Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20080065204 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 11/981,025
Fecha de publicación13 Mar 2008
Fecha de presentación31 Oct 2007
Fecha de prioridad20 Sep 2000
También publicado comoUS7381220, US8016882, US9610161, US20050010287, US20050267573, US20110319990, US20120185040, WO2004030568A2, WO2004030568A3
Número de publicación11981025, 981025, US 2008/0065204 A1, US 2008/065204 A1, US 20080065204 A1, US 20080065204A1, US 2008065204 A1, US 2008065204A1, US-A1-20080065204, US-A1-2008065204, US2008/0065204A1, US2008/065204A1, US20080065204 A1, US20080065204A1, US2008065204 A1, US2008065204A1
InventoresJohn Macoviak, Robert Chang, David Rahdert, Timothy Machold, Rick Soss
Cesionario originalAmple Medical, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US 20080065204 A1
Resumen
An implant for supplementing, repairing, or replacing a native heart valve leaflet or leaflets provides a scaffold, which defines a pseudo-annulus. The implant further has at least two struts in generally oppositely spaced apart positions on the scaffold. The scaffold can be placed in an elastically loaded condition in a heart with the struts engaging tissue at or near the leaflet commissures of a heart valve annulus, to reshape the annulus for leaflet coaptation. The implant further provides a neoleaflet element coupled to the scaffold within pseudo-annulus, to provide a one-way valve function.
Imágenes(10)
Previous page
Next page
Reclamaciones(14)
1. A method for supplementing, repairing, or replacing a native heart valve leaflet or leaflets comprising
providing an implant comprising a scaffold, at least a portion of the scaffold defining a pseudo-annulus, the scaffold comprising a normal, unloaded condition and an elastically loaded condition, the implant further comprising at least two struts in generally oppositely spaced apart positions, the implant further comprising a neoleaflet element coupled to the Scaffold within pseudo-annulus to provide a one-way valve function,
introducing the implant into a heart,
applying external compression forces to place the elastic scaffold into the elastically loaded condition,
while the elastic scaffold is in the elastically loaded condition, placing the struts into engagement with tissue at or near the leaflet commissures to reshape the annulus for leaflet coaptation, and
providing a one-way valve function with the neoleaflet element.
2. A method according to claim 1
wherein the introducing comprises using an open heart surgical procedure.
3. A method according to claim 1
wherein the introducing comprises using a surgical procedure in which the implant is carried within a catheter.
4. A method according to claim 1
wherein the introducing comprises using an intravascular surgical procedure.
5. An implant for supplementing, repairing, or replacing a native heart valve leaflet or leaflets comprising
a scaffold, at least a portion of the scaffold defining a pseudo-annulus, the scaffold comprising a normal, unloaded condition and an elastically loaded condition, the implant further comprising at least two struts in generally oppositely spaced apart positions, the implant further comprising a neoleaflet element coupled to the scaffold within pseudo-annulus to provide a one-way valve function, the scaffold being sized and configured to be introduced into a heart and placed into the elastically loaded condition by application of external compression forces while placing the struts into engagement with tissue at or near the leaflet commissures to reshape the annulus for leaflet coaptation and also providing a one-way valve function with the neoleaflet element.
6. An implant according to claim 5
wherein the scaffold is sized and configured to be introduced into a heart in an open heart surgical procedure.
7. An implant according to claim 5
wherein the scaffold is sized and configured to be introduced into a heart carried within a catheter.
8. An implant according to claim 5
wherein the scaffold is sized and configured to be introduced into a heart in an intravascular surgical procedure.
9. An implant for supplementing, repairing, or replacing a native heart valve leaflet or leaflets comprising
an elastic scaffold, at least a portion of the elastic scaffold defining a pseudo-annulus, the elastic scaffold comprising a normal, unloaded condition including a spring constant to undergo compression in response to applied external compression forces into an elastically loaded condition, the implant further comprising at least two struts coupled to the elastic scaffold in generally oppositely spaced apart positions defining, when the elastic scaffold is in the normal, unloaded condition, a normal cross-strut distance that is greater than the maximum cross-annulus distance, the implant further comprising a neoleaflet element coupled to the elastic scaffold within pseudo-annulus and being sized and shaped to occupy the space of at least a portion of one native heart valve leaflet to provide a one-way valve function that, in response to a first pressure condition, assumes a valve opened condition within the pseudo-annulus and, in response to a second pressure condition, assumes a valve closed condition within the pseudo-annulus, the scaffold being sized and configured to be introduced into a heart with the elastic scaffold in the normal, unloaded condition and placed into the elastically loaded condition by application of external compression forces at the at least two struts to reduce the normal cross-strut distance while placing the struts into engagement with tissue at or near the leaflet commissures to apply tension and outwardly displace and separate tissue along the major axis of the annulus to reshape the annulus for leaflet coaptation to provide a one-way valve function with the neoleaflet element that, in response to a first pressure condition, assumes the valve opened condition and, in response to second pressure condition, assumes the valve closed condition, the at least two struts tissue at or near the leaflet commissures bracing the elastic scaffold while in the elastically loaded condition against migration within the annulus during the one-way valve function.
10. An implant according to claim 9
wherein the scaffold is sized and configured to be introduced into a heart in an open heart surgical procedure.
11. An implant according to claim 9
wherein the scaffold is sized and configured to be introduced into a heart carried within a catheter.
12. An implant according to claim 9
wherein the scaffold is sized and configured to be introduced into a heart in an intravascular surgical procedure.
13. A system comprising
a catheter sized and configured to be introduced into a heart in an intravascular surgical procedure,
an implant carried within the catheter, the implant comprising a scaffold, at least a portion of the scaffold defining a pseudo-annulus, the scaffold comprising a normal, unloaded condition and an elastically loaded condition, the implant further comprising at least two struts in generally oppositely spaced apart positions, the implant further comprising a neoleaflet element coupled to the scaffold within pseudo-annulus to provide a one-way valve function, the scaffold being sized and configured to be introduced into a heart and placed into the elastically loaded condition by application of external compression forces while placing the struts into engagement with tissue at or near the leaflet commissures to reshape the annulus for leaflet coaptation and also providing a one-way valve function with the neoleaflet element, and
the catheter including a mechanism to place the struts into engagement with tissue at or near the leaflet commissures to reshape the annulus for leaflet coaptation.
14. A heart valve structure comprising
a scaffold defining a pseudo-annulus, the scaffold resting an elastically loaded condition within an annulus and including struts engaging tissue at or near valve leaflet commissures to reshape the annulus for leaflet coaptation, the scaffold also including a neoleaflet element within the pseudo-annulus to provide a one-way valve function.
Descripción
    RELATED APPLICATIONS
  • [0001]
    This application is a divisional of co-pending U.S. patent application Ser. No. 10/676,815, filed Oct. 1, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 09/666,617, filed Sep. 20, 2000 and entitled “Heart Valve Annulus Device and Methods of Using Same,” which is incorporated herein by reference. This application is also a continuation-in-part of Patent Cooperation Treaty Application Serial No. PCT/US 02/31376, filed Oct. 1, 2002 and entitled “Systems and Devices for Heart Valve Treatments,” which claimed the benefit of U.S. Provisional Patent Application Ser. No. 60/326,590, filed Oct. 1, 2001, which are incorporated herein by reference. This application also claims the benefit of U.S. Provisional Application Ser. No. 60/429,444, filed Nov. 26, 2002, and entitled “Heart Valve Remodeling Devices;” U.S. Provisional Patent Application Ser. No. 60/429,709, filed Nov. 26, 2002, and entitled “Neo-Leaflet Medical Devices;” and U.S. Provisional Patent Application Ser. No. 60/429,462, filed Nov. 26, 2002, and entitled “Heart Valve Leaflet Retaining Devices,” which are each incorporated herein by reference.
  • FIELD OF THE INVENTION
  • [0002]
    The invention is directed to devices, systems, and methods for improving the function of a heart valve, e.g., in the treatment of mitral valve regurgitation.
  • BACKGROUND OF THE INVENTION
  • [0000]
    I. The Anatomy of a Healthy Heart
  • [0003]
    The heart (see FIG. 1) is slightly larger than a clenched fist. It is a double (left and right side), self-adjusting muscular pump, the parts of which work in unison to propel blood to all parts of the body. The right side of the heart receives poorly oxygenated (“venous”) blood from the body from the superior vena cava and inferior vena cava and pumps it through the pulmonary artery to the lungs for oxygenation. The left side receives well-oxygenation (“arterial”) blood from the lungs through the pulmonary veins and pumps it into the aorta for distribution to the body.
  • [0004]
    The heart has four chambers, two on each side—the right and left atria, and the right and left ventricles. The atria are the blood-receiving chambers, which pump blood into the ventricles. A wall composed of membranous and muscular parts, called the interatrial septum, separates the right and left atria. The ventricles are the blood-discharging chambers. A wall composed of membranous and muscular parts, called the interventricular septum, separates the right and left ventricles.
  • [0005]
    The synchronous pumping actions of the left and right sides of the heart constitute the cardiac cycle. The cycle begins with a period of ventricular relaxation, called ventricular diastole. The cycle ends with a period of ventricular contraction, called ventricular systole.
  • [0006]
    The heart has four valves (see FIGS. 2 and 3) that ensure that blood does not flow in the wrong direction during the cardiac cycle; that is, to ensure that the blood does not back flow from the ventricles into the corresponding atria, or back flow from the arteries into the corresponding ventricles. The valve between the left atrium and the left ventricle is the mitral valve. The valve between the right atrium and the right ventricle is the tricuspid valve. The pulmonary valve is at the opening of the pulmonary artery. The aortic valve is at the opening of the aorta.
  • [0007]
    At the beginning of ventricular diastole (i.e., ventricular filling)(see FIG. 2), the aortic and pulmonary valves are closed to prevent back flow from the arteries into the ventricles. Shortly thereafter, the tricuspid and mitral valves open (as FIG. 2 shows), to allow flow from the atria into the corresponding ventricles. Shortly after ventricular systole (i.e., ventricular emptying) begins, the tricuspid and mitral valves close (see FIG. 3)—to prevent back flow from the ventricles into the corresponding atria—and the aortic and pulmonary valves open—to permit discharge of blood into the arteries from the corresponding ventricles.
  • [0008]
    The opening and closing of heart valves occur primarily as a result of pressure differences. For example, the opening and closing of the mitral valve occurs as a result of the pressure differences between the left atrium and the left ventricle. During ventricular diastole, when ventricles are relaxed, the venous return of blood from the pulmonary veins into the left atrium causes the pressure in the atrium to exceed that in the ventricle. As a result, the mitral valve opens, allowing blood to enter the ventricle. As the ventricle contracts during ventricular systole, the intraventricular pressure rises above the pressure in the atrium and pushes the mitral valve shut.
  • [0009]
    FIG. 4 shows a posterior oblique cutaway view of a healthy human heart 100. Two of the four heart chambers are shown, the left atrium 170, and the left ventricle 140 (not shown are the right atrium and right ventricle). The left atrium 170 fills with blood from the pulmonary veins. The blood then passes through the mitral valve (also known as the bicuspid valve, and more generally known as an atrioventricular valve) during ventricular diastole and into the left ventricle 140. During ventricular systole, the blood is then ejected out of the left ventricle 140 through the aortic valve 150 and into the aorta 160. At this time, the mitral valve should be shut so that blood is not regurgitated back into the left atrium.
  • [0010]
    The mitral valve consists of two leaflets, an anterior leaflet 110, and a posterior leaflet 115, attached to chordae tendineae 120 (or chords), which in turn are connected to papillary muscles 130 within the left atrium 140. Typically, the mitral valve has a D-shaped anterior leaflet 110 oriented toward the aortic valve, with a crescent shaped posterior leaflet 115. The leaflets intersect with the atrium 170 at the mitral annulus 190.
  • [0011]
    In a healthy heart, these muscles and their chords support the mitral and tricuspid valves, allowing the leaflets to resist the high pressure developed during contractions (pumping) of the left and right ventricles. In a healthy heart, the chords become taut, preventing the leaflets from being forced into the left or right atria and everted. Prolapse is a term used to describe the condition wherein the coaptation edges of each leaflet initially may coapt and close, but then the leaflets rise higher and the edges separate and the valve leaks. This is normally prevented by contraction of the papillary muscles and the normal length of the chords. Contraction of the papillary muscles is simultaneous with the contraction of the ventricle and serves to keep healthy valve leaflets tightly shut at peak contraction pressures exerted by the ventricle.
  • [0000]
    II. Characteristics and Causes of Mitral Valve Dysfunction
  • [0012]
    Valve malfunction can result from the chords becoming stretched, and in some cases tearing. When a chord tears, the result is a flailed leaflet. Also, a normally structured valve may not function properly because of an enlargement of the valve annulus pulling the leaflets apart. This condition is referred to as a dilation of the annulus and generally results from heart muscle failure. In addition, the valve may be defective at birth or because of an acquired disease, usually infectious or inflammatory.
  • [0013]
    FIG. 5 shows a cutaway view of a human heart 200 with a prolapsed mitral valve. The prolapsed valve does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction. The anterior 220 and posterior 225 leaflets are shown rising higher than normal (i.e., prolapsing) into the left atrium. The arrows indicate the direction of regurgitant flow. Among other causes, regurgitation can result from redundant valve leaflet tissue or from stretched chords 210 that are too long to prevent the leaflets from being blown into the atrium. As a result, the leaflets do not form a tight seal, and blood is regurgitated into the atrium.
  • [0014]
    FIG. 6 shows a cutaway view of a human heart 300 with a flailing mitral valve 320. The flailing valve also does not form a tight seal during ventricular systole. Blood thus regurgitates back into the left atrium during ventricular contraction, as indicated by the arrows. Among other causes, regurgitation can also result from torn chords 310. As an example, FIG. 7 shows a cutaway view of a human heart where the anterior leaflet 910 has torn chords 920. As a result, valve flailing and blood regurgitation occur during ventricular systole.
  • [0015]
    As a result of regurgitation, “extra” blood back flows into the left atrium. During subsequent ventricular diastole (when the heart relaxes), this “extra” blood returns to the left ventricle, creating a volume overload, i.e., too much blood in the left ventricle. During subsequent ventricular systole (when the heart contracts), there is more blood in the ventricle than expected. This means that: (1) the heart must pump harder to move the extra blood; (2) too little blood may move from the heart to the rest of the body; and (3) over time, the left ventricle may begin to stretch and enlarge to accommodate the larger volume of blood, and the left ventricle may become weaker.
  • [0016]
    Although mild cases of mitral valve regurgitation result in few problems, more severe and chronic cases eventually weaken the heart and can result in heart failure. Mitral valve regurgitation can be an acute or chronic condition. It is sometimes called mitral insufficiency.
  • [0000]
    III. Prior Treatment Modalities
  • [0017]
    In the treatment of mitral valve regurgitation, diuretics and/or vasodilators can be used to help reduce the amount of blood flowing back into the left atrium. An intra-aortic balloon counterpulsation device is used if the condition is not stabilized with medications. For chronic or acute mitral valve regurgitation, surgery to repair or replace the mitral valve is often necessary.
  • [0018]
    To date, invasive, open heart surgical approaches have been used to repair or replace the mitral valve with either a mechanical valve or biological tissue (bioprosthetic) taken from pigs, cows, or horses.
  • [0019]
    The need remains for simple, cost-effective, and less invasive devices, systems, and methods for treating dysfunction of a heart valve, e.g., in the treatment of mitral valve regurgitation.
  • SUMMARY OF THE INVENTION
  • [0020]
    The invention provides devices, systems and methods that supplement, repair, or replace a native heart valve leaflet. The devices, systems, and methods include an implant that, in use, rests adjacent a valve annulus. The implant defines a pseudo-annulus. The implant includes a neoleaflet element that occupies the space of at least a portion of one native valve leaflet. The implant allows the native leaflets to coexist with the implant, or if desired or indicated, one or more native leaflets can be removed and replaced by the implant. The neoleaflet element of the implant is shaped and compressed to mimic the one-way valve function of a native leaflet. The implant includes spaced-apart struts that are sized and configured to contact tissue near or within the heart valve annulus to brace the implant against migration within the annulus during the one-way valve function.
  • [0021]
    According to one aspect of the invention, the implant includes a scaffold, which defines a pseudo-annulus. The implant further includes at least two struts in generally oppositely spaced apart positions on the scaffold. The scaffold can be placed in an elastically loaded condition in a heart with the struts engaging tissue at or near the leaflet commissures of a heart valve annulus, to reshape the annulus for leaflet coaptation. The implant further provides a neoleaflet element coupled to the scaffold within pseudo-annulus, to provide a one-way valve function.
  • [0022]
    Other features and advantages of the invention shall be apparent based upon the accompanying description, drawings, and claims.
  • DESCRIPTION OF THE DRAWINGS
  • [0023]
    FIG. 1 is a perspective, anterior anatomic view of the interior of a healthy heart.
  • [0024]
    FIG. 2 is a superior anatomic view of the interior of a healthy heart, with the atria removed, showing the condition of the heart valves during ventricular diastole.
  • [0025]
    FIG. 3 is a superior anatomic view of the interior of a healthy heart, with the atria removed, showing the condition of the heart valves during ventricular systole.
  • [0026]
    FIG. 4 is a posterior oblique cutaway view of a portion of a human heart, showing a healthy mitral valve during ventricular systole, with the leaflets properly coapting.
  • [0027]
    FIG. 5 is a posterior oblique cutaway view of a portion of a human heart, showing a dysfunctional prolapsing mitral valve during ventricular systole, with the leaflets not properly coapting, causing regurgitation.
  • [0028]
    FIG. 6 is a posterior oblique cutaway view of a portion of a human heart, showing a dysfunctional mitral valve during ventricular systole, with the leaflets flailing, causing regurgitation.
  • [0029]
    FIG. 7 is a posterior oblique cutaway view of a portion of a human heart, showing a dysfunctional mitral valve during ventricular systole, caused by torn chords, that leads to regurgitation.
  • [0030]
    FIG. 8 is a perspective view of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaflet element that occupies the space of at least one native valve leaflet.
  • [0031]
    FIG. 9A is a perspective, anatomic view of the implant shown in FIG. 8, with the neoleaflet element installed over an anterior leaflet of a mitral valve to restore normal function.
  • [0032]
    FIG. 9B is a perspective, anatomic view of the implant of the type shown in FIG. 8, with the neoleaflet element installed over a posterior leaflet of a mitral valve to restore normal function to the native valve leaflet.
  • [0033]
    FIG. 10 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being shown installed on a mitral valve annulus and having a neoleaflet element that occupies the space of at least one native valve leaflet, the implant also including a framework that rises above the neoleaflet element in the atrium to help fix and stabilize the implant.
  • [0034]
    FIG. 11 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including two neoleaflet elements that occupy the space of two native valve leaflets.
  • [0035]
    FIG. 12 is a perspective view of the implant shown in FIG. 11, with the two neoleaflet elements in a valve opened condition, as would exist during ventricular diastole.
  • [0036]
    FIG. 13 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaflet element formed by a membrane.
  • [0037]
    FIG. 14 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaf let element formed by a membrane, the implant also including a framework that rises above the neoleaflet element in the atrium to help fix and stabilize the implant.
  • [0038]
    FIG. 15 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including two neoleaflet elements to form a duckbill valve, the valve being shown in an opened condition as would exist during ventricular diastole.
  • [0039]
    FIG. 16 is a perspective view of the implant shown in FIG. 15, the duckbill valve being shown in a closed condition as would exist during ventricular systole.
  • [0040]
    FIGS. 17 and 18 are side views of the implant shown, respectively, in FIGS. 15 and 16, with the duckbill valve, respectively, in an opened and a closed condition.
  • [0041]
    FIG. 19 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including two neoleaflet elements formed by a duckbill valve, the valve being shown in an opened condition as would exist during ventricular diastole, the implant also including a framework that rises above the neoleaflet elements in the atrium to help fix and stabilize the implant.
  • [0042]
    FIG. 20 is a perspective view of the implant shown in FIG. 19, the duckbill valve being shown in a closed condition as would exist during ventricular systole.
  • [0043]
    FIGS. 21A to 21C diagrammatically show a method of gaining intravascular access to the left atrium for the purpose of deploying a delivery catheter to place an. implant in a valve annulus to supplement, repair, or replace a native heart valve leaflet
  • DETAILED DESCRIPTION
  • [0044]
    Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention, which may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
  • [0045]
    FIGS. 8 and 9 show an implant 400 sized and configured to supplement, repair, or replace a dysfunctional native heart valve leaflet or leaflets. In use (see, in particular, FIG. 9), the implant 400 defines a pseudo-annulus that rests adjacent the native valve annulus and includes a neoleaflet element that occupies the space of at least a portion of one native valve leaflet. The implant 400 allows the native leaflets to coexist with the implant 400. If desired or indicated, one or more native leaflets can be removed and replaced by the implant 400.
  • [0046]
    In its most basic form, the implant 400 is made—e.g., by machining, bending, shaping, joining, molding, or extrusion—from a biocompatible metallic or polymer material, or a metallic or polymer material that is suitably coated, impregnated, or otherwise treated with a material to impart biocompatibility, or a combination of such materials. The material is also desirably radio-opaque to facilitate fluoroscopic visualization.
  • [0047]
    As FIG. 8 shows, the implant 400 includes a base or scaffold 420 that, in the illustrated embodiment, is sized and configured to rest adjacent the mitral annulus. At least a portion of the base 420 forms an annular body that approximates the shape of the native annulus. For this reason, the base 420 will also be referred to as a “pseudo-annulus.”
  • [0048]
    The base 420 supports a bridge 430 that extends into the valve. The bridge 430 is sized and configured (see FIG. 9A) to overlay the space of at least a portion of one native valve leaflet. In FIG. 9A, the bridge 430 overlays an anterior leaflet. However, as FIG. 9B shows, the bridge 430 could be oriented to overlay a posterior leaflet. As will be described later (see FIG. 11), two bridges can be formed to overlay both leaflets.
  • [0049]
    As FIG. 8 shows, the implant 400 includes a material 410 that covers or spans the bridge 430. The spanning material 410 may be attached to the implant 400 with one or more attachment means 440. For example, the spanning materials 410 may be sewn, glued, or welded to the implant 400, or it may be attached to itself when wrapped around the implant 400. The spanning material 410 may be made from a synthetic material (for example, thin Nitinol, polyester fabric, polytetrafluoroethylene or PTFE, silicone, or polyurethane) or a biological material (for example, human or animal pericardium).
  • [0050]
    Together, the bridge 430 and the spanning material 410 comprise a neoleaflet element 470 coupled to the base 420. The neoleaflet element 470 may be rigid, semi-rigid, or flexible. The neoleaflet element 470 is coupled to the base 420 in a manner that exerts a mechanical, one-way force to provide a valve function that responds to differential pressure conditions across the neoleaflet element. In response to one prescribed differential pressure condition, the neoleaflet element 470 will deflect and, with a native leaflet, assume a valve opened condition. In response to another prescribed pressure condition, the neoleaflet element 470 will resist deflection and, by coaptation with a native leaflet (or a companion neoleaflet element) at, above, or below the annulus plane, maintain a valve closed condition.
  • [0051]
    In the context of the illustrated embodiment (when installed in a mitral valve annulus), the neoleaflet element resists being moved in the cranial (superior) direction (into the atrium), when the pressure in the ventricle exceeds the pressure in the atrium—as it would during ventricular systole. The neoleaflet element 470 may move, however, in the caudal (inferior) direction (into the ventricle), when the pressure in the ventricle is less than the pressure in the atrium—as it would during ventricular diastole. The neoleaflet element 470 thereby mimics the one-way valve function of a native leaflet, to prevent retrograde flow.
  • [0052]
    The implant 400 is sized and shaped so that, in use adjacent the valve annulus of the mitral valve, it keeps the native valve leaflet closed during ventricular systole (as shown in FIGS. 9A and 9B), to prevent flailing and/or prolapse of the native valve leaflet it overlays during ventricular systole. The implant 400 thus restores to the heart valve leaflet or leaflets a normal resistance to the high pressure developed during ventricular contractions, resisting valve leaflet eversion and/or prolapse and the resulting back flow of blood from the ventricle into the atrium during ventricular systole. The pressure difference serves to keep valve leaflets tightly shut during ventricular systole. The implant 400, however, does not interfere with opening of the native valve leaflet or leaflets during ventricular diastole (see, e.g., FIG. 12). The implant 400 allows the leaflet or leaflets to open during ventricular diastole, so that blood flow occurs from the atrium into the ventricle. The implant 400 thereby restores normal one-way function to the valve, to prevent retrograde flow.
  • [0053]
    The functional characteristics of the implant 400 just described can be imparted to the neoleaflet element 470 in various ways. For example, hinges and springs (mechanical or plastic) can be used to couple the bridge to the base. Desirably, the implant 400 is made from materials that provide it with spring-like characteristics.
  • [0054]
    As shown in FIG. 8, in the illustrated embodiment, the base 420 and bridge 430 are shaped from a length of wire-formed material. The shape and material properties of the implant determine its physical spring-like characteristics as well as its ability to open in one direction only. The spring-like characteristics of the implant 400 allow it to respond dynamically to changing differential pressure conditions within the heart.
  • [0055]
    More particularly, in the illustrated mitral valve embodiment, when greater pressure exists superior to the bridge 430 than inferior to the bridge (i.e., during ventricular diastole), the shape and material properties of the bridge 430 accommodate its deflection into the ventricle—i.e., an opened valve condition (as FIG. 12 shows in another illustrative embodiment). When greater pressure exists inferior to the bridge 430 than superior to the bridge (i.e., during ventricular systole), the shape and material properties of the bridge 430 enable it to resist superior movement of the leaflet into the atrium, and otherwise resist eversion and/or prolapse of the valve leaflet into the atrium (as FIGS. 9A and 9B also show).
  • [0056]
    The implant 400 may be delivered percutaneously, thoracoscopically through the chest, or using open heart surgical techniques. If delivered percutaneously, the implant 400 may be made from a superelastic material (for example superelastic Nitinol alloy) enabling it to be folded and collapsed such that it can be delivered in a catheter, and will subsequently self-expand into the desired shape and tension when released from the catheter.
  • [0057]
    For example, percutaneous vascular access can be achieved by conventional methods into the femoral or jugular vein. As FIG. 21A shows, under image guidance (e.g., fluoroscopic, ultrasonic, magnetic resonance, computed tomography, or combinations thereof), a catheter 52 is steered through the vasculature into the right atrium. A needle cannula 54 carried on the distal end of the catheter is deployed to pierce the septum between the right and left atrium. As FIG. 21B shows, a guide wire 56 is advanced trans-septally through the needle catheter 52 into the left atrium. The first catheter 52 is withdrawn, and (as FIG. 21C shows) under image guidance, an implant delivery catheter 58 is advanced over the guide wire 56 into the left atrium into proximity with the mitral valve. Alternatively, the implant delivery catheter 58 can be deployed trans-septally by means of surgical access through the right atrium.
  • [0058]
    The distal end of the catheter 58 encloses an implant 400, like that shown in FIG. 8, which is constrained in a collapsed condition. A flexible push rod in the catheter 58 can be used to expel the implant 400 from the catheter 58. Free of the catheter, the implant 400 will self-expand to its preordained configuration, e.g., like that shown in FIGS. 9A or 9B.
  • [0059]
    The implant 400 may be fixed to the annulus in various ways. For example, the implant 400 may be secured to the annulus with sutures or other attachment means (i.e. barbs, hooks, staples, etc.) Also, the implant 400 may be secured with struts or tabs 450 (see FIGS. 8 and 9A), that extend from the base 420 above or below the plane of the annulus. The struts 450 are preferably configured with narrow connecting members that extend through the valve orifice so that they will not interfere with the opening and closing of the valve.
  • [0060]
    In this arrangement, the struts 450 are desirably sized and configured to contact tissue near or within the heart valve annulus to brace the base 420 against migration within the annulus during the one-way valve function of the neoleaflet element. In this arrangement, it is also desirable that the base 420 be “elastic,” i.e., the material of the base 420 is selected to possess a desired spring constant. This means that the base 420 is sized and configured to possess a normal, unloaded, shape or condition (shown in FIG. 8), in which the base 420 is not in net compression, and the struts 450 are spaced apart farther than the longest cross-annulus distance between the tissue that the struts 450 are intended to contact. In the illustrated embodiment, the base 420 is shown resting along the major (i.e., longest) axis of the valve annulus, with the struts 450 contacting tissue at or near the leaflet commissures. However, other orientations are possible. The struts 450 need not rest at or near the leaflet commissures, but may be significantly removed from the commissures, so as to gain padding from the leaflets. The spring constant imparts to the base 420 the ability to be elastically compressed out of its normal, unloaded condition, in response to external compression forces applied at the struts 450. The base 420 is sized and configured to assume an elastically loaded, in net compression condition, during which the struts 450 are spaced apart a sufficiently shorter distance to rest in engagement with tissue at or near the leaflet commissures (or wherever tissue contact with the struts 450 is intended to occur) (see FIGS. 9A or 9B). When in its elastically loaded, net compressed condition (see FIGS. 9A and 9B), the base 450 can exert forces to the tissues through the struts 450. These forces hold the base 420 against migration within the annulus. Furthermore, when the struts 450 are positioned at or near the commissures, they tend to outwardly displace tissue and separate tissue along the major axis of the annulus, which also typically stretches the leaflet commissures, shortens the minor axis, and/or reshapes surrounding anatomic structures. The base 450 can also thereby reshape the valve annulus toward a shape more conducive to leaflet coaptation. It should be appreciated that, in order to be therapeutic, the implant may only need to reshape the annulus during a portion of the heart cycle, such as during ventricular systolic contraction. For example, the implant may be sized to produce small or negligible outward displacement of tissue during ventricular diastole when the tissue is relaxed, but restrict the inward movement of tissue during ventricular systolic contraction.
  • [0061]
    As the preceding disclosure demonstrates, different forms of heart valve treatment can be performed using a single implant.
  • [0062]
    Implants having one or more of the technical features just described, to thereby function in situ as a neo-leaflet, may be sized and configured in various ways. Various illustrative embodiments will now be described.
  • [0063]
    In FIG. 10, an implant 600 (like implant 400) includes a base 620 that defines a pseudo-annulus, with a bridge 630 carrying a spanning material 640 together comprising a neoleaflet element 650 appended to the base 620 within the pseudo-annulus. The neoleaflet element 650 overlays an anterior native leaflet with the same purpose and function described for the implant 400. Alternatively, the neoleaflet element 650 could overlay a posterior native leaflet, as FIG. 9B shows. The implant 600 also includes struts 670, which desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 420 against migration within the annulus.
  • [0064]
    In addition, the implant 600 includes an orientation and stabilization framework 610 that may extend from the annulus to the atrial dome. In FIG. 10, the framework 610 rises from the base 620 with two substantially parallel arched wires, which connect to form a semicircular hoop above the base 620. The framework 610 helps to accurately position the implant 600 within the atrium, and also helps to secure the implant 600 within the atrium.
  • [0065]
    Preferably the framework 610 does not interfere with atrial contractions, but instead is compliant enough to contract with the atrium. As such, the implant 600 may have nonuniform flexibility to improve its function within the heart.
  • [0066]
    FIGS. 11 and 12 show another illustrative embodiment of an implant 700. In FIGS. 11 and 12, the implant 700 contains two neo-leaflet elements. The implant 700 includes an anterior bridge 730 spanned by an anterior bridge material 710, and a posterior bridge 735 spanned by a posterior bridge material 720. The bridges and materials together comprise anterior and posterior neoleaflet elements 780A and 780P. The implant 700 also includes an orientation and stabilization framework 770, shown having a configuration different than the framework 610 in FIG. 9, but having the same function and serving the same purpose as previously described for the framework 610.
  • [0067]
    In FIGS. 11 and 12, the base 760 includes structures like the anchoring clips 740 that, in use, protrude above the plane formed by the annulus of the valve. Additionally, the implant 700 may be secured with struts 750 that extend from the base 760 on narrow connecting members and below the plane of the annulus into the ventricular chamber. The anchoring clips 740 and struts 750 desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 760 against migration within the annulus. FIG. 11 shows the dual neo-leaflets 780A and 780B (i.e., the covered anterior and posterior bridges 730 and 735) in a closed valve position. FIG. 12 shows the dual neo-leaflets 780A and 780B in an open valve position.
  • [0068]
    FIG. 13 shows another illustrative embodiment of an implant 1000 having a full sewing ring 1030 with a membrane 1010 that serves as a neo-leaflet. The device 1000 has an opening 1020 though the sewing ring 1030 opposite the membrane 1010 for blood flow. Alternatively, this embodiment could have two neo-leaflets. This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the atrium using catheter based intraluminal techniques. Additionally, the device may be secured with struts 1040 that extend from the base on narrow connecting members and below the plane of the annulus into the ventricular chamber. The struts 1040, which desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 420 against migration within the annulus.
  • [0069]
    As can be seen, a given implant may carry various structures or mechanisms to enhance the anchorage and stabilization of the implant in the heart valve annulus. The mechanisms may be located below the plane of the annulus, to engage infra-annular heart tissue adjoining the annulus in the ventricle, and/or be located at or above the plane of the annulus, to engage tissue on the annulus or in the atrium. These mechanisms increase the surface area of contact between the implant and tissue. A given implant can also include tissue in-growth surfaces, to provide an environment that encourages the in-growth of neighboring tissue on the implant. Once in-growth occurs, the implant becomes resistant to migration or dislodgment from the annulus. Conventional in-growth materials such as polyester fabric can be used.
  • [0070]
    FIG. 14 shows another illustrative embodiment of an implant 1100 having a framework 1120 and struts or tabs 1110. This implant 1100 includes a membrane 1130, that serves as a neo-leaflet, attached to the base 1140 of the device with an attachment means 1150.
  • [0071]
    FIG. 15 shows another illustrative embodiment of an implant 1200. In this embodiment, the implant 1200 includes a base 1220 that defines a pseudo-annulus and that, in use, is rests adjacent all or a portion of a native valve annulus. The base 1240 supports a duckbill valve 1210, which forms a neoleaflet element. Peripherally supported on the base 1240, the duckbill valve 1210 rests in the pseudo-annulus. Struts 1230 (which also carry additional tab structures to increase the surface area of tissue contact) help brace the base 1240 to tissue near or within the heart valve annulus.
  • [0072]
    In this embodiment, the duckbill valve 1210 replaces the native anterior and posterior leaflets. The duckbill valve 1210 serves as dual neo-leaflets, which mutually open and close in response to changes in pressure, replacing the function of the native leaflets. FIG. 15 shows the duckbill valve 1210 in the open valve position. In FIG. 15, the arrow shows the direction of blood flow through the opened valve. FIG. 16 shows the duckbill valve in the closed valve position. When closed, the duckbill valve 1210 resists eversion and regurgitation.
  • [0073]
    When the implant 1200 is used to replace a mitral valve (see FIGS. 17 and 18), the duckbill valve 1210 extends from the plane of the valve annulus and into the ventricle. The duckbill valve 1210 is shown to have a more rigid or thick composition emerging from the base member, and gradually becoming less rigid or thick away from the base member. This variation in mechanical properties ensures a valve that responds dynamically to pressure changes, but that is also rigid enough to not become everted. FIG. 17 shows the valve 1210 in an opened valve condition. In FIG. 17, the arrow shows the direction of blood flow through the opened valve. FIG. 18 shows the duckbill valve in the closed valve position, without eversion and regurgitation.
  • [0074]
    FIGS. 19 and 20 show another illustrative embodiment of an implant 1600 of the type shown in FIGS. 15 and 16. Like the implant 1200, the implant 1600 includes base 1620 defining a pseudo-annulus to which a duckbill valve 1630 is appended, which serves as a neoleaflet element to replace the native anterior and posterior leaflets and serves as dual neo-leaflets. FIG. 19 shows the duckbill valve 1630 in the open valve position, allowing forward flow of blood through the opened valve. FIG. 20 shows the duckbill valve 1630 in the closed valve position, resisting eversion and regurgitation.
  • [0075]
    In FIGS. 19 and 20, the implant 1600 includes an orientation and stabilization framework 1610. The framework 1610 rises from the base 1620 as two arches extending from opposite sides of the base 1620. The dual arch framework 1610 possesses compliance to contract with the atrium. As before explained, the framework 1610 helps to accurately position the implant 1600 within the atrium, and also helps to secure the implant 600 within the atrium. The implant 1600 also includes struts 1640, which desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 1620 against migration within the annulus.
  • [0076]
    While the new devices and methods have been more specifically described in the context of the treatment of a mitral heart valve, it should be understood that other heart valve types can be treated in the same or equivalent fashion. By way of example, and not by limitation, the present systems and methods could be used to prevent or resist retrograde flow in any heart valve annulus, including the tricuspid valve, the pulmonary valve, or the aortic valve. In addition, other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification and examples should be considered exemplary and merely descriptive of key technical features and principles, and are not meant to be limiting. The true scope and spirit of the invention are defined by the following claims. As will be easily understood by those of ordinary skill in the art, variations and modifications of each of the disclosed embodiments can be easily made within the scope of this invention as defined by the following claims.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US4056854 *28 Sep 19768 Nov 1977The United States Of America As Represented By The Department Of Health, Education And WelfareAortic heart valve catheter
US4275469 *13 Dic 197930 Jun 1981Shelhigh Inc.Prosthetic heart valve
US4994069 *2 Nov 198819 Feb 1991Target TherapeuticsVaso-occlusion coil and method
US5360444 *9 Dic 19931 Nov 1994Kenji KusuharaOccluder supporter and a method of attachment thereof
US5370685 *16 Jul 19916 Dic 1994Stanford Surgical Technologies, Inc.Endovascular aortic valve replacement
US5545241 *17 Ene 199513 Ago 1996Donaldson Company, Inc.Air cleaner
US5716397 *6 Dic 199610 Feb 1998Medtronic, Inc.Annuloplasty device with removable stiffening element
US5776189 *5 Mar 19977 Jul 1998Khalid; NaqeebCardiac valvular support prosthesis
US5792155 *19 Dic 199511 Ago 1998Van Cleef; Jean-FrancoisProcess for partially or totally flattening a vein
US5830224 *15 Mar 19963 Nov 1998Beth Israel Deaconess Medical CenterCatheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US5855601 *21 Jun 19965 Ene 1999The Trustees Of Columbia University In The City Of New YorkArtificial heart valve and method and device for implanting the same
US5961440 *18 Sep 19975 Oct 1999Myocor, Inc.Heart wall tension reduction apparatus and method
US6045497 *29 Jul 19984 Abr 2000Myocor, Inc.Heart wall tension reduction apparatus and method
US6050936 *2 Ene 199718 Abr 2000Myocor, Inc.Heart wall tension reduction apparatus
US6059715 *4 Ene 19999 May 2000Myocor, Inc.Heart wall tension reduction apparatus
US6077214 *29 Jul 199820 Jun 2000Myocor, Inc.Stress reduction apparatus and method
US6099542 *17 Ago 19988 Ago 2000Beth Israel Hospital Association Inc.Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a prechosen anatomic site in-vivo
US6102932 *15 Dic 199815 Ago 2000Micrus CorporationIntravascular device push wire delivery system
US6162168 *28 Ene 200019 Dic 2000Myocor, Inc.Heart wall tension reduction apparatus
US6165119 *4 Ene 199926 Dic 2000Myocor, Inc.Heart wall tension reduction apparatus and method
US6183411 *21 Sep 19986 Feb 2001Myocor, Inc.External stress reduction device and method
US6210432 *30 Jun 19993 Abr 2001Jan Otto SolemDevice and method for treatment of mitral insufficiency
US6260552 *29 Jul 199817 Jul 2001Myocor, Inc.Transventricular implant tools and devices
US6261222 *3 Feb 200017 Jul 2001Myocor, Inc.Heart wall tension reduction apparatus and method
US6287339 *27 May 199911 Sep 2001Sulzer Carbomedics Inc.Sutureless heart valve prosthesis
US6299637 *20 Ago 19999 Oct 2001Samuel M. ShaolianTransluminally implantable venous valve
US6312464 *28 Abr 19996 Nov 2001NAVIA JOSé L.Method of implanting a stentless cardiac valve prosthesis
US6312465 *23 Jul 19996 Nov 2001Sulzer Carbomedics Inc.Heart valve prosthesis with a resiliently deformable retaining member
US6332864 *27 Oct 200025 Dic 2001Myocor, Inc.Heart wall tension reduction apparatus
US6332893 *17 Dic 199725 Dic 2001Myocor, Inc.Valve to myocardium tension members device and method
US6338735 *15 Mar 199615 Ene 2002John H. StevensMethods for removing embolic material in blood flowing through a patient's ascending aorta
US6338740 *26 Ene 200015 Ene 2002Edwards Lifesciences CorporationFlexible heart valve leaflets
US6402781 *31 Ene 200011 Jun 2002MitralifePercutaneous mitral annuloplasty and cardiac reinforcement
US6419695 *22 May 200016 Jul 2002Shlomo GabbayCardiac prosthesis for helping improve operation of a heart valve
US6419696 *6 Jul 200016 Jul 2002Paul A. SpenceAnnuloplasty devices and related heart valve repair methods
US6440164 *21 Oct 199927 Ago 2002Scimed Life Systems, Inc.Implantable prosthetic valve
US6454799 *6 Abr 200024 Sep 2002Edwards Lifesciences CorporationMinimally-invasive heart valves and methods of use
US6458153 *31 Dic 19991 Oct 2002Abps Venture One, Ltd.Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6503272 *21 Mar 20017 Ene 2003Cordis CorporationStent-based venous valves
US6514194 *2 Nov 20014 Feb 2003Myocor, Inc.Heart wall tension reduction apparatus and method
US6537198 *21 Mar 200025 Mar 2003Myocor, Inc.Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US6589160 *2 Nov 20018 Jul 2003Myocor, Inc.Heart wall tension reduction apparatus
US6616684 *6 Oct 20009 Sep 2003Myocor, Inc.Endovascular splinting devices and methods
US6626899 *3 Jul 200130 Sep 2003Nidus Medical, LlcApparatus and methods for treating tissue
US6629534 *7 Abr 20007 Oct 2003Evalve, Inc.Methods and apparatus for cardiac valve repair
US6656221 *5 Feb 20022 Dic 2003Viacor, Inc.Method and apparatus for improving mitral valve function
US6669709 *21 Sep 200130 Dic 2003Transvascular, Inc.Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US6676699 *26 Abr 200213 Ene 2004Medtronic Ave, IncStent graft with integrated valve device and method
US6685739 *9 Jul 20023 Feb 2004Scimed Life Systems, Inc.Implantable prosthetic valve
US6702826 *22 Jun 20019 Mar 2004Viacor, Inc.Automated annular plication for mitral valve repair
US6709456 *1 Oct 200123 Mar 2004Ev3 Santa Rosa, Inc.Percutaneous mitral annuloplasty with hemodynamic monitoring
US6723038 *6 Oct 200020 Abr 2004Myocor, Inc.Methods and devices for improving mitral valve function
US6764510 *9 Ene 200220 Jul 2004Myocor, Inc.Devices and methods for heart valve treatment
US6793618 *20 Dic 200221 Sep 2004Myocor, Inc.Heart wall tension reduction apparatus
US6821297 *30 Abr 200223 Nov 2004Robert V. SnydersArtificial heart valve, implantation instrument and method therefor
US6893459 *20 Sep 200017 May 2005Ample Medical, Inc.Heart valve annulus device and method of using same
US6913608 *23 Oct 20015 Jul 2005Viacor, Inc.Automated annular plication for mitral valve repair
US6945978 *15 Nov 200220 Sep 2005Advanced Cardiovascular Systems, Inc.Heart valve catheter
US7004176 *17 Oct 200328 Feb 2006Edwards Lifesciences AgHeart valve leaflet locator
US7070618 *25 Oct 20014 Jul 2006Viacor, Inc.Mitral shield
US7166126 *28 Oct 200323 Ene 2007Paul A. SpenceHeart valve repair apparatus and methods
US7291168 *28 Oct 20036 Nov 2007Ample Medical, Inc.Methods and devices for heart valve treatments
US7381220 *1 Oct 20033 Jun 2008Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US7527646 *1 Oct 20035 May 2009Ample Medical, Inc.Devices, systems, and methods for retaining a native heart valve leaflet
US20010010017 *28 Feb 200126 Jul 2001Brice LetacAlve prosthesis for implantation in body channels
US20010021872 *11 May 200113 Sep 2001Bailey Steven R.Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US20010051824 *9 Abr 200113 Dic 2001Hopkins Richard A.Cardiac valve replacement
US20020032481 *9 Oct 200114 Mar 2002Shlomo GabbayHeart valve prosthesis and sutureless implantation of a heart valve prosthesis
US20020065554 *25 Oct 200130 May 2002Streeter Richard B.Mitral shield
US20020094573 *19 Dic 200118 Jul 2002Eugene BellCardiovascular components for transplantation and methods of making thereof
US20020123802 *30 Abr 20025 Sep 2002Snyders Robert V.Artificial heart valve, implantation instrument and method therefor
US20020129820 *16 Oct 200119 Sep 2002Medtronic, IncAnnuloplasty band and method
US20020138138 *23 Mar 200126 Sep 2002Jibin YangRolled minimally-invasive heart valves and methods of use
US20030014104 *2 May 200216 Ene 2003Alain CribierValue prosthesis for implantation in body channels
US20030040792 *8 Oct 200227 Feb 2003Shlomo GabbayHeart valve prosthesis and sutureless implantation of a heart valve prosthesis
US20030120340 *26 Dic 200126 Jun 2003Jan LiskaMitral and tricuspid valve repair
US20030233022 *9 Jun 200318 Dic 2003Vidlund Robert M.Devices and methods for heart valve treatment
US20040127981 *1 Oct 20031 Jul 2004Ample Medical, Inc.Devices, systems, and methods for retaining a native heart valve leaflet
US20040148019 *10 Nov 200329 Jul 2004Vidlund Robert M.Devices and methods for heart valve treatment
US20040243107 *1 Oct 20022 Dic 2004Macoviak John AMethods and devices for treating atrial fibrilation
US20050010287 *1 Oct 200313 Ene 2005Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20050055089 *19 Jul 200410 Mar 2005Ample Medical, Inc.Devices, systems, and methods for reshaping a heart valve annulus
US20050228468 *1 Abr 200413 Oct 2005Macoviak John ADevices, systems, and methods for treating atrial fibrillation
US20050245906 *4 Ago 20043 Nov 2005Exploramed Nc1, Inc.Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US20050267573 *1 Oct 20031 Dic 2005Ample Medical, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20060069430 *1 Oct 200330 Mar 2006Ample Medical, Inc.Devices, systems, and methods for retaining a native heart valve leaflet
US20060241745 *19 Abr 200626 Oct 2006Solem Jan OBlood flow controlling apparatus
US20080140190 *25 Oct 200712 Jun 2008Ample Medical, Inc.Methods and devices for heart valve treatments
US20090005763 *21 Abr 20081 Ene 2009Exploramed Nc1, Inc.Implantable Devices and Methods for Delivering Drugs and Other Substances to Treat Sinusitis and Other Disorders
US20090043381 *5 Oct 200512 Feb 2009Macoviak John AAtrioventricular valve annulus repair systems and methods including retro-chordal anchors
US20090228099 *23 Abr 200910 Sep 2009Ample Medical, Inc.Devices, systems, and methods for retaining a native heart valve leaflet
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US785784510 Feb 200628 Dic 2010Sorin Biomedica Cardio S.R.L.Cardiac-valve prosthesis
US8016882 *31 Oct 200713 Sep 2011Mvrx, Inc.Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US810999625 Feb 20057 Feb 2012Sorin Biomedica Cardio, S.R.L.Minimally-invasive cardiac-valve prosthesis
US851239727 Abr 200920 Ago 2013Sorin Group Italia S.R.L.Prosthetic vascular conduit
US853537316 Jun 200817 Sep 2013Sorin Group Italia S.R.L.Minimally-invasive cardiac-valve prosthesis
US853966216 Jun 200824 Sep 2013Sorin Group Italia S.R.L.Cardiac-valve prosthesis
US854076830 Dic 201124 Sep 2013Sorin Group Italia S.R.L.Cardiac valve prosthesis
US868508428 Dic 20121 Abr 2014Sorin Group Italia S.R.L.Prosthetic vascular conduit and assembly method
US88083695 Oct 201019 Ago 2014Mayo Foundation For Medical Education And ResearchMinimally invasive aortic valve replacement
US883456316 Dic 200916 Sep 2014Sorin Group Italia S.R.L.Expandable prosthetic valve having anchoring appendages
US884066113 May 200923 Sep 2014Sorin Group Italia S.R.L.Atraumatic prosthetic heart valve prosthesis
US8858623 *1 Nov 201214 Oct 2014Valtech Cardio, Ltd.Implant having multiple rotational assemblies
US892049221 Ago 201330 Dic 2014Sorin Group Italia S.R.L.Cardiac valve prosthesis
US89266955 Dic 20076 Ene 2015Valtech Cardio, Ltd.Segmented ring placement
US9011523 *19 Jun 201221 Abr 2015Jacques SeguinProsthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
US907875117 Mar 201014 Jul 2015Mitrassist Medical Ltd.Heart valve prosthesis with collapsible valve and method of delivery thereof
US909546429 Jun 20104 Ago 2015Cook Medical Technologies LlcSlotted pusher rod for flexible delivery system
US911971924 Ene 20131 Sep 2015Valtech Cardio, Ltd.Annuloplasty ring with intra-ring anchoring
US913831410 Feb 201422 Sep 2015Sorin Group Italia S.R.L.Prosthetic vascular conduit and assembly method
US915562015 Jun 200913 Oct 2015Valtec Cardio, Ltd.Annuloplasty devices and methods of delivery therefor
US916183610 Feb 201220 Oct 2015Sorin Group Italia S.R.L.Sutureless anchoring device for cardiac valve prostheses
US919247215 Jun 200924 Nov 2015Valtec Cardio, Ltd.Annuloplasty devices and methods of delivery therefor
US924801720 May 20112 Feb 2016Sorin Group Italia S.R.L.Support device for valve prostheses and corresponding kit
US926560815 Sep 201423 Feb 2016Valtech Cardio, Ltd.Implant having multiple rotational assemblies
US928928910 Feb 201222 Mar 2016Sorin Group Italia S.R.L.Sutureless anchoring device for cardiac valve prostheses
US9301836 *1 Sep 20115 Abr 2016Mvalve Technologies Ltd.Cardiac valve support structure
US935183024 Nov 201431 May 2016Valtech Cardio, Ltd.Implant and anchor placement
US9414919 *17 Sep 201316 Ago 2016Medtronic, Inc.Semi-rigid annuloplasty ring and band
US941492124 Mar 201516 Ago 2016Valtech Cardio, Ltd.Tissue anchor for annuloplasty device
US947460616 Sep 201325 Oct 2016Valtech Cardio, Ltd.Over-wire implant contraction methods
US948631319 Nov 20148 Nov 2016Sorin Group Italia S.R.L.Cardiac valve prosthesis
US952661319 Nov 201327 Dic 2016Valtech Cardio Ltd.Mitral valve treatment techniques
US95921221 Abr 201414 Mar 2017Valtech Cardio, LtdAnnuloplasty ring with intra-ring anchoring
US9610161 *8 Sep 20114 Abr 2017Mvrx, Inc.Devices, systems, and methods for supplementing, repairing or replacing a native heart valve leaflet
US961016226 Dic 20134 Abr 2017Valtech Cardio, Ltd.Implantation of flexible implant
US96228617 Abr 201418 Abr 2017Valtech Cardio, Ltd.Tool for actuating an adjusting mechanism
US96297204 May 201525 Abr 2017Jacques SeguinApparatus and methods for treating cardiac valve regurgitation
US966220921 Jun 201230 May 2017Valtech Cardio, Ltd.Contractible annuloplasty structures
US971353011 Dic 201425 Jul 2017Valtech Cardio, Ltd.Adjustable annuloplasty devices and adjustment mechanisms therefor
US97241928 Nov 20128 Ago 2017Valtech Cardio, Ltd.Controlled steering functionality for implant-delivery tool
US97307933 Dic 201315 Ago 2017Valtech Cardio, Ltd.Techniques for guide-wire based advancement of a tool
US97506042 Abr 20145 Sep 2017Mitrassist Medical Ltd.Heart valve prosthesis with collapsible valve and method of delivery thereof
US97757097 Ene 20163 Oct 2017Valtech Cardio, Ltd.Implant having multiple adjustable mechanisms
US20060178740 *10 Feb 200610 Ago 2006Sorin Biomedica Cardio S.R.L.Cardiac-valve prosthesis
US20080249619 *16 Jun 20089 Oct 2008Sorin Biomedica Cardio S.R.L.Cardiac-valve prosthesis
US20090099653 *12 Oct 200716 Abr 2009Sorin Biomedica Cardio S.R.L.Expandable valve prosthesis with sealing mechanism
US20100280606 *17 Mar 20104 Nov 2010BiomedxlHeart valve prosthesis with collapsible valve and method of delivery thereof
US20110166649 *15 Jun 20097 Jul 2011Valtech Cardio Ltd.Annuloplasty devices and methods of deliver therefor
US20110319990 *8 Sep 201129 Dic 2011Mvrx, Inc.Devices, systems, and methods for supplementing, repairing or replacing a native heart valve leaflet
US20120059458 *1 Sep 20118 Mar 2012Maurice BuchbinderCardiac Valve Support Structure
US20120323313 *19 Jun 201220 Dic 2012Jacques SeguinProsthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
US20130116780 *1 Nov 20129 May 2013Valtech Cardio, Ltd.Implant having multiple rotational assemblies
US20130304197 *27 Feb 201314 Nov 2013Mvalve Technologies Ltd.Cardiac valve modification device
US20140013602 *17 Sep 201316 Ene 2014Medtronic, Inc.Semi-Rigid Annuloplasty Ring and Band
CN106061437A *23 Oct 201426 Oct 2016中峰医疗公司Systems and methods for transcatheter treatment of valve regurgitation
EP2478868A125 Ene 201125 Jul 2012The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen ElizabethImplant device
WO2012101190A125 Ene 20122 Ago 2012The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near DublinImplant device
Clasificaciones
Clasificación de EE.UU.623/2.17
Clasificación internacionalA61F2/24, A61F
Clasificación cooperativaA61F2/2454, A61F2/2445, A61F2/2418
Clasificación europeaA61F2/24D6, A61F2/24R6
Eventos legales
FechaCódigoEventoDescripción
11 Abr 2008ASAssignment
Owner name: VENTURE LENDING & LEASING IV, INC. AND VENTURE LEN
Free format text: SECURITY INTEREST;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:020814/0208
Effective date: 20080328
18 Dic 2009ASAssignment
Owner name: VENTURE LENDING & LEASING IV, INC., CALIFORNIA
Free format text: PATENT TRANSFER STATEMENT (UNDER UNIFORM COMMERCIAL CODE SECTION 9-619);ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:023699/0672
Effective date: 20091130
Owner name: VENTURE LENDING & LEASING V, INC., CALIFORNIA
Free format text: PATENT TRANSFER STATEMENT (UNDER UNIFORM COMMERCIAL CODE SECTION 9-619);ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:023699/0672
Effective date: 20091130
Owner name: VENTURE LENDING & LEASING IV, INC.,CALIFORNIA
Free format text: PATENT TRANSFER STATEMENT (UNDER UNIFORM COMMERCIAL CODE SECTION 9-619);ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:023699/0672
Effective date: 20091130
Owner name: VENTURE LENDING & LEASING V, INC.,CALIFORNIA
Free format text: PATENT TRANSFER STATEMENT (UNDER UNIFORM COMMERCIAL CODE SECTION 9-619);ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:023699/0672
Effective date: 20091130
29 Ene 2010ASAssignment
Owner name: MVRX, INC.,CALIFORNIA
Free format text: BILL OF SALE;ASSIGNORS:VENTURE LENDING & LEASING IV, INC.;VENTURE LENDING & LEASING V, INC.;REEL/FRAME:023882/0030
Effective date: 20091130
Owner name: MVRX, INC., CALIFORNIA
Free format text: BILL OF SALE;ASSIGNORS:VENTURE LENDING & LEASING IV, INC.;VENTURE LENDING & LEASING V, INC.;REEL/FRAME:023882/0030
Effective date: 20091130
15 Feb 2010ASAssignment
Owner name: MVRX, INC.,CALIFORNIA
Free format text: BILL OF SALE;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:023928/0968
Effective date: 20091130
Owner name: MVRX, INC., CALIFORNIA
Free format text: BILL OF SALE;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:023928/0968
Effective date: 20091130
18 Abr 2014ASAssignment
Owner name: AMPLE MEDICAL, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAHDERT, DAVID A.;MACOVIAK, JOHN A.;MACHOLD, TIMOTHY R.;AND OTHERS;REEL/FRAME:032710/0436
Effective date: 20031106
11 Mar 2015FPAYFee payment
Year of fee payment: 4
5 Feb 2016ASAssignment
Owner name: VENTURE LENDING & LEASING IV, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:037674/0526
Effective date: 20041217
Owner name: MVRX, INC., CALIFORNIA
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE CONVEYING PARTIES PREVIOUSLY RECORDED ON REEL 023928 FRAME 0968. ASSIGNOR(S) HEREBY CONFIRMS THE BILL OF SALE;ASSIGNORS:VENTURE LENDING & LEASING IV, INC.;VENTURE LENDING & LEASING V, INC.;REEL/FRAME:037704/0486
Effective date: 20091130
2 Mar 2016ASAssignment
Owner name: VENTURE LENDING & LEASING V, INC., CALIFORNIA
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SIGNATURES ON THE ORIGINALLY DOCUMENT PREVIOUSLY RECORDED AT REEL: 020814 FRAME: 0208. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT/SECURITY AGREEMENT;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:037974/0732
Effective date: 20080328
Owner name: VENTURE LENDING & LEASING IV, INC., CALIFORNIA
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SIGNATURES ON THE ORIGINALLY DOCUMENT PREVIOUSLY RECORDED AT REEL: 020814 FRAME: 0208. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT/SECURITY AGREEMENT;ASSIGNOR:AMPLE MEDICAL, INC.;REEL/FRAME:037974/0732
Effective date: 20080328