US20080128366A1 - Methods of energy storage and transfer - Google Patents

Methods of energy storage and transfer Download PDF

Info

Publication number
US20080128366A1
US20080128366A1 US11/978,891 US97889107A US2008128366A1 US 20080128366 A1 US20080128366 A1 US 20080128366A1 US 97889107 A US97889107 A US 97889107A US 2008128366 A1 US2008128366 A1 US 2008128366A1
Authority
US
United States
Prior art keywords
sodium sulfate
water
product
salts
phase change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/978,891
Other versions
US8192633B2 (en
Inventor
Gerald J. Grott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecycling LLC
Original Assignee
Grott Gerald J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/110,789 external-priority patent/US6071411A/en
Priority claimed from US09/565,735 external-priority patent/US6374539B1/en
Priority claimed from US09/849,453 external-priority patent/US6651383B2/en
Application filed by Grott Gerald J filed Critical Grott Gerald J
Priority to US11/978,891 priority Critical patent/US8192633B2/en
Publication of US20080128366A1 publication Critical patent/US20080128366A1/en
Assigned to Ecycling, LLC reassignment Ecycling, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GROTT, GERALD J.
Application granted granted Critical
Publication of US8192633B2 publication Critical patent/US8192633B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to methods of energy storage and transfer.
  • the invention relates to the use of a sodium sulfate product for storing and transferring energy.
  • the invention concerns use of a sodium sulfate product, derived from otherwise useless or harmful waste waters, as a medium for storage and/or transfer of energy, thus to provide the economic basis for the treatment of the waste waters by water purification and reuse thereof for valuable purposes, as the alternate to expensive or ineffectual waste water disposal.
  • FIG. 1 is a flow chart of the preferred method of the invention for initial refining of waste waters to separate and provide a clean water stream and a contaminated water stream;
  • FIG. 2 is a flow chart of another preferred method of the invention for initial refining of waste waters to separate and provide a clean water stream and a contaminated water stream;
  • FIG. 3 is a flow chart of still another preferred method of the invention for initial refining of waste waters to separate and provide a clean water stream and a contaminated water stream;
  • FIG. 4 is a flow chart of a preferred method of the present invention including evaporation to produce substantially solid sodium sulfate product.
  • Water purification typically produces a first effluent of relatively “clean water” and a second effluent of “waste water” which includes unwanted contaminants.
  • the softening of hard water by the removal of calcium and magnesium is required for both industrial and household use.
  • Known water softening processes proceed either by way of ion-exchange, membrane softening or precipitation.
  • the calcium (Ca++) and magnesium (Mg+) ions are exchanged for sodium (Na+) ions.
  • Regeneration of the ion-exchange resin is achieved with a large excess of NaCl. This process creates a regeneration effluent being a relatively concentrated aqueous solution of sodium, calcium and magnesium chlorides. Consequently, by this method, considerable amounts of sodium, calcium and magnesium salts in solution must be disposed of.
  • Membrane softening concentrates the calcium, magnesium salts and salts of other divalent ions to produce waste waters which require costly disposal.
  • the precipitation process has traditionally been carried out by the “lime soda” process in which lime is added to hard water to convert water soluble calcium bicarbonate into water insoluble calcium carbonate. This results in waste water which is difficult to filter and requires use of cumbersome equipment.
  • waste water has become an expensive problem for society. For example, approximately 1.61 billion gallons of waste water containing approximately 800,000 tons of mixed sodium, calcium, magnesium chlorides and sulfates is produced from water treatment operations and oil fields in the state of California alone. Disposal of this waste water costs millions of dollars each year.
  • I provide methods for economically and efficiently using waste waters produced by water purification and particularly those produced from oil and gas wells, and irrigation drainage, by processing such waters to recover a valuable sodium sulfate product that provides economical energy storage and transfer.
  • the economic value of the sodium sulfate product is sufficient to cover the cost of processing the waste waters and ultimate disposal of unusable byproducts.
  • I provide a method for energy storage and transfer using the phase change energy of sodium sulfate and sodium sulfate decahydrate.
  • the method comprises, in combination the steps of (a) separating a sodium sulfate product, from water containing sodium sulfate dissolved therein and other containing contaminate salts, (b) adjusting the phase change temperature of the separated sodium sulfate to a preselected temperature by regulating the amount of the contaminate salts in the sodium sulfate product, and (c) storing energy in the product by heating the product to above the preselected phase change temperature, producing a heated sodium sulfate product; and transferring energy from the heated sodium sulfate by cooling the heated sodium sulfate product to below the selected phase change temperature.
  • I provide a method for energy storage and transfer using the phase change energy of sodium sulfate and sodium sulfate decahydrate, comprising, in combination, the steps of (a) separating a sodium sulfate product from the waste water of a water purification process which contains sodium sulfate and other contaminate salts dissolved therein; (b) adjusting the phase change temperature of the separated sodium sulfate to a preselected temperature by regulating the amount of the contaminate salts in the sodium sulfate product; (c) storing energy in the product by heating the product to above the preselected phase change temperature, producing a heated sodium sulfate product; and (d) transferring energy from the heated sodium sulfate by cooling it to below the selected phase change temperature.
  • clean water refers to water which has been treated by one or several methods for public or industrial use. For example, in the drinking water industry, clean water is the final delivered water. Typical water purification processes and water softening processes create waste water having various levels of salt content.
  • waste water as water containing about 0.15% or more by weight of the salts of Na, K, Ca, Mg, Fe, Cl, SO4, and CO3 or a combination thereof.
  • Water softening is the removal of the “hardness” from the water which means predominantly removing or altering the calcium and magnesium ions from the water. These calcium and magnesium ions combine with carbonates, sulfates, oils and fat to create bathtub scum, spotted dishes, gray sheets, etc. In addition, unsoftened water causes scaling in water heaters and boilers, causing early substantial energy losses through impaired heat transfer and early shutdown for the removal of scale.
  • Ion-exchange entails the exchange of sodium, which is introduced into water, for calcium, magnesium, iron and other divalent mineral ions which are transferred out of the water and into a resin.
  • the resin approaches saturation with these “hard” ions, the resin is regenerated, most often with solutions of sodium chloride, leaving an effluent containing 3 to 25% sodium, calcium and magnesium salts which must be disposed of.
  • concentration of the effluent depends on the shop practice and, in particular, on the amount of rinse water included in the effluent, if any. Less often, mineral acids like sulfuric acid or hydrochloric acid are used for water softening and these also produce effluents. Conversely, reverse water softening also involves ion exchange in which calcium and magnesium are introduced into the water to separate sodium.
  • Membrane systems have recently become economically feasible. These systems, such as electro dialysis and reverse osmosis, include the use of a membrane which also produces a salty effluent.
  • the first product of clean water may be further purified by dual bed or mixed bed ion-exchange treatment. This “polishing treatment” also produces an effluent containing the removed salts.
  • each of these water purifying processes produce a clean water effluent and a waste water effluent which is expensive and difficult to dispose of, contaminated with salts including Na, K, Ca, Mg, Fe, Cl, SO4 and CO3.
  • the contaminated water is purified by any means known to those skilled in the art, including distillation, reverse osmosis, electrolysis, evaporation, ion exchange, etc.
  • the contaminated water is processed to produce a first effluent of relatively clean water which is useful for agricultural purposes, drinking water, industrial purposes, etc.
  • the processing also produces a second effluent of waste water.
  • the waste water is analyzed for hazardous materials to confirm that the waste water is safe to use. Thereafter, the waste water, comprising an aqueous solution of salts, is analyzed for individual amounts of sodium, calcium, and magnesium and total dissolved solids.
  • water is collected which is contaminated with the salts of Na, Ca, Mg, Fe, Cl, SO4, and CO3. The water is then tested to confirm that it is free of hazardous materials.
  • the contaminated water is then purified by ion exchange. As the name implies, the amount of salts in the effluents does not change. However, the cations are exchanged. By this process, a first effluent of clean water is produced having increased sodium or potassium. Where the contaminated water originally contained a low amount of sodium, it is preferred that this water be used for potable water.
  • the clean water effluent be used for laundries, boilers, cooling towers, pond sealing and soil stabilization. These applications are typically more tolerant of waters having high sodium content, as long as the magnesium and calcium content remains low. These uses are listed in order of suitability as the sodium increases.
  • water is collected which is contaminated with the salts of Na, K, Ca, Mg, Fe, Cl, SO4, and CO3. The water is then tested to confirm that it is free of hazardous materials.
  • This contaminated water is then purified by a membrane system to remove large molecules.
  • a first effluent of clean water having decreased multivalent ions is produced from the membrane softening process. Where the original sodium content of the contaminated water is relatively low, it is preferred that the clean water be used for potable water. Where the original sodium content of the contaminated water is relatively high, it is preferred that the clean water effluent be used for laundries, low pressure boilers, cooling towers, pond sealing and soil stabilization.
  • the membrane system also creates a waste water having significant calcium, magnesium, iron, sulfates, etc.
  • water is collected which is contaminated with the salts of Na, K, Ca, Mg, Fe, Cl, SO4, and/or CO3.
  • the contaminated water is then tested to determine that it is free of hazardous chemicals, and if the water is determined to be sufficiently free of hazardous chemicals, the water is purified by water softening, such as by ion exchange.
  • ion exchange produces a first effluent of clean water which typically has a high sodium content.
  • the clean water has a low sodium content such as where the original contaminated water had a low sodium content
  • the water may be used for potable applications.
  • the clean water may used for laundry applications, cooling towers, pond sealing and soil stabilization.
  • water that is contaminated with the salts of Na, K, Ca, Mg, Fe, Cl, SO4, and CO3 is desalted by distillation, reverse osmosis, electrodialysis or ion exchange to produce a first effluent of clean water and a second effluent of waste water.
  • the waste water is preferably tested to ensure that it is free of hazardous materials.
  • the water undergoes evaporation to produce a substantially solid mixture and a solution concentrate.
  • the substantially solid mixture is comprised primarily of sodium salts, in particular sodium sulfate.
  • Irrigation water contains salts and some inorganic fertilizer materials that are used by plants in varying degrees but rarely, if ever, in their entirety. Plants separate water and nutrients selectively for growth and for temperature regulation by evapo-transpiration. Some water is evaporated at the soil surface leaving the salts behind. The remaining water becomes salty, and, if not flushed out of the root zone, reduces the crop yield. The continued pumping of ground water can recirculate the salts until their concentration makes agriculture uneconomical.
  • the downward percolating irrigation water causes the local water table to rise.
  • the salty water can migrate upwards reducing crop yield and eventually covering the surface with salts. These once productive lands become barren.
  • Waste-waters high in sulfate are also produced in geothermal operation and from other natural sources. While this discussion is stated mostly in terms of irrigation drainage, persons skilled in the art will recognize that the work herein described is applicable to these other sulfate waste or by-product waters.
  • Some of the methods for recovering products from irrigation drainage differ from those used for recovering salts from chlorides type wastes. Additionally, the products themselves vary according to the amounts of each salt in the wastes, and of course, the carbonate and sulfate products increase the number of uses of salts recovered from wastes.
  • One factor contributing to the need for processing and recovering valuable products from irrigation drainage is the high volume of such waters, their widespread occurrence, and the rapid growth in their volume that endangers sustainable agriculture.
  • Tests were run so as to duplicate, on a reduced scale, the typical solar practice of two or more evaporation stages, in series, to get best evaporation efficiency. Evaporation was carried out in duplicate pans 33 cm ⁇ 63 cm ⁇ 10 cm deep, lined with polyethylene film. Daily ambient highs were 38-42° C. and night lows were 15° to 17° C. Daytime relative humidity was 15 to 25%. The specific gravity (sg) of the Salton Sea water was 1.03.
  • the 480 ml portion was divided into 100 ml. and 380 ml. splits.
  • the 100 ml was transferred to a 200 ml beaker, which was then sealed with plastic wrap to avoid evaporation. It was then cooled by refrigeration in a compartment at 4.4° C.
  • the wrap was removed only for as long as it took to measure temperature with a thermometer that was also kept in the refrigerator.
  • the first precipitation of fine crystals was noted at 14° C. Cooling was continued overnight in an iced compartment. The morning temperature was 2.2 C.
  • the fine precipitate had caked at about 45% of the total volume.
  • a stirring spatula was used to break the cake into fine particles, which were allowed to settle. The settled level was about 40% of the total volume.
  • the liquid was drained and the wet solids were heated in a microwave oven for 3 to 5 second intervals to avoid overheating and evaporation.
  • Brine hardness was measured using a Hack Kit 5B and the procedure used for checking brines used in water softening.
  • the brine hardness was 1020 grains calculated as calcium carbonate.
  • the 380 ml split was placed into a ceramic bowl, sealed with a thin clinging plastic wrap, and put out to chill overnight.
  • the air temperature was 14° C. at midnight and 10° C. at 6:10 AM.
  • the sample temperature was 9.5° C.
  • the volume had not measurably decreased, so the indication is that the night low was cooler than the 6:10 AM temperature.
  • the brine in the bowl remained very clear and appeared to be unchanged but, on examination, it was found to contain many crystal clear acicular crystals 4 to 6 cm. long. These were removed with a stainless steel table fork, drained, weighed, and then placed on filter paper for blotting some of the adhering brine. The blotting removed an additional 3.5 grams of brine. The drained and blotted weight was 58.1 grams and the sg of the remaining brine was 1.254 (60° F.).
  • the magnesium may be separated by adding lime or hydrated lime.
  • the precipitated magnesium oxide, or hydroxide is particularly suitable for use in neutralizing minerals in acidic solutions because the precipitate settles well.
  • Sodium sulfate decahydrate is the most widely studied material for storing phase change energy, because it is effective at temperatures within our daily experience, say from refrigeration at 4° C. to warm water at 31° C. Uses extend from filling water bottles to keep ones feet warm to heating entire living and working spaces. Using the phase change at 241° C., the sodium sulfate product obtained from solar evaporation, is useful even for refrigeration according to the cycle used for refrigeration by burning propane.
  • low-cost salts are ideally suited for massive energy storage for agricultural uses. It is well known that different plants and animals grow best at some discrete range of temperature suited to their species. An abundance of low cost sodium sulfate allows the use of stored solar heat to heat the living space of plants and animals at night. It also allows the use of nighttime cooling and the cooled sulfate may be used in cooling the living space in the daytime for plants, animals, and for humans.
  • pellets of the anhydrous material recovered from wastes makes it more economical to store solar energy or to transfer waste heat, from flue gases for example, at the very usable 241° C. Storage of heat at this temperature is suitable for refrigeration.
  • heat storage products of great utility can be prepared using materials recovered from common wastes, and with a minimum expenditure of energy for processing.
  • a sample was dissolved to make a saturated brine.
  • the brine was chilled to 38° F., well within the range reached by outdoor spray chilling in winter.
  • the crystallized hydrates were found to have a phase change from hydrate to melt at 82° F., just as did the hydrates recovered from the Salton Sea by solar evaporation and chilling outdoors.

Abstract

Energy is stored and transferred by separating a sodium sulfate product from water containing sodium sulfate, adjusting the phase change temperature of the sodium sulfate product, storing energy in said product by heating the product above the sodium sulfate-sodium sulfate decahydrate phase change temperature and transferring the stored heat by cooling the heated sodium sulfate product to below said phase change temperature.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part of my copending application U.S. Ser. No. 10/706,341 filed Nov. 11, 2003, which is, in turn, a continuation-in-part of my application U.S. Ser. No. 09/849,453, filed May 4, 2001, now U.S. Pat. No. 6,651,383 issued Nov. 25, 2003, which is, in turn, a continuation-in-part of my application U.S. Ser. No. 09/565,735 filed May 5, 2000, now U.S. Pat. No. 6,374,539 issued Apr. 23, 2002, which is in turn, a continuation-in-part of my application U.S. Ser. No. 09/110,789 filed Jul. 6, 1998, now U.S. Pat. No. 6,071,411 issued Jun. 6, 2000.
  • FIELD OF THE INVENTION
  • The present invention relates to methods of energy storage and transfer.
  • More particularly, the invention relates to the use of a sodium sulfate product for storing and transferring energy.
  • In yet another aspect the invention concerns use of a sodium sulfate product, derived from otherwise useless or harmful waste waters, as a medium for storage and/or transfer of energy, thus to provide the economic basis for the treatment of the waste waters by water purification and reuse thereof for valuable purposes, as the alternate to expensive or ineffectual waste water disposal.
  • These and other, further and more specific objects and advantages of the invention will be apparent to those skilled in the art from the following detailed description taken in conjunction with the drawings, in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart of the preferred method of the invention for initial refining of waste waters to separate and provide a clean water stream and a contaminated water stream;
  • FIG. 2 is a flow chart of another preferred method of the invention for initial refining of waste waters to separate and provide a clean water stream and a contaminated water stream;
  • FIG. 3 is a flow chart of still another preferred method of the invention for initial refining of waste waters to separate and provide a clean water stream and a contaminated water stream; and
  • FIG. 4 is a flow chart of a preferred method of the present invention including evaporation to produce substantially solid sodium sulfate product.
  • BACKGROUND OF THE INVENTION
  • Water purification typically produces a first effluent of relatively “clean water” and a second effluent of “waste water” which includes unwanted contaminants.
  • For example, the softening of hard water by the removal of calcium and magnesium is required for both industrial and household use. Known water softening processes proceed either by way of ion-exchange, membrane softening or precipitation. In the ion-exchange processes, the calcium (Ca++) and magnesium (Mg+) ions are exchanged for sodium (Na+) ions. Regeneration of the ion-exchange resin is achieved with a large excess of NaCl. This process creates a regeneration effluent being a relatively concentrated aqueous solution of sodium, calcium and magnesium chlorides. Consequently, by this method, considerable amounts of sodium, calcium and magnesium salts in solution must be disposed of.
  • Alternatively, it is possible to use weak acid resins which exchange hydrogen (H+) for calcium (Ca++) and magnesium (Mg++) ions, and to regenerate the spent resins with a mineral acid. While this method creates less waste water, it is more expensive and yields relatively acidic soft water which is corrosive.
  • Membrane softening concentrates the calcium, magnesium salts and salts of other divalent ions to produce waste waters which require costly disposal.
  • The precipitation process has traditionally been carried out by the “lime soda” process in which lime is added to hard water to convert water soluble calcium bicarbonate into water insoluble calcium carbonate. This results in waste water which is difficult to filter and requires use of cumbersome equipment.
  • The disposal of waste water has become an expensive problem for society. For example, approximately 1.61 billion gallons of waste water containing approximately 800,000 tons of mixed sodium, calcium, magnesium chlorides and sulfates is produced from water treatment operations and oil fields in the state of California alone. Disposal of this waste water costs millions of dollars each year.
  • It would be desirable for such waste waters to be processed so as to provide valuable products which could then be sold and used to offset the disposal costs.
  • BRIEF DESCRIPTION OF THE INVENTION
  • Briefly, in accordance with the invention, I provide methods for economically and efficiently using waste waters produced by water purification and particularly those produced from oil and gas wells, and irrigation drainage, by processing such waters to recover a valuable sodium sulfate product that provides economical energy storage and transfer. The economic value of the sodium sulfate product is sufficient to cover the cost of processing the waste waters and ultimate disposal of unusable byproducts.
  • According to one embodiment of the invention, I provide a method for energy storage and transfer using the phase change energy of sodium sulfate and sodium sulfate decahydrate. The method comprises, in combination the steps of (a) separating a sodium sulfate product, from water containing sodium sulfate dissolved therein and other containing contaminate salts, (b) adjusting the phase change temperature of the separated sodium sulfate to a preselected temperature by regulating the amount of the contaminate salts in the sodium sulfate product, and (c) storing energy in the product by heating the product to above the preselected phase change temperature, producing a heated sodium sulfate product; and transferring energy from the heated sodium sulfate by cooling the heated sodium sulfate product to below the selected phase change temperature.
  • In another and presently preferred embodiment, I provide a method for energy storage and transfer using the phase change energy of sodium sulfate and sodium sulfate decahydrate, comprising, in combination, the steps of (a) separating a sodium sulfate product from the waste water of a water purification process which contains sodium sulfate and other contaminate salts dissolved therein; (b) adjusting the phase change temperature of the separated sodium sulfate to a preselected temperature by regulating the amount of the contaminate salts in the sodium sulfate product; (c) storing energy in the product by heating the product to above the preselected phase change temperature, producing a heated sodium sulfate product; and (d) transferring energy from the heated sodium sulfate by cooling it to below the selected phase change temperature.
  • As defined herein, clean water refers to water which has been treated by one or several methods for public or industrial use. For example, in the drinking water industry, clean water is the final delivered water. Typical water purification processes and water softening processes create waste water having various levels of salt content. For the purposes of this invention, I define “waste water” as water containing about 0.15% or more by weight of the salts of Na, K, Ca, Mg, Fe, Cl, SO4, and CO3 or a combination thereof.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Water softening is the removal of the “hardness” from the water which means predominantly removing or altering the calcium and magnesium ions from the water. These calcium and magnesium ions combine with carbonates, sulfates, oils and fat to create bathtub scum, spotted dishes, gray sheets, etc. In addition, unsoftened water causes scaling in water heaters and boilers, causing early substantial energy losses through impaired heat transfer and early shutdown for the removal of scale.
  • Several methods for effecting water softening are known. The best known process for softening water is “ion-exchange.” Ion-exchange entails the exchange of sodium, which is introduced into water, for calcium, magnesium, iron and other divalent mineral ions which are transferred out of the water and into a resin. When the resin approaches saturation with these “hard” ions, the resin is regenerated, most often with solutions of sodium chloride, leaving an effluent containing 3 to 25% sodium, calcium and magnesium salts which must be disposed of.
  • The exact concentration of the effluent depends on the shop practice and, in particular, on the amount of rinse water included in the effluent, if any. Less often, mineral acids like sulfuric acid or hydrochloric acid are used for water softening and these also produce effluents. Conversely, reverse water softening also involves ion exchange in which calcium and magnesium are introduced into the water to separate sodium.
  • Membrane systems have recently become economically feasible. These systems, such as electro dialysis and reverse osmosis, include the use of a membrane which also produces a salty effluent. For critical uses such as electronics, and particularly for use in the manufacture of computer chips, the first product of clean water may be further purified by dual bed or mixed bed ion-exchange treatment. This “polishing treatment” also produces an effluent containing the removed salts.
  • As shown in FIG. 1, each of these water purifying processes produce a clean water effluent and a waste water effluent which is expensive and difficult to dispose of, contaminated with salts including Na, K, Ca, Mg, Fe, Cl, SO4 and CO3. The contaminated water is purified by any means known to those skilled in the art, including distillation, reverse osmosis, electrolysis, evaporation, ion exchange, etc. The contaminated water is processed to produce a first effluent of relatively clean water which is useful for agricultural purposes, drinking water, industrial purposes, etc. The processing also produces a second effluent of waste water. The waste water is analyzed for hazardous materials to confirm that the waste water is safe to use. Thereafter, the waste water, comprising an aqueous solution of salts, is analyzed for individual amounts of sodium, calcium, and magnesium and total dissolved solids.
  • With reference to FIG. 2, in a second preferred embodiment, water is collected which is contaminated with the salts of Na, Ca, Mg, Fe, Cl, SO4, and CO3. The water is then tested to confirm that it is free of hazardous materials. The contaminated water is then purified by ion exchange. As the name implies, the amount of salts in the effluents does not change. However, the cations are exchanged. By this process, a first effluent of clean water is produced having increased sodium or potassium. Where the contaminated water originally contained a low amount of sodium, it is preferred that this water be used for potable water. Where the contaminated water originally contained high sodium amounts, it is preferred that the clean water effluent be used for laundries, boilers, cooling towers, pond sealing and soil stabilization. These applications are typically more tolerant of waters having high sodium content, as long as the magnesium and calcium content remains low. These uses are listed in order of suitability as the sodium increases.
  • With reference to FIG. 3, in a third preferred embodiment, water is collected which is contaminated with the salts of Na, K, Ca, Mg, Fe, Cl, SO4, and CO3. The water is then tested to confirm that it is free of hazardous materials. This contaminated water is then purified by a membrane system to remove large molecules. A first effluent of clean water having decreased multivalent ions is produced from the membrane softening process. Where the original sodium content of the contaminated water is relatively low, it is preferred that the clean water be used for potable water. Where the original sodium content of the contaminated water is relatively high, it is preferred that the clean water effluent be used for laundries, low pressure boilers, cooling towers, pond sealing and soil stabilization. The membrane system also creates a waste water having significant calcium, magnesium, iron, sulfates, etc.
  • With reference to FIG. 4, in a fourth preferred embodiment of the present invention, water is collected which is contaminated with the salts of Na, K, Ca, Mg, Fe, Cl, SO4, and/or CO3. The contaminated water is then tested to determine that it is free of hazardous chemicals, and if the water is determined to be sufficiently free of hazardous chemicals, the water is purified by water softening, such as by ion exchange. As shown, ion exchange produces a first effluent of clean water which typically has a high sodium content. As explained with reference to FIG. 2, where the clean water has a low sodium content such as where the original contaminated water had a low sodium content, the water may be used for potable applications. Meanwhile, where the clean water has a high sodium content, the clean water may used for laundry applications, cooling towers, pond sealing and soil stabilization.
  • With reference to FIG. 5, for practicing the presently preferred embodiment of the present invention, water that is contaminated with the salts of Na, K, Ca, Mg, Fe, Cl, SO4, and CO3 is desalted by distillation, reverse osmosis, electrodialysis or ion exchange to produce a first effluent of clean water and a second effluent of waste water. The waste water is preferably tested to ensure that it is free of hazardous materials. In a preferred practice of the present invention, the water undergoes evaporation to produce a substantially solid mixture and a solution concentrate. The substantially solid mixture is comprised primarily of sodium salts, in particular sodium sulfate.
  • Salty Irrigation Drainage
  • Irrigation water contains salts and some inorganic fertilizer materials that are used by plants in varying degrees but rarely, if ever, in their entirety. Plants separate water and nutrients selectively for growth and for temperature regulation by evapo-transpiration. Some water is evaporated at the soil surface leaving the salts behind. The remaining water becomes salty, and, if not flushed out of the root zone, reduces the crop yield. The continued pumping of ground water can recirculate the salts until their concentration makes agriculture uneconomical.
  • Where the irrigation water is from a source other than local groundwater, the downward percolating irrigation water causes the local water table to rise. When the water table nears the surface, say to about 6 feet or less, the salty water can migrate upwards reducing crop yield and eventually covering the surface with salts. These once productive lands become barren.
  • Waste-waters high in sulfate are also produced in geothermal operation and from other natural sources. While this discussion is stated mostly in terms of irrigation drainage, persons skilled in the art will recognize that the work herein described is applicable to these other sulfate waste or by-product waters.
  • Some of the methods for recovering products from irrigation drainage differ from those used for recovering salts from chlorides type wastes. Additionally, the products themselves vary according to the amounts of each salt in the wastes, and of course, the carbonate and sulfate products increase the number of uses of salts recovered from wastes. One factor contributing to the need for processing and recovering valuable products from irrigation drainage is the high volume of such waters, their widespread occurrence, and the rapid growth in their volume that endangers sustainable agriculture.
  • There are many uses for salts that do not require the purity of the grades of commerce now in general use. This allows the preparation of usable grades at minimum cost and the even lower costs again serve to broaden the fields of economic use.
  • Example A
  • The Imperial Valley area in which the Salton Sea lies was once part of the Sea of Cortez. It was cut off by the spreading delta of the Colorado River and dried up become a large depression. Flooding of the lowest part started with a canal breaking in 1908. Irrigation drainage and other inflow has increased the surface area of the Salton Sea (SS) to 381 square miles (98,700 hectares) at an elevation of 227 feet (69 meters) below sea level (1).
  • Tests were run so as to duplicate, on a reduced scale, the typical solar practice of two or more evaporation stages, in series, to get best evaporation efficiency. Evaporation was carried out in duplicate pans 33 cm×63 cm×10 cm deep, lined with polyethylene film. Daily ambient highs were 38-42° C. and night lows were 15° to 17° C. Daytime relative humidity was 15 to 25%. The specific gravity (sg) of the Salton Sea water was 1.03.
  • On the second day of evaporation (sg 1.047) white flakes were forming with many floating on the brine surface. By morning of the third day, at (sg 1.057), the flakes formed an almost continuous covering. The evaporation rate varied between 0.9 and 1.2 centimeters per day until the specific gravity was at 1.145 and the floating crystals, now including other salts, formed a thick continuous (surface) skin. Before the skin formation the brine temperature was 30° C. After a continuous skin formed on the surface the brine temperatures were as high as 48 C°. Evaporation was continued to sg 1.22.
  • One liter of the remaining brine (sg 1.342) was further evaporated outdoors until a level slightly above 520 ml. total of brine and settled salts was reached. Some of the precipitated salts had adhered to the glass above the brine level and are not included in this volume. The brine was drained and 480 ml. was recovered at sg 1.293. Despite the evaporation of over half of the water, the precipitation of the salts due to temperature changes had lowered the specific gravity of the brine.
  • The 480 ml portion was divided into 100 ml. and 380 ml. splits. The 100 ml was transferred to a 200 ml beaker, which was then sealed with plastic wrap to avoid evaporation. It was then cooled by refrigeration in a compartment at 4.4° C. The wrap was removed only for as long as it took to measure temperature with a thermometer that was also kept in the refrigerator. The first precipitation of fine crystals was noted at 14° C. Cooling was continued overnight in an iced compartment. The morning temperature was 2.2 C. The fine precipitate had caked at about 45% of the total volume. A stirring spatula was used to break the cake into fine particles, which were allowed to settle. The settled level was about 40% of the total volume. The liquid was drained and the wet solids were heated in a microwave oven for 3 to 5 second intervals to avoid overheating and evaporation.
  • Brine hardness was measured using a Hack Kit 5B and the procedure used for checking brines used in water softening. The brine hardness was 1020 grains calculated as calcium carbonate. [0115] The 380 ml split was placed into a ceramic bowl, sealed with a thin clinging plastic wrap, and put out to chill overnight. The air temperature was 14° C. at midnight and 10° C. at 6:10 AM. The sample temperature was 9.5° C. The volume had not measurably decreased, so the indication is that the night low was cooler than the 6:10 AM temperature.
  • The brine in the bowl remained very clear and appeared to be unchanged but, on examination, it was found to contain many crystal clear acicular crystals 4 to 6 cm. long. These were removed with a stainless steel table fork, drained, weighed, and then placed on filter paper for blotting some of the adhering brine. The blotting removed an additional 3.5 grams of brine. The drained and blotted weight was 58.1 grams and the sg of the remaining brine was 1.254 (60° F.).
  • Forty grams of these crystals were placed in a 125 ml sample bottle and heated in the microwave for short increments to initiate melting. The “hold temperature” was measured, the liquid was then drained from the bottle, and a hardness measurement was made on the drained liquid. Four cycles were completed. Each time the hold temperature was 27.7° C. (81.9° F.). The hardness equivalents of the melts were 1320, 2100, 1500, and 1500 respectively. This sodium sulfate, containing about 2-3% of magnesium salt and minor amounts of other salts, functions well for heat storage, and the phase change point lies within the optimum range for raising chickens, for example, and also, for example, for use in aquaculture, as in raising tilapia.
  • Energy Storage and Transfer
  • It is common knowledge that one may change the amounts of salts in a mix with sodium sulfate in order to control the temperature at which the phase change occurs. For example, it is possible to lower the temperature at which the phase change occurs down to about 65° F. using sodium chloride alone. This ability to make these mixtures is well known to those skilled in this art. In this case the complete mix is made from salts recovered from wastes.
  • Also well known are the methods for separation of the magnesium, and other salts, from the sodium sulfate. The magnesium may be separated by adding lime or hydrated lime. The precipitated magnesium oxide, or hydroxide, is particularly suitable for use in neutralizing minerals in acidic solutions because the precipitate settles well.
  • Sodium sulfate decahydrate is the most widely studied material for storing phase change energy, because it is effective at temperatures within our daily experience, say from refrigeration at 4° C. to warm water at 31° C. Uses extend from filling water bottles to keep ones feet warm to heating entire living and working spaces. Using the phase change at 241° C., the sodium sulfate product obtained from solar evaporation, is useful even for refrigeration according to the cycle used for refrigeration by burning propane.
  • Thus, it is possible to produce sodium sulfate recovered from irrigation drainage and similar salty wastewaters, to the purity commonly used for heat storage and energy conservation. Additionally, I have found that it is not necessary to have the high purity sodium sulfate used by others for energy storage.
  • I have found usable heat storage properties in mixed salts as recovered from irrigation drainage by evaporation. I have found other usable mixes where these salts are only partially separated by the use of ambient cooling and/or heating, and no fossil energy is required other than that used for materials size control, handling and transport.
  • These low-cost salts are ideally suited for massive energy storage for agricultural uses. It is well known that different plants and animals grow best at some discrete range of temperature suited to their species. An abundance of low cost sodium sulfate allows the use of stored solar heat to heat the living space of plants and animals at night. It also allows the use of nighttime cooling and the cooled sulfate may be used in cooling the living space in the daytime for plants, animals, and for humans.
  • Pure anhydrous sodium sulfate also undergoes a phase change at 241° C. with the absorption of 27 BTU/lb (15 cal./gm.) of material. I have found that considerable amounts of other salts may be tolerated while retaining much of the value for heat storage.
  • Using pellets of the anhydrous material recovered from wastes makes it more economical to store solar energy or to transfer waste heat, from flue gases for example, at the very usable 241° C. Storage of heat at this temperature is suitable for refrigeration.
  • Thus it is demonstrated that heat storage products of great utility can be prepared using materials recovered from common wastes, and with a minimum expenditure of energy for processing.
  • Example B
  • Drainage from Southern San Joaquin Valley: Salt samples and a residual brine sample were taken directly from one of several solar evaporation ponds totaling about 80 acres. Before being shut down, the ponds had been used for about 15 years to evaporate irrigation drainage. Mitigation requires salts removal and land reclamation.
  • Analysis of five (5) previous samples of salts from these ponds, as provided by California Dept. Of Water Resources (DWR), shows sulfate ion contents of about ⅔ of all ions in the analysis, other than water. Analysis of one sample was approximately 85% sodium sulfate, 11% calcium sulfate, 2% magnesium sulfate, 1.6% sodium chloride with 0.6% as potassium and boron compounds (dry basis). It is presumed that rainfall leached much of the sodium chloride from the salts after the ponds were drained.
  • A sample was dissolved to make a saturated brine. The brine was chilled to 38° F., well within the range reached by outdoor spray chilling in winter. The crystallized hydrates were found to have a phase change from hydrate to melt at 82° F., just as did the hydrates recovered from the Salton Sea by solar evaporation and chilling outdoors.
  • A sample of the residual brine from that pond was chilled to below 32° F. without crystallizing any hydrates. On chilling to below 22° F., there was some precipitation of what is believed to be sodium di-hydrite, a compound known to form from sodium chloride brine at 22° F. This remnant brine is very suitable for use as a liquid for heat transfer in refrigeration.
  • Having described my invention in such terms as to enable one skilled in the art to understand and practice it and, having identified the presently preferred embodiments thereof, I CLAIM:

Claims (2)

1. A method for energy storage and transfer using the phase change energy of sodium sulfate and sodium sulfate decahydrate, comprising, in combination, the steps of:
(a) separating a sodium sulfate product, from water containing sodium sulfate dissolved therein, said product also containing contaminate salts;
(b) adjusting the phase change temperature of said separated sodium sulfate to a preselected temperature by regulating the amount of said contaminate salts in said sodium sulfate product;
(c) storing energy in said product by heating said product to above said preselected phase change temperature, producing a heated sodium sulfate product; and
(d) transferring energy from said heated sodium sulfate by cooling said heated sodium sulfate product to below said selected phase change temperature.
2. A method for energy storage and transfer using the phase change energy of sodium sulfate and sodium sulfate decahydrate, comprising, in combination, the steps of:
(a) separating a sodium sulfate product from the waste water of a water purification process, said water containing sodium sulfate and other contaminate salts dissolved therein;
(b) adjusting the phase change temperature of said separated sodium sulfate to a preselected temperature by regulating the amount of said contaminate salts in said sodium sulfate product;
(c) storing energy in said product by heating said product to above said preselected phase change temperature, producing a heated sodium sulfate product; and
(d) transferring energy from said heated sodium sulfate by cooling said heated sodium sulfate product to below said selected phase change temperature.
US11/978,891 1998-07-06 2007-10-30 Methods of energy storage and transfer Expired - Fee Related US8192633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/978,891 US8192633B2 (en) 1998-07-06 2007-10-30 Methods of energy storage and transfer

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/110,789 US6071411A (en) 1998-07-06 1998-07-06 Method of treating soil for controlling dust and for effecting soil stabilization through the application of waste water
US09/565,735 US6374539B1 (en) 1998-07-06 2000-05-05 Methods of utilizing waste waters produced by water purification processing
US09/849,453 US6651383B2 (en) 1998-07-06 2001-05-04 Methods of utilizing waste waters produced by water purification processing
US10/706,341 US7353634B2 (en) 1998-07-06 2003-11-11 Methods of utilizing waste waters produced by water purification processing
US11/978,891 US8192633B2 (en) 1998-07-06 2007-10-30 Methods of energy storage and transfer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/706,341 Continuation-In-Part US7353634B2 (en) 1998-07-06 2003-11-11 Methods of utilizing waste waters produced by water purification processing

Publications (2)

Publication Number Publication Date
US20080128366A1 true US20080128366A1 (en) 2008-06-05
US8192633B2 US8192633B2 (en) 2012-06-05

Family

ID=46329616

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/978,891 Expired - Fee Related US8192633B2 (en) 1998-07-06 2007-10-30 Methods of energy storage and transfer

Country Status (1)

Country Link
US (1) US8192633B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100147767A1 (en) * 2008-12-15 2010-06-17 Grott Gerald J Method for purifying waste saline waters without reagent waste
US20110236182A1 (en) * 2010-03-23 2011-09-29 Wiebe David J Control of Blade Tip-To-Shroud Leakage in a Turbine Engine By Directed Plasma Flow
US20160221851A1 (en) * 2013-04-26 2016-08-04 Corn Products Development, Inc. Elimination of sodium sulfate from biologically treated wastewater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11274534B2 (en) * 2020-07-24 2022-03-15 Saudi Arabian Oil Company Artificial rain to support water flooding in remote oil fields

Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1899310A (en) * 1930-05-26 1933-02-28 Burnham Chemical Company Process of obtaining a double salt from a single salt
US1947248A (en) * 1930-06-19 1934-02-13 Standard Oil Co Method of regenerating and washing a zeolite bed
US2375019A (en) * 1940-10-18 1945-05-01 Hercules Powder Co Ltd Stabilization of soils
US2387898A (en) * 1942-02-02 1945-10-30 Dow Chemical Co Magnesium salts from sea water
US2552775A (en) * 1948-03-20 1951-05-15 Union Oil Co Drilling fluid
US2624654A (en) * 1949-06-03 1953-01-06 Diamond Alkali Co Method of making purified brine
US2671714A (en) * 1952-04-10 1954-03-09 Dow Chemical Co Continuous method for concentrating ions in solutions
US2687358A (en) * 1949-12-23 1954-08-24 Ici Ltd Stabilized soil and a process of stabilizing it
US2897051A (en) * 1955-05-02 1959-07-28 Dow Chemical Co Treatment of solutions comprising similarly charged monovalent and polyvalent ions to concentrate the polyvalent ions
US2919898A (en) * 1957-08-16 1960-01-05 Phillips Petroleum Co Treatment of well drilling mud
US2927010A (en) * 1957-12-30 1960-03-01 Int Minerals & Chem Corp Process for the beneficiation of sylvite ores
US2968572A (en) * 1958-07-21 1961-01-17 Diamond Alkali Co Chemical composition and process for soil stabilization
US3022824A (en) * 1958-09-08 1962-02-27 Jersey Prod Res Co Method and composition for cementing wells
US3071481A (en) * 1959-11-27 1963-01-01 Gulf Oil Corp Cement composition
US3077054A (en) * 1959-06-22 1963-02-12 Scholten Chemische Fab Erosion control
US3174623A (en) * 1961-04-06 1965-03-23 Charles H Sloan Water softener
US3224867A (en) * 1962-06-29 1965-12-21 American Maize Prod Co Method of treating and conditioning soil with a heat reaction product of starch granules and an alkali metal phosphate
US3329595A (en) * 1963-02-27 1967-07-04 Diamond Alkali Co Electrolysis of concentrated sea water
US3331207A (en) * 1963-12-26 1967-07-18 William A Mcgrew Method and system for collecting and distributing water
US3427795A (en) * 1966-10-03 1969-02-18 Lloyd Gilbert Machine for picking asparagus
US3456368A (en) * 1967-05-05 1969-07-22 Lucien Gerard Jacques Snow removing and melting machine
US3467190A (en) * 1967-10-09 1969-09-16 Mobil Oil Corp Adjusting salinity to achieve low interfacial tension between aqueous and hydrocarbon phases
US3490241A (en) * 1967-04-20 1970-01-20 Edward D Graf Stabilization of soil by diffusion of cations
US3528914A (en) * 1966-12-14 1970-09-15 Shell Oil Co Drilling fluid and method for increasing drilling rate
US3578432A (en) * 1968-03-22 1971-05-11 Vernon E Stiles Method of irrigation
US3617554A (en) * 1970-06-02 1971-11-02 Gulf Degremont Inc Desalting and purifying water by continuous ion exchange
US3627479A (en) * 1968-10-10 1971-12-14 Atomic Energy Commission Chemical-electro-chemical cycle for desalination of water
US3754953A (en) * 1970-06-01 1973-08-28 Dow Chemical Co Aqueous hydraulic cement composition having improved r etardation to set and use thereof in high temperature environments
US3826311A (en) * 1973-06-13 1974-07-30 Calgon Corp Producing well treatment
US3928654A (en) * 1972-12-13 1975-12-23 Anthony J Bonnanzio Method and formulation for preventing snow and ice accumulation
US4159944A (en) * 1978-02-13 1979-07-03 Erickson Lennart G Wastewater energy recycling method
US4160738A (en) * 1977-05-16 1979-07-10 Guter Gerald A Water purification device and system
US4161446A (en) * 1977-11-23 1979-07-17 Coillet Dudley W Process for the treatment of ground water
US4179347A (en) * 1978-02-28 1979-12-18 Omnipure, Inc. System for electrocatalytic treatment of waste water streams
US4230244A (en) * 1979-08-30 1980-10-28 Baxter Travenol Laboratories, Inc. Fluid-flow limiting apparatus for use with intravenous-solution administering equipment
US4233960A (en) * 1978-07-21 1980-11-18 Johnson Steven A Heat storage apparatus and method
US4248601A (en) * 1979-07-12 1981-02-03 Kerr-Mcgee Chemical Corporation Process for reducing the sodium chloride content of a potassium salt
US4267038A (en) * 1979-11-20 1981-05-12 Thompson Worthington J Controlled natural purification system for advanced wastewater treatment and protein conversion and recovery
US4366063A (en) * 1981-06-17 1982-12-28 Romec Environmental Research & Development, Inc. Process and apparatus for recovering usable water and other materials from oil field mud/waste pits
US4422940A (en) * 1982-05-17 1983-12-27 Bofors Nobel, Incorporated Method of neutralizing and detoxifying wastes containing organic compounds
US4455169A (en) * 1980-07-14 1984-06-19 Halliburton Company Salt water cement slurries and water loss reducing additives therefor
US4523998A (en) * 1983-12-05 1985-06-18 General Electric Company Continuous ion exchange process using thermally regenerable liquid ion exchangers
US4525202A (en) * 1981-08-24 1985-06-25 Stauffer Chemical Co. Phosphonium salts of N-phosphonomethylglycine and their use as herbicides and plant growth regulants
US4541832A (en) * 1982-05-11 1985-09-17 Italkali Societa Italiana Sali Alcalini S.P.A. Process for producing high purity sodium chloride from potassium mineral flotation tailings
US4592931A (en) * 1983-07-28 1986-06-03 Exxon Research & Engineering Co. Method for soil stabilization and fugitive dust control
US4828726A (en) * 1987-09-11 1989-05-09 Halliburton Company Stabilizing clayey formations
US4857202A (en) * 1985-05-17 1989-08-15 Rohm And Haas Company Sodium-selective cation exchange resins for ammonia-cycle condensate polishing
US4996065A (en) * 1986-01-16 1991-02-26 Martin Marietta Magnesia Specialties Inc. Molasses-free chemically reactive binder for animal feed
US5039439A (en) * 1989-03-17 1991-08-13 Massachusetts Institute Of Technology Optically indicating surface de-icing fluids
US5121708A (en) * 1991-02-14 1992-06-16 Nuttle David A Hydroculture crop production system
US5125770A (en) * 1989-10-06 1992-06-30 Cooperatieve Verkoop- En Productievereniging Van Aardappelmeel En Derivaten Avebe B.A. Method of stabilizing the soil and preventing erosion
US5147532A (en) * 1991-02-21 1992-09-15 Leek Jr Kenneth F Domestic grey water purifier using diverter and UV filter treater with preheater
US5192426A (en) * 1991-05-16 1993-03-09 Decoster Marc Water reclamation system for landscape irrigation
US5240579A (en) * 1991-03-14 1993-08-31 Yeda Research And Development Company Ltd. Electrodialysis reversal process and apparatus with bipolar membranes
US5300123A (en) * 1987-10-07 1994-04-05 Grott Gerald J Method of reforming soluble salts to effect purification and increase crystal size thereof
US5304365A (en) * 1989-01-06 1994-04-19 Petr Taborsky Treating wastewater with aluminosilicates with modified cation affinity
US5337516A (en) * 1991-05-08 1994-08-16 Hondulas John L Treatment of polluted water using wetland plants in a floating habitat
US5472291A (en) * 1991-06-29 1995-12-05 Cts Consulting Gmbh Process and device for de-icing roadways
US5491157A (en) * 1993-05-10 1996-02-13 Eastman Kodak Company Method and composition for the prevention, control and amelioration of soilborne fungi and disease caused thereby
US5589603A (en) * 1994-08-22 1996-12-31 Newpark Resources, Inc. Method and apparatus for the injection disposal of solid and liquid waste materials from the drilling and production of oil and gas wells
US5670038A (en) * 1995-09-06 1997-09-23 Mckinney; Jerry L. Liquid filter system
US5712224A (en) * 1983-11-02 1998-01-27 Sotac Corporation Pesticide comprising soil desalinating agents
US5853262A (en) * 1994-04-26 1998-12-29 Bts Beratung Und Technik Fuer Die Strasse Gmbh Process and apparatus for de-icing roadways and re-using collected melting solution
US5858240A (en) * 1995-04-17 1999-01-12 Chemetics International Company Ltd. Nanofiltration of concentrated aqueous salt solutions
US5972689A (en) * 1996-02-05 1999-10-26 The United States Of America As Represented By The Secretary Of Agriculture Methods and compositions for the simultaneous control of the root diseases caused by gaeumannomyces graminis, rhizoctonia, and pythium
US6063736A (en) * 1998-07-01 2000-05-16 Superconductivity Research Laboratory Oxide superconductor of high critical current density
US6063737A (en) * 1997-06-12 2000-05-16 Shell Oil Company Aqueous displacement fluid compositions for use in wellbores
US6071411A (en) * 1998-07-06 2000-06-06 Grott; Gerald J. Method of treating soil for controlling dust and for effecting soil stabilization through the application of waste water
US6156226A (en) * 1998-06-10 2000-12-05 Thermo Fibergen, Inc. Liquid and solid de-icing and anti-icing compositions and methods for making same
US6308457B1 (en) * 1999-10-12 2001-10-30 C. Neal Howell Solution and method of treatment for golden pine syndrome
US6374539B1 (en) * 1998-07-06 2002-04-23 Gerald J. Grott Methods of utilizing waste waters produced by water purification processing
US6379546B1 (en) * 1997-06-04 2002-04-30 Ulrich Braun Method and device for sewage treatment
US6391202B1 (en) * 1998-07-03 2002-05-21 Michael Knobloch Process and apparatus for treating wastewater from oil plant processing and cereal processing
US20020108909A1 (en) * 2001-02-15 2002-08-15 Gilles Hughes Ion exchange water softener and method
US20020170816A1 (en) * 2001-03-26 2002-11-21 Leffler Charles E. Non-chemical water treatment method and apparatus employing ionized air purification technologies for marine application
US20030172697A1 (en) * 1998-01-23 2003-09-18 Sower Larry P. Fertilizer manufactured from animal wastes and method of producing same
US6651383B2 (en) * 1998-07-06 2003-11-25 Gerald J. Grott Methods of utilizing waste waters produced by water purification processing
US6666971B2 (en) * 1999-04-02 2003-12-23 Petreco International Inc. Method for utilizing regenerated waste from water softeners used for steam flood operations
US6733654B1 (en) * 1999-09-09 2004-05-11 Argad-Eyal Ltd. Water treatment method and apparatus
US6878286B2 (en) * 2000-10-25 2005-04-12 Basin Water, Inc. High efficiency ion exchange system for removing contaminants from water
US7455109B2 (en) * 2004-07-21 2008-11-25 Bp Exploration Operating Company Limited Water flooding method
US7514003B2 (en) * 1998-07-06 2009-04-07 Grott Gerald J Methods for producing useful water products with reduced sodium content
US7622044B2 (en) * 1998-07-06 2009-11-24 Ecycling, LLC Methods of sealing ponds and increasing water catchment with purified waste water
US7717173B2 (en) * 1998-07-06 2010-05-18 Ecycling, LLC Methods of improving oil or gas production with recycled, increased sodium water
US7866916B2 (en) * 1998-07-06 2011-01-11 Ecycling, LLC Methods for deicing roads
US7947185B2 (en) * 1998-07-06 2011-05-24 Grott Gerald J Water sanitation methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114988A (en) 1990-09-03 1992-04-15 Hamada Seisakusho:Kk Organic material to be applied for controlling violet root rot
TW404847B (en) 1996-08-12 2000-09-11 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
DE19648860C1 (en) 1996-11-26 1998-02-05 Jan Kai Dobelmann Two-stage waste water purification system using digester to recover methane followed by plantation-polishing

Patent Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1899310A (en) * 1930-05-26 1933-02-28 Burnham Chemical Company Process of obtaining a double salt from a single salt
US1947248A (en) * 1930-06-19 1934-02-13 Standard Oil Co Method of regenerating and washing a zeolite bed
US2375019A (en) * 1940-10-18 1945-05-01 Hercules Powder Co Ltd Stabilization of soils
US2387898A (en) * 1942-02-02 1945-10-30 Dow Chemical Co Magnesium salts from sea water
US2552775A (en) * 1948-03-20 1951-05-15 Union Oil Co Drilling fluid
US2624654A (en) * 1949-06-03 1953-01-06 Diamond Alkali Co Method of making purified brine
US2687358A (en) * 1949-12-23 1954-08-24 Ici Ltd Stabilized soil and a process of stabilizing it
US2671714A (en) * 1952-04-10 1954-03-09 Dow Chemical Co Continuous method for concentrating ions in solutions
US2897051A (en) * 1955-05-02 1959-07-28 Dow Chemical Co Treatment of solutions comprising similarly charged monovalent and polyvalent ions to concentrate the polyvalent ions
US2919898A (en) * 1957-08-16 1960-01-05 Phillips Petroleum Co Treatment of well drilling mud
US2927010A (en) * 1957-12-30 1960-03-01 Int Minerals & Chem Corp Process for the beneficiation of sylvite ores
US2968572A (en) * 1958-07-21 1961-01-17 Diamond Alkali Co Chemical composition and process for soil stabilization
US3022824A (en) * 1958-09-08 1962-02-27 Jersey Prod Res Co Method and composition for cementing wells
US3077054A (en) * 1959-06-22 1963-02-12 Scholten Chemische Fab Erosion control
US3071481A (en) * 1959-11-27 1963-01-01 Gulf Oil Corp Cement composition
US3174623A (en) * 1961-04-06 1965-03-23 Charles H Sloan Water softener
US3224867A (en) * 1962-06-29 1965-12-21 American Maize Prod Co Method of treating and conditioning soil with a heat reaction product of starch granules and an alkali metal phosphate
US3329595A (en) * 1963-02-27 1967-07-04 Diamond Alkali Co Electrolysis of concentrated sea water
US3331207A (en) * 1963-12-26 1967-07-18 William A Mcgrew Method and system for collecting and distributing water
US3427795A (en) * 1966-10-03 1969-02-18 Lloyd Gilbert Machine for picking asparagus
US3528914A (en) * 1966-12-14 1970-09-15 Shell Oil Co Drilling fluid and method for increasing drilling rate
US3490241A (en) * 1967-04-20 1970-01-20 Edward D Graf Stabilization of soil by diffusion of cations
US3456368A (en) * 1967-05-05 1969-07-22 Lucien Gerard Jacques Snow removing and melting machine
US3467190A (en) * 1967-10-09 1969-09-16 Mobil Oil Corp Adjusting salinity to achieve low interfacial tension between aqueous and hydrocarbon phases
US3578432A (en) * 1968-03-22 1971-05-11 Vernon E Stiles Method of irrigation
US3627479A (en) * 1968-10-10 1971-12-14 Atomic Energy Commission Chemical-electro-chemical cycle for desalination of water
US3754953A (en) * 1970-06-01 1973-08-28 Dow Chemical Co Aqueous hydraulic cement composition having improved r etardation to set and use thereof in high temperature environments
US3617554A (en) * 1970-06-02 1971-11-02 Gulf Degremont Inc Desalting and purifying water by continuous ion exchange
US3928654A (en) * 1972-12-13 1975-12-23 Anthony J Bonnanzio Method and formulation for preventing snow and ice accumulation
US3826311A (en) * 1973-06-13 1974-07-30 Calgon Corp Producing well treatment
US4160738A (en) * 1977-05-16 1979-07-10 Guter Gerald A Water purification device and system
US4161446A (en) * 1977-11-23 1979-07-17 Coillet Dudley W Process for the treatment of ground water
US4159944A (en) * 1978-02-13 1979-07-03 Erickson Lennart G Wastewater energy recycling method
US4179347A (en) * 1978-02-28 1979-12-18 Omnipure, Inc. System for electrocatalytic treatment of waste water streams
US4233960A (en) * 1978-07-21 1980-11-18 Johnson Steven A Heat storage apparatus and method
US4248601A (en) * 1979-07-12 1981-02-03 Kerr-Mcgee Chemical Corporation Process for reducing the sodium chloride content of a potassium salt
US4230244A (en) * 1979-08-30 1980-10-28 Baxter Travenol Laboratories, Inc. Fluid-flow limiting apparatus for use with intravenous-solution administering equipment
US4267038A (en) * 1979-11-20 1981-05-12 Thompson Worthington J Controlled natural purification system for advanced wastewater treatment and protein conversion and recovery
US4455169A (en) * 1980-07-14 1984-06-19 Halliburton Company Salt water cement slurries and water loss reducing additives therefor
US4366063A (en) * 1981-06-17 1982-12-28 Romec Environmental Research & Development, Inc. Process and apparatus for recovering usable water and other materials from oil field mud/waste pits
US4525202A (en) * 1981-08-24 1985-06-25 Stauffer Chemical Co. Phosphonium salts of N-phosphonomethylglycine and their use as herbicides and plant growth regulants
US4541832A (en) * 1982-05-11 1985-09-17 Italkali Societa Italiana Sali Alcalini S.P.A. Process for producing high purity sodium chloride from potassium mineral flotation tailings
US4422940A (en) * 1982-05-17 1983-12-27 Bofors Nobel, Incorporated Method of neutralizing and detoxifying wastes containing organic compounds
US4592931A (en) * 1983-07-28 1986-06-03 Exxon Research & Engineering Co. Method for soil stabilization and fugitive dust control
US5712224A (en) * 1983-11-02 1998-01-27 Sotac Corporation Pesticide comprising soil desalinating agents
US4523998A (en) * 1983-12-05 1985-06-18 General Electric Company Continuous ion exchange process using thermally regenerable liquid ion exchangers
US4857202A (en) * 1985-05-17 1989-08-15 Rohm And Haas Company Sodium-selective cation exchange resins for ammonia-cycle condensate polishing
US4996065A (en) * 1986-01-16 1991-02-26 Martin Marietta Magnesia Specialties Inc. Molasses-free chemically reactive binder for animal feed
US4828726A (en) * 1987-09-11 1989-05-09 Halliburton Company Stabilizing clayey formations
US5300123A (en) * 1987-10-07 1994-04-05 Grott Gerald J Method of reforming soluble salts to effect purification and increase crystal size thereof
US5304365A (en) * 1989-01-06 1994-04-19 Petr Taborsky Treating wastewater with aluminosilicates with modified cation affinity
US5039439A (en) * 1989-03-17 1991-08-13 Massachusetts Institute Of Technology Optically indicating surface de-icing fluids
US5125770A (en) * 1989-10-06 1992-06-30 Cooperatieve Verkoop- En Productievereniging Van Aardappelmeel En Derivaten Avebe B.A. Method of stabilizing the soil and preventing erosion
US5121708A (en) * 1991-02-14 1992-06-16 Nuttle David A Hydroculture crop production system
US5147532A (en) * 1991-02-21 1992-09-15 Leek Jr Kenneth F Domestic grey water purifier using diverter and UV filter treater with preheater
US5240579A (en) * 1991-03-14 1993-08-31 Yeda Research And Development Company Ltd. Electrodialysis reversal process and apparatus with bipolar membranes
US5337516A (en) * 1991-05-08 1994-08-16 Hondulas John L Treatment of polluted water using wetland plants in a floating habitat
US5192426A (en) * 1991-05-16 1993-03-09 Decoster Marc Water reclamation system for landscape irrigation
US5472291A (en) * 1991-06-29 1995-12-05 Cts Consulting Gmbh Process and device for de-icing roadways
US5491157A (en) * 1993-05-10 1996-02-13 Eastman Kodak Company Method and composition for the prevention, control and amelioration of soilborne fungi and disease caused thereby
US5853262A (en) * 1994-04-26 1998-12-29 Bts Beratung Und Technik Fuer Die Strasse Gmbh Process and apparatus for de-icing roadways and re-using collected melting solution
US5589603A (en) * 1994-08-22 1996-12-31 Newpark Resources, Inc. Method and apparatus for the injection disposal of solid and liquid waste materials from the drilling and production of oil and gas wells
US5858240A (en) * 1995-04-17 1999-01-12 Chemetics International Company Ltd. Nanofiltration of concentrated aqueous salt solutions
US5670038A (en) * 1995-09-06 1997-09-23 Mckinney; Jerry L. Liquid filter system
US5972689A (en) * 1996-02-05 1999-10-26 The United States Of America As Represented By The Secretary Of Agriculture Methods and compositions for the simultaneous control of the root diseases caused by gaeumannomyces graminis, rhizoctonia, and pythium
US6379546B1 (en) * 1997-06-04 2002-04-30 Ulrich Braun Method and device for sewage treatment
US6063737A (en) * 1997-06-12 2000-05-16 Shell Oil Company Aqueous displacement fluid compositions for use in wellbores
US20030172697A1 (en) * 1998-01-23 2003-09-18 Sower Larry P. Fertilizer manufactured from animal wastes and method of producing same
US6156226A (en) * 1998-06-10 2000-12-05 Thermo Fibergen, Inc. Liquid and solid de-icing and anti-icing compositions and methods for making same
US6063736A (en) * 1998-07-01 2000-05-16 Superconductivity Research Laboratory Oxide superconductor of high critical current density
US6391202B1 (en) * 1998-07-03 2002-05-21 Michael Knobloch Process and apparatus for treating wastewater from oil plant processing and cereal processing
US7514003B2 (en) * 1998-07-06 2009-04-07 Grott Gerald J Methods for producing useful water products with reduced sodium content
US7353634B2 (en) * 1998-07-06 2008-04-08 Grott Gerald J Methods of utilizing waste waters produced by water purification processing
US7947185B2 (en) * 1998-07-06 2011-05-24 Grott Gerald J Water sanitation methods
US7866916B2 (en) * 1998-07-06 2011-01-11 Ecycling, LLC Methods for deicing roads
US7717173B2 (en) * 1998-07-06 2010-05-18 Ecycling, LLC Methods of improving oil or gas production with recycled, increased sodium water
US6651383B2 (en) * 1998-07-06 2003-11-25 Gerald J. Grott Methods of utilizing waste waters produced by water purification processing
US7622044B2 (en) * 1998-07-06 2009-11-24 Ecycling, LLC Methods of sealing ponds and increasing water catchment with purified waste water
US6071411A (en) * 1998-07-06 2000-06-06 Grott; Gerald J. Method of treating soil for controlling dust and for effecting soil stabilization through the application of waste water
US6374539B1 (en) * 1998-07-06 2002-04-23 Gerald J. Grott Methods of utilizing waste waters produced by water purification processing
US6666971B2 (en) * 1999-04-02 2003-12-23 Petreco International Inc. Method for utilizing regenerated waste from water softeners used for steam flood operations
US6733654B1 (en) * 1999-09-09 2004-05-11 Argad-Eyal Ltd. Water treatment method and apparatus
US6308457B1 (en) * 1999-10-12 2001-10-30 C. Neal Howell Solution and method of treatment for golden pine syndrome
US6878286B2 (en) * 2000-10-25 2005-04-12 Basin Water, Inc. High efficiency ion exchange system for removing contaminants from water
US20020108909A1 (en) * 2001-02-15 2002-08-15 Gilles Hughes Ion exchange water softener and method
US20020170816A1 (en) * 2001-03-26 2002-11-21 Leffler Charles E. Non-chemical water treatment method and apparatus employing ionized air purification technologies for marine application
US7455109B2 (en) * 2004-07-21 2008-11-25 Bp Exploration Operating Company Limited Water flooding method
US7771600B2 (en) * 2005-03-16 2010-08-10 Ecycling, LLC Methods of utilizing waste waters produced by water purification processing
US7823641B2 (en) * 2006-12-21 2010-11-02 Ecycling, LLC. Methods of formulating cements for drilled wells using processed waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100147767A1 (en) * 2008-12-15 2010-06-17 Grott Gerald J Method for purifying waste saline waters without reagent waste
US20110236182A1 (en) * 2010-03-23 2011-09-29 Wiebe David J Control of Blade Tip-To-Shroud Leakage in a Turbine Engine By Directed Plasma Flow
US20160221851A1 (en) * 2013-04-26 2016-08-04 Corn Products Development, Inc. Elimination of sodium sulfate from biologically treated wastewater
US9908801B2 (en) * 2013-04-26 2018-03-06 Corn Products Development, Inc. Elimination of sodium sulfate from biologically treated wastewater

Also Published As

Publication number Publication date
US8192633B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
US7353634B2 (en) Methods of utilizing waste waters produced by water purification processing
US7717173B2 (en) Methods of improving oil or gas production with recycled, increased sodium water
AU2006227707B2 (en) Methods for producing useful water products with reduced sodium content
US20070023359A1 (en) Methods of the purification and use of moderately saline water particularly for use in aquaculture, horticulture and, agriculture
US7622044B2 (en) Methods of sealing ponds and increasing water catchment with purified waste water
US8210768B2 (en) Methods for deicing roads
US8192633B2 (en) Methods of energy storage and transfer
US5587088A (en) Precipitation and separation of inorganic species from aqueous solutions
KR100808303B1 (en) Improved desalination of ocean water
JP5177956B2 (en) Cost-effective production method for high purity and whiteness salt
Geertman Sodium chloride: crystallization
US6374539B1 (en) Methods of utilizing waste waters produced by water purification processing
Alberti et al. Salt production from brine of desalination plant discharge
Jivanji Industrial application of eutectic freeze crystallization
Mohammadesmaeili Inland concentrate treatment strategies for water reclamation systems
Matz et al. The application of solar energy to the solution of some problems of electrodialysis
Lewis et al. Recent Advances for Solid–Liquid Separation by Crystallization
GB2304296A (en) Distillation process
Sephton Feasibility of Recovering Useful Salts from Irrigation Wastewater Concentrates Produced by Power Plant Cooling
Szpaczynski et al. Experimental studies on the application of natural process of snow metamorphism for concentration and purification of liquid wastes
Khan Principles and techniques for conditioning of waste-activated sludge by direct slurry freezing
Kim Simulation of agricultural drainage water concentration for the recovery of salts
Al-Harbi et al. Recovery of Mineral Salts and Potable Water from Desalting Plant Effluents by Evaporation. Part II. Proposed Simulation System for Salt Recovery
Lyengar 22 Technologies for fluoride removal

Legal Events

Date Code Title Description
AS Assignment

Owner name: ECYCLING, LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GROTT, GERALD J.;REEL/FRAME:027893/0048

Effective date: 20090323

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
REIN Reinstatement after maintenance fee payment confirmed
FP Lapsed due to failure to pay maintenance fee

Effective date: 20160605

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20170619

STCF Information on status: patent grant

Free format text: PATENTED CASE

SULP Surcharge for late payment
FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362