US20080058755A1 - Method and Apparatus for Sterilely Acquiring and Separating a Fluid - Google Patents

Method and Apparatus for Sterilely Acquiring and Separating a Fluid Download PDF

Info

Publication number
US20080058755A1
US20080058755A1 US11/852,935 US85293507A US2008058755A1 US 20080058755 A1 US20080058755 A1 US 20080058755A1 US 85293507 A US85293507 A US 85293507A US 2008058755 A1 US2008058755 A1 US 2008058755A1
Authority
US
United States
Prior art keywords
asymmetric
clamping section
airtight seal
fluid
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/852,935
Inventor
Richard Yee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/852,935 priority Critical patent/US20080058755A1/en
Publication of US20080058755A1 publication Critical patent/US20080058755A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0209Multiple bag systems for separating or storing blood components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/15003Source of blood for venous or arterial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150366Blood collection bags, e.g. connected to the patient by a catheter comprising means for removing a small sample of collected blood from the bag
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150992Blood sampling from a fluid line external to a patient, such as a catheter line, combined with an infusion line; blood sampling from indwelling needle sets, e.g. sealable ports, luer couplings, valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/153Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
    • A61B5/154Devices using pre-evacuated means

Definitions

  • the present invention relates generally to the field of storage of biomedical samples and fluids. More specifically, the invention relates to the sterile acquisition and storage of medications and bodily fluids in dosage packaging without exposing the fluids to air and contaminants.
  • a technician must either switch sample collection tubes during the process of drawing the blood in order to obtain multiple samples or must draw a single, larger sample which is subsequently divided.
  • the sample may be heated or otherwise treated to minimize the risks of contamination.
  • additional steps may be undesirable and add a level of complexity to the process. It is therefore desirable to provide a means by which a fluid or sample may be obtained and separated into dosage storage containers without introducing the risks associated with air exposure and without necessarily requiring additional treatments, such as heating or irradiation.
  • FIG. 1 is a depiction of an apparatus for storing a fluid in the process of filling the sterile chambers of the apparatus with the fluid;
  • FIG. 2 is a depiction of an apparatus for storing a fluid in which the sterile chambers of the apparatus are filled with the fluid;
  • FIG. 3 is a depiction of an apparatus for storing a fluid in which connectors joining the sterile chambers of the filled apparatus have been sealed to form an airtight seal;
  • FIG. 4 is a depiction of an apparatus for storing a fluid in which the filled sterile chambers of the apparatus have been separated at the airtight seals to form sealed individual doses of the fluid;
  • FIG. 5 is a depiction of one exemplary embodiment of the present technique in which a patient's blood is the fluid which is used to fill the apparatus for subsequent storage.
  • a sterile assembly 10 is depicted which is connected to a fluid source 12 .
  • the fluid source 12 can include a pressure regulator 14 , here depicted as consisting of a piston action plunger cooperatively configured to apply pressure in an airtight manner to the fluid 16 within the fluid source 12 .
  • a pressure regulator 14 here depicted as consisting of a piston action plunger cooperatively configured to apply pressure in an airtight manner to the fluid 16 within the fluid source 12 .
  • Alternate pressure regulation configurations are of course possible such as configuring pressure regulator 14 to create an area of negative pressure away from the fluid source 12 , see FIG. 5 , or combinations of positive and negative pressure within the apparatus.
  • any configuration of one or more pressure regulators 14 which produce a relative negative pressure downstream within sterile assembly 10 is acceptable.
  • the sterile assembly 10 may be created as a sterile vacuum or to inherently possess low relative pressure such that the bodily fluid is naturally drawn into the sterile assembly 10 .
  • the fluid source 12 also consists of a fluid outlet 18 terminating in an airtight junction 20 .
  • the fluid 16 flows through the fluid outlet 18 due to the pressure differential created by the pressure regulator 14 .
  • the fluid 16 typically consists of a drug or medication stored in a stock supply or of a patient's bodily fluid.
  • the sterile assembly 10 is connected to the airtight junction 20 via a fluid inlet 22 which cooperatively engages the junction 20 .
  • the fluid inlet 22 provides fluid access to the remainder of the attached assembly 10 , which consists of at least two compartments 24 joined together by a connector 26 which, when open, allows the fluid 16 to flow between the compartments 24 .
  • the fluid inlet 22 is attached to an upstream terminal compartment 28 .
  • As many compartments 24 as necessary may be included in the assembly 10 in order to provide sufficient storage for the quantity of fluid 16 desired.
  • the compartments 24 are sized such that they hold a single or multiple dose of the fluid 16 and are therefore uniformly sized in most applications. However, the compartments 24 may be differently sized if the quantity comprising a single dose is to vary over the course of treatment, i.e., dosage gradually tapering off as treatment progresses.
  • the sterile assembly 10 is typically constructed from an airtight material, such as one of the various plastics utilized to make sterile biomedical storage containers. In one embodiment, the assembly is constructed of a sterile, flexible biomedical plastic which is vacuum vacated and sealed such that no contaminants or air are present in the assembly 10 prior to use. In this embodiment, the compartments 24 expand as they are filled with the fluid 16 .
  • the sterile assembly 10 is initially attached to the fluid source 12 via coupling the fluid inlet 22 to the junction 20 .
  • the fluid 16 is then introduced into the assembly 10 by the pressure differential created or maintained by the pressure regulator 14 .
  • the connectors 26 are open, allowing the fluid 16 to reach and fill all of the compartments 24 .
  • the pressure differential may be equilibrated via the pressure regulator 14 .
  • the connectors 26 are closed by forming an airtight seal 32 within the connector 26 , as depicted in FIG. 3 .
  • the biomedical plastic of which the connectors 26 are composed is a heat-shrink plastic. Upon application of heat to the connector 26 , the connector 26 shrinks in volume to form an airtight seal 32 .
  • the connector 26 may be composed of a pressure sensitive material such that pressure may be applied to form the airtight seal 32 or the connector 26 may be constructed with engaging surfaces along the interior which engage to form an airtight seal when moved into contact. In other embodiments, a combination of heat and pressure may be used to affect the seal. Other means by which the airtight seal 32 may be formed exist and are within the scope of the described technique.
  • the compartments 24 may separated from one another at the seal 32 , as depicted in FIG. 4 . Due to the airtight seal 32 , the fluid 16 is never exposed to the air and thus remains sterile. As depicted in FIG. 4 , the compartments 24 , once separated, form sterile storage containers 34 which may be stored as needed and which each contain a prescribed dose of the fluid 16 , ready for use by a doctor or patient.
  • the sterile storage containers 34 consist of a main body 36 and one or more portions of sealed connector 38 which remain associated with the main body 36 after separation. The portions of sealed connector 38 provide easy access to the stored fluid 16 , when needed, by either cutting or tearing. In this manner, a single or multiple dose of the fluid 16 may be provided for subsequent application to a patient, test subject or process.
  • the sterile assembly 10 once filled, may be sealed by heat or pressure means at the fluid inlet 22 .
  • the sterile assembly may then be stored intact.
  • the seals 32 may or may not be formed in the respective connectors 26 .
  • an airtight seal 32 is be formed in the desired connector and the respective sterile storage container 34 may then be removed from the sterile assembly 10 for use.
  • a sealing device may be configured to create an airtight seal 32 which does not break symmetrically.
  • the configured sealing device may apply heat, pressure, or a combination of the two via clamping section to form the asymmetric seal.
  • the clamping section is typically configured to conform to the shape of the connector when loose and may tighten to deform the connector as pressure and/or heat are applied. Heat may be generated by elements within the clamping section which utilize infrared, RF, electrical, or chemical energy or other heat generating methods known in the art.
  • the airtight seal 32 which is created may be formed to break such that the compartments 24 remaining connected to the sterile assembly 10 remain airtight, and thus sterile, while the storage container 34 which is removed is open and ready for use due to the asymmetry of the airtight seal 32 formed. In this manner a filled sterile assembly 10 may be filled, stored and sealed such that, when desired, a sterile storage containers 34 may be removed from the assembly 10 ready for use.
  • the fluid 16 is a patient's blood 36 .
  • the assembly 10 can be utilized while the patient's blood 36 is drawn, as depicted in FIG. 5 .
  • the apparatus 10 in this embodiment can utilize negative pressure to fill the compartments 24 with the blood 36 without allowing exposure to the air.
  • a pressure regulator 14 may be operatively coupled to the terminal compartment 30 to create negative pressure to draw the blood into the apparatus 10 .
  • the pressure regulator 14 may operate on a piston principle.
  • the apparatus 10 itself may be formed and stored as a vacuum such that the negative pressure of the vacuum draws the blood into it once connected to the patient.
  • the connectors 26 joining the compartments 24 to each other and to the fluid inlet 22 and pressure regulator 14 are sealed and then separated. Once separated, the storage containers of blood may be stored and subsequently used for medicinal purposes, such as for the treatment of certain eye disorders.

Abstract

A method and apparatus are provided by which a fluid may be drawn and packaged within a series of interconnected sterile units. Once filled with the fluid, the connectors joining the sterile units may be sealed and severed to produce a number of separate sterile units. The volume of the separate sterile units may correspond to a single dose of the fluid. The technique allows a fluid to be partitioned into sterile units without exposure to the air or other potential contaminants.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional of U.S. application Ser. No. 10/272,650, filed Oct. 17, 2002, incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to the field of storage of biomedical samples and fluids. More specifically, the invention relates to the sterile acquisition and storage of medications and bodily fluids in dosage packaging without exposing the fluids to air and contaminants.
  • 2. Description of the Related Art
  • This section is intended to introduce the reader to aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
  • The medical and research communities routinely acquire samples of bodily fluids, such as blood, and store such samples for subsequent use. Similarly, medications, drugs, or research compounds may be prepared and stored in large quantities but may need to be used in substantially smaller doses. In both instances, it is often desirable to provide the fluids in packaging which is easy to store and which corresponds to a usable amount, i.e., a single dose. In the process of placing the fluid into storage containers, however, it is desirable to prevent contact with the air or any other potential contaminant which would compromise the sterility of the fluid packaging.
  • For example, if a blood sample is drawn from a patient for subsequent division and storage, a technician must either switch sample collection tubes during the process of drawing the blood in order to obtain multiple samples or must draw a single, larger sample which is subsequently divided. In both techniques, there is a risk of contamination due to exposure to air or contact with other non-sterile environments and/or instrumentation. To obviate these risks the sample may be heated or otherwise treated to minimize the risks of contamination. These additional steps may be undesirable and add a level of complexity to the process. It is therefore desirable to provide a means by which a fluid or sample may be obtained and separated into dosage storage containers without introducing the risks associated with air exposure and without necessarily requiring additional treatments, such as heating or irradiation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
  • FIG. 1 is a depiction of an apparatus for storing a fluid in the process of filling the sterile chambers of the apparatus with the fluid;
  • FIG. 2 is a depiction of an apparatus for storing a fluid in which the sterile chambers of the apparatus are filled with the fluid;
  • FIG. 3 is a depiction of an apparatus for storing a fluid in which connectors joining the sterile chambers of the filled apparatus have been sealed to form an airtight seal;
  • FIG. 4 is a depiction of an apparatus for storing a fluid in which the filled sterile chambers of the apparatus have been separated at the airtight seals to form sealed individual doses of the fluid; and
  • FIG. 5 is a depiction of one exemplary embodiment of the present technique in which a patient's blood is the fluid which is used to fill the apparatus for subsequent storage.
  • DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
  • One or more specific embodiments of the present invention will be described below. Turning now to the drawings, and referring initially to FIG. 1, a sterile assembly 10 is depicted which is connected to a fluid source 12. The fluid source 12 can include a pressure regulator 14, here depicted as consisting of a piston action plunger cooperatively configured to apply pressure in an airtight manner to the fluid 16 within the fluid source 12. Alternate pressure regulation configurations are of course possible such as configuring pressure regulator 14 to create an area of negative pressure away from the fluid source 12, see FIG. 5, or combinations of positive and negative pressure within the apparatus. Typically any configuration of one or more pressure regulators 14 which produce a relative negative pressure downstream within sterile assembly 10 is acceptable. In instances in which the sterile assembly 10 is configured for drawing bodily fluids, the sterile assembly 10 may be created as a sterile vacuum or to inherently possess low relative pressure such that the bodily fluid is naturally drawn into the sterile assembly 10.
  • The fluid source 12 also consists of a fluid outlet 18 terminating in an airtight junction 20. The fluid 16 flows through the fluid outlet 18 due to the pressure differential created by the pressure regulator 14. The fluid 16 typically consists of a drug or medication stored in a stock supply or of a patient's bodily fluid.
  • In the present technique, the sterile assembly 10 is connected to the airtight junction 20 via a fluid inlet 22 which cooperatively engages the junction 20. The fluid inlet 22 provides fluid access to the remainder of the attached assembly 10, which consists of at least two compartments 24 joined together by a connector 26 which, when open, allows the fluid 16 to flow between the compartments 24. As depicted, the fluid inlet 22 is attached to an upstream terminal compartment 28. Likewise there is a downstream terminal compartment 30 from which the fluid 16 does not flow into another compartment 24. As many compartments 24 as necessary may be included in the assembly 10 in order to provide sufficient storage for the quantity of fluid 16 desired.
  • Typically the compartments 24 are sized such that they hold a single or multiple dose of the fluid 16 and are therefore uniformly sized in most applications. However, the compartments 24 may be differently sized if the quantity comprising a single dose is to vary over the course of treatment, i.e., dosage gradually tapering off as treatment progresses. The sterile assembly 10 is typically constructed from an airtight material, such as one of the various plastics utilized to make sterile biomedical storage containers. In one embodiment, the assembly is constructed of a sterile, flexible biomedical plastic which is vacuum vacated and sealed such that no contaminants or air are present in the assembly 10 prior to use. In this embodiment, the compartments 24 expand as they are filled with the fluid 16.
  • As depicted in FIG. 1, the sterile assembly 10 is initially attached to the fluid source 12 via coupling the fluid inlet 22 to the junction 20. The fluid 16 is then introduced into the assembly 10 by the pressure differential created or maintained by the pressure regulator 14. While the apparatus 10 is being filled with the fluid 16, the connectors 26 are open, allowing the fluid 16 to reach and fill all of the compartments 24.
  • Once the sterile assembly 10 is filled with fluid 16, as depicted in FIG. 2, the pressure differential may be equilibrated via the pressure regulator 14. Once the pressure differential is equalized, the connectors 26 are closed by forming an airtight seal 32 within the connector 26, as depicted in FIG. 3. In one embodiment of this technique, the biomedical plastic of which the connectors 26 are composed is a heat-shrink plastic. Upon application of heat to the connector 26, the connector 26 shrinks in volume to form an airtight seal 32. In other embodiments, the connector 26 may be composed of a pressure sensitive material such that pressure may be applied to form the airtight seal 32 or the connector 26 may be constructed with engaging surfaces along the interior which engage to form an airtight seal when moved into contact. In other embodiments, a combination of heat and pressure may be used to affect the seal. Other means by which the airtight seal 32 may be formed exist and are within the scope of the described technique.
  • After airtight seal 32 is formed, the compartments 24 may separated from one another at the seal 32, as depicted in FIG. 4. Due to the airtight seal 32, the fluid 16 is never exposed to the air and thus remains sterile. As depicted in FIG. 4, the compartments 24, once separated, form sterile storage containers 34 which may be stored as needed and which each contain a prescribed dose of the fluid 16, ready for use by a doctor or patient. The sterile storage containers 34 consist of a main body 36 and one or more portions of sealed connector 38 which remain associated with the main body 36 after separation. The portions of sealed connector 38 provide easy access to the stored fluid 16, when needed, by either cutting or tearing. In this manner, a single or multiple dose of the fluid 16 may be provided for subsequent application to a patient, test subject or process.
  • In an alternative embodiment, the sterile assembly 10, once filled, may be sealed by heat or pressure means at the fluid inlet 22. The sterile assembly may then be stored intact. During storage, the seals 32 may or may not be formed in the respective connectors 26. In this embodiment, prior to use or during storage, an airtight seal 32 is be formed in the desired connector and the respective sterile storage container 34 may then be removed from the sterile assembly 10 for use.
  • In this embodiment a sealing device may be configured to create an airtight seal 32 which does not break symmetrically. The configured sealing device may apply heat, pressure, or a combination of the two via clamping section to form the asymmetric seal. The clamping section is typically configured to conform to the shape of the connector when loose and may tighten to deform the connector as pressure and/or heat are applied. Heat may be generated by elements within the clamping section which utilize infrared, RF, electrical, or chemical energy or other heat generating methods known in the art.
  • The airtight seal 32 which is created may be formed to break such that the compartments 24 remaining connected to the sterile assembly 10 remain airtight, and thus sterile, while the storage container 34 which is removed is open and ready for use due to the asymmetry of the airtight seal 32 formed. In this manner a filled sterile assembly 10 may be filled, stored and sealed such that, when desired, a sterile storage containers 34 may be removed from the assembly 10 ready for use.
  • In one exemplary embodiment, the fluid 16 is a patient's blood 36. In this embodiment, the assembly 10 can be utilized while the patient's blood 36 is drawn, as depicted in FIG. 5. The apparatus 10 in this embodiment can utilize negative pressure to fill the compartments 24 with the blood 36 without allowing exposure to the air. In particular, a pressure regulator 14 may be operatively coupled to the terminal compartment 30 to create negative pressure to draw the blood into the apparatus 10. The pressure regulator 14 may operate on a piston principle. Alternately, the apparatus 10 itself may be formed and stored as a vacuum such that the negative pressure of the vacuum draws the blood into it once connected to the patient. As with the previously described embodiment, once the apparatus 10 is filled, the connectors 26 joining the compartments 24 to each other and to the fluid inlet 22 and pressure regulator 14 are sealed and then separated. Once separated, the storage containers of blood may be stored and subsequently used for medicinal purposes, such as for the treatment of certain eye disorders.
  • While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the following appended claims. Illustrative embodiments of the present claimed subject matter are described in detail below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure.

Claims (21)

1-18. (canceled)
19. An apparatus for forming an asymmetric airtight seal comprising:
a clamping section configured to conformably engage a deformable tube, wherein the clamping section forms an asymmetric seal in the deformable tube, such that the asymmetric seal, when broken, forms an airtight end and an open end in the tube.
20. The apparatus as recited in claim 19, wherein the clamping section comprises one or more heat-generating elements configured to heat the deformable tube when the clamping section is conformably engaged such that the asymmetric seal is formed by the heat.
21. The apparatus as recited in claim 20, wherein the clamping section is configured to apply pressure to the deformable tube while the deformable tube is heated such that the asymmetric seal is formed by the combination of heat and pressure.
22. The apparatus as recited in claim 19, wherein the clamping section comprises one or more compressive elements configured to apply pressure to the deformable tube when the clamping section is engaged such that the asymmetric seal is formed by the pressure.
23. A method for sterilely collecting fluid comprising:
filling a sterile assembly with a fluid, wherein the sterile assembly comprises two or more compartments such that adjacent compartments are joined by a respective connector;
ceasing an inflow of the fluid when a final compartment is filled with the fluid; and
forming an asymmetric airtight seal in at least one connector comprising a deformable tube using a clamping section configured to conformably engage the deformable tube, wherein the clamping section forms the asymmetric airtight seal in the deformable tube, wherein the asymmetric airtight seal, when broken, forms an airtight end and an open end in the deformable tube.
24. The method as recited in claim 23, wherein the clamping section comprises one or more heat-generating elements configured to heat the deformable tube when the clamping section is conformably engaged such that the asymmetric airtight seal is formed by the heat.
25. The method as recited in claim 24, wherein the clamping section is configured to apply pressure to the deformable tube while the deformable tube is heated such that the asymmetric airtight seal is formed by the combination of heat and pressure.
26. The method as recited in claim 23, wherein the clamping section comprises one or more compressive elements configured to apply pressure to the deformable tube when the clamping section is engaged such that the asymmetric airtight seal is formed by the pressure.
27. The method as recited in claim 23, further comprising forming a symmetric airtight seal within a respective connector between respective compartments not having an asymmetric airtight seal therebetween, wherein the symmetric airtight seal, when broken, forms a first airtight end and a second airtight end in the respective connector.
28. The method as recited in claim 27, wherein forming the symmetric airtight seal in the respective connector between the respective compartments comprises at least one of heating and compressing the respective connector between the respective compartments to form the symmetric airtight seal in the respective connector.
29. The method as recited in claim 27, further comprising detaching each compartment from one or more adjacent compartments at each respective symmetric airtight seal such that one or more sterile storage compartments are formed from the disconnected sterile assembly.
30. The method as recited in claim 23, wherein filling the sterile assembly with the fluid comprises applying one of positive pressure and negative pressure to fill the sterile assembly with the fluid.
31. An apparatus for storing a fluid comprising:
two or more sterile sections wherein adjacent sections are joined by a respective connector, wherein the respective connector allows the flow of the fluid between the adjacent sections when open;
a fluid inlet connected to an upstream fluid reservoir; and
a clamping section configured to conformably engage at least one connector comprising a deformable tube, wherein the clamping section is arranged to form an asymmetric airtight seal in the deformable tube, such that the asymmetric airtight seal, when broken, forms an airtight end and an open end in the deformable tube.
32. The apparatus as recited in claim 31, wherein the clamping section comprises one or more heat-generating elements configured to heat the deformable tube when the clamping section is conformably engaged such that the asymmetric airtight seal is formed by the heat.
33. The apparatus as recited in claim 32, wherein the clamping section is configured to apply pressure to the deformable tube while the deformable tube is heated such that the asymmetric airtight seal is formed by the combination of heat and pressure.
34. The apparatus as recited in claim 31, wherein the clamping section comprises one or more compressive elements configured to apply pressure to the deformable tube when the clamping section is engaged such that the asymmetric airtight seal is formed by the pressure.
35. The apparatus as recited in claim 31, wherein the fluid inlet is a mechanism for drawing blood.
36. The apparatus as recited in claim 31, wherein the respective connector is closed by one of a symmetric airtight seal and an asymmetric airtight seal and wherein the adjacent sections are separable at the one of the symmetric airtight seal and the asymmetric airtight seal to form separate sections, wherein the symmetric airtight seal, when broken, forms a first airtight end and a second airtight end in the respective connector.
37. The apparatus as recited in claim 36, wherein the one of the symmetric airtight seal and the asymmetric airtight seal is at least one of a heat shrink seal and a compression seal.
38. The apparatus as recited in claim 31, further comprising a pressure regulator operatively coupled to the apparatus such that pressure within the apparatus can be adjusted.
US11/852,935 2002-10-17 2007-09-10 Method and Apparatus for Sterilely Acquiring and Separating a Fluid Abandoned US20080058755A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/852,935 US20080058755A1 (en) 2002-10-17 2007-09-10 Method and Apparatus for Sterilely Acquiring and Separating a Fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/272,650 US7288082B2 (en) 2002-10-17 2002-10-17 Method and apparatus for sterilely acquiring and separating a fluid
US11/852,935 US20080058755A1 (en) 2002-10-17 2007-09-10 Method and Apparatus for Sterilely Acquiring and Separating a Fluid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/272,650 Division US7288082B2 (en) 2002-10-17 2002-10-17 Method and apparatus for sterilely acquiring and separating a fluid

Publications (1)

Publication Number Publication Date
US20080058755A1 true US20080058755A1 (en) 2008-03-06

Family

ID=32092630

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/272,650 Expired - Fee Related US7288082B2 (en) 2002-10-17 2002-10-17 Method and apparatus for sterilely acquiring and separating a fluid
US11/852,935 Abandoned US20080058755A1 (en) 2002-10-17 2007-09-10 Method and Apparatus for Sterilely Acquiring and Separating a Fluid

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/272,650 Expired - Fee Related US7288082B2 (en) 2002-10-17 2002-10-17 Method and apparatus for sterilely acquiring and separating a fluid

Country Status (3)

Country Link
US (2) US7288082B2 (en)
AU (1) AU2003286470A1 (en)
WO (1) WO2004034951A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253282A1 (en) * 2009-08-27 2012-10-04 Sanofi-Aventis Deutschland Gmbh Medicament container
WO2016148265A1 (en) * 2015-03-18 2016-09-22 テルモ株式会社 Centrifuge and segment holder
JP2016171967A (en) * 2015-03-18 2016-09-29 テルモ株式会社 Hanging jig and additive solution transfer method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009022793A1 (en) * 2009-05-27 2010-12-02 Justus-Liebig-Universität Giessen Apparatus and method for the production of blood products

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185154A (en) * 1962-08-14 1965-05-25 Joseph F Caccavo Apparatus for collecting, separating, storing and dispensing whole blood
US3911918A (en) * 1972-04-13 1975-10-14 Ralph D Turner Blood collection, storage and administering bag
US3965889A (en) * 1971-11-26 1976-06-29 Commissariat A L'energie Atomique Apparatus for the sampling of blood and the separation of plasma under anaerobic conditions
US4363205A (en) * 1976-11-08 1982-12-14 John P. Glass Packaging method
US4863454A (en) * 1987-10-16 1989-09-05 Labove Larry D Dual bag intravenous preparation system
US4994039A (en) * 1985-11-15 1991-02-19 Mattson Philip D Apparatus and method for patients from a single donor or a restricted group of donors
US5180504A (en) * 1991-05-22 1993-01-19 Baxter International Inc. Systems and methods for removing undesired matter from blood cells
US5394907A (en) * 1990-07-19 1995-03-07 Pharmacia Ab Device and method for dosing a liquid product
US5496301A (en) * 1992-09-25 1996-03-05 Cobe Laboratories, Inc. Fluid sampling device for closed collection systems
US5562836A (en) * 1994-05-11 1996-10-08 Baxter International Inc. Method for storing blood in a container having multiple chambers
US5746979A (en) * 1991-11-11 1998-05-05 F. R, Squibb & Sons, Inc. Method for receiving and separating a fluid into its ingredients
US5928214A (en) * 1994-12-05 1999-07-27 New York Blood Center, Inc. High concentration white cells, a method for agglomeration of the high concentration and a bag set for use in conjunction therewith
US6146360A (en) * 1998-01-16 2000-11-14 Tandem Medical, Inc. Medication delivery apparatus
US6187750B1 (en) * 1999-08-25 2001-02-13 Everyoung Technologies, Inc. Method of hormone treatment for patients with symptoms consistent with multiple sclerosis
US20030146170A1 (en) * 2002-02-01 2003-08-07 Frank Corbin Whole blood collection and processing method
US7347913B2 (en) * 2001-04-27 2008-03-25 Fenwal, Inc. Sealing apparatus and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187750A (en) * 1963-01-15 1965-06-08 Baxter Laboratories Inc Multiple bag blood storage unit
WO1989004639A1 (en) * 1987-11-16 1989-06-01 Baxter International Inc. Multiple bag system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185154A (en) * 1962-08-14 1965-05-25 Joseph F Caccavo Apparatus for collecting, separating, storing and dispensing whole blood
US3965889A (en) * 1971-11-26 1976-06-29 Commissariat A L'energie Atomique Apparatus for the sampling of blood and the separation of plasma under anaerobic conditions
US3911918A (en) * 1972-04-13 1975-10-14 Ralph D Turner Blood collection, storage and administering bag
US4363205A (en) * 1976-11-08 1982-12-14 John P. Glass Packaging method
US4994039A (en) * 1985-11-15 1991-02-19 Mattson Philip D Apparatus and method for patients from a single donor or a restricted group of donors
US4863454A (en) * 1987-10-16 1989-09-05 Labove Larry D Dual bag intravenous preparation system
US5394907A (en) * 1990-07-19 1995-03-07 Pharmacia Ab Device and method for dosing a liquid product
US5180504A (en) * 1991-05-22 1993-01-19 Baxter International Inc. Systems and methods for removing undesired matter from blood cells
US5746979A (en) * 1991-11-11 1998-05-05 F. R, Squibb & Sons, Inc. Method for receiving and separating a fluid into its ingredients
US5496301A (en) * 1992-09-25 1996-03-05 Cobe Laboratories, Inc. Fluid sampling device for closed collection systems
US5562836A (en) * 1994-05-11 1996-10-08 Baxter International Inc. Method for storing blood in a container having multiple chambers
US5928214A (en) * 1994-12-05 1999-07-27 New York Blood Center, Inc. High concentration white cells, a method for agglomeration of the high concentration and a bag set for use in conjunction therewith
US6146360A (en) * 1998-01-16 2000-11-14 Tandem Medical, Inc. Medication delivery apparatus
US6187750B1 (en) * 1999-08-25 2001-02-13 Everyoung Technologies, Inc. Method of hormone treatment for patients with symptoms consistent with multiple sclerosis
US7347913B2 (en) * 2001-04-27 2008-03-25 Fenwal, Inc. Sealing apparatus and method
US20030146170A1 (en) * 2002-02-01 2003-08-07 Frank Corbin Whole blood collection and processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253282A1 (en) * 2009-08-27 2012-10-04 Sanofi-Aventis Deutschland Gmbh Medicament container
US8465459B2 (en) * 2009-08-27 2013-06-18 Sanofi-Aventis Deutschland Gmbh Medicament container
WO2016148265A1 (en) * 2015-03-18 2016-09-22 テルモ株式会社 Centrifuge and segment holder
JP2016171967A (en) * 2015-03-18 2016-09-29 テルモ株式会社 Hanging jig and additive solution transfer method
JPWO2016148265A1 (en) * 2015-03-18 2018-01-25 テルモ株式会社 Centrifuge and segment holder
US10335802B2 (en) 2015-03-18 2019-07-02 Terumo Kabushiki Kaisha Centrifuge and segment holder

Also Published As

Publication number Publication date
WO2004034951A3 (en) 2004-09-02
US20040078021A1 (en) 2004-04-22
AU2003286470A1 (en) 2004-05-04
US7288082B2 (en) 2007-10-30
WO2004034951A2 (en) 2004-04-29
AU2003286470A8 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
RU2732111C2 (en) Bag for sterile product solution
EP2174676B1 (en) Apparatus for separating and storing blood components
CN103338740B (en) For collect and distribute the liquid solution apparatus of medicament and/or nutrition, can puncture without pin and the hermetic connector that can automatically and hermetically re-close
US20080132876A1 (en) Connector System for Sterile Connection
US6719715B2 (en) Apparatus and process for conditioning organic fluid
US8721617B2 (en) Liquid component collecting device
US20080058755A1 (en) Method and Apparatus for Sterilely Acquiring and Separating a Fluid
BRPI0611361A2 (en) sample management unit
US10973939B2 (en) System and method for aseptic packaging of a drug delivery device components
EP2932990A1 (en) Device for separating/housing blood components and method for preparing platelet-rich plasma
JP6521351B2 (en) Virus inactivation and sampling device
EP1747994A1 (en) Serially linked containers for containing a sterile solution
AU2464399A (en) Method and apparatus for aseptically packaging and dispensing live material
US7059368B2 (en) Needle guide
ITBO20070191A1 (en) INTEGRATED SAFETY SAMPLING SYSTEM OF EXTERNAL BODY FLUIDS
US20230189793A1 (en) Container with biological materials having multiple sealed portions
US20050054949A1 (en) Plunger-less syringe for controlling blood flow
JP7367179B2 (en) Bag-shaped container and its manufacturing method
CN110694131A (en) Device for storing and administering eye drops obtained from blood
CN217015049U (en) Storage assembly and pushing and ejecting device
CN217542498U (en) Novel plasma sample reserving device
EP3909621A1 (en) Recipient for ex-vivo treatment of biological liquids
WO2020196347A1 (en) Container for concentrating cells
JP2022125688A (en) cell storage container
JP3001187U (en) Blood processor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION