US20080047706A1 - Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells - Google Patents

Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells Download PDF

Info

Publication number
US20080047706A1
US20080047706A1 US11/508,690 US50869006A US2008047706A1 US 20080047706 A1 US20080047706 A1 US 20080047706A1 US 50869006 A US50869006 A US 50869006A US 2008047706 A1 US2008047706 A1 US 2008047706A1
Authority
US
United States
Prior art keywords
model
hydrocarbon
brine
formation
information set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/508,690
Inventor
Gary A. Pope
Jimmie R. Baran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
University of Texas System
Original Assignee
3M Innovative Properties Co
University of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co, University of Texas System filed Critical 3M Innovative Properties Co
Priority to US11/508,690 priority Critical patent/US20080047706A1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARAN, JIMMIE R., JR.
Assigned to BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM reassignment BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: POPE, GARY A.
Priority to PCT/US2007/076562 priority patent/WO2008024868A2/en
Priority to EP07814363A priority patent/EP2054583A2/en
Priority to US12/302,017 priority patent/US20100270019A1/en
Priority to ARP070103740A priority patent/AR062493A1/en
Publication of US20080047706A1 publication Critical patent/US20080047706A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants

Definitions

  • brine is present in hydrocarbon-bearing geological formations in the vicinity of the wellbore (also known in the art as the “near wellbore region”).
  • the brine may be naturally occurring (e.g., connate water) and/or may be a result of operations conducted on the well.
  • liquid hydrocarbons also known in the art as “condensate”
  • condensate can form and accumulate in the near wellbore region.
  • the presence of condensate can cause a large decrease in both the gas and condensate relative permeabilities, and thus the productivity of the well decreases.
  • brine and/or gas condensate in a near wellbore region of a hydrocarbon-bearing geological formation can inhibit or stop production of hydrocarbons from the well, and hence is typically undesirable.
  • One approach involves a fracturing and propping operation (e.g., prior to, or simultaneously with, a gravel packing operation) to increase the permeability of the hydrocarbon-bearing geological formation adjacent to the wellbore.
  • Chemical treatments e.g., injection of methanol
  • the latter treatments are typically injected into the near wellbore region of a hydrocarbon-bearing geological formation where they interact with the brine and/or condensate to displace and/or dissolve it, thereby facilitating increased hydrocarbon production from the well.
  • Identifying useful chemical treatments that will be effective for increasing hydrocarbon productivity and be persistent remains a problem, especially since well conditions such as temperature, brine content and brine composition may vary between wells and/or may even vary over time within a given well.
  • the present invention provides a method of obtaining a treatment composition for treating a hydrocarbon-bearing clastic formation having brine therein to enhance recovery of hydrocarbon from the formation, the method comprising:
  • obtaining a formation information set comprising a temperature value, brine content value, and brine composition data obtained from a geological zone of the hydrocarbon-bearing clastic formation;
  • the compatibility information set comprising compatibility information for at least at least one model brine and at least one model composition at least one model temperature, wherein each at least one model composition independently comprises at least one first surfactant dissolved in at least one first solvent;
  • the treatment composition comprises a second surfactant dissolved in a second solvent
  • selecting the treatment composition comprises interpolating (e.g., between compatibility information set data points). In some embodiments, obtaining the treatment composition comprises preparing the treatment composition.
  • the formation information set further comprises condensate content and condensate composition obtained from the geological zone of the hydrocarbon-bearing clastic formation. In some embodiments, at least a portion of the at least one information set is generated by computer simulation. In some embodiments, the at least one first surfactant comprises the second surfactant. In some embodiments, the at least one first solvent comprises the second solvent. In some embodiments, the formation information set further comprises condensate content obtained from the geological zone of the hydrocarbon-bearing clastic formation. In some embodiments, the second solvent comprises water. In some embodiments, the second solvent comprises at least one water-miscible organic solvent. In some embodiments, the second solvent comprises at least two organic solvents. In some embodiments, the at least one compatibility information set comprises compatibility information regarding the at least one model brine and a plurality of model compositions at a plurality of model temperatures.
  • the at least one compatibility information set comprises compatibility information regarding the at least one model brine and a plurality of model compositions.
  • the plurality of model compositions comprises a third surfactant different from the first surfactant.
  • the plurality of model temperatures has a highest model temperature and a lowest model temperature, and wherein the temperature obtained from the geological zone of the hydrocarbon-bearing clastic formation has a value of from at least the lowest model temperature up to and including the highest model temperature.
  • the at least one model temperature comprises a model temperature that has the same value as the temperature obtained from the geological zone of the hydrocarbon-bearing clastic formation.
  • the compatibility information set comprises compatibility information regarding a plurality of model brines and a plurality of model compositions at a plurality of model temperatures.
  • the at least one model brine is selected based at least in part on the brine composition data obtained from the geological zone of the hydrocarbon-bearing clastic formation.
  • at least one model brine has the same composition as the brine composition data obtained from the geological zone of the hydrocarbon-bearing clastic formation.
  • the surfactant is fluorinated. In some embodiments, the surfactant is fluorinated and nonionic.
  • the method further comprises injecting the treatment composition into a specimen of the geological zone of the hydrocarbon-bearing clastic formation.
  • the present inventions provides a method of treating a geological zone of a hydrocarbon-bearing clastic formation having brine therein, the method comprising injecting the treatment composition obtained according to the method of the present invention into the geological zone of the hydrocarbon-bearing clastic formation.
  • water refers to water having at least one dissolved electrolyte salt therein (e.g., having any nonzero concentration, and which may be less than 1000 parts per million by weight (ppm), or greater than 1000 ppm, greater than 10,000 ppm, greater than 20,000 ppm, 30,000 ppm, 40,000 ppm, 50,000 ppm, 100,000 ppm, 150,000 ppm, or even greater than 200,000 ppm).
  • ppm parts per million by weight
  • brine composition data refers to data identifying the amounts and identities of chemical constituents in the brine referred to.
  • composition information refers to information concerning the phase stability of a solution or dispersion.
  • FIG. 1 is a schematic illustration of an exemplary embodiment of an offshore oil and gas platform operating an apparatus for progressively treating a near wellbore region according to the present invention
  • FIG. 2 is a schematic illustration of the core flood set-up used for the Examples.
  • any surfactant or combination of surfactants may be useful in methods according to the present invention, including, for example, anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants (e.g., zwitterionic surfactants), and combinations thereof.
  • surfactant are widely available to one skilled in the art. These include, for example, fluorochemical, silicone and hydrocarbon-based surfactants.
  • Examples of useful cationic surfactants include: alkylammonium salts having the formula C r H 2r+1 N(CH 3 ) 3 X, where X is OH, Cl, Br, HSO 4 or a combination of OH and Cl, and where r is an integer from 8 to 22, and the formula C s H s+1 N(C 2 H 5 ) 3 X, where s is an integer from 12 to 18; gemini surfactants, for example, those having the formula: [C 16 H 33 N(CH 3 ) 2 C t H 2t+1 ]X, wherein t is an integer from 2 to 12 and X is as defined above; aralkylammonium salts (e.g., benzalkonium salts); and cetylethylpiperidinium salts, for example, C 16 H 33 N(C 2 H 5 )(C 5 H 10 )X, wherein X is as defined above.
  • alkylammonium salts having the formula C r H 2r+1
  • amphoteric surfactants include alkyldimethyl amine oxides, alkylcarboxamidoalkylenedimethyl amine oxides, aminopropionates, sulfobetaines, alkyl betaines, alkylamidobetaines, dihydroxyethyl glycinates, imidazoline acetates, imidazoline propionates, ammonium carboxylate and ammonium sulfonate amphoterics and imidazoline sulfonates.
  • hydrocarbon nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl-phenyl ethers, polyoxyethylene acyl esters, sorbitan fatty acid esters, polyoxyethylene alkylamines, polyoxyethylene alkylamides, polyoxyethylene lauryl ethers, polyoxyethylene cetyl ethers, polyoxyethylene stearyl ethers, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ethers, polyoxyethylene nonylphenyl ethers, polyethylene glycol laurates, polyethylene glycol stearates, polyethylene glycol distearates, polyethylene glycol oleates, oxyethylene-oxypropylene block copolymer, sorbitan laurate, sorbitan stearate, sorbitan distearate, sorbitan oleate, sorbitan sesquioleate, sorbitan trioleate, polyoxyethylene sorbitan laur
  • nonionic surfactants also include nonionic fluorinated surfactants.
  • nonionic fluorinated surfactants marketed under the trade designation “ZONYL” (e.g., ZONYL FSO) by E. I. du Pont de Nemours and Co., Wilmington, Del.
  • Nonionic fluorinated polymeric surfactants such as, for example, Fluorosurfactant A and Fluorosurfactant B (both described in the Examples hereinbelow) may also be used.
  • the nonionic fluorinated polymeric surfactant comprises:
  • R f represents a perfluoroalkyl group having from 1 to 8 carbon atoms.
  • exemplary groups R f include perfluoromethyl, perfluoroethyl, perfluoropropyl, perfluorobutyl (e.g., perfluoro-n-butyl or perfluoro-sec-butyl), perfluoropentyl, perfluorohexyl, perfluoroheptyl, and perfluorooctyl.
  • R, R 1 , and R 2 are each independently hydrogen or alkyl of 1 to 4 carbon atoms (e.g., methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, or t-butyl).
  • EO represents —CH 2 CH 2 O—.
  • PO represents —CH(CH 3 )CH 2 O— or —CH 2 CH(CH 3 )O—.
  • Each p is independently an integer of from 1 to about 128.
  • Each q is independently an integer of from 0 to about 55.
  • Useful nonionic fluorinated polymeric surfactants typically have a number average molecular weight in the range of from 1,000 to 10,000 grams/mole, 20,000 grams/mole, or even 30,000 grams/mole, although higher and lower molecular weights may also be used.
  • nonionic fluorinated polymeric surfactants may be prepared by techniques known in the art, including, for example, by free radical initiated copolymerization of a nonafluorobutanesulfonamido group-containing acrylate with a poly(alkyleneoxy) acrylate (e.g., monoacrylate or diacrylate) or mixtures thereof. Adjusting the concentration and activity of the initiator, the concentration of monomers, the temperature, and the chain-transfer agents can control the molecular weight of the polyacrylate copolymer. The description of the preparation of such polyacrylates is described, for example, in U.S. Pat. No. 3,787,351 (Olson).
  • Methods described above for making nonafluorobutylsulfonamido group-containing structures can be used to make heptafluoropropylsulfonamido groups by starting with heptafluoropropylsulfonyl fluoride, which can be made, for example, by the methods described in Examples 2 and 3 of U.S. Pat. No. 2,732,398 (Brice et al.), the disclosure of which is incorporated herein by reference.
  • any solvent or combination of solvents may be used in model brines, model compositions, model condensates, and treatment compositions.
  • useful solvents include organic solvents, water, and combinations thereof.
  • organic solvents include polar and/or water-miscible solvents such as, for example: monohydroxy alcohols having from 1 to 4 or more carbon atoms such as, for example, methanol, ethanol, isopropanol, propanol, or butanol; polyols such as, for example, glycols (e.g., ethylene glycol or propylene glycol), terminal alkanediols (e.g., 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, or 1,8-octanediol), polyglycols (e.g., diethylene glycol, triethylene glycol, or dipropylene glycol) or triols (e.g., glyce
  • component(s) of the solvent may have a normal boiling point of less than 650° F. (343° C.); for example, to facilitate removal of the solvent from a well after treatment.
  • the various model brines, model compositions, model condensates, and treatment compositions used herein may be prepared by any suitable method including, for example, manually or mechanically shaking and/or stirring the various components thereof.
  • the first data set is typically obtained by measurement of the pertinent condition(s) in or near a wellbore located at a particular geological zone of interest in a hydrocarbon-bearing clastic formation. Suitable measurement methods are known to the skilled artisan. In some, instances further manipulation of data (e.g., computer calculations) obtained from hydrocarbon-bearing clastic formation may be useful, and such manipulation is within the scope of the present invention.
  • the second data set may be generated by various methods including, computer simulation, physical measurements or a combination thereof.
  • the second data set may be as small as a single set element (e.g., a measurement of compatibility between the surfactant-solvent formulation and the brine and/or condensate at a given temperature), or it may contain any higher number of set elements.
  • the choice of surfactant-solvent formulations and temperatures to be studied and the results included within the second set will be directed by intuition and experience on the part of the skilled artisan performing the method, but this is not a requirement.
  • One convenient method of evaluating compatibility involves combining in (e.g., a container) a model brine and/or model condensate with a surfactant-solvent formulation at a given temperature, and then mixing the model brine and/or model condensate with the surfactant-solvent formulation.
  • the mixture is evaluated over time (e.g., 5 minutes, 1 hour, 12 hours, 24 hours or longer) to see if it phase separates or becomes cloudy.
  • the treatment composition used in a particular near wellbore region of a well is homogenous at the temperature(s) encountered in the near wellbore region. Accordingly, the treatment composition is typically selected to be homogenous at temperature(s) found in the portion of hydrocarbon-bearing clastic formation (e.g., a near well bore region) to be treated.
  • a treatment composition is chosen based at least in part on the comparison.
  • a treatment composition is chosen that closely resembles, or is identical to, a surfactant-solvent formulation from the compatibility information set, but this is not a requirement.
  • cost, availability, regulations, flammability, and environmental concerns may influence the specific choice of treatment composition for use in testing and/or commercial production.
  • the treatment compositions may be further evaluated; for example, by injection into a specimen (e.g., a core sample) taken from a particular geological zone to be treated, or a closely similar specimen.
  • a specimen e.g., a core sample
  • This may be performed in a laboratory environment using conventional techniques such as, for example, those described by Kumar et al. in “Improving the Gas and Condensate Relative Permeability Using Chemical Treatments”, paper SPE 100529, presented at the 2006 SPE Gas Technology Symposium held in Calgary, Alberta, Canada, 15-17 May 2006.
  • Embodiments of treatment compositions according to the present invention may be useful, for example, for recovering hydrocarbons (e.g., at least one of methane, ethane, propane, butane, hexane, heptane, or octane) from hydrocarbon-bearing subterranean clastic formations (in some embodiments, predominantly sandstone).
  • hydrocarbons e.g., at least one of methane, ethane, propane, butane, hexane, heptane, or octane
  • FIG. 1 an exemplary offshore oil and gas platform is schematically illustrated and generally designated 10 .
  • Semi-submersible platform 12 is centered over submerged hydrocarbon-bearing clastic formation 14 located below sea floor 16 .
  • Subsea conduit 18 extends from deck 20 of platform 12 to wellhead installation 22 including, for example, blowout preventers 24 .
  • Platform 12 is shown with hoisting apparatus 26 and derrick 28 for raising and lowering pipe strings such as work string 30 .
  • Wellbore 32 extends through the various earth strata including hydrocarbon-bearing clastic formation 14 .
  • Casing 34 is cemented within wellbore 32 by cement 36 .
  • Work string 30 may include various tools including, for example, sand control screen assembly 38 which is positioned within wellbore 32 adjacent to hydrocarbon-bearing clastic formation 14 .
  • fluid delivery tube 40 having fluid or gas discharge section 42 positioned adjacent to hydrocarbon-bearing clastic formation 14 , shown with production zone 48 between packers 44 , 46 .
  • Methods of using treatment compositions obtained herein are useful, for example on both existing and new wells.
  • Exemplary set in times include a few hours (e.g., 1 to 12 hours), about 24 hours, or even a few (e.g., 2 to 10) days.
  • the ionic strength of the treatment composition e.g., a range from a pH of about 4 to about 10
  • the radial stress at the wellbore e.g., about 1 bar (100 kPa) to about 1000 bars (100 MPa)
  • Treatment compositions prepared according to the present invention are typically useful for treating hydrocarbon-bearing clastic formations (e.g., hydrocarbon-bearing clastic formation that are predominantly sandstone), especially those containing brine.
  • hydrocarbons are then obtained from the wellbore at an increased rate, as compared the rate prior to treatment.
  • Treatment compositions prepared according to methods of the present invention may be injected into hydrocarbon-bearing clastic formations in wells using methods (e.g., by pumping under pressure) well known to those skilled in the oil and gas art.
  • Hydraulic fracturing is commonly used to increase the productivity of brine blocked wells, that is, wells that have brine in the near wellbore region of a hydrocarbon-bearing geological formation.
  • the hydraulic fracturing method is relatively expensive, and may not be applicable in some cases where brine is present, for example, as fracturing into additional brine bearing geological regions may occur.
  • Sand proppants are available, for example, from Badger Mining Corp., Berlin, Wis.; Borden Chemical, Columbus, Ohio; Fairmont Minerals, Chardon, Ohio.
  • Thermoplastics proppants are available, for example, from the Dow Chemical Company, Midland, Mich.; and BJ Services, Houston, Tex.
  • Clay-based proppants are available, for example, from CarboCeramics, Irving, Tex.; and Saint-Gobain, Courbevoie, France.
  • Sintered bauxite ceramic proppants are available, for example, from Borovichi Refractories, Borovichi, Russia; 3M Company, St. Paul, Minn.; CarboCeramics; and Saint Gobain.
  • Glass bubble and bead proppants are available, for example, from Diversified Industries, Sidney, British Columbia, Canada; and 3M Company.
  • treatment compositions prepared according to the present invention are injected into the hydrocarbon-bearing clastic formation during fracturing, after fracturing, or during and after fracturing the hydrocarbon-bearing clastic formation.
  • Fluorosurfactant A was prepared essentially as in Example 4 of U.S. Pat. No. 6,664,354 (Savu), except using 15.6 grams (g) of 50/50 mineral spirits/TRIGONOX-21-C50 organic peroxide initiator (tert-butyl peroxy-2-ethylhexanoate available from Akzo Nobel, Arnhem, the Netherlands) in place of 2,2′-azobisisobutyronitrile, and with 9.9 g of 1-methyl-2-pyrrolidinone added to the charges.
  • 50/50 mineral spirits/TRIGONOX-21-C50 organic peroxide initiator tert-butyl peroxy-2-ethylhexanoate available from Akzo Nobel, Arnhem, the Netherlands
  • Fluorosurfactant B was prepared essentially as in Example 4 of U.S. Pat. No. 6,664,354 (Savu), except using N-methylperfluorobutanesulfonamidoethyl acrylate (MeFBSEA) and PLURONIC acrylate in a weight ratio of 38:62 and 15.6 g of 50/50 mineral spirits/TRIGONOX-21-C50 organic peroxide initiator in place of 2,2′-azobisisobutyronitrile, and with 9.9 g of 1-methyl-2-pyrrolidinone added to the charges.
  • MeFBSEA N-methylperfluorobutanesulfonamidoethyl acrylate
  • PLURONIC acrylate PLURONIC acrylate
  • Fluorosurfactant A (0.06 gram (g)) and two solvents (Solvent 1 and Solvent 2, 3 g total amount) were added to a vial to prepare a sample.
  • Fluorosurfactant B (2% by weight) and two solvents were combined. The components were mixed together using a magnetic stirrer and magnetic stir bar. The solvents and amounts (in wt. % based on the total weight of the composition) used for each treatment composition are reported in Table 4, below.
  • FIG. 2 A schematic diagram of a core flood apparatus 100 used to determine relative permeability of a substrate sample (i.e., core) is shown in FIG. 2 .
  • Core flood apparatus 100 included positive displacement pumps (Model No. 1458; obtained from General Electric Sensing, Billerica, Mass.) 102 to inject fluid 103 at constant rate into fluid accumulators 116 .
  • Multiple pressure ports 112 on high-pressure core holder 108 (Hassler-type Model UTPT-1x8-3K-13 obtained from Phoenix, Houston Tex.) were used to measure pressure drop across four sections (2 inches in length each) of core 109 .
  • An additional pressure port 111 on core holder 108 was used to measure pressure drop across the entire length (8 inches) of core 109 .
  • pressure ports 112 were not used to make pressure measurements.
  • Two back-pressure regulators (Model No. BPR-50; obtained from Temco, Tulsa, Okla.) 104 , 106 were used to control the flowing pressure upstream 106 and downstream 104 of core 109 .
  • a capillary viscometer 114 was placed in-line to evaluate fluid going through core 109 .
  • the capillary viscometer consisted of a stainless steel (SS-316) capillary tube with 1/16th inch (0.15875 centimeter (cm)) outer diameter purchased from Swagelok. The capillary viscometer was used to determine the viscosity of selected fluids and not for each core flood experiment.
  • the entire apparatus with the exception of the positive displacement pumps 102 was enclosed inside pressure- and temperature-controlled oven 110 (Model DC 1406F; maximum temperature rating of 650° F. (343° C.). obtained from SPX Corporation, Williamsport, Pa.) at 275° F. (135° C.).
  • the maximum flow rate of fluid was 7,000 mL/hr. The flow of fluid was through a vertical core to avoid gravity segregation of the gas.
  • the substrates for core flooding evaluation were Berea sandstone core plugs. Representative properties of these core plugs are reported in Table 5, below.
  • the porosity was measured using either a gas expansion method or by the weight difference between a dry and a fully saturated core sample.
  • the pore volume is the product of the bulk volume and the porosity.
  • a synthetic gas-condensate fluid containing 93% methane, 4% n-butane, 2% n-decane, and 1% n-pentadecane was used for the core flooding evaluation. Approximate values for properties of the fluid were measured and are reported Table 6, below.
  • the cores described in Table 5 were dried for 72 hours in a standard laboratory oven at 95° C., and then were wrapped in aluminum foil and heat shrink tubing (obtained under the trade designation “TEFLON HEAT SHRINK TUBING” from Zeus, Inc., Orangeburg, S.C.).
  • the wrapped core 109 was placed in core holder 108 inside oven 110 at 75° F. (24° C.).
  • An overburden pressure of 3400 psig (2.3 ⁇ 107 Pa) was applied.
  • the initial single-phase gas permeability was measured using either nitrogen or methane at a flowing pressure of 1200 psig (8.3 ⁇ 106 Pa).
  • Brine containing 92.25% water, 5.9% sodium chloride, 1.6% calcium chloride, 0.23% magnesium chloride hexahydrate, and 0.05% potassium chloride, was introduced into the core 109 by the following procedure.
  • the outlet end of the core holder was connected to a vacuum pump and a full vacuum was applied for 30 minutes with the inlet closed.
  • the inlet was connected to a burette with the brine in it.
  • the outlet was closed and the inlet was opened to allow a known volume of brine to flow into the core.
  • a 26% connate water saturation i.e., 26% of the pore volume of the core was saturated with water
  • the permeability was measured at connate water saturation by flowing nitrogen or methane gas at 1200 psig and 75° F. (24° C.).
  • the wrapped core 109 in the core holder 108 was placed inside oven 110 at 275° F. (135° C.) for several hours to allow it to reach reservoir temperature.
  • the synthetic gas-condensate fluid described above was then introduced at a flow rate of about 690 mL/hr until steady state was established.
  • Upstream back-pressure regulator 106 was set at about 4900 psig (3.38 ⁇ 107 Pa), above the dew point pressure of the fluid, and downstream back-pressure regulator 104 was set at about 1500 psig (3.38 ⁇ 107 Pa), corresponding to the bottom hole flowing well pressure.
  • the gas relative permeability before treatment was then calculated from the steady state pressure drop.
  • the surfactant composition was then injected into the core.
  • the surfactant composition was held in the core at 275° F. (135° C.) for about 15 hours.
  • the synthetic gas condensate fluid described above was then introduced again at a flow rate of about 690 mL/hr using positive displacement pump 102 until a steady state was reached.
  • the gas relative permeability after treatment was then calculated from the steady state pressure drop.
  • methane gas was injected, using positive displacement pump 102 , to displace the condensate and measure the final single-phase gas permeability to demonstrate that no damage had been done to the core.
  • the initial single-phase gas permeability measured prior to brine saturation, the initial capillary number, the gas relative permeability before treatment with the surfactant composition, the gas relative permeability after treatment, and the ratio of the gas relative permeabilities after and before treatment (i.e., improvement factor) are reported in Table 7, below.

Abstract

A method of obtaining a treatment composition for treating a hydrocarbon-bearing clastic formation having brine therein to enhance recovery of hydrocarbon from the formation. The method comprises: obtaining a formation information set comprising a temperature value, brine content value, and brine composition data obtained from a geological zone of the hydrocarbon-bearing clastic formation; comparing the formation information set to a compatibility information set to generate a comparison information set, the compatibility information set comprising compatibility information for at least at least one model brine and at least one model composition at least one model temperature; selecting a treatment composition based, at least in part, on the at least one comparison information set, wherein the treatment composition comprises a second surfactant dissolved in a second solvent; and obtaining the treatment composition for treating the hydrocarbon-bearing clastic formation to enhance recovery of hydrocarbon from the formation.

Description

    BACKGROUND
  • It is known in the subterranean well drilling art that in some wells (e.g., some oil and/or gas wells) brine is present in hydrocarbon-bearing geological formations in the vicinity of the wellbore (also known in the art as the “near wellbore region”). The brine may be naturally occurring (e.g., connate water) and/or may be a result of operations conducted on the well.
  • In the case of some wells (e.g., some gas wells), liquid hydrocarbons (also known in the art as “condensate”) can form and accumulate in the near wellbore region. The presence of condensate can cause a large decrease in both the gas and condensate relative permeabilities, and thus the productivity of the well decreases.
  • The presence of brine and/or gas condensate in a near wellbore region of a hydrocarbon-bearing geological formation can inhibit or stop production of hydrocarbons from the well, and hence is typically undesirable.
  • Various approaches have been tried for increasing the hydrocarbon production of such wells. One approach, for example, involves a fracturing and propping operation (e.g., prior to, or simultaneously with, a gravel packing operation) to increase the permeability of the hydrocarbon-bearing geological formation adjacent to the wellbore. Chemical treatments (e.g., injection of methanol) have also been used to improve productivity of such oil and/or gas wells. The latter treatments are typically injected into the near wellbore region of a hydrocarbon-bearing geological formation where they interact with the brine and/or condensate to displace and/or dissolve it, thereby facilitating increased hydrocarbon production from the well.
  • Conventional treatments for increasing the hydrocarbon production from wells having brine and/or condensate in the near wellbore region of a hydrocarbon-bearing geological formation, however, are often relatively short-lived, and require expensive and time-consuming retreatment.
  • Identifying useful chemical treatments that will be effective for increasing hydrocarbon productivity and be persistent remains a problem, especially since well conditions such as temperature, brine content and brine composition may vary between wells and/or may even vary over time within a given well.
  • SUMMARY
  • In one aspect, the present invention provides a method of obtaining a treatment composition for treating a hydrocarbon-bearing clastic formation having brine therein to enhance recovery of hydrocarbon from the formation, the method comprising:
  • obtaining a formation information set comprising a temperature value, brine content value, and brine composition data obtained from a geological zone of the hydrocarbon-bearing clastic formation;
  • comparing the formation information set to a compatibility information set to generate a comparison information set, the compatibility information set comprising compatibility information for at least at least one model brine and at least one model composition at least one model temperature, wherein each at least one model composition independently comprises at least one first surfactant dissolved in at least one first solvent;
  • selecting a treatment composition based, at least in part, on the at least one comparison information set, wherein the treatment composition comprises a second surfactant dissolved in a second solvent; and
  • obtaining the treatment composition for treating the hydrocarbon-bearing clastic formation to enhance recovery of hydrocarbon from the formation.
  • In some embodiments, selecting the treatment composition comprises interpolating (e.g., between compatibility information set data points). In some embodiments, obtaining the treatment composition comprises preparing the treatment composition.
  • In some embodiments, the formation information set further comprises condensate content and condensate composition obtained from the geological zone of the hydrocarbon-bearing clastic formation. In some embodiments, at least a portion of the at least one information set is generated by computer simulation. In some embodiments, the at least one first surfactant comprises the second surfactant. In some embodiments, the at least one first solvent comprises the second solvent. In some embodiments, the formation information set further comprises condensate content obtained from the geological zone of the hydrocarbon-bearing clastic formation. In some embodiments, the second solvent comprises water. In some embodiments, the second solvent comprises at least one water-miscible organic solvent. In some embodiments, the second solvent comprises at least two organic solvents. In some embodiments, the at least one compatibility information set comprises compatibility information regarding the at least one model brine and a plurality of model compositions at a plurality of model temperatures.
  • In some embodiments, the at least one compatibility information set comprises compatibility information regarding the at least one model brine and a plurality of model compositions. In some of these embodiments, the plurality of model compositions comprises a third surfactant different from the first surfactant.
  • In some embodiments, the plurality of model temperatures has a highest model temperature and a lowest model temperature, and wherein the temperature obtained from the geological zone of the hydrocarbon-bearing clastic formation has a value of from at least the lowest model temperature up to and including the highest model temperature. In some of these embodiments, the at least one model temperature comprises a model temperature that has the same value as the temperature obtained from the geological zone of the hydrocarbon-bearing clastic formation.
  • In some embodiments, the compatibility information set comprises compatibility information regarding a plurality of model brines and a plurality of model compositions at a plurality of model temperatures. In some embodiments, the at least one model brine is selected based at least in part on the brine composition data obtained from the geological zone of the hydrocarbon-bearing clastic formation. In some embodiments, at least one model brine has the same composition as the brine composition data obtained from the geological zone of the hydrocarbon-bearing clastic formation. In some embodiments, the surfactant is fluorinated. In some embodiments, the surfactant is fluorinated and nonionic.
  • In some embodiments, the method further comprises injecting the treatment composition into a specimen of the geological zone of the hydrocarbon-bearing clastic formation.
  • In another aspect, the present inventions provides a method of treating a geological zone of a hydrocarbon-bearing clastic formation having brine therein, the method comprising injecting the treatment composition obtained according to the method of the present invention into the geological zone of the hydrocarbon-bearing clastic formation.
  • The following definitions of terms apply throughout the specification and claims.
  • The term “brine” refers to water having at least one dissolved electrolyte salt therein (e.g., having any nonzero concentration, and which may be less than 1000 parts per million by weight (ppm), or greater than 1000 ppm, greater than 10,000 ppm, greater than 20,000 ppm, 30,000 ppm, 40,000 ppm, 50,000 ppm, 100,000 ppm, 150,000 ppm, or even greater than 200,000 ppm).
  • The term “brine composition data” refers to data identifying the amounts and identities of chemical constituents in the brine referred to; and
  • The term “compatibility information” refers to information concerning the phase stability of a solution or dispersion.
  • BRIEF DESCRIPTION OF THE DRAWING
  • For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description along with the accompanying figures and in which:
  • FIG. 1 is a schematic illustration of an exemplary embodiment of an offshore oil and gas platform operating an apparatus for progressively treating a near wellbore region according to the present invention; and
  • FIG. 2 is a schematic illustration of the core flood set-up used for the Examples.
  • DETAILED DESCRIPTION
  • Any surfactant or combination of surfactants may be useful in methods according to the present invention, including, for example, anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants (e.g., zwitterionic surfactants), and combinations thereof.
  • Many of each type of surfactant are widely available to one skilled in the art. These include, for example, fluorochemical, silicone and hydrocarbon-based surfactants.
  • Examples of useful anionic surfactants include alkali metal and (alkyl)ammonium salts of: alkyl sulfates and sulfonates such as sodium dodecyl sulfate and potassium dodecanesulfonate; sulfates of polyethoxylated derivatives of straight or branched chain aliphatic alcohols and carboxylic acids; alkylbenzenesulfonates, alkylnaphthalenesulfonates and sulfates (e.g., sodium laurylbenzenesulfonate); ethoxylated and polyethoxylated alkyl and aralkyl alcohol carboxylates; glycinates such as alkyl sarcosinates and alkyl glycinates; sulfosuccinates including dialkyl sulfosuccinates; isethionate derivatives; N-acyltaurine derivatives such as sodium N-methyl-N-oleyl taurate); and alkyl phosphate mono- or di-esters such as ethoxylated dodecyl alcohol phosphate ester, sodium salt.
  • Examples of useful cationic surfactants include: alkylammonium salts having the formula CrH2r+1N(CH3)3X, where X is OH, Cl, Br, HSO4 or a combination of OH and Cl, and where r is an integer from 8 to 22, and the formula CsHs+1N(C2H5)3X, where s is an integer from 12 to 18; gemini surfactants, for example, those having the formula: [C16H33N(CH3)2CtH2t+1]X, wherein t is an integer from 2 to 12 and X is as defined above; aralkylammonium salts (e.g., benzalkonium salts); and cetylethylpiperidinium salts, for example, C16H33N(C2H5)(C5H10)X, wherein X is as defined above.
  • Examples of useful amphoteric surfactants include alkyldimethyl amine oxides, alkylcarboxamidoalkylenedimethyl amine oxides, aminopropionates, sulfobetaines, alkyl betaines, alkylamidobetaines, dihydroxyethyl glycinates, imidazoline acetates, imidazoline propionates, ammonium carboxylate and ammonium sulfonate amphoterics and imidazoline sulfonates.
  • Examples of useful hydrocarbon nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl-phenyl ethers, polyoxyethylene acyl esters, sorbitan fatty acid esters, polyoxyethylene alkylamines, polyoxyethylene alkylamides, polyoxyethylene lauryl ethers, polyoxyethylene cetyl ethers, polyoxyethylene stearyl ethers, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ethers, polyoxyethylene nonylphenyl ethers, polyethylene glycol laurates, polyethylene glycol stearates, polyethylene glycol distearates, polyethylene glycol oleates, oxyethylene-oxypropylene block copolymer, sorbitan laurate, sorbitan stearate, sorbitan distearate, sorbitan oleate, sorbitan sesquioleate, sorbitan trioleate, polyoxyethylene sorbitan laurates, polyoxyethylene sorbitan stearates, polyoxyethylene sorbitan oleates, polyoxyethylene laurylamines, polyoxyethylene laurylamides, laurylamine acetate, ethoxylated tetramethyldecynediol, fluoroaliphatic polymeric ester, and polyether-polysiloxane copolymers.
  • Useful nonionic surfactants also include nonionic fluorinated surfactants. Examples include nonionic fluorinated surfactants marketed under the trade designation “ZONYL” (e.g., ZONYL FSO) by E. I. du Pont de Nemours and Co., Wilmington, Del.
  • Nonionic fluorinated polymeric surfactants such as, for example, Fluorosurfactant A and Fluorosurfactant B (both described in the Examples hereinbelow) may also be used.
  • In some embodiments, the nonionic fluorinated polymeric surfactant comprises:
  • (a) at least one divalent unit represented by the formula:
  • Figure US20080047706A1-20080228-C00001
  • (b) at least one divalent unit represented by a formula:
  • Figure US20080047706A1-20080228-C00002
  • wherein:
  • Rf represents a perfluoroalkyl group having from 1 to 8 carbon atoms. Exemplary groups Rf include perfluoromethyl, perfluoroethyl, perfluoropropyl, perfluorobutyl (e.g., perfluoro-n-butyl or perfluoro-sec-butyl), perfluoropentyl, perfluorohexyl, perfluoroheptyl, and perfluorooctyl.
  • R, R1, and R2 are each independently hydrogen or alkyl of 1 to 4 carbon atoms (e.g., methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, or t-butyl).
  • n is an integer from 2 to 10.
  • EO represents —CH2CH2O—.
  • PO represents —CH(CH3)CH2O— or —CH2CH(CH3)O—.
  • Each p is independently an integer of from 1 to about 128.
  • Each q is independently an integer of from 0 to about 55. Useful nonionic fluorinated polymeric surfactants typically have a number average molecular weight in the range of from 1,000 to 10,000 grams/mole, 20,000 grams/mole, or even 30,000 grams/mole, although higher and lower molecular weights may also be used.
  • Such nonionic fluorinated polymeric surfactants may be prepared by techniques known in the art, including, for example, by free radical initiated copolymerization of a nonafluorobutanesulfonamido group-containing acrylate with a poly(alkyleneoxy) acrylate (e.g., monoacrylate or diacrylate) or mixtures thereof. Adjusting the concentration and activity of the initiator, the concentration of monomers, the temperature, and the chain-transfer agents can control the molecular weight of the polyacrylate copolymer. The description of the preparation of such polyacrylates is described, for example, in U.S. Pat. No. 3,787,351 (Olson). Preparation of nonafluorobutanesulfonamido acrylate monomers are described, for example, in U.S. Pat. No. 2,803,615 (Ahlbrecht et al.), the disclosure of which is incorporated herein by reference. Examples of fluoroaliphatic polymeric esters and their preparation are described, for example, in U.S. Pat. No. 6,664,354 (Savu et al.).
  • Methods described above for making nonafluorobutylsulfonamido group-containing structures can be used to make heptafluoropropylsulfonamido groups by starting with heptafluoropropylsulfonyl fluoride, which can be made, for example, by the methods described in Examples 2 and 3 of U.S. Pat. No. 2,732,398 (Brice et al.), the disclosure of which is incorporated herein by reference.
  • Any solvent or combination of solvents may be used in model brines, model compositions, model condensates, and treatment compositions. Examples of useful solvents include organic solvents, water, and combinations thereof. Examples of organic solvents include polar and/or water-miscible solvents such as, for example: monohydroxy alcohols having from 1 to 4 or more carbon atoms such as, for example, methanol, ethanol, isopropanol, propanol, or butanol; polyols such as, for example, glycols (e.g., ethylene glycol or propylene glycol), terminal alkanediols (e.g., 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, or 1,8-octanediol), polyglycols (e.g., diethylene glycol, triethylene glycol, or dipropylene glycol) or triols (e.g., glycerol, trimethylolpropane); ethers such as, for example, diethyl ether, methyl t-butyl ether, tetrahydrofuran, p-dioxane, or polyol ethers (e.g., glycol ethers (e.g., ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether, or those glycol ethers available under the trade designation “DOWANOL” from Dow Chemical Co., Midland, Mich.)); ketones (e.g., acetone or 2-butanone; and combinations thereof.
  • In some embodiments, component(s) of the solvent may have a normal boiling point of less than 650° F. (343° C.); for example, to facilitate removal of the solvent from a well after treatment.
  • The various model brines, model compositions, model condensates, and treatment compositions used herein may be prepared by any suitable method including, for example, manually or mechanically shaking and/or stirring the various components thereof. The first data set, is typically obtained by measurement of the pertinent condition(s) in or near a wellbore located at a particular geological zone of interest in a hydrocarbon-bearing clastic formation. Suitable measurement methods are known to the skilled artisan. In some, instances further manipulation of data (e.g., computer calculations) obtained from hydrocarbon-bearing clastic formation may be useful, and such manipulation is within the scope of the present invention.
  • The second data set may be generated by various methods including, computer simulation, physical measurements or a combination thereof. The second data set may be as small as a single set element (e.g., a measurement of compatibility between the surfactant-solvent formulation and the brine and/or condensate at a given temperature), or it may contain any higher number of set elements. Typically, the choice of surfactant-solvent formulations and temperatures to be studied and the results included within the second set will be directed by intuition and experience on the part of the skilled artisan performing the method, but this is not a requirement.
  • One convenient method of evaluating compatibility involves combining in (e.g., a container) a model brine and/or model condensate with a surfactant-solvent formulation at a given temperature, and then mixing the model brine and/or model condensate with the surfactant-solvent formulation. The mixture is evaluated over time (e.g., 5 minutes, 1 hour, 12 hours, 24 hours or longer) to see if it phase separates or becomes cloudy. By adjusting the relative amounts of model brine and/or model condensate and the surfactant-solvent formulation, it is possible to determine the maximum brine and/or condensate uptake capacity (above which phase separation occurs) of the surfactant-solvent formulation at a given temperature. Varying the temperature at which the above procedure is carried out typically results in a more complete understanding of the suitability of surfactant solvent formulations as treatment compositions for a given well. In addition, to calculating and/or measuring interactions of the model brine and/or model condensate with a surfactant-solvent formulation, it is also contemplated that one may be able obtain the second data set, in whole or in part, by simply referring to previously determined, collected, and/or tabulated information (e.g., in a handbook or a computer database).
  • Without wishing to be bound by theory, it is believed that more desirable well treatment results are obtained when the treatment composition used in a particular near wellbore region of a well is homogenous at the temperature(s) encountered in the near wellbore region. Accordingly, the treatment composition is typically selected to be homogenous at temperature(s) found in the portion of hydrocarbon-bearing clastic formation (e.g., a near well bore region) to be treated.
  • The formation and compatibility information sets thus created are compared and a treatment composition is chosen based at least in part on the comparison. In general, a treatment composition is chosen that closely resembles, or is identical to, a surfactant-solvent formulation from the compatibility information set, but this is not a requirement. For example, cost, availability, regulations, flammability, and environmental concerns may influence the specific choice of treatment composition for use in testing and/or commercial production.
  • Once selected, the treatment compositions may be further evaluated; for example, by injection into a specimen (e.g., a core sample) taken from a particular geological zone to be treated, or a closely similar specimen. This may be performed in a laboratory environment using conventional techniques such as, for example, those described by Kumar et al. in “Improving the Gas and Condensate Relative Permeability Using Chemical Treatments”, paper SPE 100529, presented at the 2006 SPE Gas Technology Symposium held in Calgary, Alberta, Canada, 15-17 May 2006.
  • Embodiments of treatment compositions according to the present invention may be useful, for example, for recovering hydrocarbons (e.g., at least one of methane, ethane, propane, butane, hexane, heptane, or octane) from hydrocarbon-bearing subterranean clastic formations (in some embodiments, predominantly sandstone).
  • Referring now to FIG. 1, an exemplary offshore oil and gas platform is schematically illustrated and generally designated 10. Semi-submersible platform 12 is centered over submerged hydrocarbon-bearing clastic formation 14 located below sea floor 16. Subsea conduit 18 extends from deck 20 of platform 12 to wellhead installation 22 including, for example, blowout preventers 24. Platform 12 is shown with hoisting apparatus 26 and derrick 28 for raising and lowering pipe strings such as work string 30.
  • Wellbore 32 extends through the various earth strata including hydrocarbon-bearing clastic formation 14. Casing 34 is cemented within wellbore 32 by cement 36. Work string 30 may include various tools including, for example, sand control screen assembly 38 which is positioned within wellbore 32 adjacent to hydrocarbon-bearing clastic formation 14. Also extending from platform 12 through wellbore 32 is fluid delivery tube 40 having fluid or gas discharge section 42 positioned adjacent to hydrocarbon-bearing clastic formation 14, shown with production zone 48 between packers 44, 46. When it is desired to treat the near-wellbore region 55 of hydrocarbon-bearing clastic formation 14 adjacent to production zone 48, work string 30 and fluid delivery tube 40 are lowered through casing 34 until sand control screen assembly 38 and fluid discharge section 42 are positioned adjacent to the near-wellbore region 55 of hydrocarbon-bearing clastic formation 14 including perforations 50. Thereafter, a treatment composition described herein is pumped down delivery tube 40 to progressively treat near-wellbore region 55 of hydrocarbon-bearing clastic formation 14.
  • While the drawing depicts an offshore operation, the skilled artisan will recognize that the treatment compositions and methods for treating a production zone of a wellbore are equally well-suited for use in onshore operations. Also, while the drawing depicts a vertical well, the skilled artisan will also recognize that treatment compositions and methods for wellbore treatment of the present invention are equally well-suited for use in deviated wells, inclined wells or horizontal wells.
  • Methods of using treatment compositions obtained herein are useful, for example on both existing and new wells. Typically, it is believed to be desirable to allow for a shut-in time after treatment compositions described herein are contacted with the hydrocarbon-bearing clastic formations. Exemplary set in times include a few hours (e.g., 1 to 12 hours), about 24 hours, or even a few (e.g., 2 to 10) days.
  • The skilled artisan, after reviewing the instant disclosure, will recognize that various factors may be taken into account in practice of the present invention including, for example, the ionic strength of the treatment composition, pH (e.g., a range from a pH of about 4 to about 10), and the radial stress at the wellbore (e.g., about 1 bar (100 kPa) to about 1000 bars (100 MPa)).
  • Treatment compositions prepared according to the present invention are typically useful for treating hydrocarbon-bearing clastic formations (e.g., hydrocarbon-bearing clastic formation that are predominantly sandstone), especially those containing brine. Typically, after treatment according to the present invention hydrocarbons are then obtained from the wellbore at an increased rate, as compared the rate prior to treatment.
  • In addition to brine and/or condensate, other materials such as e.g., asphaltene may be present in the hydrocarbon-bearing clastic formation. Treatment compositions prepared according to methods of the present invention may also be used in those cases.
  • Treatment compositions prepared according to methods of the present invention may be injected into hydrocarbon-bearing clastic formations in wells using methods (e.g., by pumping under pressure) well known to those skilled in the oil and gas art.
  • Hydraulic fracturing is commonly used to increase the productivity of brine blocked wells, that is, wells that have brine in the near wellbore region of a hydrocarbon-bearing geological formation. The hydraulic fracturing method is relatively expensive, and may not be applicable in some cases where brine is present, for example, as fracturing into additional brine bearing geological regions may occur. However, in some instances it may be desirable to utilize fracturing techniques and/or proppants as known in the art in conjunction with the instant invention to increase the production of hydrocarbon extraction from subterranean clastic formations. It may also be desirable to treat proppant with a treatment composition described herein prior to injecting the well. Sand proppants are available, for example, from Badger Mining Corp., Berlin, Wis.; Borden Chemical, Columbus, Ohio; Fairmont Minerals, Chardon, Ohio. Thermoplastics proppants are available, for example, from the Dow Chemical Company, Midland, Mich.; and BJ Services, Houston, Tex. Clay-based proppants are available, for example, from CarboCeramics, Irving, Tex.; and Saint-Gobain, Courbevoie, France. Sintered bauxite ceramic proppants are available, for example, from Borovichi Refractories, Borovichi, Russia; 3M Company, St. Paul, Minn.; CarboCeramics; and Saint Gobain. Glass bubble and bead proppants are available, for example, from Diversified Industries, Sidney, British Columbia, Canada; and 3M Company.
  • In some embodiments, treatment compositions prepared according to the present invention are injected into the hydrocarbon-bearing clastic formation during fracturing, after fracturing, or during and after fracturing the hydrocarbon-bearing clastic formation.
  • Advantages and embodiments of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention. Unless otherwise noted, all parts, percentages, ratios, etc. in the examples and the rest of the specification are by weight. In the Tables, “nd” means not determined.
  • EXAMPLES
  • Preparation of Fluorosurfactant A
  • Fluorosurfactant A was prepared essentially as in Example 4 of U.S. Pat. No. 6,664,354 (Savu), except using 15.6 grams (g) of 50/50 mineral spirits/TRIGONOX-21-C50 organic peroxide initiator (tert-butyl peroxy-2-ethylhexanoate available from Akzo Nobel, Arnhem, the Netherlands) in place of 2,2′-azobisisobutyronitrile, and with 9.9 g of 1-methyl-2-pyrrolidinone added to the charges.
  • Preparation of Fluorosurfactant B
  • Fluorosurfactant B was prepared essentially as in Example 4 of U.S. Pat. No. 6,664,354 (Savu), except using N-methylperfluorobutanesulfonamidoethyl acrylate (MeFBSEA) and PLURONIC acrylate in a weight ratio of 38:62 and 15.6 g of 50/50 mineral spirits/TRIGONOX-21-C50 organic peroxide initiator in place of 2,2′-azobisisobutyronitrile, and with 9.9 g of 1-methyl-2-pyrrolidinone added to the charges.
  • Formation Information Set
  • The following information was obtained from a gas well:
  • temperature=275° F. (135° C.);
  • brine content=26 percent;
  • composition: Ca=2096 ppm, Sr=444 ppm, Ba=212 ppm, Mg=396 ppm, K=277 ppm, Na=21015 ppm, Fe (dissolved)=9 ppm, Fe (Total)=10 ppm, counterion was chloride.
  • Compatibility Information Set
  • Compatibility Tests 1-24
  • General Procedure
  • Fluorosurfactant A (0.06 gram (g)) and two solvents (Solvent 1 and Solvent 2, 3 g total amount) were added to a vial to prepare a sample. A sample of model brine prepared from the corresponding metal chloride salts in the amounts indicated from the gas well mentioned hereinabove (0.25 g) was added to the vial, the vial was shaken by hand and the vial was placed in a heated bath at 90° C. for 1 hour. The vial was removed from the bath, and then visually inspected to determine whether the sample was one phase. If the sample was one-phase, the brine addition, shaking and heating steps were repeated until the sample was no longer one-phase.
  • The solvents used for each Compatibility Test and the initial amounts of the solvents are shown in Table 1 (below), wherein indicated weight percents of model brine are based on the combined total weight of the solvents, model brine, and surfactant.
  • TABLE 1
    MODEL MODEL
    BRINE BRINE
    SOLVENT 1 SOLVENT 2 (wt. %) (wt. %)
    COMPATIBILITY (parts by (parts by NO PHASE PHASE-
    TEST weight) weight) SEPARATION SEPARATED
    1 1,3-propanediol isopropanol 13.6 21.5
    (80) (IPA)
    (20)
    2 propylene IPA 21.5 36.4
    glycol (PG) (30)
    (70)
    3 PG (90) IPA (10) 19.7 24.6
    4 PG (80) IPA (20) 29 32.9
    5 ethylene glycol ethanol (50) nd 24.6
    (EG) (50)
    6 EG (70) ethanol (30) nd 24.6
    7 propylene ethanol (50) nd 24.6
    glycol
    monobutyl
    ether (PGBE)
    (50)
    8 PGBE (70) ethanol (30) 14.0 nd
    9 dipropylene ethanol (50) 24.6 nd
    glycol
    monomethyl
    ether
    (DPGME)
    (50)
    10 DPGME (70) ethanol (30) 47.3 49.5
    11 diethylene ethanol (30) 24.6 nd
    glycol
    monomethyl
    ether
    (DEGME) (70)
    12 triethylene ethanol (50) nd 24.6
    glycol
    monomethyl
    ether (TEGME)
    (50)
    13 TEGME (70) ethanol (30) nd 24.6
    14 1,8-octanediol ethanol (50) 32.9 nd
    (50)
    15 PG (70) tetrahydrofuran 24.6 nd
    (THF) (30)
    16 PG (70) acetone (30) nd 32.9
    17 PG (70) methanol (30) nd 24.6
    18 2- ethanol (20) 42.4 45.0
    butoxyethanol
    (BE) (80)
    19 BE (70) ethanol (30) 45.0 49.5
    20 BE (60) ethanol (40) 45.0 49.5
    21 PG (70) ethanol (30) 24.6 29.0
    22 EG (70) IPA (30) 3.8 7.3
    23 glycerol (70) IPA (30) nd 7.6
  • Compatibility Tests 24-28
  • The General Procedure described in Compatibility Tests 1-23 was followed with the modification that Fluorosurfactant B was used in place of the Fluorosurfactant A. The solvents used for each Compatibility Test and the initial amounts of the solvents are shown in Table 2 (below), wherein indicated weight percents of model brine are based on the combined total weight of the solvents, model brine, and surfactant.
  • TABLE 2
    MODEL
    BRINE MODEL BRINE
    SOLVENT 1 SOLVENT 2 (wt. %) (wt. %)
    COMPATIBILITY (parts by (parts by NO PHASE PHASE-
    TEST weight) weight) SEPARATION SEPARATED
    24 PG (80) IPA (20) nd 24.6
    25 PG (70) IPA (30) 24.6 29
    277 PG (60) IPA (40) 29 32.9
    27 DEGME (70) Ethanol (30) 24.6 nd
    28 DPGME (70) Ethanol (30) 24.6 nd
  • Compatibility Tests 29-30
  • The General Procedure described in Compatibility Tests 1-24 was followed with the following modifications. The amount of surfactant used was 0.12 g, and water was used instead of brine. The solvents used for each Compatibility Test and the initial amounts of the solvents are shown in Table 3 (below), wherein indicated weight percents of model brine (water) are based on the combined total weight of the solvents, water, and surfactant.
  • TABLE 3
    SOL- WATER WATER
    COMPAT- VENT 1 SOLVENT 2 (wt. %) (wt. %)
    IBILITY (parts by (parts by NO PHASE PHASE-
    TEST weight) weight) SEPARATION SEPARATED
    29 EG (70) IPA (30) 7.1 10.3
    30 PG (70) IPA (30) 31.6 38.1
  • Comparison
  • A comparison was made between a Compatibility Information set containing Compatibility Tests 1, 2 and 23) and the Formation Information Set and Treatment Composition 1 having was selected and prepared.
  • A comparison was made between a Compatibility Information set containing Compatibility Tests 1-8) and the Formation Information Set and Treatment Composition 2 having was selected and prepared.
  • A comparison was made between a Compatibility Information set containing Compatibility Tests 1-30) and the Formation Information Set and Treatment Composition 3 having was selected and prepared.
  • Treatment Compositions 1-3
  • General Procedure
  • Fluorosurfactant B (2% by weight) and two solvents were combined. The components were mixed together using a magnetic stirrer and magnetic stir bar. The solvents and amounts (in wt. % based on the total weight of the composition) used for each treatment composition are reported in Table 4, below.
  • TABLE 4
    TREATMENT SOLVENT 1 SOLVENT 2
    COMPOSITION (wt. %) (wt. %)
    1 PG (69) IPA (29)
    2 DPGME (69) ethanol (29)
    3 PG (69) ethanol (29)
  • Core Flood Evaluation
  • Core Flood Setup:
  • A schematic diagram of a core flood apparatus 100 used to determine relative permeability of a substrate sample (i.e., core) is shown in FIG. 2. Core flood apparatus 100 included positive displacement pumps (Model No. 1458; obtained from General Electric Sensing, Billerica, Mass.) 102 to inject fluid 103 at constant rate into fluid accumulators 116. Multiple pressure ports 112 on high-pressure core holder 108 (Hassler-type Model UTPT-1x8-3K-13 obtained from Phoenix, Houston Tex.) were used to measure pressure drop across four sections (2 inches in length each) of core 109. An additional pressure port 111 on core holder 108 was used to measure pressure drop across the entire length (8 inches) of core 109. In some experiments, pressure ports 112 were not used to make pressure measurements. Two back-pressure regulators (Model No. BPR-50; obtained from Temco, Tulsa, Okla.) 104, 106 were used to control the flowing pressure upstream 106 and downstream 104 of core 109. A capillary viscometer 114 was placed in-line to evaluate fluid going through core 109. The capillary viscometer consisted of a stainless steel (SS-316) capillary tube with 1/16th inch (0.15875 centimeter (cm)) outer diameter purchased from Swagelok. The capillary viscometer was used to determine the viscosity of selected fluids and not for each core flood experiment.
  • The entire apparatus with the exception of the positive displacement pumps 102 was enclosed inside pressure- and temperature-controlled oven 110 (Model DC 1406F; maximum temperature rating of 650° F. (343° C.). obtained from SPX Corporation, Williamsport, Pa.) at 275° F. (135° C.). The maximum flow rate of fluid was 7,000 mL/hr. The flow of fluid was through a vertical core to avoid gravity segregation of the gas.
  • Substrates:
  • The substrates for core flooding evaluation were Berea sandstone core plugs. Representative properties of these core plugs are reported in Table 5, below.
  • TABLE 5
    Berea Sandstone
    Diameter, inch 1.0 (2.54) 
    (cm)
    Length, inch (cm) 8.0 (20.32)
    Pore volume, mL 20.6
    Porosity, % 20.0
  • The porosity was measured using either a gas expansion method or by the weight difference between a dry and a fully saturated core sample. The pore volume is the product of the bulk volume and the porosity.
  • Synthetic Condensate Composition
  • A synthetic gas-condensate fluid containing 93% methane, 4% n-butane, 2% n-decane, and 1% n-pentadecane was used for the core flooding evaluation. Approximate values for properties of the fluid were measured and are reported Table 6, below.
  • TABLE 6
    Dewpoint, psig (Pa) 4200 (2.9 × 107)
    Core pressure, psig (Pa) 1500 (1.0 × 107)
    Liquid dropout, V/Vt % 3.2
    Gas viscosity, cP 0.017
    Oil viscosity, cP 0.22
    Interfacial tension, 5.0
    dynes/cm
  • Core Preparation
  • The cores described in Table 5 were dried for 72 hours in a standard laboratory oven at 95° C., and then were wrapped in aluminum foil and heat shrink tubing (obtained under the trade designation “TEFLON HEAT SHRINK TUBING” from Zeus, Inc., Orangeburg, S.C.). Referring again to FIG. 2, the wrapped core 109 was placed in core holder 108 inside oven 110 at 75° F. (24° C.). An overburden pressure of 3400 psig (2.3×107 Pa) was applied. The initial single-phase gas permeability was measured using either nitrogen or methane at a flowing pressure of 1200 psig (8.3×106 Pa).
  • Brine, containing 92.25% water, 5.9% sodium chloride, 1.6% calcium chloride, 0.23% magnesium chloride hexahydrate, and 0.05% potassium chloride, was introduced into the core 109 by the following procedure. The outlet end of the core holder was connected to a vacuum pump and a full vacuum was applied for 30 minutes with the inlet closed. The inlet was connected to a burette with the brine in it. The outlet was closed and the inlet was opened to allow a known volume of brine to flow into the core. For example, a 26% connate water saturation (i.e., 26% of the pore volume of the core was saturated with water) was established by allowing 5.3 ml of brine to flow into the core before the inlet value was closed. The permeability was measured at connate water saturation by flowing nitrogen or methane gas at 1200 psig and 75° F. (24° C.).
  • Core Flooding Procedure
  • Referring again to FIG. 2, the wrapped core 109 in the core holder 108 was placed inside oven 110 at 275° F. (135° C.) for several hours to allow it to reach reservoir temperature. The synthetic gas-condensate fluid described above was then introduced at a flow rate of about 690 mL/hr until steady state was established. Upstream back-pressure regulator 106 was set at about 4900 psig (3.38×107 Pa), above the dew point pressure of the fluid, and downstream back-pressure regulator 104 was set at about 1500 psig (3.38×107 Pa), corresponding to the bottom hole flowing well pressure. The gas relative permeability before treatment was then calculated from the steady state pressure drop. The surfactant composition was then injected into the core. After at least 20 pore volumes were injected, the surfactant composition was held in the core at 275° F. (135° C.) for about 15 hours. The synthetic gas condensate fluid described above was then introduced again at a flow rate of about 690 mL/hr using positive displacement pump 102 until a steady state was reached. The gas relative permeability after treatment was then calculated from the steady state pressure drop. Following the relative permeability measurements, methane gas was injected, using positive displacement pump 102, to displace the condensate and measure the final single-phase gas permeability to demonstrate that no damage had been done to the core.
  • For each Treatment Composition, the initial single-phase gas permeability, measured prior to brine saturation, the initial capillary number, the gas relative permeability before treatment with the surfactant composition, the gas relative permeability after treatment, and the ratio of the gas relative permeabilities after and before treatment (i.e., improvement factor) are reported in Table 7, below.
  • TABLE 7
    TREATMENT COMPOSITION
    1 2 3
    Gas permeability, 88.0 62 269
    millidarcy (md)
    Capillary number 1.4 × 10−5 7.3 × 10−6 6.5 × 10−6
    Gas relative permeability 0.074 0.24 0.12
    before treatment
    Gas relative permeability 0.13 0.40 0.12
    after treatment
    Improvement factor 1.7 1.7 1.0
  • The core flood evaluation procedure and conditions described for Treatment Composition 1 were followed, except the core flooding was conducted on a Reservoir Core A sandstone with the properties reported in Table 8, below.
  • TABLE 8
    RESERVOIR
    CORE A
    Diameter, inch (cm) 1.0 (2.5) 
    Length, inch (cm) 4.5 (11.4)
    Pore volume (mL)  6.2
    Porosity (%) 10.8
  • The results from the core flooding experiment are reported in Table 9, below.
  • TABLE 9
    Reservoir Core A
    Gas permeability, md 61
    Capillary number 1.5 × 10−5
    Gas relative permeability before treatment 0.074
    Gas relative permeability after treatment 0.13
    Improvement factor 1.7
  • Various modifications and alterations of this invention may be made by those skilled in the art without departing from the scope and spirit of this invention, and it should be understood that this invention is not to be unduly limited to the illustrative embodiments set forth herein.

Claims (24)

1. A method of obtaining a treatment composition for treating a hydrocarbon-bearing clastic formation having brine therein to enhance recovery of hydrocarbon from the formation, the method comprising:
obtaining a formation information set comprising a temperature value, brine content value, and brine composition data obtained from a geological zone of the hydrocarbon-bearing clastic formation;
comparing the formation information set to a compatibility information set to generate a comparison information set, the compatibility information set comprising compatibility information for at least one model brine and at least one model composition at least one model temperature, wherein each at least one model composition independently comprises at least one first surfactant dissolved in at least one first solvent;
selecting a treatment composition based, at least in part, on the comparison information set, wherein the treatment composition comprises a second surfactant dissolved in a second solvent; and
obtaining the treatment composition for treating the hydrocarbon-bearing clastic formation to enhance recovery of hydrocarbon from the formation.
2. The method of claim 1, wherein selecting the treatment composition comprises interpolating.
3. The method of claim 1, wherein obtaining the treatment composition comprises preparing the treatment composition.
4. A method of treating a geological zone of a hydrocarbon-bearing clastic formation having brine therein, the method comprising injecting the treatment composition obtained in claim 3 into the geological zone of the hydrocarbon-bearing clastic formation.
5. A method of treating a geological zone of a hydrocarbon-bearing clastic formation having brine therein, the method comprising injecting the treatment composition obtained in claim 1 into the geological zone of the hydrocarbon-bearing clastic formation.
6. The method of claim 1, wherein the formation information set further comprises condensate content obtained from the geological zone of the hydrocarbon-bearing clastic formation.
7. The method of claim 1, wherein the formation information set further comprises condensate content and condensate composition obtained from the geological zone of the hydrocarbon-bearing clastic formation.
8. The method of claim 1, wherein at least a portion of the comparison information set is generated by computer simulation.
9. The method of claim 1, wherein the at least one first surfactant comprises the second surfactant.
10. The method of claim 1, wherein the at least one first solvent comprises the second solvent.
11. The method of claim 1, wherein the second solvent comprises water.
12. The method of claim 1, wherein the second solvent comprises at least one water-miscible organic solvent.
13. The method of claim 1, wherein the second solvent comprises at least two organic solvents.
14. The method of claim 1, wherein the at least one compatibility information set comprises compatibility information regarding the at least one model brine and a plurality of model compositions.
15. The method of claim 1, wherein the plurality of model compositions comprises a third surfactant different from the first surfactant.
16. The method of claim 1, wherein the at least one compatibility information set comprises compatibility information regarding the at least one model brine and a plurality of model compositions at a plurality of model temperatures.
17. The method of claim 13, wherein the plurality of model temperatures has a highest model temperature and a lowest model temperature, and wherein the temperature obtained from the geological zone of the hydrocarbon-bearing clastic formation has a value of from at least the lowest model temperature up to and including the highest model temperature.
18. The method of claim 1, wherein the at least one model temperature comprises a model temperature that has the same value as the temperature obtained from the geological zone of the hydrocarbon-bearing clastic formation.
19. The method of claim 1, wherein the compatibility information set comprises compatibility information regarding a plurality of model brines and a plurality of model compositions at a plurality of model temperatures.
20. The method of claim 1, wherein the at least one model brine is selected based at least in part on the brine composition data obtained from the geological zone of the hydrocarbon-bearing clastic formation.
21. The method of claim 1, wherein at least one model brine has the same composition as the brine composition data obtained from the geological zone of the hydrocarbon-bearing clastic formation.
22. The method of claim 1, wherein the surfactant is fluorinated.
23. The method of claim 1, wherein the surfactant is fluorinated and nonionic.
24. The method of claim 1, further comprising injecting the treatment composition into a specimen of the geological zone of the hydrocarbon-bearing clastic formation.
US11/508,690 2006-08-23 2006-08-23 Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells Abandoned US20080047706A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/508,690 US20080047706A1 (en) 2006-08-23 2006-08-23 Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells
PCT/US2007/076562 WO2008024868A2 (en) 2006-08-23 2007-08-22 Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells
EP07814363A EP2054583A2 (en) 2006-08-23 2007-08-22 Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells
US12/302,017 US20100270019A1 (en) 2006-08-23 2007-08-22 Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells
ARP070103740A AR062493A1 (en) 2006-08-23 2007-08-22 METHOD FOR OBTAINING A TREATMENT COMPOSITION TO IMPROVE PRODUCTIVITY OF WELLS THAT PRODUCE HYDROCARBONS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/508,690 US20080047706A1 (en) 2006-08-23 2006-08-23 Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells

Publications (1)

Publication Number Publication Date
US20080047706A1 true US20080047706A1 (en) 2008-02-28

Family

ID=39107657

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/508,690 Abandoned US20080047706A1 (en) 2006-08-23 2006-08-23 Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells
US12/302,017 Abandoned US20100270019A1 (en) 2006-08-23 2007-08-22 Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/302,017 Abandoned US20100270019A1 (en) 2006-08-23 2007-08-22 Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells

Country Status (4)

Country Link
US (2) US20080047706A1 (en)
EP (1) EP2054583A2 (en)
AR (1) AR062493A1 (en)
WO (1) WO2008024868A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073484A3 (en) * 2007-11-30 2009-08-13 Univ Texas Methods for improving the productivity of oil producing wells
US20100152071A1 (en) * 2007-03-23 2010-06-17 Board Of Regents, The University Of Texas System Method for Treating a Formation with a Solvent
US20100224361A1 (en) * 2007-03-23 2010-09-09 Board Of Regents, The University Of Texas System Compositions and Methods for Treating a Water Blocked Well
US20100270020A1 (en) * 2007-12-21 2010-10-28 Baran Jr Jimmie R Methods for treating hydrocarbon-bearing formations with fluorinated anionic surfactant compositions
US20100276149A1 (en) * 2007-03-23 2010-11-04 Pope Gary A Method for Treating a Hydrocarbon Formation
US20130269932A1 (en) * 2010-12-20 2013-10-17 3M Innovative Properties Company Methods for treating carbonate hydrocarbon-bearing formations with fluorinated amine oxides
US20130312958A1 (en) * 2011-02-11 2013-11-28 Bp Corporation North America Inc. Reservoir treatment
US9657565B2 (en) * 2014-12-31 2017-05-23 Halliburton Energy Services, Inc. Optimal surfactant design for recovered hydrocarbon enhancement

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2140103A4 (en) * 2007-03-23 2011-08-03 Univ Texas Compositions and methods for treating a water blocked well
WO2009085936A1 (en) * 2007-12-21 2009-07-09 3M Innovative Properties Company Fluorinated polymer compositions and methods for treating hydrocarbon-bearing formations using the same
CN101945971A (en) * 2007-12-21 2011-01-12 3M创新有限公司 Utilize the method for fluorinated polymer compositions-treated hydrocarbon containing formation
WO2009137285A1 (en) 2008-05-05 2009-11-12 3M Innovative Properties Company Methods for treating hydrocarbon-bearing formations having brine
WO2009148831A2 (en) * 2008-06-02 2009-12-10 Board Of Regents, The University Of Texas System Methods of treating a hydrocarbon-bearing formation, a well bore, and particles
US9200102B2 (en) * 2008-07-18 2015-12-01 3M Innovative Properties Company Cationic fluorinated polymer compositions and methods for treating hydrocarbon-bearing formations using the same
CN102317403A (en) 2008-12-18 2012-01-11 3M创新有限公司 Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions
MX2011006673A (en) 2008-12-18 2011-07-20 3M Innovative Properties Co Method of contacting hydrocarbon-bearing formations with fluorinated phosphate and phosphonate compositions.
MX2012000413A (en) 2009-07-09 2012-02-08 3M Innovative Prosperties Company Methods for treating carbonate hydrocarbon-bearing formations with fluorinated amphoteric compounds.
US8524639B2 (en) * 2010-09-17 2013-09-03 Clearwater International Llc Complementary surfactant compositions and methods for making and using same
BR112013015923A2 (en) 2010-12-21 2018-06-05 3M Innovative Properties Co method for treating hydrocarbon containing formations with fluorinated amine.
EP2663608A4 (en) 2011-01-13 2014-07-09 3M Innovative Properties Co Methods for treating siliciclastic hydrocarbon-bearing formations with fluorinated amine oxides
US9890294B2 (en) 2012-11-19 2018-02-13 3M Innovative Properties Company Composition including a fluorinated polymer and a non-fluorinated polymer and methods of making and using the same
BR112015011484A2 (en) 2012-11-19 2017-07-11 3M Innovative Properties Co method for bringing hydrocarbon carrier formations into contact with fluorinated ion polymers
EP3083723B1 (en) 2013-12-20 2022-01-19 Saudi Basic Industries Corporation Catalyst system for polymerisation of an olefin
WO2016126759A1 (en) * 2015-02-03 2016-08-11 Schlumberger Technology Corporation Enhanced oil recovery (eor) chemical coreflood simulation study workflow

Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653442A (en) * 1970-03-16 1972-04-04 Marathon Oil Co Stimulating low pressure natural gas producing wells
US3902557A (en) * 1974-03-25 1975-09-02 Exxon Production Research Co Treatment of wells
US4018689A (en) * 1974-11-27 1977-04-19 The Dow Chemical Company Composition and method for reducing the surface tension of aqueous fluids
US4440653A (en) * 1982-03-08 1984-04-03 Halliburton Company Highly stable alcohol foams and methods of forming and using such foams
US4460791A (en) * 1978-09-22 1984-07-17 Ciba-Geigy Corporation Oil recovery by fluorochemical surfactant waterflooding
US4557837A (en) * 1980-09-15 1985-12-10 Minnesota Mining And Manufacturing Company Simulation and cleanup of oil- and/or gas-producing wells
US4565639A (en) * 1983-01-07 1986-01-21 Halliburton Company Method of increasing hydrocarbon production by remedial well treatment
US4609043A (en) * 1984-10-22 1986-09-02 Mobil Oil Corporation Enhanced oil recovery using carbon dioxide
US4702849A (en) * 1986-02-25 1987-10-27 Halliburton Company Method of increasing hydrocarbon production from subterranean formations
US4767545A (en) * 1986-07-31 1988-08-30 Ciba-Geigy Corporation Use of organic fluorochemical compounds with oleophobic and hydrophobic groups in crude oils as antideposition agents, and compositions thereof
US4823873A (en) * 1987-12-07 1989-04-25 Ciba-Geigy Corporation Steam mediated fluorochemically enhanced oil recovery
US4921619A (en) * 1988-04-12 1990-05-01 Ciba-Geigy Corporation Enhanced oil recovery through cyclic injection of fluorochemicals
US4923009A (en) * 1989-05-05 1990-05-08 Union Oil Company Of California Steam enhanced oil recovery processes and compositions for use therein
US4975468A (en) * 1989-04-03 1990-12-04 Affinity Biotech, Inc. Fluorinated microemulsion as oxygen carrier
US4993448A (en) * 1987-05-15 1991-02-19 Ciba-Geigy Corporation Crude oil emulsions containing a compatible fluorochemical surfactant
US4997580A (en) * 1986-07-31 1991-03-05 Ciba-Geigy Corporation Use of organic fluorochemical compounds with oleophobic and hydrophobic groups in crude oils as antideposition agents, and compositions thereof
US5042580A (en) * 1990-07-11 1991-08-27 Mobil Oil Corporation Oil recovery process for use in fractured reservoirs
US5143958A (en) * 1989-03-31 1992-09-01 Eniricerche S.P.A. And Agip S.P.A. Gellable aqueous composition and its use in enhanced petroleum
US5181568A (en) * 1991-09-26 1993-01-26 Halliburton Company Methods of selectively reducing the water permeabilities of subterranean formations
US5219476A (en) * 1989-03-31 1993-06-15 Eniricerche S.P.A. Gellable aqueous composition and its use in enhanced petroleum recovery
US5247993A (en) * 1992-06-16 1993-09-28 Union Oil Company Of California Enhanced imbibition oil recovery process
US5338465A (en) * 1991-03-28 1994-08-16 Eniricerche S.P.A. Aqueous gellable composition with delayed gelling time
US5358052A (en) * 1990-12-20 1994-10-25 John L. Gidley & Associates, Inc. Conditioning of formation for sandstone acidizing
US5415229A (en) * 1994-01-03 1995-05-16 Marathon Oil Company Hydrocarbon recovery process utilizing a gel prepared from a polymer and a preformed crosslinking agent
US5733526A (en) * 1995-12-14 1998-03-31 Alliance Pharmaceutical Corp. Hydrocarbon oil/fluorochemical preparations and methods of use
US5966659A (en) * 1995-10-31 1999-10-12 Motorola, Inc. Service request rooting by a local resource controller
US6113919A (en) * 1991-07-17 2000-09-05 Alliance Pharmaceutical Corp. Preparations comprising a fluorocarbon or a highly fluorinated compound and a lipophilic/fluorophilic compound and their uses
US6127460A (en) * 1997-12-02 2000-10-03 Sumitomo Bakelite Co., Ltd. Liquid epoxy resin potting material
US6206102B1 (en) * 1996-12-19 2001-03-27 Wacker-Chemie Gmbh Method for stabilizing the gas flow in water-bearing natural gas deposits or reservoirs
US6255263B1 (en) * 1999-03-03 2001-07-03 Ethyl Petroleum Additives, Ltd Lubricant compositions exhibiting improved demulse performance
US6274060B1 (en) * 1999-02-04 2001-08-14 Daikin Industries, Ltd. Water- and oil-repellent
US6443230B1 (en) * 1999-06-22 2002-09-03 Bj Services Company Organic hydrofluoric acid spearhead system
US20030083448A1 (en) * 2001-08-23 2003-05-01 3M Innovative Properties Company Water and oil repellent masonry treatments
US6579572B2 (en) * 2001-08-13 2003-06-17 Intevep, S.A. Water-based system for altering wettability of porous media
US6660693B2 (en) * 2001-08-08 2003-12-09 Schlumberger Technology Corporation Methods for dewatering shaly subterranean formations
US6664354B2 (en) * 1999-10-27 2003-12-16 3M Innovative Properties Company Fluorochemical sulfonamide surfactants
US6729409B1 (en) * 1998-12-11 2004-05-04 D. V. Satyanarayana Gupta Foamed nitrogen in liquid CO2 for fracturing
US6805198B2 (en) * 2001-09-07 2004-10-19 Baker Hughes Incorporated Organic acid system for high temperature acidizing
US6911417B2 (en) * 2003-04-29 2005-06-28 Conocophillips Company Water block removal with surfactant based hydrocarbonaceous liquid system
US20050142563A1 (en) * 2003-12-24 2005-06-30 3M Innovative Properties Company Materials, methods, and kits for reducing nonspecific binding of molecules to a surface
US6945327B2 (en) * 2003-02-11 2005-09-20 Ely & Associates, Inc. Method for reducing permeability restriction near wellbore
US6972274B1 (en) * 1999-09-24 2005-12-06 Akzo Nobel N.V. Method of improving the permeability of an underground petroleum-containing formation
US20070029085A1 (en) * 2005-08-05 2007-02-08 Panga Mohan K Prevention of Water and Condensate Blocks in Wells
US7199197B2 (en) * 2003-12-31 2007-04-03 3M Innovative Properties Company Water- and oil-repellent fluoroacrylates

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732398A (en) * 1953-01-29 1956-01-24 cafiicfzsojk
US2803615A (en) * 1956-01-23 1957-08-20 Minnesota Mining & Mfg Fluorocarbon acrylate and methacrylate esters and polymers
US3554288A (en) * 1968-09-24 1971-01-12 Marathon Oil Co Stimulating low pressure natural gas producing wells
US3787351A (en) * 1972-02-28 1974-01-22 Minnesota Mining & Mfg Use of soluble fluoroaliphatic oligomers in resin composite articles
US4329236A (en) * 1980-04-02 1982-05-11 The Standard Oil Company Technique for tertiary oil recovery
US4432882A (en) * 1981-12-17 1984-02-21 E. I. Du Pont De Nemours And Company Hydrocarbon foams
US5186257A (en) * 1983-01-28 1993-02-16 Phillips Petroleum Company Polymers useful in the recovery and processing of natural resources
US5310882A (en) * 1990-11-30 1994-05-10 American Cyanamid Company Somatotropins with alterations in the α-helix 3 region
CN1082079C (en) * 1993-12-29 2002-04-03 大金工业株式会社 Fluorinated oil/water emulsion and surface treatment composition
US6127430A (en) * 1998-12-16 2000-10-03 3M Innovative Properties Company Microemulsions containing water and hydrofluroethers
US7114567B2 (en) * 2003-01-28 2006-10-03 Schlumberger Technology Corporation Propped fracture with high effective surface area

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653442A (en) * 1970-03-16 1972-04-04 Marathon Oil Co Stimulating low pressure natural gas producing wells
US3902557A (en) * 1974-03-25 1975-09-02 Exxon Production Research Co Treatment of wells
US4018689A (en) * 1974-11-27 1977-04-19 The Dow Chemical Company Composition and method for reducing the surface tension of aqueous fluids
US4460791A (en) * 1978-09-22 1984-07-17 Ciba-Geigy Corporation Oil recovery by fluorochemical surfactant waterflooding
US4557837A (en) * 1980-09-15 1985-12-10 Minnesota Mining And Manufacturing Company Simulation and cleanup of oil- and/or gas-producing wells
US4440653A (en) * 1982-03-08 1984-04-03 Halliburton Company Highly stable alcohol foams and methods of forming and using such foams
US4565639A (en) * 1983-01-07 1986-01-21 Halliburton Company Method of increasing hydrocarbon production by remedial well treatment
US4609043A (en) * 1984-10-22 1986-09-02 Mobil Oil Corporation Enhanced oil recovery using carbon dioxide
US4702849A (en) * 1986-02-25 1987-10-27 Halliburton Company Method of increasing hydrocarbon production from subterranean formations
US4767545A (en) * 1986-07-31 1988-08-30 Ciba-Geigy Corporation Use of organic fluorochemical compounds with oleophobic and hydrophobic groups in crude oils as antideposition agents, and compositions thereof
US4997580A (en) * 1986-07-31 1991-03-05 Ciba-Geigy Corporation Use of organic fluorochemical compounds with oleophobic and hydrophobic groups in crude oils as antideposition agents, and compositions thereof
US4993448A (en) * 1987-05-15 1991-02-19 Ciba-Geigy Corporation Crude oil emulsions containing a compatible fluorochemical surfactant
US4823873A (en) * 1987-12-07 1989-04-25 Ciba-Geigy Corporation Steam mediated fluorochemically enhanced oil recovery
US4921619A (en) * 1988-04-12 1990-05-01 Ciba-Geigy Corporation Enhanced oil recovery through cyclic injection of fluorochemicals
US5143958A (en) * 1989-03-31 1992-09-01 Eniricerche S.P.A. And Agip S.P.A. Gellable aqueous composition and its use in enhanced petroleum
US5219476A (en) * 1989-03-31 1993-06-15 Eniricerche S.P.A. Gellable aqueous composition and its use in enhanced petroleum recovery
US4975468A (en) * 1989-04-03 1990-12-04 Affinity Biotech, Inc. Fluorinated microemulsion as oxygen carrier
US4923009A (en) * 1989-05-05 1990-05-08 Union Oil Company Of California Steam enhanced oil recovery processes and compositions for use therein
US5042580A (en) * 1990-07-11 1991-08-27 Mobil Oil Corporation Oil recovery process for use in fractured reservoirs
US5358052A (en) * 1990-12-20 1994-10-25 John L. Gidley & Associates, Inc. Conditioning of formation for sandstone acidizing
US5338465A (en) * 1991-03-28 1994-08-16 Eniricerche S.P.A. Aqueous gellable composition with delayed gelling time
US6113919A (en) * 1991-07-17 2000-09-05 Alliance Pharmaceutical Corp. Preparations comprising a fluorocarbon or a highly fluorinated compound and a lipophilic/fluorophilic compound and their uses
US5181568A (en) * 1991-09-26 1993-01-26 Halliburton Company Methods of selectively reducing the water permeabilities of subterranean formations
US5247993A (en) * 1992-06-16 1993-09-28 Union Oil Company Of California Enhanced imbibition oil recovery process
US5415229A (en) * 1994-01-03 1995-05-16 Marathon Oil Company Hydrocarbon recovery process utilizing a gel prepared from a polymer and a preformed crosslinking agent
US5966659A (en) * 1995-10-31 1999-10-12 Motorola, Inc. Service request rooting by a local resource controller
US5733526A (en) * 1995-12-14 1998-03-31 Alliance Pharmaceutical Corp. Hydrocarbon oil/fluorochemical preparations and methods of use
US6206102B1 (en) * 1996-12-19 2001-03-27 Wacker-Chemie Gmbh Method for stabilizing the gas flow in water-bearing natural gas deposits or reservoirs
US6127460A (en) * 1997-12-02 2000-10-03 Sumitomo Bakelite Co., Ltd. Liquid epoxy resin potting material
US6729409B1 (en) * 1998-12-11 2004-05-04 D. V. Satyanarayana Gupta Foamed nitrogen in liquid CO2 for fracturing
US6274060B1 (en) * 1999-02-04 2001-08-14 Daikin Industries, Ltd. Water- and oil-repellent
US6255263B1 (en) * 1999-03-03 2001-07-03 Ethyl Petroleum Additives, Ltd Lubricant compositions exhibiting improved demulse performance
US6443230B1 (en) * 1999-06-22 2002-09-03 Bj Services Company Organic hydrofluoric acid spearhead system
US6972274B1 (en) * 1999-09-24 2005-12-06 Akzo Nobel N.V. Method of improving the permeability of an underground petroleum-containing formation
US6852781B2 (en) * 1999-10-27 2005-02-08 3M Innovative Properties Company Fluorochemical sulfonamide surfactants
US6664354B2 (en) * 1999-10-27 2003-12-16 3M Innovative Properties Company Fluorochemical sulfonamide surfactants
US20050148491A1 (en) * 1999-10-27 2005-07-07 3M Innovative Properties Company Fluorochemical sulfonamide surfactants
US6660693B2 (en) * 2001-08-08 2003-12-09 Schlumberger Technology Corporation Methods for dewatering shaly subterranean formations
US6579572B2 (en) * 2001-08-13 2003-06-17 Intevep, S.A. Water-based system for altering wettability of porous media
US20030083448A1 (en) * 2001-08-23 2003-05-01 3M Innovative Properties Company Water and oil repellent masonry treatments
US20040186254A1 (en) * 2001-08-23 2004-09-23 3M Innovative Properties Company Water and oil repellent masonry treatments
US6689854B2 (en) * 2001-08-23 2004-02-10 3M Innovative Properties Company Water and oil repellent masonry treatments
US6805198B2 (en) * 2001-09-07 2004-10-19 Baker Hughes Incorporated Organic acid system for high temperature acidizing
US6945327B2 (en) * 2003-02-11 2005-09-20 Ely & Associates, Inc. Method for reducing permeability restriction near wellbore
US6911417B2 (en) * 2003-04-29 2005-06-28 Conocophillips Company Water block removal with surfactant based hydrocarbonaceous liquid system
US20050142563A1 (en) * 2003-12-24 2005-06-30 3M Innovative Properties Company Materials, methods, and kits for reducing nonspecific binding of molecules to a surface
US7199197B2 (en) * 2003-12-31 2007-04-03 3M Innovative Properties Company Water- and oil-repellent fluoroacrylates
US20070029085A1 (en) * 2005-08-05 2007-02-08 Panga Mohan K Prevention of Water and Condensate Blocks in Wells

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9353309B2 (en) 2007-03-23 2016-05-31 Board Of Regents, The University Of Texas System Method for treating a formation with a solvent
US20100152071A1 (en) * 2007-03-23 2010-06-17 Board Of Regents, The University Of Texas System Method for Treating a Formation with a Solvent
US20100224361A1 (en) * 2007-03-23 2010-09-09 Board Of Regents, The University Of Texas System Compositions and Methods for Treating a Water Blocked Well
US20100276149A1 (en) * 2007-03-23 2010-11-04 Pope Gary A Method for Treating a Hydrocarbon Formation
US8403050B2 (en) * 2007-03-23 2013-03-26 3M Innovative Properties Company Method for treating a hydrocarbon-bearing formation with a fluid followed by a nonionic fluorinated polymeric surfactant
WO2009073484A3 (en) * 2007-11-30 2009-08-13 Univ Texas Methods for improving the productivity of oil producing wells
US20100319920A1 (en) * 2007-11-30 2010-12-23 Board Of Regents, The University Of Texas System Methods for improving the productivity of oil producing wells
US8261825B2 (en) 2007-11-30 2012-09-11 Board Of Regents, The University Of Texas System Methods for improving the productivity of oil producing wells
US20100270020A1 (en) * 2007-12-21 2010-10-28 Baran Jr Jimmie R Methods for treating hydrocarbon-bearing formations with fluorinated anionic surfactant compositions
US20130269932A1 (en) * 2010-12-20 2013-10-17 3M Innovative Properties Company Methods for treating carbonate hydrocarbon-bearing formations with fluorinated amine oxides
US9624422B2 (en) * 2010-12-20 2017-04-18 3M Innovative Properties Company Methods for treating carbonate hydrocarbon-bearing formations with fluorinated amine oxides
US20130312958A1 (en) * 2011-02-11 2013-11-28 Bp Corporation North America Inc. Reservoir treatment
US9657565B2 (en) * 2014-12-31 2017-05-23 Halliburton Energy Services, Inc. Optimal surfactant design for recovered hydrocarbon enhancement

Also Published As

Publication number Publication date
WO2008024868A2 (en) 2008-02-28
US20100270019A1 (en) 2010-10-28
WO2008024868A8 (en) 2008-05-15
WO2008024868A3 (en) 2008-12-24
AR062493A1 (en) 2008-11-12
EP2054583A2 (en) 2009-05-06

Similar Documents

Publication Publication Date Title
US20080047706A1 (en) Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells
US7585817B2 (en) Compositions and methods for improving the productivity of hydrocarbon producing wells using a non-ionic fluorinated polymeric surfactant
US8403050B2 (en) Method for treating a hydrocarbon-bearing formation with a fluid followed by a nonionic fluorinated polymeric surfactant
US20100181068A1 (en) Method and System for Treating Hydrocarbon Formations
US8043998B2 (en) Method for treating a fractured formation with a non-ionic fluorinated polymeric surfactant
US20100224361A1 (en) Compositions and Methods for Treating a Water Blocked Well
US7772162B2 (en) Use of fluorocarbon surfactants to improve the productivity of gas and gas condensate wells
US8138127B2 (en) Compositions and methods for treating a water blocked well using a nonionic fluorinated surfactant
US8261825B2 (en) Methods for improving the productivity of oil producing wells
US20070225176A1 (en) Use of fluorocarbon surfactants to improve the productivity of gas and gas condensate wells
US9353309B2 (en) Method for treating a formation with a solvent

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BARAN, JIMMIE R., JR.;REEL/FRAME:018522/0545

Effective date: 20061025

AS Assignment

Owner name: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:POPE, GARY A.;REEL/FRAME:018574/0886

Effective date: 20061116

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION