consumers to see if the inner bags have broken before buying the insoles and
a means for a higher level of flexibility to the bottom layer of the insole making more room for the inner bags allowing them to stand taller ensuring that the activation works properly.
12. The apparatus of claim 1 wherein the insole includes a top-level heel pad that fits into a hole in the top layer of foam to help push all of the silicone out of the heel of the insole.
13. The apparatus of claim 12 wherein the upper heel plug is made from a soft rubber or gel material housed within a thin yet strong plastic casing.
14. The apparatus of claim 13 wherein
the bottom plastic is thicker and stiffer and extends further out beyond the width of the soft part of the heel pad; and
the bottom plastic flattens to the bottom of the insole causing a more thorough emptying of the silicone from the heel pad to push out silicone.
15. The apparatus of claim 1 wherein the insole uses a high frequency mold that integrates the outer bag, mixer 56, and the area under the arch of the foot where the silicone flows.
16. The apparatus of claim 1 wherein once the inner bags break in the heel, the first silicon fluid and the second silicone fluid are pushed through a series of elements in the mixer channel of the second inner interior compartment of the outer bag that causes the first silicon fluid and the second silicone fluid to repeatedly split into two streams and then reunite as one.
17. The apparatus of claim 1 wherein at the beginning of the mixer where the mixer meets the first inner interior compartment of the outer bag a flap is glued with it's loose flap in the direction of the mixer from the first inner interior compartment to the second inner interior compartment serving as a one-way valve allowing the first silicon fluid and the second silicone fluid to flow out of the heel area but not back into the heel area.
18. The apparatus of claim 1 wherein a number of small cuts or holes are made in the outer bag to
let out the gas generated from the chemical reaction of the silicone mixing;
enable air to escape from the outer bag while the first silicon fluid and the second silicone fluid are being pushed through the mixer to
accelerate the flow of silicone towards the front of the outer bag;
remove any air; and
leaving only the supporting effect of a cured silicone compound.
19. The apparatus of claim 15 wherein the high frequency mold
seals the mixer into both top and bottom layers of a outer plastic bag;
does not allow the silicone to flow over the area of the mixer.
20. The apparatus of claim 15 wherein the high frequency mold, molds the outer plastic bag in three steps to allow three layers of plastic over the mixer enabling the silicone to flow over the mixer covering the full width of the insole
(a) cutting the plastic material into three sections with a first section defined as the mixer plastic material sharing a common border with a second section defining a bag exterior and interior bottom, said second section sharing a common border with the first section on one side and a third section on an opposing side, said third section defining a bag exterior and interior top portion;
(b) folding the top of the mixer plastic material of the first section over the bottom of the mixer plastic material of the second section and molding the mixer into place; and
(c) folding said third section defining a bag exterior and interior top portion over said second section, creating a bag with an interior cavity and an exterior shell and seal the edges where said third section and said second section meet, to create the enclosed plastic bag.
US11/773,403 2005-07-20 2007-07-04 Instant Custom Moldable Insole Abandoned US20080010857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/773,403 US20080010857A1 (en) 2005-07-20 2007-07-04 Instant Custom Moldable Insole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/186,355 US7257907B2 (en) 2004-07-21 2005-07-20 Instant custom moldable insole
US11/773,403 US20080010857A1 (en) 2005-07-20 2007-07-04 Instant Custom Moldable Insole

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/186,355 Continuation-In-Part US7257907B2 (en) 2004-07-21 2005-07-20 Instant custom moldable insole

Publications (1)

Publication Number Publication Date
US20080010857A1 true US20080010857A1 (en) 2008-01-17

Family

ID=37669194

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/186,355 Expired - Fee Related US7257907B2 (en) 2004-07-21 2005-07-20 Instant custom moldable insole
US11/773,403 Abandoned US20080010857A1 (en) 2005-07-20 2007-07-04 Instant Custom Moldable Insole

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/186,355 Expired - Fee Related US7257907B2 (en) 2004-07-21 2005-07-20 Instant custom moldable insole

Country Status (2)

Country Link
US (2) US7257907B2 (en)
WO (1) WO2007010419A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100011625A1 (en) * 2008-07-21 2010-01-21 Percival Jeffrey D Custom moldable personal insert
US20100139121A1 (en) * 2008-12-09 2010-06-10 Red Wing Shoe Company, Inc. Molded insole for welted footwear
US8800168B1 (en) * 2011-06-15 2014-08-12 Robert Propét Customizable insole
US20160000184A1 (en) * 2014-07-07 2016-01-07 Jason Guadalajara Insole and Method of Fabricating
US10624416B2 (en) 2017-06-01 2020-04-21 Vionic Group LLC Footwear and the manufacture thereof
WO2024015443A1 (en) * 2022-07-12 2024-01-18 Savior Brain Inc. Wearable hydraulic system and shock absorbing device for reducing forces due to impact

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900380B2 (en) * 2005-10-13 2011-03-08 Masterfit Enterprises Inc. User moldable adjustable insert
US7707751B2 (en) 2006-06-16 2010-05-04 Schering-Plough Healthcare Products, Inc. Adjustable orthotic
US20080034618A1 (en) * 2006-08-09 2008-02-14 Li-Yu Lin Sole device fitting with a foot and method for making the same
US20150282563A1 (en) * 2009-04-15 2015-10-08 Marie Smirman Insert for rockered foot bed of footwear
WO2010130283A1 (en) * 2009-05-12 2010-11-18 M.G.S. S.R.L. Insert for soles and the like
US7958993B2 (en) 2009-09-18 2011-06-14 Nike, Inc. Footwear customization kit
US8033393B2 (en) 2009-09-18 2011-10-11 Nike, Inc. Method of custom fitting an article of footwear and apparatus including a container
US8627528B2 (en) 2009-11-19 2014-01-14 Nike, Inc. Footwear customization kit
US20210000222A1 (en) * 2014-07-07 2021-01-07 Jason Guadalajara Reformable Insole and Method of Fabricating
EP3364806B1 (en) * 2015-10-22 2022-01-05 Guadalajara, Jason An insole and method for manufacturing an insole
US10576666B2 (en) 2016-01-07 2020-03-03 Nike, Inc. Portable customization system for articles of footwear
WO2017142972A1 (en) * 2016-02-16 2017-08-24 Djo Consumer, Llc Fitting system and method for customizable footwear
US20240099421A1 (en) * 2022-09-25 2024-03-28 Darrell A. Poirier Increasingly firmer arch support when worn over time

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2366323A (en) * 1943-05-15 1945-01-02 Fried Zoltan Arch support
US4128951A (en) * 1975-05-07 1978-12-12 Falk Construction, Inc. Custom-formed insert
US4211019A (en) * 1978-11-08 1980-07-08 Orthopedic Contour Systems, Inc. Accommodative foot bed
US4385024A (en) * 1978-07-31 1983-05-24 Tansill Horace A Method for making a molded article from a curable material and a curing agent, the curing agent being in a container initially flexible and infrangible which is made frangible
US4674206A (en) * 1985-03-21 1987-06-23 Lyden Robert M Midsole construction/shoe insert
US5042100A (en) * 1989-12-12 1991-08-27 Orthofeet Inc. Method for producing an insole
US5083910A (en) * 1988-08-11 1992-01-28 Abshire Danny P Insole assembly base component molding pad
US5095570A (en) * 1989-12-12 1992-03-17 Orthofeet Inc. Method for producing an insole
US5101580A (en) * 1989-09-20 1992-04-07 Lyden Robert M Personalized footbed, last, and ankle support
US5203793A (en) * 1989-09-20 1993-04-20 Lyden Robert M Conformable cushioning and stability device for articles of footwear
US5958546A (en) * 1996-07-08 1999-09-28 Mardix; Bar-Cochva Custom insoles
US6098315A (en) * 1995-05-31 2000-08-08 Comfort Technologies, Inc. Self molding insole insert

