US20080041083A1 - Low-cost air conditioning system for open area - Google Patents

Low-cost air conditioning system for open area Download PDF

Info

Publication number
US20080041083A1
US20080041083A1 US11/504,083 US50408306A US2008041083A1 US 20080041083 A1 US20080041083 A1 US 20080041083A1 US 50408306 A US50408306 A US 50408306A US 2008041083 A1 US2008041083 A1 US 2008041083A1
Authority
US
United States
Prior art keywords
solar
conditioning system
air conditioning
fan
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/504,083
Inventor
Ahmed Z. Al-Garni
Ayman H. Kassem
Abdullah M. Al-Garni
Farooq Saeed
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
King Fahd University of Petroleum and Minerals
Original Assignee
King Fahd University of Petroleum and Minerals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King Fahd University of Petroleum and Minerals filed Critical King Fahd University of Petroleum and Minerals
Priority to US11/504,083 priority Critical patent/US20080041083A1/en
Assigned to KING FAHD UNIV. OF PETROLEUM AND MINERALS reassignment KING FAHD UNIV. OF PETROLEUM AND MINERALS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AL-GARNI, ABDULLAH M., AL-GARNI, AHMED Z., KASSEM, AYMAN H., SAEED, FAROOQ
Publication of US20080041083A1 publication Critical patent/US20080041083A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/00073Indoor units, e.g. fan coil units comprising a compressor in the indoor unit housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the present invention relates to air conditioning systems, and particularly to a solar-powered air conditioning system suitable for dry, arid, desert conditions that relies upon evaporative cooling.
  • a wide variety of air conditioning systems have been utilized to provide cool air for both personal comfort and for commercial and industrial purposes.
  • Such systems typically include a compressor for liquefying a volatile substance, or refrigerant, housed within cooling coils. Thermal energy is extracted warm air passed over the cooling coils by a blower, causing the refrigerant to evaporate. The evaporated refrigerant is then passed through a condenser in the outside warm outside air, and the condensed refrigerant is subsequently compressed back into the liquid state and pumped through the cooling coils again.
  • Such systems utilize a great deal of external energy, generally in the form of electricity, and the volatile substances used, such as Freon® (Freon is a registered trademark of E.I. Du Pont de Nemours and Company of Wilmington, Del.), frequently employ chlorofluorohydrocarbons, which are harmful to the environment.
  • Freon® Freon is a registered trademark of E.I. Du Pont de Nemours and Company of Wilmington, Del.
  • evaporative cooling systems are used that are sometimes referred to as “swamp coolers.” Such systems derive from the [practice of hanging a wet sheet or mat over an open window or screened porch and using a fan to draw hot air in through the wet sheet. The hot air and the water attempt to reach an equilibrium temperature, with heat being transferred from the hot air to the water, resulting in evaporation of water from the sheet and cooling of the air drawn into the structure.
  • the solar-powered air conditioning system is a low cost system for cooling air in dry, arid conditions through evaporative cooling.
  • the system includes a motor-driven fan for producing a directed air stream.
  • a water delivery system is in communication with an external water supply. The water is introduced into the directed air stream in droplets. Evaporation of the water droplets within the directed air stream lowers the temperature of the directed air stream via evaporative cooling.
  • the external water supply may include a water tank or reservoir disposed above the directed air stream.
  • the water tank may have a plurality of orifices defined therein, the water draining through the orifices in droplets by gravity feed.
  • a screen or mesh may be disposed beneath the water tank so that water draining through the tank is formed into water droplets by passing through the screen into the directed air stream.
  • at least one atomizer could be positioned adjacent the fan to spray atomized droplets into the air stream.
  • the atomizer is in fluid communication with an external source of water, and the water may be further charged into the atomizer by a pump.
  • the atomizer may alternatively be built directly into the fan, with the blades of the fan having atomizer nozzles mounted in their front faces for spraying atomized droplets directly into the air stream.
  • the motor-driven fan is powered by at least one solar panel, which may be mounted on the roof or walls of the water tank, which holds the water supply of the water delivery system. Further, a rechargeable battery may be provided for providing power when there is insufficient sunlight to produce enough current from the solar panel to provide power to the fan. The rechargeable battery charged by the solar panel during the day, and provides power to the fan and pump, thus allowing both to operate at night.
  • FIG. 1A is diagrammatic view of a first embodiment of a solar-powered air conditioning system according to the present invention.
  • FIG. 1B is a plan view of the bottom wall of the water tank in the system of FIG. 1 , showing the orifices defined therein.
  • FIG. 2 is a diagrammatic view of a second embodiment of a solar-powered air conditioning system according to the present invention.
  • FIG. 3 is a diagrammatic view of an alternative water delivery system for a solar-powered air conditioning system according to the present invention.
  • FIG. 4 is a diagrammatic view of another alternative embodiment of a water delivery system for a solar-powered air conditioning system according to the present invention.
  • FIG. 5 is an elevation view in section of a fan blade of the water delivery system of FIG. 4 .
  • FIG. 6 is a schematic diagram of an electrical system for a solar-powered air conditioning system according to the present invention.
  • FIG. 1A illustrates a solar-powered air conditioning system 10 according to the present invention that utilizes evaporative cooling to cool a directed air stream.
  • System 10 is environmentally friendly, avoiding the use of refrigerants that may be toxic or harmful to the environment and avoiding the use of power grids that rely upon fossil fuels.
  • the system 10 is relatively low cost in terms of materials and power consumption, and may be relatively portable.
  • the system 10 may be used in open areas, and may be used to cool any desired structure.
  • the system 10 is primarily intended for dry, arid regions, e.g., desert areas, since evaporation is retarded in humid environments.
  • Water 13 is initially supplied from a conventional external source of water, such as a natural body of water or conventional plumbing, to fill a water reservoir or water tank 12 .
  • Pure water, sweet water or salt water may be utilized as coolants.
  • any suitable liquid that will cool a directed air stream through evaporative cooling may be utilized, such as alcohol.
  • additives such as scented substances, oils, fragrances, or alcohol, which has a higher rate of evaporation than water, may be added to the water.
  • water may be supplied from an external conduit 36 by a pump 34 to fill the water tank 12 .
  • the water tank 12 may be any suitable receptacle or reservoir for holding the water supply.
  • the lower wall 15 of the tank 12 comprises a drip plate having a plurality of orifices 17 formed therethrough, as shown in FIG. 1B .
  • the orifices 17 are very small in diameter, so that the water drips through these orifices 17 to form water droplets 14 , which drip into directed air stream 16 to cool the air in air stream 16 , as will be described in further detail below.
  • System 10 includes a fan 18 powered by electric motor 20 , both of which may be of conventional design in the embodiment shown in FIG. 1A .
  • Electric motor 20 is preferably a dc motor that may be powered by electricity generated by at least one solar panel 26 having an array of solar cells.
  • at least one solar panel 26 may be mounted on the sidewall of water tank 12 , or on the roof 24 of tank 12 , which also helps to keep the water cool by shading the reservoir from direct exposure to sunlight.
  • the at least one solar panel 26 is in electrical communication with motor 20 via line 22 .
  • FIG. 1A illustrates four separate solar panels 26 , with two being mounted on the sidewall of tank 12 , and two being mounted on roof 24 .
  • the type, number and configuration of solar panels 26 depend upon the size of the system 10 and the area to be cooled.
  • Fan 18 and water tank 12 may be formed from plastic, steel, aluminum, titanium, carbon fiber composites or any other suitable material.
  • water tank 12 is positioned in an open area, allowing for solar exposure on solar panels 26 .
  • Solar panels 26 can, alternatively, be positioned away from tank 12 , such as on the roof of a building or other structure.
  • tank 12 is positioned above the directed air stream 16 generated by fan 18 , as shown in FIG. 1A , so that droplets 14 fall into air stream 16 under the force of gravity, with no further outside work being required.
  • Water droplets 14 cool the air stream 16 through evaporative cooling, providing a cooling effect for the user.
  • the air stream 16 may be directed to any area that requires cooling, e.g., into a building or other structure by ductwork, under canopies or tents in work areas, into vehicles, etc.
  • a rechargeable battery 30 may be provided, and is connected to pump 34 via line 32 .
  • Rechargeable battery 30 may be of conventional design and is charged through electrical connection with solar panels 26 . When solar panels 26 are placed within a sufficient source of light to generate power, rechargeable battery 30 charges as system 10 operates. When no sufficient light source is available, such as nighttime, system 10 can be operated by the power stored in rechargeable battery 30 .
  • FIG. 1A is diagrammatic and does not represent an actual circuit schematic diagram.
  • solar panel 26 is connected in parallel with rechargeable battery 30 , allowing battery 30 to be charged as power is delivered to both pump 34 and motor 20 .
  • rechargeable battery 30 may be connected in series with solar panel 26 in a convention solar-powered charging circuit.
  • a switch 28 is provided, allowing the user to selectively activate and deactivate pump 34 .
  • a switch 29 is in series with motor 20 , allowing the user to selectively activate and deactivate motor 20 of fan 18 .
  • switches 28 and 29 may be manually operated switches, or may be electronic switching circuits, and that the circuitry may further comprise an electronic switching circuit for automatically delivering electrical power to the pump 34 , motor, 20 , and fan 18 either directly from the solar panel 26 when the solar panel 26 produces sufficient power, or from the rechargeable battery 30 when power produced from the solar panel is insufficient.
  • an electric compressor system may be used in conjunction with storage tank 12 to cool the water therein further, with the compressor being powered by solar panel 26 or rechargeable battery 30 .
  • a mesh screen 40 is mounted beneath water tank 12 by supports 38 .
  • Mesh screen 40 may be a stainless steel wire mesh screen, or any other suitable screen for producing fine droplets.
  • Mesh screen 40 has a plurality of small openings formed therethrough, with the area of each small opening being smaller than the area of each opening formed through the lower wall of water tank 12 .
  • Water droplets 14 fall on mesh screen 40 , and the small openings produce fine droplets 42 , each having a volume smaller than that associated with droplets 14 .
  • fine droplets 42 migrate to a greater extent within directed air flow 16 , thus covering a larger volume of air and, have a greater surface area than large droplets to promote heat exchange, thereby producing a greater evaporative cooling effect and increasing the efficiency of air conditioning system 10 .
  • water tank 12 is replaced with at least one atomizer 46 for producing an atomized spray of water 48 .
  • atomizer 46 for producing an atomized spray of water 48 .
  • FIG. 3 three atomizers 46 are illustrated. However, it should be understood that the number and type of atomizers may vary within the scope of the present invention.
  • Atomizers 46 are preferably positioned about the periphery of fan 18 , as shown, so that the atomized water 48 sprays directly into directed air stream 16 .
  • Atomizers 52 are formed directly in the fan blades 50 of fan 18 .
  • Atomizers 52 may be in the form of openings formed in fan blade 50 , each being shaped as an atomizer nozzle, or may include separate atomizer nozzles mounted within openings 52 .
  • each fan blade 50 includes a front face 53 and a rear face 54 , with an open channel 58 being formed therebetween.
  • Water is received, under pressure, in a lower chamber 60 (supplied via pressurized water line 44 , shown in FIG. 4 ) and passes into channel 58 .
  • the pressurized water is expelled through atomizer openings 52 to form an atomized mist, which directly enters the air stream 16 to effect cooling thereof via evaporative cooling.
  • System 10 relies on evaporative cooling in order to cool directed air stream 16 , rather than relying on conventional compressor techniques, thus making system 10 an environmentally friendly system, which is further low cost to operate and build. Further, the system is solar-powered and utilizes the force of gravity in the embodiments of FIGS. 1 and 2 to deliver droplets 14 into air stream 16 , thus providing an energy efficient system.

Abstract

The solar-powered air conditioning system is a low cost, environmentally friendly system for cooling air through evaporative cooling. The system includes a motor-driven fan for producing a directed air stream. A water delivery system is in communication with an external water supply and produces water droplets, which are delivered into the directed air stream. Evaporation of the water droplets within the directed air stream lowers the temperature of the directed air stream via evaporative cooling. The motor-driven fan is powered by at least one solar panel, which may be mounted on a water tank for holding the water supply of the water delivery system. Further, a rechargeable battery may be provided for providing power when the solar panel generates insufficient power.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to air conditioning systems, and particularly to a solar-powered air conditioning system suitable for dry, arid, desert conditions that relies upon evaporative cooling.
  • 2. Description of the Related Art
  • A wide variety of air conditioning systems have been utilized to provide cool air for both personal comfort and for commercial and industrial purposes. Such systems typically include a compressor for liquefying a volatile substance, or refrigerant, housed within cooling coils. Thermal energy is extracted warm air passed over the cooling coils by a blower, causing the refrigerant to evaporate. The evaporated refrigerant is then passed through a condenser in the outside warm outside air, and the condensed refrigerant is subsequently compressed back into the liquid state and pumped through the cooling coils again. Such systems utilize a great deal of external energy, generally in the form of electricity, and the volatile substances used, such as Freon® (Freon is a registered trademark of E.I. Du Pont de Nemours and Company of Wilmington, Del.), frequently employ chlorofluorohydrocarbons, which are harmful to the environment.
  • In the southwestern United States, evaporative cooling systems are used that are sometimes referred to as “swamp coolers.” Such systems derive from the [practice of hanging a wet sheet or mat over an open window or screened porch and using a fan to draw hot air in through the wet sheet. The hot air and the water attempt to reach an equilibrium temperature, with heat being transferred from the hot air to the water, resulting in evaporation of water from the sheet and cooling of the air drawn into the structure.
  • While such systems are effective at cooling the air, nevertheless, there is a need for providing an air conditioning system for dry, arid regions that is low in cost and environmentally friendly. Thus, a solar-powered air conditioning system solving the aforementioned problems is desired.
  • SUMMARY OF THE INVENTION
  • The solar-powered air conditioning system is a low cost system for cooling air in dry, arid conditions through evaporative cooling. The system includes a motor-driven fan for producing a directed air stream. A water delivery system is in communication with an external water supply. The water is introduced into the directed air stream in droplets. Evaporation of the water droplets within the directed air stream lowers the temperature of the directed air stream via evaporative cooling.
  • Several methods are available for producing the water droplets. The external water supply may include a water tank or reservoir disposed above the directed air stream. The water tank may have a plurality of orifices defined therein, the water draining through the orifices in droplets by gravity feed. In order to promote the formation of small or micro (fine) droplets, a screen or mesh may be disposed beneath the water tank so that water draining through the tank is formed into water droplets by passing through the screen into the directed air stream. Alternatively, at least one atomizer could be positioned adjacent the fan to spray atomized droplets into the air stream. The atomizer is in fluid communication with an external source of water, and the water may be further charged into the atomizer by a pump. In another alternative, the atomizer may alternatively be built directly into the fan, with the blades of the fan having atomizer nozzles mounted in their front faces for spraying atomized droplets directly into the air stream.
  • The motor-driven fan is powered by at least one solar panel, which may be mounted on the roof or walls of the water tank, which holds the water supply of the water delivery system. Further, a rechargeable battery may be provided for providing power when there is insufficient sunlight to produce enough current from the solar panel to provide power to the fan. The rechargeable battery charged by the solar panel during the day, and provides power to the fan and pump, thus allowing both to operate at night.
  • These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is diagrammatic view of a first embodiment of a solar-powered air conditioning system according to the present invention.
  • FIG. 1B is a plan view of the bottom wall of the water tank in the system of FIG. 1, showing the orifices defined therein.
  • FIG. 2 is a diagrammatic view of a second embodiment of a solar-powered air conditioning system according to the present invention.
  • FIG. 3 is a diagrammatic view of an alternative water delivery system for a solar-powered air conditioning system according to the present invention.
  • FIG. 4 is a diagrammatic view of another alternative embodiment of a water delivery system for a solar-powered air conditioning system according to the present invention.
  • FIG. 5 is an elevation view in section of a fan blade of the water delivery system of FIG. 4.
  • FIG. 6 is a schematic diagram of an electrical system for a solar-powered air conditioning system according to the present invention.
  • Similar reference characters denote corresponding features consistently throughout the attached drawings.
  • Detailed Description of the Preferred Embodiments
  • FIG. 1A illustrates a solar-powered air conditioning system 10 according to the present invention that utilizes evaporative cooling to cool a directed air stream. System 10 is environmentally friendly, avoiding the use of refrigerants that may be toxic or harmful to the environment and avoiding the use of power grids that rely upon fossil fuels. The system 10 is relatively low cost in terms of materials and power consumption, and may be relatively portable. The system 10 may be used in open areas, and may be used to cool any desired structure. The system 10 is primarily intended for dry, arid regions, e.g., desert areas, since evaporation is retarded in humid environments.
  • Water 13 is initially supplied from a conventional external source of water, such as a natural body of water or conventional plumbing, to fill a water reservoir or water tank 12. Pure water, sweet water or salt water may be utilized as coolants. Similarly, any suitable liquid that will cool a directed air stream through evaporative cooling may be utilized, such as alcohol. Additionally, additives, such as scented substances, oils, fragrances, or alcohol, which has a higher rate of evaporation than water, may be added to the water.
  • As shown, water may be supplied from an external conduit 36 by a pump 34 to fill the water tank 12. The water tank 12 may be any suitable receptacle or reservoir for holding the water supply. In a first embodiment, the lower wall 15 of the tank 12 comprises a drip plate having a plurality of orifices 17 formed therethrough, as shown in FIG. 1B. The orifices 17 are very small in diameter, so that the water drips through these orifices 17 to form water droplets 14, which drip into directed air stream 16 to cool the air in air stream 16, as will be described in further detail below.
  • System 10 includes a fan 18 powered by electric motor 20, both of which may be of conventional design in the embodiment shown in FIG. 1A. Electric motor 20 is preferably a dc motor that may be powered by electricity generated by at least one solar panel 26 having an array of solar cells. For convenience and space efficiency, at least one solar panel 26 may be mounted on the sidewall of water tank 12, or on the roof 24 of tank 12, which also helps to keep the water cool by shading the reservoir from direct exposure to sunlight. The at least one solar panel 26 is in electrical communication with motor 20 via line 22. FIG. 1A illustrates four separate solar panels 26, with two being mounted on the sidewall of tank 12, and two being mounted on roof 24. The type, number and configuration of solar panels 26 depend upon the size of the system 10 and the area to be cooled. Fan 18 and water tank 12 may be formed from plastic, steel, aluminum, titanium, carbon fiber composites or any other suitable material.
  • Preferably, water tank 12 is positioned in an open area, allowing for solar exposure on solar panels 26. Solar panels 26 can, alternatively, be positioned away from tank 12, such as on the roof of a building or other structure. Preferably, tank 12 is positioned above the directed air stream 16 generated by fan 18, as shown in FIG. 1A, so that droplets 14 fall into air stream 16 under the force of gravity, with no further outside work being required. Water droplets 14 cool the air stream 16 through evaporative cooling, providing a cooling effect for the user. The air stream 16 may be directed to any area that requires cooling, e.g., into a building or other structure by ductwork, under canopies or tents in work areas, into vehicles, etc.
  • As further shown in FIG. 1A, a rechargeable battery 30 may be provided, and is connected to pump 34 via line 32. Rechargeable battery 30 may be of conventional design and is charged through electrical connection with solar panels 26. When solar panels 26 are placed within a sufficient source of light to generate power, rechargeable battery 30 charges as system 10 operates. When no sufficient light source is available, such as nighttime, system 10 can be operated by the power stored in rechargeable battery 30.
  • It should be understood that FIG. 1A is diagrammatic and does not represent an actual circuit schematic diagram. As shown in the closed circuit of FIG. 6, solar panel 26 is connected in parallel with rechargeable battery 30, allowing battery 30 to be charged as power is delivered to both pump 34 and motor 20. Alternatively, rechargeable battery 30 may be connected in series with solar panel 26 in a convention solar-powered charging circuit. As shown, a switch 28 is provided, allowing the user to selectively activate and deactivate pump 34. Similarly, a switch 29 is in series with motor 20, allowing the user to selectively activate and deactivate motor 20 of fan 18. It will be understood that switches 28 and 29 may be manually operated switches, or may be electronic switching circuits, and that the circuitry may further comprise an electronic switching circuit for automatically delivering electrical power to the pump 34, motor, 20, and fan 18 either directly from the solar panel 26 when the solar panel 26 produces sufficient power, or from the rechargeable battery 30 when power produced from the solar panel is insufficient. Alternatively, an electric compressor system may be used in conjunction with storage tank 12 to cool the water therein further, with the compressor being powered by solar panel 26 or rechargeable battery 30.
  • In the alternative embodiment of FIG. 2, a mesh screen 40 is mounted beneath water tank 12 by supports 38. Mesh screen 40 may be a stainless steel wire mesh screen, or any other suitable screen for producing fine droplets. Mesh screen 40 has a plurality of small openings formed therethrough, with the area of each small opening being smaller than the area of each opening formed through the lower wall of water tank 12. Water droplets 14 fall on mesh screen 40, and the small openings produce fine droplets 42, each having a volume smaller than that associated with droplets 14. Due to their smaller volumes, fine droplets 42 migrate to a greater extent within directed air flow 16, thus covering a larger volume of air and, have a greater surface area than large droplets to promote heat exchange, thereby producing a greater evaporative cooling effect and increasing the efficiency of air conditioning system 10.
  • In the alternative embodiment of FIG. 3, water tank 12 is replaced with at least one atomizer 46 for producing an atomized spray of water 48. In FIG. 3, three atomizers 46 are illustrated. However, it should be understood that the number and type of atomizers may vary within the scope of the present invention. Atomizers 46 are preferably positioned about the periphery of fan 18, as shown, so that the atomized water 48 sprays directly into directed air stream 16.
  • Pump 34, shown in FIGS. 1 and 2, pressurizes the water and feeds the water into atomizers 46 via supply line 44, as shown in FIG. 3. As described above with reference to FIG. 2, the smaller droplets, here in the form of an atomized mist, provide an enhanced cooling effect via evaporative cooling, because the small volume and mass of the droplets allows for greater rates of migration within air flow 16, and a greater surface area of the droplets for enhanced heat exchange, allowing a larger volume of air flow 16 to be cooled at a more rapid rate.
  • In another alternative embodiment, shown in FIG. 4, atomizers 52, similar in operation to those of FIG. 3, are formed directly in the fan blades 50 of fan 18. Atomizers 52 may be in the form of openings formed in fan blade 50, each being shaped as an atomizer nozzle, or may include separate atomizer nozzles mounted within openings 52. As shown in FIG. 5, each fan blade 50 includes a front face 53 and a rear face 54, with an open channel 58 being formed therebetween.
  • Water is received, under pressure, in a lower chamber 60 (supplied via pressurized water line 44, shown in FIG. 4) and passes into channel 58. The pressurized water is expelled through atomizer openings 52 to form an atomized mist, which directly enters the air stream 16 to effect cooling thereof via evaporative cooling.
  • System 10 relies on evaporative cooling in order to cool directed air stream 16, rather than relying on conventional compressor techniques, thus making system 10 an environmentally friendly system, which is further low cost to operate and build. Further, the system is solar-powered and utilizes the force of gravity in the embodiments of FIGS. 1 and 2 to deliver droplets 14 into air stream 16, thus providing an energy efficient system.
  • It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.

Claims (11)

1. A solar-powered air conditioning system, comprising:
a fan for producing a directed air stream;
a coolant reservoir;
means for delivering coolant from the coolant reservoir into the directed air stream in droplets in order to produce evaporative cooling; and
a power source having at least one solar panel containing an array of solar cells for generating electrical power from the sun, the power source being electrically connected to the fan.
2. The solar-powered air conditioning system as recited in claim 1, wherein said coolant reservoir comprises a water tank adapted for holding water, the tank being mounted above the directed air stream, the tank having a lower wall, said means for delivering comprising a plurality of orifices defined in the lower wall of the tank, whereby the lower wall forms a drip plate, water draining through the drip plate by gravity and being formed into droplets.
3. The solar-powered air conditioning system as recited in claim 2, wherein said means for delivering further comprises a mesh screen disposed between said drip plate and the directed air stream, the mesh screen having a screen size dimensioned and configured for further dividing the water droplets into fine droplets.
4. The solar-powered air conditioning system as recited in claim 2, wherein said at least one solar panel is mounted on said water tank.
5. The solar-powered air conditioning system according to claim 2, wherein said coolant reservoir further comprises a roof mounted above said water tank.
6. The solar-powered air conditioning system according to claim 5, wherein said at least one solar panel comprises at least one solar panel mounted upon the roof over the water tank.
7. The solar-powered air conditioning system according to claim 2, further comprising a pump connected to said water tank for filling the water tank with water, said pump receiving electrical power from said power source.
8. The solar-powered air conditioning system according to claim 1, wherein said means for delivering comprises at least one atomizer connected to said coolant reservoir, the atomizer being disposed to spray coolant into the directed air stream in an atomized mist.
9. The solar-powered air conditioning system according to claim 1, further comprising a fluid conduit extending between said coolant reservoir and said fan, said means for delivering further comprising:
a plurality of fan blades disposed upon said fan, the fan blades having fluid channels defined therein; and
a plurality of atomizer nozzles disposed upon each of the fan blades, the nozzles communicating with the fluid channels in order to spray an atomized mist of coolant into the directed air stream.
10. The solar-powered air conditioning system according to claim 1, wherein said power source further comprises:
at least one rechargeable battery;
a charging circuit for recharging the battery from current generated in said at least one solar panel; and
switching means for delivering electrical power to said fan directly from said solar panel when said solar panel delivers sufficient power and for delivering electrical power to said fan from said rechargeable battery when said solar panel delivers insufficient power to said fan.
11. The solar-powered air conditioning system according to claim 1, further comprising a dc electric motor driving said fan, the motor being electrically connected to said power source.
US11/504,083 2006-08-15 2006-08-15 Low-cost air conditioning system for open area Abandoned US20080041083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/504,083 US20080041083A1 (en) 2006-08-15 2006-08-15 Low-cost air conditioning system for open area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/504,083 US20080041083A1 (en) 2006-08-15 2006-08-15 Low-cost air conditioning system for open area

Publications (1)

Publication Number Publication Date
US20080041083A1 true US20080041083A1 (en) 2008-02-21

Family

ID=39100057

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/504,083 Abandoned US20080041083A1 (en) 2006-08-15 2006-08-15 Low-cost air conditioning system for open area

Country Status (1)

Country Link
US (1) US20080041083A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100304660A1 (en) * 2009-05-29 2010-12-02 Boehling Steven V Hybrid Solar Attic Vent
US20110269388A1 (en) * 2009-01-18 2011-11-03 Matthijs Dirk Meulenbelt Cooling Device
US20130068422A1 (en) * 2011-09-15 2013-03-21 Alan Mark Horowitz System and method for recycling energy from ice remnants
US20140096556A1 (en) * 2012-10-10 2014-04-10 Hassan S. Emam Solar air conditioner
US20150176873A1 (en) * 2013-12-23 2015-06-25 King Fahd University Of Petroleum And Minerals Solar-powered air conditioning system
US20170122495A1 (en) * 2015-10-29 2017-05-04 CRYODIRECT Limited Device for transporting liquefied gas and a method of transferring liquefied gas from the device
CN107178844A (en) * 2017-06-08 2017-09-19 西安工程大学 The indirect direct evaporating-cooling of wind-solar complementary type and evaporative condenser combined air conditioner unit

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1586997A (en) * 1922-04-10 1926-06-01 Arthur B Hull Spraying apparatus
US2267738A (en) * 1940-02-17 1941-12-30 Kaufman Hiram Joseph Apparatus for conditioning air with ice
US3116612A (en) * 1962-01-02 1964-01-07 Mclaughlin John J Air conditioning by evaporative pad means
US3362186A (en) * 1966-03-10 1968-01-09 Albert S. Patterson Cooling device for fluids
US3957109A (en) * 1974-10-31 1976-05-18 Worthington Mark N Solar collector -- heat exchanger
US4100755A (en) * 1976-12-20 1978-07-18 Carrier Corporation Absorption refrigeration system utilizing solar energy
US4188994A (en) * 1976-08-16 1980-02-19 Hinshaw Louis W Cooling and heating apparatuses
US4658597A (en) * 1985-07-03 1987-04-21 Shu Shum Solar powered automobile cooling system
US4882911A (en) * 1987-10-21 1989-11-28 Rittal-Werk Rudolf Loh Gmbh & Co. Kg Apparatus for removing condensate water from a compressor-operated cooling device
US5353601A (en) * 1993-02-16 1994-10-11 Palmer Gerald R Structural cooling systems and methods
US5373703A (en) * 1990-09-06 1994-12-20 Pal; Arun K. Kar-kool
US5606868A (en) * 1995-03-06 1997-03-04 General Shelters Of Texas S.B., Inc. Reticulated foam sleeve for evaporative cooling unit spray conduit
US5724824A (en) * 1996-12-12 1998-03-10 Parsons; David A. Evaporative cooling delivery control system
US5797274A (en) * 1993-11-03 1998-08-25 Davy Mckee (Stockton) Limited Cooling of hot bodies
US5979172A (en) * 1998-07-06 1999-11-09 Teller; Kevin Non-drip high efficiency AC system utilizing condensate water for subcooling
US6101716A (en) * 1998-02-12 2000-08-15 Schulz; Steven L. Evaporative cooler solar retrofit kit
US6112538A (en) * 1997-08-27 2000-09-05 Mist 'n Co, Inc. Portable air conditioning apparatus and method using evaporative cooling
US6237896B1 (en) * 1999-10-22 2001-05-29 Ricky D. Hicks Portable fan with misting nozzles
US6250091B1 (en) * 1999-11-30 2001-06-26 George A. Jerome Efficient structure cooling system
US6293121B1 (en) * 1988-10-13 2001-09-25 Gaudencio A. Labrador Water-mist blower cooling system and its new applications
US6385987B2 (en) * 2000-02-23 2002-05-14 Leslie Schlom Heat exchanger for cooling and for a pre-cooler for turbine intake air conditioning
US6471194B2 (en) * 2000-12-14 2002-10-29 Bart Keeney Mist fan
US6539738B2 (en) * 2000-06-08 2003-04-01 University Of Puerto Rico Compact solar-powered air conditioning systems
US6644061B1 (en) * 2002-08-02 2003-11-11 Joseph W. Woolfson Sound muffling device for an air conditioning unit
US20040176021A1 (en) * 2003-03-04 2004-09-09 Derba Mills Solar powered fresh air vehicle ventilation system
US7143597B2 (en) * 2004-06-30 2006-12-05 Speakman Company Indirect-direct evaporative cooling system operable from sustainable energy source

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1586997A (en) * 1922-04-10 1926-06-01 Arthur B Hull Spraying apparatus
US2267738A (en) * 1940-02-17 1941-12-30 Kaufman Hiram Joseph Apparatus for conditioning air with ice
US3116612A (en) * 1962-01-02 1964-01-07 Mclaughlin John J Air conditioning by evaporative pad means
US3362186A (en) * 1966-03-10 1968-01-09 Albert S. Patterson Cooling device for fluids
US3957109A (en) * 1974-10-31 1976-05-18 Worthington Mark N Solar collector -- heat exchanger
US4188994A (en) * 1976-08-16 1980-02-19 Hinshaw Louis W Cooling and heating apparatuses
US4100755A (en) * 1976-12-20 1978-07-18 Carrier Corporation Absorption refrigeration system utilizing solar energy
US4658597A (en) * 1985-07-03 1987-04-21 Shu Shum Solar powered automobile cooling system
US4882911A (en) * 1987-10-21 1989-11-28 Rittal-Werk Rudolf Loh Gmbh & Co. Kg Apparatus for removing condensate water from a compressor-operated cooling device
US6293121B1 (en) * 1988-10-13 2001-09-25 Gaudencio A. Labrador Water-mist blower cooling system and its new applications
US5373703A (en) * 1990-09-06 1994-12-20 Pal; Arun K. Kar-kool
US5353601A (en) * 1993-02-16 1994-10-11 Palmer Gerald R Structural cooling systems and methods
US5797274A (en) * 1993-11-03 1998-08-25 Davy Mckee (Stockton) Limited Cooling of hot bodies
US5606868A (en) * 1995-03-06 1997-03-04 General Shelters Of Texas S.B., Inc. Reticulated foam sleeve for evaporative cooling unit spray conduit
US5724824A (en) * 1996-12-12 1998-03-10 Parsons; David A. Evaporative cooling delivery control system
US6112538A (en) * 1997-08-27 2000-09-05 Mist 'n Co, Inc. Portable air conditioning apparatus and method using evaporative cooling
US6101716A (en) * 1998-02-12 2000-08-15 Schulz; Steven L. Evaporative cooler solar retrofit kit
US5979172A (en) * 1998-07-06 1999-11-09 Teller; Kevin Non-drip high efficiency AC system utilizing condensate water for subcooling
US6237896B1 (en) * 1999-10-22 2001-05-29 Ricky D. Hicks Portable fan with misting nozzles
US6250091B1 (en) * 1999-11-30 2001-06-26 George A. Jerome Efficient structure cooling system
US6385987B2 (en) * 2000-02-23 2002-05-14 Leslie Schlom Heat exchanger for cooling and for a pre-cooler for turbine intake air conditioning
US6539738B2 (en) * 2000-06-08 2003-04-01 University Of Puerto Rico Compact solar-powered air conditioning systems
US6471194B2 (en) * 2000-12-14 2002-10-29 Bart Keeney Mist fan
US6644061B1 (en) * 2002-08-02 2003-11-11 Joseph W. Woolfson Sound muffling device for an air conditioning unit
US20040176021A1 (en) * 2003-03-04 2004-09-09 Derba Mills Solar powered fresh air vehicle ventilation system
US7143597B2 (en) * 2004-06-30 2006-12-05 Speakman Company Indirect-direct evaporative cooling system operable from sustainable energy source

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110269388A1 (en) * 2009-01-18 2011-11-03 Matthijs Dirk Meulenbelt Cooling Device
US9829207B2 (en) * 2009-01-18 2017-11-28 Lux Et Libertas B.V. Cooling device
US20100304660A1 (en) * 2009-05-29 2010-12-02 Boehling Steven V Hybrid Solar Attic Vent
US8915778B2 (en) * 2009-05-29 2014-12-23 Building Materials Investment Corporation Hybrid solar attic vent
US20130068422A1 (en) * 2011-09-15 2013-03-21 Alan Mark Horowitz System and method for recycling energy from ice remnants
US20140096556A1 (en) * 2012-10-10 2014-04-10 Hassan S. Emam Solar air conditioner
US9046285B2 (en) * 2012-10-10 2015-06-02 Hassan S. Emam Solar air conditioner
US20150176873A1 (en) * 2013-12-23 2015-06-25 King Fahd University Of Petroleum And Minerals Solar-powered air conditioning system
US9476601B2 (en) * 2013-12-23 2016-10-25 King Fahd University Of Petroleum And Minerals Solar-powered air conditioning system
US20170122495A1 (en) * 2015-10-29 2017-05-04 CRYODIRECT Limited Device for transporting liquefied gas and a method of transferring liquefied gas from the device
CN107178844A (en) * 2017-06-08 2017-09-19 西安工程大学 The indirect direct evaporating-cooling of wind-solar complementary type and evaporative condenser combined air conditioner unit

Similar Documents

Publication Publication Date Title
US20080041083A1 (en) Low-cost air conditioning system for open area
US6755037B2 (en) Apparatus and method for extracting potable water from atmosphere
CN101749823B (en) Air-conditioner humidifying device and air conditioner using the same
CN101898498B (en) Evaporation type automobile parking ventilating and cooling system
CN207132459U (en) A kind of air-conditioning
GB2042712A (en) Simplified air condition
CN104776523A (en) Personal misting device
CN205020267U (en) Mist generating device
CN102418976A (en) Humidifier
CN109631208A (en) A kind of modular air processing unit
CN105299803A (en) Cooling type evaporating cooling system used for outdoor sentry box
CN211473524U (en) Bus station capable of automatically cooling
CN103062855A (en) Refrigeration and humidification device
CN203928190U (en) A kind of Portable tent for camping air-conditioner
KR20160094607A (en) The met type airconditioner of the refrigerants circulation method
CN203744435U (en) Air conditioning system applying underground stored energy at night of evaporative cooling water chilling unit
CN104975730A (en) Combined evaporative cooling outdoor rest pavilion based on film photovoltaic panel driving
CN108758870A (en) A kind of novel air-conditioning outdoor unit cooling system
CN208765144U (en) A kind of air-conditioning
CN207702635U (en) A kind of atomizing air-conditioning with wind energy self-generating device
CN105783152B (en) Moving billboard evaporation cooling spray system with aromatic odor
CN101733229A (en) Atomizing module and atomizing device
CN105042740B (en) The adaptive power conservation air-conditioning system that rock-bed is combined with evaporation cooling
CN204754306U (en) Outdoor rest pavilion based on photovoltaic power generation and evaporation cooling unite
CN104776526B (en) The evaporation cooling of honourable cogeneration is with the straight swollen air-conditioning system being combined of refrigerant

Legal Events

Date Code Title Description
AS Assignment

Owner name: KING FAHD UNIV. OF PETROLEUM AND MINERALS, SAUDI A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AL-GARNI, AHMED Z.;KASSEM, AYMAN H.;AL-GARNI, ABDULLAH M.;AND OTHERS;REEL/FRAME:018202/0797

Effective date: 20060301

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION