US20080029117A1 - Smokeless Tobacco - Google Patents

Smokeless Tobacco Download PDF

Info

Publication number
US20080029117A1
US20080029117A1 US11/461,633 US46163306A US2008029117A1 US 20080029117 A1 US20080029117 A1 US 20080029117A1 US 46163306 A US46163306 A US 46163306A US 2008029117 A1 US2008029117 A1 US 2008029117A1
Authority
US
United States
Prior art keywords
tobacco
formulation
smokeless
smokeless tobacco
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/461,633
Inventor
John-Paul Mua
Luis Rosete Monsalud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RJ Reynolds Tobacco Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/461,633 priority Critical patent/US20080029117A1/en
Assigned to R.J. REYNOLDS TOBACCO COMPANY reassignment R.J. REYNOLDS TOBACCO COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MONSALUD, JR., LUIS ROSETE, MUA, JOHN-PAUL
Priority to PCT/US2007/016658 priority patent/WO2008016520A2/en
Priority to DE602007010944T priority patent/DE602007010944D1/en
Priority to RU2009107157/21A priority patent/RU2414829C2/en
Priority to CN200780028625.7A priority patent/CN101495002B/en
Priority to JP2009522788A priority patent/JP5941609B2/en
Priority to AT07810732T priority patent/ATE489858T1/en
Priority to EP07810732A priority patent/EP2048976B9/en
Priority to US12/014,525 priority patent/US20080173317A1/en
Publication of US20080029117A1 publication Critical patent/US20080029117A1/en
Priority to HK09111182.6A priority patent/HK1133374A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B13/00Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/12Chemical features of tobacco products or tobacco substitutes of reconstituted tobacco
    • A24B15/14Chemical features of tobacco products or tobacco substitutes of reconstituted tobacco made of tobacco and a binding agent not derived from tobacco

Definitions

  • the present invention relates to tobacco, and in particular, to tobacco formulations suitable for use in a smokeless manner, and to the handling and use of tobacco that is in a smokeless form.
  • Cigarettes, cigars, little cigars and pipes are popular smoking articles that employ tobacco in various forms.
  • Smoking articles are tobacco products that are used by heating or burning tobacco, and aerosol (e.g., smoke) is inhaled by the smoker.
  • Representative manners or methods that have been proposed for the packaging of tobacco products, including cigarettes and cigars, are set forth in U.S. Pat. No. Des 368 , 221 to Montague; U.S. Pat. No. 1,886,115 to Muller; U.S. Pat. No. 3,371,775 to Butler; U.S. Pat. No. 3,967,730 to Driscoll et al.; U.S. Pat. No. 4,852,734 to Allen et al.; U.S. Pat. No.
  • Tobacco also may be enjoyed in a so-called “smokeless” form.
  • smokeless tobacco products are employed by inserting some form of processed tobacco or tobacco-containing formulation into the mouth of the user.
  • Snuff typically is formulated in “moist” or “dry” forms.
  • snuff products are manufactured in Europe, particularly in Sweden, by or through companies such as Swedish Match AB, Fiedler & Lundgren AB, Gustavus AB, Skandinavisk Tobakskompagni A/S and Rocker Production AB.
  • Snus products available in the U.S.A. are marketed under the tradenames Camel Snus Frost, Camel Snus Original and Camel Snus Spice by R. J. Reynolds Tobacco Company.
  • Representative smokeless tobacco products also are marketed under the tradenames Oliver Twist by House of Oliver Twist A/S; Copenhagen, Skoal, SkoalDry, Rooster, Red Seal, Husky, and Revel by U.S.
  • Smokeless tobacco products are packaged for distribution, sale and use in a variety of ways. Chewing tobacco has been packaged in pouches, foil bags and metal containers. Snus types of products have been packaged in tins, “pucks” or “pots” that are manufactured from metal or plastic. In certain circumstances, smokeless tobacco products are refrigerated prior to sale, typically for the purpose of prolonging the freshness and moisture content thereof. For example, smokeless tobacco products, particularly moist tobacco products, can be refrigerated in order to avoid or retard absorption of contaminants that provide an undesirable flavor or odor to the product, avoid or retard the development discoloration or staining of the product, and to avoid or retard the activity of biologically active microorganisms.
  • smokeless tobacco products and typically moist snuff types of products, can be refrigerated to retard the effects of enzymatic and other biological activities, pH changes, oxidation, and other effects that have a tendency to shorten product shelf-life or stability.
  • the present invention relates to a smokeless tobacco product.
  • the product includes a smokeless tobacco composition or formulation.
  • the smokeless tobacco formulation includes particles or pieces of tobacco, and may include other ingredients, such as salts, sweeteners, binders, colorants, pH adjusters, fillers, flavoring agents, disintegration aids, antioxidants, humectants, and preservatives.
  • the moisture content of the particles of the tobacco may vary.
  • Certain smokeless tobacco products have the form of tobacco compositions or formulations that result from casting or otherwise forming a slurry incorporating tobacco material and other components as a film or sheet.
  • Certain smokeless tobacco products have the form of tobacco compositions or formulations that result from pressing, extruding or otherwise forming a mixture incorporating tobacco material and other components into a desired shape.
  • the tobacco formulation can be contained within a container, such as a pouch or bag, such as is the type commonly used for the manufacture of snus types of products (e.g., a sealed, moisture permeable pouch that is sometimes referred to as a “portion”).
  • a representative moisture permeable pouch can be composed of a “fleece” type of material.
  • the tobacco formulation is in turn contained within a package.
  • the package is sealed tightly, and is composed of a suitable material, such that the atmospheric conditions within that sealed package are modified and/or controlled; that is, the sealed package can provide a good barrier that inhibits the passage of compositions such as moisture and oxygen therethrough; in addition, the atmosphere within the sealed package can be further modified by introducing a selected gaseous species (e.g., nitrogen, argon, or a mixture thereof) into the package prior to sealing or by drawing a vacuum therein (vacuum sealing).
  • a selected gaseous species e.g., nitrogen, argon, or a mixture thereof
  • an individual portion of smokeless tobacco e.g., one snus fleece bag containing a smokeless tobacco formulation
  • a package The atmosphere within each package is modified or controlled in a manner characteristic of the present invention.
  • Several snus fleece bags so packaged then can be contained within the product container, such as a metal or plastic tin.
  • several individual portions of smokeless tobacco can be wrapped together within one package.
  • the atmosphere within that package is modified or controlled in a manner characteristic of the present invention.
  • That package, or a combination of several of such packages, then can be contained within the product container, such as a metal or plastic tin.
  • smokeless tobacco product e.g., several individual portions of smokeless tobacco
  • a sealed container such as a metal or plastic tin. That container then can be wrapped within a package, such that the atmosphere within that package and the sealed container is modified or controlled in a manner characteristic of the present invention.
  • smokeless tobacco product e.g., several individual portions of smokeless tobacco
  • a sealed container such as a metal or plastic tin
  • the atmosphere within that sealed container is modified or controlled in a manner characteristic of the present invention.
  • At least one individual portion of smokeless tobacco can be wrapped in a package.
  • the atmosphere within each package is modified or controlled in a manner characteristic of the present invention.
  • That package or several of those packages then can be contained within the product container, such as a metal or plastic tin.
  • the atmosphere within that sealed metal or plastic container is modified or controlled in a manner characteristic of the present invention.
  • that container then can be wrapped within an outer package, such that the atmosphere within that package and the sealed container is modified or controlled in a manner characteristic of the present invention.
  • FIG. 1 is an enlarged cross-sectional view of a tobacco product in the form of a snus type of product individually wrapped in an outer package.
  • FIG. 2 is a cross-sectional view of a tobacco product in the form of a snus type of product, wherein several snus-type products are wrapped in an outer package and that outer package is contained within a generally cylindrical plastic or metal tin.
  • FIG. 3 is a cross-sectional view of a tobacco product in the form of a snus type of product, wherein several snus-type products are contained within a generally cylindrical plastic or metal tin, and that tin is wrapped in an outer package.
  • FIG. 4 is a cross-sectional view of a tobacco product in the form of a snus type of product, wherein several snus-type products are contained within a generally cylindrical plastic or metal tin possessing a controlled atmosphere.
  • FIG. 5 is cross-sectional view of a tobacco product in the form of a snus type of product, wherein each of several snus-type products are individually wrapped in an outer package, and are in turn contained within a generally cylindrical plastic or metal tin possessing a controlled atmosphere.
  • FIG. 6 is a perspective view (partially cut away) of a plurality of individually packaged snus types of products, each individual package being connected to another, and an outer container for containing and dispensing those products.
  • FIG. 7 is an enlarged cross-sectional view of a tobacco product in the form of a snus type of product individually wrapped in an outer package.
  • the tobacco product 110 includes a tobacco composition 115 contained in a sealed, moisture permeable pouch 120 , thereby providing a tobacco portion 122 .
  • a representative moisture permeable pouch can be composed of a fleece type of material that is sealed shut in order to effectively retain the tobacco composition within the pouch during normal conditions of handling.
  • the tobacco product 110 possesses a sealed outer package 125 that surrounds and contains the tobacco portion 122 as a type of tightly sealed pouch.
  • the representative outer package 125 possesses an upper surface 126 and a lower surface 127 ; and the two faces 128 , 129 of a “fin seal” are shown lying essentially parallel to the lower surface of outer package 125 .
  • the outer package 125 is tightly sealed, and is selected from an appropriate material, such that the atmosphere 130 within that outer package can be controlled.
  • the atmosphere 130 within the package can be controlled such that the atmosphere is composed most predominantly of high purity nitrogen gas, or other suitable gaseous species.
  • the embodiment can be altered in order that the outer package contains a plurality (e.g., 2, 3 or 4) of individual tobacco portions.
  • Each of the two ends 131 , 132 of the outer package is tightly sealed (e.g., heat sealed), and if desired, those ends can have a serrated appearance, or cut to have the desired visual effect.
  • the length of the inner region of the outer package 125 is at least about 10 percent greater than the overall length of the tobacco portion 122
  • the width of the inner region of the outer package 125 is at least about 10 percent greater than the overall width of the tobacco portion 122
  • the height of the inner region of the outer package 125 is somewhat greater than the overall height of the tobacco portion 122 .
  • a snus-type of product has a maximum length of about 20 mm to about 30 mm, a width of about 10 mm to about 15 mm, and a height of about 5 mm to about 8 mm; thus the outer package 125 would have an overall length of at least about 30 mm, a width of at least about 30 mm, and a height of at least about 5 mm to about 8 mm; wherein the two end seals 131 , 132 of the outer package 125 each extend about 5 mm along the width of the outer package 125 , and the “fin seal” has a width of about 10 mm.
  • the outer package 125 is opened by the consumer, the tobacco portion 122 is removed from the outer package, and the tobacco portion is enjoyed by the consumer.
  • the tobacco product 110 includes several tobacco compositions 115 , 140 , 141 each contained in a respective sealed, moisture permeable pouch 120 , 145 , 146 .
  • the tobacco product 110 possesses a sealed outer package 155 that surrounds and contains all of those individual tobacco portions 125 , 157 , 158 .
  • the number of tobacco portions within the outer package can vary, and can be a number such as 10, 12, 15, 20, 25 or 30.
  • the outer package 155 is tightly sealed, and for the representative embodiment shown, the outer package 155 possesses a three-sided type of packaging configuration (i.e., the packaging material used to manufacture the outer package is sealed on three sides).
  • the outer package 155 is selected from an appropriate material, such that the atmosphere 160 within that outer package can be controlled.
  • the atmosphere 160 within the package can be controlled such that the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species.
  • the outer package 155 is contained within a hard container 165 , such as a plastic or metal tin having a lower portion 168 and a corresponding or coordinating upper portion 170 .
  • a representative hard container 165 is the short, rounded edge, generally cylindrical container traditionally used for the marketing of snus types of products. See, for example, the types of representative snuff-box types of designs set forth in PCT WO 2005/016036 to Bjorkholm.
  • plastic or metal type containers set forth in U.S. Pat. No. 7,014,039 to Henson et al. See, also, the types of hard containers used for the commercial distribution of Camel Snus by R. J. Reynolds Tobacco Company; Revel Mint Tobacco Packs type of smokeless tobacco product by U.S. Smokeless Tobacco Corporation; SkoalDry by U.S. Smokeless Tobacco Co. and “taboka” by Philip Morris USA.
  • the type of container used for the “taboka” product can be adapted to possess a slidable lid (e.g., one that slides generally parallel to the longitudinal axis of the container) in order that the container can be opened and closed.
  • the container can have an accordion or bellows type of design, such that the container can be extended open for filling with smokeless tobacco product during production, and then contracted after filling of the container is complete.
  • containers can be equipped with suitable seals or grommets, in order that when an opened container is re-shut, a good seal is provided.
  • the hard container In use, the hard container is opened, the outer package is opened, a tobacco portion is removed therefrom, and the tobacco portion is enjoyed by the consumer.
  • the hard container can be manually resealed, and additional tobacco portions can be removed from that container by the consumer as desired.
  • the tobacco product 110 includes several tobacco compositions 115 , 140 , 141 each contained in a respective sealed, moisture permeable pouch 120 , 145 , 146 .
  • Those individual pouch sealed tobacco portions 156 , 157 , 158 are themselves contained within a hard container 165 , such as a plastic or metal tin having a lower portion 168 and a corresponding or coordinating upper portion 170 .
  • the number of tobacco portions within the hard container can vary, and can be a number such as 10, 12, 15, 20, 25 or 30.
  • a representative hard container 165 is the short, rounded edge, generally cylindrical container traditionally used for the marketing of snus types of products.
  • the hard container 165 is in turn packaged within a sealed outer package 180 .
  • the representative outer package 180 shown as a representative embodiment has a “lap seal” type of sealing mechanism, and as such, possesses an upper surface 182 , a lower surface 183 , and an overlap seal 184 located on the bottom face of the outer package.
  • the outer package 180 is tightly sealed at each end 185 , 186 , and is constructed from an appropriate material, such that the atmosphere 160 within that outer package, and within the hard container 165 , is controlled.
  • the atmosphere 160 within the package can be controlled such that the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species.
  • the outer package 180 is opened, the hard container 165 is opened, and individual tobacco portions are removed as desired from the hard container.
  • the tobacco product 110 includes several tobacco compositions 115 , 140 , 141 each contained in a sealed, moisture permeable pouch 120 , 145 , 146 , respectively.
  • Those individual tobacco portions 156 , 157 , 158 are contained within a hard container 165 , such as a plastic or metal tin having a lower portion 170 and a corresponding or coordinating upper portion 168 .
  • a representative hard container 165 is the short, rounded edge, generally cylindrical container traditionally used for the marketing of snus types of products.
  • the hard container 165 is in turn tightly sealed, and can possess an optional ring or band of a sealing material 195 that circumscribes the hard container in the area of the seal between lower and upper portions 168 , 170 .
  • a sealing material 195 that circumscribes the hard container in the area of the seal between lower and upper portions 168 , 170 .
  • the atmosphere 160 within the hard container 165 can be controlled (e.g., the atmosphere may be composed of high purity nitrogen gas, or other suitable gaseous species).
  • the ring or band of sealing material 195 is broken, the hard container is opened, and individual tobacco portions are removed as desired from the hard container.
  • the tobacco product 110 includes several tobacco compositions 115 , 140 , 141 each contained in a sealed, moisture permeable pouch 120 , 145 , 146 , respectively.
  • Each individual tobacco portion 156 , 157 , 158 possesses a sealed outer package 125 , 211 , 212 that surrounds and contains each respective tobacco portion.
  • Each outer package 125 , 211 , 212 is tightly sealed, and is selected from an appropriate material, such that the atmosphere 130 , 221 , 222 within each respective outer package can be controlled.
  • each respective outer package can be controlled such that the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species.
  • this embodiment can be altered to provide that each outer package 125 , 211 , 212 contains a plurality (e.g., 2, 3 or 4) of individual tobacco portions 156 , 157 , 158 .
  • the packaged individual tobacco portions 156 , 157 , 158 are in turn contained within a hard container 165 , such as a plastic or metal tin having a lower portion 170 and a corresponding or coordinating upper portion 168 .
  • a representative hard container 165 can be the short, rounded edge, generally cylindrical container traditionally used for the marketing of snus types of products.
  • the hard container 165 is in turn tightly sealed, and can possess an optional ring or band of a sealing material 195 that circumscribes the hard container in the area of the seal between lower and upper portions 168 , 170 .
  • conditions are provided so that the atmosphere 160 within that hard container 165 , is controlled (e.g., the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species).
  • the hard container 165 can be optionally packaged in a sealed outer package 180 , such as in the manner previously set forth with reference to FIG. 3 (e.g., so that the conditions within that outer package, and hence within the hard container, are controlled).
  • the modified or controlled atmosphere 160 within hard container 165 can be the same or different than the modified or controlled atmospheres 130 , 221 , 222 of each of the outer packages 125 , 211 , 212 of the individually wrapped tobacco portions 156 , 157 , 158 (e.g., the hard container can be packaged within an outer package that provides a type of vacuum seal and the individually wrapped tobacco portions can be wrapped under controlled atmosphere; or the individually wrapped tobacco portions can be packaged within outer packages that provide a type of vacuum seal and the outer packaged can be wrapped so as to provide internal conditions of controlled atmosphere).
  • the outer package is broken, the hard container is opened, a packaged individual tobacco portion is removed from the hard container, and that packaged portion is opened so that the tobacco portion can be enjoyed by the consumer.
  • the tobacco product 110 may include several tobacco compositions (not shown) each contained in a sealed, moisture permeable pouch (not shown).
  • the tobacco compositions and tobacco portions are of the type previously described with reference to FIG. 5 .
  • Each individual tobacco portion possesses a sealed outer package 125 , 211 , 212 that surrounds and contains each respective tobacco portion.
  • Each outer package 125 , 211 , 212 is tightly sealed, and is selected from an appropriate material, such that the atmosphere (not shown) within each respective outer package can be controlled (e.g., vacuum sealed).
  • the atmosphere within each respective package can be controlled such that the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species.
  • each outer package 125 , 211 , 212 contains a plurality (e.g., 2, 3 or 4) of individual tobacco portions.
  • the packaged individual tobacco portions within the outer packages 125 , 211 , 212 are in turn connected to one another in an end-to-end relationship. That is, the individual outer packages 125 , 211 , 212 each are “fin sealed” along respective sealing regions 270 , 271 , 272 .
  • the fin seal extends longitudinally along the length of each outer package.
  • each fin sealed region 270 , 271 , 272 may possess 5 “jaw lines.”
  • end seals 131 , 132 At each end of outer package 125 , and preferably generally perpendicular to the longitudinally extending fin seal, are end seals 131 , 132 .
  • the end seal of each outer package may possess 3 “jaw lines.” Between adjacent end seals of each outer package is a line of perforations 305 , 306 , 307 , such that each individual package can be separated from the next.
  • a desired number of the connected outer packages (e.g., 10, 12, 15, 20, 25 or 30) are rolled or wound in a generally spiral manner (e.g., as in a manner generally akin to a spool or roll of postage stamps).
  • the resulting wound series of connected outer packages then is positioned within a suitable container 315 .
  • One end of the spooled series of outer packages extends through an opening 320 in the side face of the container 315 .
  • the container can hold the spooled product, as well as provide a manner or method for dispensing product therefrom.
  • a dispenser for an essentially continual strip of smokeless tobacco product e.g., individual portions of smokeless tobacco composition that are connected together but are separable from one another about individual tearable lines of perforation).
  • the individual packages are connected in an “end-to-end” type of arrangement.
  • the configuration by which the individual packages can be connected can be altered. For example, rather than sealing the individual outer packages at each end of the length of a smokeless product, the smokeless product can be rotated 90°, and the end seals of the outer package can be parallel to the length of the smokeless product. As such, individual outer packages for smokeless product can be aligned in a “side-by-side” type of arrangement.
  • individual packages that are connected to one another in either an “end-to-end” or “side-by-side” type of arrangement can be incorporated into other types of containers for commercial distribution.
  • a predetermined number e.g., 4, 5 or 10
  • the smokeless product sealed in a controlled atmosphere in order that flavors and aromas do not migrate as between the cigarettes and the smokeless product. In this way product integrity is preserved for each of the jointly packaged products.
  • cigarettes can be packaged in a so-called “hard pack”, having a lid that extends upward beyond the ends of the cigarettes that are contained therein, and a strip of connected individual packages can be positioned within the inner, upper portion of that lid.
  • hard pack designs are set forth in U.S. Pat. No. 4,852,734 to Allen et al.; U.S. Pat. No. 5,139,140 to Burrows et al. and U.S. Pat. No. 5,938,018 to Keaveney et al.
  • a hard pack designed for containing cigarettes having lengths of about 99 mm in a 7-6-7 configuration can be filled with comparable cigarettes having lengths of about 85 mm, and several packaged smokeless tobacco portions can be contained within the inner top region of the movable top lid).
  • several packaged smokeless tobacco portions can be included with a cigarette package by containing those packaged smokeless portions within the polypropylene overwrap that covers the outer regions of the cigarette package.
  • packaged smokeless tobacco portions can be connected to a cigarette package by adhesive or by fastening as an onsert.
  • the tobacco product 110 includes a tobacco composition 115 contained in a sealed, moisture permeable pouch 120 , thereby providing a tobacco portion 122 .
  • the tobacco product 110 possesses a sealed outer package 125 that surrounds and contains the tobacco portion 122 in a type of tightly sealed manner.
  • the representative outer package 125 possesses an upper surface 126 and a lower surface 127 .
  • the lower surface 127 is suitably adapted so as to possess a so-called “blister pack” type of format and configuration.
  • the lower surface can have the general shape of a “bubble” having some degree of structural integrity, and hence can be formed to have a generally hemispherical shape, or other desired shape.
  • the outer package 125 is tightly sealed, and is selected from an appropriate material, such that the atmosphere 130 within that outer package is controlled. If desired, the embodiment can be altered in order that the outer package contains a plurality (e.g., 2, 3 or 4) of individual tobacco portions.
  • An edge region 426 about which outer package is tightly sealed preferably extends around the bubble region of the blister pack. The edge region can form a shape that is rectangular, square, triangular, hexagonal, circular, or other desired shape.
  • each outer package can have a serrated appearance; can be perforated so as to be connected in a strip or matrix to other outer packages, or can be cut to have the desired visual effect.
  • the length of the inner region of the outer package is at least about 10 percent greater than the overall length of the tobacco portion
  • the width of the inner region of the outer package is at least about 10 percent greater than the overall width of the tobacco portion
  • the height of the inner region of the outer package is somewhat greater than the overall height of the tobacco portion.
  • a snus-type of product has a maximum length of about 30 mm, a width of about 10 mm to about 12 mm, and a height of about 5 mm to about 6 mm; and the outer package has a length of about 40 mm, a width of about 15 mm and a height of 15 mm; and the end seals of outer package extend around the “bubble” portion at a width of about 5 mm to about 10 mm.
  • Tobacco product so packaged can be employed in the general manner set forth previously with reference to FIGS. 1 , 2 , 5 and 6 .
  • the tobaccos may include types of tobaccos such as flue-cured tobacco, burley tobacco, Oriental tobacco, Maryland tobacco, dark tobacco, dark-fired tobacco and Rustica tobaccos, as well as other rare or specialty tobaccos. Descriptions of various types of tobaccos, growing practices, harvesting practices and curing practices are set forth in Tobacco Production, Chemistry and Technology , Davis et al. (Eds.) (1999), which is incorporated herein by reference. See, also, the types of tobaccos that are set forth in U.S. Pat. No. 4,660,577 to Sensabaugh, Jr. et al.; U.S. Pat. No.
  • the tobacco materials are those that have been appropriately cured and aged. Especially preferred techniques and conditions for curing flue-cured tobacco are set forth in Nestor et al., Beitrage Tabakforsch. Int., 20 (2003) 467-475 and U.S. Pat. No.
  • the tobacco used for the manufacture of the tobacco product preferably is provided in a shredded, ground, granulated, fine particulate or powder form.
  • the tobacco used for the manufacture of the tobacco product also can be processed, blended, formulated, combined and mixed with other materials or ingredients.
  • the tobacco composition can incorporate salts, sweeteners, binders, colorants, pH adjusters, fillers, flavoring agents, disintegration aids, antioxidants, humectants, and preservatives. See, for example, those representative components, combination of components, relative amounts of those components and ingredients relative to tobacco, and manners and methods for employing those components, set forth in U.S. patent application Ser. No. 11/233,399 to Holton, et al. and U.S. patent application Ser.
  • the tobacco product can have the form of a pouch containing a tobacco composition, and a flavored strip or film; the form of a pouch containing a tobacco composition, and a flavored strip or film incorporating finely divided granules of tobacco and/or tobacco extract (e.g., components of a spray dried aqueous extract of tobacco); or the form of a highly processed dissolvable film incorporating finely divided granules of tobacco and/or tobacco extract.
  • finely divided granules of tobacco and/or tobacco extract e.g., components of a spray dried aqueous extract of tobacco
  • a highly processed dissolvable film incorporating finely divided granules of tobacco and/or tobacco extract.
  • the amount of tobacco material within a portion of an individual portion of a smokeless tobacco can be, on a dry weight basis, at least about 30 mg, often at least about 40 mg, and frequently at least about 45 mg; while that amount typically is less than about 200 mg, often less than about 150 mg, and frequently less than about 100 mg.
  • the tobacco material can have the form of processed tobacco parts or pieces, cured and aged tobacco in essentially natural lamina or stem form, a tobacco extract, extracted tobacco pulp (e.g., using water as a solvent), or a mixture of the foregoing (e.g., a mixture that combines extracted tobacco pulp with granulated cured and aged natural tobacco lamina).
  • the moisture content of the tobacco formulation prior to use by a consumer of the formulation may vary. Typically, the moisture content of the tobacco formulation, as present within the pouch prior to insertion into the mouth of the user, is less than about 55 weight percent, generally is less than about 50 weight percent, and often is less than about 45 weight percent. Certain types of tobacco formulations have moisture contents, prior to use, of less than about 15 weight percent, frequently less than about 10 weight percent, and often less than about 5 weight percent. For certain tobacco products, such as those incorporating snus-types of tobacco compositions, the moisture content may exceed 20 weight percent, and often may exceed 30 weight percent. For example, a representative snus-type product may possess a tobacco composition exhibiting a moisture content of about 25 weight percent to about 50 weight percent, preferably about 30 weight percent to about 40 weight percent.
  • the manner by which the moisture content of the formulation is controlled may vary.
  • the formulation may be subjected to thermal or convection heating.
  • the formulation may be oven-dried, in warmed air at temperatures of about 40° C. to about 95° C., with a preferred temperature range of about 60° C. to about 80° C. for a length of time appropriate to attain the desired moisture content.
  • tobacco formulations may be moistened using casing drums, conditioning cylinders or drums, liquid spray apparatus, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Littleford Day, Inc., Plough Share types of mixer cylinders, and the like.
  • moist tobacco formulations such as the types of tobacco formulations employed within snus types of products, are subjected to pasteurization or fermentation.
  • Techniques for pasteurizing or fermenting snus types of tobacco products will be apparent to those skilled in the art of snus product design and manufacture.
  • the pH of the tobacco formulation can vary. Typically, the pH of that formulation is at least about 6.5, and preferably at least about 7.5. Typically, the pH of that formulation will not exceed about 9, and often will not exceed about 8.5.
  • a representative tobacco formulation exhibits a ph of about 6.8 to about 8.2.
  • a representative technique for determining the pH of a tobacco formulation involves dispersing 2 g of that formulation in 10 ml of high performance liquid chromatography water, and measuring the ph of the resulting suspension/solution (e.g., with a pH meter).
  • the tobacco parts or pieces may be irradiated, or those parts and pieces may be pasteurized, or otherwise subjected to controlled heat treatment.
  • the component materials may be irradiated, or those component materials may be pasteurized, or otherwise subjected to controlled heat treatment.
  • a formulation may be prepared, followed by irradiation or pasteurization, and then flavoring ingredient(s) may be applied to the formulation.
  • the tobacco formulation can be irradiated or pasteurized after the tobacco formulation has been incorporated within a moisture-permeable packet or pouch (e.g., so as to provide individual containers of snus-type smokeless tobacco product.
  • composition/construction of a moisture-permeable packet or pouch that acts as a snus-type container for use of the tobacco formulation can vary.
  • Suitable packets, pouches or containers of the type used for the manufacture of smokeless tobacco products are available under the tradenames “taboka,” CatchDry, Ettan, General, Granit, Goteborgs Rape, Grovsnus White, Metropol Kaktus, Mocca Anis, Mocca Mint, Mocca Wintergreen, Kicks, Probe, Prince, Skruf, TreAnkrare, Camel Snus Original, Camel Snus Frost and Camel Snus Spice.
  • the tobacco formulation may be contained in pouches and packaged, in a manner and using the types of components used for the manufacture of conventional snus types of products.
  • the pouch or fleece provides a liquid-permeable container of a type that may be considered to be similar in character to the mesh-like type of material that is used for the construction of a tea bag. Components of the loosely arranged, granular tobacco formulation readily diffuse through the pouch and into the mouth of the user.
  • Snus types of products can be manufactured using equipment such as that available as SB 51-1/T, SBL 50 and SB 53-2/T from Merzmaschinen GmBH.
  • Snus pouches can be provided as individual pouches, or a plurality of pouches (e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches) can connected or linked together (e.g., in an end-to-end manner) such that a single pouch or individual portion can be readily removed for use from a one-piece strand or matrix of pouches.
  • the tobacco composition most preferably is provided in a form that is characteristic of a snus type of product
  • the tobacco composition also can have the form of loose moist snuff, loose dry snuff, chewing tobacco, pelletized tobacco pieces, extruded tobacco strips or pieces, finely divided ground powders, finely divided or milled agglomerates of powdered pieces and components, flake-like pieces (e.g., that can be formed by agglomerating tobacco formulation components in a fluidized bed), molded processed tobacco pieces, pieces of tobacco-containing gum, products incorporating mixtures of edible material combined with tobacco pieces and/or tobacco extract, products incorporating tobacco (e.g., in the form of tobacco extract) carried by a solid inedible substrate, and the like.
  • the tobacco composition can have the form of compressed tobacco pellets, multi-layered extruded pieces, extruded or formed strands, rods or sticks (for example, a strand, rod or stick having a length of about 3-7 centimeters, preferably about 4-6 centimeters, and a diameter of about 1-5 millimeters, preferably about 2-4 millimeters), compositions having one type of tobacco formulation surrounded by a different type of tobacco formulation, rolls of tape-like films, readily water-dissolvable or water-dispersible films or strips, or capsule-like materials possessing an outer shell (e.g., a pliable or hard outer shell that can be clear, colorless, translucent or highly colored in nature) and an inner region possessing tobacco or tobacco flavor (e.g., a Newtoniam fluid or a thixotroic fluid incorporating tobacco of some form).
  • an outer shell e.g., a pliable or hard outer shell that can be clear, colorless, translucent or highly colored in nature
  • Processed tobacco compositions such as compressed tobacco pellets can be produced by compacting granulated tobacco and associated formulation components, compacting those components in the form of a pellet, and optionally coating each pellet with an overcoat material.
  • Exemplary granulation devices are available as the FL-M Series granulator equipment (e.g., FL-M-3) from Vector Corporation and as W120V and WP 200VN from Alexanderwerk, Inc.
  • Exemplary compaction devices such as compaction presses, are available as Colton 2216 and Colton 2247 from Vector Corporation and as 1200i, 22001, 3200, 2090, 3090 and 4090 from Fette Compacting.
  • Devices for providing outer coating layers to compacted palletized tobacco formulations are available as CompuLab 24, CompuLab 36, Accela-Cota 48 and Accela-Coata 60 from Thomas Engineering.
  • Processed tobacco compositions can be manufactured using a wide variety of extrusion techniques.
  • multi-layered tobacco pellets can be manufactured using co-extrusion techniques (e.g., using a twin screw extruder).
  • co-extrusion techniques e.g., using a twin screw extruder
  • successive wet or dry components or component mixtures can be placed within separate extrusion hoppers.
  • Steam, gases (e.g., ammonia, air, carbon dioxide, and the like), and humectants e.g., glycerin or propylene glycol
  • the various components are processed so as to be very well mixed, and hence, come in complete contact with each other.
  • the contact of components is such that individual components can be well embedded in the extrusion matrix or extrudate. See, for example, U.S. Pat. No. 4,821,749 to Toft et al., which is incorporated herein by reference.
  • Certain tobacco compositions can incorporate tobacco as the major component thereof.
  • those compositions do not, to any substantial degree, leave any residue in the mouth of the user thereof.
  • those compositions do not provide a the user's mouth with slick or slimy sensation (e.g., due to overly high levels of binding agents).
  • Tobacco materials during processing, can be treated with pH adjusters or other suitable agents, so that natural pectins within the tobacco material can be released. Release of natural tobacco pectin can act to reduce the amount of additional gums/hydrocolloids, cellulose-derived, or starch-based binders needed to aid in desired sheet or film tensile strength qualities.
  • fine tobacco powder is cooked in an alkaline pH adjusted solution at elevated temperatures relative to ambient.
  • Such treatment also can provide desirable sensory attributes to the tobacco material. See, for example, U.S. Pat. No. 5,099,864 to Young et al.; U.S. Pat. No. 5,339,838 to Young et al. and U.S. Pat. No. 5,501,237 to Young et al.; which are incorporated herein by reference.
  • a representative type of individual portion tobacco product possesses an outer shell and an inner region in the form of a tobacco formulation.
  • a representative outer shell can be provided by providing a liquid mixture of alginates (e.g., sodium alginates available as Kelvis, Kelgin and Mannucol from International Specialty Products Corp.), rice starch, sucralose, glycerin and flavoring agent (e.g., mint flavor) in water so as to provide a liquid mix exhibiting a Brookfield viscosity at 25° C. of about 20,000 to about 25,000 centipoise.
  • alginates e.g., sodium alginates available as Kelvis, Kelgin and Mannucol from International Specialty Products Corp.
  • rice starch e.g., a starch
  • sucralose e.g., glycerin
  • flavoring agent e.g., mint flavor
  • That viscous mixture can be used to form a sheet that can be formed into an outer layer (e.g., using a Villaware Imperia Pasta Machine, Dough Roller 150 equipped with a Villaware Ravioli Attachment for Imperia 150-25, each of which is available through Imperia Trading Company) or semi-circular shells that can be combined (e.g., by exposure to heat) to form an outer layer.
  • an outer layer e.g., using a Villaware Imperia Pasta Machine, Dough Roller 150 equipped with a Villaware Ravioli Attachment for Imperia 150-25, each of which is available through Imperia Trading Company
  • semi-circular shells that can be combined (e.g., by exposure to heat) to form an outer layer.
  • such a viscous mixture can be suitably dried by heating at about 60° C. for about 1 hour. Inside that outer shell can be incorporated a wide variety of tobacco formulations.
  • One representative tobacco formulation used as the inner region of such a is a dry or moist mixture of granulated or milled tobacco material that can be mixed with other ingredients, such as flavoring agents, humectants, emulsifiers, fillers, pH adjusters, dispersion aids, and the like.
  • One representative tobacco formulation has the form of a fluid (e.g., the form of a weak gel or soft gel). That tobacco formulation can be provided by mixing granulated or milled tobacco material, kappa-carageenan, Kelvis-type sodium alginate, propylene glycol, polysobate 60, and flavoring agent (e.g., menthol and cinnamon) in water, such that the moisture content of the formulation is about 40 to about 50 weight percent.
  • One representative tobacco formulation has the form of a fluid.
  • That tobacco formulation can be provided by mixing granulated or milled tobacco material, glycerin, glycerol stearate, propylene glycol, kappa-carageenan, carboxymethycellulose available as Ticalose 1500 from TIC Gums and micro-crystalline cellulose (e.g., Ticacel HV from TIC Gums) in water, such that the moisture content of the formulation is about 60 to about 70 weight percent.
  • the amount of tobacco formulation incorporated within each sealed outer package can vary.
  • loose tobacco composition can be incorporated into an outer package, the package is sealed, and that loose tobacco can be used as loose snuff or chewing tobacco when the outer package is opened.
  • tobacco composition contained within a snus-type pouch or packet is incorporated within the outer package, the package is sealed, and the snus-type product can be used when the outer package is opened.
  • the amount of tobacco formulation within each individual portion is such that there is at least about 50 mg, often at least about 150 mg, and frequently at least about 250 mg, of dry weigh tobacco; and less than about 700 mg, often less than about 500 mg, and frequently less than about 300 mg, of dry weight tobacco.
  • snus-type smokeless tobacco products can have the form of so-called “portion snus.”
  • One exemplary snus-type product possesses about 1 g of a tobacco formulation having a moisture content of about 35 weight percent; which tobacco formulation is contained in a sealed fleece pouch having an overall length of about 30 mm, a width of about 16 mm, and a height of about 5 mm, wherein the length of the compartment area of that pouch is about 26 mm due to a seal of about 2 mm width at each end of that pouch.
  • Another exemplary snus-type product possesses about 0.5 g of a tobacco formulation having a moisture content of about 35 weight percent; which tobacco formulation is contained in a sealed fleece pouch having an overall length of about 26 mm, a width of about 12 mm, and a height of about 5 mm, wherein the length of the compartment area of that pouch is about 22 mm due to a seal of about 2 mm width at each end of that pouch.
  • the outer packaging material useful in accordance with the present invention can vary. Typically, the selection of the packaging material is dependent upon factors such as aesthetics, comfort of handling, desired barrier properties (e.g., so as to provide protection from exposure to oxygen or radiation, or so as to provide protection from loss of moisture), or the like.
  • the packaging material most preferably has the form of a film, such a laminated film (e.g., a co-extruded laminated film).
  • the number of layers present with a laminated packaging material can vary; and can be at least about 3 layers, and often at least about 4 layers; while typically, the number of layers does not exceed about 10 layers, and often does not exceed about 8 layers.
  • exemplary packaging materials typically are at least about 0.0025 inch, often at least about 0.003 inch; while typically, the thickness of the packaging materials typically is less than about 0.006 inch, and often less than about 0.005 inch.
  • Representative materials that can be used to provide components or layers of film materials or laminated films can include polyvinyl chloride, ethylene vinyl acetate co-polymer, oriented polypropylene, linear low density polyethylene, polyvinylidene dichloride, polyester terephalate, ethylene methacrylic acid co-polymer, metallacene linear low density polyethylene, and the like.
  • Exemplary packaging materials can be plastic/metal films, plastic/metal films that are paper coated, plastic laminate films, or the like.
  • Such types of materials can be manufactured from materials that make them essentially impervious to oxygen and/or moisture, can be sealed to provide a seal with good integrity, and can provide an outer package that retains or maintains its impervious nature or character over time.
  • Suitable materials are of the type that have been employed as packaging materials for the controlled atmosphere or vacuum packaging of food and pharmaceutical types of products.
  • Exemplary other materials useful form providing packaging materials of the present invention preferably include flexible-type plastic materials. See, for example, those polymeric materials, sealants, adhesives, and the like, set forth in US Pat. Pub. No. 2004/0043165 to Van Hulle et al.; which is incorporated herein by reference.
  • suitable reducing agent for packaging materials that are used for the purpose of preventing contamination of the tobacco composition by oxygen, it is desirable to incorporate an effective amount of suitable reducing agent into the material that provides the inner surface of the packaging material.
  • One exemplary laminated film possesses four layers; the top or outer layer being composed of a layer of polyester terephalate (PET) having a thickness of about 0.00048 inch, a thin layer of adhesive (e.g., a polyurethane-type adhesive available under the tradename Tycel from the Liofol Company), a metal film (e.g., aluminum) having a thickness of about 0.00035 inch, and a bottom layer of an ethylene methacrylic acid containing composition available under the tradename Surlyn from E. I. DuPont de Nemours & Company and having a thickness of about 0.002 inch.
  • the side of the PET adjacent the adhesive can be printed with product information using a suitable ink.
  • Another exemplary laminated film possesses three layers; the top or outer layer being composed of a layer of PET having a thickness of about 0.00048 inch, a thin layer of adhesive (e.g., an adhesive available as Tycel), and a bottom layer of a composition available as Surlyn and having a thickness of about 0.002 inch.
  • Another exemplary laminated film possesses four layers; the top or outer layer being composed of a layer of PET having a thickness of about 0.00048 inch, a thin metal film (e.g., aluminum), a thin layer of adhesive (e.g., an adhesive available as Tycel), and a bottom layer composition available as Surlyn and having a thickness of about 0.002 inch.
  • the foregoing representative types of laminated films are suitable for providing so-called “fin sealed” and “three-sided” types of packaging containers having the PET layer as the outer surface of those containers.
  • One exemplary laminated film possesses; the top or outer layer being composed of a layer of a material such as Surlyn having a thickness of 0.002 inch, a thin layer of adhesive, a metal film (e.g., aluminum) having a thickness of about 0.00035 inch, a thin layer of adhesive, and a bottom layer of a material such as Surlyn having a thickness of about 0.002 inch.
  • a material such as Surlyn having a thickness of 0.002 inch
  • a metal film e.g., aluminum
  • a bottom layer of a material such as Surlyn having a thickness of about 0.002 inch.
  • the present invention can involve the use of equipment, materials, methodologies and process conditions that are suitably modified in order to provide the packaging and controlled atmospheric conditions for the tobacco products that are packaged pursuant thereto.
  • the atmosphere within the packaging materials can be modified in a variety of ways. For example, a significant amount of the atmosphere within the package can be removed (e.g., by using vacuum packaging types of techniques), or the atmosphere within the package can be altered in a controlled manner (e.g., by using gas flushing types of techniques).
  • the controlled or modified atmospheres within packaged tobacco products of the present invention can vary.
  • tobacco product is vacuum packed or flushed so as to have a controlled or modified atmosphere (e.g., even if the atmosphere is controlled in a manner such that the atmospheric pressure within the sealed package is at a positive pressure relevant to ambient atmospheric pressure)
  • atmospheric conditions within the package are controlled such that a significant amount, and most preferably virtually all of the oxygen present within with package, is removed from that package prior to the time that the package is sealed. That is, less than about 8 percent, and often less than about 6 percent, of the weight of the controlled atmosphere initially present with a sealed outer package is composed of oxygen.
  • the atmosphere present within the package preferably can possess less than about 5 percent oxygen, and most preferably between about 1 percent oxygen and about 5 percent oxygen, based on the weight of the controlled atmosphere initially present within that sealed package.
  • a gaseous species e.g., a selected gas or mixture of gases
  • a significant amount, and most preferably virtually all, of the atmosphere within the sealed package is provided by the desired gaseous species.
  • gaseous species include nitrogen, argon, carbon dioxide, and the like (e.g., high purity gases that are greater than about 99 percent pure, by weight).
  • the atmosphere to which the tobacco product incorporates a relatively high level of a desired gaseous species (e.g., oxygen) in order to introduce the effects of “gas shock” to the tobacco product can be desirable for the introduction of “oxygen shock” for purposes of inhibiting enzymatic discoloration, preventing anaerobic fermentation reactions, and inhibiting aerobic and anaerobic microbial growth).
  • a controlled atmosphere containing an amount of oxygen such that the level of oxygen in that atmosphere greater than about 25 percent by weight, often greater than about 30 percent by weight, can provide conditions suitable for introduction of oxygen shock.
  • Representative equipment useful for carrying out process steps associated with the packaging aspects of the present invention is available from Winpak Ltd. (eg., systems identified as LD32, L25, L18 and L12); as Linium 300 Series horizontal flow wrapping systems from Doboy Inc. (e.g., Linium Model Nos. 301, 302, 303, 304 or 305); as Hiwrap 504 systems available from Hitech Systems s.r.l.; and as the types of systems available from Rovemamaschinen GmbH.
  • Preferred equipment provides a wrapping material that provides a seal that does not allow passage of gases or moisture therethrough (e.g., a seal that might be considered as “air tight”).
  • Representative blister pack packaging materials can vary. Exemplary materials used for the lower layer of a typical blister pack packaging material are laminated polymer films available as Pentapharm alfoil T-250/25/90, Pentapharm ACLAR PA 180/02, Pentapharm ACLAR PA 200/02, and Pentapharm ACLAR PA 300/02, from Klockner-Pentaplast of America, Inc. Exemplary materials used for the upper layer of a typical blister pack packaging material are heat sealable metal films.
  • An exemplary heat sealable film is an aluminum film having a thickness of about 0.0007 inch coated on the sealing side with a heat sealable material (e.g., Surlyn) that has a thickness of about 0.0001 inch. See, also, for example, the types of materials set forth in US Pat. Pub. No. 2004/0043165 to Van Hulle et al.; which is incorporated herein by reference.
  • pealable lid types of blister packages can be employed, off particular interest are the so-called “push through” types of blister packages.
  • the packaging can be carried out in a controlled environment. That is, pasteurized tobacco product can be packaged in outer packages in a sterile environment.
  • Products of the embodiments herein may be packaged and stored in much the same manner that conventional types of smokeless tobacco products are packaged and stored.
  • a plurality of packets or pouches may be contained in a cylindrical container.
  • moist tobacco products e.g., products having moisture contents of more than about 20 weight percent
  • relatively dry tobacco products e.g., products having moisture contents of less than about 15 weight percent
  • relatively dry tobacco products often may be stored under a relatively wide range of temperatures.
  • smokeless tobacco composition is packaged in such a manner that there is no requirement for the necessity of refrigeration during periods of transport and prior to sale. That is, shipping, handling and storage can be simplified, and the periods during which shipping, handling and storage are carried out can be prolonged, while the quality of the smokeless product can be maintained. In addition, though the shelf life of the product can be prolonged, thus negating the necessity of refrigeration, the shelf life of refrigerated product also can be prolonged.
  • Product packaged in accordance with the embodiments herein can be stored for prolonged periods of time, while maintaining its overall freshness, maintaining its moisture content, maintaining its visual appearance (e.g., not undergoing significant discoloration), maintaining its sensory properties, not experiencing absorption of undesirable flavors or odors, and not undergoing change in its overall chemical nature due to the action of microbial species.
  • Moist tobacco product e.g., products having moisture contents of more than about 20 weight percent, and often more than about 30 weight percent
  • a tobacco formulation in the form of a somewhat flat strip or film is provided in the following manner.
  • Tobacco material comprised of a mixture of cured and aged flue-cured, burley and Oriental lamina is provided in a strip or leaf form, and at a moisture of about 9 percent. A portion of this tobacco mixture is washed with water, and the solubles or extractable portion that is collected is discarded, and the remaining water insoluble solids (e.g., pulp portion) is dried. The resulting dried pulp portion then is mixed with the retained untreated portion of the original tobacco mixture. That tobacco mixture then is milled to a particle size that passes through a 150 Tyler mesh screen.
  • the resulting tobacco mixture is further mixed with other ingredients to form the a formulation that contains about 40 parts of milled tobacco lamina, about 25 parts calcium carbonate, about 15 parts binder (which may be composed of pectin, gelatin, sodium alginate and starch), about 15 parts glycerin, about 4 parts flavoring, and about 1 part sucralose or about 1 part sweetening agent available as SucraSweet HIS 600 from Sweetener Solutions LLC (on a dry weight basis).
  • the binder can be a suitable binding agent (e.g., food grade type binding agent), and exemplary binding agents can be selected from a variety of pectins, gelatins, alginates (e.g., sodium alginate) or starches.
  • the resulting dry mixture is dispersed in deionized water (e.g., about 8 to about 10 parts dry mixture in about 90 to about 92 parts water) to form a slurry that exhibits a Brookfield viscosity of about 20,000 centipoise to 25,000 centipoise at 25° C.
  • deionized water e.g., about 8 to about 10 parts dry mixture in about 90 to about 92 parts water
  • the slurry is cast as a thick, uniform layer onto a stainless steel drying tray, which can be lightly coated with a non-stick spray before casting the slurry.
  • the tray is placed in a drying oven at relatively low heat (e.g., about 60° C. to about 70° C.) for up to about 10 hours (e.g., about 6 to about 8 hours).
  • relatively low heat e.g., about 60° C. to about 70° C.
  • a formed mixture of tobacco formulation components is provided in a desired shape from an aqueous slurry of those components.
  • the slurry can be cast in the shape of a strip (e.g., having a length of about 25 cm to about 35 cm) and a width of about 1 cm to about 2 cm. If desired, optional perforation or weakness lines that extend generally perpendicular to the longitudinal axis of the strip can be stamped into the strip at predetermined intervals.
  • the resulting product which can be formulated and dried so as to be pliable and possess an acceptably high tensile strength, can be coiled and incorporated within the type of container described previously with reference to FIG. 6 . That container then can be packaged within an outer package, and under controlled atmospheric conditions, of the general type described previously. In use, the outer package can be opened, and a piece of the long strip of tobacco formulation extending from an opening on the container can be broken off in the desired amount for use.
  • the slurry can be cast as a sheet or film, and upon drying, individual portions can be stamped, punched or cut from that sheet or film.
  • individual portions can be stamped, punched or cut from that sheet or film.
  • rectangular strips or sheets, or circular pieces can be provided from the sheet or film; and packaged as individual portions (e.g., using outer wrapping material configured in the general manner described previously with reference to FIG. 1 ).
  • Cast material that has been dried can be ground into a powder or granulated form, and then packed within a moisture permeable pouch and sealed. Each such pouch can be packaged in an outer package, in the manner described previously with reference to FIG. 1 .
  • the smokeless tobacco products that are preferably non-chewable tobacco products that are intended to be placed between the cheek and the gum of the mouth are provided as follows.
  • Preferred smokeless tobacco products when used orally, completely dissolve in the mouth leaving little to no solid or granular residue, while dispensing or dispersing tobacco components, and while providing a pleasant trigeminal and organoleptic experience.
  • Cured and/or aged tobacco lamina or stems is provided in a strip or shredded form, and at a moisture content of about 9 percent, or less.
  • tobacco types can include flue-cure, burley and Oriental tobaccos, and various combinations thereof.
  • specialty or exotic types of tobaccos, including tobaccos such as Perique and Cavendish also can be incorporated within blends of tobacco materials.
  • the lamina or stem is milled under cryogenic conditions, or any other suitable dry milling means, to a fine ground form.
  • the powder is sufficiently fine so as to pass through a 150 Tyler mesh screen.
  • the resulting powder then is irradiated with about 5 to about 20 kilo Grays of gamma radiation.
  • Flue cured tobacco lamina that has been aged is provided in a strip form, and at a moisture content of about 9 percent or less.
  • the lamina is milled under cryogenic conditions or any other suitable dry milling means to a fine ground form.
  • the powder is sufficiently fine so as to pass through a 150 Tyler mesh screen.
  • the resulting powder then is irradiated with about 5 to about 20 kilo Grays of gamma radiation.
  • the tobacco powder is introduced into a fluidized bed. While in the fluidized bed, the tobacco powder is introduced to a mixture of water and various other ingredients that have been provided in a dry powder form. The resulting mixture is removed from the fluidized bed, and dried to a moisture content of about 4 percent.
  • a representative formulation contains about 25 to about 40 parts of the granulated flue-cured tobacco lamina, about 0.5 to about 3.0 parts of sucralose (modified sugar), about 1 part titanium dioxide (color modifier), about 10 to about 25 parts calcium carbonate (in the form available as HD PPT Fine from Ruger Chemical), about 15 to about 30 parts mannitol powder, about 2 to about 5 parts powdered cellulose (in the form available as QC-90 from CreaFill Fibers), about 5 to about 15 parts pregelatinized corn starch (in the form available as Starch 1500 from Colorcon), about 3 to about 6 parts povidone (in the form available as PVPK-30 from Xian Medicines & Health Products), and about 0.75 to about 2.5 parts potassium hydroxide.
  • the moisture content of the resulting granulated tobacco formulation is about 4 percent.
  • the resultant granulated tobacco formulation is a dry, free flowing, finely milled powder that is light tan in color, and is made up of particles having an average particle size sufficient to pass through a screen of about 80 Tyler mesh.
  • a desired amount of the tobacco formulation (e.g., about 0.5 g to about 1 g) of the tobacco formulation can be placed within a sealed fleece pouch, and that pouch can be packaged within an outer package, such as in the general manner set forth previously with reference to FIG. 1 .
  • a dry mix of about 200 g to about 225 g of granulated tobacco powder of the type described previously in Example 2, a flavoring agent (e.g., mint flavor) and optionally sodium chloride are mixed for about 5 minutes in a table-top Model P400 PopielTM Automatic Pasta Maker (available from Ronco Inventions, LLC, Chestworth, Calif.). Then, about 48 g portion of a premixed warm aqueous solution (e.g., about 40 g water and about 8 g glycerin) is added to the dry mix. Those contents are mixed for about 3 minutes, or until small pea-like size lumps develop.
  • a flavoring agent e.g., mint flavor
  • optionally sodium chloride optionally sodium chloride
  • the pea-like mixture is subsequently extruded via selected dies to obtain flat pasta-like sheets (1.4 cm wide ⁇ 30 cm length ⁇ 0.1 to 0.7 cm depth) or noodle-like cylindrical rods (0.1 to 0.7 cm diameter ⁇ 12 to 24 cm length).
  • the pasta-like sheet is further cut into smaller square or rectangular pieces to obtain pellets that each weigh about 185 mg to about 250 mg.
  • the noodle-like rods are further cut to obtain smaller cylindrical pellet pieces or strands, each weighing about 185 mg to about 250 mg.
  • Generally wafer shaped pieces (e.g., generally cylindrically shaped pieces), each weighing about 185 mg to about 250 mg, also can be cut from extruded cylindrical rods (e.g., a continuous cylindrical extrudate can be cut generally perpendicular to its longitudinal axis).
  • extruded cylindrical rods e.g., a continuous cylindrical extrudate can be cut generally perpendicular to its longitudinal axis.
  • thin cylindrical extrudate can be similarly subdivided to provide somewhat longer, stick-like pieces that weight about 150 mg to about 250 mg.
  • the various shaped pieces are placed onto a stainless steel plate and dried by ambient temperatures for up to about 24 hours (e.g., for about 12 to about 20 hours). Alternatively, the pieces are dried either via forced air ovens operated at about 50° C. to about 100° C. for up to 15 minutes, or over steam from boiling water baths.
  • the dried products typically exhibit moisture contents of about 5 to about 10 percent.
  • Typical tobacco formulations exhibit, on a dry weight basis, about 85 to about 99 parts of the granulated tobacco powder, about 1 to about 15 parts flavoring agent, and about 1 to about 1.5 parts optional sodium chloride.
  • the various tobacco formulations can be packaged in the manner set forth previously with reference to FIG. 1 through FIG. 5 and FIG. 7 .
  • Tobacco formulations having the general size and shape of those set forth previously in Example 3 are provided, using the types of preparation techniques set forth in Example 3. However, the granulated tobacco powder that is employed in Example 3 is replaced with a finely milled tobacco powder that is prepared as follows.
  • Flue cured tobacco lamina that has been aged is provided in a strip form, and at a moisture content of about 9 percent or less.
  • the lamina is milled under cryogenic conditions or any other suitable dry milling means to a fine ground form.
  • the powder is sufficiently fine so as to pass through a 150 Tyler mesh screen.
  • the resulting powder then is irradiated with about 5 to about 20 kilo Grays of gamma radiation.
  • the powdered tobacco lamina and various other dry ingredients are premixed in an automated tumbling mixer for about 15 minutes.
  • a dry mix is prepared from about 122.5 g of the tobacco powder, about 80.5 g cane sugar, about 52.5 g precipitated calcium carbonate, about 17.5 g mannitol, about 48 g rice starch (pregelatinized) and about 1.7 g vanilla flavoring.
  • that dry mix is combined with about 100 g of warm water (e.g., at about 30° C. to about 45° C.) having about 4.6 g of potassium hydroxide dissolved therein in the pasta maker described in Example 3.
  • Tobacco formulations of the type generally set forth in Example 3 are provided. That is, the tobacco formulations can be formed into desired shapes, such as sheets, strips, pellets, sticks, and the like. The shaped tobacco formulations can be packaged using the types of outer packaging materials set forth hereinbefore.
  • Tobacco formulations are provided in the manner set forth previously in Example 4.
  • the tobacco formulation ingredients are formulated as follows.
  • the powdered tobacco lamina described in Example 4, and various other dry ingredients are premixed in an automated tumbling mixer for about 15 minutes.
  • a dry mix is prepared from about 60 g of the tobacco powder, about 50 g cane sugar, about 34 g precipitated calcium carbonate, about 20 g mannitol, about 20 g rice starch (pregelatinized), about 10 g maltodextrin, about 5.2 g microcrystalline cellulose (available as Ticacel HV from TIC Gums), about 0.8 g vanilla flavoring, about 0.5 g menthol and about 3.5 g glycerol tristearate.
  • that dry mix is combined with about 50 g of warm water (e.g., at about 30° C. to about 45° C.) having about 2 g of potassium hydroxide dissolved therein in the pasta maker described in Example 3.
  • Tobacco formulations are provided in the manner set forth previously in Example 4. However, the tobacco formulation ingredients are formulated as follows. A powdered tobacco lamina is provided from flue-cured and burley tobacco lamina, in the general manner set forth in Example 4. In addition, in the general manner set forth in Example 4, that powdered tobacco lamina, and various other dry ingredients are premixed in an automated tumbling mixer for about 15 minutes.
  • a dry mix is prepared from about 64 g of the tobacco powder, about 4.4 g of a sweetening agent available as SucraSweet HIS 600 from Sweetener Solutions LLC, about 40 g precipitated calcium carbonate, about 42 g mannitol, about 19 g rice starch (pregelatinized), about 9 g hydroxypropylmethylcellouse available as Klucel EF from Hercules, Inc. and about 5 g microcrystalline cellulose (available as Ticacel HV from TIC Gums). Then, that dry mix is combined with about 50 g of warm water (e.g., at about 30° C. to about 45° C.) having about 2.5 g of potassium hydroxide and about 8 g glycerin dissolved therein in the pasta maker described in Example 3.
  • a sweetening agent available as SucraSweet HIS 600 from Sweetener Solutions LLC
  • 40 g precipitated calcium carbonate about 42 g mannitol
  • about 19 g rice starch pregelatinized
  • Tobacco formulations are provided in the manner set forth previously in Example 4. However, the tobacco formulation ingredients are formulated as follows. A powdered tobacco lamina is provided from flue-cured and burley tobacco lamina, in the general manner set forth in Example 4. In addition, in the general manner set forth in Example 4, that powdered tobacco lamina and various other dry ingredients are premixed in an automated tumbling mixer for about 15 minutes.
  • a dry mix is prepared from about 64 g of the tobacco powder, about 4.4 g of a sweetening agent available as SucraSweet HIS 600 from Sweetener Solutions LLC, about 40 g precipitated calcium carbonate, about 42 g mannitol, about 19 g rice starch (pregelatinized), about 9 g sodium alginate available as Kelvis from International Specialty Products Corp., about 2 g of mint flavoring agent and about 5 g microcrystalline cellulose (available as Ticacel HV). Then, that dry mix is combined with about 40 g of warm water (e.g., at about 30° C. to about 45° C.) having about 2.5 g of potassium hydroxide and about 8 g glycerin dissolved therein in the pasta maker described in Example 3.
  • a sweetening agent available as SucraSweet HIS 600 from Sweetener Solutions LLC
  • 40 g precipitated calcium carbonate about 42 g mannitol
  • about 19 g rice starch pregelatinized
  • a tobacco composition having the form of a multi-layered, multi-flavored, co-extruded pellet is provided as follows.
  • Granulated tobacco powder and other dry ingredients are again used as described in Example 1, to make a two layered pellet smokeless tobacco formulation.
  • the pellet can be characterized as having a shape that might be considered to “pillow-type” in nature (i.e., the top, bottom, sides and ends are made up by the outer layer or over layer, and the inner layer is contained within the outer layer).
  • the inner layer is provided by mixing about 200 g granulated flue-cured tobacco powder, about 6 g sodium chloride and about 1.5 g menthol powder. Then, that dry mix is combined with about 42 g of warm water (e.g., at about 30° C. to about 45° C.) having about 8 g of glycerin dissolved therein in the pasta maker described in Example 3.
  • the inner layer is generally cylindrical and is made as noodle-like rod.
  • the outer layer is provided by mixing about 200 g granulated flue-cured tobacco powder, about 5 g sodium chloride and about 14 g of a finely milled burley tobacco powder.
  • the outer layer is made as a pasta-like flat sheet containing more fine tobacco powder, as but less flavoring agent than the inner layer.
  • the pasta-like sheet is wrapped completely around the thin noodle-like rod.
  • the enwrapped rod is then cut into smaller cylindrical pellets, and both cut ends molded or sealed to form small pillow-like pellets, each pellet weighing about 185 mg to about 250 mg.
  • the pellets are ambient temperature dried over about 12 hours, or dried for about 20 minutes in a forced air oven set at about 50° C. to about 80° C.
  • the inner and outer layers may be formulated in various ways; for example one layer may be produced to differ from the other in its level of tobacco sensory properties, such as by varying the level of flavorings or by using differing mixtures of tobacco compositions or formulations.
  • the multi-layering can also be achieved by physically wrapping a preformed outer layer around a preformed inner layer.
  • an inner layer portion may be laminated between two outer layer portions of slightly larger lateral dimensions, and the outer layers may then be sealed together at their edges to envelop the inner layer.
  • the tobacco formulation so formed can be packaged within an outer package of the type described previously with reference to FIG. 1 .
  • a tobacco composition having the general form of a tape or roll is provided as follows.
  • Fine tobacco powder containing a mixture of flue-cure and burley is premixed in a tumbling mixer for 15 minutes with other ingredients.
  • a dry mix that is provided contains about 60 g granulated tobacco material, about 3.4 g of a sweetening agent available as SucraSweet HIS 600, about 36 g precipitated calcium carbonate, about 40 g mannitol, about 20 g rice starch (pregelatinized), about 10 g sodium alginate available as Kelvis from International Specialty Products Corp., about 3 g of menthol flavor, about 5 g cinnamon flavor and about 4 g microcrystalline cellulose (available as Ticacel HV).
  • Each sheet is further perforated at intervals of about 0.5 to about 1.5 cm intervals length-wise to obtain a roll or tape-like product from which square or rectangular pieces can easily be cut off
  • Samples are preferably not fully dried; and hence, maintain prolonged pliability, elasticity, and tensile strength.
  • the moisture content of the tobacco composition ranges from about 12.5 to about 25 percent.
  • the tape-like product can be formed into a roll, and positioned within an outer container of the type described previously with reference to FIG. 6 . That outer container then can be wrapped with an outer wrapping material, using packaging conditions such as those of the type described hereinbefore.
  • a tobacco composition having the general form of a tape or roll is provided as follows.
  • Fine tobacco powder containing a mixture of flue-cure and burley is premixed in a tumbling mixer for 15 minutes with other ingredients.
  • a dry mix that is provided contains about 52 g granulated tobacco material, about 2 g of a sweetening agent available as SucraSweet HIS 600, about 30 g precipitated calcium carbonate, about 27.5 g rice starch (pregelatinized), about 40 g sodium alginate available as Manucol LD from ISP Corporation, about 12 g sodium alginate available as Kelvis from ISP Corporation, about 3 g of menthol flavor, about 5 g cinnamon flavor and about 4 g microcrystalline cellulose (available as Ticacel HV).
  • Each sheet is further perforated at intervals of about 0.5 to about 1.5 cm intervals length-wise to obtain a roll or tape-like product from which square or rectangular pieces can easily be cut off
  • Samples are preferably not fully dried; and hence, maintain prolonged pliability, elasticity, and tensile strength.
  • the moisture content the tobacco composition ranges from about 12.5 to about 25 percent.
  • the tape-like product can be formed into a roll, and positioned within an outer container of the type described previously with reference to FIG. 6 . That outer container then can be wrapped with an outer wrapping material, using packaging conditions such as those of the type described hereinbefore.
  • a tobacco composition having the general form of a tape or roll is provided as follows.
  • a dry mix that is provided contains about 9 g rice starch (pregelatinized), about 20 g sodium alginate available as Manucol LD, about 5 g cinnamon powder and about 3 g menthol powder. Then, that dry mix is combined with about 40 g of warm water (e.g., at about 30° C. to about 45° C.) having about 16 g of glycerin dissolved therein in the pasta maker described in Example 3. During operation of the pasta maker, about 142 g of granulated tobacco material of the type described in Example 10 is introduced into the pasta maker along with the previously described aqueous mix.
  • the resulting blend is then extruded into flat pasta-like sheets of dimension about 1.4 cm wide by about 30 cm long, by about 0.1 cm to about 0.3 cm thick. Each sheet is further perforated at intervals of about 0.5 to about 1.5 cm intervals length-wise to obtain a roll or tape-like product from which square or rectangular pieces can easily be cut off Samples are preferably not fully dried; and hence, maintain prolonged pliability, elasticity, and tensile strength.
  • the moisture content the tobacco composition ranges from about 12.5 to about 25 percent.
  • the tape-like product can be formed into a roll, and positioned within an outer container of the type described previously with reference to FIG. 6 . That outer container then can be wrapped with an outer wrapping material, using packaging conditions such as those of the type described hereinbefore.
  • a tobacco composition having the general form of a tape or roll is provided as follows.
  • a dry mix that is provided contains about 20 g sodium alginate available as Manucol LD and about 5 g mint flavor. Then, that dry mix is combined with about 50 g of warm water (e.g., at about 30° C. to about 45° C.) having about 16 g of glycerin dissolved therein in the pasta maker described in Example 3. During operation of the pasta maker, about 195 g of granulated tobacco material of the type described in Example 10 is introduced into the pasta maker along with the previously described aqueous mix.
  • the resulting blend is then extruded into flat pasta-like sheets of dimension about 1.4 cm wide by about 30 cm long, by about 0.1 cm to about 0.3 cm thick. Each sheet is further perforated at intervals of about 0.5 to about 1.5 cm intervals length-wise to obtain a roll or tape-like product from which square or rectangular pieces can easily be cut off Samples are preferably not fully dried; and hence, maintain prolonged pliability, elasticity, and tensile strength.
  • the moisture content the tobacco composition ranges from about 12.5 to about 25 percent.
  • the tape-like product can be formed into a roll, and positioned within an outer container of the type described previously with reference to FIG. 6 . That outer container then can be wrapped with an outer wrapping material, using packaging conditions such as those of the type described hereinbefore.
  • a combination of finely milled flue-cure and burley tobacco powder (e.g., about 25 g) is mixed with about 100 ml of a solution having about 1 g potassium hydroxide in about 100 ml water.
  • the resulting slurry is heated with constant stirring to about 60° C. to about 80° C. for about 15 minutes.
  • About 1 g of a sweetening agent available as SucraSweet HIS 600 and about 15 g mannitol then are added, and the slurry is held at about 60° C. to about 80° C. for another 15 minutes, while mixing constantly to obtain a tobacco/water slurry.
  • a binder system is prepared separately in a Warring blender.
  • About 5 g sodium alginate available as Kelvis is first mixed at high shear with about 200 ml water for 5 minutes, followed by the slow addition of about 20 parts sodium alginate available as Manucol LD, about 7 g rice starch (pregelantinized), about 2 g microcrystalline cellulose available as Ticacel, about 10 g calcium carbonate and about 15 g glycerin, successively, while the blender is operated at medium to high shear speed for approximately another 10 minutes. The binder and tobacco slurry mixtures are then mixed together in the blender at medium to high shear speed for approximately another 5 minutes, with the addition of the about 2.5 g cinnamon and about 1.5 g menthol.
  • portions of the final slurry are cast at about 0.1 cm to about 0.3 cm thickness onto a stainless steel plate.
  • the slurries are then dried to form tobacco sheets or films weighing about 95 g to about 125 g per square meter.
  • the sheets are finally cut into smaller square or rectangular pieces, each weighing about 50 mg to about 150 mg.
  • the resulting pieces have the form of relatively slow dissolving strips. Those strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1 .
  • a combination of finely milled flue-cure and burley tobacco powder (e.g., about 25 g) is mixed with about 100 ml of a solution having about 2 g sodium carbonate in about 100 ml water.
  • the resulting slurry is heated with constant stirring to about 60° C. to about 80° C. for about 15 minutes.
  • About 1 g of a sweetening agent available as SucraSweet HIS 600 then is added, and the slurry is held at about 60° C. to about 80° C. for another 15 minutes, while mixing constantly to obtain a tobacco/water slurry.
  • a binder system is prepared separately in a Warring blender.
  • About 6 g sodium alginate available as Kelvis is first mixed at high shear with about 200 ml water for 5 minutes, followed by the slow addition of about 20 g rice starch (pregelantinized), about 10 g maltodextrin, about 15 g calcium carbonate and about 15 g glycerin, successively, while the blender is operated at medium to high shear speed for approximately another 10 minutes.
  • the binder and tobacco slurry mixtures are then mixed together in the blender at medium to high shear speed for approximately another 5 minutes, with the addition of the about 4.9 g mint flavor.
  • portions of the final slurry are cast at about 0.1 cm to about 0.3 cm thickness onto a stainless steel plate.
  • the slurries are then dried to form tobacco sheets or films weighing about 95 g to about 125 g per square meter.
  • the sheets are finally cut into smaller square or rectangular pieces, each weighing about 50 mg to about 150 mg.
  • the resulting pieces have the form of relatively slow dissolving strips. Those strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1 .
  • a combination of finely milled flue-cure and burley tobacco powder (e.g., about 15 g) is mixed with about 100 ml of a solution having about 1.75 g sodium carbonate in about 100 ml water.
  • the resulting slurry is heated with constant stirring to about 60° C. to about 80° C. for about 15 minutes.
  • About 0.5 g of a sweetening agent available as SucraSweet HIS 600 and about 7.5 g mannitol then are added, and the slurry is held at about 60° C. to about 80° C. for another 15 minutes, while mixing constantly to obtain a tobacco/water slurry.
  • a binder system is prepared separately in a Warring blender.
  • About 7.5 g konjac flour available as Nutritol GP 312 from FMC Bioplolymers Corporation is first mixed at high shear with about 200 ml water for 5 minutes, followed by the slow addition of about 15 g calcium carbonate, about 0.75 g sodium chloride and about 7.5 g glycerin, successively, while the blender is operated at medium to high shear speed for approximately another 10 minutes.
  • the binder and tobacco slurry mixtures are then mixed together in the blender at medium to high shear speed for approximately another 5 minutes, with the addition of the about 1.25 cinnamon and about 0.75 g menthol.
  • portions of the final slurry are cast at about 0.1 cm to about 0.3 cm thickness onto a stainless steel plate.
  • the slurries are then dried to form tobacco sheets or films weighing about 95 g to about 125 g per square meter.
  • the sheets are finally cut into smaller square or rectangular pieces, each weighing about 50 mg to about 150 mg.
  • the resulting pieces have the form of relatively slow dissolving strips. Those strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1 .
  • a combination of finely milled flue-cure and burley tobacco powder (e.g., about 15 g) is mixed with about 100 ml of a solution having about 1.75 g sodium carbonate in about 100 ml water.
  • the resulting slurry is heated with constant stirring to about 60° C. to about 80° C. for about 15 minutes.
  • About 0.75 g of a sweetening agent available as SucraSweet HIS 600 then is added, and the slurry is held at about 60° C. to about 80° C. for another 15 minutes, while mixing constantly to obtain a tobacco/water slurry.
  • a binder system is prepared separately in a Warring blender.
  • About 3.5 g sodium alginate available as Kelvis is first mixed at high shear with about 200 ml water for 5 minutes, followed by the slow addition of about 9.5 g rice starch (pregelatinized), about 5 g maltodextrin, about 5 g calcium carbonate, about 0.75 g sodium chloride and about 7.5 g glycerin, successively, while the blender is operated at medium to high shear speed for approximately another 10 minutes.
  • the binder and tobacco slurry mixtures are then mixed together in the blender at medium to high shear speed for approximately another 5 minutes, with the addition of the about 1.25 cinnamon and about 0.75 g menthol.
  • portions of the final slurry are cast at about 0.1 cm to about 0.3 cm thickness onto a stainless steel plate.
  • the slurries are then dried to form tobacco sheets or films weighing about 95 g to about 125 g per square meter.
  • the sheets are finally cut into smaller square or rectangular pieces, each weighing about 50 mg to about 150 mg.
  • the resulting pieces have the form of relatively slow dissolving strips. Those strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1 .
  • a granulated tobacco powder is mixed with about 100 ml of water in a Warring blender at low shear speed for about 5 minutes to obtain an aqueous tobacco slurry.
  • a binder system is prepared in a separate blender by mixing about 5 g sodium alginate available as Kelvis with about 200 ml water at high shear speed for about 5 minutes.
  • About 15 g sodium alginate available as Manucol LD and about 5 g hydroxypropylcellulose available as Klucel EF are slowly added, successively, as the slurry is mixed for approximately another 5 minutes.
  • About 7.5 g glycerin is then added to the binder system and the slurry mixed for another 5 minutes.
  • aqueous tobacco slurry and binder systems are then mixed together for another 5 minutes at medium to high shear speed with the addition of about 2 g mint flavor.
  • the final slurry is subsequently cast, dried, and cut into thin film strips. Those relatively slow dissolving strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1 .
  • a granulated tobacco powder is mixed with about 100 ml of water in a Warring blender at low shear speed for about 5 minutes to obtain an aqueous tobacco slurry.
  • a binder system is prepared in a separate blender by mixing about 6 g sodium alginate available as Kelvis with about 200 ml water at high shear speed for about 5 minutes.
  • About 10 g sodium alginate available as Manucol LD is slowly added, as the slurry is mixed for approximately another 5 minutes.
  • About 14 g glycerin is then added to the binder system and the slurry mixed for another 5 minutes.
  • aqueous tobacco slurry and binder systems are then mixed together for another 5 minutes at medium to high shear speed with the addition of about 5 g mint flavor.
  • the final slurry is subsequently cast, dried, and cut into thin film strips. Those relatively slow dissolving strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1 .

Abstract

A smokeless tobacco formulation includes particles or pieces of tobacco, and may include other ingredients, such as salts, sweeteners, binders, colorants, pH adjusters, fillers, flavoring agents, disintegration aids, antioxidants, humectants, and preservatives. The moisture content of the particles of the tobacco may vary. Certain smokeless tobacco products have the form of tobacco compositions or formulations that result from casting or otherwise forming a slurry incorporating tobacco material and other components as a film or sheet. Certain smokeless tobacco products have the form of tobacco compositions or formulations that result from pressing, extruding or otherwise forming a mixture incorporating tobacco material and other components into a desired shape. The foregoing tobacco products, as well as snus-type products, can be packaged under conditions of controlled atmosphere. Smokeless tobacco products can be sealed in outer packaging materials that are virtually impervious to oxygen and/or moisture, and those packaging materials can be vacuum sealed or sealed such that the atmosphere therewithin is essentially inert.

Description

    FIELD OF THE INVENTION
  • The present invention relates to tobacco, and in particular, to tobacco formulations suitable for use in a smokeless manner, and to the handling and use of tobacco that is in a smokeless form.
  • BACKGROUND OF THE INVENTION
  • Cigarettes, cigars, little cigars and pipes are popular smoking articles that employ tobacco in various forms. Smoking articles are tobacco products that are used by heating or burning tobacco, and aerosol (e.g., smoke) is inhaled by the smoker. Representative manners or methods that have been proposed for the packaging of tobacco products, including cigarettes and cigars, are set forth in U.S. Pat. No. Des 368,221 to Montague; U.S. Pat. No. 1,886,115 to Muller; U.S. Pat. No. 3,371,775 to Butler; U.S. Pat. No. 3,967,730 to Driscoll et al.; U.S. Pat. No. 4,852,734 to Allen et al.; U.S. Pat. No. 5,139,140 to Burrows et al.; U.S. Pat. No. 5,333,729 to Wolfe; U.S. Pat. No. 5,542,529 to Hein, III et al.; U.S. Pat. No. 5,938,018 to Keaveney et al. and U.S. Pat. No. 7,014,039 to Henson et al.; each of which is incorporated herein by reference.
  • Tobacco also may be enjoyed in a so-called “smokeless” form. Particularly popular smokeless tobacco products are employed by inserting some form of processed tobacco or tobacco-containing formulation into the mouth of the user.
  • Various types of smokeless tobacco products are set forth in U.S. Pat. No. 1,376,586 to Schwartz; U.S. Pat. No. 4,513,756 to Pittman et al.; U.S. Pat. No. 4,528,993 to Sensabaugh, Jr. et al.; U.S. Pat. No. 4,624,269 to Story et al.; U.S. Pat. No. 4,987,907 to Townsend; U.S. Pat. No. 5,092,352 to Sprinkle, III et al.; U.S. Pat. No. 5,387,416 to White et al.; and Des. 335,934 to Howard; U.S. Pat. App. Pub. No. 2005/0244521 to Strickland et al. and 2006/0162732 to Winn et al.; PCT Application Pub. No. WO 04/095959 to Arnarp et al.; PCT Application Pub. No. WO 05/063060 to Atchley et al.; PCT Application Pub. No. WO 05/004480 to Engstrom; and PCT Application Pub. No. WO 05/041699 to Quinter et al.; each of which is incorporated herein by reference. One type of smokeless tobacco product is referred to as “snuff.” Snuff typically is formulated in “moist” or “dry” forms. Representative types of snuff products, commonly referred to as “snus,” are manufactured in Europe, particularly in Sweden, by or through companies such as Swedish Match AB, Fiedler & Lundgren AB, Gustavus AB, Skandinavisk Tobakskompagni A/S and Rocker Production AB. Snus products available in the U.S.A. are marketed under the tradenames Camel Snus Frost, Camel Snus Original and Camel Snus Spice by R. J. Reynolds Tobacco Company. Representative smokeless tobacco products also are marketed under the tradenames Oliver Twist by House of Oliver Twist A/S; Copenhagen, Skoal, SkoalDry, Rooster, Red Seal, Husky, and Revel by U.S. Smokeless Tobacco Co.; “taboka” by Philip Morris USA; and Levi Garrett, Peachy, Taylor's Pride, Kodiak, Hawken Wintergreen, Grizzly, Dental, Kentucky King, and Mammoth Cave by Conwood Sales Co., L.P.
  • Exemplary manners for providing various types of tobacco products for distribution to consumers have been proposed in U.S. Pat. No. 3,696,917 to Levi; PCT WO 2004/095959 to Arnarp et al. and PCT WO 2005/016036 to Bjorkholm; each of which is incorporated herein by reference. Equipment for packaging tobacco has been commercially available, and representative equipment has been available as FPP 210 Pouch Packer from Schur Flexible Benelux.
  • Smokeless tobacco products are packaged for distribution, sale and use in a variety of ways. Chewing tobacco has been packaged in pouches, foil bags and metal containers. Snus types of products have been packaged in tins, “pucks” or “pots” that are manufactured from metal or plastic. In certain circumstances, smokeless tobacco products are refrigerated prior to sale, typically for the purpose of prolonging the freshness and moisture content thereof. For example, smokeless tobacco products, particularly moist tobacco products, can be refrigerated in order to avoid or retard absorption of contaminants that provide an undesirable flavor or odor to the product, avoid or retard the development discoloration or staining of the product, and to avoid or retard the activity of biologically active microorganisms. For example, smokeless tobacco products, and typically moist snuff types of products, can be refrigerated to retard the effects of enzymatic and other biological activities, pH changes, oxidation, and other effects that have a tendency to shorten product shelf-life or stability.
  • It would be desirable to provide efficient and effective forms of packaging for a smokeless tobacco composition or formulation. It also would be desirable to provide smokeless tobacco compositions or formulations, and in particular, processed smokeless tobacco compositions and formulations.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a smokeless tobacco product. The product includes a smokeless tobacco composition or formulation. For example, the smokeless tobacco formulation includes particles or pieces of tobacco, and may include other ingredients, such as salts, sweeteners, binders, colorants, pH adjusters, fillers, flavoring agents, disintegration aids, antioxidants, humectants, and preservatives. The moisture content of the particles of the tobacco may vary. Certain smokeless tobacco products have the form of tobacco compositions or formulations that result from casting or otherwise forming a slurry incorporating tobacco material and other components as a film or sheet. Certain smokeless tobacco products have the form of tobacco compositions or formulations that result from pressing, extruding or otherwise forming a mixture incorporating tobacco material and other components into a desired shape.
  • The tobacco formulation can be contained within a container, such as a pouch or bag, such as is the type commonly used for the manufacture of snus types of products (e.g., a sealed, moisture permeable pouch that is sometimes referred to as a “portion”). A representative moisture permeable pouch can be composed of a “fleece” type of material. The tobacco formulation is in turn contained within a package. The package is sealed tightly, and is composed of a suitable material, such that the atmospheric conditions within that sealed package are modified and/or controlled; that is, the sealed package can provide a good barrier that inhibits the passage of compositions such as moisture and oxygen therethrough; in addition, the atmosphere within the sealed package can be further modified by introducing a selected gaseous species (e.g., nitrogen, argon, or a mixture thereof) into the package prior to sealing or by drawing a vacuum therein (vacuum sealing). As such, the atmospheric conditions to which the tobacco composition is exposed are controlled during conditions of preparation, packing, storage and handling.
  • In one aspect, an individual portion of smokeless tobacco (e.g., one snus fleece bag containing a smokeless tobacco formulation) can be wrapped in a package. The atmosphere within each package is modified or controlled in a manner characteristic of the present invention. Several snus fleece bags so packaged then can be contained within the product container, such as a metal or plastic tin.
  • In one aspect, several individual portions of smokeless tobacco can be wrapped together within one package. The atmosphere within that package is modified or controlled in a manner characteristic of the present invention. That package, or a combination of several of such packages, then can be contained within the product container, such as a metal or plastic tin.
  • In one aspect, smokeless tobacco product (e.g., several individual portions of smokeless tobacco) can be contained within a sealed container, such as a metal or plastic tin. That container then can be wrapped within a package, such that the atmosphere within that package and the sealed container is modified or controlled in a manner characteristic of the present invention.
  • In one aspect, smokeless tobacco product (e.g., several individual portions of smokeless tobacco) can be contained within a sealed container, such as a metal or plastic tin, and the atmosphere within that sealed container is modified or controlled in a manner characteristic of the present invention.
  • In one aspect, at least one individual portion of smokeless tobacco can be wrapped in a package. The atmosphere within each package is modified or controlled in a manner characteristic of the present invention. That package or several of those packages then can be contained within the product container, such as a metal or plastic tin. The atmosphere within that sealed metal or plastic container is modified or controlled in a manner characteristic of the present invention. Alternatively, that container then can be wrapped within an outer package, such that the atmosphere within that package and the sealed container is modified or controlled in a manner characteristic of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to provide an understanding of embodiments of the invention, reference is made to the appended drawings, in which reference numerals refer to components of described exemplary embodiments of the invention. The drawings are exemplary only, and should not be construed as limiting the invention.
  • FIG. 1 is an enlarged cross-sectional view of a tobacco product in the form of a snus type of product individually wrapped in an outer package.
  • FIG. 2 is a cross-sectional view of a tobacco product in the form of a snus type of product, wherein several snus-type products are wrapped in an outer package and that outer package is contained within a generally cylindrical plastic or metal tin.
  • FIG. 3 is a cross-sectional view of a tobacco product in the form of a snus type of product, wherein several snus-type products are contained within a generally cylindrical plastic or metal tin, and that tin is wrapped in an outer package.
  • FIG. 4 is a cross-sectional view of a tobacco product in the form of a snus type of product, wherein several snus-type products are contained within a generally cylindrical plastic or metal tin possessing a controlled atmosphere.
  • FIG. 5 is cross-sectional view of a tobacco product in the form of a snus type of product, wherein each of several snus-type products are individually wrapped in an outer package, and are in turn contained within a generally cylindrical plastic or metal tin possessing a controlled atmosphere.
  • FIG. 6 is a perspective view (partially cut away) of a plurality of individually packaged snus types of products, each individual package being connected to another, and an outer container for containing and dispensing those products.
  • FIG. 7 is an enlarged cross-sectional view of a tobacco product in the form of a snus type of product individually wrapped in an outer package.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 1, there is shown a first embodiment of a representative type of smokeless tobacco product 110. The tobacco product 110 includes a tobacco composition 115 contained in a sealed, moisture permeable pouch 120, thereby providing a tobacco portion 122. A representative moisture permeable pouch can be composed of a fleece type of material that is sealed shut in order to effectively retain the tobacco composition within the pouch during normal conditions of handling. The tobacco product 110 possesses a sealed outer package 125 that surrounds and contains the tobacco portion 122 as a type of tightly sealed pouch. The representative outer package 125 possesses an upper surface 126 and a lower surface 127; and the two faces 128, 129 of a “fin seal” are shown lying essentially parallel to the lower surface of outer package 125. The outer package 125 is tightly sealed, and is selected from an appropriate material, such that the atmosphere 130 within that outer package can be controlled. In addition, the atmosphere 130 within the package can be controlled such that the atmosphere is composed most predominantly of high purity nitrogen gas, or other suitable gaseous species. If desired, the embodiment can be altered in order that the outer package contains a plurality (e.g., 2, 3 or 4) of individual tobacco portions. Each of the two ends 131, 132 of the outer package is tightly sealed (e.g., heat sealed), and if desired, those ends can have a serrated appearance, or cut to have the desired visual effect. Preferably, the length of the inner region of the outer package 125 is at least about 10 percent greater than the overall length of the tobacco portion 122, the width of the inner region of the outer package 125 is at least about 10 percent greater than the overall width of the tobacco portion 122, and the height of the inner region of the outer package 125 is somewhat greater than the overall height of the tobacco portion 122. For an exemplary embodiment, a snus-type of product has a maximum length of about 20 mm to about 30 mm, a width of about 10 mm to about 15 mm, and a height of about 5 mm to about 8 mm; thus the outer package 125 would have an overall length of at least about 30 mm, a width of at least about 30 mm, and a height of at least about 5 mm to about 8 mm; wherein the two end seals 131, 132 of the outer package 125 each extend about 5 mm along the width of the outer package 125, and the “fin seal” has a width of about 10 mm. In use, the outer package 125 is opened by the consumer, the tobacco portion 122 is removed from the outer package, and the tobacco portion is enjoyed by the consumer.
  • Referring to FIG. 2, there is shown a second embodiment of a representative smokeless tobacco product 110. The tobacco product 110 includes several tobacco compositions 115, 140, 141 each contained in a respective sealed, moisture permeable pouch 120, 145, 146. The tobacco product 110 possesses a sealed outer package 155 that surrounds and contains all of those individual tobacco portions 125, 157, 158. The number of tobacco portions within the outer package can vary, and can be a number such as 10, 12, 15, 20, 25 or 30. The outer package 155 is tightly sealed, and for the representative embodiment shown, the outer package 155 possesses a three-sided type of packaging configuration (i.e., the packaging material used to manufacture the outer package is sealed on three sides). The outer package 155 is selected from an appropriate material, such that the atmosphere 160 within that outer package can be controlled. For example, the atmosphere 160 within the package can be controlled such that the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species. The outer package 155 is contained within a hard container 165, such as a plastic or metal tin having a lower portion 168 and a corresponding or coordinating upper portion 170. A representative hard container 165 is the short, rounded edge, generally cylindrical container traditionally used for the marketing of snus types of products. See, for example, the types of representative snuff-box types of designs set forth in PCT WO 2005/016036 to Bjorkholm. Other types of containers that can be suitably modified are plastic or metal type containers set forth in U.S. Pat. No. 7,014,039 to Henson et al. See, also, the types of hard containers used for the commercial distribution of Camel Snus by R. J. Reynolds Tobacco Company; Revel Mint Tobacco Packs type of smokeless tobacco product by U.S. Smokeless Tobacco Corporation; SkoalDry by U.S. Smokeless Tobacco Co. and “taboka” by Philip Morris USA. If desired, the type of container used for the “taboka” product can be adapted to possess a slidable lid (e.g., one that slides generally parallel to the longitudinal axis of the container) in order that the container can be opened and closed. If desired, the container can have an accordion or bellows type of design, such that the container can be extended open for filling with smokeless tobacco product during production, and then contracted after filling of the container is complete. If desired, containers can be equipped with suitable seals or grommets, in order that when an opened container is re-shut, a good seal is provided.
  • In use, the hard container is opened, the outer package is opened, a tobacco portion is removed therefrom, and the tobacco portion is enjoyed by the consumer. The hard container can be manually resealed, and additional tobacco portions can be removed from that container by the consumer as desired.
  • Referring to FIG. 3, there is shown a third embodiment of a representative smokeless tobacco product 110. The tobacco product 110 includes several tobacco compositions 115, 140, 141 each contained in a respective sealed, moisture permeable pouch 120, 145, 146. Those individual pouch sealed tobacco portions 156, 157, 158 are themselves contained within a hard container 165, such as a plastic or metal tin having a lower portion 168 and a corresponding or coordinating upper portion 170. The number of tobacco portions within the hard container can vary, and can be a number such as 10, 12, 15, 20, 25 or 30. A representative hard container 165 is the short, rounded edge, generally cylindrical container traditionally used for the marketing of snus types of products. The hard container 165 is in turn packaged within a sealed outer package 180. The representative outer package 180 shown as a representative embodiment has a “lap seal” type of sealing mechanism, and as such, possesses an upper surface 182, a lower surface 183, and an overlap seal 184 located on the bottom face of the outer package. The outer package 180 is tightly sealed at each end 185, 186, and is constructed from an appropriate material, such that the atmosphere 160 within that outer package, and within the hard container 165, is controlled. For example, the atmosphere 160 within the package can be controlled such that the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species. In use, the outer package 180 is opened, the hard container 165 is opened, and individual tobacco portions are removed as desired from the hard container.
  • Referring to FIG. 4, there is shown a fourth embodiment of a representative smokeless tobacco product 110. The tobacco product 110 includes several tobacco compositions 115, 140, 141 each contained in a sealed, moisture permeable pouch 120, 145, 146, respectively. Those individual tobacco portions 156, 157, 158 are contained within a hard container 165, such as a plastic or metal tin having a lower portion 170 and a corresponding or coordinating upper portion 168. A representative hard container 165 is the short, rounded edge, generally cylindrical container traditionally used for the marketing of snus types of products. The hard container 165 is in turn tightly sealed, and can possess an optional ring or band of a sealing material 195 that circumscribes the hard container in the area of the seal between lower and upper portions 168, 170. As such, conditions are provided so that the atmosphere 160 within the hard container 165, can be controlled (e.g., the atmosphere may be composed of high purity nitrogen gas, or other suitable gaseous species). In use, the ring or band of sealing material 195 is broken, the hard container is opened, and individual tobacco portions are removed as desired from the hard container.
  • Referring to FIG. 5, there is shown a fifth embodiment of a representative smokeless tobacco product 110. The tobacco product 110 includes several tobacco compositions 115, 140, 141 each contained in a sealed, moisture permeable pouch 120, 145, 146, respectively. Each individual tobacco portion 156, 157, 158 possesses a sealed outer package 125, 211, 212 that surrounds and contains each respective tobacco portion. Each outer package 125, 211, 212 is tightly sealed, and is selected from an appropriate material, such that the atmosphere 130, 221, 222 within each respective outer package can be controlled. For example, the atmosphere 130, 221, 222 within each respective outer package can be controlled such that the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species. If desired, this embodiment can be altered to provide that each outer package 125, 211, 212 contains a plurality (e.g., 2, 3 or 4) of individual tobacco portions 156, 157, 158. The packaged individual tobacco portions 156, 157, 158 are in turn contained within a hard container 165, such as a plastic or metal tin having a lower portion 170 and a corresponding or coordinating upper portion 168. A representative hard container 165 can be the short, rounded edge, generally cylindrical container traditionally used for the marketing of snus types of products. The hard container 165 is in turn tightly sealed, and can possess an optional ring or band of a sealing material 195 that circumscribes the hard container in the area of the seal between lower and upper portions 168, 170. As such, conditions are provided so that the atmosphere 160 within that hard container 165, is controlled (e.g., the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species). Alternatively, the hard container 165 can be optionally packaged in a sealed outer package 180, such as in the manner previously set forth with reference to FIG. 3 (e.g., so that the conditions within that outer package, and hence within the hard container, are controlled). In either case, the modified or controlled atmosphere 160 within hard container 165 can be the same or different than the modified or controlled atmospheres 130, 221, 222 of each of the outer packages 125, 211, 212 of the individually wrapped tobacco portions 156, 157, 158 (e.g., the hard container can be packaged within an outer package that provides a type of vacuum seal and the individually wrapped tobacco portions can be wrapped under controlled atmosphere; or the individually wrapped tobacco portions can be packaged within outer packages that provide a type of vacuum seal and the outer packaged can be wrapped so as to provide internal conditions of controlled atmosphere). In use, the outer package is broken, the hard container is opened, a packaged individual tobacco portion is removed from the hard container, and that packaged portion is opened so that the tobacco portion can be enjoyed by the consumer.
  • Referring to FIG. 6, there is shown a sixth embodiment of a representative smokeless tobacco product 110. The tobacco product 110 may include several tobacco compositions (not shown) each contained in a sealed, moisture permeable pouch (not shown). The tobacco compositions and tobacco portions are of the type previously described with reference to FIG. 5. Each individual tobacco portion possesses a sealed outer package 125, 211, 212 that surrounds and contains each respective tobacco portion. Each outer package 125, 211, 212 is tightly sealed, and is selected from an appropriate material, such that the atmosphere (not shown) within each respective outer package can be controlled (e.g., vacuum sealed). In addition, the atmosphere within each respective package can be controlled such that the atmosphere is composed of high purity nitrogen gas, or other suitable gaseous species. If desired, this embodiment can be altered so that each outer package 125, 211, 212 contains a plurality (e.g., 2, 3 or 4) of individual tobacco portions. The packaged individual tobacco portions within the outer packages 125, 211, 212 are in turn connected to one another in an end-to-end relationship. That is, the individual outer packages 125, 211, 212 each are “fin sealed” along respective sealing regions 270, 271, 272. The fin seal extends longitudinally along the length of each outer package. For the embodiment shown, each fin sealed region 270, 271, 272 may possess 5 “jaw lines.” At each end of outer package 125, and preferably generally perpendicular to the longitudinally extending fin seal, are end seals 131, 132. In addition, there are comparable end seals for each of the other outer packages. For the embodiment shown, the end seal of each outer package may possess 3 “jaw lines.” Between adjacent end seals of each outer package is a line of perforations 305, 306, 307, such that each individual package can be separated from the next. A desired number of the connected outer packages (e.g., 10, 12, 15, 20, 25 or 30) are rolled or wound in a generally spiral manner (e.g., as in a manner generally akin to a spool or roll of postage stamps). The resulting wound series of connected outer packages then is positioned within a suitable container 315. One end of the spooled series of outer packages extends through an opening 320 in the side face of the container 315. As such, the container can hold the spooled product, as well as provide a manner or method for dispensing product therefrom. As such, there is provided a dispenser for an essentially continual strip of smokeless tobacco product (e.g., individual portions of smokeless tobacco composition that are connected together but are separable from one another about individual tearable lines of perforation).
  • For the embodiment shown in FIG. 6, the individual packages are connected in an “end-to-end” type of arrangement. If desired, the configuration by which the individual packages can be connected can be altered. For example, rather than sealing the individual outer packages at each end of the length of a smokeless product, the smokeless product can be rotated 90°, and the end seals of the outer package can be parallel to the length of the smokeless product. As such, individual outer packages for smokeless product can be aligned in a “side-by-side” type of arrangement.
  • For the type of embodiment shown in FIG. 6, individual packages that are connected to one another in either an “end-to-end” or “side-by-side” type of arrangement can be incorporated into other types of containers for commercial distribution. For example, a predetermined number (e.g., 4, 5 or 10) of connected but divisible individual outer packages can be incorporated within a package of cigarettes. When incorporated within the cigarette package, it is particularly desirable to have the smokeless product sealed in a controlled atmosphere in order that flavors and aromas do not migrate as between the cigarettes and the smokeless product. In this way product integrity is preserved for each of the jointly packaged products. In one embodiment, cigarettes can be packaged in a so-called “hard pack”, having a lid that extends upward beyond the ends of the cigarettes that are contained therein, and a strip of connected individual packages can be positioned within the inner, upper portion of that lid. Exemplary hard pack designs are set forth in U.S. Pat. No. 4,852,734 to Allen et al.; U.S. Pat. No. 5,139,140 to Burrows et al. and U.S. Pat. No. 5,938,018 to Keaveney et al. (For example, a hard pack designed for containing cigarettes having lengths of about 99 mm in a 7-6-7 configuration can be filled with comparable cigarettes having lengths of about 85 mm, and several packaged smokeless tobacco portions can be contained within the inner top region of the movable top lid). Alternatively, several packaged smokeless tobacco portions can be included with a cigarette package by containing those packaged smokeless portions within the polypropylene overwrap that covers the outer regions of the cigarette package. Similarly, packaged smokeless tobacco portions can be connected to a cigarette package by adhesive or by fastening as an onsert.
  • Referring to FIG. 7, there is shown yet another embodiment of a representative type of smokeless tobacco product 110. The tobacco product 110 includes a tobacco composition 115 contained in a sealed, moisture permeable pouch 120, thereby providing a tobacco portion 122. The tobacco product 110 possesses a sealed outer package 125 that surrounds and contains the tobacco portion 122 in a type of tightly sealed manner. The representative outer package 125 possesses an upper surface 126 and a lower surface 127. The lower surface 127 is suitably adapted so as to possess a so-called “blister pack” type of format and configuration. As such, the lower surface can have the general shape of a “bubble” having some degree of structural integrity, and hence can be formed to have a generally hemispherical shape, or other desired shape. The outer package 125 is tightly sealed, and is selected from an appropriate material, such that the atmosphere 130 within that outer package is controlled. If desired, the embodiment can be altered in order that the outer package contains a plurality (e.g., 2, 3 or 4) of individual tobacco portions. An edge region 426 about which outer package is tightly sealed (e.g., heat sealed) preferably extends around the bubble region of the blister pack. The edge region can form a shape that is rectangular, square, triangular, hexagonal, circular, or other desired shape. If desired, the edge region 426 of each outer package can have a serrated appearance; can be perforated so as to be connected in a strip or matrix to other outer packages, or can be cut to have the desired visual effect. Preferably, the length of the inner region of the outer package is at least about 10 percent greater than the overall length of the tobacco portion, the width of the inner region of the outer package is at least about 10 percent greater than the overall width of the tobacco portion, and the height of the inner region of the outer package is somewhat greater than the overall height of the tobacco portion. For an exemplary embodiment, a snus-type of product has a maximum length of about 30 mm, a width of about 10 mm to about 12 mm, and a height of about 5 mm to about 6 mm; and the outer package has a length of about 40 mm, a width of about 15 mm and a height of 15 mm; and the end seals of outer package extend around the “bubble” portion at a width of about 5 mm to about 10 mm. Tobacco product so packaged can be employed in the general manner set forth previously with reference to FIGS. 1, 2, 5 and 6.
  • Tobaccos used for the manufacture of tobacco products pursuant to the embodiments herein may vary. The tobaccos may include types of tobaccos such as flue-cured tobacco, burley tobacco, Oriental tobacco, Maryland tobacco, dark tobacco, dark-fired tobacco and Rustica tobaccos, as well as other rare or specialty tobaccos. Descriptions of various types of tobaccos, growing practices, harvesting practices and curing practices are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999), which is incorporated herein by reference. See, also, the types of tobaccos that are set forth in U.S. Pat. No. 4,660,577 to Sensabaugh, Jr. et al.; U.S. Pat. No. 5,387,416 to White et al.; U.S. Pat. No. 6,730,832 to Dominguez et al.; and U.S. Pat. No. 7,025,066 to Lawson et al., and U.S. Pat. Applic. Ser. No. 60/818,198, filed Jun. 30, 2006, to Stebbins et al.; each of which is incorporated herein by reference. Most preferably, the tobacco materials are those that have been appropriately cured and aged. Especially preferred techniques and conditions for curing flue-cured tobacco are set forth in Nestor et al., Beitrage Tabakforsch. Int., 20 (2003) 467-475 and U.S. Pat. No. 6,895,974 to Peele, which are incorporated herein by reference. Representative techniques and conditions for air curing tobacco are set forth in Roton et al., Beitrage Tabakforsch. Int., 21 (2005) 305-320 and Staaf et al., Beitrage Tabakforsch. Int., 21 (2005) 321-330, which are incorporated herein by reference.
  • The tobacco used for the manufacture of the tobacco product preferably is provided in a shredded, ground, granulated, fine particulate or powder form. The tobacco used for the manufacture of the tobacco product also can be processed, blended, formulated, combined and mixed with other materials or ingredients. For example, the tobacco composition can incorporate salts, sweeteners, binders, colorants, pH adjusters, fillers, flavoring agents, disintegration aids, antioxidants, humectants, and preservatives. See, for example, those representative components, combination of components, relative amounts of those components and ingredients relative to tobacco, and manners and methods for employing those components, set forth in U.S. patent application Ser. No. 11/233,399 to Holton, et al. and U.S. patent application Ser. No. 11/351,919 to Holton, et al., each of which is incorporated herein by reference. For example, the tobacco product can have the form of a pouch containing a tobacco composition, and a flavored strip or film; the form of a pouch containing a tobacco composition, and a flavored strip or film incorporating finely divided granules of tobacco and/or tobacco extract (e.g., components of a spray dried aqueous extract of tobacco); or the form of a highly processed dissolvable film incorporating finely divided granules of tobacco and/or tobacco extract. Typically, for certain embodiments, the amount of tobacco material within a portion of an individual portion of a smokeless tobacco can be, on a dry weight basis, at least about 30 mg, often at least about 40 mg, and frequently at least about 45 mg; while that amount typically is less than about 200 mg, often less than about 150 mg, and frequently less than about 100 mg. The tobacco material can have the form of processed tobacco parts or pieces, cured and aged tobacco in essentially natural lamina or stem form, a tobacco extract, extracted tobacco pulp (e.g., using water as a solvent), or a mixture of the foregoing (e.g., a mixture that combines extracted tobacco pulp with granulated cured and aged natural tobacco lamina).
  • The moisture content of the tobacco formulation prior to use by a consumer of the formulation may vary. Typically, the moisture content of the tobacco formulation, as present within the pouch prior to insertion into the mouth of the user, is less than about 55 weight percent, generally is less than about 50 weight percent, and often is less than about 45 weight percent. Certain types of tobacco formulations have moisture contents, prior to use, of less than about 15 weight percent, frequently less than about 10 weight percent, and often less than about 5 weight percent. For certain tobacco products, such as those incorporating snus-types of tobacco compositions, the moisture content may exceed 20 weight percent, and often may exceed 30 weight percent. For example, a representative snus-type product may possess a tobacco composition exhibiting a moisture content of about 25 weight percent to about 50 weight percent, preferably about 30 weight percent to about 40 weight percent.
  • The manner by which the moisture content of the formulation is controlled may vary. For example the formulation may be subjected to thermal or convection heating. As a specific example, the formulation may be oven-dried, in warmed air at temperatures of about 40° C. to about 95° C., with a preferred temperature range of about 60° C. to about 80° C. for a length of time appropriate to attain the desired moisture content. Alternatively, tobacco formulations may be moistened using casing drums, conditioning cylinders or drums, liquid spray apparatus, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Littleford Day, Inc., Plough Share types of mixer cylinders, and the like. Most preferably, moist tobacco formulations, such as the types of tobacco formulations employed within snus types of products, are subjected to pasteurization or fermentation. Techniques for pasteurizing or fermenting snus types of tobacco products will be apparent to those skilled in the art of snus product design and manufacture.
  • The pH of the tobacco formulation can vary. Typically, the pH of that formulation is at least about 6.5, and preferably at least about 7.5. Typically, the pH of that formulation will not exceed about 9, and often will not exceed about 8.5. A representative tobacco formulation exhibits a ph of about 6.8 to about 8.2. A representative technique for determining the pH of a tobacco formulation involves dispersing 2 g of that formulation in 10 ml of high performance liquid chromatography water, and measuring the ph of the resulting suspension/solution (e.g., with a pH meter).
  • If desired, prior to preparation of the tobacco formulation, the tobacco parts or pieces may be irradiated, or those parts and pieces may be pasteurized, or otherwise subjected to controlled heat treatment. Additionally, if desired, after preparation of all or a portion of the formulation, the component materials may be irradiated, or those component materials may be pasteurized, or otherwise subjected to controlled heat treatment. For example, a formulation may be prepared, followed by irradiation or pasteurization, and then flavoring ingredient(s) may be applied to the formulation. Alternatively, the tobacco formulation can be irradiated or pasteurized after the tobacco formulation has been incorporated within a moisture-permeable packet or pouch (e.g., so as to provide individual containers of snus-type smokeless tobacco product.
  • The composition/construction of a moisture-permeable packet or pouch that acts as a snus-type container for use of the tobacco formulation can vary. Suitable packets, pouches or containers of the type used for the manufacture of smokeless tobacco products are available under the tradenames “taboka,” CatchDry, Ettan, General, Granit, Goteborgs Rape, Grovsnus White, Metropol Kaktus, Mocca Anis, Mocca Mint, Mocca Wintergreen, Kicks, Probe, Prince, Skruf, TreAnkrare, Camel Snus Original, Camel Snus Frost and Camel Snus Spice. The tobacco formulation may be contained in pouches and packaged, in a manner and using the types of components used for the manufacture of conventional snus types of products. The pouch or fleece provides a liquid-permeable container of a type that may be considered to be similar in character to the mesh-like type of material that is used for the construction of a tea bag. Components of the loosely arranged, granular tobacco formulation readily diffuse through the pouch and into the mouth of the user.
  • Descriptions of various components of snus types of products and components thereof also are set forth in U.S. Pat. App. Pub. No. 2004/0118422 to Lundin et al., which is incorporated herein by reference. See, also, for example, U.S. Pat. No. 4,607,479 to Linden; U.S. Pat. No. 4,631,899 to Nielsen; U.S. Pat. No. 5,346,734 to Wydick et al.; and U.S. Pat. No. 6,162,516 to Derr, and U.S. Pat. App. Pub. No. 2005/0061339 to Hansson et al.; each of which is incorporated herein by reference. See, also, the representative types of pouches, and pouch material or fleece, set forth in U.S. Pat. No. 5,167,244 to Kjerstad, which is incorporated herein by reference. Snus types of products can be manufactured using equipment such as that available as SB 51-1/T, SBL 50 and SB 53-2/T from Merz Verpackungmaschinen GmBH. Snus pouches can be provided as individual pouches, or a plurality of pouches (e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches) can connected or linked together (e.g., in an end-to-end manner) such that a single pouch or individual portion can be readily removed for use from a one-piece strand or matrix of pouches.
  • Although the tobacco composition most preferably is provided in a form that is characteristic of a snus type of product, the tobacco composition also can have the form of loose moist snuff, loose dry snuff, chewing tobacco, pelletized tobacco pieces, extruded tobacco strips or pieces, finely divided ground powders, finely divided or milled agglomerates of powdered pieces and components, flake-like pieces (e.g., that can be formed by agglomerating tobacco formulation components in a fluidized bed), molded processed tobacco pieces, pieces of tobacco-containing gum, products incorporating mixtures of edible material combined with tobacco pieces and/or tobacco extract, products incorporating tobacco (e.g., in the form of tobacco extract) carried by a solid inedible substrate, and the like. For example, the tobacco composition can have the form of compressed tobacco pellets, multi-layered extruded pieces, extruded or formed strands, rods or sticks (for example, a strand, rod or stick having a length of about 3-7 centimeters, preferably about 4-6 centimeters, and a diameter of about 1-5 millimeters, preferably about 2-4 millimeters), compositions having one type of tobacco formulation surrounded by a different type of tobacco formulation, rolls of tape-like films, readily water-dissolvable or water-dispersible films or strips, or capsule-like materials possessing an outer shell (e.g., a pliable or hard outer shell that can be clear, colorless, translucent or highly colored in nature) and an inner region possessing tobacco or tobacco flavor (e.g., a Newtoniam fluid or a thixotroic fluid incorporating tobacco of some form).
  • Processed tobacco compositions, such as compressed tobacco pellets can be produced by compacting granulated tobacco and associated formulation components, compacting those components in the form of a pellet, and optionally coating each pellet with an overcoat material. Exemplary granulation devices are available as the FL-M Series granulator equipment (e.g., FL-M-3) from Vector Corporation and as W120V and WP 200VN from Alexanderwerk, Inc. Exemplary compaction devices, such as compaction presses, are available as Colton 2216 and Colton 2247 from Vector Corporation and as 1200i, 22001, 3200, 2090, 3090 and 4090 from Fette Compacting. Devices for providing outer coating layers to compacted palletized tobacco formulations are available as CompuLab 24, CompuLab 36, Accela-Cota 48 and Accela-Coata 60 from Thomas Engineering.
  • Processed tobacco compositions, such as multi-layered tobacco pellets, can be manufactured using a wide variety of extrusion techniques. For example, multi-layered tobacco pellets can be manufactured using co-extrusion techniques (e.g., using a twin screw extruder). In such a situation, successive wet or dry components or component mixtures can be placed within separate extrusion hoppers. Steam, gases (e.g., ammonia, air, carbon dioxide, and the like), and humectants (e.g., glycerin or propylene glycol) can be injected into the extruder barrel as each dry mix is propelled, plasticized, and cooked. As such, the various components are processed so as to be very well mixed, and hence, come in complete contact with each other. For example, the contact of components is such that individual components can be well embedded in the extrusion matrix or extrudate. See, for example, U.S. Pat. No. 4,821,749 to Toft et al., which is incorporated herein by reference.
  • Certain tobacco compositions can incorporate tobacco as the major component thereof. Preferably, those compositions do not, to any substantial degree, leave any residue in the mouth of the user thereof. Preferably, those compositions do not provide a the user's mouth with slick or slimy sensation (e.g., due to overly high levels of binding agents). Tobacco materials, during processing, can be treated with pH adjusters or other suitable agents, so that natural pectins within the tobacco material can be released. Release of natural tobacco pectin can act to reduce the amount of additional gums/hydrocolloids, cellulose-derived, or starch-based binders needed to aid in desired sheet or film tensile strength qualities. For example, to release pectin, fine tobacco powder is cooked in an alkaline pH adjusted solution at elevated temperatures relative to ambient. Such treatment also can provide desirable sensory attributes to the tobacco material. See, for example, U.S. Pat. No. 5,099,864 to Young et al.; U.S. Pat. No. 5,339,838 to Young et al. and U.S. Pat. No. 5,501,237 to Young et al.; which are incorporated herein by reference.
  • One representative type of individual portion tobacco product possesses an outer shell and an inner region in the form of a tobacco formulation. A representative outer shell can be provided by providing a liquid mixture of alginates (e.g., sodium alginates available as Kelvis, Kelgin and Mannucol from International Specialty Products Corp.), rice starch, sucralose, glycerin and flavoring agent (e.g., mint flavor) in water so as to provide a liquid mix exhibiting a Brookfield viscosity at 25° C. of about 20,000 to about 25,000 centipoise. That viscous mixture can be used to form a sheet that can be formed into an outer layer (e.g., using a Villaware Imperia Pasta Machine, Dough Roller 150 equipped with a Villaware Ravioli Attachment for Imperia 150-25, each of which is available through Imperia Trading Company) or semi-circular shells that can be combined (e.g., by exposure to heat) to form an outer layer. Typically, such a viscous mixture can be suitably dried by heating at about 60° C. for about 1 hour. Inside that outer shell can be incorporated a wide variety of tobacco formulations. One representative tobacco formulation used as the inner region of such a is a dry or moist mixture of granulated or milled tobacco material that can be mixed with other ingredients, such as flavoring agents, humectants, emulsifiers, fillers, pH adjusters, dispersion aids, and the like. One representative tobacco formulation has the form of a fluid (e.g., the form of a weak gel or soft gel). That tobacco formulation can be provided by mixing granulated or milled tobacco material, kappa-carageenan, Kelvis-type sodium alginate, propylene glycol, polysobate 60, and flavoring agent (e.g., menthol and cinnamon) in water, such that the moisture content of the formulation is about 40 to about 50 weight percent. One representative tobacco formulation has the form of a fluid. That tobacco formulation can be provided by mixing granulated or milled tobacco material, glycerin, glycerol stearate, propylene glycol, kappa-carageenan, carboxymethycellulose available as Ticalose 1500 from TIC Gums and micro-crystalline cellulose (e.g., Ticacel HV from TIC Gums) in water, such that the moisture content of the formulation is about 60 to about 70 weight percent.
  • The amount of tobacco formulation incorporated within each sealed outer package can vary. In one aspect, loose tobacco composition can be incorporated into an outer package, the package is sealed, and that loose tobacco can be used as loose snuff or chewing tobacco when the outer package is opened. In another, but preferred, aspect, tobacco composition contained within a snus-type pouch or packet is incorporated within the outer package, the package is sealed, and the snus-type product can be used when the outer package is opened. Typically, the amount of tobacco formulation within each individual portion (e.g., within each snus-type pouch) is such that there is at least about 50 mg, often at least about 150 mg, and frequently at least about 250 mg, of dry weigh tobacco; and less than about 700 mg, often less than about 500 mg, and frequently less than about 300 mg, of dry weight tobacco. For example, snus-type smokeless tobacco products can have the form of so-called “portion snus.”
  • One exemplary snus-type product possesses about 1 g of a tobacco formulation having a moisture content of about 35 weight percent; which tobacco formulation is contained in a sealed fleece pouch having an overall length of about 30 mm, a width of about 16 mm, and a height of about 5 mm, wherein the length of the compartment area of that pouch is about 26 mm due to a seal of about 2 mm width at each end of that pouch. Another exemplary snus-type product possesses about 0.5 g of a tobacco formulation having a moisture content of about 35 weight percent; which tobacco formulation is contained in a sealed fleece pouch having an overall length of about 26 mm, a width of about 12 mm, and a height of about 5 mm, wherein the length of the compartment area of that pouch is about 22 mm due to a seal of about 2 mm width at each end of that pouch.
  • The outer packaging material useful in accordance with the present invention can vary. Typically, the selection of the packaging material is dependent upon factors such as aesthetics, comfort of handling, desired barrier properties (e.g., so as to provide protection from exposure to oxygen or radiation, or so as to provide protection from loss of moisture), or the like. The packaging material most preferably has the form of a film, such a laminated film (e.g., a co-extruded laminated film). The number of layers present with a laminated packaging material can vary; and can be at least about 3 layers, and often at least about 4 layers; while typically, the number of layers does not exceed about 10 layers, and often does not exceed about 8 layers. Overall thicknesses of exemplary packaging materials typically are at least about 0.0025 inch, often at least about 0.003 inch; while typically, the thickness of the packaging materials typically is less than about 0.006 inch, and often less than about 0.005 inch. Representative materials that can be used to provide components or layers of film materials or laminated films can include polyvinyl chloride, ethylene vinyl acetate co-polymer, oriented polypropylene, linear low density polyethylene, polyvinylidene dichloride, polyester terephalate, ethylene methacrylic acid co-polymer, metallacene linear low density polyethylene, and the like. Exemplary packaging materials can be plastic/metal films, plastic/metal films that are paper coated, plastic laminate films, or the like. Such types of materials can be manufactured from materials that make them essentially impervious to oxygen and/or moisture, can be sealed to provide a seal with good integrity, and can provide an outer package that retains or maintains its impervious nature or character over time. Suitable materials are of the type that have been employed as packaging materials for the controlled atmosphere or vacuum packaging of food and pharmaceutical types of products.
  • Exemplary other materials useful form providing packaging materials of the present invention preferably include flexible-type plastic materials. See, for example, those polymeric materials, sealants, adhesives, and the like, set forth in US Pat. Pub. No. 2004/0043165 to Van Hulle et al.; which is incorporated herein by reference. For packaging materials that are used for the purpose of preventing contamination of the tobacco composition by oxygen, it is desirable to incorporate an effective amount of suitable reducing agent into the material that provides the inner surface of the packaging material.
  • One exemplary laminated film possesses four layers; the top or outer layer being composed of a layer of polyester terephalate (PET) having a thickness of about 0.00048 inch, a thin layer of adhesive (e.g., a polyurethane-type adhesive available under the tradename Tycel from the Liofol Company), a metal film (e.g., aluminum) having a thickness of about 0.00035 inch, and a bottom layer of an ethylene methacrylic acid containing composition available under the tradename Surlyn from E. I. DuPont de Nemours & Company and having a thickness of about 0.002 inch. If desired, the side of the PET adjacent the adhesive can be printed with product information using a suitable ink. Another exemplary laminated film possesses three layers; the top or outer layer being composed of a layer of PET having a thickness of about 0.00048 inch, a thin layer of adhesive (e.g., an adhesive available as Tycel), and a bottom layer of a composition available as Surlyn and having a thickness of about 0.002 inch. Another exemplary laminated film possesses four layers; the top or outer layer being composed of a layer of PET having a thickness of about 0.00048 inch, a thin metal film (e.g., aluminum), a thin layer of adhesive (e.g., an adhesive available as Tycel), and a bottom layer composition available as Surlyn and having a thickness of about 0.002 inch. The foregoing representative types of laminated films are suitable for providing so-called “fin sealed” and “three-sided” types of packaging containers having the PET layer as the outer surface of those containers.
  • One exemplary laminated film possesses; the top or outer layer being composed of a layer of a material such as Surlyn having a thickness of 0.002 inch, a thin layer of adhesive, a metal film (e.g., aluminum) having a thickness of about 0.00035 inch, a thin layer of adhesive, and a bottom layer of a material such as Surlyn having a thickness of about 0.002 inch. The foregoing representative type of laminated film is suitable for providing so-called “lap seal” types of pouches.
  • The present invention can involve the use of equipment, materials, methodologies and process conditions that are suitably modified in order to provide the packaging and controlled atmospheric conditions for the tobacco products that are packaged pursuant thereto. The atmosphere within the packaging materials can be modified in a variety of ways. For example, a significant amount of the atmosphere within the package can be removed (e.g., by using vacuum packaging types of techniques), or the atmosphere within the package can be altered in a controlled manner (e.g., by using gas flushing types of techniques). Representative aspects of various technologies associated with modified atmosphere packaging and controlled atmosphere packaging are set forth in Analysis and Evaluation of Preventative Control Measures for the Control and Reduction/Elimination of Microbial Hazards on Fresh and Fresh-Cut Product; Chapter VI; Microbiological Safety of Controlled and Modified Atmosphere Packaging of Fresh and Fresh-Cut Product; U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition (Sep. 30, 2001); which is incorporated herein by reference.
  • The controlled or modified atmospheres within packaged tobacco products of the present invention can vary. Typically, when tobacco product is vacuum packed or flushed so as to have a controlled or modified atmosphere (e.g., even if the atmosphere is controlled in a manner such that the atmospheric pressure within the sealed package is at a positive pressure relevant to ambient atmospheric pressure), atmospheric conditions within the package are controlled such that a significant amount, and most preferably virtually all of the oxygen present within with package, is removed from that package prior to the time that the package is sealed. That is, less than about 8 percent, and often less than about 6 percent, of the weight of the controlled atmosphere initially present with a sealed outer package is composed of oxygen. For example, when the package is sealed, the atmosphere present within the package preferably can possess less than about 5 percent oxygen, and most preferably between about 1 percent oxygen and about 5 percent oxygen, based on the weight of the controlled atmosphere initially present within that sealed package. Typically, when the tobacco product is flushed with a gaseous species (e.g., a selected gas or mixture of gases), a significant amount, and most preferably virtually all, of the atmosphere within the sealed package is provided by the desired gaseous species. Exemplary gaseous species include nitrogen, argon, carbon dioxide, and the like (e.g., high purity gases that are greater than about 99 percent pure, by weight). Alternatively, the atmosphere to which the tobacco product incorporates a relatively high level of a desired gaseous species (e.g., oxygen) in order to introduce the effects of “gas shock” to the tobacco product (e.g., relatively high levels of oxygen in the atmosphere can be desirable for the introduction of “oxygen shock” for purposes of inhibiting enzymatic discoloration, preventing anaerobic fermentation reactions, and inhibiting aerobic and anaerobic microbial growth). For example, a controlled atmosphere containing an amount of oxygen such that the level of oxygen in that atmosphere greater than about 25 percent by weight, often greater than about 30 percent by weight, can provide conditions suitable for introduction of oxygen shock.
  • Representative equipment useful for carrying out process steps associated with the packaging aspects of the present invention is available from Winpak Ltd. (eg., systems identified as LD32, L25, L18 and L12); as Linium 300 Series horizontal flow wrapping systems from Doboy Inc. (e.g., Linium Model Nos. 301, 302, 303, 304 or 305); as Hiwrap 504 systems available from Hitech Systems s.r.l.; and as the types of systems available from Rovema Verpackungmaschinen GmbH. Preferred equipment provides a wrapping material that provides a seal that does not allow passage of gases or moisture therethrough (e.g., a seal that might be considered as “air tight”).
  • Representative blister pack packaging materials can vary. Exemplary materials used for the lower layer of a typical blister pack packaging material are laminated polymer films available as Pentapharm alfoil T-250/25/90, Pentapharm ACLAR PA 180/02, Pentapharm ACLAR PA 200/02, and Pentapharm ACLAR PA 300/02, from Klockner-Pentaplast of America, Inc. Exemplary materials used for the upper layer of a typical blister pack packaging material are heat sealable metal films. An exemplary heat sealable film is an aluminum film having a thickness of about 0.0007 inch coated on the sealing side with a heat sealable material (e.g., Surlyn) that has a thickness of about 0.0001 inch. See, also, for example, the types of materials set forth in US Pat. Pub. No. 2004/0043165 to Van Hulle et al.; which is incorporated herein by reference. Although so-called “pealable lid” types of blister packages can be employed, off particular interest are the so-called “push through” types of blister packages.
  • If desired, the packaging can be carried out in a controlled environment. That is, pasteurized tobacco product can be packaged in outer packages in a sterile environment.
  • Products of the embodiments herein may be packaged and stored in much the same manner that conventional types of smokeless tobacco products are packaged and stored. For example, a plurality of packets or pouches may be contained in a cylindrical container. If desired, moist tobacco products (e.g., products having moisture contents of more than about 20 weight percent) may be refrigerated (e.g., at a temperature of less than about 10° C., often less than about 8° C., and sometimes less than about 5° C.). Alternatively, relatively dry tobacco products (e.g., products having moisture contents of less than about 15 weight percent) often may be stored under a relatively wide range of temperatures.
  • For preferred embodiments herein, smokeless tobacco composition is packaged in such a manner that there is no requirement for the necessity of refrigeration during periods of transport and prior to sale. That is, shipping, handling and storage can be simplified, and the periods during which shipping, handling and storage are carried out can be prolonged, while the quality of the smokeless product can be maintained. In addition, though the shelf life of the product can be prolonged, thus negating the necessity of refrigeration, the shelf life of refrigerated product also can be prolonged. Product packaged in accordance with the embodiments herein can be stored for prolonged periods of time, while maintaining its overall freshness, maintaining its moisture content, maintaining its visual appearance (e.g., not undergoing significant discoloration), maintaining its sensory properties, not experiencing absorption of undesirable flavors or odors, and not undergoing change in its overall chemical nature due to the action of microbial species. Moist tobacco product (e.g., products having moisture contents of more than about 20 weight percent, and often more than about 30 weight percent) can be stored for prolonged periods of time without the necessity of refrigeration.
  • The following examples are provided to illustrate further certain aspects of the embodiments herein, but should not be construed as limiting the scope thereof. Unless otherwise noted, all parts and percentages are by weight.
  • EXAMPLE 1
  • A tobacco formulation in the form of a somewhat flat strip or film is provided in the following manner.
  • Tobacco material, comprised of a mixture of cured and aged flue-cured, burley and Oriental lamina is provided in a strip or leaf form, and at a moisture of about 9 percent. A portion of this tobacco mixture is washed with water, and the solubles or extractable portion that is collected is discarded, and the remaining water insoluble solids (e.g., pulp portion) is dried. The resulting dried pulp portion then is mixed with the retained untreated portion of the original tobacco mixture. That tobacco mixture then is milled to a particle size that passes through a 150 Tyler mesh screen.
  • The resulting tobacco mixture is further mixed with other ingredients to form the a formulation that contains about 40 parts of milled tobacco lamina, about 25 parts calcium carbonate, about 15 parts binder (which may be composed of pectin, gelatin, sodium alginate and starch), about 15 parts glycerin, about 4 parts flavoring, and about 1 part sucralose or about 1 part sweetening agent available as SucraSweet HIS 600 from Sweetener Solutions LLC (on a dry weight basis). The binder can be a suitable binding agent (e.g., food grade type binding agent), and exemplary binding agents can be selected from a variety of pectins, gelatins, alginates (e.g., sodium alginate) or starches. The resulting dry mixture is dispersed in deionized water (e.g., about 8 to about 10 parts dry mixture in about 90 to about 92 parts water) to form a slurry that exhibits a Brookfield viscosity of about 20,000 centipoise to 25,000 centipoise at 25° C.
  • The slurry is cast as a thick, uniform layer onto a stainless steel drying tray, which can be lightly coated with a non-stick spray before casting the slurry. The tray is placed in a drying oven at relatively low heat (e.g., about 60° C. to about 70° C.) for up to about 10 hours (e.g., about 6 to about 8 hours). As such, a formed mixture of tobacco formulation components is provided in a desired shape from an aqueous slurry of those components.
  • The slurry can be cast in the shape of a strip (e.g., having a length of about 25 cm to about 35 cm) and a width of about 1 cm to about 2 cm. If desired, optional perforation or weakness lines that extend generally perpendicular to the longitudinal axis of the strip can be stamped into the strip at predetermined intervals. The resulting product, which can be formulated and dried so as to be pliable and possess an acceptably high tensile strength, can be coiled and incorporated within the type of container described previously with reference to FIG. 6. That container then can be packaged within an outer package, and under controlled atmospheric conditions, of the general type described previously. In use, the outer package can be opened, and a piece of the long strip of tobacco formulation extending from an opening on the container can be broken off in the desired amount for use.
  • The slurry can be cast as a sheet or film, and upon drying, individual portions can be stamped, punched or cut from that sheet or film. Thus, for example, rectangular strips or sheets, or circular pieces can be provided from the sheet or film; and packaged as individual portions (e.g., using outer wrapping material configured in the general manner described previously with reference to FIG. 1).
  • Cast material that has been dried can be ground into a powder or granulated form, and then packed within a moisture permeable pouch and sealed. Each such pouch can be packaged in an outer package, in the manner described previously with reference to FIG. 1.
  • EXAMPLE 2
  • The smokeless tobacco products that are preferably non-chewable tobacco products that are intended to be placed between the cheek and the gum of the mouth are provided as follows. Preferred smokeless tobacco products, when used orally, completely dissolve in the mouth leaving little to no solid or granular residue, while dispensing or dispersing tobacco components, and while providing a pleasant trigeminal and organoleptic experience.
  • Cured and/or aged tobacco lamina or stems is provided in a strip or shredded form, and at a moisture content of about 9 percent, or less. Tobacco types can include flue-cure, burley and Oriental tobaccos, and various combinations thereof. In addition, specialty or exotic types of tobaccos, including tobaccos such as Perique and Cavendish, also can be incorporated within blends of tobacco materials. The lamina or stem is milled under cryogenic conditions, or any other suitable dry milling means, to a fine ground form. The powder is sufficiently fine so as to pass through a 150 Tyler mesh screen. The resulting powder then is irradiated with about 5 to about 20 kilo Grays of gamma radiation.
  • Flue cured tobacco lamina that has been aged is provided in a strip form, and at a moisture content of about 9 percent or less. The lamina is milled under cryogenic conditions or any other suitable dry milling means to a fine ground form. The powder is sufficiently fine so as to pass through a 150 Tyler mesh screen. The resulting powder then is irradiated with about 5 to about 20 kilo Grays of gamma radiation.
  • The tobacco powder is introduced into a fluidized bed. While in the fluidized bed, the tobacco powder is introduced to a mixture of water and various other ingredients that have been provided in a dry powder form. The resulting mixture is removed from the fluidized bed, and dried to a moisture content of about 4 percent.
  • The resulting tobacco formulation is removed from the fluidized bed. A representative formulation contains about 25 to about 40 parts of the granulated flue-cured tobacco lamina, about 0.5 to about 3.0 parts of sucralose (modified sugar), about 1 part titanium dioxide (color modifier), about 10 to about 25 parts calcium carbonate (in the form available as HD PPT Fine from Ruger Chemical), about 15 to about 30 parts mannitol powder, about 2 to about 5 parts powdered cellulose (in the form available as QC-90 from CreaFill Fibers), about 5 to about 15 parts pregelatinized corn starch (in the form available as Starch 1500 from Colorcon), about 3 to about 6 parts povidone (in the form available as PVPK-30 from Xian Medicines & Health Products), and about 0.75 to about 2.5 parts potassium hydroxide. The moisture content of the resulting granulated tobacco formulation is about 4 percent. The resultant granulated tobacco formulation is a dry, free flowing, finely milled powder that is light tan in color, and is made up of particles having an average particle size sufficient to pass through a screen of about 80 Tyler mesh.
  • A desired amount of the tobacco formulation (e.g., about 0.5 g to about 1 g) of the tobacco formulation can be placed within a sealed fleece pouch, and that pouch can be packaged within an outer package, such as in the general manner set forth previously with reference to FIG. 1.
  • EXAMPLE 3
  • A dry mix of about 200 g to about 225 g of granulated tobacco powder of the type described previously in Example 2, a flavoring agent (e.g., mint flavor) and optionally sodium chloride are mixed for about 5 minutes in a table-top Model P400 Popiel™ Automatic Pasta Maker (available from Ronco Inventions, LLC, Chestworth, Calif.). Then, about 48 g portion of a premixed warm aqueous solution (e.g., about 40 g water and about 8 g glycerin) is added to the dry mix. Those contents are mixed for about 3 minutes, or until small pea-like size lumps develop. The pea-like mixture is subsequently extruded via selected dies to obtain flat pasta-like sheets (1.4 cm wide×30 cm length×0.1 to 0.7 cm depth) or noodle-like cylindrical rods (0.1 to 0.7 cm diameter ×12 to 24 cm length). The pasta-like sheet is further cut into smaller square or rectangular pieces to obtain pellets that each weigh about 185 mg to about 250 mg. Generally wafer shaped pieces, each weighing about 185 mg to about 250 mg, also can be punched out of the pasta-like sheets. The noodle-like rods are further cut to obtain smaller cylindrical pellet pieces or strands, each weighing about 185 mg to about 250 mg. Generally wafer shaped pieces (e.g., generally cylindrically shaped pieces), each weighing about 185 mg to about 250 mg, also can be cut from extruded cylindrical rods (e.g., a continuous cylindrical extrudate can be cut generally perpendicular to its longitudinal axis). Alternatively, thin cylindrical extrudate can be similarly subdivided to provide somewhat longer, stick-like pieces that weight about 150 mg to about 250 mg. The various shaped pieces are placed onto a stainless steel plate and dried by ambient temperatures for up to about 24 hours (e.g., for about 12 to about 20 hours). Alternatively, the pieces are dried either via forced air ovens operated at about 50° C. to about 100° C. for up to 15 minutes, or over steam from boiling water baths. The dried products typically exhibit moisture contents of about 5 to about 10 percent. Typical tobacco formulations exhibit, on a dry weight basis, about 85 to about 99 parts of the granulated tobacco powder, about 1 to about 15 parts flavoring agent, and about 1 to about 1.5 parts optional sodium chloride.
  • The various tobacco formulations can be packaged in the manner set forth previously with reference to FIG. 1 through FIG. 5 and FIG. 7.
  • EXAMPLE 4
  • Tobacco formulations having the general size and shape of those set forth previously in Example 3 are provided, using the types of preparation techniques set forth in Example 3. However, the granulated tobacco powder that is employed in Example 3 is replaced with a finely milled tobacco powder that is prepared as follows.
  • Flue cured tobacco lamina that has been aged is provided in a strip form, and at a moisture content of about 9 percent or less. The lamina is milled under cryogenic conditions or any other suitable dry milling means to a fine ground form. The powder is sufficiently fine so as to pass through a 150 Tyler mesh screen. The resulting powder then is irradiated with about 5 to about 20 kilo Grays of gamma radiation.
  • The powdered tobacco lamina and various other dry ingredients are premixed in an automated tumbling mixer for about 15 minutes. As such, on a dry weight basis, a dry mix is prepared from about 122.5 g of the tobacco powder, about 80.5 g cane sugar, about 52.5 g precipitated calcium carbonate, about 17.5 g mannitol, about 48 g rice starch (pregelatinized) and about 1.7 g vanilla flavoring. Then, that dry mix is combined with about 100 g of warm water (e.g., at about 30° C. to about 45° C.) having about 4.6 g of potassium hydroxide dissolved therein in the pasta maker described in Example 3.
  • Tobacco formulations of the type generally set forth in Example 3 are provided. That is, the tobacco formulations can be formed into desired shapes, such as sheets, strips, pellets, sticks, and the like. The shaped tobacco formulations can be packaged using the types of outer packaging materials set forth hereinbefore.
  • EXAMPLE 5
  • Tobacco formulations are provided in the manner set forth previously in Example 4. However, the tobacco formulation ingredients are formulated as follows. The powdered tobacco lamina described in Example 4, and various other dry ingredients are premixed in an automated tumbling mixer for about 15 minutes. As such, on a dry weight basis, a dry mix is prepared from about 60 g of the tobacco powder, about 50 g cane sugar, about 34 g precipitated calcium carbonate, about 20 g mannitol, about 20 g rice starch (pregelatinized), about 10 g maltodextrin, about 5.2 g microcrystalline cellulose (available as Ticacel HV from TIC Gums), about 0.8 g vanilla flavoring, about 0.5 g menthol and about 3.5 g glycerol tristearate. Then, that dry mix is combined with about 50 g of warm water (e.g., at about 30° C. to about 45° C.) having about 2 g of potassium hydroxide dissolved therein in the pasta maker described in Example 3.
  • EXAMPLE 6
  • Tobacco formulations are provided in the manner set forth previously in Example 4. However, the tobacco formulation ingredients are formulated as follows. A powdered tobacco lamina is provided from flue-cured and burley tobacco lamina, in the general manner set forth in Example 4. In addition, in the general manner set forth in Example 4, that powdered tobacco lamina, and various other dry ingredients are premixed in an automated tumbling mixer for about 15 minutes. As such, on a dry weight basis, a dry mix is prepared from about 64 g of the tobacco powder, about 4.4 g of a sweetening agent available as SucraSweet HIS 600 from Sweetener Solutions LLC, about 40 g precipitated calcium carbonate, about 42 g mannitol, about 19 g rice starch (pregelatinized), about 9 g hydroxypropylmethylcellouse available as Klucel EF from Hercules, Inc. and about 5 g microcrystalline cellulose (available as Ticacel HV from TIC Gums). Then, that dry mix is combined with about 50 g of warm water (e.g., at about 30° C. to about 45° C.) having about 2.5 g of potassium hydroxide and about 8 g glycerin dissolved therein in the pasta maker described in Example 3.
  • EXAMPLE 7
  • Tobacco formulations are provided in the manner set forth previously in Example 4. However, the tobacco formulation ingredients are formulated as follows. A powdered tobacco lamina is provided from flue-cured and burley tobacco lamina, in the general manner set forth in Example 4. In addition, in the general manner set forth in Example 4, that powdered tobacco lamina and various other dry ingredients are premixed in an automated tumbling mixer for about 15 minutes. As such, on a dry weight basis, a dry mix is prepared from about 64 g of the tobacco powder, about 4.4 g of a sweetening agent available as SucraSweet HIS 600 from Sweetener Solutions LLC, about 40 g precipitated calcium carbonate, about 42 g mannitol, about 19 g rice starch (pregelatinized), about 9 g sodium alginate available as Kelvis from International Specialty Products Corp., about 2 g of mint flavoring agent and about 5 g microcrystalline cellulose (available as Ticacel HV). Then, that dry mix is combined with about 40 g of warm water (e.g., at about 30° C. to about 45° C.) having about 2.5 g of potassium hydroxide and about 8 g glycerin dissolved therein in the pasta maker described in Example 3.
  • EXAMPLE 8
  • A tobacco composition having the form of a multi-layered, multi-flavored, co-extruded pellet is provided as follows.
  • Granulated tobacco powder and other dry ingredients are again used as described in Example 1, to make a two layered pellet smokeless tobacco formulation. The pellet can be characterized as having a shape that might be considered to “pillow-type” in nature (i.e., the top, bottom, sides and ends are made up by the outer layer or over layer, and the inner layer is contained within the outer layer).
  • The inner layer is provided by mixing about 200 g granulated flue-cured tobacco powder, about 6 g sodium chloride and about 1.5 g menthol powder. Then, that dry mix is combined with about 42 g of warm water (e.g., at about 30° C. to about 45° C.) having about 8 g of glycerin dissolved therein in the pasta maker described in Example 3. The inner layer is generally cylindrical and is made as noodle-like rod.
  • The outer layer is provided by mixing about 200 g granulated flue-cured tobacco powder, about 5 g sodium chloride and about 14 g of a finely milled burley tobacco powder. The outer layer is made as a pasta-like flat sheet containing more fine tobacco powder, as but less flavoring agent than the inner layer.
  • To make the smokeless tobacco composition, the pasta-like sheet is wrapped completely around the thin noodle-like rod. The enwrapped rod is then cut into smaller cylindrical pellets, and both cut ends molded or sealed to form small pillow-like pellets, each pellet weighing about 185 mg to about 250 mg. The pellets are ambient temperature dried over about 12 hours, or dried for about 20 minutes in a forced air oven set at about 50° C. to about 80° C.
  • It will be understood that the inner and outer layers may be formulated in various ways; for example one layer may be produced to differ from the other in its level of tobacco sensory properties, such as by varying the level of flavorings or by using differing mixtures of tobacco compositions or formulations. Moreover, in addition to co-extrusion, the multi-layering can also be achieved by physically wrapping a preformed outer layer around a preformed inner layer. Alternatively, an inner layer portion may be laminated between two outer layer portions of slightly larger lateral dimensions, and the outer layers may then be sealed together at their edges to envelop the inner layer.
  • The tobacco formulation so formed can be packaged within an outer package of the type described previously with reference to FIG. 1.
  • EXAMPLE 9
  • A tobacco composition having the general form of a tape or roll is provided as follows.
  • Fine tobacco powder containing a mixture of flue-cure and burley is premixed in a tumbling mixer for 15 minutes with other ingredients. As such, a dry mix that is provided contains about 60 g granulated tobacco material, about 3.4 g of a sweetening agent available as SucraSweet HIS 600, about 36 g precipitated calcium carbonate, about 40 g mannitol, about 20 g rice starch (pregelatinized), about 10 g sodium alginate available as Kelvis from International Specialty Products Corp., about 3 g of menthol flavor, about 5 g cinnamon flavor and about 4 g microcrystalline cellulose (available as Ticacel HV). Then, that dry mix is combined with about 42 g of warm water (e.g., at about 30° C. to about 45° C.) having about 8 g of glycerin and about 2.6 g potassium hydroxide dissolved therein in the pasta maker described in Example 3. The aqueous solution is then gently added to the dry mix in the pasta maker and mixed for 3 minutes or until pea-like size lumps are formed. The blend is then extruded into flat pasta-like sheets of dimension about 1.4 cm wide by about 30 cm long, by about 0.1 cm to about 0.3 cm thick. Each sheet is further perforated at intervals of about 0.5 to about 1.5 cm intervals length-wise to obtain a roll or tape-like product from which square or rectangular pieces can easily be cut off Samples are preferably not fully dried; and hence, maintain prolonged pliability, elasticity, and tensile strength. The moisture content of the tobacco composition ranges from about 12.5 to about 25 percent.
  • The tape-like product can be formed into a roll, and positioned within an outer container of the type described previously with reference to FIG. 6. That outer container then can be wrapped with an outer wrapping material, using packaging conditions such as those of the type described hereinbefore.
  • EXAMPLE 10
  • A tobacco composition having the general form of a tape or roll is provided as follows.
  • Fine tobacco powder containing a mixture of flue-cure and burley is premixed in a tumbling mixer for 15 minutes with other ingredients. As such, a dry mix that is provided contains about 52 g granulated tobacco material, about 2 g of a sweetening agent available as SucraSweet HIS 600, about 30 g precipitated calcium carbonate, about 27.5 g rice starch (pregelatinized), about 40 g sodium alginate available as Manucol LD from ISP Corporation, about 12 g sodium alginate available as Kelvis from ISP Corporation, about 3 g of menthol flavor, about 5 g cinnamon flavor and about 4 g microcrystalline cellulose (available as Ticacel HV). Then, that dry mix is combined with about 40 g of warm water (e.g., at about 30° C. to about 45° C.) having about 16 g of glycerin and about 7 g sodium carbonate dissolved therein in the pasta maker described in Example 3. The aqueous solution is then gently added to the dry mix in the pasta maker and mixed for 3 minutes or until pea-like size lumps are formed. The blend is then extruded into flat pasta-like sheets of dimension about 1.4 cm wide by about 30 cm long, by about 0.1 cm to about 0.3 cm thick. Each sheet is further perforated at intervals of about 0.5 to about 1.5 cm intervals length-wise to obtain a roll or tape-like product from which square or rectangular pieces can easily be cut off Samples are preferably not fully dried; and hence, maintain prolonged pliability, elasticity, and tensile strength. The moisture content the tobacco composition ranges from about 12.5 to about 25 percent.
  • The tape-like product can be formed into a roll, and positioned within an outer container of the type described previously with reference to FIG. 6. That outer container then can be wrapped with an outer wrapping material, using packaging conditions such as those of the type described hereinbefore.
  • EXAMPLE 11
  • A tobacco composition having the general form of a tape or roll is provided as follows.
  • A dry mix that is provided contains about 9 g rice starch (pregelatinized), about 20 g sodium alginate available as Manucol LD, about 5 g cinnamon powder and about 3 g menthol powder. Then, that dry mix is combined with about 40 g of warm water (e.g., at about 30° C. to about 45° C.) having about 16 g of glycerin dissolved therein in the pasta maker described in Example 3. During operation of the pasta maker, about 142 g of granulated tobacco material of the type described in Example 10 is introduced into the pasta maker along with the previously described aqueous mix.
  • The resulting blend is then extruded into flat pasta-like sheets of dimension about 1.4 cm wide by about 30 cm long, by about 0.1 cm to about 0.3 cm thick. Each sheet is further perforated at intervals of about 0.5 to about 1.5 cm intervals length-wise to obtain a roll or tape-like product from which square or rectangular pieces can easily be cut off Samples are preferably not fully dried; and hence, maintain prolonged pliability, elasticity, and tensile strength. The moisture content the tobacco composition ranges from about 12.5 to about 25 percent.
  • The tape-like product can be formed into a roll, and positioned within an outer container of the type described previously with reference to FIG. 6. That outer container then can be wrapped with an outer wrapping material, using packaging conditions such as those of the type described hereinbefore.
  • EXAMPLE 12
  • A tobacco composition having the general form of a tape or roll is provided as follows.
  • A dry mix that is provided contains about 20 g sodium alginate available as Manucol LD and about 5 g mint flavor. Then, that dry mix is combined with about 50 g of warm water (e.g., at about 30° C. to about 45° C.) having about 16 g of glycerin dissolved therein in the pasta maker described in Example 3. During operation of the pasta maker, about 195 g of granulated tobacco material of the type described in Example 10 is introduced into the pasta maker along with the previously described aqueous mix.
  • The resulting blend is then extruded into flat pasta-like sheets of dimension about 1.4 cm wide by about 30 cm long, by about 0.1 cm to about 0.3 cm thick. Each sheet is further perforated at intervals of about 0.5 to about 1.5 cm intervals length-wise to obtain a roll or tape-like product from which square or rectangular pieces can easily be cut off Samples are preferably not fully dried; and hence, maintain prolonged pliability, elasticity, and tensile strength. The moisture content the tobacco composition ranges from about 12.5 to about 25 percent.
  • The tape-like product can be formed into a roll, and positioned within an outer container of the type described previously with reference to FIG. 6. That outer container then can be wrapped with an outer wrapping material, using packaging conditions such as those of the type described hereinbefore.
  • EXAMPLE 13
  • A combination of finely milled flue-cure and burley tobacco powder (e.g., about 25 g) is mixed with about 100 ml of a solution having about 1 g potassium hydroxide in about 100 ml water. The resulting slurry is heated with constant stirring to about 60° C. to about 80° C. for about 15 minutes. About 1 g of a sweetening agent available as SucraSweet HIS 600 and about 15 g mannitol then are added, and the slurry is held at about 60° C. to about 80° C. for another 15 minutes, while mixing constantly to obtain a tobacco/water slurry. Meanwhile, a binder system is prepared separately in a Warring blender. About 5 g sodium alginate available as Kelvis is first mixed at high shear with about 200 ml water for 5 minutes, followed by the slow addition of about 20 parts sodium alginate available as Manucol LD, about 7 g rice starch (pregelantinized), about 2 g microcrystalline cellulose available as Ticacel, about 10 g calcium carbonate and about 15 g glycerin, successively, while the blender is operated at medium to high shear speed for approximately another 10 minutes. The binder and tobacco slurry mixtures are then mixed together in the blender at medium to high shear speed for approximately another 5 minutes, with the addition of the about 2.5 g cinnamon and about 1.5 g menthol. After mixing, portions of the final slurry are cast at about 0.1 cm to about 0.3 cm thickness onto a stainless steel plate. The slurries are then dried to form tobacco sheets or films weighing about 95 g to about 125 g per square meter. The sheets are finally cut into smaller square or rectangular pieces, each weighing about 50 mg to about 150 mg. The resulting pieces have the form of relatively slow dissolving strips. Those strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1.
  • EXAMPLE 14
  • A combination of finely milled flue-cure and burley tobacco powder (e.g., about 25 g) is mixed with about 100 ml of a solution having about 2 g sodium carbonate in about 100 ml water. The resulting slurry is heated with constant stirring to about 60° C. to about 80° C. for about 15 minutes. About 1 g of a sweetening agent available as SucraSweet HIS 600 then is added, and the slurry is held at about 60° C. to about 80° C. for another 15 minutes, while mixing constantly to obtain a tobacco/water slurry. Meanwhile, a binder system is prepared separately in a Warring blender. About 6 g sodium alginate available as Kelvis is first mixed at high shear with about 200 ml water for 5 minutes, followed by the slow addition of about 20 g rice starch (pregelantinized), about 10 g maltodextrin, about 15 g calcium carbonate and about 15 g glycerin, successively, while the blender is operated at medium to high shear speed for approximately another 10 minutes. The binder and tobacco slurry mixtures are then mixed together in the blender at medium to high shear speed for approximately another 5 minutes, with the addition of the about 4.9 g mint flavor. After mixing, portions of the final slurry are cast at about 0.1 cm to about 0.3 cm thickness onto a stainless steel plate. The slurries are then dried to form tobacco sheets or films weighing about 95 g to about 125 g per square meter. The sheets are finally cut into smaller square or rectangular pieces, each weighing about 50 mg to about 150 mg. The resulting pieces have the form of relatively slow dissolving strips. Those strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1.
  • EXAMPLE 15
  • A combination of finely milled flue-cure and burley tobacco powder (e.g., about 15 g) is mixed with about 100 ml of a solution having about 1.75 g sodium carbonate in about 100 ml water. The resulting slurry is heated with constant stirring to about 60° C. to about 80° C. for about 15 minutes. About 0.5 g of a sweetening agent available as SucraSweet HIS 600 and about 7.5 g mannitol then are added, and the slurry is held at about 60° C. to about 80° C. for another 15 minutes, while mixing constantly to obtain a tobacco/water slurry. Meanwhile, a binder system is prepared separately in a Warring blender. About 7.5 g konjac flour available as Nutritol GP 312 from FMC Bioplolymers Corporation is first mixed at high shear with about 200 ml water for 5 minutes, followed by the slow addition of about 15 g calcium carbonate, about 0.75 g sodium chloride and about 7.5 g glycerin, successively, while the blender is operated at medium to high shear speed for approximately another 10 minutes. The binder and tobacco slurry mixtures are then mixed together in the blender at medium to high shear speed for approximately another 5 minutes, with the addition of the about 1.25 cinnamon and about 0.75 g menthol. After mixing, portions of the final slurry are cast at about 0.1 cm to about 0.3 cm thickness onto a stainless steel plate. The slurries are then dried to form tobacco sheets or films weighing about 95 g to about 125 g per square meter. The sheets are finally cut into smaller square or rectangular pieces, each weighing about 50 mg to about 150 mg. The resulting pieces have the form of relatively slow dissolving strips. Those strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1.
  • EXAMPLE 16
  • A combination of finely milled flue-cure and burley tobacco powder (e.g., about 15 g) is mixed with about 100 ml of a solution having about 1.75 g sodium carbonate in about 100 ml water. The resulting slurry is heated with constant stirring to about 60° C. to about 80° C. for about 15 minutes. About 0.75 g of a sweetening agent available as SucraSweet HIS 600 then is added, and the slurry is held at about 60° C. to about 80° C. for another 15 minutes, while mixing constantly to obtain a tobacco/water slurry. Meanwhile, a binder system is prepared separately in a Warring blender. About 3.5 g sodium alginate available as Kelvis is first mixed at high shear with about 200 ml water for 5 minutes, followed by the slow addition of about 9.5 g rice starch (pregelatinized), about 5 g maltodextrin, about 5 g calcium carbonate, about 0.75 g sodium chloride and about 7.5 g glycerin, successively, while the blender is operated at medium to high shear speed for approximately another 10 minutes. The binder and tobacco slurry mixtures are then mixed together in the blender at medium to high shear speed for approximately another 5 minutes, with the addition of the about 1.25 cinnamon and about 0.75 g menthol. After mixing, portions of the final slurry are cast at about 0.1 cm to about 0.3 cm thickness onto a stainless steel plate. The slurries are then dried to form tobacco sheets or films weighing about 95 g to about 125 g per square meter. The sheets are finally cut into smaller square or rectangular pieces, each weighing about 50 mg to about 150 mg. The resulting pieces have the form of relatively slow dissolving strips. Those strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1.
  • EXAMPLE 17
  • About 50 g of a granulated tobacco powder is mixed with about 100 ml of water in a Warring blender at low shear speed for about 5 minutes to obtain an aqueous tobacco slurry. Meanwhile a binder system is prepared in a separate blender by mixing about 5 g sodium alginate available as Kelvis with about 200 ml water at high shear speed for about 5 minutes. About 15 g sodium alginate available as Manucol LD and about 5 g hydroxypropylcellulose available as Klucel EF are slowly added, successively, as the slurry is mixed for approximately another 5 minutes. About 7.5 g glycerin is then added to the binder system and the slurry mixed for another 5 minutes. The aqueous tobacco slurry and binder systems are then mixed together for another 5 minutes at medium to high shear speed with the addition of about 2 g mint flavor. The final slurry is subsequently cast, dried, and cut into thin film strips. Those relatively slow dissolving strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1.
  • EXAMPLE 18
  • About 50 g of a granulated tobacco powder is mixed with about 100 ml of water in a Warring blender at low shear speed for about 5 minutes to obtain an aqueous tobacco slurry. Meanwhile a binder system is prepared in a separate blender by mixing about 6 g sodium alginate available as Kelvis with about 200 ml water at high shear speed for about 5 minutes. About 10 g sodium alginate available as Manucol LD is slowly added, as the slurry is mixed for approximately another 5 minutes. About 14 g glycerin is then added to the binder system and the slurry mixed for another 5 minutes. The aqueous tobacco slurry and binder systems are then mixed together for another 5 minutes at medium to high shear speed with the addition of about 5 g mint flavor. The final slurry is subsequently cast, dried, and cut into thin film strips. Those relatively slow dissolving strips can be individually packaged in outer packaging materials of the type described previously with reference to FIG. 1.

Claims (16)

1. A smokeless tobacco composition having a form that is not intended to be smoked, that composition comprising at least two tobacco formulations, wherein:
(i) a first tobacco formulation is a processed mixture incorporating components that include tobacco and binding agent, said processed mixture being provided by contacting the components in water; and
(ii) the first tobacco formulation is formed so as to overly a second tobacco formulation.
2. The smokeless tobacco composition of claim 1 wherein the first tobacco formulation is formed into one or more sheet-like shapes that are adapted to enwrap the second tobacco formulation.
3. The smokeless tobacco composition of claim 1 wherein the first tobacco formulation incorporates components that possess one type of sensory characteristics, and the second tobacco formulation incorporates components that exhibit a different type of sensory characteristics.
4. The smokeless tobacco composition of claim 2 wherein said second tobacco formulation is in the shape of a rod.
5. The smokeless tobacco composition of claim 4 wherein the enwrapped said rod is cut into cylindrical pellets, and then both cut ends of each pellet are molded or sealed to form pillow-like pellets.
6. The smokeless tobacco composition of claim 5 wherein said pillow-like pellets are dried at ambient temperature for about 12 hours.
7. The smokeless tobacco composition of claim 5 wherein said pillow-like pellets are dried for about 20 minutes in a forced air oven at about 50° C. to about 80° C.
8. A smokeless tobacco formulation having a form that is not intended to be smoked, that tobacco formulation comprising a processed mixture incorporating tobacco and alginate binder, said processed mixture being provided by contacting the components in water to provide a mixture, forming that mixture and removing moisture from that mixture.
9. The smokeless tobacco formulation of claim 8 wherein the forming is carried out using casting techniques.
10. The smokeless tobacco formulation of claim 8 wherein the forming is carried out using extrusion techniques.
11. The smokeless tobacco formulation of claim 8 further incorporating glycerin.
12. The smokeless tobacco formulation of claim 8 further incorporating a pH adjuster.
13. The smokeless tobacco formulation of claim 8 further incorporating at least one polysaccharide.
14. The smokeless tobacco formulation of claim 8 further incorporating a sweetening agent.
15. The smokeless tobacco formulation of claim 8 further incorporating a filler.
16. The smokeless tobacco formulation of claim 8 further incorporating a starch-based material.
US11/461,633 2006-08-01 2006-08-01 Smokeless Tobacco Abandoned US20080029117A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US11/461,633 US20080029117A1 (en) 2006-08-01 2006-08-01 Smokeless Tobacco
EP07810732A EP2048976B9 (en) 2006-08-01 2007-07-24 Smokeless tobacco
CN200780028625.7A CN101495002B (en) 2006-08-01 2007-07-24 Smokeless tobacco
DE602007010944T DE602007010944D1 (en) 2006-08-01 2007-07-24 SMOKING TOBACCO
RU2009107157/21A RU2414829C2 (en) 2006-08-01 2007-07-24 Smokeless tobacco
PCT/US2007/016658 WO2008016520A2 (en) 2006-08-01 2007-07-24 Smokeless tobacco
JP2009522788A JP5941609B2 (en) 2006-08-01 2007-07-24 Smokeless tobacco
AT07810732T ATE489858T1 (en) 2006-08-01 2007-07-24 SMOKELESS TOBACCO
US12/014,525 US20080173317A1 (en) 2006-08-01 2008-01-15 Smokeless tobacco
HK09111182.6A HK1133374A1 (en) 2006-08-01 2009-11-30 Smokeless tobacco

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/461,633 US20080029117A1 (en) 2006-08-01 2006-08-01 Smokeless Tobacco

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/461,628 Continuation-In-Part US20080029116A1 (en) 2006-08-01 2006-08-01 Smokeless tobacco

Publications (1)

Publication Number Publication Date
US20080029117A1 true US20080029117A1 (en) 2008-02-07

Family

ID=39027949

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/461,633 Abandoned US20080029117A1 (en) 2006-08-01 2006-08-01 Smokeless Tobacco

Country Status (1)

Country Link
US (1) US20080029117A1 (en)