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2366323A (en) * 1943-05-15 1945-01-02 Fried Zoltan Arch support
US4128951A (en) * 1975-05-07 1978-12-12 Falk Construction, Inc. Custom-formed insert
US4385024A (en) * 1978-07-31 1983-05-24 Tansill Horace A Method for making a molded article from a curable material and a curing agent, the curing agent being in a container initially flexible and infrangible which is made frangible
US4211019A (en) * 1978-11-08 1980-07-08 Orthopedic Contour Systems, Inc. Accommodative foot bed
US4674206A (en) * 1985-03-21 1987-06-23 Lyden Robert M Midsole construction/shoe insert
US5083910A (en) * 1988-08-11 1992-01-28 Abshire Danny P Insole assembly base component molding pad
US5101580A (en) * 1989-09-20 1992-04-07 Lyden Robert M Personalized footbed, last, and ankle support
US5203793A (en) * 1989-09-20 1993-04-20 Lyden Robert M Conformable cushioning and stability device for articles of footwear
US5042100A (en) * 1989-12-12 1991-08-27 Orthofeet Inc. Method for producing an insole
US5095570A (en) * 1989-12-12 1992-03-17 Orthofeet Inc. Method for producing an insole
US6098315A (en) * 1995-05-31 2000-08-08 Comfort Technologies, Inc. Self molding insole insert
US5958546A (en) * 1996-07-08 1999-09-28 Mardix; Bar-Cochva Custom insoles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100011625A1 (en) * 2008-07-21 2010-01-21 Percival Jeffrey D Custom moldable personal insert
US20100139121A1 (en) * 2008-12-09 2010-06-10 Red Wing Shoe Company, Inc. Molded insole for welted footwear
US8621765B2 (en) 2008-12-09 2014-01-07 Red Wing Shoe Company, Inc. Molded insole for welted footwear
US8800168B1 (en) * 2011-06-15 2014-08-12 Robert Propét Customizable insole
US20160000184A1 (en) * 2014-07-07 2016-01-07 Jason Guadalajara Insole and Method of Fabricating
US10624416B2 (en) 2017-06-01 2020-04-21 Vionic Group LLC Footwear and the manufacture thereof
WO2024015443A1 (en) * 2022-07-12 2024-01-18 Savior Brain Inc. Wearable hydraulic system and shock absorbing device for reducing forces due to impact

Also Published As

Publication number Publication date
WO2007010419A3 (en) 2007-03-15
US20060016103A1 (en) 2006-01-26
US7257907B2 (en) 2007-08-21
WO2007010419A2 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
US20080010857A1 (en) Instant Custom Moldable Insole
US4211019A (en) Accommodative foot bed
US5067257A (en) Injection fitted boot liner
US4301564A (en) Pliable inner boot and injectable fit packs for ski boots
US5101580A (en) Personalized footbed, last, and ankle support
US5203793A (en) Conformable cushioning and stability device for articles of footwear
US5958546A (en) Custom insoles
US9314068B2 (en) Self-customized, moldable, weight-distributing insert for ballet pointe shoes
US4182056A (en) Pliable inner boot and injectable fit packs for ski boots
US5042100A (en) Method for producing an insole
US3985853A (en) Method of making a combined heel positioner and arch support for the foot
US5095570A (en) Method for producing an insole
JPH04503617A (en) footwear
US11745456B2 (en) Method for forming a footwear midsole
JPH10507380A (en) How to waterproof shoes in the sole area
US7017218B2 (en) Customized orthopedic sole-insert and method for making
JPS6040841B2 (en) Ski shoe inserts
US20170231321A1 (en) Custom Formable Footbed and Shoe Insert
US20180368512A1 (en) Fitting system and method for customizable footwear
WO2020077394A1 (en) Insert for shoes
EP3482648B1 (en) Liner for sports shoes
WO2010130283A1 (en) Insert for soles and the like
WO2023215503A1 (en) Method of producing a custom orthotic insole
JPH1175908A (en) Athletic shoe
WO2006085344A1 (en) Shoe having an inner adaptable surface on which the wearer’s foot rests

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION