US20080144238A1 - Controller system for pool and/or spa - Google Patents

Controller system for pool and/or spa Download PDF

Info

Publication number
US20080144238A1
US20080144238A1 US11/932,815 US93281507A US2008144238A1 US 20080144238 A1 US20080144238 A1 US 20080144238A1 US 93281507 A US93281507 A US 93281507A US 2008144238 A1 US2008144238 A1 US 2008144238A1
Authority
US
United States
Prior art keywords
circuit
line voltage
pool
controller
gfci
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/932,815
Inventor
David J. Cline
Cindy Otto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balboa Water Group Inc
Original Assignee
Cline David J
Cindy Otto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cline David J, Cindy Otto filed Critical Cline David J
Priority to US11/932,815 priority Critical patent/US20080144238A1/en
Publication of US20080144238A1 publication Critical patent/US20080144238A1/en
Assigned to PNC BANK, NATIONAL ASSOCIATION reassignment PNC BANK, NATIONAL ASSOCIATION SECURITY AGREEMENT Assignors: BALBOA INSTRUMENTS, INC., BALBOA WATER GROUP, INC., G-G DISTRIBUTION AND DEVELOPMENT CO., INC.
Assigned to BALBOA WATER GROUP, INC. reassignment BALBOA WATER GROUP, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALBOA INSTRUMENTS, INC.
Assigned to BALBOA INSTRUMENTS, INC., BALBOA WATER GROUP, LLC, G-G DISTRIBUTION AND DEVELOPMENT CO., INC., SPA & BATH HOLDINGS, INC., BALBOA WATER GROUP, INC. reassignment BALBOA INSTRUMENTS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: PNC BANK, NATIONAL ASSOCIATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/60Components specifically designed for the therapeutic baths of groups A61H33/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/005Electrical circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/0087Therapeutic baths with agitated or circulated water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0173Means for preventing injuries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0173Means for preventing injuries
    • A61H2201/0176By stopping operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5082Temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board

Definitions

  • a problem with pools is maintaining the level of water within the pool. Evaporation losses can be significant, and so it is advantageous to have an automated system for keeping the water level at a given desired level. Stand alone systems for doing this are known, but tend to be somewhat complex. It would be advantageous to integrate such a system with the pool controller, for reliability, ease of installation and cost savings.
  • Emergency shutoff switches are typically mounted close to the spa, to enable quick shutoff of pumps and other functions in an emergency. It would be an advantage to provide an electrical shutoff switch which did not require high power connections to the switch, and whose installation could be verified by the controller.
  • Ground fault circuit interruption devices are typically employed in pool and spa controls. It would be an advantage to provide a technique for testing for proper operation and installation of these circuits.
  • the pool plumbing system typically includes a filter system for removing particulates from the pool or spa water. These commonly use diatomaceous earth or other filtering agents. As the filter becomes filled with particulates removed from the water, the filter back pressure rises, and ultimately for proper operation the filter must be cleaned, e.g. by backflushing the filter.
  • a sight pressure gauge is mounted on the filter, so that the pool maintenance technician can visually check the back pressure status. It would improve the maintenance of the filter operation to automate the pressure reading.
  • the water circulation system for the pool/spa also includes a heater for warming the pool and/or spa water for the user's comfort.
  • This heater is typically gas-operated, and does not operate properly when the gas pressure is too low. It would therefore improve the reliability and operation of the water circulation system if a technique could be found to monitor the gas pressure and provide a message and/or control signals in the event of a low gas pressure condition.
  • FIG. 1 is a diagrammatic view of a pool and spa system utilizing aspects of this invention.
  • FIG. 2 is a simplified block diagram of elements of a pool service system embodying this invention.
  • FIG. 3 illustrates a control panel cabinet for housing the pool controller and power distribution system of the pool service system, and the service control panel mounted on the cabinet.
  • FIG. 4 is a diagrammatic view of the pool control panel comprising the system of FIG. 2 .
  • FIG. 5 is a diagrammatic view of the spa control panel comprising the system of FIG. 2 .
  • FIG. 6 is a detailed block diagram of the pool service of FIG. 2 .
  • FIG. 7 is a top view illustrating a portion of the multilayer conductive trace pattern of the controller circuit board.
  • FIG. 8 is a cross-sectional view taken along line 8 - 8 of FIG. 7 .
  • FIG. 9 is an isometric view of the connector terminal block used in the control cabinet for connecting line voltage wiring.
  • FIG. 10 is a top view of the control cabinet of FIG. 3 , which the cover in a open position illustrate the controller circuit board and line voltage and low voltage connections, and the main compartment bay and the two side compartments through which low voltage wiring is passed.
  • FIG. 11 is a cross-sectional view taken along line 11 - 11 of FIG. 10 .
  • FIG. 12 is a cross-sectional view taken along line 12 - 12 of FIG. 10 .
  • FIG. 13 is a schematic diagram of a simplified pool service system in accordance with the invention.
  • FIGS. 14A-14F are simplified flow diagrams illustrating salient program features of the controller comprising the system of FIG. 2 .
  • FIG. 15 is a simplified schematic diagram illustrating the GFCI test circuit comprising the system of FIG. 2 .
  • FIG. 16 is a schematic diagram of an emergency disconnect switch in accordance with an aspect of the invention.
  • FIG. 17 is a schematic diagram of a temperature sensor in accordance with an aspect of the invention.
  • FIG. 18 is a diagrammatic view of the temperature sensor of FIG. 17 .
  • FIG. 19 is a bottom view of the circuit board comprising the temperature sensor of FIG. 17 .
  • FIGS. 20A-20C are circuit schematics of an exemplary embodiment of a controller board comprising the system of FIG. 2 .
  • FIG. 21 illustrates connection of two 120 Amp line voltage loads using a 240 VAC 50 Amp service.
  • FIG. 1 is a diagrammatic view of a pool and spa system utilizing aspects of this invention.
  • the pool 1 and spa 2 share filter 77 and heater 78 through a plumbing arrangement including three-way valves 70 and 72 , although other arrangements can be employed, such as separate heaters and filters for the pool 1 and spa 2 .
  • a conventional skimmer 3 is included, and its drain line 7 and the pool drain line 6 are joined at a junction tee before connection to one input of the valve 70 .
  • the drain line 5 from the spa is connected to the other input of valve 70 .
  • the valve output is connected to the input side of the filter pump 80 through water line 8 .
  • a water line 9 runs from the pump output to the filter input.
  • the filter output is connected by water line 10 to the heater input.
  • the heater output 11 is connected to the input of the three-way valve 72 .
  • One output of the valve is connected to water line 12 leading to a pool inlet.
  • the other output of valve 72 is connected to water line 13 leading to
  • the system includes pool and spa lights 90 A, yard lights 90 B, and a decorative fiber optic lighting system 88 typically mounted along the pool coping.
  • a controller and power distribution system 100 which controls operation of the system 50 , and which receives AC line voltage service, and distributes line voltage to the line voltage loads, including the heater, pump, lights and fiber optic lighting.
  • the controller 100 further controls the operation of the line voltage loads, and the valves 70 and 72 .
  • the controller 100 receives input data from a variety of sensors, including a gate open alarm 218 , a pool cover alarm 216 , water pressure sensors 208 A (filter input pressure) and 208 B (filter output pressure), gas pressure 224 for the gas supply line 15 to the heater, temperature sensor 204 (temperature of water entering the heater), temperature sensor 206 (temperature of water leaving the heater), and water ph and oxygen reduction potential (ORP) sensors 212 and 214 in the water line 8 .
  • a master control panel 102 is coupled to the controller 100 for providing a display and command and data input device by which the system 100 communicates with a user.
  • the locations of the various sensors may vary depending on the installation.
  • the water temperature sensor 204 may alternatively be placed at the inlet to the pump 80 , in the water line between the valve 70 and the pump 80 .
  • FIG. 2 is a simplified block diagram of a pool service system 50 embodying this invention.
  • the system includes the controller and power distribution system 100 , which receives AC line power from the main or sub line voltage distribution panel 102 .
  • the panel 102 supplies 50 Amp service on line voltage wiring 60 A, which is connected to a ground fault circuit interrupter (GFCI) circuit 62 , and then through line voltage wiring 60 B to the controller and power distribution system 100 .
  • GFCI ground fault circuit interrupter
  • the system 100 distributes line voltage power to various line voltage loads, and also includes a low voltage transforming function to provide low voltage AC and DC power at various low voltages need by the electronic devices and low voltage loads.
  • the main line voltage power is provided through a single main line voltage service connection 60 A, 60 B and GFCI 62 to system 100 , rather than through a plurality of line voltage service connections each with its own GFCI circuit and circuit breaker circuit. This simplifies the wiring effort and labor involved in a new installation.
  • the system 100 is not limited to the 50 Amp main line service, and can include auxiliary line services 64 and 66 , which can be used to power auxiliary loads through conventional circuit breaker-protected connections. Typically these auxiliary connections are made on auxiliary circuit boards mounted in the control cabinet.
  • the system 50 will typically also include the master pool control panel 102 as well as a spa control panel 104 .
  • the pool control panel can be located inside the residence, adjacent a door leading out to the pool, or in other locations convenient for the user.
  • the pool control panel could also be installed on the cover of the controller cabinet 112 .
  • the spa control panel 104 is typically located adjacent the spa for convenient access by spa users.
  • FIG. 3 illustrates a control panel cabinet 110 for housing the system 100 , and which also includes a service control panel 112 , which includes several touch switches 112 A and status indicator lights 112 B.
  • a service control panel 112 which includes several touch switches 112 A and status indicator lights 112 B.
  • the switches permit user commands to be entered at the cabinet 110 . If the pool control panel is mounted on the cover of the cabinet 110 , the service panel would be omitted.
  • the service panel 112 in this exemplary embodiment includes eight manually actuated control switches/buttons.
  • the service panel is located on the exterior of the hinged lockable cover for the cabinet 110 , and is fully water resistant. This mounting provides a significant safety benefit, since the pool service professional or homeowner does not need to open the system cabinet 112 , exposing line voltage wiring, in order to do routine pool maintenance.
  • FIG. 4 illustrates the master control panel 102 , which in this exemplary embodiment includes an LCD or other display 102 A, panel switches 102 B and indicator lights 102 C.
  • This panel 102 includes a display for displaying to the operator various status information and messages, and controls which permit the operator to enter commands or input data to the system 100 .
  • the switches accept user commands and inputs, to initiate system actions or enter information into the controller 100 .
  • the switches or buttons can include up and down buttons for temperature control and programming, a filter button for activating the filter pump, a light button for controlling the pool and spa lights, a spa button which controls the valves 70 and 72 , turns on the spa jet pump, and turns off the cleaner pump if the system is so equipped, a heater enable button to enable operation of the heater, a program button to put the system in a programming mode, and five auxiliary buttons which can be used for such features as the cleaner pump, yard lights, an auxiliary valve, a fiber optic decorative lighting system and an auxiliary pump.
  • FIG. 5 is a similar view of the spa control panel 104 , which also includes an LCD or other display 104 A, panel switches/buttons 104 B and indicator lights 104 C, which accepts user commands and inputs, to initiate systems actions or enter information into the controller 100 .
  • there are four buttons one button for temperature control, one button to control the spa jets (valves and filter pump) and an optional jet pump, a spa light button, and an auxiliary button.
  • the panel 104 is mounted in or near the spa 2 , above the water line. A low voltage cable runs from the panel to the controller system 100 .
  • FIG. 6 is a schematic block diagram of the pool service system 50 .
  • the service system includes a number of components which require electrical power for operation and/or control.
  • the electrical power at line voltage is routed through a pool controller and power distribution system 100 .
  • Primary electrical power is by the 50 Amp primary service 60 from the main panel or 100 Amp sub panel 40 .
  • the primary service 60 is provided with a ground fault continuity interrupt (GFCI) circuit 62 , to provide ground fault protection for the primary power service to the system.
  • GFCI ground fault continuity interrupt
  • Auxiliary electrical power service is provided in this example by a 20 Amp service line 64 and a 30 Amp service line 66 , although the auxiliary service can be omitted for many applications.
  • the primary line voltage service 60 is provided by a 240 VAC line feed, comprising in a typical installation a neutral conductor, a ground conductor, a first voltage phase conductor and a second voltage phase conductor.
  • These conductors are conventionally color coded, so that according to the coding convention, the ground conductor has green insulation, the neutral conductor has white insulation, the first voltage phase conductor has black insulation and the second voltage phase conductor has red insulation.
  • the black conductor has a first polarity phase with respect to the neutral conductor
  • the red conductor has a second polarity phase with respect to the neutral conductor, and 180 degrees different from the phase of the first polarity phase, such that 120 VAC is developed between the neutral and the black conductors, 120 VAC is developed between the neutral and the red conductors, and 240 VAC is developed between the black and the red conductors.
  • the 50 Amp service 60 B includes red conductor 60 B 1 , black conductor 60 B 2 , white (neutral) conductor 60 B 3 , and green (ground) conductor 60 B 4 (see FIG. 9 ).
  • FIG. 6 Various components which are controlled and/or receive electrical operating power through the system 100 are shown in FIG. 6 . These components can include the valves 70 , 72 , 74 , the pool fill spout valve 76 , the pool water heater 78 , the filter pump 80 , the cleaner pump 82 , an auxiliary pump 84 , a spa jet pump 86 , the decorative fiber optic system 88 , lighting system 90 , spa blower 92 and auxiliary lights 94 .
  • the foregoing particular components is an illustrative listing; for any given pool installation, some of the components will be omitted, and other components may be added, all depending on the design of the particular installation.
  • the pool controller 100 receives input data signals from various sensors and input sources. These include several temperature sensors, the air temperature sensor 202 for providing ambient air temperature, the water temperature sensor 204 for providing the temperature of the water at the input to the heater, and the water temperature 206 for providing the temperature of the water at the output of the heater. Other sensors include the filter backpressure sensor system 208 comprising pressure sensors 208 A and 208 B, ORP sensor 210 , pH sensor 212 , water level sensor 214 for providing a pool water level indication, a “cover off” sensor 216 , a “gate locked” sensor 218 , a solar sensor 220 for detecting the temperature at a solar heater, and an emergency stop switch 350 , to be described in greater detail below.
  • the controller can respond to the solar temperature, to actuate a valve to divert water to pass through a solar heater, if the installation is so equipped, instead of through the gas water heater.
  • the water level sensor for example can include a probe which extends into an area at which the water level will reach at a desired fill level, and sense the presence or absence of water at this level.
  • a direct 50 Amp line power connection is made between the main panel 40 for the residence directly to the pool controller and distribution system 100 , through the 50 Amp GFCI circuit 62 .
  • the system 100 has thereon the necessary terminal connections for direct connection of the line voltage service conductors (black, red, white, green) for the 50 Amp service.
  • Circuit protection for the various devices such as the heater 78 , filter pump 80 , cleaner pump 82 and auxiliary pump 84 is provided by circuit protection devices, e.g. fuses, mounted on the pool controller circuit board in the pool controller cabinet. This results in substantial savings and cost and in assembly time and effort.
  • FIGS. 8-12 A typical power connection in accordance with this aspect of the invention is illustrated in FIGS. 8-12 .
  • an insulating terminal block 240 is employed within the controller cabinet 110 , which carries pressure connectors 242 and 24 to which the red and black line voltage conductors are attached.
  • the connectors 242 , 244 each include a frame 242 B, 244 B into which the end of the respective line voltage conductor is inserted.
  • a threaded device such as set screw 242 C, 244 C is then advanced into the frame, capturing the end of the line voltage conductor in the frame by a pressure connection.
  • the terminal block body 240 A is fabricated of an electrically insulating material, i.e. a dielectric, and is mounted to the floor of the cabinet.
  • the terminal block includes mounting surfaces which receive threaded fasteners 251 to secure the controller circuit board to the terminal block, and through pressure contact, make electrical contact with the red and black line voltage connectors.
  • An upstanding wall portion 240 B protrudes upwardly, through a slot 250 A formed in the edge of the circuit board 250 .
  • the wall portion 240 B registers the position of the terminal block in relation to the circuit board, and also physically provides dielectric isolation between the line voltages carried by the connectors 242 and 244 carry.
  • Conductive traces on the circuit board 250 contact respective line voltage connector surfaces 242 A and 244 A ( FIG. 9 ) of the connectors 242 and 244 to provide electrical continuity between the circuit board traces and the red and black line voltage conductors. Representative circuit board traces are shown in FIGS. 7 and 8 .
  • FIG. 7 is a simplified bottom view of the circuit board 250 , and illustrates printed wiring conductor patterns for carrying line voltage at 120V, at the respective first phase and the second phase.
  • Circuit trace 252 is connected to the red wiring connector 242 , and includes pad 252 A exposed on the bottom surface 250 B of the board, for contacting connector surface 242 A upon assembly of the board to the terminal block 240 .
  • the circuit board 250 is a multiple-layer structure, with conductor traces formed on the top surface, the bottom surface and in a buried intermediate layer, using known photolithographic techniques, with conductive vias interconnecting the circuit traces on the different layers as required to form the desired circuit.
  • the circuit trace 252 is mostly formed in the buried layer, and is shown in phantom lines in FIG. 7 .
  • the circuit trace pattern 252 is generally a buried layer, except for conductive pad 252 A formed on the bottom surface 250 B.
  • the trace pattern 252 then transitions through a conductive via to a buried layer, sandwiched between layers of dielectric comprising the board 250 . This is shown in the cross-sectional view of FIG.
  • trace 252 is sandwiched between board dielectric layers 250 C and 250 D.
  • the circuit trace 254 connected to the black conductor 60 B 3 through connector 244 , is a surface trace pattern, and is shown in solid line in FIG. 7 .
  • the circuit board 250 thus includes layers of printed wiring patterns, which route the line voltage and low voltage signals to respective devices mounted on the board, and to the connectors to which are connected wiring running to the line voltage loads and low voltage devices.
  • the cabinet 110 for the system 100 is separated into three compartments or bays, two low voltage compartments 110 J and 110 K on either side of the middle compartment 110 I.
  • the cabinet 110 in this embodiment is a metal housing structure having a hinged cover 110 A, side walls 110 B- 110 E and floor 110 F. Interior metal wall partitions 116 G and 110 H of the cabinet define the three compartments. All line voltage wiring enters the cabinet at the bottom wall through holes formed in wall 110 B, and remain in the main compartment. The ends of the line voltage wiring are captured in pressure connectors, including the connectors 242 , 244 .
  • Pressure connectors suitable for the purpose are commercially available, e.g., a pressure connector marketed by Connector Mfg. Co. of Alabama, Grenville, Ala., as part number CA-66.
  • Low voltage wiring is brought from the main compartment through openings in the side walls and through wall 110 B at openings in the side compartments. This results in improved safety, since any failure of insulation on a line voltage line could cause a dangerous voltage on the low voltage lines.
  • FIG. 13 is a simplified wiring diagram for an exemplary pool and spa installation.
  • the system shown in FIG. 13 does not explicitly show the identical complement of controlled devices and sensors as shown for the system of FIG. 6 . It is contemplated that the same controller circuit board will be used in this installation as well as in the system shown in FIG. 6 .
  • the exemplary installation of FIG. 13 includes controlled valves 70 and 72 , air temperature sensor 202 , water temperature sensor 204 which measures the temperature at the inlet to the heater, which should be the same as the water temperature in the pool or spa, spa jet pump 86 , filter pump 80 , water heater 78 , spa lights 90 A and yard lights 90 B.
  • the circuit board 250 is diagrammatically depicted in FIG. 13 , and is connected to the line voltage connectors 242 and 244 , attached to the terminal block connector 240 .
  • the neutral bus 246 is attached to the terminal block, and a neutral connection 246 A is made to the circuit board.
  • the neutral (white) conductor 60 B 3 from the 240 VAC, 50 A service is connected to the neutral bus.
  • the ground (green) conductor 60 B 4 from the 50 A service is connected to a ground bus 248 attached to the metal cabinet 110 .
  • the board 250 includes printed wiring conductor patterns which connect the various circuit devices mounted on the board and the connector terminals.
  • the board 250 is supported on the metal cabinet 110 , and ground is connected through metal threaded fasteners 258 ( FIGS. 10-12 ) which secure the board in place.
  • Extending from the sidewall partitions 110 H and 110 G are metal brackets comprising shelf portions 110 L and 110 N, supported by metal leg portions 110 M and 110 P, respectively.
  • the fasteners 258 secure the board 250 to the shelf portions.
  • the board is physically connected to the cabinet 110 by four threaded fasteners 258 , and to the terminal block 240 by four threaded fasteners 251 , in this exemplary embodiment.
  • This attachment technique facilitates the installation and removal of the board 250 relative to the cabinet.
  • other types of removable fastener structure could alternatively be employed instead of screw fasteners, including clamps, spring clips, friction connectors, and the like.
  • the exemplary installation illustrated in FIG. 13 includes two 240 VAC loads, the spa jet pump 86 and the filter pump 80 . These loads are connected to 240 VAC service through a 240 VAC connector 260 comprising a first connector structure 260 A ( FIG. 10 ) mounted on the top surface of the circuit board, and a removable connector structure 260 B ( FIG. 13 ) to which insulated conductors or wires are connected running to the loads.
  • the respective connector structures have respective pins and corresponding plug receptacles which mate together when the connector structure are mated.
  • Such connectors are well known; a suitable connector is the connector marketed by RIA Electronics, Inc., Etherton, N.J., as mating parts 31041208 (pin connector) and 31007208 (plug connector). Use of this type of connector structure facilitates field wiring of the line voltage loads.
  • Respective terminals of the connector structure 260 A are electrically connected to printed wiring trace 252 running to the connector 242 , and other connections to other terminals of the connector structure 260 A are made through switching relays and fuses to wiring trace 254 to the connector 244 .
  • 240V service is available.
  • Insulated conductor 86 A is connected to a “red” terminal connection, i.e. a connection which is electrically connected to connector 242 , to which the red conductor of the 240V service is connected.
  • Conductor 86 B is connected to a “black” terminal connection, i.e. a connection which is electrically connected through a relay and fuse to connector 244 , to which the black conductor of the 240V service is connected.
  • Conductor 86 C connects the ground bus 248 to the spa jet pump.
  • wire 80 A is connected to another “red” terminal connection on connector 260 B
  • wire 80 B is connected to a “black” terminal connection on connector 260 B
  • wire 80 C connects the ground bus 248 to the filter pump.
  • the 240 VAC loads are controlled by respective switch devices, e.g. non-latching relays, in turn controlled by the system controller. Each load circuit is also protected from excessive current draw by a fuse device.
  • the spa jet pump is controlled by relay 280 and circuit protection is provided by fuse 286 , respectively mounted on the circuit board 250 .
  • a series circuit connection is made between the circuit trace 254 , relay 280 and fuse 286 to the corresponding terminal on connector structure 260 A, using solder connections to wiring traces formed as part of the board 250 .
  • the filter pump 80 is controlled by relay 282 and circuit protection is provided by fuse 288 .
  • a spare 240V service circuit is provided, with relay 284 and fuse 290 .
  • the circuit board 250 further has a 120V service connector 270 , also comprising a fixed connector structure 270 A mounted to the board, and a removable connector structure 270 B ( FIG. 13 ) connectable to the fixed connector structure.
  • These connector structures can be implemented in the same manner as the connector structures 260 A and 260 B, further facilitating field wiring of the controller system. Insulated wires running to the load devices are attached to the removable connector structure 270 B.
  • Respective terminals of the connector structure 270 A are electrically connected via wiring traces of the circuit board to the red connector 242 , the black connector 244 and the neutral connector 272 in turn connected to the neutral bus 246 via wire 246 A.
  • 120V service of either phase (red or black) is available at the connector 270 .
  • the heater 78 is wired to the connector 270 by wires 78 A, 78 B.
  • 120 VAC power to activate the heater is supplied, which enables all ignition and temperature regulating functions of the heater.
  • the heater in turn ignites gas supplied to its internal gas valve and burner, heating the water which is flowing from the pump and filter.
  • the spa light circuit 90 A are connected to a black polarity connection at connector 270 by wire 90 AA, and to the neutral bus 246 by wire 90 AB.
  • the yard lights 90 B are connected to a red polarity connection at connector 270 by wire 90 BA, and to the neutral bus 246 by wire 90 BB. Provision is made for an optional 120V load device 238 , which can be connected to connector 270 by wire 238 A, and to the neutral bus 246 by wire 238 B.
  • Each 120 VAC circuit connected through the connector 270 is controlled by a switch device actuated by the controller 402 , with circuit protection provided by a corresponding fuse, respectively mounted on the circuit board 250 .
  • the switch device and a corresponding fuse are connected in series between a corresponding line voltage wiring trace (i.e., black, red, white) and a terminal of the connector 270 .
  • the heater is controlled by relay 300 , with circuit protection provided by fuse 292 .
  • the optional load 238 is controlled by relay 302 and protected by fuse 294 .
  • the yard light circuit 90 B is controlled by relay 304 , and protected by fuse 296 .
  • the spa light circuit 90 A is controlled by relay 306 , and protected by fuse 298 .
  • the various electrically-powered components controlled and powered through the pool control system can give rise to power load issues, where the total current available through the pool control system could be insufficient to meet all load conditions.
  • two different 120V light circuits 90 A and 90 B are hardwired on the control board.
  • One circuit, say 90 A is powered by connection to the black and white conductors of the 240 AC service.
  • the second circuit is powered by connection to red and white conductors of the 240 VAC service, thus using a different phase of the 240 VAC service.
  • the balance can be directed through loads L 2 and L 3 , connected between RAC and the neutral conductor, and between BLAC and the neutral conductor, respectively.
  • Loads L 2 and L 3 may or may not be equal, and the return path is through the neutral conductor, unused if all 50 Amps is not passed through the load L 1 .
  • the total current passing through plane P-P is always 50 Amp.
  • the system 100 further includes a transformer coupled to the 120V AC to provide low voltage DC power at 5V and 15V to provide power to the electronic components including the controller, and to operate the low voltage load devices, such as the valves 70 , 72 .
  • the transformer is connected to the circuit board 250 to receive input 120V AC, and to provide the low voltage AC and DC supply voltage levels.
  • the service control panel 112 , the control panel 102 and the spa control panel 104 , the sensors, and the low voltage loads such as the valves, are connected to the circuit board 250 by low voltage cables and modular, telephone-jack-type connectors.
  • the low voltage cables can be connected or disconnected easily by simply detaching removable connector portions from corresponding connector portions mounted on the board.
  • the control panel 102 is connected to the board 20 by a low voltage, multiple conductor cable 102 D and a modular connector 102 E having a male portion connected to the cable end and a female portion mounted to the board 250 .
  • the male portion is latched in place in the female portion, making electrical contact with the respective conductors, and can be detached by pressing a plastic latch tab and pulling the male portion away.
  • Similar connections are made to the spa panel 104 and the service panel 112 , through respective cables 104 C, 112 C and modular connectors 104 D, 112 D.
  • Modular board connectors suitable for the purpose are commercially available, e.g. the telephone/data type connectors marketed by Berg as part numbers 93899-001 (6 position board connector) and 69255-001 (eight position board connector).
  • the mating male connector structures attached to the cabling are also commercially available.
  • the sensors and low voltage loads are also connected to the boards using modular connectors.
  • the leads for these devices are connected to male connector structures, which are mated to respective female connector structure mounted on the board.
  • the wiring for valve 70 is connected to the board by modular connector structure 70 A
  • the wiring for sensor 204 is connected to the board by modular connector 204 A.
  • Suitable connector structures for sensor connector 70 A include the Molex part numbers 705-43-0106 (board connector structure) and 14-56-8022 (wire connector structure).
  • Suitable connector structures for valve wiring connectors include JST part numbers JST-32B-XH-4 (board connector structure) and JST-02NR-E2R (wire connector structure).
  • the low voltage cabling for the control panels is routed from the main bay 110 F of the control cabinet, through window opening 110 H 1 formed in sidewall 110 H and into the low voltage secondary bay 110 K of the cabinet, as shown in FIG. 10 .
  • the cable 112 D can be connected to the panel 112 on the front cover, and the cables 102 D, 104 D can be passed through service opening(s) formed in the bottom wall 110 B of the cabinet and then routed to the respective panels 102 and 104 .
  • the low voltage wiring for the low voltage loads is passed from the main bay 110 F through window 110 G 1 of sidewall 110 G into the right low voltage secondary bay 110 J, and then routed through service opening(s) formed in the bottom wall 110 B of the cabinet for routing to the low voltage loads and sensors.
  • An aspect of this invention is the use of a controller system which is readily field wired, providing significant saving in installation labor.
  • the board 250 can be removed from the cabinet 110 easily, without disconnecting the line voltage conductors 60 B 1 - 60 B 4 . This is accomplished by removing the fasteners 258 which secure the board to the cabinet, removing the fasteners 251 which connect the board to the terminal block 240 , and disconnecting the line voltage and low voltage connectors. This can be done in a matter of minutes, and thus facilitates servicing the system 100 . If a board 250 is malfunctioning, it is a simple matter to remove it for repair or replacement in the field. Moreover, because the line voltage conductors 60 B 1 - 60 B 4 need not be physically disconnected, the safety hazards involved in such work are reduced.
  • the controller system 100 includes a microprocessor 402 such as a Pic 16C65A CMOS microcomputer marketed by Microchip, which accepts information from a variety of sensors and acts on the information, thereby operating according to instructions described more fully in FIGS. 14A-14F .
  • a microprocessor 402 such as a Pic 16C65A CMOS microcomputer marketed by Microchip, which accepts information from a variety of sensors and acts on the information, thereby operating according to instructions described more fully in FIGS. 14A-14F .
  • the invention is not limited to the use of a controller including a microcomputer or microprocessor, whose functions can instead be performed by other circuitry, including, by way of example only, an ASIC, or by discrete logic circuitry.
  • FIG. 14A An exemplary main operational routine 700 illustrating the programmed operation of the microprocessor 402 is shown in FIG. 14A .
  • a “check GFCI” subroutine 704 is performed. This subroutine has for its purpose to electronically test whether the GFCI 62 is properly operational, and is described more fully with respect to FIGS. 14B and 15 .
  • the main program is run ( 706 ). The main program performs the control functions needed for running the various pool and spa functions, including running the heater and pump. The primary function of the main program is to monitor safety issues, such as over-temperature conditions. Thus, the main program will manage water temperature in the pool and spa.
  • the routine 700 performs an interrupt ( 708 ) of the main program every 16 milliseconds in this embodiment.
  • the system time kept by an incremental timer, is incremented ( 710 ) by adding one to the internal stack of the counter, and the control panel buttons are checked ( 712 ) to see for activation. If none of the buttons have been pressed or otherwise activated, operation returns ( 714 ) to the main program at the point of interrupt. If any control panel switches have been activated, then the panel service subroutine 716 is entered. This panel service subroutine activates features, and accepts and inputs and alarms entered via panel switches.
  • the panel push-button impulse generated by the electronic panel circuitry, is several hundred milliseconds long.
  • the processor Since the interrupt is every cycle of the line power supply, or approximately every 16 milliseconds, the processor has ample time to detect a button push and respond accordingly. The processor loads the data represented by a button push, and loads that data into a register. This register is then accessed by the microcomputer every few milliseconds and appropriate action is taken. After completion of the panel service subroutine, the emergency disconnect routine is entered ( 718 ), and thereafter operation returns ( 714 ) to the main program to the point of interrupt.
  • the GFCI test routine 704 is described further with respect to FIGS. 14B and 15 .
  • the system 100 will test for proper connection and operation of the GFCI 62 . This is done in the exemplary embodiment by inducing a ground fault shortly after power up of the system, and then looking for GFCI interrupt within a specific short time. If this does not occur, the controller 100 will display a type of “GFCI absent” message and accept no further inputs from the control panels, preventing further operation of the system 50 . If an interrupt does occur, this event will be stored in a nonvolatile memory as a flag. Then, when the system is re-powered up, the stored flag information will be read, the system will know a GFCI is installed, and the system 100 will operate normally.
  • FIG. 15 illustrates schematically circuit elements employed for this test.
  • the GFCI 62 is a well known apparatus, and includes sense coil 62 A, relay 62 B and control circuit 62 C.
  • the sense coil 62 A is coupled to conductors of the 50 Amp service 60 A.
  • the control circuit will sense this condition through coil 62 A, and open the relay 62 B, interrupting power.
  • the function of a GFCI is well known in the art.
  • the controller 100 includes a voltage transformer circuit 480 will transforms the 120 VAC input line voltage to a 12 VAC level. This 12 VAC is applied to a voltage divider, and the sinusoidal divider voltage drives the input to gate 484 , which converts the sinusoidal input signal to a square wave signal between 0 V and +5 V.
  • the microprocessor monitors the square wave signal, and will sense nulls in the power waveform to switch the relays at zero crossings in the power waveform to minimize arcing in the relays.
  • An output port of the microprocessor 402 is coupled to a relay 358 .
  • One switched port of the relay is connected at node 368 to one 120 VAC wire; the other switched port is connected to earth ground.
  • a power supply 406 provides a dc power supply voltage from the line voltage transformer to power the microprocessor.
  • a nonvolatile random access memory e.g. an EEPROM memory 404 .
  • the GFCI test is performed by the microprocessor 402 providing a control signal to turn on transistor 405 , closing the relay switch 358 B and shorting the line voltage at node 368 to earth ground through a 10 Kohm resistor 362 . This will create an imbalance in the power supply lines 60 A 1 and 60 A 2 . If the GFCI 62 is present and properly connected, the GFCI relay switch 62 B will be opened, interrupting power to the transformer 480 . The microprocessor 402 will sense this condition, through its monitoring of the gate 482 output, and in response to lack of a square wave signal will store a flag bit in the EEPROM 404 . This will occur before the microprocessor loses power. The next time the system 100 is powered up, the startup program routine will look for this bit, and if set will proceed to execute the main program. However, if the flag is not set, the GFCI test will be performed.
  • the GFCI 62 must open the circuit within a certain time period after a short or imbalance is detected. For example, for a Class A GFCI, the rated time period is 7 milliseconds, and for a Class B GFCI the rated time period is 20 milliseconds. Therefore, there must be a start time for the test and a finite period of time after the relay 358 is closed to indicate a successful test. Because each cycle of the 60 cycle line voltage supply is 16 milliseconds long, the microprocessor must wait a certain time period, time A, before closing relay 358 .
  • the signal input for the start of the time period A is the square wave from gate 482 , connected to the transformer 480 , which generates an AC signal proportional to the line voltage supply, but isolated from the line voltage supply.
  • Time period A can vary from 1 millisecond to 15 milliseconds in this embodiment.
  • Time interval B is the time period before checking for another input from the gate, i.e. a rising edge or high state on the square wave signal.
  • Time interval B can vary from 1 millisecond to several hundred milliseconds, but will generally not exceed 100 milliseconds.
  • the microprocessor 402 When the microprocessor 402 has begun the time B countdown, it looks for one input on the gate waveform. If it continues to see rising or high inputs on the gate waveform, indicating that the GFCI relay has not opened, the microprocessor will wait the entire time B, and then branch to a lockout program. This program will set an error message to the main control display panel such as “GFCI FAIL,” and stop further input or operation.
  • the microprocessor will write a flag bit to the memory 404 , to indicate a successful test.
  • a short term power supply back supply shown schematically as capacitor 408 and resistor 410 , will give the microprocessor 402 sufficient time to finish the wait time B, and set the GFCI flag in the memory 404 before shutdown.
  • FIG. 14B shows the GFCI subroutine 704 in further detail.
  • the GFCI flag bit memory location in the memory 404 is checked ( 704 A), and if set, operation returns to the main program ( 704 B). If the bit is not set, then at 704 C, the microprocessor monitors the gate output to detect a rising input from the gate. Once this is detected, after a wait of time interval A, the relay 358 is closed ( 704 D). Now the microprocessor waits for time interval B ( 704 E), and then checks for a rising input from the gate ( 704 F). If a rising input is not detected, then the GFCI flag bit is set ( 704 G), and the system 100 will shut down.
  • GFCI FAIL GFCI FAIL
  • An aspect of the invention is to integrate with the pool controller system 100 the circuitry or logic necessary to respond to user commands to activate the fill valve 76 to dispense water into the pool from the water line.
  • the controller is responsive to a manual control panel selection by the user to actuate the fill valve, say by actuation of panel button 102 B 1 ( FIG. 4 ), and release water into the pool to replenish the water.
  • the controller starts an internal timer, and then after a predetermined timer interval elapses, or a time desired by the user, shuts off the valve to stop filling the pool with water. This will address the problem of the pool owner manually turning on a fill valve, and then forgetting to later turn off the valve.
  • a water level sensor detects a low water level condition, and automatically activates the fill valve for a predetermined time interval.
  • the water level sensor can sense an overfill level, and provide a signal to the controller indicative of this condition. The controller acts on the overfill signal to close the fill valve, even though the predetermined timer interval has not elapsed.
  • the pool fill feature is illustrated in the flow diagram of FIG. 14C .
  • the “activate features” subroutine 718 is entered.
  • One of the features is the “pool fill” feature; of course there can be other features activated during this interrupt, not pertinent to the fill routine.
  • the pool fill feature is selected ( 718 A). If the pool fill feature is not selected, operation returns to the main program, or to another feature.
  • the fill time is selected. The user can enter this data through the control panel, e.g. in increments of minutes, or a default fill time can be used, e.g. 30 minutes.
  • step 718 A operation can proceed from step 718 A immediately to step 718 C, to open the valve. Otherwise, the time is set, and then the valve is opened, with the microprocessor starting a timer for timing out the selected or default fill time interval. At this point, operation returns to the main program.
  • a function of the main program 706 is to monitor the fill activity once started. Thus, at periodic step 718 D, a check will be made for the status that a fill has already been activated. If not, operation returns to the main program. If a fill operation has been started, the timer is checked at step 718 E. If the fill time has not expired, operation returns to the main program. If the fill time has expired at 718 E, the fill valve is closed ( 718 F), and operation returns to the main program.
  • Another feature is the use of a water level sensor for detecting whether the pool water level has reached a low level, at which water should be added.
  • the water level sensor 224 is checked at 720 A. If the water level is above the low level, operation returns to the main program. If the pool level is at the low level, the pool fill valve 74 is opened, and operation returns to the main program. The pool fill valve can be subsequently closed when the water level sensor probe again makes contact with water.
  • the processor can be programmed to close the valve a predetermined time interval after it is opened, say one hour. Also, the overfill condition can be sensed, and this information triggers closing the fill valve even though the time interval has not yet elapsed.
  • Another aspect of the invention is an emergency disconnect switch for the pool/spa, implemented without the need for bringing line voltage to the emergency disconnect switch, but rather using low voltage signals and the intelligence of the spa controller 100 .
  • the emergency disconnect switch when closed will cause a grounding resistor to be connected between the earth ground line and line voltage, inducing a ground fault which will be detected by the GFCI 62 , thus providing a level of redundancy.
  • the emergency disconnect switch 350 is on a housing 352 , which is mounted near the spa, to be accessible in the event of a need to immediately shut down the pool/spa equipment powered by line voltage through the system 100 .
  • Conductor wires 354 , 356 run between the circuit board 250 of the controller system 100 and respective terminals of the normally open switch 350 .
  • the wire 354 is connected to one terminal of the coil 358 A of a relay 358 on the circuit board 250 ; the other terminal of the relay coil is connected to a 15V supply.
  • the relay switch 358 B is connected between earth ground and through a 10 Kohm resistor 362 to one phase of the line voltage service, e.g. the black 120 VAC line, at node 368 .
  • the other terminal of the switch 350 is connected to wire 356 , which is connected to node 362 at the board 250 .
  • a 50 Kohm resistor is mounted in the housing 352 between the wires 354 and 356 , and in parallel with the switch 350 .
  • a 10 Kohm resistor 366 is connected from node 362 to ground, forming a voltage divider with the resistor 360 .
  • An analog-to-digital converter (ADC) 364 is also connected to node 362 on the circuit board 250 , and provides a digital voltage value to the system controller 402 mounted on the board 250 .
  • ADC analog-to-digital converter
  • the closing of the emergency stop switch 350 will close the relay switch 358 B, connecting the 120VAC black line voltage at node 368 through resistor 362 to earth ground.
  • This is a ground fault, which is detected by GFCI circuit 62 , and which is tripped, interrupting line voltage service to the pool controller and power distribution system 100 .
  • all power to system 100 will be interrupted.
  • the voltage at the voltage divider node 362 is monitored through the ADC 364 by the controller 402 under normal operating conditions. If the switch 350 is closed, the resistor 360 is bypassed, and the voltage at node 362 read by the ADC changes. The controller 402 detects this condition, and immediately opens the relays providing line voltage to all line voltage loads. Thus, even if the GFCI 62 were to fail, and therefore not interrupt line voltage service to system 100 , the controller 402 would take action to open shut down the line voltage loads.
  • the controller 402 can also detect that the emergency disconnect switch 350 is not properly installed. In this case node 362 will be at an open circuit voltage condition. The controller 402 monitors the voltage at node 362 , and if an open condition is detected, this is recognized as an error or fault condition. The controller can then prevent operation of the system 100 , prevent line voltage from being connected to the line voltage loads, or take other action needed to address the lack of proper connection of the stop switch, such as providing an error message on the control panel display.
  • FIG. 14D illustrates the “ESTOP disconnect” subroutine 722 ( FIG. 15 ) in further detail, wherein the emergency stop switch 350 is monitored.
  • a check is made to determine whether this feature is enabled, and if not, operation returns to the main program ( 722 G). If the feature is enabled, then the microprocessor 402 reads the voltage at node 362 through the ADC 364 . If a value indicating the presence of the switch and resistor 360 is not read, an error message is displayed on the control panel ( 722 C) and operation returns to the main program.
  • step 722 E if the microprocessor senses that the emergency switch system is installed, then at step 722 E, if the voltage at node 362 indicates that the switch 350 is closed, then all line voltage loads and features are shut down ( 722 F), and the controller 100 will wait for power off and reset. If the switch 350 is not closed, operation returns to the main program ( 722 G).
  • filter pressure sensors 208 A and 208 B are mounted in the filter inlet and outlet lines 9 and 10 to monitor the back pressure, i.e. the difference between the input water pressure and the output water pressure, and when it reaches a certain level, the controller causes a warning or error signal to be displayed on the control panel, such as “Back Flush the Filter” or “Clean Filter.”
  • a gas pressure sensor 224 is placed in the gas line to the pool heater 78 to monitor gas pressure.
  • the sensor includes a sending unit which provides a gas pressure signal.
  • Pressure sensors suitable for the purpose are commercially available; one exemplary sensor is marketed by Omega Engineering Inc., Stamford, CT, as the 30 PSI sensor device, PX182-030-GI. This signal is provided to the controller 402 , which is programmed to provide an error message on the display of control panel 102 when pressure reaches a minimum threshold, and also prevents the heater from operating.
  • the gas pressure and backpressure monitoring features are further illustrated in the flow diagram of FIG. 14E .
  • the subroutine 720 (“accept input and alarms”) further includes step 720 C, wherein the microprocessor receives as data inputs the gas pressure value, the input water pressure (IP) to the filter, and the output water pressure (OP) from the filter.
  • step 720 D if the gas pressure is below the predetermined low threshold value, the heater is disabled and an error message is sent to the panel display ( 720 E). If the filter backpressure (i.e., the difference between the input pressure and the output pressure) exceeds a predetermined threshold value ( 720 F), an alert message is sent to the panel display to indicate that the filter should be cleaned ( 722 N).
  • FIG. 14F illustrates additional steps which can be included in the “accept inputs and alarms” subroutine 720 .
  • Sensors 218 and 216 respectively detect the condition that the pool cover is open or the gate to the pool area is open.
  • the sensors can be Hall effect switches, or other types of switching devices, as will be apparent to those skilled in the art.
  • the sensor outputs are connected to the controller 402 , which is programmed to interpret the outputs as potential alarm conditions, and generates an audible warning signal using alarm sound speaker or siren 96 ( FIG. 6 ) or another warning signal such as a visible message on a panel display, indicating that the pool gate or cover is open.
  • the subroutine checks to see whether an alarm signal has been input from a sensor such as the gate open sensor 218 or the pool cover alarm 224 . If not, operation returns to the main program (or to other aspects of this subroutine). If an alarm has been received, then an alarm output is activated by the controller 402 , which can initiate an audible and/or visible warning message.
  • a sensor such as the gate open sensor 218 or the pool cover alarm 224 . If not, operation returns to the main program (or to other aspects of this subroutine). If an alarm has been received, then an alarm output is activated by the controller 402 , which can initiate an audible and/or visible warning message.
  • An improvement in production is obtained by use of an in-circuit-programmable microcontroller.
  • This microcomputer can be programmed by sending suitable signals to an appropriately configured input circuit after the microcomputer has been installed via solder connections onto the circuit board 250 .
  • This improved production technique includes the steps of (i) soldering the microcomputer into a circuit board configured for in-circuit programming; (ii) connecting the board to a programmer device using electrical leads, in accordance with the manufacturer's instructions; (iii) loading the program into the microcomputer from the programmer; (iv) power up the circuit board in accordance with normal operating procedures; and (v) verify the proper functioning of the circuit board with the microcomputer. Operation is verified in this embodiment by powering up the board and performing an operational clock, either manually or by a suitable computer test system.
  • Temperature sensors that are known in the art utilize a single thermistor sealed inside a case for sensing water temperature, high limit temperatures in a heater, and air temperatures. To facilitate redundancy in these critical components, two thermistors are installed inside one housing. This moderate increase in cost doubles the reliability of a very reliable technology, and removes the need for a more expensive option of dual sensor assemblies dedicated to a single temperature value.
  • FIGS. 17-19 illustrate temperature sensor 202 in further detail. Temperature sensors 204 and 206 can have the same circuitry and structure as sensor 202 , and so will not be described further.
  • FIG. 17 is a circuit diagram of the sensor 202 , which includes two solid state temperature sensing devices 202 B, 202 C, one terminal of each connected to wiring 202 A at node 202 D.
  • the solid state temperature sensing devices can be implemented by various devices, including thermistors, thermocouples, temperature-sensing diodes wherein leakage currents are temperature-dependent, or constant current source circuits wherein the current is temperature-dependent.
  • An end of the wiring 202 A is connected to the controller circuit board 250 at connector 410 .
  • the wiring 202 A is connected to a +5VDC supply node 412 .
  • the second terminal of thermistor 202 B is connected by wiring 202 E, through the connector 412 to one terminal of resistor 414 , connected to ground.
  • the second terminal of thermistor 202 C is connected by wiring 202 F to resistor 416 , also connected to ground.
  • the resistors 202 B and 414 thus form a voltage divider circuit, with the voltage at node 420 dependent on the variable resistance of the thermistor.
  • resistors 202 C and 416 provide a voltage divider circuit, with the voltage at node 418 dependent on the variable resistance of the thermistor.
  • the voltages at nodes 418 and 420 are converted to digital values by ADC 364 and monitored by the controller 402 . Since the resistance values of the thermistors vary precisely with their temperatures, two temperature readings are provided by the sensor 202 . The temperature values can be averaged, and in the event of anomalous readings from one or the other thermistor, the anomalous value can be discarded. This temperature sensor provides improved reliability through this redundancy.
  • the senor includes a dielectric substrate or circuit board 202 G.
  • a distal end 202 H of the substrate has two notches 202 I, 202 J formed therein.
  • the respective thermistors 202 B, 202 C are supported in the notches of the board.
  • FIG. 18 is a diagrammatic view showing one side of the board 202 G;
  • FIG. 19 shows the reverse side of the board.
  • the sensor 202 further includes a metal tubular housing 202 K having a closed end 202 L and an open end 202 M.
  • a collared sleeve 202 N is used, in combination with the length of the sensor circuit board 202 G, to precisely control the depth of insertion of the circuit board into the housing prior to potting with an epoxy. This eliminates the problem of imprecise circuit board placement, which can lead to disparities in sensed temperatures between sensor units.
  • the sleeve 202 N has an opening formed therein through which the wiring leads 202 A, 202 E and 202 F are brought out.
  • the sleeve is a plastic molded part with a distal end which contacts the circuit board 202 G, and a collar 202 O is larger in diameter than the diameter of the housing 202 K, thus providing a stop surface against which the open end of the housing is brought into contact during assembly.
  • a circuit arrangement which is self-registering in insertion depth within the housing.
  • the self-registering feature of the temperature sensor can alternatively be employed with sensors using a single sensing element, such as a single thermistor.
  • FIGS. 20A-20C illustrate an exemplary circuit schematic for the circuit board 250 .
  • Various sensor inputs to the controller are passed through signal conditioning circuitry and then to the ADC 364 ( FIG. 20A ).
  • air temperature sensor 202 is shown as a two wire device, e.g. with a single thermistor sensor, connected to the signal conditioning circuitry indicated as 203 , although it is contemplated that an improved sensor as shown in FIGS. 17-19 will alternatively be employed.
  • the improved sensor will utilize two multiplexed inputs to the ADC, so that each circuit can be read by the controller 402 .
  • the output of the signal conditioning circuitry is passed to the ADC 364 , which can process several inputs through a multiplexing arrangement.
  • Illustrative sensor devices 204 , 206 , 210 , 212 are similarly connected through signal conditioning circuitry to the ADC.
  • Other sensor devices e.g. the gate sensor 218 , may have signal levels at appropriate logic levels, and so may not require the same signal conditioning in order for the ADC to have a desired signal level to convert to digital form.
  • Circuitry for interfacing sensor devices to a microcomputer through an ADC are well known in the microprocessor arts.
  • a crystal oscillator clock circuit 320 provides clock signals for the microcomputer.
  • the circuit board assembly 250 also includes a power supply 322 ( FIG. 20A ), which converts the line voltage service into 24 VAC for providing power to the water valves, and into 15 VDC, 12 VDC and 5 VDC for providing DC power needs of the controller board assembly, such as relay power and a regulated DC supply for the microcomputer 402 .
  • a power supply 322 FIG. 20A
  • the microprocessor 402 controls the line voltage loads and low voltage loads through output drivers 320 and 322 , which in this exemplary embodiment are Darlington drivers which convert the logic level output signals from the microprocessor into the necessary drive signals for controlling the relays and switches which operate the line voltage loads and the low voltage loads, such as the valves.
  • Exemplary circuitry is illustrated for operating exemplary line voltage loads, including the heater 78 ( FIG. 20C ) and pump 80 ( FIG. 20B ).
  • Exemplary circuitry is further illustrated for operating the low voltage loads, e.g. the fill valve 76 ( FIG. 20B ), and valve 74 ( FIG. 20C ).
  • the lighting circuits 90 A and 90 B are controlled through triac switches.
  • Exemplary circuitry is illustrated for operating lighting circuit 90 B, by use of triac circuit 306 which is in turn driven by the driver 332 ( FIG. 20C ).
  • a set 402 A of wiring connections running to programming pins of the microcomputer 402 is made available for connection to the programmer device used for in-circuit programming as described above.
  • the microprocessor 402 further interfaces with the control panels 102 , 104 and 112 through an interface 338 and support circuit 336 .
  • the interface supplies panel power at 5 VDC, and power at 12 VDC and 24 VAC for panel lighting functions.
  • Data output, data input and clock signals are provided on lines 342 , 344 and 346 , respectively.
  • the interface provides three separate connector interfaces, one connector for each panel, so that the panels are connected to the circuit board assembly through respective detachable connector devices.

Abstract

A control system for a pool and spa. Main line voltage is provided through a single line voltage service and a single ground fault circuit interrupter circuit, facilitating a ground fault test and simplifying installation. The control system acts as a power distribution system for controlling the pool and spa equipment, with a circuit board assembly including individual fuse protection devices and switching circuits. A test algorithm is included, wherein the control system is disabled from normal operation if the GFCI test fails. The pool operator manually enters a water fill command, and the controller system automatically opens the fill valve for a predetermined time interval, and then automatically closes the valve. An emergency disconnect switch is mounted near the bathing area, connected by low voltage wiring to the controller system cabinet. The controller system senses the emergency switch closure and disconnects line voltage to the line voltage loads. The emergency switch closure also remotely induces a ground fault, tripping the GFCI. A sensing circuit allows the controller system to sense the presence of the emergency switch system, and issues a warning and prevents normal operation of the pool and spa system if not connected. A gas pressure sensor monitors the natural gas line, and the heater is disabled and a warning given under low pressure conditions. Abnormal filter backpressure triggers a warning when the filter needs service. A temperature sensor has parallel sensing elements in a common housing to provide separate sensing circuits.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority from application Ser. No. 10/860,392, filed Jun. 1, 2004, which in turn was a divisional application of application Ser. No. 10/066,868, filed Feb. 4, 2002, which in turn was a division of application Ser. No. 09/451,561, filed Nov. 30, 1999, now U.S. Pat. No. 6,407,469, the entire contents of which applications are incorporated herein by this reference.
  • BACKGROUND
  • Electronic control systems have been employed to control various functions. Typically, however, the power hookups for the different components associated with the pool or spa have been run directly through circuit breakers in a main or auxiliary panel to the various components, such as the pump, heater and lights. This is a time consuming task, and one which can lead to wiring mistakes, in view of the number of wiring connections which need to be made. There is therefore a need to simplify the power hookups to the various components, in order to control costs and provide more reliable installations.
  • A problem with pools is maintaining the level of water within the pool. Evaporation losses can be significant, and so it is advantageous to have an automated system for keeping the water level at a given desired level. Stand alone systems for doing this are known, but tend to be somewhat complex. It would be advantageous to integrate such a system with the pool controller, for reliability, ease of installation and cost savings.
  • Emergency shutoff switches are typically mounted close to the spa, to enable quick shutoff of pumps and other functions in an emergency. It would be an advantage to provide an electrical shutoff switch which did not require high power connections to the switch, and whose installation could be verified by the controller.
  • Ground fault circuit interruption devices are typically employed in pool and spa controls. It would be an advantage to provide a technique for testing for proper operation and installation of these circuits.
  • The pool plumbing system typically includes a filter system for removing particulates from the pool or spa water. These commonly use diatomaceous earth or other filtering agents. As the filter becomes filled with particulates removed from the water, the filter back pressure rises, and ultimately for proper operation the filter must be cleaned, e.g. by backflushing the filter. Presently, a sight pressure gauge is mounted on the filter, so that the pool maintenance technician can visually check the back pressure status. It would improve the maintenance of the filter operation to automate the pressure reading.
  • The water circulation system for the pool/spa also includes a heater for warming the pool and/or spa water for the user's comfort. This heater is typically gas-operated, and does not operate properly when the gas pressure is too low. It would therefore improve the reliability and operation of the water circulation system if a technique could be found to monitor the gas pressure and provide a message and/or control signals in the event of a low gas pressure condition.
  • Power loads imposed by the pool system's electrical components can be considerable. Techniques for efficiently using the power load rating of the control system are therefore needed.
  • BRIEF DESCRIPTION OF THE DRAWING
  • These and other features and advantages of the present invention will become more apparent from the following detailed description of an exemplary embodiment thereof, as illustrated in the accompanying drawings, in which:
  • FIG. 1 is a diagrammatic view of a pool and spa system utilizing aspects of this invention.
  • FIG. 2 is a simplified block diagram of elements of a pool service system embodying this invention.
  • FIG. 3 illustrates a control panel cabinet for housing the pool controller and power distribution system of the pool service system, and the service control panel mounted on the cabinet.
  • FIG. 4 is a diagrammatic view of the pool control panel comprising the system of FIG. 2.
  • FIG. 5 is a diagrammatic view of the spa control panel comprising the system of FIG. 2.
  • FIG. 6 is a detailed block diagram of the pool service of FIG. 2.
  • FIG. 7 is a top view illustrating a portion of the multilayer conductive trace pattern of the controller circuit board.
  • FIG. 8 is a cross-sectional view taken along line 8-8 of FIG. 7.
  • FIG. 9 is an isometric view of the connector terminal block used in the control cabinet for connecting line voltage wiring.
  • FIG. 10 is a top view of the control cabinet of FIG. 3, which the cover in a open position illustrate the controller circuit board and line voltage and low voltage connections, and the main compartment bay and the two side compartments through which low voltage wiring is passed.
  • FIG. 11 is a cross-sectional view taken along line 11-11 of FIG. 10.
  • FIG. 12 is a cross-sectional view taken along line 12-12 of FIG. 10.
  • FIG. 13 is a schematic diagram of a simplified pool service system in accordance with the invention.
  • FIGS. 14A-14F are simplified flow diagrams illustrating salient program features of the controller comprising the system of FIG. 2.
  • FIG. 15 is a simplified schematic diagram illustrating the GFCI test circuit comprising the system of FIG. 2.
  • FIG. 16 is a schematic diagram of an emergency disconnect switch in accordance with an aspect of the invention.
  • FIG. 17 is a schematic diagram of a temperature sensor in accordance with an aspect of the invention.
  • FIG. 18 is a diagrammatic view of the temperature sensor of FIG. 17.
  • FIG. 19 is a bottom view of the circuit board comprising the temperature sensor of FIG. 17.
  • FIGS. 20A-20C are circuit schematics of an exemplary embodiment of a controller board comprising the system of FIG. 2.
  • FIG. 21 illustrates connection of two 120 Amp line voltage loads using a 240 VAC 50 Amp service.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 is a diagrammatic view of a pool and spa system utilizing aspects of this invention. In this embodiment, the pool 1 and spa 2 share filter 77 and heater 78 through a plumbing arrangement including three- way valves 70 and 72, although other arrangements can be employed, such as separate heaters and filters for the pool 1 and spa 2. A conventional skimmer 3 is included, and its drain line 7 and the pool drain line 6 are joined at a junction tee before connection to one input of the valve 70. The drain line 5 from the spa is connected to the other input of valve 70. The valve output is connected to the input side of the filter pump 80 through water line 8. A water line 9 runs from the pump output to the filter input. The filter output is connected by water line 10 to the heater input. The heater output 11 is connected to the input of the three-way valve 72. One output of the valve is connected to water line 12 leading to a pool inlet. The other output of valve 72 is connected to water line 13 leading to a spa inlet.
  • The system includes pool and spa lights 90A, yard lights 90B, and a decorative fiber optic lighting system 88 typically mounted along the pool coping.
  • To the extent just described, the pool and spa system is conventional. In accordance with aspects of the invention, a controller and power distribution system 100 is provided, which controls operation of the system 50, and which receives AC line voltage service, and distributes line voltage to the line voltage loads, including the heater, pump, lights and fiber optic lighting. The controller 100 further controls the operation of the line voltage loads, and the valves 70 and 72. Moreover, the controller 100 receives input data from a variety of sensors, including a gate open alarm 218, a pool cover alarm 216, water pressure sensors 208A (filter input pressure) and 208B (filter output pressure), gas pressure 224 for the gas supply line 15 to the heater, temperature sensor 204 (temperature of water entering the heater), temperature sensor 206 (temperature of water leaving the heater), and water ph and oxygen reduction potential (ORP) sensors 212 and 214 in the water line 8. A master control panel 102 is coupled to the controller 100 for providing a display and command and data input device by which the system 100 communicates with a user. The locations of the various sensors may vary depending on the installation. For example, the water temperature sensor 204 may alternatively be placed at the inlet to the pump 80, in the water line between the valve 70 and the pump 80.
  • FIG. 2 is a simplified block diagram of a pool service system 50 embodying this invention. This embodiment will be described in the context of a residential pool with spa as illustrated in FIG. 1, although it is to be understood that the system can be utilized with larger pool installations, such as hotel/motel pool systems and the like. The system includes the controller and power distribution system 100, which receives AC line power from the main or sub line voltage distribution panel 102. In this example, the panel 102 supplies 50 Amp service on line voltage wiring 60A, which is connected to a ground fault circuit interrupter (GFCI) circuit 62, and then through line voltage wiring 60B to the controller and power distribution system 100. As will be described in further detail below, the system 100 distributes line voltage power to various line voltage loads, and also includes a low voltage transforming function to provide low voltage AC and DC power at various low voltages need by the electronic devices and low voltage loads.
  • In contrast to prior techniques for wiring up pool equipment, the main line voltage power is provided through a single main line voltage service connection 60A, 60B and GFCI 62 to system 100, rather than through a plurality of line voltage service connections each with its own GFCI circuit and circuit breaker circuit. This simplifies the wiring effort and labor involved in a new installation. The system 100 is not limited to the 50 Amp main line service, and can include auxiliary line services 64 and 66, which can be used to power auxiliary loads through conventional circuit breaker-protected connections. Typically these auxiliary connections are made on auxiliary circuit boards mounted in the control cabinet.
  • The system 50 will typically also include the master pool control panel 102 as well as a spa control panel 104. The pool control panel can be located inside the residence, adjacent a door leading out to the pool, or in other locations convenient for the user. The pool control panel could also be installed on the cover of the controller cabinet 112. The spa control panel 104 is typically located adjacent the spa for convenient access by spa users.
  • FIG. 3 illustrates a control panel cabinet 110 for housing the system 100, and which also includes a service control panel 112, which includes several touch switches 112A and status indicator lights 112B. Techniques for constructing a suitable control panel are described in U.S. Pat. No. 5,332,944. The switches permit user commands to be entered at the cabinet 110. If the pool control panel is mounted on the cover of the cabinet 110, the service panel would be omitted. The service panel 112 in this exemplary embodiment includes eight manually actuated control switches/buttons. These are used to turn on or enable the filter pump, the pool and spa lights, the heater, and five auxiliary buttons which can be used for such features as the cleaner pump, yard lights, an auxiliary valve, a fiber optic decorative lighting system and an auxiliary pump. The service panel is located on the exterior of the hinged lockable cover for the cabinet 110, and is fully water resistant. This mounting provides a significant safety benefit, since the pool service professional or homeowner does not need to open the system cabinet 112, exposing line voltage wiring, in order to do routine pool maintenance.
  • FIG. 4 illustrates the master control panel 102, which in this exemplary embodiment includes an LCD or other display 102A, panel switches 102B and indicator lights 102C. This panel 102 includes a display for displaying to the operator various status information and messages, and controls which permit the operator to enter commands or input data to the system 100. The switches accept user commands and inputs, to initiate system actions or enter information into the controller 100. For example, the switches or buttons can include up and down buttons for temperature control and programming, a filter button for activating the filter pump, a light button for controlling the pool and spa lights, a spa button which controls the valves 70 and 72, turns on the spa jet pump, and turns off the cleaner pump if the system is so equipped, a heater enable button to enable operation of the heater, a program button to put the system in a programming mode, and five auxiliary buttons which can be used for such features as the cleaner pump, yard lights, an auxiliary valve, a fiber optic decorative lighting system and an auxiliary pump.
  • FIG. 5 is a similar view of the spa control panel 104, which also includes an LCD or other display 104A, panel switches/buttons 104B and indicator lights 104C, which accepts user commands and inputs, to initiate systems actions or enter information into the controller 100. In an exemplary embodiment, there are four buttons, one button for temperature control, one button to control the spa jets (valves and filter pump) and an optional jet pump, a spa light button, and an auxiliary button. The panel 104 is mounted in or near the spa 2, above the water line. A low voltage cable runs from the panel to the controller system 100.
  • FIG. 6 is a schematic block diagram of the pool service system 50. The service system includes a number of components which require electrical power for operation and/or control. In accordance with an aspect of this invention, the electrical power at line voltage is routed through a pool controller and power distribution system 100. Primary electrical power is by the 50 Amp primary service 60 from the main panel or 100 Amp sub panel 40. Of course, the particular ampere ratings for the circuits of this system are merely exemplary, and could be varied in accordance with the demands of particular applications. The primary service 60 is provided with a ground fault continuity interrupt (GFCI) circuit 62, to provide ground fault protection for the primary power service to the system. Auxiliary electrical power service is provided in this example by a 20 Amp service line 64 and a 30 Amp service line 66, although the auxiliary service can be omitted for many applications.
  • The primary line voltage service 60 is provided by a 240 VAC line feed, comprising in a typical installation a neutral conductor, a ground conductor, a first voltage phase conductor and a second voltage phase conductor. These conductors are conventionally color coded, so that according to the coding convention, the ground conductor has green insulation, the neutral conductor has white insulation, the first voltage phase conductor has black insulation and the second voltage phase conductor has red insulation. The black conductor has a first polarity phase with respect to the neutral conductor, and the red conductor has a second polarity phase with respect to the neutral conductor, and 180 degrees different from the phase of the first polarity phase, such that 120 VAC is developed between the neutral and the black conductors, 120 VAC is developed between the neutral and the red conductors, and 240 VAC is developed between the black and the red conductors. In the embodiments described below, the 50 Amp service 60B includes red conductor 60B1, black conductor 60B2, white (neutral) conductor 60B3, and green (ground) conductor 60B4 (see FIG. 9).
  • Various components which are controlled and/or receive electrical operating power through the system 100 are shown in FIG. 6. These components can include the valves 70, 72, 74, the pool fill spout valve 76, the pool water heater 78, the filter pump 80, the cleaner pump 82, an auxiliary pump 84, a spa jet pump 86, the decorative fiber optic system 88, lighting system 90, spa blower 92 and auxiliary lights 94. The foregoing particular components is an illustrative listing; for any given pool installation, some of the components will be omitted, and other components may be added, all depending on the design of the particular installation.
  • The pool controller 100 receives input data signals from various sensors and input sources. These include several temperature sensors, the air temperature sensor 202 for providing ambient air temperature, the water temperature sensor 204 for providing the temperature of the water at the input to the heater, and the water temperature 206 for providing the temperature of the water at the output of the heater. Other sensors include the filter backpressure sensor system 208 comprising pressure sensors 208A and 208B, ORP sensor 210, pH sensor 212, water level sensor 214 for providing a pool water level indication, a “cover off” sensor 216, a “gate locked” sensor 218, a solar sensor 220 for detecting the temperature at a solar heater, and an emergency stop switch 350, to be described in greater detail below. As is known in the art, the controller can respond to the solar temperature, to actuate a valve to divert water to pass through a solar heater, if the installation is so equipped, instead of through the gas water heater. The water level sensor for example can include a probe which extends into an area at which the water level will reach at a desired fill level, and sense the presence or absence of water at this level.
  • In accordance with an aspect of the invention, a direct 50 Amp line power connection is made between the main panel 40 for the residence directly to the pool controller and distribution system 100, through the 50 Amp GFCI circuit 62. The system 100 has thereon the necessary terminal connections for direct connection of the line voltage service conductors (black, red, white, green) for the 50 Amp service. Circuit protection for the various devices such as the heater 78, filter pump 80, cleaner pump 82 and auxiliary pump 84 is provided by circuit protection devices, e.g. fuses, mounted on the pool controller circuit board in the pool controller cabinet. This results in substantial savings and cost and in assembly time and effort.
  • A typical power connection in accordance with this aspect of the invention is illustrated in FIGS. 8-12. To facilitate the connection of power to the controller board, an insulating terminal block 240 is employed within the controller cabinet 110, which carries pressure connectors 242 and 24 to which the red and black line voltage conductors are attached. The connectors 242, 244 each include a frame 242B, 244B into which the end of the respective line voltage conductor is inserted. A threaded device such as set screw 242C, 244C is then advanced into the frame, capturing the end of the line voltage conductor in the frame by a pressure connection.
  • The terminal block body 240A is fabricated of an electrically insulating material, i.e. a dielectric, and is mounted to the floor of the cabinet. The terminal block includes mounting surfaces which receive threaded fasteners 251 to secure the controller circuit board to the terminal block, and through pressure contact, make electrical contact with the red and black line voltage connectors. An upstanding wall portion 240B protrudes upwardly, through a slot 250A formed in the edge of the circuit board 250. The wall portion 240B registers the position of the terminal block in relation to the circuit board, and also physically provides dielectric isolation between the line voltages carried by the connectors 242 and 244 carry.
  • Conductive traces on the circuit board 250 contact respective line voltage connector surfaces 242A and 244A (FIG. 9) of the connectors 242 and 244 to provide electrical continuity between the circuit board traces and the red and black line voltage conductors. Representative circuit board traces are shown in FIGS. 7 and 8.
  • FIG. 7 is a simplified bottom view of the circuit board 250, and illustrates printed wiring conductor patterns for carrying line voltage at 120V, at the respective first phase and the second phase. Circuit trace 252 is connected to the red wiring connector 242, and includes pad 252A exposed on the bottom surface 250B of the board, for contacting connector surface 242A upon assembly of the board to the terminal block 240.
  • In this embodiment, the circuit board 250 is a multiple-layer structure, with conductor traces formed on the top surface, the bottom surface and in a buried intermediate layer, using known photolithographic techniques, with conductive vias interconnecting the circuit traces on the different layers as required to form the desired circuit. The circuit trace 252 is mostly formed in the buried layer, and is shown in phantom lines in FIG. 7. Thus, the circuit trace pattern 252 is generally a buried layer, except for conductive pad 252A formed on the bottom surface 250B. The trace pattern 252 then transitions through a conductive via to a buried layer, sandwiched between layers of dielectric comprising the board 250. This is shown in the cross-sectional view of FIG. 8, wherein trace 252 is sandwiched between board dielectric layers 250C and 250D. The circuit trace 254, connected to the black conductor 60B3 through connector 244, is a surface trace pattern, and is shown in solid line in FIG. 7.
  • The circuit board 250 thus includes layers of printed wiring patterns, which route the line voltage and low voltage signals to respective devices mounted on the board, and to the connectors to which are connected wiring running to the line voltage loads and low voltage devices. By use of this circuit board arrangement, the labor involved in wiring a given installation is substantially reduced, and the circuit board can be easily removed for servicing, if necessary.
  • To facilitate the safe routing and separation of low voltage conductors from high voltage conductors, the cabinet 110 for the system 100 is separated into three compartments or bays, two low voltage compartments 110J and 110K on either side of the middle compartment 110I. The cabinet 110 in this embodiment is a metal housing structure having a hinged cover 110A, side walls 110B-110E and floor 110F. Interior metal wall partitions 116G and 110H of the cabinet define the three compartments. All line voltage wiring enters the cabinet at the bottom wall through holes formed in wall 110B, and remain in the main compartment. The ends of the line voltage wiring are captured in pressure connectors, including the connectors 242, 244. Pressure connectors suitable for the purpose are commercially available, e.g., a pressure connector marketed by Connector Mfg. Co. of Alabama, Grenville, Ala., as part number CA-66. Low voltage wiring is brought from the main compartment through openings in the side walls and through wall 110B at openings in the side compartments. This results in improved safety, since any failure of insulation on a line voltage line could cause a dangerous voltage on the low voltage lines.
  • FIG. 13 is a simplified wiring diagram for an exemplary pool and spa installation. For some installations, not all sensors and controlled devices may be needed or desired by the owner, and the system shown in FIG. 13 does not explicitly show the identical complement of controlled devices and sensors as shown for the system of FIG. 6. It is contemplated that the same controller circuit board will be used in this installation as well as in the system shown in FIG. 6. The exemplary installation of FIG. 13 includes controlled valves 70 and 72, air temperature sensor 202, water temperature sensor 204 which measures the temperature at the inlet to the heater, which should be the same as the water temperature in the pool or spa, spa jet pump 86, filter pump 80, water heater 78, spa lights 90A and yard lights 90B.
  • The circuit board 250 is diagrammatically depicted in FIG. 13, and is connected to the line voltage connectors 242 and 244, attached to the terminal block connector 240. The neutral bus 246 is attached to the terminal block, and a neutral connection 246A is made to the circuit board. The neutral (white) conductor 60B3 from the 240 VAC, 50A service is connected to the neutral bus. The ground (green) conductor 60B4 from the 50A service is connected to a ground bus 248 attached to the metal cabinet 110. The board 250 includes printed wiring conductor patterns which connect the various circuit devices mounted on the board and the connector terminals.
  • The board 250 is supported on the metal cabinet 110, and ground is connected through metal threaded fasteners 258 (FIGS. 10-12) which secure the board in place. Extending from the sidewall partitions 110H and 110G are metal brackets comprising shelf portions 110L and 110N, supported by metal leg portions 110M and 110P, respectively. The fasteners 258 secure the board 250 to the shelf portions. Thus, the board is physically connected to the cabinet 110 by four threaded fasteners 258, and to the terminal block 240 by four threaded fasteners 251, in this exemplary embodiment. This attachment technique facilitates the installation and removal of the board 250 relative to the cabinet. Of course, other types of removable fastener structure could alternatively be employed instead of screw fasteners, including clamps, spring clips, friction connectors, and the like.
  • The exemplary installation illustrated in FIG. 13 includes two 240 VAC loads, the spa jet pump 86 and the filter pump 80. These loads are connected to 240 VAC service through a 240 VAC connector 260 comprising a first connector structure 260A (FIG. 10) mounted on the top surface of the circuit board, and a removable connector structure 260B (FIG. 13) to which insulated conductors or wires are connected running to the loads. The respective connector structures have respective pins and corresponding plug receptacles which mate together when the connector structure are mated. Such connectors are well known; a suitable connector is the connector marketed by RIA Electronics, Inc., Etherton, N.J., as mating parts 31041208 (pin connector) and 31007208 (plug connector). Use of this type of connector structure facilitates field wiring of the line voltage loads.
  • Respective terminals of the connector structure 260A are electrically connected to printed wiring trace 252 running to the connector 242, and other connections to other terminals of the connector structure 260A are made through switching relays and fuses to wiring trace 254 to the connector 244. By appropriate connection to respective terminals of the connector structure, 240V service is available. Insulated conductor 86A is connected to a “red” terminal connection, i.e. a connection which is electrically connected to connector 242, to which the red conductor of the 240V service is connected. Conductor 86B is connected to a “black” terminal connection, i.e. a connection which is electrically connected through a relay and fuse to connector 244, to which the black conductor of the 240V service is connected. Conductor 86C connects the ground bus 248 to the spa jet pump.
  • Similar connections are made to the filter pump 80 to provide 240V service. Thus, wire 80A is connected to another “red” terminal connection on connector 260B, wire 80B is connected to a “black” terminal connection on connector 260B, and wire 80C connects the ground bus 248 to the filter pump.
  • The 240 VAC loads are controlled by respective switch devices, e.g. non-latching relays, in turn controlled by the system controller. Each load circuit is also protected from excessive current draw by a fuse device. Thus, the spa jet pump is controlled by relay 280 and circuit protection is provided by fuse 286, respectively mounted on the circuit board 250. To accomplish this, a series circuit connection is made between the circuit trace 254, relay 280 and fuse 286 to the corresponding terminal on connector structure 260A, using solder connections to wiring traces formed as part of the board 250. The filter pump 80 is controlled by relay 282 and circuit protection is provided by fuse 288. A spare 240V service circuit is provided, with relay 284 and fuse 290.
  • The circuit board 250 further has a 120V service connector 270, also comprising a fixed connector structure 270A mounted to the board, and a removable connector structure 270B (FIG. 13) connectable to the fixed connector structure. These connector structures can be implemented in the same manner as the connector structures 260A and 260B, further facilitating field wiring of the controller system. Insulated wires running to the load devices are attached to the removable connector structure 270B. Respective terminals of the connector structure 270A are electrically connected via wiring traces of the circuit board to the red connector 242, the black connector 244 and the neutral connector 272 in turn connected to the neutral bus 246 via wire 246A. Thus, 120V service of either phase (red or black) is available at the connector 270. The heater 78 is wired to the connector 270 by wires 78A, 78B. When the controller system calls for heat, 120 VAC power to activate the heater is supplied, which enables all ignition and temperature regulating functions of the heater. The heater in turn ignites gas supplied to its internal gas valve and burner, heating the water which is flowing from the pump and filter. The spa light circuit 90A are connected to a black polarity connection at connector 270 by wire 90AA, and to the neutral bus 246 by wire 90AB. The yard lights 90B are connected to a red polarity connection at connector 270 by wire 90BA, and to the neutral bus 246 by wire 90BB. Provision is made for an optional 120V load device 238, which can be connected to connector 270 by wire 238A, and to the neutral bus 246 by wire 238B.
  • Each 120 VAC circuit connected through the connector 270 is controlled by a switch device actuated by the controller 402, with circuit protection provided by a corresponding fuse, respectively mounted on the circuit board 250. The switch device and a corresponding fuse are connected in series between a corresponding line voltage wiring trace (i.e., black, red, white) and a terminal of the connector 270. The heater is controlled by relay 300, with circuit protection provided by fuse 292. The optional load 238 is controlled by relay 302 and protected by fuse 294. The yard light circuit 90B is controlled by relay 304, and protected by fuse 296. The spa light circuit 90A is controlled by relay 306, and protected by fuse 298.
  • The various electrically-powered components controlled and powered through the pool control system can give rise to power load issues, where the total current available through the pool control system could be insufficient to meet all load conditions. To provide power to the 120V lighting 90, two different 120V light circuits 90A and 90B are hardwired on the control board. One circuit, say 90A, is powered by connection to the black and white conductors of the 240 AC service. The second circuit is powered by connection to red and white conductors of the 240 VAC service, thus using a different phase of the 240 VAC service. With this arrangement, even though both circuits each draw up to 10 Amps at 120 VAC, the total power rating for both circuits is 10 Amps at 240 VAC.
  • This feature of the invention is described with respect to the simplified schematic of FIG. 21. The rating of a 50 Amp 240 VAC circuit in the United States is achieved with two 120 VAC waveforms, which are 180 degrees out of phase. Thus, consider the node RAC (which could be connected to the red conductor of the 50 Amp service) to be at +120VAC, and the node BLAC (which could be connected to the black conductor of the 50 Amp service) to be at −120 VAC. The voltage difference between the two nodes is thus the 240 VAC service, and the load L1 is a 240 VAC load. Current can flow through the load L1 to a maximum of 50 Amps in this 50 Amp circuit. However, if the total current through the load L1 is less than 50 Amps, the balance can be directed through loads L2 and L3, connected between RAC and the neutral conductor, and between BLAC and the neutral conductor, respectively. Loads L2 and L3 may or may not be equal, and the return path is through the neutral conductor, unused if all 50 Amps is not passed through the load L1. However, the total current passing through plane P-P is always 50 Amp. When loads L2 and L3 are equal, they act as virtual grounds for each other, and no current flows through the neutral leg. If these loads are unbalanced, the difference flows in the neutral leg to make up the 50 Amp current.
  • The system 100 further includes a transformer coupled to the 120V AC to provide low voltage DC power at 5V and 15V to provide power to the electronic components including the controller, and to operate the low voltage load devices, such as the valves 70, 72. The transformer is connected to the circuit board 250 to receive input 120V AC, and to provide the low voltage AC and DC supply voltage levels.
  • To further facilitate field wiring of the controller system 100, the service control panel 112, the control panel 102 and the spa control panel 104, the sensors, and the low voltage loads such as the valves, are connected to the circuit board 250 by low voltage cables and modular, telephone-jack-type connectors. In this way, the low voltage cables can be connected or disconnected easily by simply detaching removable connector portions from corresponding connector portions mounted on the board. Thus, referring to FIG. 13, for example, the control panel 102 is connected to the board 20 by a low voltage, multiple conductor cable 102D and a modular connector 102E having a male portion connected to the cable end and a female portion mounted to the board 250. The male portion is latched in place in the female portion, making electrical contact with the respective conductors, and can be detached by pressing a plastic latch tab and pulling the male portion away. Similar connections are made to the spa panel 104 and the service panel 112, through respective cables 104C, 112C and modular connectors 104D, 112D. Modular board connectors suitable for the purpose are commercially available, e.g. the telephone/data type connectors marketed by Berg as part numbers 93899-001 (6 position board connector) and 69255-001 (eight position board connector). The mating male connector structures attached to the cabling are also commercially available.
  • Similarly, the sensors and low voltage loads are also connected to the boards using modular connectors. The leads for these devices are connected to male connector structures, which are mated to respective female connector structure mounted on the board. For example, the wiring for valve 70 is connected to the board by modular connector structure 70A, and the wiring for sensor 204 is connected to the board by modular connector 204A. Suitable connector structures for sensor connector 70A include the Molex part numbers 705-43-0106 (board connector structure) and 14-56-8022 (wire connector structure). Suitable connector structures for valve wiring connectors include JST part numbers JST-32B-XH-4 (board connector structure) and JST-02NR-E2R (wire connector structure).
  • The low voltage cabling for the control panels is routed from the main bay 110F of the control cabinet, through window opening 110H1 formed in sidewall 110H and into the low voltage secondary bay 110K of the cabinet, as shown in FIG. 10. The cable 112D can be connected to the panel 112 on the front cover, and the cables 102D, 104D can be passed through service opening(s) formed in the bottom wall 110B of the cabinet and then routed to the respective panels 102 and 104. Similarly, the low voltage wiring for the low voltage loads is passed from the main bay 110F through window 110G1 of sidewall 110G into the right low voltage secondary bay 110J, and then routed through service opening(s) formed in the bottom wall 110B of the cabinet for routing to the low voltage loads and sensors.
  • An aspect of this invention is the use of a controller system which is readily field wired, providing significant saving in installation labor. The board 250 can be removed from the cabinet 110 easily, without disconnecting the line voltage conductors 60B1-60B4. This is accomplished by removing the fasteners 258 which secure the board to the cabinet, removing the fasteners 251 which connect the board to the terminal block 240, and disconnecting the line voltage and low voltage connectors. This can be done in a matter of minutes, and thus facilitates servicing the system 100. If a board 250 is malfunctioning, it is a simple matter to remove it for repair or replacement in the field. Moreover, because the line voltage conductors 60B1-60B4 need not be physically disconnected, the safety hazards involved in such work are reduced.
  • In an exemplary embodiment, the controller system 100 includes a microprocessor 402 such as a Pic 16C65A CMOS microcomputer marketed by Microchip, which accepts information from a variety of sensors and acts on the information, thereby operating according to instructions described more fully in FIGS. 14A-14F. The invention is not limited to the use of a controller including a microcomputer or microprocessor, whose functions can instead be performed by other circuitry, including, by way of example only, an ASIC, or by discrete logic circuitry.
  • An exemplary main operational routine 700 illustrating the programmed operation of the microprocessor 402 is shown in FIG. 14A. After system powerup (702), a “check GFCI” subroutine 704 is performed. This subroutine has for its purpose to electronically test whether the GFCI 62 is properly operational, and is described more fully with respect to FIGS. 14B and 15. Upon successful completion of GFCI test, the main program is run (706). The main program performs the control functions needed for running the various pool and spa functions, including running the heater and pump. The primary function of the main program is to monitor safety issues, such as over-temperature conditions. Thus, the main program will manage water temperature in the pool and spa. Other functions performed in the main program are to monitor the clock and real time to determine when to activate features, e.g. lights, heater, and the like in accordance with a programmed time schedule. The microprocessor is user-programmable to set up the schedule. U.S. Pat. Nos. 5,361,265 and 5,559,720 describe techniques for programming microprocessors in a spa environment.
  • The routine 700 performs an interrupt (708) of the main program every 16 milliseconds in this embodiment. As part of the interrupt routine, the system time, kept by an incremental timer, is incremented (710) by adding one to the internal stack of the counter, and the control panel buttons are checked (712) to see for activation. If none of the buttons have been pressed or otherwise activated, operation returns (714) to the main program at the point of interrupt. If any control panel switches have been activated, then the panel service subroutine 716 is entered. This panel service subroutine activates features, and accepts and inputs and alarms entered via panel switches. The panel push-button impulse, generated by the electronic panel circuitry, is several hundred milliseconds long. Since the interrupt is every cycle of the line power supply, or approximately every 16 milliseconds, the processor has ample time to detect a button push and respond accordingly. The processor loads the data represented by a button push, and loads that data into a register. This register is then accessed by the microcomputer every few milliseconds and appropriate action is taken. After completion of the panel service subroutine, the emergency disconnect routine is entered (718), and thereafter operation returns (714) to the main program to the point of interrupt.
  • The GFCI test routine 704 is described further with respect to FIGS. 14B and 15. According to this aspect of the invention, the system 100 will test for proper connection and operation of the GFCI 62. This is done in the exemplary embodiment by inducing a ground fault shortly after power up of the system, and then looking for GFCI interrupt within a specific short time. If this does not occur, the controller 100 will display a type of “GFCI absent” message and accept no further inputs from the control panels, preventing further operation of the system 50. If an interrupt does occur, this event will be stored in a nonvolatile memory as a flag. Then, when the system is re-powered up, the stored flag information will be read, the system will know a GFCI is installed, and the system 100 will operate normally.
  • Thus, when the system 100 is powered up the first time after installation, it will wait a short time, say five seconds to ten seconds, and conduct a GFCI test to determine whether the GFCI 62 is operational. FIG. 15 illustrates schematically circuit elements employed for this test. The GFCI 62 is a well known apparatus, and includes sense coil 62A, relay 62B and control circuit 62C. The sense coil 62A is coupled to conductors of the 50 Amp service 60A. In the event of a current imbalance between the incoming and outgoing current in the line voltage service, the control circuit will sense this condition through coil 62A, and open the relay 62B, interrupting power. The function of a GFCI is well known in the art.
  • The controller 100 includes a voltage transformer circuit 480 will transforms the 120 VAC input line voltage to a 12 VAC level. This 12 VAC is applied to a voltage divider, and the sinusoidal divider voltage drives the input to gate 484, which converts the sinusoidal input signal to a square wave signal between 0 V and +5 V. The microprocessor monitors the square wave signal, and will sense nulls in the power waveform to switch the relays at zero crossings in the power waveform to minimize arcing in the relays.
  • An output port of the microprocessor 402 is coupled to a relay 358. One switched port of the relay is connected at node 368 to one 120 VAC wire; the other switched port is connected to earth ground. A power supply 406 provides a dc power supply voltage from the line voltage transformer to power the microprocessor. Also connected to the microprocessor is a nonvolatile random access memory (RAM), e.g. an EEPROM memory 404.
  • The GFCI test is performed by the microprocessor 402 providing a control signal to turn on transistor 405, closing the relay switch 358B and shorting the line voltage at node 368 to earth ground through a 10 Kohm resistor 362. This will create an imbalance in the power supply lines 60A1 and 60A2. If the GFCI 62 is present and properly connected, the GFCI relay switch 62B will be opened, interrupting power to the transformer 480. The microprocessor 402 will sense this condition, through its monitoring of the gate 482 output, and in response to lack of a square wave signal will store a flag bit in the EEPROM 404. This will occur before the microprocessor loses power. The next time the system 100 is powered up, the startup program routine will look for this bit, and if set will proceed to execute the main program. However, if the flag is not set, the GFCI test will be performed.
  • The GFCI 62 must open the circuit within a certain time period after a short or imbalance is detected. For example, for a Class A GFCI, the rated time period is 7 milliseconds, and for a Class B GFCI the rated time period is 20 milliseconds. Therefore, there must be a start time for the test and a finite period of time after the relay 358 is closed to indicate a successful test. Because each cycle of the 60 cycle line voltage supply is 16 milliseconds long, the microprocessor must wait a certain time period, time A, before closing relay 358. The signal input for the start of the time period A is the square wave from gate 482, connected to the transformer 480, which generates an AC signal proportional to the line voltage supply, but isolated from the line voltage supply.
  • The time period A can vary from 1 millisecond to 15 milliseconds in this embodiment. Time interval B is the time period before checking for another input from the gate, i.e. a rising edge or high state on the square wave signal. Time interval B can vary from 1 millisecond to several hundred milliseconds, but will generally not exceed 100 milliseconds.
  • When the microprocessor 402 has begun the time B countdown, it looks for one input on the gate waveform. If it continues to see rising or high inputs on the gate waveform, indicating that the GFCI relay has not opened, the microprocessor will wait the entire time B, and then branch to a lockout program. This program will set an error message to the main control display panel such as “GFCI FAIL,” and stop further input or operation.
  • If there is a power shutdown during this wait time B, the microprocessor will write a flag bit to the memory 404, to indicate a successful test. As the power to the microprocessor is shut off, a short term power supply back supply, shown schematically as capacitor 408 and resistor 410, will give the microprocessor 402 sufficient time to finish the wait time B, and set the GFCI flag in the memory 404 before shutdown.
  • FIG. 14B shows the GFCI subroutine 704 in further detail. After system powerup at 702, the GFCI flag bit memory location in the memory 404 is checked (704A), and if set, operation returns to the main program (704B). If the bit is not set, then at 704C, the microprocessor monitors the gate output to detect a rising input from the gate. Once this is detected, after a wait of time interval A, the relay 358 is closed (704D). Now the microprocessor waits for time interval B (704E), and then checks for a rising input from the gate (704F). If a rising input is not detected, then the GFCI flag bit is set (704G), and the system 100 will shut down. If a rising input is detected, indicated that the power was not interrupted, then a “GFCI FAIL” message is displayed (704H), and the system is locked (704I), preventing further operation or input. Typically, all functions are disconnected or disabled, except the water pump, which is needed for freeze protection.
  • An aspect of the invention is to integrate with the pool controller system 100 the circuitry or logic necessary to respond to user commands to activate the fill valve 76 to dispense water into the pool from the water line. The controller is responsive to a manual control panel selection by the user to actuate the fill valve, say by actuation of panel button 102B1 (FIG. 4), and release water into the pool to replenish the water. The controller starts an internal timer, and then after a predetermined timer interval elapses, or a time desired by the user, shuts off the valve to stop filling the pool with water. This will address the problem of the pool owner manually turning on a fill valve, and then forgetting to later turn off the valve. Alternatively, a water level sensor detects a low water level condition, and automatically activates the fill valve for a predetermined time interval. As an additional optional protection against overfilling, the water level sensor can sense an overfill level, and provide a signal to the controller indicative of this condition. The controller acts on the overfill signal to close the fill valve, even though the predetermined timer interval has not elapsed.
  • The pool fill feature is illustrated in the flow diagram of FIG. 14C. During an interrupt (708) from the main program, the “activate features” subroutine 718 is entered. One of the features is the “pool fill” feature; of course there can be other features activated during this interrupt, not pertinent to the fill routine. If the user enters a pool fill command through one of the control panels, by activating one of the panel switches, for example, then the pool fill feature is selected (718A). If the pool fill feature is not selected, operation returns to the main program, or to another feature. At 718B, the fill time is selected. The user can enter this data through the control panel, e.g. in increments of minutes, or a default fill time can be used, e.g. 30 minutes. In the later event, operation can proceed from step 718A immediately to step 718C, to open the valve. Otherwise, the time is set, and then the valve is opened, with the microprocessor starting a timer for timing out the selected or default fill time interval. At this point, operation returns to the main program.
  • A function of the main program 706 is to monitor the fill activity once started. Thus, at periodic step 718D, a check will be made for the status that a fill has already been activated. If not, operation returns to the main program. If a fill operation has been started, the timer is checked at step 718E. If the fill time has not expired, operation returns to the main program. If the fill time has expired at 718E, the fill valve is closed (718F), and operation returns to the main program.
  • Another feature is the use of a water level sensor for detecting whether the pool water level has reached a low level, at which water should be added. Thus, during subroutine 720, for accepting sensor inputs and alarms, the water level sensor 224 is checked at 720A. If the water level is above the low level, operation returns to the main program. If the pool level is at the low level, the pool fill valve 74 is opened, and operation returns to the main program. The pool fill valve can be subsequently closed when the water level sensor probe again makes contact with water. Alternatively, the processor can be programmed to close the valve a predetermined time interval after it is opened, say one hour. Also, the overfill condition can be sensed, and this information triggers closing the fill valve even though the time interval has not yet elapsed.
  • Another aspect of the invention is an emergency disconnect switch for the pool/spa, implemented without the need for bringing line voltage to the emergency disconnect switch, but rather using low voltage signals and the intelligence of the spa controller 100. The emergency disconnect switch when closed will cause a grounding resistor to be connected between the earth ground line and line voltage, inducing a ground fault which will be detected by the GFCI 62, thus providing a level of redundancy.
  • This feature is illustrated in FIG. 16. The emergency disconnect switch 350 is on a housing 352, which is mounted near the spa, to be accessible in the event of a need to immediately shut down the pool/spa equipment powered by line voltage through the system 100. Conductor wires 354, 356 run between the circuit board 250 of the controller system 100 and respective terminals of the normally open switch 350. The wire 354 is connected to one terminal of the coil 358A of a relay 358 on the circuit board 250; the other terminal of the relay coil is connected to a 15V supply. The relay switch 358B is connected between earth ground and through a 10 Kohm resistor 362 to one phase of the line voltage service, e.g. the black 120 VAC line, at node 368. The other terminal of the switch 350 is connected to wire 356, which is connected to node 362 at the board 250. A 50 Kohm resistor is mounted in the housing 352 between the wires 354 and 356, and in parallel with the switch 350. A 10 Kohm resistor 366 is connected from node 362 to ground, forming a voltage divider with the resistor 360. An analog-to-digital converter (ADC) 364 is also connected to node 362 on the circuit board 250, and provides a digital voltage value to the system controller 402 mounted on the board 250.
  • The closing of the emergency stop switch 350 will close the relay switch 358B, connecting the 120VAC black line voltage at node 368 through resistor 362 to earth ground. This is a ground fault, which is detected by GFCI circuit 62, and which is tripped, interrupting line voltage service to the pool controller and power distribution system 100. Thus, all power to system 100 will be interrupted. As a redundant power disconnect feature, the voltage at the voltage divider node 362 is monitored through the ADC 364 by the controller 402 under normal operating conditions. If the switch 350 is closed, the resistor 360 is bypassed, and the voltage at node 362 read by the ADC changes. The controller 402 detects this condition, and immediately opens the relays providing line voltage to all line voltage loads. Thus, even if the GFCI 62 were to fail, and therefore not interrupt line voltage service to system 100, the controller 402 would take action to open shut down the line voltage loads.
  • The controller 402 can also detect that the emergency disconnect switch 350 is not properly installed. In this case node 362 will be at an open circuit voltage condition. The controller 402 monitors the voltage at node 362, and if an open condition is detected, this is recognized as an error or fault condition. The controller can then prevent operation of the system 100, prevent line voltage from being connected to the line voltage loads, or take other action needed to address the lack of proper connection of the stop switch, such as providing an error message on the control panel display.
  • FIG. 14D illustrates the “ESTOP disconnect” subroutine 722 (FIG. 15) in further detail, wherein the emergency stop switch 350 is monitored. At 722A, a check is made to determine whether this feature is enabled, and if not, operation returns to the main program (722G). If the feature is enabled, then the microprocessor 402 reads the voltage at node 362 through the ADC 364. If a value indicating the presence of the switch and resistor 360 is not read, an error message is displayed on the control panel (722C) and operation returns to the main program. If the microprocessor senses that the emergency switch system is installed, then at step 722E, if the voltage at node 362 indicates that the switch 350 is closed, then all line voltage loads and features are shut down (722F), and the controller 100 will wait for power off and reset. If the switch 350 is not closed, operation returns to the main program (722G).
  • When the pool filter becomes clogged, the filter pressure rises. As shown in FIG. 1, filter pressure sensors 208A and 208B are mounted in the filter inlet and outlet lines 9 and 10 to monitor the back pressure, i.e. the difference between the input water pressure and the output water pressure, and when it reaches a certain level, the controller causes a warning or error signal to be displayed on the control panel, such as “Back Flush the Filter” or “Clean Filter.”
  • Another aspect of this invention is the monitoring of the natural gas supply pressure to the pool heater system. A gas pressure sensor 224 is placed in the gas line to the pool heater 78 to monitor gas pressure. The sensor includes a sending unit which provides a gas pressure signal. Pressure sensors suitable for the purpose are commercially available; one exemplary sensor is marketed by Omega Engineering Inc., Stamford, CT, as the 30 PSI sensor device, PX182-030-GI. This signal is provided to the controller 402, which is programmed to provide an error message on the display of control panel 102 when pressure reaches a minimum threshold, and also prevents the heater from operating.
  • The gas pressure and backpressure monitoring features are further illustrated in the flow diagram of FIG. 14E. The subroutine 720 (“accept input and alarms”) further includes step 720C, wherein the microprocessor receives as data inputs the gas pressure value, the input water pressure (IP) to the filter, and the output water pressure (OP) from the filter. At step 720D, if the gas pressure is below the predetermined low threshold value, the heater is disabled and an error message is sent to the panel display (720E). If the filter backpressure (i.e., the difference between the input pressure and the output pressure) exceeds a predetermined threshold value (720F), an alert message is sent to the panel display to indicate that the filter should be cleaned (722N).
  • FIG. 14F illustrates additional steps which can be included in the “accept inputs and alarms” subroutine 720. Sensors 218 and 216 respectively detect the condition that the pool cover is open or the gate to the pool area is open. The sensors can be Hall effect switches, or other types of switching devices, as will be apparent to those skilled in the art. The sensor outputs are connected to the controller 402, which is programmed to interpret the outputs as potential alarm conditions, and generates an audible warning signal using alarm sound speaker or siren 96 (FIG. 6) or another warning signal such as a visible message on a panel display, indicating that the pool gate or cover is open. Thus, at step 720I, the subroutine checks to see whether an alarm signal has been input from a sensor such as the gate open sensor 218 or the pool cover alarm 224. If not, operation returns to the main program (or to other aspects of this subroutine). If an alarm has been received, then an alarm output is activated by the controller 402, which can initiate an audible and/or visible warning message.
  • An improvement in production is obtained by use of an in-circuit-programmable microcontroller. This microcomputer can be programmed by sending suitable signals to an appropriately configured input circuit after the microcomputer has been installed via solder connections onto the circuit board 250. This improved production technique includes the steps of (i) soldering the microcomputer into a circuit board configured for in-circuit programming; (ii) connecting the board to a programmer device using electrical leads, in accordance with the manufacturer's instructions; (iii) loading the program into the microcomputer from the programmer; (iv) power up the circuit board in accordance with normal operating procedures; and (v) verify the proper functioning of the circuit board with the microcomputer. Operation is verified in this embodiment by powering up the board and performing an operational clock, either manually or by a suitable computer test system.
  • Temperature sensors that are known in the art utilize a single thermistor sealed inside a case for sensing water temperature, high limit temperatures in a heater, and air temperatures. To facilitate redundancy in these critical components, two thermistors are installed inside one housing. This moderate increase in cost doubles the reliability of a very reliable technology, and removes the need for a more expensive option of dual sensor assemblies dedicated to a single temperature value.
  • FIGS. 17-19 illustrate temperature sensor 202 in further detail. Temperature sensors 204 and 206 can have the same circuitry and structure as sensor 202, and so will not be described further. FIG. 17 is a circuit diagram of the sensor 202, which includes two solid state temperature sensing devices 202B, 202C, one terminal of each connected to wiring 202A at node 202D. The solid state temperature sensing devices can be implemented by various devices, including thermistors, thermocouples, temperature-sensing diodes wherein leakage currents are temperature-dependent, or constant current source circuits wherein the current is temperature-dependent. An end of the wiring 202A is connected to the controller circuit board 250 at connector 410. The wiring 202A is connected to a +5VDC supply node 412. The second terminal of thermistor 202B is connected by wiring 202E, through the connector 412 to one terminal of resistor 414, connected to ground. The second terminal of thermistor 202C is connected by wiring 202F to resistor 416, also connected to ground. The resistors 202B and 414 thus form a voltage divider circuit, with the voltage at node 420 dependent on the variable resistance of the thermistor. Similarly, resistors 202C and 416 provide a voltage divider circuit, with the voltage at node 418 dependent on the variable resistance of the thermistor. The voltages at nodes 418 and 420 are converted to digital values by ADC 364 and monitored by the controller 402. Since the resistance values of the thermistors vary precisely with their temperatures, two temperature readings are provided by the sensor 202. The temperature values can be averaged, and in the event of anomalous readings from one or the other thermistor, the anomalous value can be discarded. This temperature sensor provides improved reliability through this redundancy.
  • An improved assembly technique is also used in the fabrication of the sensor 202. Referring now to FIGS. 19 and 19, the sensor includes a dielectric substrate or circuit board 202G. A distal end 202H of the substrate has two notches 202I, 202J formed therein. The respective thermistors 202B, 202C are supported in the notches of the board. FIG. 18 is a diagrammatic view showing one side of the board 202G; FIG. 19 shows the reverse side of the board.
  • The sensor 202 further includes a metal tubular housing 202K having a closed end 202L and an open end 202M. A collared sleeve 202N is used, in combination with the length of the sensor circuit board 202G, to precisely control the depth of insertion of the circuit board into the housing prior to potting with an epoxy. This eliminates the problem of imprecise circuit board placement, which can lead to disparities in sensed temperatures between sensor units. The sleeve 202N has an opening formed therein through which the wiring leads 202A, 202E and 202F are brought out. In this embodiment, the sleeve is a plastic molded part with a distal end which contacts the circuit board 202G, and a collar 202O is larger in diameter than the diameter of the housing 202K, thus providing a stop surface against which the open end of the housing is brought into contact during assembly. Of course, other arrangements could alternatively be employed to provide a circuit arrangement which is self-registering in insertion depth within the housing. The self-registering feature of the temperature sensor can alternatively be employed with sensors using a single sensing element, such as a single thermistor.
  • FIGS. 20A-20C illustrate an exemplary circuit schematic for the circuit board 250. Various sensor inputs to the controller are passed through signal conditioning circuitry and then to the ADC 364 (FIG. 20A). Thus, for example, air temperature sensor 202 is shown as a two wire device, e.g. with a single thermistor sensor, connected to the signal conditioning circuitry indicated as 203, although it is contemplated that an improved sensor as shown in FIGS. 17-19 will alternatively be employed. The improved sensor will utilize two multiplexed inputs to the ADC, so that each circuit can be read by the controller 402. The output of the signal conditioning circuitry is passed to the ADC 364, which can process several inputs through a multiplexing arrangement. Illustrative sensor devices 204, 206, 210, 212 are similarly connected through signal conditioning circuitry to the ADC. Other sensor devices, e.g. the gate sensor 218, may have signal levels at appropriate logic levels, and so may not require the same signal conditioning in order for the ADC to have a desired signal level to convert to digital form. Circuitry for interfacing sensor devices to a microcomputer through an ADC are well known in the microprocessor arts.
  • A crystal oscillator clock circuit 320 provides clock signals for the microcomputer.
  • The circuit board assembly 250 also includes a power supply 322 (FIG. 20A), which converts the line voltage service into 24 VAC for providing power to the water valves, and into 15 VDC, 12 VDC and 5 VDC for providing DC power needs of the controller board assembly, such as relay power and a regulated DC supply for the microcomputer 402.
  • The microprocessor 402 controls the line voltage loads and low voltage loads through output drivers 320 and 322, which in this exemplary embodiment are Darlington drivers which convert the logic level output signals from the microprocessor into the necessary drive signals for controlling the relays and switches which operate the line voltage loads and the low voltage loads, such as the valves. Exemplary circuitry is illustrated for operating exemplary line voltage loads, including the heater 78 (FIG. 20C) and pump 80 (FIG. 20B). Exemplary circuitry is further illustrated for operating the low voltage loads, e.g. the fill valve 76 (FIG. 20B), and valve 74 (FIG. 20C). In this embodiment, the lighting circuits 90A and 90B are controlled through triac switches. Exemplary circuitry is illustrated for operating lighting circuit 90B, by use of triac circuit 306 which is in turn driven by the driver 332 (FIG. 20C).
  • A set 402A of wiring connections running to programming pins of the microcomputer 402 is made available for connection to the programmer device used for in-circuit programming as described above.
  • The microprocessor 402 further interfaces with the control panels 102, 104 and 112 through an interface 338 and support circuit 336. The interface supplies panel power at 5 VDC, and power at 12 VDC and 24 VAC for panel lighting functions. Data output, data input and clock signals are provided on lines 342, 344 and 346, respectively. The interface provides three separate connector interfaces, one connector for each panel, so that the panels are connected to the circuit board assembly through respective detachable connector devices.
  • It is understood that the above-described embodiments are merely illustrative of the possible specific embodiments which may represent principles of the present invention. Other arrangements may readily be devised in accordance with these principles by those skilled in the art without departing from the scope and spirit of the invention.

Claims (10)

1-53. (canceled)
54. A bathing installation control system, comprising:
a plurality of electrically powered devices associated with operation of the bathing installation;
a microprocessor-based controller system operatively connected to the plurality of electrically powered devices for controlling the operation of said devices;
a ground fault circuit interrupter (GFCI) circuit;
a line voltage service connected to the controller system and the plurality of electrically powered devices through the GFCI circuit, the GFCI circuit adapted to detect ground faults and interrupt the line voltage service to the controller system and the plurality of electrically powered devices upon detection of a ground fault;
a fault inducing circuit for selectively inducing a ground fault condition between line voltage and ground in response to an electronic command signal;
a circuit actuation system responsive to an error or fault condition, the test circuit actuation system connected to said controller and said fault inducing circuit, the circuit actuation system adapted to actuate the fault inducing circuit to induce a ground fault between line voltage and ground in response to the error or fault condition, thereby tripping the GFCI circuit and disconnecting the line voltage service from said plurality of electrically powered devices and said controller system.
55. The system of claim 54, wherein the circuit actuation system includes a manually operated switch accessible to a user of the bathing installation.
56. The system of claim 55, wherein the error or fault condition includes the condition that the circuit actuation system is not properly installed in said system.
57. The system of claim 54, further comprising a plurality of switches each for selectively connecting one of said plurality of devices to said line voltage, the plurality of switches controlled by said controller system, and wherein the controller system is responsive to the circuit actuation system to command said plurality of switches to disconnect the plurality of devices from said line voltage in the event the circuit actuation system actuates the fault inducing circuit and said GFCI circuit fails to disconnect said line voltage service from said controller system and said plurality of devices.
58. The system of claim 57, wherein said plurality of switches each comprises a relay switch.
59. The system of claim 54, wherein the circuit actuation system includes an algorithm performed by said microprocessor-based controller system and adapted to cause the controller system to generate said electronic command signal in response to an algorithmically-determined fault or error condition.
60. The system of claim 59, wherein said algorithmically-determined fault or error condition includes a decision to conduct a GFCI circuit test.
61. The system of claim 54, wherein the bathing installation is a pool or spa installation.
62. The system of claim 54, wherein the plurality of electrically powered devices includes a water pump for circulating bathing water through a circulating water path, and a bathing water heater.
US11/932,815 1999-11-30 2007-10-31 Controller system for pool and/or spa Abandoned US20080144238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/932,815 US20080144238A1 (en) 1999-11-30 2007-10-31 Controller system for pool and/or spa

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/451,561 US6407469B1 (en) 1999-11-30 1999-11-30 Controller system for pool and/or spa
US10/066,869 US6747367B2 (en) 1999-11-30 2002-02-04 Controller system for pool and/or spa
US10/860,392 US7440864B2 (en) 1999-11-30 2004-06-01 Controller system for pool and/or spa
US11/932,815 US20080144238A1 (en) 1999-11-30 2007-10-31 Controller system for pool and/or spa

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/860,392 Continuation US7440864B2 (en) 1999-11-30 2004-06-01 Controller system for pool and/or spa

Publications (1)

Publication Number Publication Date
US20080144238A1 true US20080144238A1 (en) 2008-06-19

Family

ID=23792715

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/451,561 Expired - Lifetime US6407469B1 (en) 1999-11-30 1999-11-30 Controller system for pool and/or spa
US10/066,963 Expired - Lifetime US6643108B2 (en) 1999-11-30 2002-02-04 Controller system for pool and/or spa
US10/066,869 Expired - Lifetime US6747367B2 (en) 1999-11-30 2002-02-04 Controller system for pool and/or spa
US10/860,392 Expired - Lifetime US7440864B2 (en) 1999-11-30 2004-06-01 Controller system for pool and/or spa
US11/932,815 Abandoned US20080144238A1 (en) 1999-11-30 2007-10-31 Controller system for pool and/or spa

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/451,561 Expired - Lifetime US6407469B1 (en) 1999-11-30 1999-11-30 Controller system for pool and/or spa
US10/066,963 Expired - Lifetime US6643108B2 (en) 1999-11-30 2002-02-04 Controller system for pool and/or spa
US10/066,869 Expired - Lifetime US6747367B2 (en) 1999-11-30 2002-02-04 Controller system for pool and/or spa
US10/860,392 Expired - Lifetime US7440864B2 (en) 1999-11-30 2004-06-01 Controller system for pool and/or spa

Country Status (1)

Country Link
US (5) US6407469B1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118121A1 (en) * 2009-04-07 2010-10-14 Itt Manufacturing Enterprises, Inc. Improved pump system for removing water from pool covers and sumps
US20100300548A1 (en) * 2009-06-01 2010-12-02 Deverse Richard Automated system for monitoring and maintenance of fluid level in swimming pools and other contained bodies of water
US20110274560A1 (en) * 2010-05-05 2011-11-10 Emerson Electric Co. Pump Assemblies, Controllers and Methods of Controlling Fluid Pumps Based on Air Temperature
US8220482B1 (en) 2007-11-13 2012-07-17 Kona Labs LLC Devices, methods, and algorithms for rapid measurement of mean surface level change of liquids in containers
US20130095744A1 (en) * 2011-10-17 2013-04-18 Lennox Industries Inc. Sensor mounting panel for an energy recovery ventilator unit
US8526145B2 (en) 2011-12-29 2013-09-03 Hubbell Incorporated Power on reset GFCI
US9175872B2 (en) 2011-10-06 2015-11-03 Lennox Industries Inc. ERV global pressure demand control ventilation mode
US9395097B2 (en) 2011-10-17 2016-07-19 Lennox Industries Inc. Layout for an energy recovery ventilator system
US9404668B2 (en) 2011-10-06 2016-08-02 Lennox Industries Inc. Detecting and correcting enthalpy wheel failure modes
US9441843B2 (en) 2011-10-17 2016-09-13 Lennox Industries Inc. Transition module for an energy recovery ventilator unit
USD777119S1 (en) * 2015-10-06 2017-01-24 Hiwin Technologies Corp. Control panel for bathing robot
US9671122B2 (en) 2011-12-14 2017-06-06 Lennox Industries Inc. Controller employing feedback data for a multi-strike method of operating an HVAC system and monitoring components thereof and an HVAC system employing the controller
US20170187235A1 (en) * 2015-12-28 2017-06-29 Runway Energy, LLC Electrical power restoration system and method
US9791163B2 (en) 2011-11-10 2017-10-17 Lennox Industries Inc. Method of defrosting an energy recovery ventilator unit
US9835353B2 (en) 2011-10-17 2017-12-05 Lennox Industries Inc. Energy recovery ventilator unit with offset and overlapping enthalpy wheels
US10057964B2 (en) 2015-07-02 2018-08-21 Hayward Industries, Inc. Lighting system for an environment and a control module for use therein
CN110806769A (en) * 2019-11-25 2020-02-18 国网新疆电力有限公司乌鲁木齐供电公司 Overtemperature early warning device and method for open-type isolating switch
US10942531B1 (en) * 2018-07-13 2021-03-09 Taylor Fife Swimming pool leveling system and method of use
US11313142B1 (en) 2018-07-13 2022-04-26 Taylor Fife Swimming pool leveling system and method of use

Families Citing this family (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407469B1 (en) * 1999-11-30 2002-06-18 Balboa Instruments, Inc. Controller system for pool and/or spa
US9362077B2 (en) 2000-02-17 2016-06-07 Pass & Seymour, Inc. Electrical device with miswire protection and automated testing
US7598828B1 (en) 2004-07-28 2009-10-06 Pass & Seymour, Inc. Protection device with a sandwiched cantilever breaker mechanism
US8299799B2 (en) * 2000-02-17 2012-10-30 Pass & Seymour, Inc. Electrical device with miswire protection and automated testing
US7173799B1 (en) 2004-02-03 2007-02-06 Pass & Seymour, Inc. Protection device with a sandwiched cantilever breaker mechanism
DE10011410A1 (en) * 2000-03-09 2001-09-20 Bosch Gmbh Robert Fail-safe signal generation device for safety critical signal has back-up device for generation of load driver signal in emergency operating mode
US7489986B1 (en) * 2000-11-07 2009-02-10 Gecko Alliance Group Inc. Spa controller computer interface for spas
US6782309B2 (en) * 2000-11-07 2004-08-24 9090-3493 Quebec, Inc. SPA controller computer interface
BR0006494A (en) * 2000-12-14 2002-07-30 House Incorporadora Ltda I Automated control system of the parameters involved in the preparation of an immersion bath
US8337166B2 (en) 2001-11-26 2012-12-25 Shurflo, Llc Pump and pump control circuit apparatus and method
US20030168516A1 (en) * 2002-03-06 2003-09-11 Cline David J. Integrated pool heater control system
US7030343B2 (en) * 2002-10-03 2006-04-18 Balboa Instruments, Inc. Controller system for bathing installation
US20040112305A1 (en) * 2002-12-12 2004-06-17 Johann Edward W. Method and apparatus for mounting a boiler on a wall or floor
US6886756B2 (en) * 2002-12-12 2005-05-03 Spx Corporation Method and apparatus for controlling and providing electrical connections for a boiler
US6842117B2 (en) * 2002-12-12 2005-01-11 Filter Ense Of Texas, Ltd. System and method for monitoring and indicating a condition of a filter element in a fluid delivery system
US7099130B2 (en) * 2003-01-17 2006-08-29 Ericson Manufacturing Company Voltage monitor for ground fault circuit interrupter
US6879863B2 (en) * 2003-04-09 2005-04-12 Kohler Co. User interface for controlling a whirlpool tub
US6866774B1 (en) * 2003-04-28 2005-03-15 Michael Charles Stephenson Portable pool cleaning system
US6874175B2 (en) 2003-06-03 2005-04-05 9090-3493 Quebec Inc. Control panel and control system for a spa
US7097210B2 (en) * 2003-09-30 2006-08-29 Spx Corporation Method and apparatus for providing a transition connector to introduce outside air and vent flue for boiler combustion
US7751160B1 (en) 2004-07-28 2010-07-06 Pass & Seymour, Inc. Protective device with separate end-of-life trip mechanism
AU2004222860B2 (en) * 2003-10-28 2010-02-18 Pentair Pool Products, Inc. Microprocessor controlled time domain switching of color-changing lights
US6929516B2 (en) * 2003-10-28 2005-08-16 9090-3493 Québec Inc. Bathing unit controller and connector system therefore
US7393450B2 (en) * 2003-11-26 2008-07-01 Silveri Michael A System for maintaining pH and sanitizing agent levels of water in a water feature
US8540493B2 (en) * 2003-12-08 2013-09-24 Sta-Rite Industries, Llc Pump control system and method
US6981650B2 (en) * 2003-12-15 2006-01-03 Jandy Pool Products, Inc. Pool/spa heater
US7327275B2 (en) * 2004-02-02 2008-02-05 Gecko Alliance Group Inc. Bathing system controller having abnormal operational condition identification capabilities
US7112768B2 (en) * 2004-02-02 2006-09-26 9090-3493 Quebec Inc. Temperature control system for a bathing unit
CA2492252C (en) * 2004-02-02 2015-06-16 9090-3493 Quebec Inc. Bathing unit system controller having abnormal operational condition indentification capabilities
US6958895B1 (en) 2004-02-03 2005-10-25 Pass & Seymour, Inc. Protection device with a contact breaker mechanism
US20050177935A1 (en) * 2004-02-27 2005-08-18 Thanh Le Jet assembly
TWI246588B (en) * 2004-04-23 2006-01-01 Shang-Neng Wu Water level automatic sensing device of hydrotherapy massage bathtub
US20050258809A1 (en) * 2004-03-15 2005-11-24 Karslo William R Control panel for pool
US7158909B2 (en) * 2004-03-31 2007-01-02 Balboa Instruments, Inc. Method and system for testing spas
US7554781B1 (en) * 2004-07-29 2009-06-30 Pass & Seymour, Inc. Protective device with an auxiliary switch
WO2006019273A1 (en) * 2004-08-18 2006-02-23 Doo Doo Energy Technology Co., Ltd. A bathtub remote control system
US7845913B2 (en) 2004-08-26 2010-12-07 Pentair Water Pool And Spa, Inc. Flow control
US8602745B2 (en) 2004-08-26 2013-12-10 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
US8480373B2 (en) 2004-08-26 2013-07-09 Pentair Water Pool And Spa, Inc. Filter loading
US8019479B2 (en) 2004-08-26 2011-09-13 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US7874808B2 (en) * 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US8469675B2 (en) 2004-08-26 2013-06-25 Pentair Water Pool And Spa, Inc. Priming protection
US7686589B2 (en) 2004-08-26 2010-03-30 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
US8043070B2 (en) 2004-08-26 2011-10-25 Pentair Water Pool And Spa, Inc. Speed control
US7081728B2 (en) * 2004-08-27 2006-07-25 Sequence Controls Inc. Apparatus for controlling heat generation and recovery in an induction motor
US7167087B2 (en) * 2004-10-20 2007-01-23 Balboa Instruments, Inc. Remote SPA monitor
US9175675B2 (en) * 2004-11-03 2015-11-03 Lanai Pool Pump Systems Llc High-efficiency pump systems
US7440820B2 (en) * 2004-11-30 2008-10-21 Gecko Alliance Group Inc. Water flow detection system for a bathing unit
US7593789B2 (en) * 2004-11-30 2009-09-22 Gecko Alliance Group Inc. Water flow detection system for a bathing unit
US7236692B2 (en) * 2004-12-01 2007-06-26 Balboa Instruments, Inc. Spa heater system and methods for controlling
US20060146462A1 (en) * 2005-01-04 2006-07-06 Andy Hines Enhanced safety stop device for pools and spas
JP4141453B2 (en) * 2005-03-16 2008-08-27 株式会社シマノ Bicycle power supply
CN100413485C (en) * 2005-04-07 2008-08-27 华仕德科技股份有限公司 Water supplying system of water therapeutic machine
US20060236444A1 (en) * 2005-04-20 2006-10-26 Masco Corporation Whirlpool service life monitor
US7417834B2 (en) * 2005-04-22 2008-08-26 Balboa Instruments, Inc. Shutoff system for pool or spa
US20090044129A1 (en) * 2005-06-09 2009-02-12 Whirlpool Corporation Graphical user interface to control interactions between an appliance and a consumable holder
US8477007B2 (en) * 2005-06-09 2013-07-02 Whirlpool Corporation Appliance and a consumable holder in a network
US8264318B2 (en) * 2005-06-09 2012-09-11 Whirlpool Corporation Consumable holder with converter
US8314678B2 (en) * 2005-06-09 2012-11-20 Whirlpool Corporation Consumable holder with a cycle structure for an appliance
US8395476B2 (en) * 2005-06-09 2013-03-12 Whirlpool Corporation Consumable holder with taxonomy
US20090044137A1 (en) * 2005-06-09 2009-02-12 Whirlpool Corporation Consumable holder with user interface data
US20090040066A1 (en) * 2005-06-09 2009-02-12 Whirlpool Corporation Consumable holder with routable data packet for an appliance
US8442042B2 (en) * 2005-06-09 2013-05-14 Whirlpool Corporation Appliance and a consumable holder with an embedded virtual router
US7619181B2 (en) * 2005-07-12 2009-11-17 Gecko Alliance Group Inc. Heating system for bathing unit
US20070058314A1 (en) * 2005-09-09 2007-03-15 Maddox Harold D Controlling spas
US20070079436A1 (en) * 2005-10-10 2007-04-12 Byeongchul Na Spa Heating and Cooling System
US7514652B2 (en) * 2005-11-16 2009-04-07 Elnar Joseph G Spa with circuit for detecting excessive ground current
US20070118983A1 (en) * 2005-11-29 2007-05-31 Tatum Bradford T Portable spa
CN1988099B (en) * 2005-12-23 2010-05-05 通领科技集团有限公司 Leakage current detection breaker with fire-proof shield
CN1328591C (en) * 2005-12-26 2007-07-25 通领科技集团有限公司 Earth-fault circuit breaker life termination detecting-protecting method and its circuit
CN1328588C (en) * 2005-12-27 2007-07-25 通领科技集团有限公司 Life-stopping intelligent inspection and inspector for leakage protector
CN1319101C (en) * 2005-12-27 2007-05-30 通领科技集团有限公司 Lift stop intelligent detection and detector for leakage protector
CN1328587C (en) * 2005-12-27 2007-07-25 通领科技集团有限公司 Life-stopping intelligent inspection and inspector for leakage protector
US8645149B2 (en) * 2006-01-23 2014-02-04 Balboa Water Group, Inc. Testing method and system
WO2007095087A2 (en) 2006-02-09 2007-08-23 Hayward Industries, Inc. Programmable temperature control system for pools and spas
CN100349345C (en) * 2006-02-21 2007-11-14 通领科技集团有限公司 Intelligent detecting method and appliance for service stop of electricity leakage protector
US7954508B2 (en) * 2006-03-03 2011-06-07 KBK Technologies, Inc. Electronically controlled valve actuator in a plumbed water line within a water conditioning management system
CN1321430C (en) * 2006-03-06 2007-06-13 通领科技集团有限公司 Earthing fault breaker actuator having pressure balance auto compensation
US20070281632A1 (en) * 2006-06-05 2007-12-06 Ada Shuk Yan Poon Angular domain signal processing techniques
US7988425B1 (en) * 2006-06-06 2011-08-02 Stingl David A Pump and alarm control
US7931447B2 (en) * 2006-06-29 2011-04-26 Hayward Industries, Inc. Drain safety and pump control device
US20090038696A1 (en) * 2006-06-29 2009-02-12 Levin Alan R Drain Safety and Pump Control Device with Verification
WO2008006212A1 (en) * 2006-07-12 2008-01-17 C.G. Air Systèmes Inc. Interface system for tubs
US20080156719A1 (en) * 2006-11-13 2008-07-03 Philip Ignatius Tabor Automated self cleaning filter
US7777366B2 (en) * 2006-12-08 2010-08-17 Attune Rtd Energy saving system for use with swimming pool filter systems
US7448095B1 (en) * 2007-01-12 2008-11-11 Itshak T Agaeliaho Time tub
CA2678016C (en) 2007-02-26 2014-01-14 Groupe Gecko Alliance Inc. A method, device and system for use in configuring a bathing unit controller
US8011032B2 (en) * 2007-05-17 2011-09-06 Balboa Instruments, Inc. Energy efficient circulation system for spas and hot tubs
US20090039030A1 (en) * 2007-08-06 2009-02-12 Revak Conrad S Antimicrobial water treatment system and method
DE202007014051U1 (en) * 2007-10-08 2009-02-12 Viega Gmbh & Co. Kg Electronic bath or spa tub
US20090143917A1 (en) * 2007-10-22 2009-06-04 Zodiac Pool Systems, Inc. Residential Environmental Management Control System Interlink
US20090138131A1 (en) * 2007-10-22 2009-05-28 Zodiac Pool Systems, Inc. Residential Environmental Management control System with Sprinkler Control Module
US20110023225A1 (en) * 2007-11-27 2011-02-03 Victor Kaykov Portable spa with variable speed throttling water massage system
US8145357B2 (en) 2007-12-20 2012-03-27 Zodiac Pool Systems, Inc. Residential environmental management control system with automatic adjustment
US8226374B2 (en) * 2008-07-24 2012-07-24 Nidec Motor Corporation Variable motor drive system for a reservoir with circulating fluid
US8152538B1 (en) 2008-07-30 2012-04-10 Papageorge Timothy A Fluid bonding fitting and assembly and system incorporating the fitting, and method of use
EP3418570B1 (en) 2008-10-06 2020-01-22 Pentair Water Pool and Spa, Inc. Method of operating a safety vacuum release system
US20100102051A1 (en) * 2008-10-23 2010-04-29 Whirlpool Corporation Consumable holder with electronics to communicate with an appliance
US8118997B2 (en) * 2008-10-23 2012-02-21 Whirlpool Corporation Smart filter for an appliance
US8010211B2 (en) * 2008-10-23 2011-08-30 Whirlpool Corporation Appliance with a service interface for communicating with a consumable holder
US8461959B2 (en) * 2008-10-23 2013-06-11 Whirlpool Corporation Consumable holder with process control apparatus
US20100125364A1 (en) * 2008-11-20 2010-05-20 Whirlpool Corporation Configurable consumable holder for an appliance
TWI359650B (en) * 2008-12-24 2012-03-11 Dartpoint Tech Co Ltd Massage bathtub automatic control system and metho
US8436559B2 (en) * 2009-06-09 2013-05-07 Sta-Rite Industries, Llc System and method for motor drive control pad and drive terminals
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
US8564233B2 (en) 2009-06-09 2013-10-22 Sta-Rite Industries, Llc Safety system and method for pump and motor
US9771732B2 (en) * 2009-07-20 2017-09-26 Lanai Pool Pump Systems, LLC High-efficiency pump systems
US20110019714A1 (en) * 2009-07-24 2011-01-27 Perry Loren R Overmolded temperature sensor and method for fabricating a temperature sensor
US8406932B2 (en) * 2009-09-28 2013-03-26 Balboa Instruments, Inc. Spa control with improved heater management system
US8392027B2 (en) * 2009-09-28 2013-03-05 Balboa Instruments, Inc. Spa control system with improved flow monitoring
US20110093099A1 (en) * 2009-10-16 2011-04-21 Newport Controls Controller system adapted for spa
WO2011106530A1 (en) 2010-02-25 2011-09-01 Hayward Industries, Inc. Universal mount for a variable speed pump drive user interface
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US20150309316A1 (en) 2011-04-06 2015-10-29 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
EP2539759A1 (en) 2010-02-28 2013-01-02 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
US20110271436A1 (en) * 2010-05-10 2011-11-10 Michael Kite Exercise and swim spa
US20110284440A1 (en) * 2010-05-19 2011-11-24 Luiz Filipe De Souza Sisson Multifunctional equipment for filtering pool water
WO2012051276A1 (en) * 2010-10-13 2012-04-19 Watkins Manufacturing Corporation Heat pump based spa heating and cooling method and apparatus
US20120095614A1 (en) * 2010-10-14 2012-04-19 Delayo Richard Electronic control device and method for boiler system
AU2011338297B2 (en) 2010-12-08 2016-10-13 Pentair Water Pool And Spa, Inc. Discharge vacuum relief valve for safety vacuum release system
CN102541111A (en) * 2010-12-28 2012-07-04 鸿富锦精密工业(深圳)有限公司 Constant-temperature control device
US8890357B2 (en) * 2011-01-17 2014-11-18 Balboa Water Group, Inc. Bathing system transformer device with first and second low voltage output power connections
US8981684B2 (en) 2011-10-31 2015-03-17 Regal Beloit America, Inc. Human-machine interface for motor control
ES2640280T3 (en) 2011-11-01 2017-11-02 Pentair Water Pool And Spa, Inc. Flow blocking system and method
WO2013163761A1 (en) * 2012-05-04 2013-11-07 Sierra Wireless, Inc. Uicc encapsulated in printed circuit board of wireless terminal
US9298238B2 (en) * 2012-06-28 2016-03-29 Nxp B.V. CMOS power backup switching circuit and method for operating a CMOS power backup switching circuit
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
US10492268B2 (en) * 2013-03-13 2019-11-26 Hayward Industries, Inc. Local feature controller for pool and spa equipment
EP2972656A4 (en) * 2013-03-15 2017-01-18 Pentair Flow Technologies, LLC Method of controlling a pump and motor
AU2014228186B2 (en) 2013-03-15 2019-11-07 Hayward Industries, Inc. Modular pool/spa control system
US9513638B2 (en) 2013-11-08 2016-12-06 Flashpoint Technologies, Llc Automatic pool and spa water leveler on a non-static line
US9445482B2 (en) 2014-05-23 2016-09-13 Gecko Alliance Group Inc. Light bulb and method and system for use in configuring same
US9641959B2 (en) 2014-05-23 2017-05-02 Gecko Alliance Group Inc. Household for industrial device including programmable controller and method device and system for use in configuring same
US9901511B2 (en) * 2014-05-26 2018-02-27 Dartpoint Tech Co., Ltd. Intelligent massage bathing system and method for controlling the same
BR112016029957A2 (en) * 2014-06-20 2017-08-22 Pentair Water Pool & Spa Inc hybrid heater
DE102014221790B3 (en) * 2014-10-27 2016-03-24 Siemens Aktiengesellschaft Electric heating and method of operating an electric heater
US10191498B2 (en) 2015-03-05 2019-01-29 Pentair Water Pool And Spa, Inc. Chemical controller system and method
CA2982736C (en) * 2015-05-07 2019-10-22 Halliburton Energy Services, Inc. Hydrocarbon-contamination treatment unit
US10348065B1 (en) 2015-08-10 2019-07-09 Wunderlich-Malec Engineering, Inc. Method for installation of electrical substation yard wiring
US20160374897A1 (en) * 2015-09-21 2016-12-29 My Spa, Inc. Sit down shower spa and method of forming same
WO2017087689A1 (en) 2015-11-17 2017-05-26 Elliptic Works LLC Pool data collection and control system
US11720085B2 (en) 2016-01-22 2023-08-08 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
EP3405629A4 (en) 2016-01-22 2020-01-22 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US10221853B2 (en) * 2016-05-01 2019-03-05 Sucxess LLC Fluid circulation monitoring system
US11168911B2 (en) 2016-05-01 2021-11-09 Sucxess LLC Fluid circulation monitoring system
US10718337B2 (en) 2016-09-22 2020-07-21 Hayward Industries, Inc. Self-priming dedicated water feature pump
CN107976914A (en) * 2018-01-23 2018-05-01 吴利强 A kind of new guest room intelligent controller
US20190314243A1 (en) * 2018-04-17 2019-10-17 Pentair Water Pool And Spa, Inc. Systems and Methods for Controlling Pool/Spa Devices
US10972305B2 (en) * 2018-06-22 2021-04-06 Bullfrog International, Lc Power line communications network system for a spa
US11293660B2 (en) 2019-05-08 2022-04-05 ChiSupply Co. Universal control board operatively controlling both low voltage and line voltage loading
FR3100885B1 (en) * 2019-09-14 2021-10-08 Georges Eusebe Device for the Measurement of the height of a liquid by laser or LIDAR which is applied to the regulation of the level of a liquid in a swimming pool
US11522326B2 (en) 2020-01-29 2022-12-06 Balboa Water Group, Llc Whirlpool bath controller with intelligent load control to reduce power requirements
US20230155357A1 (en) * 2020-04-02 2023-05-18 Safety Tubs Company, Llc Bathing control system
US11815921B2 (en) 2021-10-27 2023-11-14 Aquacal Autopilot, Inc. Automated swimming pool heat pump flow rate controller
WO2024026370A1 (en) * 2022-07-26 2024-02-01 Pentair, Inc. Aquatic equipment monitoring system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763365A (en) * 1987-04-15 1988-08-16 Tolo, Inc. Spa system having high temperature safety device
US5361215A (en) * 1987-05-27 1994-11-01 Siege Industries, Inc. Spa control system
US5550753A (en) * 1987-05-27 1996-08-27 Irving C. Siegel Microcomputer SPA control system
US5861683A (en) * 1997-05-30 1999-01-19 Eaton Corporation Panelboard for controlling and monitoring power or energy
US5864455A (en) * 1993-02-16 1999-01-26 Leviton Manufacturing Co., Inc. In-line cord ground fault circuit interrupter
US5898958A (en) * 1997-10-27 1999-05-04 Quad Cities Automatic Pools, Inc. Control circuit for delivering water and air to outlet jets in a water-filled pool
US6080973A (en) * 1999-04-19 2000-06-27 Sherwood-Templeton Coal Company, Inc. Electric water heater
US6253121B1 (en) * 1998-09-03 2001-06-26 Balboa Instruments, Inc. Control system for bathers with ground continuity and ground fault detection
US6262871B1 (en) * 1998-05-28 2001-07-17 X-L Synergy, Llc Fail safe fault interrupter
US6282370B1 (en) * 1998-09-03 2001-08-28 Balboa Instruments, Inc. Control system for bathers
US20060238931A1 (en) * 2005-04-22 2006-10-26 Cline David J Shutoff system for pool or spa

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528548A (en) 1967-04-26 1970-09-15 K & L Electronics Inc Electrical circuit for temperature control of swimming pool water
US3616915A (en) 1969-05-15 1971-11-02 Aquamatic Inc Automatic filter control
US3781925A (en) 1971-11-26 1974-01-01 G Curtis Pool water temperature control
US3997925A (en) * 1975-05-21 1976-12-21 Hough William D Apparatus to control the water level in a swimming pool
US4016079A (en) 1975-09-16 1977-04-05 Aquasol, Inc. Automatic chlorine and pH control apparatus for swimming pools
US4112680A (en) * 1975-11-17 1978-09-12 Gewerkschaft Eisenhutte Westfalia Control systems and arrangements for mineral mining installations
US4042984A (en) * 1975-12-31 1977-08-23 American Bath And Shower Corporation Automatic bathtub water level control system
US4115263A (en) 1976-10-20 1978-09-19 Auto-Chlor Inc. Periodic chlorination and superchlorination of recirculating swimming pool water
US4200910A (en) 1977-03-04 1980-04-29 Hall Burness C Programmable time varying control system and method
USRE32960E (en) 1977-03-17 1989-06-20 Honeywell Inc. Electronic thermostat
US4385357A (en) 1978-04-14 1983-05-24 Water Refining Company, Inc. Water treatment system and control therefor
US4209837A (en) 1978-07-03 1980-06-24 Beckman Instruments, Inc. Programmable controller
US4404697A (en) 1978-08-14 1983-09-20 Intermatic Incorporated Remote control system for spas
US4298946A (en) 1978-12-18 1981-11-03 Texas Instruments Incorporated Electronically controlled programmable digital thermostat
US4224154A (en) 1978-12-20 1980-09-23 Steininger Jacques M Swimming pool chemical control system
US4233694A (en) 1979-01-22 1980-11-18 Jacuzzi Whirlpool Bath, Inc. Spa construction and isolated controls therefor
US4621613A (en) 1979-01-25 1986-11-11 Krumhansl Mark U Pool and spa heating and cooling
US4344000A (en) 1979-03-21 1982-08-10 Dynascan Corporation Power circuit control programmable timer
US4398789A (en) 1979-04-13 1983-08-16 Diffracto Ltd. Opto-electronically controlled bathing systems
US4235368A (en) 1979-08-27 1980-11-25 Teledyne Industries, Inc. Thermostat assembly
US4257555A (en) 1979-08-27 1981-03-24 Teledyne Industries, Inc. Thermostat assembly
US4267966A (en) 1979-08-27 1981-05-19 Teledyne Industries, Inc. Programmable thermostat
US4300199A (en) 1979-08-27 1981-11-10 Teledyne Industries, Inc. Thermostat
US4292542A (en) 1980-04-14 1981-09-29 Compool Corporation Submersible remote control switch assembly
US4308991A (en) 1980-07-07 1982-01-05 Emerson Electric Co. Programmable electronic thermostat
US4322297A (en) 1980-08-18 1982-03-30 Peter Bajka Controller and control method for a pool system
US4361274A (en) 1980-09-08 1982-11-30 Teledyne Industries, Inc. Electronic temperature control
US4421270A (en) 1980-09-08 1983-12-20 Teledyne Industries, Inc. Electronic temperature control
US4368549A (en) 1980-12-29 1983-01-18 Teledyne Industries, Inc. Swimming pool heater temperature control system
US4393527A (en) 1980-12-29 1983-07-19 Teledyne Industries, Inc. Method of controlling non-solar swimming pool heater
US4385724A (en) 1981-04-09 1983-05-31 Ramco Manufacturing, Inc. Apparatus for controlling the water temperature of a spa
US4415446A (en) * 1982-02-04 1983-11-15 Nalco Chemical Company Automatic chemical solution mixing unit
US4403157A (en) 1982-02-08 1983-09-06 Teledyne Industries, Inc. Control circuit for light emitting diode
US4445238A (en) * 1982-09-29 1984-05-01 Maxhimer Monroe R Swimming pool water level control apparatus
US4409694A (en) 1982-09-30 1983-10-18 John P. Barrett, Sr. Electronic control device for liquids
US4570216A (en) 1983-02-10 1986-02-11 Brightmond Company Limited Programmable switch
US4676914A (en) 1983-03-18 1987-06-30 North Coast Systems, Inc. Microprocessor based pump controller for backwashable filter
US4742456A (en) 1983-03-18 1988-05-03 American Standard Inc. Sound responsive tube control circuit
US4564962A (en) 1983-05-24 1986-01-21 Castleberry Kenneth B Energy efficient thermosyphoning spa heater system
GB2148467B (en) * 1983-10-18 1988-04-13 Gainsborough Electrical Water heaters
EP0176576A1 (en) * 1984-04-10 1986-04-09 Roto Moulded Plastics Pty. Limited Automatic water level monitoring system
US4612949A (en) * 1985-02-11 1986-09-23 Henson James H Apparatus for controlling water level
US4685158A (en) 1985-02-20 1987-08-11 Lively Olin A Swimming pool control system
US4724552A (en) * 1985-03-25 1988-02-16 Aqua Systems, Inc. Apparatus for automatically maintaining a predetermined desired level of water in a swimming pool, and the like
US4773008A (en) 1986-07-07 1988-09-20 Schroeder Rondon L Environmental control of an aquarium
US4828626A (en) 1986-08-15 1989-05-09 Crystal Pools, Inc. Cleaning system for swimming pools and the like
US4706310A (en) * 1986-10-23 1987-11-17 Herbert Magnes Liquid level control system
US4780917A (en) 1987-01-05 1988-11-01 Hancock James W Spa construction with integrated spa side and inside control system
US4967382A (en) 1987-01-09 1990-10-30 Hall Burness C Programmable time varying control system and method
GB8708098D0 (en) 1987-04-04 1987-05-13 Screening Consultants Ltd Timeswitches
US5311451A (en) 1987-11-06 1994-05-10 M. T. Mcbrian Company, Inc. Reconfigurable controller for monitoring and controlling environmental conditions
US4844333A (en) 1988-04-08 1989-07-04 Tridelta Industries, Inc. Spa side control unit
US4998673A (en) * 1988-04-12 1991-03-12 Sloan Valve Company Spray head for automatic actuation
US4854498A (en) 1988-06-08 1989-08-08 Stayton L Dean Shower temperature control system
US4819909A (en) * 1988-07-28 1989-04-11 American Standard Inc. Self-closing valve for sanitary installations
US4941608A (en) 1988-12-23 1990-07-17 Matsushita Electric Works, Ltd. Hot water supplying system
DE68916223D1 (en) 1988-12-29 1994-07-21 Toto Ltd Whirlpool tub with a circulation pump controlled by an inverter.
US5079784A (en) 1989-02-03 1992-01-14 Hydr-O-Dynamic Systems, Inc. Hydro-massage tub control system
US4945943A (en) * 1989-04-17 1990-08-07 Kolator Water Dynamics, Inc. Computerized water faucet
US4923116A (en) 1989-05-24 1990-05-08 Homan Gerald L Bath water control system
US5245221A (en) 1989-10-23 1993-09-14 American Standard Inc. System for jetted tubs and apparatus therefor
US5091095A (en) 1990-07-23 1992-02-25 Focus Enterprises, Inc. System for controlling drain system treatment using temperature and level sensing means
US5175047A (en) 1990-08-09 1992-12-29 Teledyne Industries, Inc. Rigid-flex printed circuit
US5117233A (en) 1990-10-18 1992-05-26 Teledyne Industries, Inc. Spa and swimming pool remote control systems
US5052812A (en) * 1990-11-19 1991-10-01 New Brunswick Scientific Co., Inc. Bath shaker
US5313876A (en) * 1991-05-17 1994-05-24 The Frymaster Corporation Spaghetti cooking system
CA2057527A1 (en) 1991-12-09 1993-06-10 Keith Drysdale Method and apparatus for heating a spa
US5154205A (en) * 1992-01-03 1992-10-13 Langill Edwin R Method and apparatus for maintaining level of water in above-ground swimming pools
US5208923A (en) 1992-01-27 1993-05-11 Stiver J Harold Swimming pool water flow system
JP3162827B2 (en) 1992-09-18 2001-05-08 三洋電機株式会社 Temperature control device
US5329991A (en) 1992-11-05 1994-07-19 Hunter Fan Company Pre-programmed electronic programmable thermostat
US5365617A (en) * 1993-03-19 1994-11-22 Shasta Industries, Inc. Retrofit swimming pool water leveler and method
US5548854A (en) 1993-08-16 1996-08-27 Kohler Co. Hydro-massage tub control system
US5585025A (en) 1993-09-13 1996-12-17 Softub, Inc. SPA control circuit
US5415221A (en) 1993-12-09 1995-05-16 Zakryk; John M. Auto switching swimming pool/spa heater system
US5394899A (en) * 1993-12-13 1995-03-07 Powers; Ernest G. Pet watering bowl
US5809796A (en) * 1994-03-15 1998-09-22 Zakryk; John M. Self regulating pool heater unit
US6109050A (en) * 1994-03-15 2000-08-29 Zakryk; John M. Self regulating pool heater unit
DE4437708A1 (en) 1994-10-21 1996-05-09 Bodo Dipl Ing Klingenberger Process and device to operate a swimming pool filter unit
US5616239A (en) 1995-03-10 1997-04-01 Wendell; Kenneth Swimming pool control system having central processing unit and remote communication
US5787447A (en) * 1995-05-08 1998-07-28 Sun Microsystems, Inc. Memory allocation maintaining ordering across multiple heaps
US5684717A (en) 1996-03-14 1997-11-04 Heatcraft Inc. Apparatus for monitoring operation of heating and cooling systems
US5730861A (en) 1996-05-06 1998-03-24 Sterghos; Peter M. Swimming pool control system
US5708548A (en) 1996-05-24 1998-01-13 Cascade Systems Inc. Protection device for a spa pack
US5682754A (en) * 1996-07-02 1997-11-04 Desert Aire Corp. Method and apparatus for controlling swimming pool room air and water temperatures
US5790991A (en) * 1997-03-31 1998-08-11 Johnson; Charles F. Apparatus for automatically regulating water level in a swimming pool
US5878447A (en) * 1997-10-24 1999-03-09 Wkr Productions, Inc. Automatic water regulator apparatus for filling a swimming pool or comparable body of water when the water level is low
US5920923A (en) * 1998-01-09 1999-07-13 Jillette; Penn Hydro-therapeutic stimulator
US6407469B1 (en) * 1999-11-30 2002-06-18 Balboa Instruments, Inc. Controller system for pool and/or spa

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763365A (en) * 1987-04-15 1988-08-16 Tolo, Inc. Spa system having high temperature safety device
US5361215A (en) * 1987-05-27 1994-11-01 Siege Industries, Inc. Spa control system
US5550753A (en) * 1987-05-27 1996-08-27 Irving C. Siegel Microcomputer SPA control system
US5559720A (en) * 1987-05-27 1996-09-24 Irving C. Siegel Spa control system
US5864455A (en) * 1993-02-16 1999-01-26 Leviton Manufacturing Co., Inc. In-line cord ground fault circuit interrupter
US5861683A (en) * 1997-05-30 1999-01-19 Eaton Corporation Panelboard for controlling and monitoring power or energy
US5898958A (en) * 1997-10-27 1999-05-04 Quad Cities Automatic Pools, Inc. Control circuit for delivering water and air to outlet jets in a water-filled pool
US6262871B1 (en) * 1998-05-28 2001-07-17 X-L Synergy, Llc Fail safe fault interrupter
US6253121B1 (en) * 1998-09-03 2001-06-26 Balboa Instruments, Inc. Control system for bathers with ground continuity and ground fault detection
US6282370B1 (en) * 1998-09-03 2001-08-28 Balboa Instruments, Inc. Control system for bathers
US6590188B2 (en) * 1998-09-03 2003-07-08 Balboa Instruments, Inc. Control system for bathers
US6080973A (en) * 1999-04-19 2000-06-27 Sherwood-Templeton Coal Company, Inc. Electric water heater
US20060238931A1 (en) * 2005-04-22 2006-10-26 Cline David J Shutoff system for pool or spa
US7417834B2 (en) * 2005-04-22 2008-08-26 Balboa Instruments, Inc. Shutoff system for pool or spa
US20090067102A1 (en) * 2005-04-22 2009-03-12 Cline David J Shutoff system for pool or spa

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8967191B1 (en) 2007-11-13 2015-03-03 Richard DeVerse Devices, methods, and algorithms for rapid measurement of mean surface level change of liquids in containers
US8220482B1 (en) 2007-11-13 2012-07-17 Kona Labs LLC Devices, methods, and algorithms for rapid measurement of mean surface level change of liquids in containers
US20110002791A1 (en) * 2009-04-07 2011-01-06 Itt Manufacturing Enterprises, Inc. Pump System for Removing Water from Pool Covers and Sumps
WO2010118121A1 (en) * 2009-04-07 2010-10-14 Itt Manufacturing Enterprises, Inc. Improved pump system for removing water from pool covers and sumps
US20100300548A1 (en) * 2009-06-01 2010-12-02 Deverse Richard Automated system for monitoring and maintenance of fluid level in swimming pools and other contained bodies of water
US9410336B2 (en) 2009-06-01 2016-08-09 Richard DeVerse Automated system for monitoring and maintenance of fluid level in swimming pools and other contained bodies of water
US20110274560A1 (en) * 2010-05-05 2011-11-10 Emerson Electric Co. Pump Assemblies, Controllers and Methods of Controlling Fluid Pumps Based on Air Temperature
US9175872B2 (en) 2011-10-06 2015-11-03 Lennox Industries Inc. ERV global pressure demand control ventilation mode
US9404668B2 (en) 2011-10-06 2016-08-02 Lennox Industries Inc. Detecting and correcting enthalpy wheel failure modes
US10823447B2 (en) 2011-10-06 2020-11-03 Lennox Industries Inc. System and method for controlling a blower of an energy recovery ventilator in response to internal air pressure
US10197344B2 (en) 2011-10-06 2019-02-05 Lennox Industries Inc. Detecting and correcting enthalpy wheel failure modes
US9835353B2 (en) 2011-10-17 2017-12-05 Lennox Industries Inc. Energy recovery ventilator unit with offset and overlapping enthalpy wheels
US9395097B2 (en) 2011-10-17 2016-07-19 Lennox Industries Inc. Layout for an energy recovery ventilator system
US9441843B2 (en) 2011-10-17 2016-09-13 Lennox Industries Inc. Transition module for an energy recovery ventilator unit
US20130095744A1 (en) * 2011-10-17 2013-04-18 Lennox Industries Inc. Sensor mounting panel for an energy recovery ventilator unit
US10337759B2 (en) 2011-10-17 2019-07-02 Lennox Industries, Inc. Transition module for an energy recovery ventilator unit
US10386087B2 (en) 2011-11-10 2019-08-20 Lennox Industries Inc. Method of defrosting an energy recovery ventilator unit
US9791163B2 (en) 2011-11-10 2017-10-17 Lennox Industries Inc. Method of defrosting an energy recovery ventilator unit
US9671122B2 (en) 2011-12-14 2017-06-06 Lennox Industries Inc. Controller employing feedback data for a multi-strike method of operating an HVAC system and monitoring components thereof and an HVAC system employing the controller
US8526145B2 (en) 2011-12-29 2013-09-03 Hubbell Incorporated Power on reset GFCI
US10588200B2 (en) 2015-07-02 2020-03-10 Hayward Industries, Inc. Lighting system for an environment and a control module for use therein
US10057964B2 (en) 2015-07-02 2018-08-21 Hayward Industries, Inc. Lighting system for an environment and a control module for use therein
US11632835B2 (en) 2015-07-02 2023-04-18 Hayward Industries, Inc. Lighting system for an environment and a control module for use therein
USD777119S1 (en) * 2015-10-06 2017-01-24 Hiwin Technologies Corp. Control panel for bathing robot
US20170187235A1 (en) * 2015-12-28 2017-06-29 Runway Energy, LLC Electrical power restoration system and method
US20190058353A1 (en) * 2015-12-28 2019-02-21 Runway Energy, LLC Electrical power restoration system and method
US10170930B2 (en) * 2015-12-28 2019-01-01 Runway Energy, LLC Electrical power restoration system for a circuit assembly and method
WO2017117069A1 (en) * 2015-12-28 2017-07-06 Runway Energy, LLC Electrical power restoration system and method
US10965149B2 (en) * 2015-12-28 2021-03-30 Runway Energy, LLC Electrical power restoration system for a circuit assembly and method
US10942531B1 (en) * 2018-07-13 2021-03-09 Taylor Fife Swimming pool leveling system and method of use
US11313142B1 (en) 2018-07-13 2022-04-26 Taylor Fife Swimming pool leveling system and method of use
CN110806769A (en) * 2019-11-25 2020-02-18 国网新疆电力有限公司乌鲁木齐供电公司 Overtemperature early warning device and method for open-type isolating switch

Also Published As

Publication number Publication date
US7440864B2 (en) 2008-10-21
US6643108B2 (en) 2003-11-04
US20020070611A1 (en) 2002-06-13
US6407469B1 (en) 2002-06-18
US20020089236A1 (en) 2002-07-11
US6747367B2 (en) 2004-06-08
US20050063123A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US7440864B2 (en) Controller system for pool and/or spa
US7626789B2 (en) Shutoff system for pool or spa
JP5601596B2 (en) Heater control method and upper limit temperature safety stop device
CA2342768C (en) Control system for bathers with ground continuity and ground fault detection
CA2816862C (en) Bathing system controller having abnormal operational condition identification capabilities
US7762786B2 (en) Integrated fire pump controller and automatic transfer switch
US6590188B2 (en) Control system for bathers
CA2582175C (en) Control system for bathers
JP2000182505A (en) Electric leakage safety device and hot-water supplying device
CA2588584C (en) Control system for bathers with ground continuity and ground fault detection
KR100321927B1 (en) Automatic controller of steam sauna
JP3137665B2 (en) Safety device for circulating bath water purification equipment
KR20050042395A (en) Automatic system for cutting electiric connection of junction box in vehicles
JPH0576065A (en) Control terminal equipment for home automation system
JPH05293149A (en) Power source unit for sauna
JP2000257134A (en) Toilet device

Legal Events

Date Code Title Description
AS Assignment

Owner name: PNC BANK, NATIONAL ASSOCIATION, PENNSYLVANIA

Free format text: SECURITY AGREEMENT;ASSIGNORS:BALBOA WATER GROUP, INC.;BALBOA INSTRUMENTS, INC.;G-G DISTRIBUTION AND DEVELOPMENT CO., INC.;REEL/FRAME:023538/0406

Effective date: 20091105

Owner name: PNC BANK, NATIONAL ASSOCIATION,PENNSYLVANIA

Free format text: SECURITY AGREEMENT;ASSIGNORS:BALBOA WATER GROUP, INC.;BALBOA INSTRUMENTS, INC.;G-G DISTRIBUTION AND DEVELOPMENT CO., INC.;REEL/FRAME:023538/0406

Effective date: 20091105

AS Assignment

Owner name: BALBOA WATER GROUP, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BALBOA INSTRUMENTS, INC.;REEL/FRAME:030965/0092

Effective date: 20130731

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: BALBOA WATER GROUP, LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION;REEL/FRAME:052918/0717

Effective date: 20151117

Owner name: SPA & BATH HOLDINGS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION;REEL/FRAME:052918/0717

Effective date: 20151117

Owner name: G-G DISTRIBUTION AND DEVELOPMENT CO., INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION;REEL/FRAME:052918/0717

Effective date: 20151117

Owner name: BALBOA WATER GROUP, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION;REEL/FRAME:052918/0717

Effective date: 20151117

Owner name: BALBOA INSTRUMENTS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION;REEL/FRAME:052918/0717

Effective date: 20151117