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070186941A1 (en) * 2006-02-10 2007-08-16 Holton Darrell E Jr Smokeless tobacco composition
US20070207239A1 (en) * 2005-11-21 2007-09-06 Philip Morris Usa Inc. Flavor pouch
US20080173317A1 (en) * 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
US20080202533A1 (en) * 2006-11-15 2008-08-28 Philip Morris Usa Inc. Moist tobacco product and method of making
US20090022917A1 (en) * 2007-07-16 2009-01-22 Philip Morris Usa Inc. Oral delivery pouch product with coated seam
US20090025738A1 (en) * 2007-07-23 2009-01-29 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition
US20090025739A1 (en) * 2007-07-23 2009-01-29 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition
US20090035414A1 (en) * 2007-07-16 2009-02-05 Philip Morris Usa Inc. Method of flavor encapsulation through the use of a drum coater
US20090098192A1 (en) * 2007-10-11 2009-04-16 Fuisz Richard C Extrudable and Extruded Compositions for Delivery of Bioactive Agents, Method of Making Same and Method of Using Same
WO2009048522A1 (en) 2007-10-11 2009-04-16 Richard Fuisz Smokeless tobacco product
US20090095313A1 (en) * 2007-10-11 2009-04-16 Fuisz Richard C Smokeless Tobacco Product, Smokeless Tobacco Product in the Form of a Sheet, Extrudable Tobacco Composition, Method for Manufacturing a Smokeless Tobacco Product, Method for Delivering Super Bioavailable Nicotine Contained in Tobacco to a User, and Packaged Smokeless Tobacco Product Sheet
WO2009068279A1 (en) * 2007-11-28 2009-06-04 Philip Morris Products S.A. Smokeless compressed tobacco product for oral consumption
US20090301505A1 (en) * 2008-02-08 2009-12-10 Philip Morris Usa Inc. Pre-portioned moist product and method of making
US20100018540A1 (en) * 2008-07-28 2010-01-28 David James Doolittle Smokeless tobacco products and processes
US20100018541A1 (en) * 2008-07-28 2010-01-28 Anthony Richard Gerardi Smokeless tobacco products and processes
US20100018539A1 (en) * 2008-07-28 2010-01-28 Paul Andrew Brinkley Smokeless tobacco products and processes
US20100018882A1 (en) * 2008-07-28 2010-01-28 St Charles Frank K Smokeless tobacco products and processes
WO2010022360A2 (en) * 2008-08-21 2010-02-25 Luzenberg Robert S Tobacco substitute
US20100116281A1 (en) * 2008-11-07 2010-05-13 Jerry Wayne Marshall Tobacco products and processes
US20100218779A1 (en) * 2009-02-27 2010-09-02 Philip Morris Usa Inc. Controlled flavor release tobacco pouch products and methods of making
US7810507B2 (en) 2006-02-10 2010-10-12 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20100294290A1 (en) * 2008-01-25 2010-11-25 Wenhui Zhang Process for manufacturing breakable capsules useful in tobacco products
US20100300463A1 (en) * 2009-06-02 2010-12-02 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20100300464A1 (en) * 2008-12-18 2010-12-02 Philip Morris Usa Inc. Moist botanical pouch processing and moist oral botanical pouch products
US20100300465A1 (en) * 2007-06-08 2010-12-02 Zimmermann Stephen G Oral Pouch Products Including a Liner and Tobacco Beads
US20100326454A1 (en) * 2009-06-30 2010-12-30 Fuisz Richard C Smokeless Tobacco Product
WO2011022248A1 (en) 2009-08-20 2011-02-24 R.J. Reynolds Tobacco Company Pressurized cigarette package and method of producing it
US20110048435A1 (en) * 2009-08-28 2011-03-03 R.J. Reynolds Tobacco Company Feeder System For Rod Components Of Tobacco Products, And Associated Method
US20110048434A1 (en) * 2009-06-02 2011-03-03 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20110083688A1 (en) * 2009-10-09 2011-04-14 Philip Morris Usa Inc. Moist smokeless tobacco product with textured coating
US20110083680A1 (en) * 2009-10-09 2011-04-14 Philip Morris Usa Inc. Tobacco-free pouched product containing flavor beads providing immediate and long lasting flavor release
US20110100382A1 (en) * 2009-10-13 2011-05-05 Philip Morris Usa Inc. Oral moist smokeless tobacco products with net-structured gel coating and methods of making
US20110108043A1 (en) * 2009-11-12 2011-05-12 Philip Morris Usa Inc. Oral chewable tobacco product and method of manufacture thereof
US20110139164A1 (en) * 2009-12-15 2011-06-16 R. J. Reynolds Tobacco Company Tobacco Product And Method For Manufacture
WO2011081725A1 (en) 2009-12-15 2011-07-07 R. J. Reynolds Tobacco Company Tobacco product and method for manufacture
WO2011087954A1 (en) 2010-01-12 2011-07-21 R. J. Reynolds Tobacco Company Dispensing container
WO2011088171A2 (en) 2010-01-15 2011-07-21 R. J. Reynolds Tobacco Company Tobacco-derived components and materials
US20110180087A1 (en) * 2008-12-30 2011-07-28 Philip Morris Usa Inc. Oral pouch product with multi-layered pouch wrapper
WO2011127182A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless tobacco composition comprising tobacco-derived material and non-tobacco plant material
WO2011133633A1 (en) 2010-04-21 2011-10-27 R. J. Reynolds Tobacco Company Tobacco seed-derived components and materials
US8067046B2 (en) 2007-06-08 2011-11-29 Philip Morris Usa Inc. Oral pouch product including soluble dietary fibers
WO2012021504A2 (en) 2010-08-11 2012-02-16 R. J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US8124147B2 (en) 2007-07-16 2012-02-28 Philip Morris Usa Inc. Oral pouch products with immobilized flavorant particles
WO2012030946A1 (en) 2010-09-02 2012-03-08 R. J. Reynolds Tobacco Company Apparatus for manufacturing a smokeless tobacco product incorporating an object, and associated method
WO2012033743A1 (en) 2010-09-07 2012-03-15 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
WO2012068375A1 (en) 2010-11-18 2012-05-24 R. J. Reynolds Tobacco Company Fire-cured tobacco extract and tobacco products made therefrom
WO2012074985A1 (en) 2010-12-01 2012-06-07 R. J. Reynolds Tobacco Company Tobacco separation process for extracting tobacco-derived materials, and associated extraction systems
WO2012075035A2 (en) 2010-12-01 2012-06-07 R. J. Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
WO2012074865A1 (en) 2010-12-01 2012-06-07 R. J. Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
WO2012083127A1 (en) 2010-12-17 2012-06-21 R. J. Reynolds Tobacco Company Tobacco-derived syrup composition
WO2012103435A1 (en) 2011-01-28 2012-08-02 R. J. Reynolds Tobacco Company Tobacco-derived casing composition
WO2012103327A1 (en) 2011-01-28 2012-08-02 R. J. Reynolds Tobacco Company Polymeric materials derived from tobacco
WO2012106237A1 (en) 2011-01-31 2012-08-09 American Snuff Company, Llc Container for smokeless tobacco products
WO2012148996A1 (en) 2011-04-27 2012-11-01 R. J. Reynolds Tobacco Company Tobacco-derived components and materials
US8312886B2 (en) 2007-08-09 2012-11-20 Philip Morris Usa Inc. Oral tobacco product having a hydrated membrane coating and a high surface area
US8424541B2 (en) 2007-07-16 2013-04-23 Philip Morris Usa Inc. Tobacco-free oral flavor delivery pouch product
WO2013074903A1 (en) 2011-11-18 2013-05-23 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising tobacco - derived pectin component
WO2013074742A2 (en) 2011-11-16 2013-05-23 R. J. Reynolds Tobacco Company Smokeless tobacco products with starch component
WO2013074315A1 (en) 2011-11-17 2013-05-23 R.J. Reynolds Tobacco Company Method for producing triethyl citrate from tobacco
WO2013096408A1 (en) 2011-12-20 2013-06-27 R. J. Reynolds Tobacco Company Meltable smokeless tobacco composition
CN103266539A (en) * 2013-05-20 2013-08-28 红云红河烟草(集团)有限责任公司 Multi-flavor anti-fake cigarette paper and preparation method thereof
WO2013142483A1 (en) 2012-03-19 2013-09-26 R. J. Reynolds Tobacco Company Method for treating an extracted tobacco pulp and tobacco products made therefrom
WO2013158957A1 (en) 2012-04-19 2013-10-24 R. J. Reynolds Tobacco Company Method for producing microcrystalline cellulose from tobacco and related tobacco product
WO2013166285A1 (en) 2012-05-04 2013-11-07 R. J. Reynolds Tobacco Company Transparent moisture barrier coatings for containers
WO2013192519A1 (en) 2012-06-22 2013-12-27 R. J. Reynolds Tobacco Company Composite tobacco-containing materials
US8616221B2 (en) 2007-02-28 2013-12-31 Philip Morris Usa Inc. Oral pouch product with flavored wrapper
WO2014058837A1 (en) 2012-10-09 2014-04-17 R. J. Reynolds Tobacco Company Tobacco-derived o-methylated flavonoid composition
WO2014138223A1 (en) 2013-03-07 2014-09-12 R.J. Reynolds Tobacco Company Method for producing lutein from tobacco
WO2014150926A1 (en) 2013-03-14 2014-09-25 R. J. Reynolds Tobacco Company Sugar-enriched extract derived from tobacco
WO2014159617A1 (en) 2013-03-14 2014-10-02 R. J. Reynolds Tobacco Company Protein-enriched tobacco-derived composition
WO2015017613A1 (en) 2013-08-02 2015-02-05 R.J. Reynolds Tobacco Company Process for producing lignin from tobacco
US8950408B2 (en) 2007-07-16 2015-02-10 Philip Morris Usa Inc. Oral pouch product having soft edge
WO2015021137A1 (en) 2013-08-08 2015-02-12 R. J. Reynolds Tobacco Company Tobacco-derived pyrolysis oil
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US9038643B2 (en) 2010-03-26 2015-05-26 Philip Morris Usa Inc. Inhibition of sensory irritation during consumption of non-smokeable tobacco products
WO2015077219A2 (en) 2013-11-20 2015-05-28 R. J. Reynolds Tobacco Company Container for smokeless tobacco product
WO2015109085A1 (en) 2014-01-17 2015-07-23 R.J. Reynolds Tobacco Company Process for producing flavorants and related materials
US9126704B2 (en) 2010-04-12 2015-09-08 Altria Client Services Inc. Pouch product with improved seal and method
US9155772B2 (en) 2008-12-08 2015-10-13 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US20150378599A1 (en) * 2014-06-26 2015-12-31 Samsung Electronics Co., Ltd. Method and electronic device for displaying virtual keyboard
WO2016025116A1 (en) 2014-08-13 2016-02-18 R.J. Reynolds Tobacco Company Smokeless tobacco products
US9386800B2 (en) 2012-09-21 2016-07-12 R.J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
US20160205992A1 (en) * 2013-08-21 2016-07-21 British American Tobacco (Investments) Limited Treated tobacco and processes for preparing the same, devices including the same and uses thereof
WO2016200804A1 (en) 2015-06-10 2016-12-15 R. J. Reynolds Tobacco Company Container for smokeless tobacco products comprising a pulp material and related packaged product assembly and method
WO2017040785A2 (en) 2015-09-02 2017-03-09 R.J. Reynolds Tobacco Company System and apparatus for reducing tobacco-specific nitrosamines in dark-fire cured tobacco through electronic control of curing conditions
WO2017040789A1 (en) 2015-09-02 2017-03-09 R.J. Reynolds Tobacco Company Method for monitoring use of a tobacco product
US9591875B2 (en) 2012-09-21 2017-03-14 R. J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
WO2017044558A1 (en) 2015-09-09 2017-03-16 R. J. Reynolds Tobacco Company Flavor delivery article
WO2017044466A1 (en) 2015-09-08 2017-03-16 R. J. Reynolds Tobacco Company High-pressure cold pasteurization of tobacco material
WO2017093941A1 (en) 2015-12-03 2017-06-08 Niconovum Usa, Inc. Multi-phase delivery compositions and products incorporating such compositions
WO2017098439A1 (en) 2015-12-10 2017-06-15 R. J. Reynolds Tobacco Company Protein-enriched tobacco composition
WO2017103795A1 (en) 2015-12-16 2017-06-22 R. J. Reynolds Tobacco Company Flavor additive accessory
WO2017115234A1 (en) 2015-12-28 2017-07-06 R. J. Reynolds Tobacco Company Package for a tobacco-containing material and related packaging method
WO2017130161A1 (en) 2016-01-28 2017-08-03 R. J. Reynolds Tobacco Company Tobacco-derived flavorants
WO2018015872A1 (en) 2016-07-18 2018-01-25 R. J. Reynolds Tobacco Company Nonwoven composite smokeless tobacco product
CN107846963A (en) * 2015-05-20 2018-03-27 英美烟草(投资)有限公司 Aerosol generates material and includes its device
US10329068B2 (en) 2016-05-23 2019-06-25 R.J. Reynolds Tobacco Company Flavoring mechanism for a tobacco related material
US10357054B2 (en) 2013-10-16 2019-07-23 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
WO2019162903A1 (en) 2018-02-23 2019-08-29 American Snuff Company, Llc Container for smokeless tobacco products
US10420364B2 (en) 2013-02-13 2019-09-24 British American Tobacco (Investments) Limited Tobacco treatment
WO2019193580A1 (en) 2018-04-05 2019-10-10 R. J. Reynolds Tobacco Company Oriental tobacco production methods
WO2019198055A2 (en) 2018-04-13 2019-10-17 R. J. Reynolds Tobacco Company Lid for a container for smokeless tobacco products
US10561168B2 (en) 2010-01-15 2020-02-18 R.J. Reynolds Tobacco Company Tobacco-derived components and materials
WO2020183301A2 (en) 2019-03-14 2020-09-17 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
WO2020229961A1 (en) 2019-05-10 2020-11-19 Rai Strategic Holdings, Inc. Flavor article for an aerosol delivery device
US10881132B2 (en) 2011-12-14 2021-01-05 R.J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US10881133B2 (en) 2015-04-16 2021-01-05 R.J. Reynolds Tobacco Company Tobacco-derived cellulosic sugar
US10888115B2 (en) 2014-07-11 2021-01-12 R. J. Reynolds Tobacco Company Heater for an aerosol delivery device and methods of formation thereof
US10952460B2 (en) * 2018-11-05 2021-03-23 Blesst Boyz LLC Composition for a tobacco-free chew and method of manufacturing same
WO2021116945A1 (en) 2019-12-10 2021-06-17 Rai Strategic Holdings, Inc. Aerosol delivery device with downstream flavor cartridge
US11091446B2 (en) 2017-03-24 2021-08-17 R.J. Reynolds Tobacco Company Methods of selectively forming substituted pyrazines
WO2022049545A1 (en) 2020-09-04 2022-03-10 Nicoventures Trading Limited Child-resistant container for tobacco-containing products
WO2023187675A1 (en) * 2022-03-31 2023-10-05 R. J. Reynolds Tobacco Company Agglomerated botanical material for oral products
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
US11826462B2 (en) 2019-12-09 2023-11-28 Nicoventures Trading Limited Oral product with sustained flavor release
EP4282779A1 (en) 2014-10-16 2023-11-29 R.J. Reynolds Tobacco Company Package for a tobacco-containing material with a valve assembly and related packaging method
US11872231B2 (en) 2019-12-09 2024-01-16 Nicoventures Trading Limited Moist oral product comprising an active ingredient
WO2024069373A1 (en) 2022-09-26 2024-04-04 Nicoventures Trading Limited Child-resistant container for tobacco-containing products

Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US805806A (en) * 1905-07-01 1905-11-28 Alfred Marschner Chewing-tobacco package.
US967730A (en) * 1909-07-31 1910-08-16 Samuel Courtauld And Co Ltd Apparatus for stopping winding-reels, &c., when a predetermined length of material has been wound thereon.
US1376586A (en) * 1918-04-06 1921-05-03 Schwartz Francis Tobacco-tablet
US1886115A (en) * 1930-11-13 1932-11-01 Muller Carl Wilhelm Tube-like container for cigars
US2769734A (en) * 1955-07-14 1956-11-06 Int Cigar Mach Co Tobacco sheet material and method of forming
US3098492A (en) * 1960-11-25 1963-07-23 Nat Starch Chem Corp Method of making tobacco product
US3166078A (en) * 1961-04-05 1965-01-19 Lorillard Co P Chewing tobacco product
US3371775A (en) * 1965-08-02 1968-03-05 Dow Chemical Co Package for elongate objects and method of packaging elongate objects
US3528434A (en) * 1968-04-12 1970-09-15 American Mach & Foundry Method of making reconstituted tobacco
US3584631A (en) * 1969-08-25 1971-06-15 Amf Inc Reconstituted tobacco composition
US3696917A (en) * 1970-09-10 1972-10-10 Elaine G Levi Tobacco pouch closure
US3968804A (en) * 1974-05-20 1976-07-13 Amf Incorporated Extruded tobacco sheet
US4018233A (en) * 1974-02-05 1977-04-19 Sumitomo Chemical Company Limited Shaped matters of tobaccos and process for producing the same
US4513756A (en) * 1983-04-28 1985-04-30 The Pinkerton Tobacco Company Process of making tobacco pellets
US4528993A (en) * 1982-08-20 1985-07-16 R. J. Reynolds Tobacco Company Process for producing moist snuff
US4606357A (en) * 1984-11-19 1986-08-19 Dusek Russell L Tobacco composition
US4607479A (en) * 1983-12-14 1986-08-26 Svenska Tobaks Ab Apparatus for packaging given quantities of snuff
US4624269A (en) * 1984-09-17 1986-11-25 The Pinkerton Tobacco Company Chewable tobacco based product
US4631899A (en) * 1983-09-20 1986-12-30 Hermann Kruger's EFTF. A/S Method of dispensing a metered quantity of snuff and of packaging the individual, metered quantities of snuff
US4660577A (en) * 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4821749A (en) * 1988-01-22 1989-04-18 R. J. Reynolds Tobacco Company Extruded tobacco materials
US4852734A (en) * 1988-09-21 1989-08-01 R. J. Reynolds Tobacco Company Cigarette package
US4987907A (en) * 1988-06-29 1991-01-29 Helme Tobacco Company Chewing tobacco composition and process for producing same
US5016036A (en) * 1989-06-21 1991-05-14 Olympus Optical Co., Ltd. Device for developing recording media with liquid developer
US5033864A (en) * 1989-09-08 1991-07-23 Lasecki Marie R Temperature sensing pacifier with radio transmitter and receiver
US5092352A (en) * 1983-12-14 1992-03-03 American Brands, Inc. Chewing tobacco product
US5097851A (en) * 1990-02-22 1992-03-24 B.A.T. Cigarettenfabriken Gmbh Tobacco sheet and method and apparatus for the production of a tobacco sheet
US5139140A (en) * 1991-06-19 1992-08-18 R. J. Reynolds Tobacco Company Cigarette package
US5167244A (en) * 1990-01-19 1992-12-01 Kjerstad Randy E Tobacco substitute
USD335934S (en) * 1991-05-16 1993-05-25 Howard Ralph E Tobacco-impregnated toothpick
US5333729A (en) * 1992-09-14 1994-08-02 R. J. Reynolds Tobacco Company Packaged cigarettes
US5346734A (en) * 1993-04-16 1994-09-13 Bethanie K. Wydick Perforated latex oral pouch for loose snuff
US5387416A (en) * 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US5501237A (en) * 1991-09-30 1996-03-26 R. J. Reynolds Tobacco Company Tobacco reconstitution process
USD368221S (en) * 1994-10-03 1996-03-26 Montague Cordia K Combined package with a cigarette
US5542529A (en) * 1990-04-23 1996-08-06 R. J. Reynolds Tobacco Company High barrier packages for smoking articles and other products
US5803081A (en) * 1996-06-28 1998-09-08 Regent Court Technologies Tobacco and related products
US5938018A (en) * 1997-04-15 1999-08-17 Rothmans, Benson & Hedges Inc. Cigarette or tobacco package with re-usable aroma releasant for multiple package openings
US6132516A (en) * 1998-04-13 2000-10-17 Sony Corporation Vacuum deposition apparatus
US20030094182A1 (en) * 2001-09-28 2003-05-22 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US20040043165A1 (en) * 2002-08-27 2004-03-04 Van Hulle Keith Eugene Lidding components for containers
US6730832B1 (en) * 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
US20040118422A1 (en) * 2002-12-19 2004-06-24 Swedish Match North Europe Ab Tobacco dough and a method for its manufacture
US20050061339A1 (en) * 2001-12-21 2005-03-24 Henri Hansson Tobacco and/or tobacco substitute composition for use as a snuff in the oral cavity
US6895974B2 (en) * 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
US20050244521A1 (en) * 2003-11-07 2005-11-03 Strickland James A Tobacco compositions
US7014039B2 (en) * 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US7025066B2 (en) * 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
US20060162732A1 (en) * 2005-01-25 2006-07-27 Winn-Hall, Inc. Method for making a nicotine toothpick

Patent Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US805806A (en) * 1905-07-01 1905-11-28 Alfred Marschner Chewing-tobacco package.
US967730A (en) * 1909-07-31 1910-08-16 Samuel Courtauld And Co Ltd Apparatus for stopping winding-reels, &c., when a predetermined length of material has been wound thereon.
US1376586A (en) * 1918-04-06 1921-05-03 Schwartz Francis Tobacco-tablet
US1886115A (en) * 1930-11-13 1932-11-01 Muller Carl Wilhelm Tube-like container for cigars
US2769734A (en) * 1955-07-14 1956-11-06 Int Cigar Mach Co Tobacco sheet material and method of forming
US3098492A (en) * 1960-11-25 1963-07-23 Nat Starch Chem Corp Method of making tobacco product
US3166078A (en) * 1961-04-05 1965-01-19 Lorillard Co P Chewing tobacco product
US3371775A (en) * 1965-08-02 1968-03-05 Dow Chemical Co Package for elongate objects and method of packaging elongate objects
US3528434A (en) * 1968-04-12 1970-09-15 American Mach & Foundry Method of making reconstituted tobacco
US3584631A (en) * 1969-08-25 1971-06-15 Amf Inc Reconstituted tobacco composition
US3696917A (en) * 1970-09-10 1972-10-10 Elaine G Levi Tobacco pouch closure
US4018233A (en) * 1974-02-05 1977-04-19 Sumitomo Chemical Company Limited Shaped matters of tobaccos and process for producing the same
US3968804A (en) * 1974-05-20 1976-07-13 Amf Incorporated Extruded tobacco sheet
US4528993A (en) * 1982-08-20 1985-07-16 R. J. Reynolds Tobacco Company Process for producing moist snuff
US4660577A (en) * 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4513756A (en) * 1983-04-28 1985-04-30 The Pinkerton Tobacco Company Process of making tobacco pellets
US4631899A (en) * 1983-09-20 1986-12-30 Hermann Kruger's EFTF. A/S Method of dispensing a metered quantity of snuff and of packaging the individual, metered quantities of snuff
US5092352A (en) * 1983-12-14 1992-03-03 American Brands, Inc. Chewing tobacco product
US4607479A (en) * 1983-12-14 1986-08-26 Svenska Tobaks Ab Apparatus for packaging given quantities of snuff
US4624269A (en) * 1984-09-17 1986-11-25 The Pinkerton Tobacco Company Chewable tobacco based product
US4606357A (en) * 1984-11-19 1986-08-19 Dusek Russell L Tobacco composition
US4821749A (en) * 1988-01-22 1989-04-18 R. J. Reynolds Tobacco Company Extruded tobacco materials
US4987907A (en) * 1988-06-29 1991-01-29 Helme Tobacco Company Chewing tobacco composition and process for producing same
US4852734A (en) * 1988-09-21 1989-08-01 R. J. Reynolds Tobacco Company Cigarette package
US5016036A (en) * 1989-06-21 1991-05-14 Olympus Optical Co., Ltd. Device for developing recording media with liquid developer
US5033864A (en) * 1989-09-08 1991-07-23 Lasecki Marie R Temperature sensing pacifier with radio transmitter and receiver
US5167244A (en) * 1990-01-19 1992-12-01 Kjerstad Randy E Tobacco substitute
US5097851A (en) * 1990-02-22 1992-03-24 B.A.T. Cigarettenfabriken Gmbh Tobacco sheet and method and apparatus for the production of a tobacco sheet
US5542529A (en) * 1990-04-23 1996-08-06 R. J. Reynolds Tobacco Company High barrier packages for smoking articles and other products
USD335934S (en) * 1991-05-16 1993-05-25 Howard Ralph E Tobacco-impregnated toothpick
US5139140A (en) * 1991-06-19 1992-08-18 R. J. Reynolds Tobacco Company Cigarette package
US5501237A (en) * 1991-09-30 1996-03-26 R. J. Reynolds Tobacco Company Tobacco reconstitution process
US5333729A (en) * 1992-09-14 1994-08-02 R. J. Reynolds Tobacco Company Packaged cigarettes
US5346734A (en) * 1993-04-16 1994-09-13 Bethanie K. Wydick Perforated latex oral pouch for loose snuff
US5387416A (en) * 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
USD368221S (en) * 1994-10-03 1996-03-26 Montague Cordia K Combined package with a cigarette
US5803081A (en) * 1996-06-28 1998-09-08 Regent Court Technologies Tobacco and related products
US5938018A (en) * 1997-04-15 1999-08-17 Rothmans, Benson & Hedges Inc. Cigarette or tobacco package with re-usable aroma releasant for multiple package openings
US6132516A (en) * 1998-04-13 2000-10-17 Sony Corporation Vacuum deposition apparatus
US6895974B2 (en) * 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
US6730832B1 (en) * 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
US20030094182A1 (en) * 2001-09-28 2003-05-22 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US20050061339A1 (en) * 2001-12-21 2005-03-24 Henri Hansson Tobacco and/or tobacco substitute composition for use as a snuff in the oral cavity
US20040043165A1 (en) * 2002-08-27 2004-03-04 Van Hulle Keith Eugene Lidding components for containers
US7025066B2 (en) * 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
US20040118422A1 (en) * 2002-12-19 2004-06-24 Swedish Match North Europe Ab Tobacco dough and a method for its manufacture
US7014039B2 (en) * 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US20050244521A1 (en) * 2003-11-07 2005-11-03 Strickland James A Tobacco compositions
US20060162732A1 (en) * 2005-01-25 2006-07-27 Winn-Hall, Inc. Method for making a nicotine toothpick

Cited By (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9139360B2 (en) 2005-11-21 2015-09-22 Philip Morris Usa Inc. Flavor pouch
US20070207239A1 (en) * 2005-11-21 2007-09-06 Philip Morris Usa Inc. Flavor pouch
US10065794B2 (en) 2005-11-21 2018-09-04 Philip Morris Usa Inc. Flavor pouch
US9643773B2 (en) 2005-11-21 2017-05-09 Philip Morris Usa Inc. Flavor pouch
US8685478B2 (en) 2005-11-21 2014-04-01 Philip Morris Usa Inc. Flavor pouch
US20070186941A1 (en) * 2006-02-10 2007-08-16 Holton Darrell E Jr Smokeless tobacco composition
US7861728B2 (en) * 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
US20110061666A1 (en) * 2006-02-10 2011-03-17 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition
US7810507B2 (en) 2006-02-10 2010-10-12 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US8695609B2 (en) 2006-02-10 2014-04-15 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20080173317A1 (en) * 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
US11278049B2 (en) 2006-11-15 2022-03-22 Philip Morris Usa Inc. Moist tobacco product and method of making
US9032971B2 (en) 2006-11-15 2015-05-19 Philip Morris Usa Inc. Moist tobacco product and method of making
US20080202533A1 (en) * 2006-11-15 2008-08-28 Philip Morris Usa Inc. Moist tobacco product and method of making
US9924739B2 (en) 2006-11-15 2018-03-27 Philip Morris Usa Inc. Moist tobacco product and method of making
US10426190B2 (en) 2006-11-15 2019-10-01 Philip Morris Usa Inc. Moist tobacco product and method of making
US9061824B2 (en) 2007-02-28 2015-06-23 Philip Morris Usa Inc. Oral pouch product with flavored wrapper
US9345267B2 (en) 2007-02-28 2016-05-24 Philip Morris Usa Inc. Oral pouch product with flavored wrapper
US8616221B2 (en) 2007-02-28 2013-12-31 Philip Morris Usa Inc. Oral pouch product with flavored wrapper
US9888712B2 (en) 2007-06-08 2018-02-13 Philip Morris Usa Inc. Oral pouch products including a liner and tobacco beads
US8067046B2 (en) 2007-06-08 2011-11-29 Philip Morris Usa Inc. Oral pouch product including soluble dietary fibers
US20100300465A1 (en) * 2007-06-08 2010-12-02 Zimmermann Stephen G Oral Pouch Products Including a Liner and Tobacco Beads
US10640246B2 (en) 2007-07-16 2020-05-05 Philip Morris Usa Inc. Oral pouch product having soft edge and method of making
US20090035414A1 (en) * 2007-07-16 2009-02-05 Philip Morris Usa Inc. Method of flavor encapsulation through the use of a drum coater
US8202589B2 (en) 2007-07-16 2012-06-19 Philip Morris Usa Inc. Oral delivery pouch product with coated seam
US8124147B2 (en) 2007-07-16 2012-02-28 Philip Morris Usa Inc. Oral pouch products with immobilized flavorant particles
US11542049B2 (en) 2007-07-16 2023-01-03 Philip Morris Usa Inc. Oral pouch product having soft edge and method of making
US8950408B2 (en) 2007-07-16 2015-02-10 Philip Morris Usa Inc. Oral pouch product having soft edge
US9889956B2 (en) 2007-07-16 2018-02-13 Philip Morris Usa Inc. Oral pouch product having soft edge and method of making
US8424541B2 (en) 2007-07-16 2013-04-23 Philip Morris Usa Inc. Tobacco-free oral flavor delivery pouch product
US20090022917A1 (en) * 2007-07-16 2009-01-22 Philip Morris Usa Inc. Oral delivery pouch product with coated seam
US8701679B2 (en) 2007-07-16 2014-04-22 Philip Morris Usa Inc. Tobacco-free oral flavor delivery pouch product
US8119173B2 (en) 2007-07-16 2012-02-21 Philip Morris Usa Inc. Method of flavor encapsulation through the use of a drum coater
US10219537B2 (en) 2007-07-23 2019-03-05 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US8061362B2 (en) 2007-07-23 2011-11-22 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20090025738A1 (en) * 2007-07-23 2009-01-29 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition
US20090025739A1 (en) * 2007-07-23 2009-01-29 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition
US9237769B2 (en) 2007-07-23 2016-01-19 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US7946295B2 (en) 2007-07-23 2011-05-24 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US8312886B2 (en) 2007-08-09 2012-11-20 Philip Morris Usa Inc. Oral tobacco product having a hydrated membrane coating and a high surface area
US8869804B2 (en) 2007-08-09 2014-10-28 Philip Morris Usa Inc. Oral tobacco product having a hydrated membrane coating and a high surface area
WO2009048522A1 (en) 2007-10-11 2009-04-16 Richard Fuisz Smokeless tobacco product
US9125434B2 (en) 2007-10-11 2015-09-08 Philip Morris Products S.A. Smokeless tobacco product, smokeless tobacco product in the form of a sheet, extrudable tobacco composition, method for manufacturing a smokeless tobacco product, method for delivering super bioavailable nicotine contained in tobacco to a user, and packaged smokeless tobacco product sheet
US10334872B2 (en) 2007-10-11 2019-07-02 Philip Morris Products S.A. Smokeless tobacco product, smokeless tobacco product in the form of a sheet, extrudable tobacco composition, method for manufacturing a smokeless tobacco product, method for delivering super bioavailable nicotine contained in tobacco to a user, and packaged smokeless tobacco product sheet
US8613285B2 (en) 2007-10-11 2013-12-24 Philip Morris Products S.A. Extrudable and extruded compositions for delivery of bioactive agents, method of making same and method of using same
US20090098192A1 (en) * 2007-10-11 2009-04-16 Fuisz Richard C Extrudable and Extruded Compositions for Delivery of Bioactive Agents, Method of Making Same and Method of Using Same
US20090095313A1 (en) * 2007-10-11 2009-04-16 Fuisz Richard C Smokeless Tobacco Product, Smokeless Tobacco Product in the Form of a Sheet, Extrudable Tobacco Composition, Method for Manufacturing a Smokeless Tobacco Product, Method for Delivering Super Bioavailable Nicotine Contained in Tobacco to a User, and Packaged Smokeless Tobacco Product Sheet
US20090293889A1 (en) * 2007-11-28 2009-12-03 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
US8336557B2 (en) 2007-11-28 2012-12-25 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
WO2009068279A1 (en) * 2007-11-28 2009-06-04 Philip Morris Products S.A. Smokeless compressed tobacco product for oral consumption
US8714163B2 (en) 2007-11-28 2014-05-06 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
US20100294290A1 (en) * 2008-01-25 2010-11-25 Wenhui Zhang Process for manufacturing breakable capsules useful in tobacco products
US8470215B2 (en) 2008-01-25 2013-06-25 R. J. Reynolds Tobacco Company Process for manufacturing breakable capsules useful in tobacco products
US8746256B2 (en) 2008-02-08 2014-06-10 Philip Morris Usa Inc. Pre-portioned moist product and method of making
US20090301505A1 (en) * 2008-02-08 2009-12-10 Philip Morris Usa Inc. Pre-portioned moist product and method of making
US9072318B2 (en) 2008-02-08 2015-07-07 Philip Morris Usa Inc. Pre-portioned moist product and method of making
US8469037B2 (en) 2008-02-08 2013-06-25 Philip Morris Usa Inc. Pre-portioned moist product and method of making
US20100018540A1 (en) * 2008-07-28 2010-01-28 David James Doolittle Smokeless tobacco products and processes
US20100018541A1 (en) * 2008-07-28 2010-01-28 Anthony Richard Gerardi Smokeless tobacco products and processes
US20100018539A1 (en) * 2008-07-28 2010-01-28 Paul Andrew Brinkley Smokeless tobacco products and processes
US20100018882A1 (en) * 2008-07-28 2010-01-28 St Charles Frank K Smokeless tobacco products and processes
WO2010022360A3 (en) * 2008-08-21 2010-05-14 Luzenberg Robert S Tobacco substitute
WO2010022360A2 (en) * 2008-08-21 2010-02-25 Luzenberg Robert S Tobacco substitute
US10039312B2 (en) 2008-11-07 2018-08-07 R. J. Reynolds Tobacco Company Tobacco products and processes
US20100116281A1 (en) * 2008-11-07 2010-05-13 Jerry Wayne Marshall Tobacco products and processes
US10245227B2 (en) 2008-12-08 2019-04-02 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US9155772B2 (en) 2008-12-08 2015-10-13 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US11712415B2 (en) 2008-12-08 2023-08-01 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US10492523B2 (en) 2008-12-17 2019-12-03 Philip Morris Usa Inc. Moist botanical pouch processing and moist oral botanical pouch products
US8377215B2 (en) 2008-12-18 2013-02-19 Philip Morris Usa Inc. Moist botanical pouch processing
US9516894B2 (en) 2008-12-18 2016-12-13 Philip Morris Usa Inc. Moist botanical pouch processing and moist oral botanical pouch products
US20100300464A1 (en) * 2008-12-18 2010-12-02 Philip Morris Usa Inc. Moist botanical pouch processing and moist oral botanical pouch products
US20110180087A1 (en) * 2008-12-30 2011-07-28 Philip Morris Usa Inc. Oral pouch product with multi-layered pouch wrapper
US9027567B2 (en) 2008-12-30 2015-05-12 Philip Morris Usa Inc. Oral pouch product with multi-layered pouch wrapper
US20100218779A1 (en) * 2009-02-27 2010-09-02 Philip Morris Usa Inc. Controlled flavor release tobacco pouch products and methods of making
US8863755B2 (en) 2009-02-27 2014-10-21 Philip Morris Usa Inc. Controlled flavor release tobacco pouch products and methods of making
US20110048434A1 (en) * 2009-06-02 2011-03-03 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
WO2010141278A1 (en) 2009-06-02 2010-12-09 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20100300463A1 (en) * 2009-06-02 2010-12-02 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US10602769B2 (en) 2009-06-30 2020-03-31 Philip Morris Products S.A. Smokeless tobacco product
US9848634B2 (en) 2009-06-30 2017-12-26 Philip Morris Products S.A. Smokeless tobacco product
US20100326454A1 (en) * 2009-06-30 2010-12-30 Fuisz Richard C Smokeless Tobacco Product
WO2011022248A1 (en) 2009-08-20 2011-02-24 R.J. Reynolds Tobacco Company Pressurized cigarette package and method of producing it
US8118161B2 (en) 2009-08-20 2012-02-21 R.J. Reynolds Tobacco Company Pressurized cigarette packages and methods
US9340367B2 (en) 2009-08-28 2016-05-17 R. J. Reynolds Tobacco Company Feeder system for rod components of tobacco products, and associated method
WO2011031445A1 (en) 2009-08-28 2011-03-17 R.J. Reynolds Tobacco Company Feeder system for rod components of tobacco products, and associated method
US8448647B2 (en) 2009-08-28 2013-05-28 R. J. Reynolds Tobacco Company Feeder system for rod components of tobacco products
US20110048435A1 (en) * 2009-08-28 2011-03-03 R.J. Reynolds Tobacco Company Feeder System For Rod Components Of Tobacco Products, And Associated Method
US20110083680A1 (en) * 2009-10-09 2011-04-14 Philip Morris Usa Inc. Tobacco-free pouched product containing flavor beads providing immediate and long lasting flavor release
US20110083688A1 (en) * 2009-10-09 2011-04-14 Philip Morris Usa Inc. Moist smokeless tobacco product with textured coating
US10143230B2 (en) 2009-10-09 2018-12-04 Philip Morris Usa Inc. Tobacco-free pouched product containing flavor beads providing immediate and long lasting flavor release
US8747562B2 (en) 2009-10-09 2014-06-10 Philip Morris Usa Inc. Tobacco-free pouched product containing flavor beads providing immediate and long lasting flavor release
US9687023B2 (en) 2009-10-09 2017-06-27 Philip Morris Usa Inc. Moist smokeless tobacco product for oral usage having on a portion of the outer surface at least one friction reducing strip that provides texture during use
US8539958B2 (en) 2009-10-13 2013-09-24 Philip Morris Usa Inc. Oral moist smokeless tobacco products with net-structured gel coating and methods of making
US9648903B2 (en) 2009-10-13 2017-05-16 Philip Morris Usa Inc. Oral moist smokeless tobacco products with net-structured gel coating and methods of making
US20110100382A1 (en) * 2009-10-13 2011-05-05 Philip Morris Usa Inc. Oral moist smokeless tobacco products with net-structured gel coating and methods of making
US20110108043A1 (en) * 2009-11-12 2011-05-12 Philip Morris Usa Inc. Oral chewable tobacco product and method of manufacture thereof
US8640714B2 (en) 2009-11-12 2014-02-04 Philip Morris Usa Inc. Oral chewable tobacco product and method of manufacture thereof
WO2011081725A1 (en) 2009-12-15 2011-07-07 R. J. Reynolds Tobacco Company Tobacco product and method for manufacture
US20110139164A1 (en) * 2009-12-15 2011-06-16 R. J. Reynolds Tobacco Company Tobacco Product And Method For Manufacture
US20110220130A1 (en) * 2009-12-15 2011-09-15 John-Paul Mua Tobacco Product And Method For Manufacture
WO2011087954A1 (en) 2010-01-12 2011-07-21 R. J. Reynolds Tobacco Company Dispensing container
US10561168B2 (en) 2010-01-15 2020-02-18 R.J. Reynolds Tobacco Company Tobacco-derived components and materials
WO2011088171A2 (en) 2010-01-15 2011-07-21 R. J. Reynolds Tobacco Company Tobacco-derived components and materials
US8955523B2 (en) 2010-01-15 2015-02-17 R.J. Reynolds Tobacco Company Tobacco-derived components and materials
US9038643B2 (en) 2010-03-26 2015-05-26 Philip Morris Usa Inc. Inhibition of sensory irritation during consumption of non-smokeable tobacco products
US10117453B2 (en) 2010-03-26 2018-11-06 Philip Morris Usa Inc. Inhibition of sensory irritation during consumption of non-smokeable tobacco products
US11129405B2 (en) 2010-03-26 2021-09-28 Philip Morris Usa Inc. Inhibition of sensory irritation during consumption of non-smokeable tobacco products
WO2011127182A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless tobacco composition comprising tobacco-derived material and non-tobacco plant material
US9039839B2 (en) 2010-04-08 2015-05-26 R.J. Reynolds Tobacco Company Smokeless tobacco composition comprising tobacco-derived material and non-tobacco plant material
US10342251B2 (en) 2010-04-08 2019-07-09 R.J. Reynolds Tobacco Company Smokeless tobacco composition comprising tobacco-derived material and non-tobacco plant material
US9820507B2 (en) 2010-04-12 2017-11-21 Altria Client Services Llc Method of making oral pouch product
US9126704B2 (en) 2010-04-12 2015-09-08 Altria Client Services Inc. Pouch product with improved seal and method
WO2011133633A1 (en) 2010-04-21 2011-10-27 R. J. Reynolds Tobacco Company Tobacco seed-derived components and materials
US10772350B2 (en) 2010-08-11 2020-09-15 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US9155321B2 (en) 2010-08-11 2015-10-13 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
WO2012021504A2 (en) 2010-08-11 2012-02-16 R. J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US11666083B2 (en) 2010-08-11 2023-06-06 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US11116237B2 (en) 2010-08-11 2021-09-14 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US9993020B2 (en) 2010-08-11 2018-06-12 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
WO2012021683A2 (en) 2010-08-12 2012-02-16 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
WO2012030946A1 (en) 2010-09-02 2012-03-08 R. J. Reynolds Tobacco Company Apparatus for manufacturing a smokeless tobacco product incorporating an object, and associated method
US11172702B2 (en) 2010-09-02 2021-11-16 R. J. Reynolds Tobacco Company Apparatus for manufacturing a smokeless tobacco product incorporating an object, and associated method
US10028520B2 (en) 2010-09-02 2018-07-24 R.J. Reynolds Tobacco Company Apparatus for manufacturing a smokeless tobacco product incorporating an object, and associated method
US10537132B2 (en) 2010-09-07 2020-01-21 R.J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
WO2012033743A1 (en) 2010-09-07 2012-03-15 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US9675102B2 (en) 2010-09-07 2017-06-13 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
WO2012068375A1 (en) 2010-11-18 2012-05-24 R. J. Reynolds Tobacco Company Fire-cured tobacco extract and tobacco products made therefrom
WO2012074865A1 (en) 2010-12-01 2012-06-07 R. J. Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US9204667B2 (en) 2010-12-01 2015-12-08 R.J. Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US9775376B2 (en) 2010-12-01 2017-10-03 R.J. Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
WO2012074985A1 (en) 2010-12-01 2012-06-07 R. J. Reynolds Tobacco Company Tobacco separation process for extracting tobacco-derived materials, and associated extraction systems
WO2012075035A2 (en) 2010-12-01 2012-06-07 R. J. Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
US9220295B2 (en) 2010-12-01 2015-12-29 R.J. Reynolds Tobacco Company Tobacco separation process for extracting tobacco-derived materials, and associated extraction systems
WO2012083127A1 (en) 2010-12-17 2012-06-21 R. J. Reynolds Tobacco Company Tobacco-derived syrup composition
WO2012103327A1 (en) 2011-01-28 2012-08-02 R. J. Reynolds Tobacco Company Polymeric materials derived from tobacco
WO2012103435A1 (en) 2011-01-28 2012-08-02 R. J. Reynolds Tobacco Company Tobacco-derived casing composition
WO2012106237A1 (en) 2011-01-31 2012-08-09 American Snuff Company, Llc Container for smokeless tobacco products
WO2012148996A1 (en) 2011-04-27 2012-11-01 R. J. Reynolds Tobacco Company Tobacco-derived components and materials
EP3545775A1 (en) 2011-04-27 2019-10-02 R. J. Reynolds Tobacco Company Method of extracting and isolating compounds from plants of the nicotiana species useful as flavor material
WO2013074742A2 (en) 2011-11-16 2013-05-23 R. J. Reynolds Tobacco Company Smokeless tobacco products with starch component
EP3954229A1 (en) 2011-11-16 2022-02-16 R. J. Reynolds Tobacco Company Smokeless tobacco products with starch component
WO2013074315A1 (en) 2011-11-17 2013-05-23 R.J. Reynolds Tobacco Company Method for producing triethyl citrate from tobacco
WO2013074903A1 (en) 2011-11-18 2013-05-23 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising tobacco - derived pectin component
US10881132B2 (en) 2011-12-14 2021-01-05 R.J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US11918027B2 (en) 2011-12-14 2024-03-05 R.J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
EP3782474A1 (en) 2011-12-20 2021-02-24 R. J. Reynolds Tobacco Company Meltable smokeless tobacco composition
WO2013096408A1 (en) 2011-12-20 2013-06-27 R. J. Reynolds Tobacco Company Meltable smokeless tobacco composition
WO2013142483A1 (en) 2012-03-19 2013-09-26 R. J. Reynolds Tobacco Company Method for treating an extracted tobacco pulp and tobacco products made therefrom
WO2013158957A1 (en) 2012-04-19 2013-10-24 R. J. Reynolds Tobacco Company Method for producing microcrystalline cellulose from tobacco and related tobacco product
WO2013166285A1 (en) 2012-05-04 2013-11-07 R. J. Reynolds Tobacco Company Transparent moisture barrier coatings for containers
US11490650B2 (en) 2012-06-22 2022-11-08 R.J. Reynolds Tobacco Company Composite tobacco-containing materials
WO2013192519A1 (en) 2012-06-22 2013-12-27 R. J. Reynolds Tobacco Company Composite tobacco-containing materials
US9386800B2 (en) 2012-09-21 2016-07-12 R.J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
US9591875B2 (en) 2012-09-21 2017-03-14 R. J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
WO2014058837A1 (en) 2012-10-09 2014-04-17 R. J. Reynolds Tobacco Company Tobacco-derived o-methylated flavonoid composition
US10420364B2 (en) 2013-02-13 2019-09-24 British American Tobacco (Investments) Limited Tobacco treatment
WO2014138223A1 (en) 2013-03-07 2014-09-12 R.J. Reynolds Tobacco Company Method for producing lutein from tobacco
WO2014150926A1 (en) 2013-03-14 2014-09-25 R. J. Reynolds Tobacco Company Sugar-enriched extract derived from tobacco
WO2014159617A1 (en) 2013-03-14 2014-10-02 R. J. Reynolds Tobacco Company Protein-enriched tobacco-derived composition
CN103266539A (en) * 2013-05-20 2013-08-28 红云红河烟草(集团)有限责任公司 Multi-flavor anti-fake cigarette paper and preparation method thereof
WO2015017613A1 (en) 2013-08-02 2015-02-05 R.J. Reynolds Tobacco Company Process for producing lignin from tobacco
US9629391B2 (en) 2013-08-08 2017-04-25 R.J. Reynolds Tobacco Company Tobacco-derived pyrolysis oil
WO2015021137A1 (en) 2013-08-08 2015-02-12 R. J. Reynolds Tobacco Company Tobacco-derived pyrolysis oil
US20160205992A1 (en) * 2013-08-21 2016-07-21 British American Tobacco (Investments) Limited Treated tobacco and processes for preparing the same, devices including the same and uses thereof
US10588340B2 (en) * 2013-08-21 2020-03-17 British American Tobacco (Investments) Limited Treated tobacco and processes for preparing the same, devices including the same and uses thereof
US10568355B2 (en) 2013-10-16 2020-02-25 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US11540555B2 (en) 2013-10-16 2023-01-03 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US10357054B2 (en) 2013-10-16 2019-07-23 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US10980271B2 (en) 2013-10-16 2021-04-20 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
WO2015077219A2 (en) 2013-11-20 2015-05-28 R. J. Reynolds Tobacco Company Container for smokeless tobacco product
WO2015109085A1 (en) 2014-01-17 2015-07-23 R.J. Reynolds Tobacco Company Process for producing flavorants and related materials
US20150378599A1 (en) * 2014-06-26 2015-12-31 Samsung Electronics Co., Ltd. Method and electronic device for displaying virtual keyboard
US10888115B2 (en) 2014-07-11 2021-01-12 R. J. Reynolds Tobacco Company Heater for an aerosol delivery device and methods of formation thereof
US10986859B2 (en) 2014-08-13 2021-04-27 R.J. Reynolds Tobacco Company Smokeless tobacco products
WO2016025116A1 (en) 2014-08-13 2016-02-18 R.J. Reynolds Tobacco Company Smokeless tobacco products
EP4282779A1 (en) 2014-10-16 2023-11-29 R.J. Reynolds Tobacco Company Package for a tobacco-containing material with a valve assembly and related packaging method
US10881133B2 (en) 2015-04-16 2021-01-05 R.J. Reynolds Tobacco Company Tobacco-derived cellulosic sugar
CN107846963A (en) * 2015-05-20 2018-03-27 英美烟草(投资)有限公司 Aerosol generates material and includes its device
US20180279666A1 (en) * 2015-05-20 2018-10-04 British American Tobacco (Investments) Limited Aerosol generating material and devices including the same
WO2016200804A1 (en) 2015-06-10 2016-12-15 R. J. Reynolds Tobacco Company Container for smokeless tobacco products comprising a pulp material and related packaged product assembly and method
WO2017040785A2 (en) 2015-09-02 2017-03-09 R.J. Reynolds Tobacco Company System and apparatus for reducing tobacco-specific nitrosamines in dark-fire cured tobacco through electronic control of curing conditions
WO2017040789A1 (en) 2015-09-02 2017-03-09 R.J. Reynolds Tobacco Company Method for monitoring use of a tobacco product
WO2017044466A1 (en) 2015-09-08 2017-03-16 R. J. Reynolds Tobacco Company High-pressure cold pasteurization of tobacco material
US10869497B2 (en) 2015-09-08 2020-12-22 R.J. Reynolds Tobacco Company High-pressure cold pasteurization of tobacco material
US11641874B2 (en) 2015-09-09 2023-05-09 R.J. Reynolds Tobacco Company Flavor delivery article
WO2017044558A1 (en) 2015-09-09 2017-03-16 R. J. Reynolds Tobacco Company Flavor delivery article
WO2017093941A1 (en) 2015-12-03 2017-06-08 Niconovum Usa, Inc. Multi-phase delivery compositions and products incorporating such compositions
US11612183B2 (en) 2015-12-10 2023-03-28 R.J. Reynolds Tobacco Company Protein-enriched tobacco composition
WO2017098439A1 (en) 2015-12-10 2017-06-15 R. J. Reynolds Tobacco Company Protein-enriched tobacco composition
WO2017103795A1 (en) 2015-12-16 2017-06-22 R. J. Reynolds Tobacco Company Flavor additive accessory
WO2017115234A1 (en) 2015-12-28 2017-07-06 R. J. Reynolds Tobacco Company Package for a tobacco-containing material and related packaging method
WO2017130161A1 (en) 2016-01-28 2017-08-03 R. J. Reynolds Tobacco Company Tobacco-derived flavorants
US10499684B2 (en) 2016-01-28 2019-12-10 R.J. Reynolds Tobacco Company Tobacco-derived flavorants
US10329068B2 (en) 2016-05-23 2019-06-25 R.J. Reynolds Tobacco Company Flavoring mechanism for a tobacco related material
WO2018015872A1 (en) 2016-07-18 2018-01-25 R. J. Reynolds Tobacco Company Nonwoven composite smokeless tobacco product
US10588338B2 (en) 2016-07-18 2020-03-17 R.J. Reynolds Tobacco Company Nonwoven composite smokeless tobacco product
US10375984B2 (en) 2016-07-18 2019-08-13 R.J. Reynolds Tobacco Company Nonwoven composite smokeless tobacco product
US11091446B2 (en) 2017-03-24 2021-08-17 R.J. Reynolds Tobacco Company Methods of selectively forming substituted pyrazines
US11891364B2 (en) 2017-03-24 2024-02-06 R.J. Reynolds Tobacco Company Methods of selectively forming substituted pyrazines
WO2019162903A1 (en) 2018-02-23 2019-08-29 American Snuff Company, Llc Container for smokeless tobacco products
WO2019193580A1 (en) 2018-04-05 2019-10-10 R. J. Reynolds Tobacco Company Oriental tobacco production methods
WO2019198055A2 (en) 2018-04-13 2019-10-17 R. J. Reynolds Tobacco Company Lid for a container for smokeless tobacco products
US10952460B2 (en) * 2018-11-05 2021-03-23 Blesst Boyz LLC Composition for a tobacco-free chew and method of manufacturing same
WO2020183301A2 (en) 2019-03-14 2020-09-17 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
EP4272585A2 (en) 2019-03-14 2023-11-08 RAI Strategic Holdings, Inc. Aerosol delivery device providing flavor control
WO2020229961A1 (en) 2019-05-10 2020-11-19 Rai Strategic Holdings, Inc. Flavor article for an aerosol delivery device
US11872231B2 (en) 2019-12-09 2024-01-16 Nicoventures Trading Limited Moist oral product comprising an active ingredient
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
US11826462B2 (en) 2019-12-09 2023-11-28 Nicoventures Trading Limited Oral product with sustained flavor release
WO2021116945A1 (en) 2019-12-10 2021-06-17 Rai Strategic Holdings, Inc. Aerosol delivery device with downstream flavor cartridge
WO2022049545A1 (en) 2020-09-04 2022-03-10 Nicoventures Trading Limited Child-resistant container for tobacco-containing products
WO2023187675A1 (en) * 2022-03-31 2023-10-05 R. J. Reynolds Tobacco Company Agglomerated botanical material for oral products
WO2024069373A1 (en) 2022-09-26 2024-04-04 Nicoventures Trading Limited Child-resistant container for tobacco-containing products

Similar Documents

Publication Publication Date Title
EP2048976B9 (en) Smokeless tobacco
US20080029117A1 (en) Smokeless Tobacco
US20080029116A1 (en) Smokeless tobacco
US20080173317A1 (en) Smokeless tobacco
US10219537B2 (en) Smokeless tobacco composition
EP2343995B1 (en) Smokeless tobacco products and processes
DK1926401T3 (en) Røgløst tobacco product
US20100018541A1 (en) Smokeless tobacco products and processes
US20100018539A1 (en) Smokeless tobacco products and processes
US20100018882A1 (en) Smokeless tobacco products and processes
US20100018883A1 (en) Smokeless tobacco products and processes
US7810507B2 (en) Smokeless tobacco composition
EP2173200B1 (en) Smokeless tobacco compositions and methods for treating tobacco for use therein
US7861728B2 (en) Smokeless tobacco composition having an outer and inner pouch
US20100018540A1 (en) Smokeless tobacco products and processes
US20230292811A1 (en) Smokeless tobacco lipid granules
US20090025739A1 (en) Smokeless Tobacco Composition
DK2173200T3 (en) Smokeless tobacco compositions and methods of treating tobacco for use therein
KR20120093266A (en) Flavored packaging insert

Legal Events

Date Code Title Description
AS Assignment

Owner name: R.J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUA, JOHN-PAUL;MONSALUD, JR., LUIS ROSETE;REEL/FRAME:018198/0865

Effective date: 20060822

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION