US20080066785A1 - Method of refurbishing a magnet assembly for plasma process chamber - Google Patents

Method of refurbishing a magnet assembly for plasma process chamber Download PDF

Info

Publication number
US20080066785A1
US20080066785A1 US11/836,092 US83609207A US2008066785A1 US 20080066785 A1 US20080066785 A1 US 20080066785A1 US 83609207 A US83609207 A US 83609207A US 2008066785 A1 US2008066785 A1 US 2008066785A1
Authority
US
United States
Prior art keywords
wall
magnet assembly
hollow collar
magnets
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/836,092
Inventor
Anthony Vesci
Vince Kirchhoff
James Woodward
Kevin Hughes
Mark van der Pyl
Tetsuya Ishikawa
Evans Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to US11/836,092 priority Critical patent/US20080066785A1/en
Assigned to APPLIED MATERIALS, INC. reassignment APPLIED MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUGHES, KEVIN, KIRCHHHOFF, VINCE, VAN DER PYL, MARK, VESCI, ANTHONY, WOODWARD, JAMES, ISHIKAWA, TETSUYA, LEE, EVANS
Publication of US20080066785A1 publication Critical patent/US20080066785A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10S156/916Differential etching apparatus including chamber cleaning means or shield for preventing deposits

Definitions

  • Embodiments of the present invention relates to a method of refurbishing a magnet assembly for a plasma process chamber.
  • the process chamber comprises a substrate support, a gas distributor, a gas energizer to form a plasma from gas, and a gas exhaust.
  • a magnet assembly can also be used to generate a magnetic field about a substrate processing zone in the chamber, to for example, limit the passage of charged plasma species into an exhaust port that is part of the gas exhaust, or to control the distribution or movement of plasma species across the substrate surface.
  • the magnet assembly is typically positioned about the chamber, for example, on a wall around the substrate support such as an external chamber wall or liner.
  • One type of magnet assembly comprises a housing holding a number of magnets, as described in commonly assigned U.S. patent publication no. US-2003-0192646-A, filing on Apr. 12, 2002, entitled “Plasma Processing Chamber Having Magnet assembly and Method,” which is incorporated herein by reference in its entirety.
  • the housing is U-shaped to fit around a number of magnets, and is sealed by a cover plate that is welded along the open edges of the U-shaped housing.
  • cover plate that is welded along the open edges of the U-shaped housing.
  • Such magnet assemblies can be unreliable during operation.
  • the weld seam of the housing often develops microcracks or holes with thermal cycling in the chamber, and the plasma in the chamber permeates through these holes and cracks to degrade the housing and magnets. This can have undesirable effects on the substrate being processed and the ability of the magnet assembly to contain the plasma.
  • Magnet assembly housings sealed by a cover plate can also be difficult to fabricate or assemble. Welding the cover plate typically involves subjecting the magnet assembly contained in the housing to high temperatures that can demagnetize or thermally degrade the magnets. It is also difficult to maintain the magnets aligned in the housing while the cover plate is being welded on to the housing. Often, some of the magnets become misaligned during assembly and this results in the magnet assembly providing an undesirable magnetic field distribution.
  • the anodizing treatment material can permeate thorough any fine microcracks or holes in the weld seam to enter into the housing.
  • the magnets can be eroded or otherwise degraded by the anodization treatment material.
  • the trapped anodization material can vaporize to outgas into the vacuum environment of the chamber, affecting the substrate process.
  • magnet assembly that is more resistant to plasma erosion. It is further desirable to have a magnet assembly that allows easier assembly and alignment of the magnets in the housing without damaging their magnetic properties.
  • a method of refurbishing a wall of a plasma process chamber the wall having a surface with a magnet assembly fitted thereon.
  • the magnet assembly has an expandable hollow collar with a plurality of magnets.
  • the diameter of the hollow collar of the magnet assembly is expanded to remove the hollow collar from the wall.
  • the surface of the wall is cleaned.
  • a hollow collar of the original magnet assembly, or another magnet assembly, is then snap fitted back onto the surface of the wall.
  • the magnet assembly comprises an expandable hollow collar comprising (i) a radially internal surface and an external surface, (ii) a gap extending from the radially internal surface to the external surface, and (iii) a plurality of magnets therein.
  • the method comprises expanding a diameter of the hollow collar of the magnet assembly by expanding the gap; removing the expanded hollow collar from the wall; cleaning the surface of the wall; and snap fitting the hollow collar of the magnet assembly, or another magnet assembly, back onto the surface of the wall.
  • the wall comprises a surface having a groove with a magnet assembly fitted thereon.
  • the method comprises removing a retaining ring which retains the hollow collar in the groove of the wall; expanding a diameter of the hollow collar of the magnet assembly by expanding the gap; removing the expanded hollow collar from the groove on the surface of the wall; cleaning the surface of the wall; and snap fitting the hollow collar of the magnet assembly, or another magnet assembly, back onto the groove of the surface of the wall.
  • FIG. 1 is a cross-sectional side view of a plasma process chamber having a magnet assembly and that is capable of processing a substrate;
  • FIG. 2 is an perspective exploded view of the magnet assembly of FIG. 1 showing a detail of the hollow collar;
  • FIG. 3 is a cross-sectional view of a magnet assembly attached to a chamber liner and a magnet assembly attached to a cathode liner.
  • a plasma processing chamber 100 may be used to conduct a process in which material is deposited on or etched from a substrate 104 .
  • An example of a commercially available plasma processing chamber is a dielectric etch chamber, such a Dielectric Etch eMax CenturaTM system, commercially available from Applied Materials Inc., Santa Clara, Calif.
  • the particular embodiment of the process chamber 100 shown herein, which is suitable for processing of substrates 104 such as semiconductor wafers, is provided only to illustrate the invention, and should not be used to limit the scope of the invention.
  • Other process chambers capable of energizing a process gas for example a DPSTM type chamber, also available from Applied Materials Inc., can also be used.
  • the chamber 100 comprises a substrate support 108 having a surface to support the substrate 104 in a process zone 112 of the chamber 100 .
  • the substrate 104 is held in place by the substrate support 108 , which may be a mechanical or electrostatic chuck having a receiving surface with grooves (not shown) in which a coolant gas, such as helium, flows to control the temperature of the substrate 104 .
  • One or more walls 115 can surround the substrate support 108 .
  • the walls 115 can include a quartz dielectric ring 116 about the substrate 104 to protect the support 108 from the plasma.
  • the walls 115 can also include liners 176 , 180 , as described below.
  • the walls 115 can further include external walls, such as the ceiling 120 or side walls 124 .
  • a substrate transfer port 128 in the side wall 124 can be provided to allow the substrate 104 to be transferred into and out of the chamber 100 .
  • the process chamber 100 is evacuated to a process pressure; and the substrate 104 is transferred to the substrate support 108 from a load lock transfer chamber (not shown), which is also at vacuum.
  • the chamber 100 comprises a gas supply 132 to supply a process gas, which may be a single gas or a mixture of gases, to the chamber 100 .
  • the process gas is introduced into the chamber 100 through a gas distributor 144 of a gas supply 132 comprising one or more gas lines 140 that connect a process gas source 136 to an inlet manifold 148 of the gas distributor 144 that conveys process gas through apertures 152 into the process zone 112 .
  • the gas distributor 144 may comprise a showerhead plate that is located above the substrate 104 and is made from a dielectric material.
  • a gas exhaust 166 is provided to exhaust spent process gas and etchant byproducts from the chamber 100 .
  • the gas exhaust 166 comprise an exhaust port 117 about the chamber 100 , and can also include a vacuum pump 168 to pump the gas out of the chamber 100 .
  • a throttle valve 172 is provided in the exhaust port 117 for controlling the pressure in the chamber 100 by regulating the flow of the gas between the process zone 112 and the vacuum pump 168 .
  • the chamber 100 further comprises a gas energizer 156 to energize the process gas to process the substrate 104 .
  • the gas energizer 156 couples an electric field to the process gas in the process zone 112 to energize the process gas (i) inductively by applying an RF current to an inductor coil (not shown) encircling the process chamber 100 , (ii) capacitively by applying an RF current to a cathode electrode 160 and an anode electrode 164 , such as the side wall 124 (as shown), or (iii) both inductively and capacitively.
  • the gas energizer 156 comprises an RF power supply (not shown) to apply power to anode and cathode electrodes 164 , 160 .
  • the gas energizer 156 typically energizes the process gas by capacitively coupling an RF voltage from the power supply to the cathode electrode 160 at a power level of from about 100 to about 2000 Watts, and by electrically grounding the anode electrode.
  • an RF current at a power level of from about 750 Watts to about 2000 Watts can be applied to an inductor coil (not shown) to inductively couple energy into the process chamber 100 to energize the process gas in the process zone 112 .
  • the frequency of the RF current applied to the process electrodes 164 , 160 or inductor coil is typically from about 50 kHz to about 60 MHz, such as about 13.56 MHz.
  • the plasma or energized process gas may be enhanced using electron cyclotron resonance or magnetically enhanced reactors, in which a magnetic field generator, such as electromagnetic coils 184 , are used to apply a magnetic field to the plasma in the process zone 112 to increase the density and uniformity of the energized process gas.
  • the magnetic field may comprise a rotating magnetic field with the axis of the field rotating parallel to the plane of the substrate 104 , as described in U.S. Pat. No. 4,842,683, issued Jun. 27, 1989, which is incorporated herein by reference in its entirety.
  • the magnetic field in the process chamber 100 may be sufficiently strong to enhance the plasma.
  • the magnetic field as measured on the substrate 104 may be less than about 500 Gauss, and more typically from about 10 to about 100 Gauss.
  • the plasma processing chamber 100 may also have a chamber liner 176 adjacent to the anode 164 and a cathode liner 180 adjacent to the cathode 160 to shield the anode 164 and cathode 160 from the plasma.
  • the liners 176 , 180 facilitate a short down time, because they can be removed from the processing chamber 100 to be wet cleaned outside the chamber 100 .
  • the liners 176 , 180 may be adapted to adjust a DC bias between the anode 164 and the cathode 160 .
  • the liners 176 , 180 may be of a surface area, thickness, or placement which can be selected to obtain a suitable DC bias.
  • One or more of the liners 176 , 180 may comprise a dielectric material to electrically insulate the anode 164 and cathode 160 from the plasma.
  • the liners 176 , 180 can also be concentric to one another.
  • one or more electrically conductive parts of the chamber walls 120 , 124 serve as the anode 164 .
  • the anode shield 176 is an inwardly-facing lining at the top and sides of the chamber 100 .
  • the cathode liner 180 lines the sides of the cathode 160 .
  • the liners 176 , 180 comprise annular protrusions (not shown) that function in combination as an exhaust baffle.
  • the annular protrusions may form an S-shaped channel therebetween to break the flow of gas to the gas exhaust 166 .
  • the chamber 100 further comprises a magnet assembly 200 that serves to control a flow path or distribution of plasma species.
  • the magnet assembly 200 is located about the section of plasma or process zone in the chamber 100 for which is desirable to control the distribution of plasma ions.
  • the magnet assembly 200 may generate a magnetic field that increases in strength along a path from the chamber center to the outwardly positioned gas exhaust 166 to impede or altogether prevent the plasma from extending into the gas exhaust 166 .
  • the chamber 100 comprises two magnetic assemblies 200 , one assembly 200 attached to the chamber liner 176 and another attached to the cathode liner 180 , at a location on the liners 176 , 180 about the flow path to the gas exhaust 166 .
  • the magnet assembly 200 comprises a hollow collar 204 capable of holding a plurality of magnets 208 .
  • the hollow collar 204 can form a ring segment that encircles the chamber 100 , the ring segment being generally circular and conforming to the circular wall of the chamber 100 .
  • the magnet assembly 200 can comprise a single collar 204 that is split ring 252 having a single split 253 along its circumference.
  • the collar 204 can also be a semi-circle ring segment 254 a,b such that the two ring segments cooperate to form a substantially continuous ring about the chamber.
  • the collar 204 can also have other shapes generally conforming to the structure about which the collar 204 is attached or supported.
  • the collar 204 is also rectangular in shape.
  • Each collar 204 holds a plurality of pre-positioned magnets 208 abutting one another to generate a predefined annular magnetic field in the chamber 100 , and also to protect the magnets from the plasma processing environment.
  • the collar 204 of the magnet assembly 200 is shaped to surround a substrate support 108 that is sized to fit within an inner radius of the magnet assembly 200 .
  • the collar 204 can also be contained in or around the substrate support 108 or the exhaust port 117 .
  • the hollow collar 204 has a continuous external surface 212 with a cross-section that is absent welds or seems.
  • the welds or seems are subject to corrosion and etching when exposed to the plasma environment, which may lead to a breach in the collar 204 and exposure of the magnets 208 to the plasma.
  • the unbroken cross-section protects the magnets 208 enclosed by the collar 204 from the plasma.
  • the unbroken cross-section improves the reliability of the magnet assembly 200 by eliminating the presence of pores or microcracks that often occur in weld seams.
  • the present collar 204 provides better plasma protection, more robust operation and lower fabrication costs. This improvement in performance provides less chamber downtime and higher process throughput yields
  • the hollow collar 204 is shaped with internal surfaces 216 that cooperate to conform to the shape of the magnets 208 so that the magnets are held therein with minimal movement, as illustrated in FIG. 3 .
  • the internal surfaces 216 of the collar 204 are collectively shaped to accommodate the plurality of magnets 208 .
  • the internal surfaces 216 form a hollow cross-section having a rectangular profile. This is advantageous when the plurality of magnets 208 in the assembly 200 are organized into a set of magnets arranged abutting one another in an annular configuration around the collar 204 to generate an annular magnetic field about the chamber.
  • the internal surfaces 216 of the hollow cross-section comprise a separator wall 220 .
  • the separator wall 220 may be a protrusion from one of the internal surface 216 of the hollow cross-section.
  • a separator wall 220 is advantageous when the plurality of magnets 208 in the magnet assembly 200 are organized into two parallel sets of magnets arranged annularly around the collar 204 .
  • the separator wall 220 is located between the two parallel sets of magnets and separates the parallel magnets by a predefined separation distance.
  • a suitable separator wall thickness is from about 0.05 inches (1.3 mm) to about 0.500 inches (12.7 mm).
  • the magnet assembly 200 is attached to receiving surfaces 224 within the plasma processing chamber 100 .
  • the magnet assembly 200 is attached to a wall 115 such as a chamber liner 176 or cathode liner 180 .
  • the magnet assembly 200 can also be snap fitted onto the wall 115 by sizing the diameter of each collar 204 smaller than the diameter of the wall 115 .
  • the snap fitted collar 204 is shaped and sized to be sufficiently flexible to allow the collar 204 to expand diametrically when an operator pulls on the ends of the collar 204 .
  • the expanded collar 204 is then releasably applied to the wall 115 , whereupon it reverts to its original diameter and securely grips the circumference of the wall 115 .
  • the external surface 212 of the collar 204 can also have a profile that is shaped to mate to a corresponding groove 228 in the surface of a wall 115 , such as the chamber liner 176 or cathode liner 180 .
  • the external surface 212 of the magnet assembly 200 can form a rectangular cross-sectional profile that mates to a corresponding rectangular groove 228 in the chamber liner 176 or cathode liner 180 .
  • the external surface 212 of the collar 204 can also have a key 232 to couple to a corresponding slot 236 on the receiving surface 224 of the chamber 100 , such as a slot 236 located on a receiving surface 224 of the groove 228 in the chamber liner 176 or cathode liner 180 .
  • the key 232 aids in the proper alignment of the assembly 200 to the receiving surface 224 .
  • the key 232 aids in the alignment of the assembly 200 to the liner 176 , 180 in a certain preferred orientation.
  • the plurality of magnets 208 may be arranged within the assembly 200 to have a certain polarity relative to the location of the key 232 . Using the known relationship of the polarity to the key, the assembly 200 can then be attached to the liner 176 , 180 with the polarity of the plurality of magnets 208 maintained in a desirable relationship relative to the chamber 100 .
  • the collar 204 comprises a substantially continuous annular structure with a gap 240 at a split along its circumference.
  • the gap 240 is a predefined distance between the adjacent split ends of the collar 204 .
  • the gap can extend a predefined number of degrees of rotation about the center of the radius of the collar 204 .
  • the gap 240 once attached to the receiving surface 224 of the chamber 100 , the gap 240 extends through an angle of about 1 to about 5 degrees, to avoid interference during installation.
  • the gap 240 facilitates attachment of the magnet assembly 200 to the receiving surface 224 of the chamber 100 , such as the groove 228 in the chamber and cathode liners 176 , 180 .
  • the collar 204 can be diametrically expanded by widening the gap 240 , allowing relatively flexible manipulation in space of the magnet assembly 200 about the liners 176 , 180 .
  • This diametric expansion allows snap fitting of the collar 204 to the groove 228 in the liners 176 , 180 , including the alignment of the key 232 to the corresponding slot 236 and the attachment of the retaining ring 252 .
  • the gap 240 is sized so that the collar 204 can expand a sufficient amount to be snap fitted onto a wall of the process chamber 100 .
  • An open end face 244 to the interior volume of the collar 204 is located about the gap 240 .
  • both sides of the gap 240 are faced by open end faces 244 to the interior of the collar 204 .
  • the open end faces 244 are used to insert a plurality of magnets 208 into the collar 204 .
  • the open end faces 244 into the interior of the collar 204 are sized to accept the magnets 208 and the outline of the open end faces 244 can correspond to the profile formed by the internal surfaces 216 of the hollow cross-section.
  • the magnet assembly 200 further comprises a cap 248 to seal the open end face 244 .
  • the caps 248 seal the open end faces 244 to protect the plurality of magnets 208 within the collar 204 from exposure to the plasma environment.
  • the caps are composed of a material resistant to the plasma environment. In one version, the caps are composed of a material such as aluminum or steel.
  • the caps 248 are attached to the open end faces 244 using an epoxy suitable to withstand the plasma enviroment.
  • the epoxy used to seal the caps 248 into the open end face 244 can be HySol Epoxy 1C from Henkel Loctite Corporation, located in Rocky Hill, Conn., but other, equivalent epoxies can also be used.
  • the magnet assembly 200 may further comprise a retaining ring 252 to retain the assembly 200 within the groove 228 in the liner 176 , 180 .
  • the retaining ring 252 fits between an external surface 212 of the collar 204 and a receiving surface 224 of the groove 228 in the liner 176 , 180 .
  • the groove 228 in the liner 176 , 180 can be sized slightly larger than the collar 204 to allow ease of placement of the collar 204 within the groove 228 .
  • the retaining ring 252 can be attached to take up the slack between the hollow collar 204 and the groove 228 .
  • the retaining ring 252 is relatively easier to handle than the hollow collar 204 containing the magnets 208 , and thus, facilitates attachment of the magnet assembly 200 to the receiving surface 224 .
  • the magnets 208 are typically permanent magnets that, for example, comprise a ferromagnetic material, such as a rare earth metal.
  • the rare earth metal is able to generate a strong magnetic field relative to the amount used.
  • the magnets 208 may comprise neodymium-iron-boride or samarium-cobalt.
  • the magnets are sized to be insertable through the open end face 244 of the collar 204 .
  • Each individual magnet 208 has a magnetic axis aligned with its north and south poles, and a polarity direction running from the south to north pole.
  • the magnets 208 may be coated with an adhesive prior to their insertion and assembly into the magnet assembly 200 . The adhesive keeps the magnets 208 from moving or shifting inside the magnet assembly 200 in response to electromagnetic fields that may be present in the processing chamber 100 .
  • the magnet assembly 200 provides an arrangement of a plurality of magnets 208 into an annular configuration about a chamber wall 115 or other chamber or component structure, to generate a magnetic field in the chamber 100 .
  • the magnet assembly 200 attached to the chamber liner 176 contains a plurality of magnets 208 arranged annularly such that the polarity of each magnet 208 is aligned to a central axis of the chamber 100 that runs vertically through the center of the chamber from the top to the bottom of the chamber 100 .
  • the plurality of magnets 208 are positioned in the collar 204 such that their south poles are directed upwardly and the north poles are directed downwardly.
  • the magnet assembly 200 attached to the cathode liner 180 contains two sets of magnets 208 that are parallel to each other. Within each set, the magnets 208 are arranged in an annular configuration in the collar 204 such that the magnetic axis or polarity of each individual magnet 208 is oriented perpendicular to the wall of the chamber 110 or horizontal relative to the central axis of the chamber 100 .
  • This arrangement comprises a first upper set 260 of magnets 208 and a second lower set 264 of magnets 208 .
  • the magnetic axes or polarity of the first set 260 points from the center of the chamber 100 outward along a radial direction relative to a circular chamber 100 .
  • the magnetic axis or polarity of the second set 264 points in the opposite direction, pointing from the outer portion of the chamber 100 into the center of the chamber 100 .
  • the above polarity configurations are only exemplary, however, and other polarity configurations are possible and fall within the spirit of the present invention.
  • the magnet assembly 200 may further comprise one or more pole pieces 256 to separate magnets 208 arranged in parallel within the collar 204 .
  • a suitable pole piece 256 is composed of ferromagnetic material.
  • the addition of a pole piece 256 between parallel magnets 208 may create a specific magnetic field configuration. For example, in FIG. 3 , the addition of a pole piece 256 is positioned to south poles of the first set 260 of magnets 208 to the north poles of a second set 264 of magnets 208 to create a circular horse-shoe magnet having both north and south poles facing the same direction.
  • the collar 204 may be composed of a material resistant to degradation in a plasma environment.
  • the collar 204 is composed of aluminum.
  • the collar 204 may be composed of stainless steel.
  • the collar 204 may be manufactured using a number of methods, including extrusion, casting, machining and forging.
  • the walls 115 in the chamber 100 may be cleaned and refurbished.
  • the magnet assembly 200 is removed from a chamber wall 115 , such as a liner 176 , 180 , to allow cleaning of the wall.
  • the wall 115 is then cleaned, for example, by a cleaning solution employing an acid or base, the cleaning process being conducted outside the chamber 100 ; or they may also be cleaned by a plasma dry cleaning process conducted in the chamber 100 .
  • the same magnet assembly 200 or a new one is then fitted back onto the wall and the wall 115 is reinserted into the chamber 100 .
  • the hollow collar 204 also allows a new set of magnets 208 to be substituted, or the magnets 208 can be removed for use in another hollow collar 204 .
  • the cap seal of the collar 204 is broken and the cap 248 is opened.
  • the magnets 208 are removed from the open end face in the hollow collar 204 .
  • the magnets 208 may be cleaned and reused, and the hollow collar 204 itself, can also be cleaned and re-used.
  • a plurality of new magnets 208 are also be re-inserted through the open end face 244 of the hollow collar 204 .
  • the new magnets 208 may be cleaned versions of the used magnets or other magnets.
  • the open end face 244 is then sealed with a second cap 248 to form another magnet assembly 200 .
  • the present magnet assembly 200 advantageously allows reuse or replacement of the magnets 208 contained therein. It also allows replacement of the magnet assembly 200 as a complete assembly within the wall 115 .
  • the magnet assembly 200 can be used for other chambers or for other processing applications, as would be apparent to one of ordinary skill in the art.
  • Alternative geometrical shapes and configurations may also be substituted for the illustrative versions of the collar 204 or arrangements of the magnets 208 , for example, the magnets 208 may be disc or pole shaped, and the collar 204 can be shaped to conform to the disc or pole shaped magnets, respectively. Therefore, the appended claims should not be limited to the description of the preferred versions contained herein.

Abstract

A method of refurbishing a wall of a plasma process chamber which has a surface with a magnet assembly fitted thereon. The magnet assembly has an expandable hollow collar with a plurality of magnets inside. In the method, the diameter of the hollow collar of the magnet assembly is expanded to remove the hollow collar from the wall. The surface of the wall is cleaned. The hollow collar of the original magnet assembly, or of another magnet assembly, is then snap fitted back onto the surface of the wall.

Description

    CROSS-REFERENCE
  • This application is a divisional of U.S. patent application Ser. No. 10/726,008, entitled “MAGNET ASSEMBLY FOR PLASMA CONTAINMENT” to Vesci et al, filed on Dec. 1, 2003, which is incorporated by reference herein and in its entirety.
  • BACKGROUND
  • Embodiments of the present invention relates to a method of refurbishing a magnet assembly for a plasma process chamber.
  • In the fabrication of integrated circuits (ICs) and displays, a number of processes are performed on a substrate in a plasma process chamber, including the deposition and etching of layers on the substrate. Typically, the process chamber comprises a substrate support, a gas distributor, a gas energizer to form a plasma from gas, and a gas exhaust. In such chamber, a magnet assembly can also be used to generate a magnetic field about a substrate processing zone in the chamber, to for example, limit the passage of charged plasma species into an exhaust port that is part of the gas exhaust, or to control the distribution or movement of plasma species across the substrate surface. The magnet assembly is typically positioned about the chamber, for example, on a wall around the substrate support such as an external chamber wall or liner.
  • One type of magnet assembly comprises a housing holding a number of magnets, as described in commonly assigned U.S. patent publication no. US-2003-0192646-A, filing on Apr. 12, 2002, entitled “Plasma Processing Chamber Having Magnet assembly and Method,” which is incorporated herein by reference in its entirety. The housing is U-shaped to fit around a number of magnets, and is sealed by a cover plate that is welded along the open edges of the U-shaped housing. However, such magnet assemblies can be unreliable during operation. The weld seam of the housing often develops microcracks or holes with thermal cycling in the chamber, and the plasma in the chamber permeates through these holes and cracks to degrade the housing and magnets. This can have undesirable effects on the substrate being processed and the ability of the magnet assembly to contain the plasma.
  • Magnet assembly housings sealed by a cover plate can also be difficult to fabricate or assemble. Welding the cover plate typically involves subjecting the magnet assembly contained in the housing to high temperatures that can demagnetize or thermally degrade the magnets. It is also difficult to maintain the magnets aligned in the housing while the cover plate is being welded on to the housing. Often, some of the magnets become misaligned during assembly and this results in the magnet assembly providing an undesirable magnetic field distribution.
  • Furthermore, when the assembled housing is subjected to an anodizing treatment to form a protective anodization layer on the housing, the anodizing treatment material can permeate thorough any fine microcracks or holes in the weld seam to enter into the housing. The magnets can be eroded or otherwise degraded by the anodization treatment material. Also, during chamber processing, the trapped anodization material can vaporize to outgas into the vacuum environment of the chamber, affecting the substrate process.
  • Thus, it is desirable to have a magnet assembly that is more resistant to plasma erosion. It is further desirable to have a magnet assembly that allows easier assembly and alignment of the magnets in the housing without damaging their magnetic properties.
  • SUMMARY
  • A method of refurbishing a wall of a plasma process chamber, the wall having a surface with a magnet assembly fitted thereon. The magnet assembly has an expandable hollow collar with a plurality of magnets. In the method, the diameter of the hollow collar of the magnet assembly is expanded to remove the hollow collar from the wall. The surface of the wall is cleaned. A hollow collar of the original magnet assembly, or another magnet assembly, is then snap fitted back onto the surface of the wall.
  • In another method, the magnet assembly comprises an expandable hollow collar comprising (i) a radially internal surface and an external surface, (ii) a gap extending from the radially internal surface to the external surface, and (iii) a plurality of magnets therein. The method comprises expanding a diameter of the hollow collar of the magnet assembly by expanding the gap; removing the expanded hollow collar from the wall; cleaning the surface of the wall; and snap fitting the hollow collar of the magnet assembly, or another magnet assembly, back onto the surface of the wall.
  • In yet another method, the wall comprises a surface having a groove with a magnet assembly fitted thereon. The method comprises removing a retaining ring which retains the hollow collar in the groove of the wall; expanding a diameter of the hollow collar of the magnet assembly by expanding the gap; removing the expanded hollow collar from the groove on the surface of the wall; cleaning the surface of the wall; and snap fitting the hollow collar of the magnet assembly, or another magnet assembly, back onto the groove of the surface of the wall.
  • DRAWINGS
  • These features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims and accompanying drawings, which illustrate examples of the invention. However, it is to be understood that each of the features can be used in the invention in general, not merely in the context of the particular drawings, and the invention includes any combination of these features, where:
  • FIG. 1 is a cross-sectional side view of a plasma process chamber having a magnet assembly and that is capable of processing a substrate;
  • FIG. 2 is an perspective exploded view of the magnet assembly of FIG. 1 showing a detail of the hollow collar; and
  • FIG. 3 is a cross-sectional view of a magnet assembly attached to a chamber liner and a magnet assembly attached to a cathode liner.
  • DESCRIPTION
  • A plasma processing chamber 100, an exemplary illustration of which is shown in FIG. 1, may be used to conduct a process in which material is deposited on or etched from a substrate 104. An example of a commercially available plasma processing chamber is a dielectric etch chamber, such a Dielectric Etch eMax Centura™ system, commercially available from Applied Materials Inc., Santa Clara, Calif. The particular embodiment of the process chamber 100 shown herein, which is suitable for processing of substrates 104 such as semiconductor wafers, is provided only to illustrate the invention, and should not be used to limit the scope of the invention. Other process chambers capable of energizing a process gas, for example a DPS™ type chamber, also available from Applied Materials Inc., can also be used.
  • Generally, the chamber 100 comprises a substrate support 108 having a surface to support the substrate 104 in a process zone 112 of the chamber 100. The substrate 104 is held in place by the substrate support 108, which may be a mechanical or electrostatic chuck having a receiving surface with grooves (not shown) in which a coolant gas, such as helium, flows to control the temperature of the substrate 104. One or more walls 115 can surround the substrate support 108. For example, the walls 115 can include a quartz dielectric ring 116 about the substrate 104 to protect the support 108 from the plasma. The walls 115 can also include liners 176, 180, as described below. The walls 115 can further include external walls, such as the ceiling 120 or side walls 124. A substrate transfer port 128 in the side wall 124 can be provided to allow the substrate 104 to be transferred into and out of the chamber 100.
  • To perform a process on the substrate 104, the process chamber 100 is evacuated to a process pressure; and the substrate 104 is transferred to the substrate support 108 from a load lock transfer chamber (not shown), which is also at vacuum. The chamber 100 comprises a gas supply 132 to supply a process gas, which may be a single gas or a mixture of gases, to the chamber 100. The process gas is introduced into the chamber 100 through a gas distributor 144 of a gas supply 132 comprising one or more gas lines 140 that connect a process gas source 136 to an inlet manifold 148 of the gas distributor 144 that conveys process gas through apertures 152 into the process zone 112. The gas distributor 144 may comprise a showerhead plate that is located above the substrate 104 and is made from a dielectric material. A gas exhaust 166 is provided to exhaust spent process gas and etchant byproducts from the chamber 100. The gas exhaust 166 comprise an exhaust port 117 about the chamber 100, and can also include a vacuum pump 168 to pump the gas out of the chamber 100. A throttle valve 172 is provided in the exhaust port 117 for controlling the pressure in the chamber 100 by regulating the flow of the gas between the process zone 112 and the vacuum pump 168.
  • The chamber 100 further comprises a gas energizer 156 to energize the process gas to process the substrate 104. Typically, the gas energizer 156 couples an electric field to the process gas in the process zone 112 to energize the process gas (i) inductively by applying an RF current to an inductor coil (not shown) encircling the process chamber 100, (ii) capacitively by applying an RF current to a cathode electrode 160 and an anode electrode 164, such as the side wall 124 (as shown), or (iii) both inductively and capacitively. In the version shown, the gas energizer 156 comprises an RF power supply (not shown) to apply power to anode and cathode electrodes 164, 160. In reactive ion etching (RIE) processes, the gas energizer 156 typically energizes the process gas by capacitively coupling an RF voltage from the power supply to the cathode electrode 160 at a power level of from about 100 to about 2000 Watts, and by electrically grounding the anode electrode. Alternatively, an RF current at a power level of from about 750 Watts to about 2000 Watts can be applied to an inductor coil (not shown) to inductively couple energy into the process chamber 100 to energize the process gas in the process zone 112. The frequency of the RF current applied to the process electrodes 164, 160 or inductor coil is typically from about 50 kHz to about 60 MHz, such as about 13.56 MHz.
  • The plasma or energized process gas may be enhanced using electron cyclotron resonance or magnetically enhanced reactors, in which a magnetic field generator, such as electromagnetic coils 184, are used to apply a magnetic field to the plasma in the process zone 112 to increase the density and uniformity of the energized process gas. The magnetic field may comprise a rotating magnetic field with the axis of the field rotating parallel to the plane of the substrate 104, as described in U.S. Pat. No. 4,842,683, issued Jun. 27, 1989, which is incorporated herein by reference in its entirety. The magnetic field in the process chamber 100 may be sufficiently strong to enhance the plasma. For example, the magnetic field as measured on the substrate 104 may be less than about 500 Gauss, and more typically from about 10 to about 100 Gauss.
  • The plasma processing chamber 100 may also have a chamber liner 176 adjacent to the anode 164 and a cathode liner 180 adjacent to the cathode 160 to shield the anode 164 and cathode 160 from the plasma. The liners 176, 180 facilitate a short down time, because they can be removed from the processing chamber 100 to be wet cleaned outside the chamber 100. Additionally, the liners 176, 180 may be adapted to adjust a DC bias between the anode 164 and the cathode 160. For example, the liners 176, 180 may be of a surface area, thickness, or placement which can be selected to obtain a suitable DC bias. One or more of the liners 176, 180 may comprise a dielectric material to electrically insulate the anode 164 and cathode 160 from the plasma. The liners 176, 180 can also be concentric to one another. In the embodiment shown, one or more electrically conductive parts of the chamber walls 120, 124 serve as the anode 164. The anode shield 176 is an inwardly-facing lining at the top and sides of the chamber 100. The cathode liner 180 lines the sides of the cathode 160. In one version, the liners 176, 180 comprise annular protrusions (not shown) that function in combination as an exhaust baffle. For example, the annular protrusions may form an S-shaped channel therebetween to break the flow of gas to the gas exhaust 166.
  • The chamber 100 further comprises a magnet assembly 200 that serves to control a flow path or distribution of plasma species. The magnet assembly 200 is located about the section of plasma or process zone in the chamber 100 for which is desirable to control the distribution of plasma ions. For example, in one version, the magnet assembly 200 may generate a magnetic field that increases in strength along a path from the chamber center to the outwardly positioned gas exhaust 166 to impede or altogether prevent the plasma from extending into the gas exhaust 166. In this version, the chamber 100 comprises two magnetic assemblies 200, one assembly 200 attached to the chamber liner 176 and another attached to the cathode liner 180, at a location on the liners 176, 180 about the flow path to the gas exhaust 166.
  • The magnet assembly 200, as illustrated in FIG. 2, comprises a hollow collar 204 capable of holding a plurality of magnets 208. The hollow collar 204 can form a ring segment that encircles the chamber 100, the ring segment being generally circular and conforming to the circular wall of the chamber 100. Thus, the magnet assembly 200 can comprise a single collar 204 that is split ring 252 having a single split 253 along its circumference. The collar 204 can also be a semi-circle ring segment 254 a,b such that the two ring segments cooperate to form a substantially continuous ring about the chamber. The collar 204 can also have other shapes generally conforming to the structure about which the collar 204 is attached or supported. For example, if the chamber 100 has rectangular walls, the collar 204 is also rectangular in shape. Each collar 204 holds a plurality of pre-positioned magnets 208 abutting one another to generate a predefined annular magnetic field in the chamber 100, and also to protect the magnets from the plasma processing environment. In one version, the collar 204 of the magnet assembly 200 is shaped to surround a substrate support 108 that is sized to fit within an inner radius of the magnet assembly 200. In another version, the collar 204 can also be contained in or around the substrate support 108 or the exhaust port 117.
  • The hollow collar 204 has a continuous external surface 212 with a cross-section that is absent welds or seems. The welds or seems are subject to corrosion and etching when exposed to the plasma environment, which may lead to a breach in the collar 204 and exposure of the magnets 208 to the plasma. The unbroken cross-section protects the magnets 208 enclosed by the collar 204 from the plasma. The unbroken cross-section improves the reliability of the magnet assembly 200 by eliminating the presence of pores or microcracks that often occur in weld seams. In comparision to conventional collars, the present collar 204 provides better plasma protection, more robust operation and lower fabrication costs. This improvement in performance provides less chamber downtime and higher process throughput yields
  • The hollow collar 204 is shaped with internal surfaces 216 that cooperate to conform to the shape of the magnets 208 so that the magnets are held therein with minimal movement, as illustrated in FIG. 3. The internal surfaces 216 of the collar 204 are collectively shaped to accommodate the plurality of magnets 208. In one version, the internal surfaces 216 form a hollow cross-section having a rectangular profile. This is advantageous when the plurality of magnets 208 in the assembly 200 are organized into a set of magnets arranged abutting one another in an annular configuration around the collar 204 to generate an annular magnetic field about the chamber.
  • In one version, the internal surfaces 216 of the hollow cross-section comprise a separator wall 220. The separator wall 220 may be a protrusion from one of the internal surface 216 of the hollow cross-section. A separator wall 220 is advantageous when the plurality of magnets 208 in the magnet assembly 200 are organized into two parallel sets of magnets arranged annularly around the collar 204. In this version, the separator wall 220 is located between the two parallel sets of magnets and separates the parallel magnets by a predefined separation distance. A suitable separator wall thickness is from about 0.05 inches (1.3 mm) to about 0.500 inches (12.7 mm).
  • The magnet assembly 200 is attached to receiving surfaces 224 within the plasma processing chamber 100. For example, in one version, the magnet assembly 200 is attached to a wall 115 such as a chamber liner 176 or cathode liner 180. In this version, the magnet assembly 200 can also be snap fitted onto the wall 115 by sizing the diameter of each collar 204 smaller than the diameter of the wall 115. The snap fitted collar 204 is shaped and sized to be sufficiently flexible to allow the collar 204 to expand diametrically when an operator pulls on the ends of the collar 204. The expanded collar 204 is then releasably applied to the wall 115, whereupon it reverts to its original diameter and securely grips the circumference of the wall 115. The external surface 212 of the collar 204 can also have a profile that is shaped to mate to a corresponding groove 228 in the surface of a wall 115, such as the chamber liner 176 or cathode liner 180. For example, the external surface 212 of the magnet assembly 200 can form a rectangular cross-sectional profile that mates to a corresponding rectangular groove 228 in the chamber liner 176 or cathode liner 180.
  • The external surface 212 of the collar 204 can also have a key 232 to couple to a corresponding slot 236 on the receiving surface 224 of the chamber 100, such as a slot 236 located on a receiving surface 224 of the groove 228 in the chamber liner 176 or cathode liner 180. The key 232 aids in the proper alignment of the assembly 200 to the receiving surface 224. For example, the key 232 aids in the alignment of the assembly 200 to the liner 176, 180 in a certain preferred orientation. In one version, the plurality of magnets 208 may be arranged within the assembly 200 to have a certain polarity relative to the location of the key 232. Using the known relationship of the polarity to the key, the assembly 200 can then be attached to the liner 176, 180 with the polarity of the plurality of magnets 208 maintained in a desirable relationship relative to the chamber 100.
  • In one version, the collar 204 comprises a substantially continuous annular structure with a gap 240 at a split along its circumference. The gap 240 is a predefined distance between the adjacent split ends of the collar 204. For example, the gap can extend a predefined number of degrees of rotation about the center of the radius of the collar 204. In one version, once attached to the receiving surface 224 of the chamber 100, the gap 240 extends through an angle of about 1 to about 5 degrees, to avoid interference during installation. The gap 240 facilitates attachment of the magnet assembly 200 to the receiving surface 224 of the chamber 100, such as the groove 228 in the chamber and cathode liners 176, 180. The collar 204 can be diametrically expanded by widening the gap 240, allowing relatively flexible manipulation in space of the magnet assembly 200 about the liners 176, 180. This diametric expansion allows snap fitting of the collar 204 to the groove 228 in the liners 176, 180, including the alignment of the key 232 to the corresponding slot 236 and the attachment of the retaining ring 252. Thus, the gap 240 is sized so that the collar 204 can expand a sufficient amount to be snap fitted onto a wall of the process chamber 100.
  • An open end face 244 to the interior volume of the collar 204 is located about the gap 240. In one version, both sides of the gap 240 are faced by open end faces 244 to the interior of the collar 204. The open end faces 244 are used to insert a plurality of magnets 208 into the collar 204. The open end faces 244 into the interior of the collar 204 are sized to accept the magnets 208 and the outline of the open end faces 244 can correspond to the profile formed by the internal surfaces 216 of the hollow cross-section.
  • The magnet assembly 200 further comprises a cap 248 to seal the open end face 244. There are as many caps 248 as open end faces 244. The caps 248 seal the open end faces 244 to protect the plurality of magnets 208 within the collar 204 from exposure to the plasma environment. The caps are composed of a material resistant to the plasma environment. In one version, the caps are composed of a material such as aluminum or steel. The caps 248 are attached to the open end faces 244 using an epoxy suitable to withstand the plasma enviroment. In one version, the epoxy used to seal the caps 248 into the open end face 244 can be HySol Epoxy 1C from Henkel Loctite Corporation, located in Rocky Hill, Conn., but other, equivalent epoxies can also be used.
  • The magnet assembly 200 may further comprise a retaining ring 252 to retain the assembly 200 within the groove 228 in the liner 176, 180. The retaining ring 252 fits between an external surface 212 of the collar 204 and a receiving surface 224 of the groove 228 in the liner 176, 180. The groove 228 in the liner 176, 180 can be sized slightly larger than the collar 204 to allow ease of placement of the collar 204 within the groove 228. The retaining ring 252 can be attached to take up the slack between the hollow collar 204 and the groove 228. The retaining ring 252 is relatively easier to handle than the hollow collar 204 containing the magnets 208, and thus, facilitates attachment of the magnet assembly 200 to the receiving surface 224.
  • The magnets 208 are typically permanent magnets that, for example, comprise a ferromagnetic material, such as a rare earth metal. The rare earth metal is able to generate a strong magnetic field relative to the amount used. For example, the magnets 208 may comprise neodymium-iron-boride or samarium-cobalt. The magnets are sized to be insertable through the open end face 244 of the collar 204. Each individual magnet 208 has a magnetic axis aligned with its north and south poles, and a polarity direction running from the south to north pole. The magnets 208 may be coated with an adhesive prior to their insertion and assembly into the magnet assembly 200. The adhesive keeps the magnets 208 from moving or shifting inside the magnet assembly 200 in response to electromagnetic fields that may be present in the processing chamber 100.
  • The magnet assembly 200 provides an arrangement of a plurality of magnets 208 into an annular configuration about a chamber wall 115 or other chamber or component structure, to generate a magnetic field in the chamber 100. In one embodiment, the magnet assembly 200 attached to the chamber liner 176 contains a plurality of magnets 208 arranged annularly such that the polarity of each magnet 208 is aligned to a central axis of the chamber 100 that runs vertically through the center of the chamber from the top to the bottom of the chamber 100. In this version, the plurality of magnets 208 are positioned in the collar 204 such that their south poles are directed upwardly and the north poles are directed downwardly.
  • In another embodiment, the magnet assembly 200 attached to the cathode liner 180 contains two sets of magnets 208 that are parallel to each other. Within each set, the magnets 208 are arranged in an annular configuration in the collar 204 such that the magnetic axis or polarity of each individual magnet 208 is oriented perpendicular to the wall of the chamber 110 or horizontal relative to the central axis of the chamber 100. This arrangement comprises a first upper set 260 of magnets 208 and a second lower set 264 of magnets 208. The magnetic axes or polarity of the first set 260 points from the center of the chamber 100 outward along a radial direction relative to a circular chamber 100. The magnetic axis or polarity of the second set 264 points in the opposite direction, pointing from the outer portion of the chamber 100 into the center of the chamber 100. The above polarity configurations are only exemplary, however, and other polarity configurations are possible and fall within the spirit of the present invention.
  • The magnet assembly 200 may further comprise one or more pole pieces 256 to separate magnets 208 arranged in parallel within the collar 204. A suitable pole piece 256 is composed of ferromagnetic material. The addition of a pole piece 256 between parallel magnets 208 may create a specific magnetic field configuration. For example, in FIG. 3, the addition of a pole piece 256 is positioned to south poles of the first set 260 of magnets 208 to the north poles of a second set 264 of magnets 208 to create a circular horse-shoe magnet having both north and south poles facing the same direction.
  • The collar 204 may be composed of a material resistant to degradation in a plasma environment. In one version, the collar 204 is composed of aluminum. In another version, the collar 204 may be composed of stainless steel. The collar 204 may be manufactured using a number of methods, including extrusion, casting, machining and forging.
  • After extended exposure to the plasma environment, the walls 115 in the chamber 100 may be cleaned and refurbished. In the refurbishment process, the magnet assembly 200 is removed from a chamber wall 115, such as a liner 176, 180, to allow cleaning of the wall. The wall 115 is then cleaned, for example, by a cleaning solution employing an acid or base, the cleaning process being conducted outside the chamber 100; or they may also be cleaned by a plasma dry cleaning process conducted in the chamber 100. The same magnet assembly 200 or a new one is then fitted back onto the wall and the wall 115 is reinserted into the chamber 100. In addition, the hollow collar 204 also allows a new set of magnets 208 to be substituted, or the magnets 208 can be removed for use in another hollow collar 204. In the latter method, the cap seal of the collar 204 is broken and the cap 248 is opened. The magnets 208 are removed from the open end face in the hollow collar 204. The magnets 208 may be cleaned and reused, and the hollow collar 204 itself, can also be cleaned and re-used. Alternatively, a plurality of new magnets 208 are also be re-inserted through the open end face 244 of the hollow collar 204. The new magnets 208 may be cleaned versions of the used magnets or other magnets. The open end face 244 is then sealed with a second cap 248 to form another magnet assembly 200. Thus, the present magnet assembly 200 advantageously allows reuse or replacement of the magnets 208 contained therein. It also allows replacement of the magnet assembly 200 as a complete assembly within the wall 115.
  • Although the present invention has been described in considerable detail with regard to certain preferred versions thereof, other versions are possible. For example, the magnet assembly 200 can be used for other chambers or for other processing applications, as would be apparent to one of ordinary skill in the art. Alternative geometrical shapes and configurations may also be substituted for the illustrative versions of the collar 204 or arrangements of the magnets 208, for example, the magnets 208 may be disc or pole shaped, and the collar 204 can be shaped to conform to the disc or pole shaped magnets, respectively. Therefore, the appended claims should not be limited to the description of the preferred versions contained herein.

Claims (20)

1. A method of refurbishing a wall of a plasma process chamber, the wall comprising a surface having a magnet assembly fitted thereon, and the magnet assembly comprising an expandable hollow collar with a plurality of magnets therein, the method comprising:
(a) expanding the diameter of the hollow collar of the magnet assembly to remove the hollow collar from the wall;
(b) cleaning the surface of the wall; and
(c) snap fitting the hollow collar of the magnet assembly, or another magnet assembly, back onto the surface of the wall.
2. A method according to claim 1 wherein the hollow collar of the magnet assembly comprises a radially internal surface and an external surface, and a gap extending from the radially internal surface to the external surface, and wherein (a) comprises expanding the diameter of the hollow collar of the magnet assembly by expanding the gap.
3. A method according to claim 1 wherein the magnet assembly comprises a plurality of hollow collars that each comprises a segment of a ring sized to fit around the wall of the chamber, and wherein (a) comprises expanding the diameter of each hollow collar segment.
4. A method according to claim 1 wherein (c) comprises expanding the diameter of the hollow collar prior to snap fitting the hollow collar on the wall.
5. A method according to claim 4 wherein the hollow collar of the magnet assembly comprises a radially internal surface, and wherein (c) comprises snap fitting the hollow collar on the wall so that the radially internal surface of the magnet assembly directly contacts the wall.
6. A method according to claim 1 wherein the wall comprises a groove, and wherein (c) comprises snap fitting the magnet assembly onto the groove on the wall.
7. A method according to claim 6 further comprising fitting a retaining ring to retain the hollow collar in the groove of the wall.
8. A method according to claim 1 wherein the wall comprises a slot, wherein the hollow collar comprises an external surface with a key, and wherein (c) comprises aligning the key on the external surface of the hollow collar to couple to the slot on the wall.
9. A method according to claim 1 wherein the hollow collar of the magnet assembly comprises a radially internal surface and an external surface, and a gap extending from the radially internal surface to the external surface, the gap defining opposing faces with at least one face having an open end, and wherein the method comprises, initially, inserting a plurality of magnets in the hollow collar through the open end face.
10. A method according to claim 9 wherein the magnets comprise a south pole and a north pole, and comprising positioning the magnets in the hollow collar such that the south poles are directed upward and the north poles are directed downward.
11. A method according to claim 9 comprising positioning the magnets in the hollow collar such that the magnetic axes of the magnets are oriented perpendicular to the wall.
12. A method according to claim 9 comprising positioning the magnets in the hollow collar such that a first set of magnets have their magnetic axis oriented in one direction, and a second set of magnets have their magnetic axis oriented in the opposite direction.
13. A method according to claim 12 further comprising placing one or more pole pieces in the hollow collar to couple the first and second set of magnets.
14. A method according to claim 9 further comprising sealing the open end face with a cap.
15. A method according to claim 1 wherein the wall comprises a liner.
16. A method of refurbishing a wall of a plasma process chamber, the wall comprising a surface having a magnet assembly fitted thereon, and the magnet assembly comprising an expandable hollow collar comprising (i) a radially internal surface and an external surface, (ii) a gap extending from the radially internal surface to the external surface, and (iii) a plurality of magnets therein,
the method comprising:
(a) expanding a diameter of the hollow collar of the magnet assembly by expanding the gap;
(b) removing the expanded hollow collar from the wall;
(c) cleaning the surface of the wall; and
(d) snap fitting the hollow collar of the magnet assembly, or another magnet assembly, back onto the surface of the wall.
17. A method according to claim 16 wherein the magnet assembly comprises a plurality of hollow collars that each comprises a segment of a ring sized to fit around the wall of the chamber, and wherein (a) comprises expanding the diameter of each hollow collar segment.
18. A method according to claim 16 wherein (c) comprises expanding the diameter of the hollow collar prior to snap fitting the hollow collar on the wall.
19. A method according to claim 16 wherein the wall comprises a groove, and wherein (d) comprises snap fitting the magnet assembly onto the groove on the wall.
20. A method of refurbishing a wall of a plasma process chamber, the wall comprising a surface having a groove with a magnet assembly fitted thereon, the method comprising:
(a) removing a retaining ring which retains the magnet assembly in the groove of the wall;
(b) expanding a diameter of the magnet assembly by expanding the gap;
(c) removing the expanded magnet assembly from the groove on the surface of the wall;
(d) cleaning the surface of the wall; and
(e) snap fitting the magnet assembly, or another magnet assembly, back onto the groove of the surface of the wall.
US11/836,092 2003-12-01 2007-08-08 Method of refurbishing a magnet assembly for plasma process chamber Abandoned US20080066785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/836,092 US20080066785A1 (en) 2003-12-01 2007-08-08 Method of refurbishing a magnet assembly for plasma process chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/726,008 US7294224B2 (en) 2003-12-01 2003-12-01 Magnet assembly for plasma containment
US11/836,092 US20080066785A1 (en) 2003-12-01 2007-08-08 Method of refurbishing a magnet assembly for plasma process chamber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/726,008 Division US7294224B2 (en) 2003-12-01 2003-12-01 Magnet assembly for plasma containment

Publications (1)

Publication Number Publication Date
US20080066785A1 true US20080066785A1 (en) 2008-03-20

Family

ID=34620408

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/726,008 Expired - Fee Related US7294224B2 (en) 2003-12-01 2003-12-01 Magnet assembly for plasma containment
US11/836,092 Abandoned US20080066785A1 (en) 2003-12-01 2007-08-08 Method of refurbishing a magnet assembly for plasma process chamber

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/726,008 Expired - Fee Related US7294224B2 (en) 2003-12-01 2003-12-01 Magnet assembly for plasma containment

Country Status (1)

Country Link
US (2) US7294224B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080178801A1 (en) * 2007-01-29 2008-07-31 Applied Materials, Inc. Process kit for substrate processing chamber
US20080295872A1 (en) * 2007-05-30 2008-12-04 Applied Materials, Inc. Substrate cleaning chamber and components
US20090084317A1 (en) * 2007-09-28 2009-04-02 Applied Materials, Inc. Atomic layer deposition chamber and components
US7638004B1 (en) * 2006-05-31 2009-12-29 Lam Research Corporation Method for cleaning microwave applicator tube
US8617672B2 (en) 2005-07-13 2013-12-31 Applied Materials, Inc. Localized surface annealing of components for substrate processing chambers
CN104037046A (en) * 2014-06-25 2014-09-10 上海和辉光电有限公司 Reaction chamber and wafer machining method using same
CN108257841A (en) * 2016-12-29 2018-07-06 中微半导体设备(上海)有限公司 A kind of plasma treatment appts and its processing method with the adjustable magnet ring of multi-region
TWI789676B (en) * 2020-08-12 2023-01-11 台灣積體電路製造股份有限公司 Semiconductor process chamber, semiconductor processing system and method of generating process gas flow

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080260966A1 (en) * 2007-04-22 2008-10-23 Applied Materials, Inc. Plasma processing method
US7972469B2 (en) * 2007-04-22 2011-07-05 Applied Materials, Inc. Plasma processing apparatus
US20090057266A1 (en) * 2007-08-27 2009-03-05 Eda Tuncel Line edge roughness control
GB0818342D0 (en) * 2008-10-07 2008-11-12 Science And Technology Facilities Council Mass discriminator
US8269138B2 (en) * 2009-05-21 2012-09-18 Corning Incorporated Method for separating a sheet of brittle material
US8597462B2 (en) * 2010-05-21 2013-12-03 Lam Research Corporation Movable chamber liner plasma confinement screen combination for plasma processing apparatuses
US8584490B2 (en) 2011-02-18 2013-11-19 Corning Incorporated Laser cutting method
US9034458B2 (en) 2011-05-27 2015-05-19 Corning Incorporated Edge-protected product and finishing method
US20150221481A1 (en) * 2014-01-31 2015-08-06 Michael D. Willwerth Electrostatic chuck with magnetic cathode liner for critical dimension (cd) tuning
CN107301941B (en) * 2016-04-14 2019-04-23 北京北方华创微电子装备有限公司 Apparatus for processing plasma and its operating method
JP7274347B2 (en) * 2019-05-21 2023-05-16 東京エレクトロン株式会社 Plasma processing equipment
US20220122866A1 (en) * 2020-10-21 2022-04-21 Applied Materials, Inc. Magnetic holding structures for plasma processing applications

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434042A (en) * 1982-03-01 1984-02-28 The Board Of Trustees Of The Leland Stanford Junior University Planar magnetron sputtering apparatus
US4632719A (en) * 1985-09-18 1986-12-30 Varian Associates, Inc. Semiconductor etching apparatus with magnetic array and vertical shield
US4842683A (en) * 1986-12-19 1989-06-27 Applied Materials, Inc. Magnetic field-enhanced plasma etch reactor
US4853102A (en) * 1987-01-07 1989-08-01 Hitachi, Ltd. Sputtering process and an apparatus for carrying out the same
US5215619A (en) * 1986-12-19 1993-06-01 Applied Materials, Inc. Magnetic field-enhanced plasma etch reactor
US5718795A (en) * 1995-08-21 1998-02-17 Applied Materials, Inc. Radial magnetic field enhancement for plasma processing
US6030486A (en) * 1996-01-24 2000-02-29 Applied Materials, Inc. Magnetically confined plasma reactor for processing a semiconductor wafer
US6074512A (en) * 1991-06-27 2000-06-13 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US6228235B1 (en) * 1996-03-13 2001-05-08 Applied Materials, Inc. Magnetron for low pressure, full face erosion
US6232236B1 (en) * 1999-08-03 2001-05-15 Applied Materials, Inc. Apparatus and method for controlling plasma uniformity in a semiconductor wafer processing system
US6254745B1 (en) * 1999-02-19 2001-07-03 Tokyo Electron Limited Ionized physical vapor deposition method and apparatus with magnetic bucket and concentric plasma and material source
US20010032591A1 (en) * 2000-04-25 2001-10-25 Applied Materials, Inc. Magnetic barrier for plasma in chamber exhaust
US6451177B1 (en) * 2000-01-21 2002-09-17 Applied Materials, Inc. Vault shaped target and magnetron operable in two sputtering modes
US6488807B1 (en) * 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US6523493B1 (en) * 2000-08-01 2003-02-25 Tokyo Electron Limited Ring-shaped high-density plasma source and method
US6562189B1 (en) * 2000-05-19 2003-05-13 Applied Materials Inc. Plasma reactor with a tri-magnet plasma confinement apparatus
US6586346B1 (en) * 1990-02-06 2003-07-01 Semiconductor Energy Lab Method of forming an oxide film
US6620298B1 (en) * 1999-04-23 2003-09-16 Matsushita Electric Industrial Co., Ltd. Magnetron sputtering method and apparatus
US20030192646A1 (en) * 2002-04-12 2003-10-16 Applied Materials, Inc. Plasma processing chamber having magnetic assembly and method
US20040020768A1 (en) * 2002-08-01 2004-02-05 Applied Materials, Inc. Asymmetric rotating sidewall magnet ring for magnetron sputtering
US20040055880A1 (en) * 2001-11-14 2004-03-25 Applied Materials, Inc. Sidewall magnet improving uniformity of inductively coupled plasma and shields used therewith
US20040216998A1 (en) * 2002-02-05 2004-11-04 Jianming Fu Cover ring and shield supporting a wafer ring in a plasma reactor
US20050001556A1 (en) * 2002-07-09 2005-01-06 Applied Materials, Inc. Capacitively coupled plasma reactor with magnetic plasma control
US6853141B2 (en) * 2002-05-22 2005-02-08 Daniel J. Hoffman Capacitively coupled plasma reactor with magnetic plasma control
US20050116392A1 (en) * 2003-12-02 2005-06-02 Applied Materials, Inc. Magnet secured in a two part shell
US7067034B2 (en) * 2000-03-27 2006-06-27 Lam Research Corporation Method and apparatus for plasma forming inner magnetic bucket to control a volume of a plasma

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US192646A (en) * 1877-07-03 Improvement in punching and shearing machines
DE3504986A1 (en) * 1985-02-14 1986-08-14 Hüls AG, 4370 Marl MOLDING MATERIALS BASED ON LINEAR, HIGH MOLECULAR POLYESTERS
EP0767575B1 (en) * 1995-10-04 2004-01-02 Canon Kabushiki Kaisha Scanner server apparatus and scanner server system
JP2000268995A (en) * 1999-03-18 2000-09-29 Kokusai Electric Co Ltd Plasma processing device

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434042A (en) * 1982-03-01 1984-02-28 The Board Of Trustees Of The Leland Stanford Junior University Planar magnetron sputtering apparatus
US4632719A (en) * 1985-09-18 1986-12-30 Varian Associates, Inc. Semiconductor etching apparatus with magnetic array and vertical shield
US4842683A (en) * 1986-12-19 1989-06-27 Applied Materials, Inc. Magnetic field-enhanced plasma etch reactor
US5215619A (en) * 1986-12-19 1993-06-01 Applied Materials, Inc. Magnetic field-enhanced plasma etch reactor
US4853102A (en) * 1987-01-07 1989-08-01 Hitachi, Ltd. Sputtering process and an apparatus for carrying out the same
US6586346B1 (en) * 1990-02-06 2003-07-01 Semiconductor Energy Lab Method of forming an oxide film
US6074512A (en) * 1991-06-27 2000-06-13 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US6488807B1 (en) * 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US5718795A (en) * 1995-08-21 1998-02-17 Applied Materials, Inc. Radial magnetic field enhancement for plasma processing
US6402885B2 (en) * 1996-01-24 2002-06-11 Applied Materials, Inc. Magnetically enhanced inductively coupled plasma reactor with magnetically confined plasma
US6030486A (en) * 1996-01-24 2000-02-29 Applied Materials, Inc. Magnetically confined plasma reactor for processing a semiconductor wafer
US20010004920A1 (en) * 1996-01-24 2001-06-28 Applied Materials, Inc. Magnetically enhanced inductively coupled plasma reactor with magnetically confined plasma
US6228235B1 (en) * 1996-03-13 2001-05-08 Applied Materials, Inc. Magnetron for low pressure, full face erosion
US6254745B1 (en) * 1999-02-19 2001-07-03 Tokyo Electron Limited Ionized physical vapor deposition method and apparatus with magnetic bucket and concentric plasma and material source
US6620298B1 (en) * 1999-04-23 2003-09-16 Matsushita Electric Industrial Co., Ltd. Magnetron sputtering method and apparatus
US6232236B1 (en) * 1999-08-03 2001-05-15 Applied Materials, Inc. Apparatus and method for controlling plasma uniformity in a semiconductor wafer processing system
US6451177B1 (en) * 2000-01-21 2002-09-17 Applied Materials, Inc. Vault shaped target and magnetron operable in two sputtering modes
US7067034B2 (en) * 2000-03-27 2006-06-27 Lam Research Corporation Method and apparatus for plasma forming inner magnetic bucket to control a volume of a plasma
US20010032590A1 (en) * 2000-04-25 2001-10-25 Applied Materials, Inc. Magnetic barrier for plasma in chamber exhaust
US20010032591A1 (en) * 2000-04-25 2001-10-25 Applied Materials, Inc. Magnetic barrier for plasma in chamber exhaust
US6863835B1 (en) * 2000-04-25 2005-03-08 James D. Carducci Magnetic barrier for plasma in chamber exhaust
US6773544B2 (en) * 2000-04-25 2004-08-10 James D. Carducci Magnetic barrier for plasma in chamber exhaust
US6562189B1 (en) * 2000-05-19 2003-05-13 Applied Materials Inc. Plasma reactor with a tri-magnet plasma confinement apparatus
US6523493B1 (en) * 2000-08-01 2003-02-25 Tokyo Electron Limited Ring-shaped high-density plasma source and method
US20040055880A1 (en) * 2001-11-14 2004-03-25 Applied Materials, Inc. Sidewall magnet improving uniformity of inductively coupled plasma and shields used therewith
US20040216998A1 (en) * 2002-02-05 2004-11-04 Jianming Fu Cover ring and shield supporting a wafer ring in a plasma reactor
US7294245B2 (en) * 2002-02-05 2007-11-13 Applied Materials, Inc. Cover ring and shield supporting a wafer ring in a plasma reactor
US20030192646A1 (en) * 2002-04-12 2003-10-16 Applied Materials, Inc. Plasma processing chamber having magnetic assembly and method
US6853141B2 (en) * 2002-05-22 2005-02-08 Daniel J. Hoffman Capacitively coupled plasma reactor with magnetic plasma control
US20050001556A1 (en) * 2002-07-09 2005-01-06 Applied Materials, Inc. Capacitively coupled plasma reactor with magnetic plasma control
US20040020768A1 (en) * 2002-08-01 2004-02-05 Applied Materials, Inc. Asymmetric rotating sidewall magnet ring for magnetron sputtering
US20050116392A1 (en) * 2003-12-02 2005-06-02 Applied Materials, Inc. Magnet secured in a two part shell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617672B2 (en) 2005-07-13 2013-12-31 Applied Materials, Inc. Localized surface annealing of components for substrate processing chambers
US9481608B2 (en) 2005-07-13 2016-11-01 Applied Materials, Inc. Surface annealing of components for substrate processing chambers
US7638004B1 (en) * 2006-05-31 2009-12-29 Lam Research Corporation Method for cleaning microwave applicator tube
US20080178801A1 (en) * 2007-01-29 2008-07-31 Applied Materials, Inc. Process kit for substrate processing chamber
US7981262B2 (en) 2007-01-29 2011-07-19 Applied Materials, Inc. Process kit for substrate processing chamber
US20080295872A1 (en) * 2007-05-30 2008-12-04 Applied Materials, Inc. Substrate cleaning chamber and components
US7942969B2 (en) 2007-05-30 2011-05-17 Applied Materials, Inc. Substrate cleaning chamber and components
US8980045B2 (en) 2007-05-30 2015-03-17 Applied Materials, Inc. Substrate cleaning chamber and components
US20090084317A1 (en) * 2007-09-28 2009-04-02 Applied Materials, Inc. Atomic layer deposition chamber and components
CN104037046A (en) * 2014-06-25 2014-09-10 上海和辉光电有限公司 Reaction chamber and wafer machining method using same
CN108257841A (en) * 2016-12-29 2018-07-06 中微半导体设备(上海)有限公司 A kind of plasma treatment appts and its processing method with the adjustable magnet ring of multi-region
TWI789676B (en) * 2020-08-12 2023-01-11 台灣積體電路製造股份有限公司 Semiconductor process chamber, semiconductor processing system and method of generating process gas flow

Also Published As

Publication number Publication date
US20050115678A1 (en) 2005-06-02
US7294224B2 (en) 2007-11-13

Similar Documents

Publication Publication Date Title
US20080066785A1 (en) Method of refurbishing a magnet assembly for plasma process chamber
JP5398942B2 (en) Magnetic barrier to plasma in chamber exhaust
US7147749B2 (en) Method and apparatus for an improved upper electrode plate with deposition shield in a plasma processing system
US7754997B2 (en) Apparatus and method to confine plasma and reduce flow resistance in a plasma
EP1230667B1 (en) Method and apparatus for controlling the volume of a plasma
US7282112B2 (en) Method and apparatus for an improved baffle plate in a plasma processing system
US7137353B2 (en) Method and apparatus for an improved deposition shield in a plasma processing system
JP4597972B2 (en) A method of bonding adjacent coatings on a processing member.
US6471822B1 (en) Magnetically enhanced inductively coupled plasma reactor with magnetically confined plasma
US6554954B2 (en) Conductive collar surrounding semiconductor workpiece in plasma chamber
EP1089319B1 (en) Uniform gas distribution in large area plasma treatment device
US7204912B2 (en) Method and apparatus for an improved bellows shield in a plasma processing system
US20060283553A1 (en) Plasma chamber insert ring
EP1151147A1 (en) Plasma deposition method and apparatus with magnetic bucket and concentric plasma and material source
JP2007511089A (en) Method and apparatus for improved focus ring.
US20030192646A1 (en) Plasma processing chamber having magnetic assembly and method
JPH07183285A (en) Plasma reactor including magnet to protect electrostatic chuck from plasma
CN114930492A (en) Apparatus for improving anode-cathode ratio for RF chamber

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VESCI, ANTHONY;KIRCHHHOFF, VINCE;WOODWARD, JAMES;AND OTHERS;REEL/FRAME:020313/0664;SIGNING DATES FROM 20031209 TO 20040105

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION