US20080038800A1 - Solventless Extraction Process - Google Patents

Solventless Extraction Process Download PDF

Info

Publication number
US20080038800A1
US20080038800A1 US11/782,449 US78244907A US2008038800A1 US 20080038800 A1 US20080038800 A1 US 20080038800A1 US 78244907 A US78244907 A US 78244907A US 2008038800 A1 US2008038800 A1 US 2008038800A1
Authority
US
United States
Prior art keywords
lipid
microorganisms
acid
lipids
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/782,449
Inventor
Craig Ruecker
Swithwin Adu-peasah
Brian Engelhardt
George Veeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
Martek Biosciences Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22647287&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080038800(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US11/782,449 priority Critical patent/US20080038800A1/en
Application filed by Martek Biosciences Corp filed Critical Martek Biosciences Corp
Publication of US20080038800A1 publication Critical patent/US20080038800A1/en
Assigned to OMEGATECH, INC. reassignment OMEGATECH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VEEDER, GEORGE T., III, ENGELHARDT, BRIAN S., ADU-PEASAH, SWITHIN PATRICK, RUECKER, CRAIG M.
Assigned to OMEGATECH, INC. reassignment OMEGATECH, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: OMEGATECH, INC.
Assigned to MARTEK BIOSCIENCES BOULDER CORPORATION reassignment MARTEK BIOSCIENCES BOULDER CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: OMEGATECH, INC.
Assigned to MARTEK BIOSCIENCES CORPORATION reassignment MARTEK BIOSCIENCES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARTEK BIOSCIENCES BOULDER CORPORATION
Assigned to DSM IP ASSETS B.V. reassignment DSM IP ASSETS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARTEK BIOSCIENCES CORPORATION
Priority to US14/244,466 priority patent/US9738851B2/en
Priority to US15/642,835 priority patent/US10329515B2/en
Priority to US16/402,662 priority patent/US20190256797A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/006Refining fats or fatty oils by extraction
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/001Refining fats or fatty oils by a combination of two or more of the means hereafter
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P25/00Preparation of compounds containing alloxazine or isoalloxazine nucleus, e.g. riboflavin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone

Definitions

  • the present invention is directed to a process for extracting lipids from microorganisms without the use of any significant amount of an organic solvent.
  • a typical microorganism lipid manufacturing process such as production of omega-3 highly unsaturated fatty acid, in particular docosahexaenoic acid (DHA)
  • DHA docosahexaenoic acid
  • a typical microorganism lipid manufacturing process involves growing microorganisms which are capable of producing the desired lipid in a fermentor, pond or bioreactor, isolating the microbial biomass, drying it, and extracting intracellular lipids with an organic solvent, e.g., hexane.
  • intracellular lipids of microorganisms are extracted after rupturing (i.e., lysing) the cells of the microorganisms.
  • the extracted lipids are can be further refined to produce a high purity and/or quality lipids.
  • the microorganisms are generally isolated by first diluting the fermentation broth with water, and centrifuging the mixture to isolate microorganisms.
  • the isolated microorganisms are typically dried, for example, on a drum dryer, and packaged, for example, in vacuum-sealed bags, to prevent degradation of lipids.
  • the drying process exposes the microorganisms to heat, which can damage, i.e., degrade the quality of, lipids if done incorrectly.
  • the vacuum-sealed bags may develop leaks, which can further degrade the quality of the lipids due to exposure of the microorganisms to air.
  • lipids can be further degraded due to exposure to air, for example, DHA may degrade due to oxidation by air.
  • operators who are exposed to the dried microorganisms can develop an allergic reaction creating a safety and/or health hazard to operators.
  • the present invention provides a process for obtaining lipid from microorganisms comprising:
  • the extraction process can also include solubilizing at least part of proteinaceous compounds in a fermentation broth, by adding a base selected from the group consisting of hydroxides, carbonates, bicarbonates and mixtures thereof.
  • the process of the present invention can also include heating the microorganisms to temperature of at least about 50° C.
  • the microorganisms are capable of growth at salinity level of less than about 12 g/L of sodium chloride, more preferably less than about 5 g/L of sodium chloride and most preferably less than about 3 g/L of sodium chloride.
  • the microorganisms comprise at least about 30% by weight of lipid, more preferably at least about 35% by weight, and most preferably at least about 40%.
  • at least about 30% of the lipid is docosahexaenoic acid, preferably at least about 35%, and more preferably at least about 40%.
  • the microorganisms are capable of producing at least about 0.1 grams per liter per hour of docosahexaenoic acid, more preferably at least about 0.2 g/L/h, still more preferably at least about 0.3 g/L/h, and most preferably at least about 0.4 g/L/h.
  • the microorganism is selected from the group consisting of algae, fungi, bacteria and protist.
  • the microorganisms are of the order Thraustochytriales. More preferably the microorganisms are selected from the genus Thraustochytrium, Schizochytrium and mixtures thereof. And most preferably, the microorganisms are selected from the group consisting of microorganisms having the identifying characteristics of ATCC number 20888, ATCC number 20889, ATCC number 20890, ATCC number 20891 and ATCC number 20892, mutant strains derived from any of the foregoing, and mixtures thereof.
  • FIG. 1 is a flow diagram of one embodiment of a solventless extraction process of the present invention.
  • the present invention is directed to a process for extracting, recovering, isolating or obtaining lipids from microorganisms.
  • the process of the present invention is applicable to extracting a variety of lipids from a variety of microorganisms, for example, extracting lipids containing omega-3 highly unsaturated fatty acids, such as docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and/or docosapentaenoic acid (DPA), in particular lipids containing a relatively large amount of DHA, from microorganisms producing the same and extracting lipids containing arachidonic acid from microorganisms producing the same.
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • Exemplary microorganisms which produce a relatively large amount of omega-3 highly unsaturated fatty acids are disclosed in commonly assigned U.S. Pat. Nos. 5,340,594 and 5,340,742, both issued to Barclay, and exemplary microorganisms which produce a relatively large amount of arachidonic acid are disclosed in commonly assigned U.S. Pat. No. 5,583,019, issued to Barclay. All of the above disclosed patents are incorporated herein by reference in their entirety.
  • microorganisms include microorganisms, such as fungi, protist, algae and bacteria, which produce a variety of lipids, such as phospholipids; free fatty acids; esters of fatty acids, including triglycerides of fatty acids; sterols; pigments (e.g., carotenoids and oxycarotenoids) and other lipids, and lipid associated compounds such as phytosterols, ergothionine, lipoic acid and antioxidants including beta-carotene and tocopherol.
  • lipids such as phospholipids; free fatty acids; esters of fatty acids, including triglycerides of fatty acids; sterols; pigments (e.g., carotenoids and oxycarotenoids) and other lipids, and lipid associated compounds such as phytosterols, ergothionine, lipoic acid and antioxidants including beta-carotene and tocopherol.
  • Exemplary lipids include, but are not limited to, arachidonic acid, stearidonic acid, cholesterol, desmesterol, astaxanthin, canthaxanthin, and n ⁇ 6 and n ⁇ 3 highly unsaturated fatty acids such as eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid.
  • lipid refers to lipid and/or lipid associated compounds.
  • Other lipids and microorganisms which may be suitable for use in the instant invention will be readily apparent to those skilled in the art.
  • Typical microbial lipid in particular an oil containing an omega-3 highly unsaturated fatty acid such as DHA
  • manufacturing processes involve growing microorganisms which produce DHA in a fermentor, isolating the microorganisms, and extracting the intracellular lipids with organic solvent, e.g., hexane.
  • organic solvent e.g., hexane.
  • the extracted lipid is generally further refined to produce a high purity and/or quality lipid.
  • the isolation of microorganisms involves diluting the fermentation broth with water and centrifuging the mixture to isolate microorganisms.
  • the isolated microorganisms are typically dried, for example, on a drum dryer, and sealed in a package, e.g., in vacuum-sealed bags, to prevent degradation of lipids.
  • a package e.g., in vacuum-sealed bags
  • the drying process exposes the microorganisms to heat, which can damage, i.e., degrade the quality of, the lipid if done incorrectly.
  • the package may develop leaks, which can further degrade the quality of the lipids.
  • the dried microorganisms are not treated with an antioxidant, the exposure of microorganisms to air can further degrade lipids.
  • Recovering the crude oil directly from the fermentation broth avoids these problems. Avoiding the organic solvent extraction step reduces manufacturing costs and also eliminates operator exposure to the dried microorganisms, which can cause an allergic response in some individuals.
  • the present invention provides a method for obtaining lipids from microorganisms using a substantially organic solvent free extraction process, i.e., a “solventless” extraction process.
  • solventless extraction process refers to an extraction process which when an aqueous solvent is used, the aqueous solvent comprises less than about 5% of an organic solvent, preferably less than about 4%, more preferably less than about 2%, and most preferably less than 1%.
  • the process of the present invention can include obtaining or isolating microorganisms, preferably from a fermentation process. In contrast to the current methods, the process of the present invention does not require a drying step prior to the extraction process.
  • processes of the present invention are applicable to extracting lipids from a microbial biomass containing at least about 10% by weight entrained water, preferably at least about 20%, more preferably at least about 30%, and most preferably at least about 50%.
  • the process of the present invention can include adding a base to the fermentation broth to dissolve any proteinaceous compound that may be present in the broth.
  • a “base” refers to any compound whose pKa is greater than that of water. The base should be strong enough to hydrolyze at least a portion of proteinaceous compounds that may be present in the broth.
  • Bases which are useful for solubilizing proteins are well known to one of ordinary skill in the art of chemistry.
  • Exemplary bases which are useful in the processes of the present invention include, but are not limited to, hydroxides, carbonates and bicarbonates of lithium, sodium, potassium, calcium, and magnesium carbonate.
  • the process of the present invention can also include rupturing or lysing the cells of microorganisms to release the lipids which are present within the cells.
  • Cells can be lysed using any of the known methods including chemical; thermal; mechanical, including, but not limited to, french press, mills, ultrasonication, and homogenization; and combinations thereof.
  • a thermal lysing of cells the fermentation broth containing microorganisms are heated until cells, i.e., cell walls, of microorganisms degrade or breakdown.
  • the fermentation broth is heated to a temperature of at least about 50° C., preferably at least about 75° C., more preferably to at least about 100° C., and most preferably to at least about 130° C.
  • Thermally lysing the cell walls of microorganisms is particularly useful for microorganisms whose cell walls are composed of proteins.
  • Heating the broth also denatures proteins and helps solubilize organic materials, including proteins.
  • Heating of the fermentation broth step can be achieved by any of the known methods, including the use of an in-line heat exchanger, and preferably by sparging steam into the fermentor and maintaining the broth at a desired temperature for less than about 90 minutes, preferably less than about 60 minutes, and more preferably less than about 30 minutes.
  • the solventless extraction process of the present invention can also include at least partially separating the broth from lipids. Typically, this is achieved by centrifuging, e.g., by passing the broth through a stacked-disc centrifuge, and collecting lipids as an emulsion phase. Centrifuging the mixture results in a two phase mixture comprising a heavy layer and a light layer. Typically, the heavy layer is an aqueous phase, which contains the majority of cellular debris. The light layer which contains emulsified lipids is then diluted with water, again separated into two phase mixture and the light layer is again isolated.
  • This dilution with water, separation and isolation processes can be achieved continuously by feeding water and removing the heavy layer throughout the process or it can be conducted in discreet steps.
  • the washing process is generally repeated until a non-emulsified lipid layer is obtained. It is believed that the oil-water interface of the emulsion is stabilized by residual cellular debris which is removed by the washing process.
  • the successive amount of water added is reduced to increase the lipid content. While reducing the amount of feed water too quickly can result in loss of lipids to the aqueous phase, reducing the amount of feed water too slowly results in an inefficient washing process.
  • One can readily determine an appropriate rate of feed water reduction by observing or analyzing the separated aqueous layer.
  • the lipid layer i.e., the light layer, is colored; therefore, in many cases one can determine an appropriate rate of feed water reduction by simply analyzing or observing the color of the aqueous layer which is separated from the lipid layer.
  • the isolated lipid can be further refined using a process similar to that used to refine standard vegetable oils.
  • the lipid refining process generally involves hydrating phospholipids by adding phosphoric acid to the lipid followed by adding sodium hydroxide to neutralize free fatty acids. These compounds are removed via centrifugation. This is then followed by a water wash step to further remove any remaining amounts of hydrated phospholipids (“gums”) and neutralized fatty acids (“soapstock”) in the lipid.
  • the resulting lipid is bleached using TrysilTM and a standard bleaching clay. Citric acid is also added to remove divalent metal ions by chelation.
  • the TrysilTM and bleaching clay are then removed via filtration to produce refined lipid.
  • the bleached lipid can be cold filtered to remove high melting point compounds that may be present in the lipid; however, this step is generally seldom required.
  • the resulting lipid can be further refined by removing any low molecular weight components that may be present. Typically, these components are removed by sparging with steam at high temperatures, under high vacuum. This process also destroys any peroxide bonds which may be present and reduces or removes off odors and helps improve the stability of the oil. An antioxidant may then be added to the resulting deodorized lipid to improve product stability.
  • the isolated lipid Prior to the refining process, the isolated lipid can be winterized to remove high melting compounds, such as saturated fatty acids.
  • the winterization process generally involves dissolving the isolated lipid in an organic solvent, e.g., hexane, cooling the resulting organic solution, and filtering the solution to remove the high melting point components of the lipid or stearine phase.
  • the winterization process generally produces a clear lipid, especially when the isolated lipid is cloudy or opaque.
  • the process of the present invention can include isolating microorganisms from a fermentation process
  • one of the advantages of the present invention is that it allows fermentation of microorganisms and isolation of lipids to be carried out in a single vessel.
  • the light layer can be transferred to another vessel for further processing or the heavy layer can be removed from the fermentation vessel, for example, by draining through the bottom of the fermentation vessel, and the remaining light layer can be further processed within the same fermentation vessel.
  • Process reproducibility was characterized by producing three samples of fully refined oil using crude oil from the new solventless extraction process. A hexane-extracted sample was also fully refined to serve as a control. The fermentation, extraction and oil isolation steps were performed at a large scale, while the oil refining studies were performed at a small scale.
  • a single F-Tank batch ( ⁇ 1,200 gallons) was used to generate the starting broth for the three solventless extraction processes.
  • the batch (#F99202) was allowed to run for 94 hours, while controlling the glucose levels at 13 g/L, after which time the corn syrup feed was terminated. Residual glucose levels dropped to ⁇ 5 g/L four hours later. This resulted in a final age of 98 hours.
  • the final broth volume was 958 gallons.
  • the final yield was 146 g/L. Both in-process contamination checks and a thorough analysis of a final broth sample failed to show any signs of contamination.
  • Crude oil was obtained by treating three 400-gallon aliquots (approx.) of broth in batch #F99202. Each 400-gallon aliquot from the F-Tank batch was processed separately, starting with the caustic/heat treatment steps. Each aliquot was treated with 20 grams of 45% KOH per liter and heated to 130° C. for about 30 minutes by passing stream through the fermentation broth. The crude oil was recovered from the treated broth using a commercial-scale Westfalia HFA-100 stacked-disc centrifuge. Summary results for various process parameters are reported in Table 2, and the final crude oil analysis results are shown in Table 3. TABLE 2 Process Data from the Solventless Extraction Process.
  • the results from this experiment clearly demonstrate that the solventless extraction process is both reproducible and lipids from solventless extraction are relatively indistinguishable from the lipids obtained from hexane extraction process in terms of process performance and product quality.
  • the final product from the solventless extraction process is substantially equivalent to lipids from a current hexane-based extraction process, as determined by similarities between the fatty acid and sterol profiles of the product from these two processes.
  • the present invention in various embodiments, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the present invention after understanding the present disclosure.
  • the present invention in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and ⁇ or reducing cost of implementation.

Abstract

The present invention provides a method for extracting lipids from microorganisms without using organic solvent as an extraction solvent. In particular, the present invention provides a method for extracting lipids from microorganisms by lysing cells and removing water soluble compound and/or materials by washing the lysed cell mixtures with aqueous washing solutions until a substantially non-emulsified lipid is obtained.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of prior pending U.S. application Ser. No. 10/784,148, filed Feb. 20, 2004, which is a continuation of U.S. application Ser. No. 09/766,500, filed Jan. 19, 2001, which claims the benefit of priority under 35 U.S.C. 119(e) from Provisional Patent Application Ser. No. 60/177,125, filed on Jan. 19, 2000. Each of the foregoing applications is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention is directed to a process for extracting lipids from microorganisms without the use of any significant amount of an organic solvent.
  • BACKGROUND OF THE INVENTION
  • A typical microorganism lipid manufacturing process, such as production of omega-3 highly unsaturated fatty acid, in particular docosahexaenoic acid (DHA), involves growing microorganisms which are capable of producing the desired lipid in a fermentor, pond or bioreactor, isolating the microbial biomass, drying it, and extracting intracellular lipids with an organic solvent, e.g., hexane. Generally, intracellular lipids of microorganisms are extracted after rupturing (i.e., lysing) the cells of the microorganisms. The extracted lipids are can be further refined to produce a high purity and/or quality lipids. The microorganisms are generally isolated by first diluting the fermentation broth with water, and centrifuging the mixture to isolate microorganisms. When lipids are not extracted immediately or soon after isolating the microorganisms, the isolated microorganisms are typically dried, for example, on a drum dryer, and packaged, for example, in vacuum-sealed bags, to prevent degradation of lipids.
  • Unfortunately, the drying process exposes the microorganisms to heat, which can damage, i.e., degrade the quality of, lipids if done incorrectly. The vacuum-sealed bags may develop leaks, which can further degrade the quality of the lipids due to exposure of the microorganisms to air. In addition, if the dried microorganisms are not treated with an antioxidant, lipids can be further degraded due to exposure to air, for example, DHA may degrade due to oxidation by air. Furthermore, in some cases operators who are exposed to the dried microorganisms can develop an allergic reaction creating a safety and/or health hazard to operators.
  • Moreover, in an industrial scale production, the amount of organic solvent used in lipid extraction typically requires a large amount of volatile and flammable organic solvent, thereby creating hazardous operating conditions. The use of organic solvent in the extraction process may necessitate using an explosion-proof oil recovery system, thereby adding to the cost of lipid recovery. Moreover, use of an organic solvent in extracting lipids from microorganisms generate an organic solvent waste stream requiring a proper method, which further increases the overall production cost of lipid extraction.
  • Therefore, there is a need for a process for extracting lipids from microorganisms which does not require the use of an organic solvent. There is also a need for a lipid extraction process from microorganisms which does not require the expensive step of drying the microorganisms.
  • SUMMARY OF THE INVENTION
  • The present invention provides a process for obtaining lipid from microorganisms comprising:
      • (a) lysing cells of the microorganisms to produce a lysed cell mixture;
      • (b) treating the lysed cell mixture to produce a phase separated mixture comprising a heavy layer and a light layer;
      • (c) separating the heavy layer from the light layer; and
      • (d) obtaining the lipid from the light layer.
        The lysed cell mixture may contain an emulsion, in which case the emulsion can be separated by centrifuging the lysed cell mixture. The separated lysed cell mixture comprises a heavy layer which contains aqueous solution and a light layer which contains lipids, which may be emulsified. The aqueous solution comprises solid cell materials which results from lysing cells. The light layer can be further washed with an aqueous washing solution until the lipid becomes substantially non-emulsified.
  • When the lipid extraction process of the present invention includes using microorganisms from a fermentation process, the extraction process can also include solubilizing at least part of proteinaceous compounds in a fermentation broth, by adding a base selected from the group consisting of hydroxides, carbonates, bicarbonates and mixtures thereof.
  • The process of the present invention can also include heating the microorganisms to temperature of at least about 50° C.
  • Preferably, the microorganisms are capable of growth at salinity level of less than about 12 g/L of sodium chloride, more preferably less than about 5 g/L of sodium chloride and most preferably less than about 3 g/L of sodium chloride.
  • Preferably, the microorganisms comprise at least about 30% by weight of lipid, more preferably at least about 35% by weight, and most preferably at least about 40%. Alternatively at least about 30% of the lipid is docosahexaenoic acid, preferably at least about 35%, and more preferably at least about 40%.
  • In one particular aspect of the present invention the microorganisms are capable of producing at least about 0.1 grams per liter per hour of docosahexaenoic acid, more preferably at least about 0.2 g/L/h, still more preferably at least about 0.3 g/L/h, and most preferably at least about 0.4 g/L/h.
  • In another aspect of the present invention, the microorganism is selected from the group consisting of algae, fungi, bacteria and protist. Preferably, the microorganisms are of the order Thraustochytriales. More preferably the microorganisms are selected from the genus Thraustochytrium, Schizochytrium and mixtures thereof. And most preferably, the microorganisms are selected from the group consisting of microorganisms having the identifying characteristics of ATCC number 20888, ATCC number 20889, ATCC number 20890, ATCC number 20891 and ATCC number 20892, mutant strains derived from any of the foregoing, and mixtures thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow diagram of one embodiment of a solventless extraction process of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed to a process for extracting, recovering, isolating or obtaining lipids from microorganisms. The process of the present invention is applicable to extracting a variety of lipids from a variety of microorganisms, for example, extracting lipids containing omega-3 highly unsaturated fatty acids, such as docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and/or docosapentaenoic acid (DPA), in particular lipids containing a relatively large amount of DHA, from microorganisms producing the same and extracting lipids containing arachidonic acid from microorganisms producing the same. Exemplary microorganisms which produce a relatively large amount of omega-3 highly unsaturated fatty acids are disclosed in commonly assigned U.S. Pat. Nos. 5,340,594 and 5,340,742, both issued to Barclay, and exemplary microorganisms which produce a relatively large amount of arachidonic acid are disclosed in commonly assigned U.S. Pat. No. 5,583,019, issued to Barclay. All of the above disclosed patents are incorporated herein by reference in their entirety.
  • For the sake of brevity, however, this detailed description of the invention is presented for purposes of convenience and illustration for the case of extracting lipids comprising omega-3 highly unsaturated fatty acid from microorganisms producing the same, in particular extracting lipids from microorganisms which produce a relatively high amount of DHA. It is to be understood, however, that the invention as a whole is not intended to be so limited, and that one skilled in the art will recognize that the concept of the present invention will be applicable to other microorganisms producing a variety of lipid compositions in accordance with the techniques discussed herein. These microorganisms include microorganisms, such as fungi, protist, algae and bacteria, which produce a variety of lipids, such as phospholipids; free fatty acids; esters of fatty acids, including triglycerides of fatty acids; sterols; pigments (e.g., carotenoids and oxycarotenoids) and other lipids, and lipid associated compounds such as phytosterols, ergothionine, lipoic acid and antioxidants including beta-carotene and tocopherol. Exemplary lipids include, but are not limited to, arachidonic acid, stearidonic acid, cholesterol, desmesterol, astaxanthin, canthaxanthin, and n−6 and n−3 highly unsaturated fatty acids such as eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid. For the sake of brevity, unless otherwise stated, the term “lipid” refers to lipid and/or lipid associated compounds. Other lipids and microorganisms which may be suitable for use in the instant invention will be readily apparent to those skilled in the art.
  • Typical microbial lipid (in particular an oil containing an omega-3 highly unsaturated fatty acid such as DHA) manufacturing processes involve growing microorganisms which produce DHA in a fermentor, isolating the microorganisms, and extracting the intracellular lipids with organic solvent, e.g., hexane. The extracted lipid is generally further refined to produce a high purity and/or quality lipid. The isolation of microorganisms involves diluting the fermentation broth with water and centrifuging the mixture to isolate microorganisms. When lipids are not extracted immediately or soon after isolating the microorganisms, the isolated microorganisms are typically dried, for example, on a drum dryer, and sealed in a package, e.g., in vacuum-sealed bags, to prevent degradation of lipids. Unfortunately, the drying process exposes the microorganisms to heat, which can damage, i.e., degrade the quality of, the lipid if done incorrectly. The package may develop leaks, which can further degrade the quality of the lipids. Furthermore, if the dried microorganisms are not treated with an antioxidant, the exposure of microorganisms to air can further degrade lipids.
  • Recovering the crude oil directly from the fermentation broth avoids these problems. Avoiding the organic solvent extraction step reduces manufacturing costs and also eliminates operator exposure to the dried microorganisms, which can cause an allergic response in some individuals.
  • The present invention provides a method for obtaining lipids from microorganisms using a substantially organic solvent free extraction process, i.e., a “solventless” extraction process. The term “solventless extraction process” refers to an extraction process which when an aqueous solvent is used, the aqueous solvent comprises less than about 5% of an organic solvent, preferably less than about 4%, more preferably less than about 2%, and most preferably less than 1%. The process of the present invention can include obtaining or isolating microorganisms, preferably from a fermentation process. In contrast to the current methods, the process of the present invention does not require a drying step prior to the extraction process. Thus, processes of the present invention are applicable to extracting lipids from a microbial biomass containing at least about 10% by weight entrained water, preferably at least about 20%, more preferably at least about 30%, and most preferably at least about 50%. When the microorganisms are obtained from a fermentation process, the process of the present invention can include adding a base to the fermentation broth to dissolve any proteinaceous compound that may be present in the broth. A “base” refers to any compound whose pKa is greater than that of water. The base should be strong enough to hydrolyze at least a portion of proteinaceous compounds that may be present in the broth. Bases which are useful for solubilizing proteins are well known to one of ordinary skill in the art of chemistry. Exemplary bases which are useful in the processes of the present invention include, but are not limited to, hydroxides, carbonates and bicarbonates of lithium, sodium, potassium, calcium, and magnesium carbonate.
  • The process of the present invention can also include rupturing or lysing the cells of microorganisms to release the lipids which are present within the cells. Cells can be lysed using any of the known methods including chemical; thermal; mechanical, including, but not limited to, french press, mills, ultrasonication, and homogenization; and combinations thereof. In a thermal lysing of cells, the fermentation broth containing microorganisms are heated until cells, i.e., cell walls, of microorganisms degrade or breakdown. Typically, the fermentation broth is heated to a temperature of at least about 50° C., preferably at least about 75° C., more preferably to at least about 100° C., and most preferably to at least about 130° C. Thermally lysing the cell walls of microorganisms is particularly useful for microorganisms whose cell walls are composed of proteins.
  • Heating the broth also denatures proteins and helps solubilize organic materials, including proteins. Heating of the fermentation broth step can be achieved by any of the known methods, including the use of an in-line heat exchanger, and preferably by sparging steam into the fermentor and maintaining the broth at a desired temperature for less than about 90 minutes, preferably less than about 60 minutes, and more preferably less than about 30 minutes.
  • The solventless extraction process of the present invention can also include at least partially separating the broth from lipids. Typically, this is achieved by centrifuging, e.g., by passing the broth through a stacked-disc centrifuge, and collecting lipids as an emulsion phase. Centrifuging the mixture results in a two phase mixture comprising a heavy layer and a light layer. Typically, the heavy layer is an aqueous phase, which contains the majority of cellular debris. The light layer which contains emulsified lipids is then diluted with water, again separated into two phase mixture and the light layer is again isolated. This dilution with water, separation and isolation processes (i.e., washing process) can be achieved continuously by feeding water and removing the heavy layer throughout the process or it can be conducted in discreet steps. The washing process is generally repeated until a non-emulsified lipid layer is obtained. It is believed that the oil-water interface of the emulsion is stabilized by residual cellular debris which is removed by the washing process. During the washing process, the successive amount of water added is reduced to increase the lipid content. While reducing the amount of feed water too quickly can result in loss of lipids to the aqueous phase, reducing the amount of feed water too slowly results in an inefficient washing process. One can readily determine an appropriate rate of feed water reduction by observing or analyzing the separated aqueous layer. Generally, the lipid layer, i.e., the light layer, is colored; therefore, in many cases one can determine an appropriate rate of feed water reduction by simply analyzing or observing the color of the aqueous layer which is separated from the lipid layer.
  • The isolated lipid can be further refined using a process similar to that used to refine standard vegetable oils. Briefly, the lipid refining process generally involves hydrating phospholipids by adding phosphoric acid to the lipid followed by adding sodium hydroxide to neutralize free fatty acids. These compounds are removed via centrifugation. This is then followed by a water wash step to further remove any remaining amounts of hydrated phospholipids (“gums”) and neutralized fatty acids (“soapstock”) in the lipid. The resulting lipid is bleached using Trysil™ and a standard bleaching clay. Citric acid is also added to remove divalent metal ions by chelation. The Trysil™ and bleaching clay are then removed via filtration to produce refined lipid. The bleached lipid can be cold filtered to remove high melting point compounds that may be present in the lipid; however, this step is generally seldom required.
  • The resulting lipid can be further refined by removing any low molecular weight components that may be present. Typically, these components are removed by sparging with steam at high temperatures, under high vacuum. This process also destroys any peroxide bonds which may be present and reduces or removes off odors and helps improve the stability of the oil. An antioxidant may then be added to the resulting deodorized lipid to improve product stability.
  • Prior to the refining process, the isolated lipid can be winterized to remove high melting compounds, such as saturated fatty acids. The winterization process generally involves dissolving the isolated lipid in an organic solvent, e.g., hexane, cooling the resulting organic solution, and filtering the solution to remove the high melting point components of the lipid or stearine phase. The winterization process generally produces a clear lipid, especially when the isolated lipid is cloudy or opaque.
  • While, the process of the present invention can include isolating microorganisms from a fermentation process, one of the advantages of the present invention is that it allows fermentation of microorganisms and isolation of lipids to be carried out in a single vessel. For example, after the fermentation, one can add base to the fermentation vessel and heat the mixture to lyse cells. After separating the phase into a heavy layer and a light layer, the light layer can be transferred to another vessel for further processing or the heavy layer can be removed from the fermentation vessel, for example, by draining through the bottom of the fermentation vessel, and the remaining light layer can be further processed within the same fermentation vessel.
  • Additional objects, advantages, and novel features of this invention will become apparent to those skilled in the art upon examination of the following examples thereof, which are not intended to be limiting.
  • EXAMPLES
  • Process reproducibility was characterized by producing three samples of fully refined oil using crude oil from the new solventless extraction process. A hexane-extracted sample was also fully refined to serve as a control. The fermentation, extraction and oil isolation steps were performed at a large scale, while the oil refining studies were performed at a small scale.
  • The fully refined oil samples were analyzed to demonstrate process reproducibility.
  • Fermentation:
  • A single F-Tank batch (˜1,200 gallons) was used to generate the starting broth for the three solventless extraction processes. The batch (#F99202) was allowed to run for 94 hours, while controlling the glucose levels at 13 g/L, after which time the corn syrup feed was terminated. Residual glucose levels dropped to <5 g/L four hours later. This resulted in a final age of 98 hours. The final broth volume was 958 gallons. The final yield was 146 g/L. Both in-process contamination checks and a thorough analysis of a final broth sample failed to show any signs of contamination.
  • Hexane-Extracted Control Sample:
  • A small aliquot of broth from batch #F99202 was drum-dried and extracted with hexane to serve as a control sample. The biomass intermediate (DHAINT Lot #9F0067A) was recovered using a 66 ft2 double-drum dryer. Analysis of this lipid is shown in Table 1.
    TABLE 1
    Analysis of DHAINT Lot #9F0067A.
    Parameter Value
    DHA Content (FAME basis) 35.7%
    Oil Content 62.7%
    Peroxide Value (meq/kg) 2.6
    Total Plate Count (cfu/g) <50
    DHA Content* 20.3%
    FAME Content 56.9%

    *cellular dry weight basis

    Solventless Extraction Process:
  • Crude oil was obtained by treating three 400-gallon aliquots (approx.) of broth in batch #F99202. Each 400-gallon aliquot from the F-Tank batch was processed separately, starting with the caustic/heat treatment steps. Each aliquot was treated with 20 grams of 45% KOH per liter and heated to 130° C. for about 30 minutes by passing stream through the fermentation broth. The crude oil was recovered from the treated broth using a commercial-scale Westfalia HFA-100 stacked-disc centrifuge. Summary results for various process parameters are reported in Table 2, and the final crude oil analysis results are shown in Table 3.
    TABLE 2
    Process Data from the Solventless Extraction Process.
    SFE-1 SFE-2 SFE-3
    Broth Treatment
    Volume of Broth Processed 288 gal 288 gal 258 gal
    Final Treated pH 7.5 8.0 8.7
    Final Volume After Heat Treatment 388 gal 398 gal 308 gal
    Volume Increase From Condensate 34.7% 38.2% 19.4%
    1st Pass Emulsion
    Total Volume (gal) 180 133 149
    Est. Oil Concentration (w/w) 12.0% 24.5% 16.1%
    Apparent Density (g/mL) 0.986 0.991 0.999
    Oil Isolation
    Total Crude Oil Recovered (lb) 182 165 174
    DHAOIL Lot Number Assigned 9F0001A 9F0002A 9F0003A
  • TABLE 3
    Analysis of Lots of DHA from the Solventless Extraction Process.
    Parameter 9F0001A 9F0002A 9F0003A
    DHA Content (% FAME) 39.0% 38.6% 39.2%
    Peroxide Value (meq/kg) 4.6 1.8 2.0
    Acid Value (mg KOH/g) N/D N/D N/D
    Moisture Content N/D N/D N/D

    Refining:
  • A sample from each aliquot of crude oil was winterized, refined, bleached and deodorized at a small scale, as was a sample of the crude oil from the hexane-extracted control. Miscellaneous process data from these small scale experiments is shown in Table 4, including recovery efficiencies for the various processing steps. While it is difficult to read too much into recovery efficiencies for bench-scale processes, as losses tend to be disproportionately large, the values listed in Table 4 show that values for the solventless-extracted samples tend to bracket the values measured for the hexane-extracted control, with the one exception being the winterization step. While the recovery efficiency during the winterization step for the hexane control was lower than those observed for the other three samples, this difference is insignificant from a statistical perspective. The high losses during the winterization step caused the overall recovery efficiency for the hexane-control sample to be lower as well. The lower yield would not be expected to have a significant impact on the overall quality of the oil. All in all, differences in the processing of the various oil samples were minimal.
    TABLE 4
    Miscellaneous Process Data from the Oil Refining Steps.
    HEX-1 SFE-1 SFE-2 SFE-3
    Processing Conditions
    Miscella Concentration 45.0% 52.9% 52.8% 45.0%
    Steam Sparge Rate  3.4%  3.4%  2.5%  2.2%
    Recovery Efficiencies
    Winterization 80.6% 92.3% 87.7% 85.5%
    Refining 89.4% 84.8% 91.8% 95.0%
    Water Wash 90.6% 94.5% 95.8% 81.2%
    Bleaching 86.1% 89.2% 87.3% 84.1%
    Deodorization 97.4% 96.1% 97.2% 97.5%
    Packaging 88.2% 89.7% 89.3% 95.8%
    Overall 48.2% 56.9% 58.5% 51.8%
    Final Product
    Lot Number 9F0009A 9F0010A 9F0011A 9F0012A

    Fully refined oil samples from the three solventless extraction runs, and the hexane-extracted control, were analyzed and the results are shown in Table 5. Also shown are the corresponding release specifications for each parameter.
  • A sample of the starting crude oil from the solventless extraction run was also analyzed for iron content. The iron content of this sample (DHAOIL Lot #9F0002P) was 0.08 ppm. The concentration of the other trace metals was all below their respective detection limits.
    TABLE 5
    QC Results for RBD Oil from the Solventless Extraction Process.
    Hexane Solventless Extraction
    Run ID # HEX-1 SFE-1 SFE-2 SFE-3
    DHALIP-NS Lot # 9F0009A 9F0010A 9F0011A 9F0012A
    Peroxide Value 0.28 0.69 0.35 0.34
    (meq/kg)
    Acid Value 0.17 0.11 0.57 0.24
    (mg KOH/g)
    Moisture & Volatiles 0.00% 0.06%** 0.00% 0.00%
    Trace Metals (ppm)
    Lead <0.20 <0.20 <0.20 <0.20
    Arsenic <0.20 <0.20 <0.20 <0.20
    Iron 0.22 0.21 0.56*** 0.02
    Copper <0.05 <0.05 <0.05 <0.05
    Mercury <0.20 <0.20 <0.20 <0.20
    DHA (% FAME) 36.9 37.3 37.0 37.7
    DHA (mg/g oil) 342 345 343 351
    Hexane (ppm) <3 <3 <3 <3

    *Value was reduced to 0.22 mg KOH/g after repeating the refining and bleaching steps

    **Sample analyzed by the San Diego Fermentation Sciences Analytical Group.

    ***Value was reduced to <0.02 ppm after repeating the refining and bleaching steps
  • Shown in Table 6 is a more direct comparison of the average analysis results for the three samples from the solventless extraction process versus those for the hexane control.
    TABLE 6
    Comparison of Average Values.
    Hexane Solventless Extraction
    Parameter Control Mean Std Dev CV % Diff
    Peroxide Value 0.28 0.46 0.20 43.3% 64.3% 
    (meq/kg)
    Acid Value 0.17 0.19* 0.06 33.3% 11.2% 
    (mg KOH/g)
    Moisture & 0.00% 0.02% 0.03%  173% ND
    Volatiles
    Trace Metals (ppm)
    Lead <0.20 <0.20 N/A N/A 0.0%
    Arsenic <0.20 <0.20 N/A N/A 0.0%
    Iron 0.22 0.26 0.27  104% 18.2% 
    Copper <0.05 <0.05 N/A N/A 0.0%
    Mercury <0.20 <0.20 N/A N/A 0.0%
    DHA Content 36.9% 37.3% 0.4%  0.9% 1.1%
    (% FAME)
    DHA Content 342 346 4  1.2% 1.2%
    (mg/g)
    Hexane (ppm) <3 <3 N/A N/A 0.0%

    *Calculated using the acid value for the re-worked sample.
  • The results from this experiment clearly demonstrate that the solventless extraction process is both reproducible and lipids from solventless extraction are relatively indistinguishable from the lipids obtained from hexane extraction process in terms of process performance and product quality. The final product from the solventless extraction process is substantially equivalent to lipids from a current hexane-based extraction process, as determined by similarities between the fatty acid and sterol profiles of the product from these two processes.
  • The present invention, in various embodiments, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the present invention after understanding the present disclosure. The present invention, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
  • The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. Although the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.

Claims (30)

1-19. (canceled)
20. A process for obtaining lipids from microorganisms comprising:
(a) growing said microorganisms in a fermentation medium to produce a fermentation broth;
(b) solubilizing at least a part of any proteins present in said fermentation broth;
(c) lysing cells of said microorganisms to produce a lysed cell mixture;
(d) treating said lysed cell mixture to produce a phase separated mixture comprising a heavy layer and a light layer, wherein said heavy layer comprises an aqueous solution and said light layer comprises emulsified lipids;
(e) separating said heavy layer from said light layer; and
(f) obtaining said lipids from said light layer.
21. The process of claim 20, wherein said step of dissolving proteins comprises contacting said fermentation broth with a base.
22. The process of claim 21, wherein said base is selected from the group consisting of hydroxides, carbonate, bicarbonates and mixtures thereof.
23. The process of claim 20, wherein said step of lysing cells comprises heating said microorganisms to a temperature of at least about 50° C.
24. The process of claim 20, wherein said step of producing the phase separated mixture comprises centrifuging said lysed cell mixture.
25. The process of claim 20, wherein said step of obtaining said lipids from said light layer comprises:
(A) adding an aqueous washing solution to said light layer;
(B) separating said aqueous washing solution from said light layer; and
(C) repeating said steps (A) and (B) until said lipid becomes substantially non-emulsified.
26. The process of claim 20, wherein said aqueous solution comprises solid cell materials.
27. The process of claim 20, wherein said microorganism is capable of growth at salinity level of less than about 12 g/L of sodium chloride.
28. The process of claim 20, wherein said microorganism comprises at least about 30% by weight of lipid.
29. The process of claim 20, wherein said microorganism is selected from the group consisting of algae, fungi, bacteria and protist.
30. The process of claim 29, wherein said microorganisms comprise microorganisms of the order Thraustochytriales.
31. The process of claim 30, wherein said microorganisms are selected from the genus Thraustochytrium, Schizochytrium and mixtures thereof.
32. The process of claim 31, wherein said microorganisms are selected from the group consisting of microorganisms having the identifying characteristics of ATCC number 20888, ATCC number 20889, ATCC number 20890, ATCC number 20891 and ATCC number 20892, mutant strains derived from any of the foregoing, and mixtures thereof.
33. The process of claim 20, wherein said microorganisms are capable of producing at least about 0.1 grams per liter per hour of docosahexaenoic acid.
34. The process of claim 20, wherein at least about 30% of said lipid is docosahexaenoic acid.
35-46. (canceled)
47. A process for recovering lipids from microorganisms comprising the steps:
a. growing said microorganisms in a fermentation broth comprising less than about 5% of an organic solvent, wherein said microorganisms comprise at least about 10% by weight entrained water;
b. solubilizing at least part of proteinaceous compounds in said fermentation broth;
c. treating microorganism cells from said fermentation broth without drying said cells to release intracellular lipids;
d. subjecting the fermentation broth containing the released intracellular lipids to gravity separation to form a light lipid-containing phase and a heavy phase;
e. separating said light phase from said heavy phase;
f. treating said light phase to break an emulsion formed between said lipid and water; and
g. recovering a crude lipid.
48. A lipid comprising greater than 15% cholesterol, phytosterols, desmosterol, tocotrienols, tocopherols, ubiquinones, carotenoids and xanthophylls such as beta-carotene, lutein, lycopene, astaxanthin, zeaxanthin, canthaxanthin, and fatty acids such as conjugated linoleic acids, and omega-3 and omega-6 highly unsaturated fatty acids such as eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid, arachidonic acid, stearidonic acid, dihomogammalinolenic acid and gamma-linolenic acid or mixtures thereof with less than 3 ppm residual organic solvent.
49. The lipid of claim 48, wherein the lipid comprises greater than 15% docosahexaenoic acid.
50. The lipid of claim 49, wherein the lipid comprises less than 0.2 ppm residual organic solvent.
51. The lipid of claim 48, wherein the lipid comprises less than 0.2 ppm residual organic solvent.
52. A lipid obtained from microorganisms without using organic solvent as an extraction solvent, comprising greater than 15% cholesterol, phytosterols, desmosterol, tocotrienols, tocopherols, ubiquinones, carotenoids and xanthophylls such as beta-carotene, lutein, lycopene, astaxanthin, zeaxanthin, canthaxanthin, and fatty acids such as conjugated linoleic acids, and omega-3 and omega-6 highly unsaturated fatty acids such as eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid, arachidonic acid, stearidonic acid, dihomogammalinolenic acid and gamma-linolenic acid or mixtures thereof with less than 3 ppm residual organic solvent.
53. The lipid of claim 52, wherein the lipid comprises greater than 15% docosahexaenoic acid.
54. The lipid of claim 53, wherein the lipid comprises less than 0.2 ppm residual organic solvent.
55. The lipid of claim 52, wherein the lipid comprises less than 0.2 ppm residual organic solvent.
56. A crude lipid obtained from a fermentation broth of a microorganisms without using organic solvent as an extraction solvent.
57. The lipid of claim 56, wherein the lipid comprises omega-3 highly unsaturated fatty acids.
58. The lipid of claim 56, wherein the lipid comprises greater than 37% docosahexaenoic acid.
59. A lipid obtained by treating the lipid of claim 56, wherein the treating is selected from the group consisting of refining, bleaching, winterizing, deodorizing, and combinations of the foregoing.
US11/782,449 2000-01-19 2007-07-24 Solventless Extraction Process Abandoned US20080038800A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/782,449 US20080038800A1 (en) 2000-01-19 2007-07-24 Solventless Extraction Process
US14/244,466 US9738851B2 (en) 2000-01-19 2014-04-03 Solventless extraction process
US15/642,835 US10329515B2 (en) 2000-01-19 2017-07-06 Solventless extraction process
US16/402,662 US20190256797A1 (en) 2000-01-19 2019-05-03 Solventless extraction process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17712500P 2000-01-19 2000-01-19
US09/766,500 US6750048B2 (en) 2000-01-19 2001-01-19 Solventless extraction process
US10/784,148 US7351558B2 (en) 2000-01-19 2004-02-20 Solventless extraction process
US11/782,449 US20080038800A1 (en) 2000-01-19 2007-07-24 Solventless Extraction Process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/784,148 Division US7351558B2 (en) 2000-01-19 2004-02-20 Solventless extraction process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/244,466 Division US9738851B2 (en) 2000-01-19 2014-04-03 Solventless extraction process

Publications (1)

Publication Number Publication Date
US20080038800A1 true US20080038800A1 (en) 2008-02-14

Family

ID=22647287

Family Applications (8)

Application Number Title Priority Date Filing Date
US09/766,500 Expired - Lifetime US6750048B2 (en) 2000-01-19 2001-01-19 Solventless extraction process
US10/784,148 Expired - Lifetime US7351558B2 (en) 2000-01-19 2004-02-20 Solventless extraction process
US11/782,416 Expired - Fee Related US7781193B2 (en) 2000-01-19 2007-07-24 Solventless extraction process
US11/782,449 Abandoned US20080038800A1 (en) 2000-01-19 2007-07-24 Solventless Extraction Process
US11/782,434 Expired - Fee Related US7662598B2 (en) 2000-01-19 2007-07-24 Solventless extraction process
US14/244,466 Expired - Fee Related US9738851B2 (en) 2000-01-19 2014-04-03 Solventless extraction process
US15/642,835 Expired - Fee Related US10329515B2 (en) 2000-01-19 2017-07-06 Solventless extraction process
US16/402,662 Abandoned US20190256797A1 (en) 2000-01-19 2019-05-03 Solventless extraction process

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/766,500 Expired - Lifetime US6750048B2 (en) 2000-01-19 2001-01-19 Solventless extraction process
US10/784,148 Expired - Lifetime US7351558B2 (en) 2000-01-19 2004-02-20 Solventless extraction process
US11/782,416 Expired - Fee Related US7781193B2 (en) 2000-01-19 2007-07-24 Solventless extraction process

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/782,434 Expired - Fee Related US7662598B2 (en) 2000-01-19 2007-07-24 Solventless extraction process
US14/244,466 Expired - Fee Related US9738851B2 (en) 2000-01-19 2014-04-03 Solventless extraction process
US15/642,835 Expired - Fee Related US10329515B2 (en) 2000-01-19 2017-07-06 Solventless extraction process
US16/402,662 Abandoned US20190256797A1 (en) 2000-01-19 2019-05-03 Solventless extraction process

Country Status (24)

Country Link
US (8) US6750048B2 (en)
EP (4) EP2295595B1 (en)
JP (5) JP4020642B2 (en)
KR (8) KR20140079870A (en)
CN (1) CN100460513C (en)
AT (1) ATE485385T1 (en)
AU (7) AU780619B2 (en)
BR (1) BR0107699B1 (en)
CA (2) CA2397655C (en)
CZ (1) CZ303446B6 (en)
DE (1) DE60143287D1 (en)
DK (1) DK1252324T3 (en)
ES (3) ES2735987T3 (en)
HK (1) HK1050716A1 (en)
HU (1) HUP0300556A3 (en)
IL (5) IL150772A0 (en)
MX (4) MX350779B (en)
NO (2) NO20023449L (en)
NZ (1) NZ520287A (en)
PL (1) PL356587A1 (en)
PT (1) PT1252324E (en)
RU (1) RU2336307C2 (en)
WO (1) WO2001053512A1 (en)
ZA (1) ZA200205790B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044876A1 (en) * 2000-01-19 2008-02-21 Martek Biosciences Corporation Solventless Extraction Process
US20090117194A1 (en) * 2005-06-07 2009-05-07 Burja Adam M Eukaryotic microorganisms for producing lipids and antioxidants
US20100285105A1 (en) * 2006-08-01 2010-11-11 Helia Radianingtyas Oil producing microbes adn method of modification thereof
WO2010129565A2 (en) * 2009-05-06 2010-11-11 Wake Forest University School Of Medicine Compositions, methods, and kits for polyunsaturated fatty acids from microalgae
US9023625B2 (en) 2010-06-14 2015-05-05 Io-Mega Holding Corporation Methods for production of algae derived oils
US20160298104A1 (en) * 2015-04-07 2016-10-13 Decant Treatment Systems, Llc Method for electrical treatment of fluid medium containing biological matter and a system for its implementation
US9745538B2 (en) 2013-12-20 2017-08-29 MARA Renewables Corporation Methods of recovering oil from microorganisms
US9873880B2 (en) 2013-03-13 2018-01-23 Dsm Nutritional Products Ag Engineering microorganisms
US10342772B2 (en) 2013-12-20 2019-07-09 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
US10364207B2 (en) 2013-12-20 2019-07-30 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
US10392578B2 (en) 2010-06-01 2019-08-27 Dsm Ip Assets B.V. Extraction of lipid from cells and products therefrom
US10472316B2 (en) 2013-12-20 2019-11-12 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
US10531679B2 (en) 2013-07-16 2020-01-14 Evonik Degussa, GmbH Method for drying biomass
US10619175B2 (en) 2014-10-02 2020-04-14 Evonik Operations Gmbh Process for producing a PUFA-containing feedstuff by extruding a PUFA-containing biomass
US10842174B2 (en) 2014-10-02 2020-11-24 Evonik Operations Gmbh Method for producing biomass which has a high exopolysaccharide content
US11001782B2 (en) 2013-12-20 2021-05-11 Dsm Nutritional Products Ag Methods of recovering oil from microorganisms
US11124736B2 (en) 2013-12-20 2021-09-21 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
US11324234B2 (en) 2014-10-02 2022-05-10 Evonik Operations Gmbh Method for raising animals
US11464244B2 (en) 2014-10-02 2022-10-11 Evonik Operations Gmbh Feedstuff of high abrasion resistance and good stability in water, containing PUFAs
WO2023220060A1 (en) * 2022-05-11 2023-11-16 C16 Biosciences, Inc. Enzymatic lysis for extraction of bioproducts from yeast

Families Citing this family (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776353B1 (en) 1998-03-17 2010-08-17 Aker Biomarine Asa Conjugated linoleic acid compositions
US7078051B1 (en) 1998-08-11 2006-07-18 Natural Asa Conjugated linoleic acid alkyl esters in feedstuffs and food
JP2000516480A (en) 1998-03-17 2000-12-12 コンリンコ,インコーポレイテッド Conjugated linoleic acid composition
US7101914B2 (en) 1998-05-04 2006-09-05 Natural Asa Isomer enriched conjugated linoleic acid compositions
WO2001077271A2 (en) 2000-04-06 2001-10-18 Conlinco, Inc. Conjugated linoleic acid compositions
US6756405B2 (en) 2000-04-18 2004-06-29 Natural Asa Conjugated linoleic acid powder
EP1178118A1 (en) * 2000-08-02 2002-02-06 Dsm N.V. Isolation of microbial oils
US6677470B2 (en) 2001-11-20 2004-01-13 Natural Asa Functional acylglycerides
JP4647212B2 (en) * 2001-12-12 2011-03-09 マーテック バイオサイエンシーズ コーポレーション Extraction and dewaxing of lipids from oilseeds and microbial sources
US9101151B2 (en) 2002-05-03 2015-08-11 Dsm Ip Assets B.V. High-quality lipids produced by enzymatic liberation from biomass
US6743931B2 (en) 2002-09-24 2004-06-01 Natural Asa Conjugated linoleic acid compositions
US7163811B2 (en) 2003-10-02 2007-01-16 Martek Biosciences Corporation Production of high levels of DHA in microalgae using modified amounts of chloride and potassium
CA2553671A1 (en) 2004-01-26 2005-08-11 Martek Biosciences Corporation Method for the separation of phospholipids from phospholipid-containing materials
AU2006227165B2 (en) 2005-03-18 2011-11-10 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
EP1924290A4 (en) * 2005-05-12 2011-05-25 Martek Biosciences Corp Biomass hydrolysate and uses and production thereof
BRPI0613295A2 (en) 2005-07-01 2010-12-28 Martek Biosciences Corp oily product containing polyunsaturated fatty acid and uses and production thereof
US8298548B2 (en) 2007-07-18 2012-10-30 Solazyme, Inc. Compositions for improving the health and appearance of skin
US8277849B2 (en) * 2006-01-19 2012-10-02 Solazyme, Inc. Microalgae-derived compositions for improving the health and appearance of skin
US8110670B2 (en) 2006-05-19 2012-02-07 Ls9, Inc. Enhanced production of fatty acid derivatives
US20100242345A1 (en) * 2006-05-19 2010-09-30 LS9, Inc Production of fatty acids & derivatives thereof
EP2044208A4 (en) * 2006-07-05 2012-02-22 Photonz Corp Ltd Production of ultrapure epa and polar lipids from largely heterotrophic culture
JP4854418B2 (en) * 2006-07-28 2012-01-18 花王株式会社 Method for producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan raw material
US8691555B2 (en) 2006-09-28 2014-04-08 Dsm Ip Assests B.V. Production of carotenoids in oleaginous yeast and fungi
US8262776B2 (en) * 2006-10-13 2012-09-11 General Atomics Photosynthetic carbon dioxide sequestration and pollution abatement
US8088614B2 (en) * 2006-11-13 2012-01-03 Aurora Algae, Inc. Methods and compositions for production and purification of biofuel from plants and microalgae
JP2010523113A (en) * 2007-04-03 2010-07-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multizyme and its use in the production of polyunsaturated fatty acids
US20090004715A1 (en) 2007-06-01 2009-01-01 Solazyme, Inc. Glycerol Feedstock Utilization for Oil-Based Fuel Manufacturing
WO2008155410A1 (en) * 2007-06-21 2008-12-24 Novozymes A/S Production of lipids containing poly-unsaturated fatty acids
CN101796014A (en) * 2007-06-29 2010-08-04 马泰克生物科学公司 Production and purification of esters of polyunsaturated fatty acids
KR20160052805A (en) 2007-09-12 2016-05-12 디에스엠 아이피 어셋츠 비.브이. Biological oils and production and uses thereof
WO2009042950A1 (en) * 2007-09-27 2009-04-02 Ls9, Inc. Reduction of the toxic effect of impurities from raw materials by extractive fermentation
CA2704371A1 (en) * 2007-11-01 2009-05-07 Wake Forest University School Of Medicine Compositions and methods for prevention and treatment of mammalian diseases
EP2297326A4 (en) 2008-06-06 2011-11-16 Aurora Biofuels Inc Vcp-based vectors for algal cell transformation
US20100022393A1 (en) * 2008-07-24 2010-01-28 Bertrand Vick Glyphosate applications in aquaculture
US20100236137A1 (en) * 2008-09-23 2010-09-23 LiveFuels, Inc. Systems and methods for producing eicosapentaenoic acid and docosahexaenoic acid from algae
WO2010036334A1 (en) * 2008-09-23 2010-04-01 LiveFuels, Inc. Systems and methods for producing biofuels from algae
US8927522B2 (en) 2008-10-14 2015-01-06 Solazyme, Inc. Microalgal polysaccharide compositions
US20100303957A1 (en) * 2008-10-14 2010-12-02 Solazyme, Inc. Edible Oil and Processes for Its Production from Microalgae
US20100303989A1 (en) * 2008-10-14 2010-12-02 Solazyme, Inc. Microalgal Flour
US20100297323A1 (en) * 2008-10-14 2010-11-25 Solazyme, Inc. Gluten-free Foods Containing Microalgae
MX339664B (en) * 2008-10-14 2016-06-03 Solazyme Inc Food compositions of microalgal biomass.
US20100297325A1 (en) * 2008-10-14 2010-11-25 Solazyme, Inc. Egg Products Containing Microalgae
US20100297331A1 (en) * 2008-10-14 2010-11-25 Solazyme, Inc. Reduced Fat Foods Containing High-Lipid Microalgae with Improved Sensory Properties
US20100303961A1 (en) * 2008-10-14 2010-12-02 Solazyme, Inc. Methods of Inducing Satiety
US20100297295A1 (en) * 2008-10-14 2010-11-25 Solazyme, Inc. Microalgae-Based Beverages
US20100303990A1 (en) * 2008-10-14 2010-12-02 Solazyme, Inc. High Protein and High Fiber Algal Food Materials
US9896642B2 (en) 2008-10-14 2018-02-20 Corbion Biotech, Inc. Methods of microbial oil extraction and separation
US8809037B2 (en) 2008-10-24 2014-08-19 Bioprocessh20 Llc Systems, apparatuses and methods for treating wastewater
WO2010054322A1 (en) 2008-11-07 2010-05-14 Solazyme, Inc. Cosmetic compositions comprising microalgal components
WO2010059598A1 (en) * 2008-11-18 2010-05-27 LiveFuels, Inc. Methods for producing fish with high lipid content
MX2011005630A (en) 2008-11-28 2011-09-28 Solazyme Inc Manufacturing of tailored oils in recombinant heterotrophic microorganisms.
WO2010077694A1 (en) * 2008-12-08 2010-07-08 Sapphire Energy, Inc. Removal of nitrogen from a chlorophyll or pheophytin containing biomass
US8940340B2 (en) * 2009-01-22 2015-01-27 Aurora Algae, Inc. Systems and methods for maintaining the dominance of Nannochloropsis in an algae cultivation system
JP2012516852A (en) 2009-02-02 2012-07-26 マーテック バイオサイエンシーズ コーポレーション Methods for improving cognitive function and reducing heart rate
US8143051B2 (en) * 2009-02-04 2012-03-27 Aurora Algae, Inc. Systems and methods for maintaining the dominance and increasing the biomass production of nannochloropsis in an algae cultivation system
SE534278C2 (en) * 2009-02-17 2011-06-28 Alfa Laval Corp Ab A continuous process for isolating oils from algae or microorganisms
KR101861375B1 (en) 2009-03-19 2018-05-25 디에스엠 아이피 어셋츠 비.브이. Thraustochytrids, fatty acid compositions, and methods of making and uses thereof
US8207363B2 (en) * 2009-03-19 2012-06-26 Martek Biosciences Corporation Thraustochytrids, fatty acid compositions, and methods of making and uses thereof
US8476060B2 (en) * 2009-04-13 2013-07-02 Board Of Regents, The University Of Texas System Process for separating lipids from a biomass
US8753851B2 (en) 2009-04-17 2014-06-17 LiveFuels, Inc. Systems and methods for culturing algae with bivalves
US20100297749A1 (en) * 2009-04-21 2010-11-25 Sapphire Energy, Inc. Methods and systems for biofuel production
WO2010124125A2 (en) * 2009-04-22 2010-10-28 Robert Fulton Fluidizable algae-based powdered fuel and methods for making and using same
CA2759273C (en) 2009-04-27 2018-01-09 Ls9, Inc. Production of fatty acid esters
US9187778B2 (en) 2009-05-04 2015-11-17 Aurora Algae, Inc. Efficient light harvesting
AU2010254104A1 (en) 2009-05-26 2011-12-15 Solazyme, Inc. Fractionation of oil-bearing microbial biomass
US8865468B2 (en) * 2009-10-19 2014-10-21 Aurora Algae, Inc. Homologous recombination in an algal nuclear genome
US8809046B2 (en) 2011-04-28 2014-08-19 Aurora Algae, Inc. Algal elongases
US8865452B2 (en) * 2009-06-15 2014-10-21 Aurora Algae, Inc. Systems and methods for extracting lipids from wet algal biomass
US9101942B2 (en) * 2009-06-16 2015-08-11 Aurora Algae, Inc. Clarification of suspensions
US8769867B2 (en) * 2009-06-16 2014-07-08 Aurora Algae, Inc. Systems, methods, and media for circulating fluid in an algae cultivation pond
US8747930B2 (en) * 2009-06-29 2014-06-10 Aurora Algae, Inc. Siliceous particles
US20100325948A1 (en) * 2009-06-29 2010-12-30 Mehran Parsheh Systems, methods, and media for circulating and carbonating fluid in an algae cultivation pond
CN101585759B (en) * 2009-07-08 2012-05-23 内蒙古金达威药业有限公司 Method of extracting DHA unsaturated fatty acid from dino flagellate fermentation liquor
WO2011006144A1 (en) 2009-07-10 2011-01-13 Martek Biosciences Corporation Methods of treating and preventing neurological disorders using docosahexaenoic acid
WO2011011463A2 (en) * 2009-07-20 2011-01-27 Aurora Biofuels, Inc. Manipulation of an alternative respiratory pathway in photo-autotrophs
US20110082205A1 (en) 2009-10-01 2011-04-07 Panker Cynthia A Docosahexaenoic Acid Gel Caps
US8765983B2 (en) * 2009-10-30 2014-07-01 Aurora Algae, Inc. Systems and methods for extracting lipids from and dehydrating wet algal biomass
US8748160B2 (en) * 2009-12-04 2014-06-10 Aurora Alage, Inc. Backward-facing step
US20110195449A1 (en) 2009-12-28 2011-08-11 Martek Biosciences Corporation Recombinant Thraustochytrids that Grow on Sucrose, and Compositions, Methods of Making, and Uses Thereof
EP2519642B1 (en) * 2009-12-28 2017-10-25 DSM IP Assets B.V. Recombinant thraustochytrids that grow on xylose, and compositions, methods of making, and uses thereof
EP2526197B1 (en) * 2010-01-19 2018-06-20 DSM IP Assets B.V. Eicosapentaenoic acid- and docosahexaenoic acid-producing microorganisms, fatty acid compositions, and methods of making and uses thereof
US8303818B2 (en) * 2010-06-24 2012-11-06 Streamline Automation, Llc Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction
US8115022B2 (en) 2010-04-06 2012-02-14 Heliae Development, Llc Methods of producing biofuels, chlorophylls and carotenoids
US8202425B2 (en) 2010-04-06 2012-06-19 Heliae Development, Llc Extraction of neutral lipids by a two solvent method
US8211309B2 (en) 2010-04-06 2012-07-03 Heliae Development, Llc Extraction of proteins by a two solvent method
MX2012011559A (en) 2010-04-06 2013-02-21 Heliae Dev Llc Sequential solvent extraction of oil and proteinaceous material from oleaginous material by using solvents of decreasing polarity.
US8308951B1 (en) 2010-04-06 2012-11-13 Heliae Development, Llc Extraction of proteins by a two solvent method
US8211308B2 (en) 2010-04-06 2012-07-03 Heliae Development, Llc Extraction of polar lipids by a two solvent method
WO2011127127A2 (en) 2010-04-06 2011-10-13 Arizona Board Of Regents For And On Behalf Of Arizona State University Extraction with fractionation of oil and co-products from oleaginous material
US8313648B2 (en) 2010-04-06 2012-11-20 Heliae Development, Llc Methods of and systems for producing biofuels from algal oil
US8273248B1 (en) 2010-04-06 2012-09-25 Heliae Development, Llc Extraction of neutral lipids by a two solvent method
US8475660B2 (en) 2010-04-06 2013-07-02 Heliae Development, Llc Extraction of polar lipids by a two solvent method
US10125331B2 (en) * 2010-04-29 2018-11-13 Advanced Energy Development Renewable oil refining processes
EP2575486B1 (en) 2010-05-28 2021-09-01 Corbion Biotech, Inc. Food compositions comprising tailored oils
NL2004832C2 (en) * 2010-06-07 2011-12-08 Evodos B V Separating biomass from an aqueous medium.
MA34468B1 (en) 2010-07-26 2013-08-01 Sapphire Energy Inc PROCESS FOR RECOVERING OLEAGINOUS COMPOUNDS FROM A BIOMASS
US9028696B2 (en) 2010-07-26 2015-05-12 Sapphire Energy, Inc. Process for the recovery of oleaginous compounds from biomass
US8906236B2 (en) 2010-07-26 2014-12-09 Sapphire Energy, Inc. Process for the recovery of oleaginous compounds and nutrients from biomass
WO2012038332A1 (en) 2010-09-21 2012-03-29 Shell Internationale Research Maatschappij B.V. Process for separation of a mixture containing a microbial oil and a microbial substance
MX354145B (en) 2010-11-03 2018-02-14 Terravia Holdings Inc Microbial oils with lowered pour points, dielectric fluids produced therefrom, and related methods.
US20120329138A1 (en) 2010-12-23 2012-12-27 Shell Oil Company Process for separation of a mixture containing a microbial substance and a liquid
US8722359B2 (en) 2011-01-21 2014-05-13 Aurora Algae, Inc. Genes for enhanced lipid metabolism for accumulation of lipids
CN102617431B (en) * 2011-01-28 2013-09-25 天津滨海索尔特生物技术中心有限公司 Method for extracting beta-carotene from dunaliella by inorganic base
KR102117225B1 (en) 2011-02-02 2020-06-02 테라비아 홀딩스 인코포레이티드 Tailored oils produced from recombinant oleaginous microorganisms
EP2675906A1 (en) * 2011-02-16 2013-12-25 Solix Biosystems, Inc. Compositions and methods for leach extraction of microorganisms
US8926844B2 (en) 2011-03-29 2015-01-06 Aurora Algae, Inc. Systems and methods for processing algae cultivation fluid
US8569530B2 (en) 2011-04-01 2013-10-29 Aurora Algae, Inc. Conversion of saponifiable lipids into fatty esters
JP2014519810A (en) 2011-04-28 2014-08-21 オーロラ アルギー,インコーポレイテッド Algal desaturase
US8752329B2 (en) 2011-04-29 2014-06-17 Aurora Algae, Inc. Optimization of circulation of fluid in an algae cultivation pond
CA2834698A1 (en) 2011-05-06 2012-11-15 Solazyme, Inc. Genetically engineered microorganisms that metabolize xylose
US9487716B2 (en) 2011-05-06 2016-11-08 LiveFuels, Inc. Sourcing phosphorus and other nutrients from the ocean via ocean thermal energy conversion systems
US20140099684A1 (en) * 2011-05-26 2014-04-10 Council Of Scientific & Industrial Research Engine worthy fatty acid methyl ester (biodiesel) from naturally occuring marine microalgal mats and marine microalgae cultured in open salt pans together with value addition of co-products
FR2975705B1 (en) * 2011-05-27 2014-12-26 Roquette Freres PROCESS FOR EXTRACTING SQUALENE FROM MICROALGUES
US8365462B2 (en) 2011-05-31 2013-02-05 Heliae Development, Llc V-Trough photobioreactor systems
USD661164S1 (en) 2011-06-10 2012-06-05 Heliae Development, Llc Aquaculture vessel
USD679965S1 (en) 2011-06-10 2013-04-16 Heliae Development, Llc Aquaculture vessel
USD682637S1 (en) 2011-06-10 2013-05-21 Heliae Development, Llc Aquaculture vessel
JP6338285B2 (en) 2011-07-21 2018-06-06 ディーエスエム アイピー アセッツ ビー.ブイ. Eicosapentaenoic acid producing microorganisms, fatty acid compositions, and methods for their production and use
BR122015020126B1 (en) 2011-07-21 2022-03-03 Dsm Ip Assets B.V COMPOSITION CONTAINING DILUTED MICROBIAL OIL
WO2013024174A1 (en) 2011-08-18 2013-02-21 Dsm Ip Assets B.V. Dha triglyceride, dha free fatty acid, and dha ethyl ester emulsions, and methods of treating spinal cord injury
SG11201401783YA (en) 2011-11-01 2014-05-29 Dsm Ip Assets Bv Oxidatively stable polyunsaturated fatty acid containing oil
US9200236B2 (en) 2011-11-17 2015-12-01 Heliae Development, Llc Omega 7 rich compositions and methods of isolating omega 7 fatty acids
CN103131529B (en) * 2011-11-23 2016-02-24 丰益(上海)生物技术研发中心有限公司 A kind of method extracting microbial oil
CN104364386A (en) 2012-04-18 2015-02-18 索拉兹米公司 Tailored oils
WO2013166065A1 (en) 2012-04-30 2013-11-07 Aurora Algae, Inc. ACP Promoter
CN103421595A (en) * 2012-05-25 2013-12-04 丰益(上海)生物技术研发中心有限公司 Microbial oil extraction method
WO2014004999A1 (en) 2012-06-29 2014-01-03 BP Biofuels UK Limited Process for separation of renewable materials from microorganisms
CN103589503B (en) * 2012-08-13 2015-09-30 丰益(上海)生物技术研发中心有限公司 A kind of method of efficient extraction of microbial oil
KR101470078B1 (en) * 2012-08-21 2014-12-08 현대자동차주식회사 A method for reducing green-house gases and creating added value through carbon dioxide capture, fixation and conversion
US10098371B2 (en) 2013-01-28 2018-10-16 Solazyme Roquette Nutritionals, LLC Microalgal flour
US9816079B2 (en) 2013-01-29 2017-11-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
US9567615B2 (en) 2013-01-29 2017-02-14 Terravia Holdings, Inc. Variant thioesterases and methods of use
WO2014122092A1 (en) * 2013-02-05 2014-08-14 Evonik Industries Ag Improving the bioavailability of useful materials from microorganisms
EP2762009A1 (en) * 2013-02-05 2014-08-06 Evonik Industries AG Improving bioavailability of valuable materials from microorganisms
US9290749B2 (en) 2013-03-15 2016-03-22 Solazyme, Inc. Thioesterases and cells for production of tailored oils
US9266973B2 (en) 2013-03-15 2016-02-23 Aurora Algae, Inc. Systems and methods for utilizing and recovering chitosan to process biological material
US9783836B2 (en) 2013-03-15 2017-10-10 Terravia Holdings, Inc. Thioesterases and cells for production of tailored oils
BR112015028457A8 (en) 2013-05-15 2017-10-03 Solazyme Inc COSMETIC COMPOSITIONS COMPRISING MICROALGAE OIL
FR3009619B1 (en) 2013-08-07 2017-12-29 Roquette Freres BIOMASS COMPOSITIONS OF MICROALGUES RICH IN PROTEINS OF SENSORY QUALITY OPTIMIZED
CN105829521A (en) 2013-10-04 2016-08-03 索拉兹米公司 Tailored oils
KR102143001B1 (en) * 2013-11-01 2020-08-11 에스케이이노베이션 주식회사 The shredding process of oleaginous microorganism using supersonic disperser and manufacturing method of bio-oil using it
AU2014369048B2 (en) * 2013-12-20 2018-12-13 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
US9969990B2 (en) 2014-07-10 2018-05-15 Corbion Biotech, Inc. Ketoacyl ACP synthase genes and uses thereof
CN107087416A (en) 2014-07-24 2017-08-22 泰拉瑞亚控股公司 Variant thioesterase and application method
WO2016044779A2 (en) 2014-09-18 2016-03-24 Solazyme, Inc. Acyl-acp thioesterases and mutants thereof
WO2016102177A1 (en) 2014-12-22 2016-06-30 Unilever Plc Hair composition
KR20160096478A (en) * 2015-02-05 2016-08-16 주식회사 이코원 Carbon heating module and carbon heater using the same
AR104042A1 (en) 2015-03-26 2017-06-21 Mara Renewables Corp HIGH-DENSITY PRODUCTION OF BIOMASS AND OIL USING GLUCEROL IN GROSS
AU2016240201A1 (en) 2015-03-31 2017-05-25 Fresenius Kabi Deutschland Gmbh Emulsions for parenteral administration
WO2016188876A1 (en) 2015-05-22 2016-12-01 Fresenius Kabi Deutschland Gmbh Vitamin a for parenteral administration
US10342775B2 (en) 2015-05-22 2019-07-09 Fresenius Kabi Deutschland Gmbh Vitamin A for parenteral administration
JP6977231B2 (en) 2015-07-13 2021-12-08 マラ リニューアブルズ コーポレーション Enhancement of metabolism of C5 organic carbon by microorganisms
ITUB20152958A1 (en) 2015-08-06 2017-02-06 Eni Spa Method for concentrating a cell suspension comprising a mucilaginous biomass of oleaginous yeasts.
KR20170119227A (en) * 2016-04-18 2017-10-26 서울바이오시스 주식회사 Air cleaner
CN109477079A (en) 2016-05-12 2019-03-15 帝斯曼知识产权资产管理有限公司 Increase the method for omega-3 polyunsaturated fatty acids yield in microalgae
US10851395B2 (en) 2016-06-10 2020-12-01 MARA Renewables Corporation Method of making lipids with improved cold flow properties
US11419350B2 (en) 2016-07-01 2022-08-23 Corbion Biotech, Inc. Feed ingredients comprising lysed microbial cells
KR102405390B1 (en) 2016-07-13 2022-06-03 에보닉 오퍼레이션스 게엠베하 Method for separating lipids from biomass containing dissolved lipids
AU2017296386B2 (en) * 2016-07-13 2021-11-18 Dsm Ip Assets B.V. Method for extracting a microbial oil comprising polyunsaturated fatty acids from a fermentation broth containing oleaginous microorganisms
CN109843284A (en) 2016-10-11 2019-06-04 费森尤斯卡比德国有限公司 For enhancing the composition comprising EPA and DHA of anticancer agent effect
CA3048289C (en) 2016-12-27 2023-09-26 Evonik Degussa Gmbh Method of isolating lipids from a lipids containing biomass
WO2018122057A1 (en) * 2016-12-27 2018-07-05 Evonik Degussa Gmbh Method of isolating lipids from a lipids containing biomass
EP3668989A1 (en) 2017-08-17 2020-06-24 Evonik Operations GmbH Enhanced production of lipids by limitation of at least two limiting nutrient sources
EP3470502A1 (en) * 2017-10-13 2019-04-17 Evonik Degussa GmbH Method of separating lipids from a lysed lipids containing biomass
EA202090440A1 (en) 2017-09-21 2020-07-17 Эвоник Оперейшенс ГмбХ IMPROVED LIPID PRODUCTION BY LIMITING TWO LIMITING NUTRIENT SOURCES
EP3527664A1 (en) 2018-02-15 2019-08-21 Evonik Degussa GmbH Method of isolating lipids from a lipids containing biomass
WO2019122030A1 (en) * 2017-12-22 2019-06-27 Dsm Ip Assets B.V. Method of separating lipids from a lysed lipids containing biomass
US20210017467A1 (en) * 2018-03-30 2021-01-21 Dsm Ip Assets B.V. Method of reducing emulsion by broth washing
CA3094477A1 (en) * 2018-03-30 2019-10-03 Dsm Ip Assets B.V. Method of obtaining a microbial oil and a method of reducing emulsion by maintaining a low concentration of carbohydrate
EP3794097A1 (en) 2018-05-15 2021-03-24 Evonik Operations GmbH Method of isolating lipids from a lipids containing biomass with aid of hydrophobic silica
CN112384203A (en) 2018-07-03 2021-02-19 费森尤斯卡比德国有限公司 Lipid emulsions for parenteral administration
FR3085962B1 (en) 2018-09-14 2021-06-18 Fermentalg PROCESS FOR EXTRACTING AN OIL RICH IN PUFA
FR3085825B1 (en) 2018-09-14 2021-07-16 Fermentalg MICROORGANISM OIL RICH IN DOCOSAHEXAENOIC ACID
CA3118657A1 (en) * 2018-11-09 2020-05-14 Evonik Operations Gmbh Method for producing a biomass which can be easily broken down and which has an increased content of polyunsaturated fatty acids
CA3118527A1 (en) 2018-11-09 2020-05-14 Evonik Operations Gmbh Method for producing a biomass with an increased content of polyunsaturated fatty acids
CA3155749A1 (en) 2019-12-20 2021-06-24 Fresenius Kabi Austria Gmbh Method for producing oil-in-water emulsions
CN111235035A (en) * 2019-12-30 2020-06-05 嘉必优生物技术(武汉)股份有限公司 Schizochytrium limacinum mutant strain, and method and application thereof in preparation of docosahexaenoic acid grease
FR3111912A1 (en) 2020-06-24 2021-12-31 Fermentalg MICROORGANISM CULTURE PROCESS FOR LIPID ACCUMULATION
FR3130842A1 (en) 2021-12-22 2023-06-23 CarbonWorks METHOD FOR CAPTURING PHYTOTOXINS IN A BIOLOGICAL REACTOR
WO2023175141A1 (en) * 2022-03-18 2023-09-21 Purac Biochem B.V. Method for reducing fermentation broth viscosity

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2753362A (en) * 1951-05-18 1956-07-03 Standard Brands Inc Process of extracting lipids from plant and animal tissue
US5338673A (en) * 1992-01-28 1994-08-16 Commissariat A L'energie Atomique Process for the selective production of polyunsaturated fatty acids from a culture of microalgae of the porphyridium cruentum
US5340594A (en) * 1988-09-07 1994-08-23 Omegatech Inc. Food product having high concentrations of omega-3 highly unsaturated fatty acids
US5397591A (en) * 1990-02-13 1995-03-14 Martek Biosciences Corporation Infant formula and baby food containing docosahexaenoic acid obtained from dinoflagellates
US5583019A (en) * 1995-01-24 1996-12-10 Omegatech Inc. Method for production of arachidonic acid
US5897994A (en) * 1995-05-04 1999-04-27 Nestec S.A. Fatty acid fractionation for polyunsaturated fatty acid fraction enrichment
US20020001833A1 (en) * 2000-01-19 2002-01-03 Ruecker Craig M. Solventless extraction process
US6958229B2 (en) * 1997-03-04 2005-10-25 Suntory Limited Method for producing highly unsaturated fatty acids and lipid containing same
US7431952B2 (en) * 2000-08-02 2008-10-07 Dsm Ip Assets B.V. Isolation of microbial oils

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB808128A (en) * 1955-12-01 1959-01-28 Nat Res Dev A method of increasing the fatty contents of such micro-organisms as yeasts, bacteria and moulds
US3089821A (en) * 1959-10-28 1963-05-14 Merck & Co Inc Process for the preparation of lipids
DE2056896B2 (en) * 1970-02-18 1979-12-06 Veb Schwermaschinenbau Kombinat Ernst Thaelmann Magdeburg, Ddr 3011 Magdeburg Process for the simultaneous extraction of fat and protein from vegetable, oil-containing raw materials and intermediate products
US3878232A (en) * 1970-09-28 1975-04-15 Staley Mfg Co A E Extraction process to improve the quality and yield of crude vegetable oils
US4504473A (en) * 1982-06-30 1985-03-12 Ribi Immunochem Research, Inc. Pyridine soluble extract of a microorganism
DE3248167A1 (en) * 1982-12-27 1984-06-28 Wintershall Ag, 3100 Celle TREHALOSELIPID TETRAESTER
US4792418A (en) * 1985-08-14 1988-12-20 Century Laboratories, Inc. Method of extraction and purification of polyunsaturated fatty acids from natural sources
JPS6244170A (en) 1985-08-19 1987-02-26 Agency Of Ind Science & Technol Method of extracting mold of genus mortierella with supercritical fluid
US4680314A (en) 1985-08-30 1987-07-14 Microbio Resources, Inc. Process for producing a naturally-derived carotene/oil composition by direct extraction from algae
JPH0634730B2 (en) * 1986-06-16 1994-05-11 鐘淵化学工業株式会社 Method for producing palmitoleic acid
DK199887D0 (en) 1987-04-15 1987-04-15 Danisco Bioteknologi As yeast strain
FR2621327B1 (en) 1987-10-06 1990-01-05 Commissariat Energie Atomique PROCESS FOR PRODUCING AND EXTRACTING POLYSACCHARIDES FROM A CULTURE OF PORPHYRIDIUM CRUENTUM AND DEVICE FOR CARRYING OUT THIS PROCESS
JPH0198494A (en) 1987-10-09 1989-04-17 Agency Of Ind Science & Technol Continuous reaction process with immobilized lipase
US5340742A (en) * 1988-09-07 1994-08-23 Omegatech Inc. Process for growing thraustochytrium and schizochytrium using non-chloride salts to produce a microfloral biomass having omega-3-highly unsaturated fatty acids
US6451567B1 (en) 1988-09-07 2002-09-17 Omegatech, Inc. Fermentation process for producing long chain omega-3 fatty acids with euryhaline microorganisms
US5130242A (en) * 1988-09-07 1992-07-14 Phycotech, Inc. Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids
US5173409A (en) 1989-12-08 1992-12-22 Ecogen Inc. Recovery of bt endotoxin protein from lysed cell mixtures
FR2656874B1 (en) * 1990-01-11 1992-04-03 Commissariat Energie Atomique PROCESS FOR THE PRODUCTION AND EXTRACTION OF ANTI-OXIDANTS FROM A CULTURE OF MICROORGANISMS AND PHOTOBIOREACTOR FOR THE IMPLEMENTATION OF THIS PROCESS.
US5658767A (en) 1991-01-24 1997-08-19 Martek Corporation Arachidonic acid and methods for the production and use thereof
US6270828B1 (en) 1993-11-12 2001-08-07 Cargrill Incorporated Canola variety producing a seed with reduced glucosinolates and linolenic acid yielding an oil with low sulfur, improved sensory characteristics and increased oxidative stability
US5476787A (en) 1992-04-24 1995-12-19 Director-General Of Agency Of Industrial Science And Technology Method of removing nitrogen impurities from water using hydrocarbon-producing microalga
DE4219360C2 (en) * 1992-06-12 1994-07-28 Milupa Ag Process for the production of lipids with a high proportion of long-chain, highly unsaturated fatty acids
JPH072724A (en) * 1993-03-24 1995-01-06 Nippon Sanso Kk 13c-labeled arachidonic acid and its derivative and method for producing the same
JPH06340577A (en) * 1993-03-24 1994-12-13 Nippon Sanso Kk 13c-labeled eicosapentaenoic acid, its derivative and production thereof
FR2719222B1 (en) * 1994-05-02 1996-06-21 Rocher Yves Biolog Vegetale Lipid vesicles, their manufacturing process and their applications.
EP0776356B1 (en) * 1994-08-16 1999-06-30 Dr. Frische GmbH Process for extracting native products which are not water-soluble from native substance mixtures by means of centrifugal force
JP2764572B2 (en) * 1995-04-17 1998-06-11 工業技術院長 Novel microorganism having docosahexaenoic acid-producing ability and method for producing docosahexaenoic acid using the same
DE69637953D1 (en) 1995-04-17 2009-07-30 Nat Inst Of Advanced Ind Scien HIGHLY UNSATURATED FATTY ACID-PRODUCING MICRO-ORGANISMS AND METHOD FOR PRODUCING HIGH-UNSATURATED FATTY ACIDS THROUGH THE USE OF THESE MICRO-ORGANISMS
GB9514649D0 (en) * 1995-07-18 1995-09-13 Zeneca Ltd Extraction of triglycerides from microorganisms
JP3985035B2 (en) * 1995-09-14 2007-10-03 独立行政法人産業技術総合研究所 (N-6) Docosapentaenoic Acid-Containing Oil and Fat, Method for Producing the Oil and Use, and Use
US6255505B1 (en) 1996-03-28 2001-07-03 Gist-Brocades, B.V. Microbial polyunsaturated fatty acid containing oil from pasteurised biomass
EP0969086A1 (en) 1996-07-03 2000-01-05 Sagami Chemical Research Center Microorganisms producing docosahexaenoic acid and process for the production of docosahexaenoic acid
PL193818B1 (en) * 1996-07-23 2007-03-30 Nagase & Co Ltd Method of obtaining docosahexamic and docosapentaenic acids
US5951875A (en) 1996-12-20 1999-09-14 Eastman Chemical Company Adsorptive bubble separation methods and systems for dewatering suspensions of microalgae and extracting components therefrom
WO1998050574A1 (en) * 1997-05-02 1998-11-12 Dsm N.V. Isolation of carotenoid crystals from microbial biomass
EP1905309A1 (en) 1997-05-27 2008-04-02 SemBioSys Genetics Inc. Uses of oil bodies
US7585645B2 (en) 1997-05-27 2009-09-08 Sembiosys Genetics Inc. Thioredoxin and thioredoxin reductase containing oil body based products
US6566583B1 (en) 1997-06-04 2003-05-20 Daniel Facciotti Schizochytrium PKS genes
JP3836231B2 (en) * 1997-10-17 2006-10-25 日本化学飼料株式会社 Highly unsaturated fatty acid-containing oil obtained from scallop midgut gland and method for producing the same
CN1109482C (en) 1997-11-12 2003-05-21 三菱电机株式会社 Electroluminescent body and structure for shielding same
JP2000041684A (en) 1998-07-29 2000-02-15 Daicel Chem Ind Ltd New d-amino acylase, its production and production of d-amino acid using the d-aminoacylase
FR2782921B1 (en) 1998-09-09 2002-09-20 Dior Christian Parfums LIPID EXTRACT OF SKELETONEMA ALGAE, PROCESS OF PREPARATION AND USE IN COSMETIC AND PHARMACEUTICAL AREAS, ESPECIALLY DERMATOLOGICAL
US6166231A (en) 1998-12-15 2000-12-26 Martek Biosciences Corporation Two phase extraction of oil from biomass
JP2000245492A (en) 1999-03-02 2000-09-12 Kyowa Hakko Kogyo Co Ltd Lipid extracted from microorganism
US6344349B1 (en) 1999-12-06 2002-02-05 Decant Technologies Llc Process and system for electrical extraction of intracellular matter from biological matter
DE10018213A1 (en) 2000-04-12 2001-10-25 Westfalia Separator Ind Gmbh Fractionation of oil-, polar lipid-, and protein-containing mixture for recovering polar lipid comprises adding water-soluble organic solvent to mixture and subjecting to density separation
DE60140352D1 (en) 2000-04-12 2009-12-17 Gea Westfalia Separator Gmbh METHOD FOR THE FRACTIONATION OF OIL AND POLAR LIPID-CONTAINING RAW MATERIALS USING ALCOHOL AND CENTRIFUGATION
US20060060520A1 (en) 2001-06-25 2006-03-23 Bomberger David C Systems and methods using a solvent for the removal of lipids from fluids
US20030060509A1 (en) 2001-08-24 2003-03-27 Elswyk Mary Van Products containing highly unsaturated fatty acids for use by women and their children during stages of preconception, pregnancy and lactation/post-partum
JP4647212B2 (en) 2001-12-12 2011-03-09 マーテック バイオサイエンシーズ コーポレーション Extraction and dewaxing of lipids from oilseeds and microbial sources
US9101151B2 (en) 2002-05-03 2015-08-11 Dsm Ip Assets B.V. High-quality lipids produced by enzymatic liberation from biomass
KR20180081845A (en) 2002-06-19 2018-07-17 디에스엠 아이피 어셋츠 비.브이. Pasteurisation process for microbial cells and microbial oil
US7163811B2 (en) 2003-10-02 2007-01-16 Martek Biosciences Corporation Production of high levels of DHA in microalgae using modified amounts of chloride and potassium
EP1731616A4 (en) 2004-03-01 2011-08-17 Suntory Holdings Ltd Process for producing phospholipid containing long chain polyunsaturated fatty acid as constituent thereof and utilization of the same
KR20070015178A (en) 2004-04-27 2007-02-01 백스터 인터내셔널 인코포레이티드 Stirred-tank reactor system
EP1597976B1 (en) 2004-05-21 2013-01-30 Nestec S.A. Use of polyol esters of fatty acids in aerated frozen confection with improved nutritional attributes
DE102004062141A1 (en) 2004-12-23 2006-07-06 Nutrinova Nutrition Specialties & Food Ingredients Gmbh Process for the preparation of a crude oil from mixtures of microorganisms and plants, the oil thus produced and the specific uses of the thus prepared and optionally additionally refined oil
DE102005003624A1 (en) 2005-01-26 2006-07-27 Nutrinova Nutrition Specialties & Food Ingredients Gmbh Antioxidative active extract, useful to prepare fatty acid composition, which is useful as e.g. an active agent in pharmaceutical composition, a food supplement and/or food ingredient or an animal feed, comprises Crypthecodinium species
WO2006128244A1 (en) 2005-06-03 2006-12-07 Mc Farlane Marketing (Aust.) Pty. Ltd. Lipid extract of mussels and method for preparation thereof
US8163515B2 (en) 2005-06-07 2012-04-24 Ocean Nutrition Canada Limited Eukaryotic Microorganisms for producing lipids and antioxidants
BRPI0613295A2 (en) 2005-07-01 2010-12-28 Martek Biosciences Corp oily product containing polyunsaturated fatty acid and uses and production thereof
US7527734B1 (en) 2005-11-15 2009-05-05 Shepherd Samuel L Rapid non-equilibrium decompression of microorganism-containing waste streams
CA2641510A1 (en) 2006-02-07 2007-08-16 Pal Rongved Omega 3
EP2044208A4 (en) 2006-07-05 2012-02-22 Photonz Corp Ltd Production of ultrapure epa and polar lipids from largely heterotrophic culture
EP1887011A1 (en) 2006-08-09 2008-02-13 Thermphos Trading GmbH Alpha amino acid phosphonic acid compounds, method of preparation and use thereof
WO2008130372A2 (en) 2006-09-28 2008-10-30 Microbia, Inc. Production of sterols in oleaginous yeast and fungi
US20080083352A1 (en) 2006-10-10 2008-04-10 Ernest Peter Tovani Vehicle Table System
KR100810314B1 (en) 2006-10-11 2008-03-04 삼성전자주식회사 Key input apparatus for portable communication device
US8088614B2 (en) 2006-11-13 2012-01-03 Aurora Algae, Inc. Methods and compositions for production and purification of biofuel from plants and microalgae
KR20090095631A (en) 2006-12-01 2009-09-09 노쓰 캐롤라이나 스테이트 유니버시티 Process for conversion of biomass to fuel
BRPI0720852A2 (en) 2006-12-22 2014-03-11 Danisco Us Inc Genecor Division AID DEMULSIFICATION BY WATER ENOUGH LIPID EXTRACTS
AP2300A (en) 2007-06-14 2011-10-31 Nickolaos Mitropoulos Algae growth for biofuels.
US20100226977A1 (en) 2007-08-29 2010-09-09 Aker Biomarine Asa Low viscosity phospholipid compositions
KR20160052805A (en) 2007-09-12 2016-05-12 디에스엠 아이피 어셋츠 비.브이. Biological oils and production and uses thereof
JP4594998B2 (en) * 2008-05-21 2010-12-08 株式会社日立製作所 Inspection method for elevator car speed detector.
ITMI20081203A1 (en) 2008-06-30 2010-01-01 Eni Spa PROCEDURE FOR EXTRACTION OF FATTY ACIDS FROM ALGAL BIOMASS
EP2145942A1 (en) 2008-07-15 2010-01-20 Lonza Ltd. Method for isolating oils from cells and biomasses
JP2011529707A (en) 2008-08-04 2011-12-15 カイ バイオエナジー Continuous culture, harvesting, and oil extraction of photosynthetic cultures
LT2337857T (en) 2008-10-02 2017-08-10 Nieves Gonzalez Ramon Microalgae extract containing 3 -polyunsaturated fatty acids and method for extracting oil from micro-organisms
MX339664B (en) 2008-10-14 2016-06-03 Solazyme Inc Food compositions of microalgal biomass.
SE534278C2 (en) 2009-02-17 2011-06-28 Alfa Laval Corp Ab A continuous process for isolating oils from algae or microorganisms
US9296985B2 (en) 2009-03-10 2016-03-29 Valicor, Inc. Algae biomass fractionation
US8207363B2 (en) 2009-03-19 2012-06-26 Martek Biosciences Corporation Thraustochytrids, fatty acid compositions, and methods of making and uses thereof
US8476060B2 (en) 2009-04-13 2013-07-02 Board Of Regents, The University Of Texas System Process for separating lipids from a biomass
AU2010254104A1 (en) 2009-05-26 2011-12-15 Solazyme, Inc. Fractionation of oil-bearing microbial biomass
KR101659765B1 (en) 2009-09-28 2016-09-27 삼성전자주식회사 Apparatus and method for reducing power consumption in multi mode portable terminal
US20110256268A1 (en) 2010-04-14 2011-10-20 Solazyme, Inc. Oleaginous Yeast Food Compositions
CA2801011C (en) 2010-06-01 2019-02-26 Dsm Ip Assests B.V. Extraction of lipid from cells and products therefrom
US9023625B2 (en) 2010-06-14 2015-05-05 Io-Mega Holding Corporation Methods for production of algae derived oils
MA34468B1 (en) 2010-07-26 2013-08-01 Sapphire Energy Inc PROCESS FOR RECOVERING OLEAGINOUS COMPOUNDS FROM A BIOMASS
US9028696B2 (en) 2010-07-26 2015-05-12 Sapphire Energy, Inc. Process for the recovery of oleaginous compounds from biomass
EP2600957A4 (en) 2010-08-06 2017-11-08 ICM, Inc. Bio-oil recovery systems and methods
US20120040428A1 (en) 2010-08-13 2012-02-16 Paul Reep Procedure for extracting of lipids from algae without cell sacrifice
US20120129244A1 (en) 2010-10-17 2012-05-24 Michael Phillip Green Systems, methods and apparatuses for dewatering, flocculating and harvesting algae cells
CN101985637B (en) 2010-11-02 2014-05-07 嘉必优生物工程(武汉)有限公司 Method for extracting microbial oil
ES2490619T3 (en) 2010-11-08 2014-09-04 Neste Oil Oyj Lipid extraction method from biomass
AU2012214187A1 (en) 2011-02-12 2013-05-02 Phycal, Inc. Aqueous extraction methods for high lipid microorganisms
EP2683824B1 (en) 2011-03-07 2018-04-25 DSM Nutritional Products AG Engineering thraustochytrid microorganisms
US20120238732A1 (en) 2011-03-15 2012-09-20 Iowa State University Research Foundation, Inc. Oil extraction from microalgae
FR2975705B1 (en) 2011-05-27 2014-12-26 Roquette Freres PROCESS FOR EXTRACTING SQUALENE FROM MICROALGUES
CN102433215A (en) 2011-09-22 2012-05-02 厦门汇盛生物有限公司 Method of extracting grease from fungi or algae through physical wall-breaking
CN102388988B (en) 2011-11-08 2013-01-23 中国农业科学院油料作物研究所 Separated extraction method of microorganism oil
US9200236B2 (en) 2011-11-17 2015-12-01 Heliae Development, Llc Omega 7 rich compositions and methods of isolating omega 7 fatty acids
KR102192410B1 (en) 2012-04-16 2020-12-17 로께뜨프레르 Method for refining squalene produced by microalgae
WO2014004999A1 (en) 2012-06-29 2014-01-03 BP Biofuels UK Limited Process for separation of renewable materials from microorganisms
JP2017501709A (en) 2013-12-20 2017-01-19 ディーエスエム アイピー アセッツ ビー.ブイ. Method for obtaining microbial oil from microbial cells
KR102426988B1 (en) 2013-12-20 2022-07-28 디에스엠 아이피 어셋츠 비.브이. Processes for obtaining microbial oil from microbial cells
AU2014364550A1 (en) 2013-12-20 2016-07-07 Dsm Ip Assets B.V. Process for extracting lipids for use in production of biofuels
AU2014369048B2 (en) 2013-12-20 2018-12-13 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
CA2934508C (en) 2013-12-20 2023-09-19 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
EP3083974A1 (en) 2013-12-20 2016-10-26 DSM Nutritional Products AG Methods of recovering oil from microorganisms
AR098893A1 (en) 2013-12-20 2016-06-22 Dsm Ip Assets Bv PROCESS FOR OBTAINING MICROBIAL OIL FROM MICROBIAL CELLS
CN115141859A (en) 2013-12-20 2022-10-04 玛拉可再生能源公司 Method for recovering oil from microorganisms
EP2966157B1 (en) 2014-07-07 2023-11-01 Nuseed Global Innovation Ltd Processes for producing industrial products from plant lipids

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2753362A (en) * 1951-05-18 1956-07-03 Standard Brands Inc Process of extracting lipids from plant and animal tissue
US5340594A (en) * 1988-09-07 1994-08-23 Omegatech Inc. Food product having high concentrations of omega-3 highly unsaturated fatty acids
US5397591A (en) * 1990-02-13 1995-03-14 Martek Biosciences Corporation Infant formula and baby food containing docosahexaenoic acid obtained from dinoflagellates
US5492938A (en) * 1990-02-13 1996-02-20 Martek Biosciences Corporation Pharmaceutical composition and dietary supplement containing docosarexaenoic acid obtained from dinoflagellates
US5338673A (en) * 1992-01-28 1994-08-16 Commissariat A L'energie Atomique Process for the selective production of polyunsaturated fatty acids from a culture of microalgae of the porphyridium cruentum
US5583019A (en) * 1995-01-24 1996-12-10 Omegatech Inc. Method for production of arachidonic acid
US5897994A (en) * 1995-05-04 1999-04-27 Nestec S.A. Fatty acid fractionation for polyunsaturated fatty acid fraction enrichment
US6958229B2 (en) * 1997-03-04 2005-10-25 Suntory Limited Method for producing highly unsaturated fatty acids and lipid containing same
US6750048B2 (en) * 2000-01-19 2004-06-15 Martek Biosciences Corporation Solventless extraction process
US20040229325A1 (en) * 2000-01-19 2004-11-18 Martek Biosciences Corporation Solventless extraction process
US20020001833A1 (en) * 2000-01-19 2002-01-03 Ruecker Craig M. Solventless extraction process
US20080044876A1 (en) * 2000-01-19 2008-02-21 Martek Biosciences Corporation Solventless Extraction Process
US20080044875A1 (en) * 2000-01-19 2008-02-21 Martek Biosciences Corporation Solventless Extraction Process
US7351558B2 (en) * 2000-01-19 2008-04-01 Martek Biosciences Corporation Solventless extraction process
US7662598B2 (en) * 2000-01-19 2010-02-16 Martek Biosciences Corporation Solventless extraction process
US7781193B2 (en) * 2000-01-19 2010-08-24 Martek Biosciences Corporation Solventless extraction process
US7431952B2 (en) * 2000-08-02 2008-10-07 Dsm Ip Assets B.V. Isolation of microbial oils

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044876A1 (en) * 2000-01-19 2008-02-21 Martek Biosciences Corporation Solventless Extraction Process
US7662598B2 (en) 2000-01-19 2010-02-16 Martek Biosciences Corporation Solventless extraction process
US9738851B2 (en) 2000-01-19 2017-08-22 Dsm Ip Assets B.V. Solventless extraction process
US20080044875A1 (en) * 2000-01-19 2008-02-21 Martek Biosciences Corporation Solventless Extraction Process
US7781193B2 (en) 2000-01-19 2010-08-24 Martek Biosciences Corporation Solventless extraction process
US9719116B2 (en) 2005-06-07 2017-08-01 Dsm Nutritional Prodcuts Ag Eukaryotic microorganisms for producing lipids and antioxidants
US20090117194A1 (en) * 2005-06-07 2009-05-07 Burja Adam M Eukaryotic microorganisms for producing lipids and antioxidants
US8921069B2 (en) 2005-06-07 2014-12-30 Dsm Nutritional Products Ag Eukaryotic microorganisms for producing lipids and antioxidants
US10435725B2 (en) 2005-06-07 2019-10-08 Dsm Nutritional Products Ag Eukaryotic microorganisms for producing lipids and antioxidants
US8163515B2 (en) 2005-06-07 2012-04-24 Ocean Nutrition Canada Limited Eukaryotic Microorganisms for producing lipids and antioxidants
US20100285105A1 (en) * 2006-08-01 2010-11-11 Helia Radianingtyas Oil producing microbes adn method of modification thereof
US9023616B2 (en) 2006-08-01 2015-05-05 Dsm Nutritional Products Ag Oil producing microbes and method of modification thereof
WO2010129565A2 (en) * 2009-05-06 2010-11-11 Wake Forest University School Of Medicine Compositions, methods, and kits for polyunsaturated fatty acids from microalgae
WO2010129565A3 (en) * 2009-05-06 2011-03-31 Wake Forest University School Of Medicine Compositions, methods, and kits for polyunsaturated fatty acids from microalgae
US10392578B2 (en) 2010-06-01 2019-08-27 Dsm Ip Assets B.V. Extraction of lipid from cells and products therefrom
EP2576801B1 (en) 2010-06-01 2019-10-02 DSM IP Assets B.V. Extraction of lipid from cells and products therefrom
US9023625B2 (en) 2010-06-14 2015-05-05 Io-Mega Holding Corporation Methods for production of algae derived oils
US9873880B2 (en) 2013-03-13 2018-01-23 Dsm Nutritional Products Ag Engineering microorganisms
US10531679B2 (en) 2013-07-16 2020-01-14 Evonik Degussa, GmbH Method for drying biomass
US11001782B2 (en) 2013-12-20 2021-05-11 Dsm Nutritional Products Ag Methods of recovering oil from microorganisms
US11124736B2 (en) 2013-12-20 2021-09-21 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
US9745539B2 (en) 2013-12-20 2017-08-29 MARA Renewables Corporation Methods of recovering oil from microorganisms
US9745538B2 (en) 2013-12-20 2017-08-29 MARA Renewables Corporation Methods of recovering oil from microorganisms
US10472316B2 (en) 2013-12-20 2019-11-12 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
US11746363B2 (en) 2013-12-20 2023-09-05 MARA Renewables Corporation Methods of recovering oil from microorganisms
US10342772B2 (en) 2013-12-20 2019-07-09 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
US10745642B2 (en) 2013-12-20 2020-08-18 MARA Renewables Corporation Methods of recovering oil from microorganisms
US10364207B2 (en) 2013-12-20 2019-07-30 Dsm Ip Assets B.V. Processes for obtaining microbial oil from microbial cells
US10619175B2 (en) 2014-10-02 2020-04-14 Evonik Operations Gmbh Process for producing a PUFA-containing feedstuff by extruding a PUFA-containing biomass
US10842174B2 (en) 2014-10-02 2020-11-24 Evonik Operations Gmbh Method for producing biomass which has a high exopolysaccharide content
US11324234B2 (en) 2014-10-02 2022-05-10 Evonik Operations Gmbh Method for raising animals
US11464244B2 (en) 2014-10-02 2022-10-11 Evonik Operations Gmbh Feedstuff of high abrasion resistance and good stability in water, containing PUFAs
US20160298104A1 (en) * 2015-04-07 2016-10-13 Decant Treatment Systems, Llc Method for electrical treatment of fluid medium containing biological matter and a system for its implementation
WO2023220060A1 (en) * 2022-05-11 2023-11-16 C16 Biosciences, Inc. Enzymatic lysis for extraction of bioproducts from yeast

Also Published As

Publication number Publication date
KR101180462B1 (en) 2012-09-06
KR20140079870A (en) 2014-06-27
AU2963601A (en) 2001-07-31
AU2014203384B2 (en) 2016-03-03
AU2005202980C1 (en) 2009-04-02
JP2003520046A (en) 2003-07-02
CN101463371A (en) 2009-06-24
AU2012200890B2 (en) 2014-07-31
ATE485385T1 (en) 2010-11-15
CN100460513C (en) 2009-02-11
BR0107699B1 (en) 2014-05-27
US7662598B2 (en) 2010-02-16
RU2336307C2 (en) 2008-10-20
EP2295594B1 (en) 2018-04-04
CA2397655C (en) 2012-06-05
NZ520287A (en) 2004-01-30
AU2019226124A1 (en) 2019-09-26
IL206960A0 (en) 2010-12-30
HUP0300556A2 (en) 2003-06-28
AU2014203384A1 (en) 2014-07-10
US20040229325A1 (en) 2004-11-18
CZ303446B6 (en) 2012-09-19
JP4537887B2 (en) 2010-09-08
US20170298288A1 (en) 2017-10-19
AU2012200890A1 (en) 2012-03-08
MX275361B (en) 2010-04-21
WO2001053512A1 (en) 2001-07-26
KR101591834B1 (en) 2016-02-18
AU780619B2 (en) 2005-04-07
DK1252324T3 (en) 2010-12-20
EP2295594A1 (en) 2011-03-16
US20140212936A1 (en) 2014-07-31
US7351558B2 (en) 2008-04-01
NO20023449L (en) 2002-09-17
PL356587A1 (en) 2004-06-28
RU2002119551A (en) 2004-02-20
EP1252324A1 (en) 2002-10-30
IL201756A (en) 2011-06-30
JP5756137B2 (en) 2015-07-29
KR20080007279A (en) 2008-01-17
EP1252324A4 (en) 2005-02-09
KR101429236B1 (en) 2014-08-12
CA2772540A1 (en) 2001-07-26
US10329515B2 (en) 2019-06-25
AU2016203318A1 (en) 2016-06-09
KR20130032395A (en) 2013-04-01
ES2735987T3 (en) 2019-12-23
US20020001833A1 (en) 2002-01-03
EP2295595B1 (en) 2019-05-01
MX297659B (en) 2012-03-29
US7781193B2 (en) 2010-08-24
US20080044875A1 (en) 2008-02-21
IL150772A (en) 2010-06-16
CA2397655A1 (en) 2001-07-26
KR20110000592A (en) 2011-01-03
EP2295595A1 (en) 2011-03-16
HUP0300556A3 (en) 2010-03-29
BR0107699A (en) 2003-01-14
KR20030013367A (en) 2003-02-14
KR20100051131A (en) 2010-05-14
MX232239B (en) 2005-11-18
HK1050716A1 (en) 2003-07-04
EP2302065A1 (en) 2011-03-30
KR20120070588A (en) 2012-06-29
JP2005278650A (en) 2005-10-13
IL206961A (en) 2011-11-30
CN1416469A (en) 2003-05-07
MX350779B (en) 2017-09-18
NO20110858L (en) 2002-09-17
JP4020642B2 (en) 2007-12-12
KR20150020609A (en) 2015-02-26
JP2010051328A (en) 2010-03-11
MXPA02007092A (en) 2003-02-24
AU2018200956A1 (en) 2018-03-01
PT1252324E (en) 2010-12-16
AU2005202980A1 (en) 2005-08-04
JP2013099365A (en) 2013-05-23
DE60143287D1 (en) 2010-12-02
ES2675517T3 (en) 2018-07-11
US6750048B2 (en) 2004-06-15
EP1252324B1 (en) 2010-10-20
ZA200205790B (en) 2003-07-28
KR100995575B1 (en) 2010-11-19
NO20023449D0 (en) 2002-07-18
US20080044876A1 (en) 2008-02-21
AU2005202980B2 (en) 2008-07-10
US20190256797A1 (en) 2019-08-22
JP5722536B2 (en) 2015-05-20
ES2352001T3 (en) 2011-02-14
US9738851B2 (en) 2017-08-22
IL150772A0 (en) 2003-02-12
KR101429238B1 (en) 2014-08-12
JP2015133969A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
US10329515B2 (en) Solventless extraction process
AU2008229885B2 (en) Solventless extraction process

Legal Events

Date Code Title Description
AS Assignment

Owner name: OMEGATECH, INC., COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUECKER, CRAIG M.;ADU-PEASAH, SWITHIN PATRICK;ENGELHARDT, BRIAN S.;AND OTHERS;SIGNING DATES FROM 20010216 TO 20010221;REEL/FRAME:028919/0846

AS Assignment

Owner name: OMEGATECH, INC., COLORADO

Free format text: MERGER;ASSIGNOR:OMEGATECH, INC.;REEL/FRAME:028921/0917

Effective date: 20010725

Owner name: MARTEK BIOSCIENCES CORPORATION, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARTEK BIOSCIENCES BOULDER CORPORATION;REEL/FRAME:028921/0883

Effective date: 20030813

Owner name: MARTEK BIOSCIENCES BOULDER CORPORATION, COLORADO

Free format text: CHANGE OF NAME;ASSIGNOR:OMEGATECH, INC.;REEL/FRAME:028923/0383

Effective date: 20020425

AS Assignment

Owner name: DSM IP ASSETS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARTEK BIOSCIENCES CORPORATION;REEL/FRAME:028938/0620

Effective date: 20120625

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION